WorldWideScience

Sample records for address arsenic manganese

  1. Adsorptive removal of manganese, arsenic and iron from groundwater

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been investigated and modeled. Effect of manganese and iron loading on manganese removal and rate of oxidation of adsorbed iron and manganese have been studied. Aquamandix and IOCS demonstrated iron and mang...

  2. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  3. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    Bacquart, Thomas [Better Life Laboratories, Calais, VT (United States); Frisbie, Seth [Better Life Laboratories, Calais, VT (United States); Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Mitchell, Erika [Better Life Laboratories, Calais, VT (United States); Grigg, Laurie [Department of Earth and Environmental Science, Norwich University, Northfield, VT (United States); Cole, Christopher [Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Small, Colleen [Vermont Department of Health Laboratory, Burlington, VT (United States); Sarkar, Bibudhendra, E-mail: bsarkar@sickkids.ca [Department of Molecular Structure and Function, The Research Institute of The Hospital for Sick Children, University of Toronto, Toronto, Ontario (Canada); Department of Biochemistry, University of Toronto, Toronto, Ontario (Canada)

    2015-06-01

    substances. - Highlights: • We analyzed Myanmar ground and surface waters for multiple inorganic contaminants. • Arsenic, manganese, fluoride, iron, or uranium exceeded safe levels in most wells. • Most wells contained more than one contaminant above health-based reference values. • Arsenic was positively and uranium negatively correlated with iron and manganese. • Mitigation, including testing and treatment, must address multiple contaminants.

  4. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    substances. - Highlights: • We analyzed Myanmar ground and surface waters for multiple inorganic contaminants. • Arsenic, manganese, fluoride, iron, or uranium exceeded safe levels in most wells. • Most wells contained more than one contaminant above health-based reference values. • Arsenic was positively and uranium negatively correlated with iron and manganese. • Mitigation, including testing and treatment, must address multiple contaminants

  5. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil.

    Yu, Zhihong; Zhou, Li; Huang, Yifan; Song, Zhengguo; Qiu, Weiwen

    2015-11-01

    The arsenic adsorption capacity of a manganese oxide-modified biochar composite (MBC), prepared by pyrolysis of a mixture of potassium permanganate and biochar, was investigated in red soil. Adsorption experiments using batch procedures were used to estimate the arsenic adsorption capacities of the absorbent materials. Adsorption and desorption isotherms, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterise the prepared adsorbent materials, and a plausible mechanism for arsenic removal by MBC was proposed. Arsenic in red soil-MBC mixtures exhibited lower mobility than that in soils amended with pristine biochar. The improved removal performance of soil-MBC mixtures was attributed to a lower H/C ratio, higher O/C ratio, higher surface hydrophilicity, and higher surface sorption capacity, even though the impregnation of manganese oxide decreased the specific surface area of the biochar. Arsenic retention increased as the biochar content increased, mainly owing to an increase in soil pH. Several oxygenated functional groups, especially O-H, CO, Mn-O, and Si-O, participated in the adsorption process, and manganese oxides played a significant role in the oxidation of arsenic. This study highlights the potential of MBC as an absorbent to immobilise arsenic for use in contaminated land remediation in the red soils region. PMID:26320008

  6. Topographical Distribution of Arsenic, Manganese, and Selenium in the Normal Human Brain

    Larsen, Niels Agersnap; Pakkenberg, H.; Damsgaard, Else; Heydorn, Kaj

    1979-01-01

    The concentrations of arsenic, manganese and selenium per gram wet tissue weight were determined in samples from 24 areas of normal human brains from 5 persons with ages ranging from 15 to 81 years of age. The concentrations of the 3 elements were determined for each sample by means of neutron...... activation analysis with radiochemical separation. Distinct patterns of distribution were shown for each of the 3 elements. Variations between individuals were found for some but not all brain areas, resulting in coefficients of variation between individuals of about 30% for arsenic, 10% for manganese and 20......% for selenium. The results seem to indicate that arsenic is associated with the lipid phase, manganese with the dry matter and selenium with the aqueous phase of brain tissue....

  7. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...... the ppM level in samples of biological tissue....

  8. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  9. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  10. Microbially-mediated thiocyanate oxidation and manganese cycling control arsenic mobility in groundwater at an Australian gold mine

    Horvath, A. S.; Baldisimo, J. G.; Moreau, J. W.

    2010-12-01

    Arsenic contamination of groundwater poses a serious environmental and human health problem in many regions around the world. Historical groundwater chemistry data for a Western-Central Victorian gold mine (Australia) revealed a strong inverse correlation between dissolved thiocyanate and iron(II), supporting the interpretation that oxidation of thiocyanate, a major groundwater contaminant by-product of cyanide-based gold leaching, was coupled to reductive dissolution of iron ox(yhydrox)ides in tailings dam sediments. Microbial growth was observed in this study in a selective medium using SCN- as the sole carbon and nitrogen source. The potential for use of SCN- as a tracer of mining contamination in groundwater was evaluated in the context of biological SCN- oxidation potential in the aquifer. Geochemical data also revealed a high positive correlation between dissolved arsenic and manganese, indicating that sorption on manganese-oxides most likely controls arsenic mobility at this site. Samples of groundwater and sediments along a roughly straight SW-NE traverse away from a large mine tailings storage facility, and parallel to the major groundwater flow direction, were analysed for major ions and trace metals. Groundwater from wells approaching the tailings along this traverse showed a nearly five-fold increase (roughly 25-125 ppb) in dissolved arsenic concentrations relative to aqueous Mn(II) concentrations. Thus, equivalent amounts of dissolved manganese released a five-fold difference in the amount of adsorbed arsenic. The interpretation that reductive dissolution of As-bearing MnO2 at the mine site has been mediated by groundwater (or aquifer) microorganisms is consistent with our recovery of synthetic birnessite-reducing enrichment cultures that were inoculated with As-contaminated groundwaters.

  11. Manganese

    Antibiotics (Quinolone antibiotics)Manganese can attach to quinolones in the stomach. This decreases the amount of quinolones that can be absorbed by the body. Taking manganese along with some antibiotics might ...

  12. Manganese

    ... osteoporosis). Taking manganese by mouth in combination with calcium, zinc, and copper seems to help reduce spinal bone ... research suggests that applying a dressing containing manganese, calcium, and zinc to chronic wounds for 12 weeks may improve ...

  13. Manganese

    Present article is devoted to manganese content in fluoride. The manganese content of some geologic deposits of Tajikistan was determined by means of chemical analysis. The mono mineral samples of fluorite of 5 geologic deposits of various mineralogical and genetic type was studied. The manganese content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  14. EVALUATING ARSENIC AND MANGANESE REMOVAL FROM WATER BY CHLORINE OXIDATION FOLLOWED BY CLARIFICATION

    V. G. R. Pires

    2015-06-01

    Full Text Available AbstractThis paper investigates the simultaneous removal of arsenic [As(V or As(III] and manganese [Mn(II] from natural waters of low and high turbidity by clarification (with polyaluminum chloride and aluminum sulfate as primary coagulants associated or not with chlorine pre-oxidation. The results showed that the clarification process exhibited low Mn(II removal, that varied from 6% to 18% and from 19% to 27% for natural waters of low and high turbidity, respectively. The use of chlorine as pre-oxidant increased Mn(II removal up to 77% and was associated with the formation of birnessite. Regarding As(V removal by clarification, particularly for high turbidity water, a concentration lower than that established by the National Drinking Water Quality Standards (10 μg.L-1 was achieved in almost all tests. Oxidation preceding the clarification led to AsIII removal efficiencies from 80% to 90% for both coagulants and types of water.

  15. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  16. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    Rodríguez-Barranco, Miguel [Andalusian School of Public Health (EASP), Granada (Spain); Lacasaña, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.es [Andalusian School of Public Health (EASP), Granada (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Aguilar-Garduño, Clemente [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Centre Superior d' Investigació en Salut Pública, Conselleria de Sanitat, Valencia (Spain); Alguacil, Juan [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Biology and Public Health, University of Huelva, Huelva (Spain); Gil, Fernando [Department of Legal Medicine and Toxicology, University of Granada, Granada (Spain); González-Alzaga, Beatriz [Andalusian School of Public Health (EASP), Granada (Spain); Rojas-García, Antonio [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2013-06-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  17. Arsenic enrichment in estuarine sediments-impact of iron and manganese mining

    Nair, M.; Joseph, T.; Balachandran, K.K.; Nair, K.K.C.; Paimpillii, J.S.

    River Mandovi and Zuari, Goa (west coast of India) are flowing through iron and manganese mining areas and are heavily used for iron and manganese ore transport. This region generates 25-30 million tons of mining rejects per year. The iron ore...

  18. Arsenic

    ... of countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States of America. Drinking-water, ... ingestion of inorganic arsenic include developmental effects, neurotoxicity, diabetes, pulmonary disease and cardiovascular disease. Arsenic-induced myocardial ...

  19. A study of drinking water of industrial area of sheikhupura with special concern to arsenic, manganese and chromium

    in our current study we focused our attention to analyze the drinking water of industrial area of Sheikhupura that is swarming with small and large industries. Previously no work has been reported related to this area. Samples were collected from the twelve different sites of the mentioned area for six months at frequency of once per fifteen days (map in Fig 1). The samples were analyzed under strict quality control conditions and ASTM (American Standard Testing Methods) methods were employed for strictly precise and accurate results. Four sites showed bacterial contamination, five sites indicated high level of TDS (Total Dissolved Solids) and conductivity. Only one site indicated elevated chromium level (0.6 mg/L), two depicted increased level of arsenic but five sites gave idea about the high level of manganese(highest average value 1.2 mg/L ) in the study area. (author)

  20. In situ co-adsorption of arsenic and iron/manganese ions on raw clays

    Doušová, B.; Lhotka, M.; Grygar, Tomáš; Machovič, V.; Herzogová, L.

    2011-01-01

    Roč. 54, č. 2 (2011), s. 166-171. ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Arsenic * Groundwater * Co-adsorption * Raw clays * Pre-modified clays * Fe/Mn Subject RIV: DD - Geochemistry Impact factor: 2.474, year: 2011

  1. Arsenic, iron, lead, manganese, and uranium concentrations in private bedrock wells in southeastern New Hampshire, 2012-2013

    Flanagan, Sarah M.; Belaval, Marcel; Ayotte, Joseph D.

    2014-01-01

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the trace metal arsenic have been identified in drinking water from groundwater sources in southeastern New Hampshire, a rapidly growing region of the State (Montgomery and others, 2003). During the past decade (2000–10), southeastern New Hampshire, which is composed of Hillsborough, Rockingham, and Strafford Counties, has grown in population by nearly 48,700 (or 6.4 percent) to 819,100. These three counties contain 62 percent of the State’s population but encompass only about 22 percent of the land area (New Hampshire Office of Energy and Planning, 2011). According to a 2005 water-use study (Hayes and Horn, 2009), about 39 percent of the population in these three counties in southeastern New Hampshire uses private wells as sources of drinking water, and these wells are not required by the State to be routinely tested for trace metals or other contaminants. Some trace metals have associated human-health benchmarks or nonhealth guidelines that have been established by the U.S. Environmental Protection Agency (EPA) to regulate public water supplies. The EPA has established a maximum contaminant level (MCL) of 10 micrograms per liter (μg/L) for arsenic (As) and a MCL of 30 μg/L for uranium (U) because of associated health risks (U.S. Environmental Protection Agency, 2012). Iron (Fe) and manganese (Mn) are essential for human health, but Mn at high doses may have adverse cognitive effects in children (Bouchard and others, 2011; Agency for Toxic Substances and Disease Registry, 2012); therefore, the EPA has issued a lifetime health advisory (LHA) of 300 μg/L for Mn. Recommended secondary maximum contaminant levels (SMCLs) for Fe (300 μg/L) and Mn (50 μg/L) were established primarily as

  2. Studies of arsenic mobilization with iron, manganese and copper in borehole sediments of the river padma

    Previous Research suggested that there is a strong interrelation between As, Fe and Mn in their Occurring, transport and exposure to the environment. In this context, a comparative study was conducted in this current experiment to correlate As, Fe, Cu and Mn by determining their concentration in sediments (upper and bore hole) at different depths in the river Padma. Six locations were selected as sampling sites from entering point (upstream) and end point (downstream) of the river Padma. Sampling was carried out by borehole technique at several depths ranging from 1 meter to 5 meters. The samples were digested with HCIO/sub 4/- HNO/sub 3/ acid mixture of ratio 2:3 in an acid digestion bomb. Arsenic was determined by HVG-AAS technique and Fe, Mn and Cu were determined by Flame-AAS technique. Large amount of Fe has been obtained, which has endorsed the previous assumptions of the relations of As with Fe. The small correlation value in case of As, Fe and Mn indicates that not all the minerals of arsenic and Mn but only hydroxides of Fe and Mn interfere with As. The small amount of Cu obtained indicated that any relation between sources and exposure of As and Cu and their interaction is yet to be found out. (author)

  3. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus

    Hossain, M.B. [Soil Science Division, Bangladesh Institute of Nuclear Agriculture, P.O. Box 4, Mymensingh 2200 (Bangladesh)], E-mail: baktear@gmail.com; Jahiruddin, M. [Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh)], E-mail: m_jahiruddin@yahoo.com; Panaullah, G.M. [CIMMYT Bangladesh, House 18, Road 4, Sector 4, Uttara, Dhaka 1230 (Bangladesh)], E-mail: gmpanaullah@gmail.com; Loeppert, R.H. [Soil and Crop Sciences Department, Texas A and M University, College Station, TX 77843-2474 (United States)], E-mail: rloepper@ag.tamu.edu; Islam, M.R. [Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh)], E-mail: mrislam58@yahoo.com; Duxbury, J.M. [Department of Crop and Soil Sciences, Cornell University, Ithaka, NY 14853 (United States)], E-mail: jmd17@cornell.edu

    2008-12-15

    Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 {mu}g L{sup -1}. Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH{sub 4}-oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296 {+-} 0.063 {mu}g g{sup -1}, n = 56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh. - Arsenic concentrations of irrigation water, soil and rice decreased with distance from STW point and it was related with iron and phosphorus concentrations.

  4. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus

    Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 μg L-1. Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH4-oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296 ± 0.063 μg g-1, n = 56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh. - Arsenic concentrations of irrigation water, soil and rice decreased with distance from STW point and it was related with iron and phosphorus concentrations

  5. Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of Black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska

    Burger, Joanna [Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854-8082 (United States); Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Piscataway, New Jersey 08854 (United States); Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey 08854 (United States)], E-mail: burger@biology.rutgers.edu; Gochfeld, Michael [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Piscataway, New Jersey 08854 (United States); Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey 08854 (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 (United States); Sullivan, Kelsey [U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska 99503 (United States); P.O. Box 801, Bethel, Maine, 04217 (United States); Irons, David [U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska 99503 (United States); McKnight, Aly [P.O. Box 801, Bethel, Maine, 04217 (United States)

    2008-07-15

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of Black-legged Kittiwakes (Rissa tridactyla) from Shoup Bay in Prince William Sound, Alaska to determine if there were age-related differences in metal levels, and in Black Oystercatchers (Haematopus bachmani)) from the same region to determine if there were differences in oiled and unoiled birds. Except for mercury, there were no age-related differences in metals levels in the feathers of kittiwakes. Kittiwakes over 13 years of age had the highest levels of mercury. There were no differences in levels of metals in the feathers of oystercatchers from oiled and unoiled regions of Prince William Sound. Except for mercury, the feathers of oystercatchers had significantly higher levels of all metals than those of kittiwakes. Levels of mercury in kittiwake feathers (mean of 2910 ng/g [ppb]) were within the range of many species of seabirds reported for other studies, and were generally below adverse effects levels.

  6. Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil.

    Freire, Carmen; Koifman, Rosalina Jorge; Fujimoto, Denys; de Oliveira Souza, Vanessa Cristina; Barbosa, Fernando; Koifman, Sergio

    2015-06-01

    This study aimed to investigate the distribution and factors influencing blood levels of Cadmium (Cd), Arsenic (As), and Manganese (Mn), and to determine their reference values in a sample of blood donors residing in Rio Branco, capital city of Acre State, Brazil. Blood samples were collected from all blood donors attending the Central Hemotherapic Unit in Rio Branco between 2010 and 2011. Among these, 1183 donors (98.9%) answered to a questionnaire on sociodemographic and lifestyle factors. Blood metal concentrations were determined by atomic spectrometry. Association between Cd, As and Mn levels and donors' characteristics was examined by linear regression analysis. Reference values were estimated as the upper limit of the 95% confidence interval of the 95th percentile of metal levels. References values were 0.87 μg L(-1) for Cd, 9.87 μg L(-1) for As, and 29.32 μg L(-1) for Mn. Reference values of Cd and As in smokers were 2.66 and 10.86 μg L(-1), respectively. Factors contributing to increase Cd levels were smoking, ethnicity (non-white), and lower education, whereas drinking tea and non-bottled water were associated with lower Cd. Lower levels of As were associated with higher household income, living near industrial facilities, working in a glass factory, a compost plant or in metal mining activities. Risk factors for Mn exposure were not identified. In general, blood Cd concentrations were in the range of exposure levels reported for other people from the general population, whereas levels of As and Mn were higher than in other non-occupationally exposed populations elsewhere. PMID:25655821

  7. Interlaboratory comparison survey of the determination of chromium, manganese, iron, titanium in dust and arsenic, cadmium, cobalt and chromium in urine

    This report describes an intercomparison survey based on the Danish External Quality Assessment Scheme (DEQAS). The study was carried out in 1998 for 10 laboratories in a research project on assessment of levels and health effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. The project was co-ordinated by the IAEA. Eight laboratories measured chromium (Cr), manganese (Mn), iron (Fe) and titanium (Ti) in welding fume dust loaded on filters. Six laboratories measured arsenic (As), four laboratories measured cadmium (Cd), five laboratories measured cobalt (Co) and four laboratories measured chromium (Cr) in urine. The target values of the quality control materials were traceable to certified reference materials with respect to Cr in welding fume and As, Cd, Co and Cr in urine. For Mn, Fe and Ti in welding fume the target values were established based on values from reference laboratories and consensus values from several DEQAS rounds. For evaluating the analytical performance the z-score and En number were calculated as recommended in ISO 45. The judgement of laboratories according to the performance scores revealed that few laboratories could maintain an ideal z-score below 3 and an ideal En number below 1. Nearly all participants had a high precision in the reported results. This is a good basis for improvements. The deviations from the target values appear to be systematic, because the deviations for Mn, Fe, Ti in welding dust as well as for As, Cd, Co and Cr in urine were a linear function of the target values (ISO 5725 evaluation). The cause for this bias is unknown at present and might not be the same for all participants. It is necessary to look further into the cause for this bias. Therefore, validation of the methodologies and regularly use of certified reference materials are highly recommended. (author)

  8. The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies.

    Liu, Jing; He, Lile; Dong, Faqin; Hudson-Edwards, Karen A

    2016-06-01

    Although the removal of arsenic(V) (As(V)) from solution can be improved by forming metal-bearing coatings on solid media, there has been no research to date examining the relationship between the coating and As(V) sorption performance. Manganese-coated bone char samples with varying concentrations of Mn were created to investigate the adsorption and desorption of As(V) using batch and column experiments. Breakthrough curves were obtained by fitting the Convection-Diffusion Equation (CDE), and retardation factors were used to quantify the effects of the Mn coatings on the retention of As(V). Uncoated bone char has a higher retention factor (44.7) than bone char with 0.465 mg/g of Mn (22.0), but bone char samples with between 5.02 mg/g and 14.5 mg/g Mn have significantly higher retention factors (56.8-246). The relationship between retardation factor (Y) and Mn concentration (X) is Y = 15.1 X + 19.8. Between 0.2% and 0.6% of the sorbed As is desorbed from the Mn-coated bone char at an initial pH value of 4, compared to 30% from the uncoated bone char. The ability of the Mn-coated bone char to neutralize solutions increases with increased amounts of Mn on the char. The results suggest that using Mn-coated bone char in Permeable Reactive Barriers would be an effective method for remediating As(V)-bearing solutions such as acid mine drainage. PMID:27016809

  9. A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population.

    Nunes, Juliana A; Batista, Bruno L; Rodrigues, Jairo L; Caldas, Naise M; Neto, Jose A G; Barbosa, Fernando

    2010-01-01

    Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 microl of blood samples was mixed with 500 microl of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 microg//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 microg/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were

  10. 锰砂/石英砂滤池与纳滤膜组合工艺去除水中砷的研究%Study on the combined process of manganese sand/quartz sand filter and nanofiltration membrane to remove the arsenic in water

    郭成会; 张维佳; 夏圣骥

    2011-01-01

    In this paper by employing the combined process of manganese sand/quartz sand filter and nanofiltration membrane to remove the arsenic in water, and the arsenic removal effects of manganese sand/quartz sand, nanofiltration membrane (NF90, HL), and combined process of manganese sand/quartz sand and nanofiltration were studied. The result showed that As ( Ⅲ ) and As( V )could be removed effectively by manganese sand/quartz sand filtration, and the effluent arsenic concentration could be less than 50 μg/L when the influent arsenic concentration was 250 μg/L; nanofiltration membrane could remove As(V) more than 90%, but only remove As(Ⅲ)about 40~60%; combined process of manganese sand/quartz sand and nanofiltration had strong removal effect of arsenic in water, and the arsenic concentration in effluent was less than 10 μg/L,which demonstrated that the combined process was an ideal process to remove arsenic in water.%采用锰砂/石英砂滤池与纳滤膜组合工艺处理含砷水,考察锰砂/石英砂、纳滤膜(NF90、HL)、锰砂/石英砂滤池与纳滤膜组合工艺对水中砷的去除效果.结果表明,三价砷(As(Ⅲ))和五价砷(As(Ⅴ))经锰砂/石英砂过滤后能得到很好的去除,原水砷浓度250 μg/L,出水砷浓度小于50μg/L;纳滤膜对五价砷(As(Ⅴ))的去除能力很高,能达到90%以上,但是对三价砷(As(Ⅲ))的去除率不理想,为40%~60%;锰砂/石英砂复合滤池与纳滤膜组合工艺对水中砷有很好的去除效果,出水砷浓度均小于10μg/L,是理想的饮用水除砷方法.

  11. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant. PMID:27363151

  12. Removal of arsenic from ground water samples collected from West Bengal, India

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L-1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO2) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO2

  13. Effect of bacterial mineralization of phytoplankton-derived phytodetritus on the release of arsenic, cobalt and manganese from muddy sediments in the Southern North Sea. A microcosm study.

    Gillan, David C; Pede, Annelies; Sabbe, Koen; Gao, Yue; Leermakers, Martine; Baeyens, Willy; Louriño Cabana, Beatriz; Billon, Gabriel

    2012-03-01

    Muddy sediments of the Belgian Continental Zone (BCZ) are contaminated by metals such as Co, As, Cd, Pb, and Ni. Previous studies have suggested that mineralization of phytodetritus accumulating each year on sediments might cause secondary contaminations of the overlying seawater (metal effluxes). The aim of the present research was to investigate these effluxes using a microcosm approach. Muddy sediments were placed in microcosms (diameter: 15 cm) and overlaid by phytodetritus (a mix of Phaeocystis globosa with the diatom Skeletonema costatum). The final suspension was 130.6 mg L(-1) (dw) and the final chlorophyll a content was 750 ± 35 μg L(-1) (mean ± SD). Natural seawater was used for controls. Microcosms were then incubated in the dark at 15°C during 7 days. Metals were monitored in overlying waters and microbial communities were followed using bacterial and nanoflagellate DAPI counts, thymidine incorporation, community level physiological profiling (CLPP) and fluorescein diacetate analysis (FDA). Benthic effluxes observed in sediments exposed to phytodetritus were always more elevated than those observed in controls. Large effluxes were observed for Mn, Co and As, reaching 1084 nmol m(-2)day(-1) (As), 512 nmol m(-2)day(-1) (Co), and 755 μmol m(-2)day(-1) (Mn). A clear link was established between heterotrophic microbial activity and metal effluxes. The onset of mineralization was very fast and started within 2h of deposition as revealed by CLPP. An increased bacterial production was observed after two days (8.7 mg Cm(-2)day(-2)) and the bacterial biomass appeared controlled by heterotrophic nanoflagellates. Calculations suggest that during phytoplankton blooms the microbial activity alone may release substantial amounts of dissolved arsenic in areas of the BCZ covered by muddy sediments. PMID:22281039

  14. Arsenic chemistry in soils and sediments

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  15. Arsenic speciation in edible mushrooms.

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered. PMID:25417842

  16. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals. PMID:25051614

  17. In-situ arsenic remediation in Carson Valley, Douglas County, west-central Nevada

    Paul, Angela P.; Maurer, Douglas K.; Stollenwerk, Kenneth G.; Welch, Alan H.

    2010-01-01

    Conventional arsenic remediation strategies primarily involve above-ground treatment that include costs involved in the disposal of sludge material. The primary advantages of in-situ remediation are that building and maintaining a large treatment facility are not necessary and that costs associated with the disposal of sludge are eliminated. A two-phase study was implemented to address the feasibility of in-situ arsenic remediation in Douglas County, Nevada. Arsenic concentrations in groundwater within Douglas County range from 1 to 85 micrograms per liter. The primary arsenic species in groundwater at greater than 250 ft from land surface is arsenite; however, in the upper 150 ft of the aquifer arsenate predominates. Where arsenite is the primary form of arsenic, the oxidation of arsenite to arsenate is necessary. The results of the first phase of this investigation indicated that arsenic concentrations can be remediated to below the drinking-water standard using aeration, chlorination, iron, and pH adjustment. Arsenic concentrations were remediated to less than 10 micrograms per liter in groundwater from the shallow and deep aquifer when iron concentrations of 3-6 milligrams per liter and pH adjustments to less than 6 were used. Because of the rapid depletion of dissolved oxygen, the secondary drinking-water standards for iron (300 micrograms per liter) and manganese (100 micrograms per liter) were exceeded during treatment. Treatment was more effective in the shallow well as indicated by a greater recovery of water meeting the arsenic standard. Laboratory and field tests were included in the second phase of this study. Laboratory column experiments using aquifer material indicated the treatment process followed during the first phase of this study will continue to work, without exceeding secondary drinking-water standards, provided that groundwater was pre-aerated and an adequate number of pore volumes treated. During the 147-day laboratory experiment, no

  18. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  19. Manganese Countries

    Maria Sousa Galito

    2014-05-01

    Full Text Available Cheickna Bounajim Cissé wrote an article in Mars 2013 in the Journal Les Afriques N. º 237, suggesting a new acronym, MANGANESE, for the nine African countries: Morocco, Angola, Namibia, Ghana, Algeria, Nigeria, Egypt, South Africa and Ethiopia. According to Cissé, this group of African nations will be the fastest growing states in the region over the next few years. The purpose of this article is to test the pertinence of the acronym, discuss the credibility and reliability of the future prospects of these countries by comparing selected socioeconomic and sociopolitical indicators based on the latest global rankings and trends. Likewise, the potential of Cissé's claim will be assessed, especially in relationship to drug trafficking and terrorism that may put their recent sustainability in danger now and in the future.

  20. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.

    Anawar, Hossain M; Akai, Junji; Sakugawa, Hiroshi

    2004-02-01

    Arsenic leaching by bicarbonate ions has been investigated in this study. Subsurface sediment samples from Bangladesh were treated with different carbonate and bicarbonate ions and the results demonstrate that the arsenic leaching efficiency of the carbonate solutions decreased in the order of Na2CO3>NaHCO3>BaCO3>MnCO3. Sodium carbonate and bicarbonate ions extracted arsenic most efficiently; Na2CO3 leached maximum 118.12 microg/l of arsenic, and NaHCO3, 94.56 microg/l of arsenic from the Ganges delta sediments after six days of incubation. The arsenic concentrations extracted in the batch experiments correlated very well with the bicarbonate concentrations. The kinetics study of arsenic release indicates that arsenic-leaching rate increased with reaction time in bicarbonate solutions. Bicarbonate ions can extract arsenic from sediment samples in both oxic and anoxic conditions. A linear relationship found between arsenic contents in core samples and those in leachates suggests that dissolved arsenic concentration in groundwater is related to the amount of arsenic in aquifer sediments. In batch experiment, bicarbonate solutions effectively extracted arsenic from arsenic adsorbed iron oxyhydroxide, reflecting that bicarbonate solutions may mobilize arsenic from iron and manganese oxyhydroxide in sediments that are ubiquitous in subsurface core samples. Carbonate ion may form complexes on the surface sites of iron hydroxide and substitute arsenic from the surface of minerals and sediments resulting in release of arsenic to groundwater. Like in the batch experiment, arsenic and bicarbonate concentrations in groundwater of Bangladesh correlated very well. Therefore, bicarbonate leaching is presumed to be one important mechanism to mobilize arsenic in bicarbonate dominated reducing aquifer of Bangladesh and other parts of the world as well. PMID:14602108

  1. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file. PMID:24345245

  2. Manganese laser using manganese chloride as lasant

    Chen, C. J.

    1974-01-01

    A manganese vapor laser utilizing manganese chloride as a lasant has been observed and investigated. Lasing is attained by means of two consecutive electrical discharges. The maximum laser output is obtained at a vapor pressure of about 3 torr, a temperature of 680 C, and a time delay between electrical discharges of 150 microsec. The maximum energy density is 1.3 microjoule per cu cm.

  3. Earth Abides Arsenic Biotransformations

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  4. Earth Abides Arsenic Biotransformations

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  5. Cryptic exposure to arsenic

    Rossy Kathleen; Janusz Christopher; Schwartz Robert

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving ne...

  6. Naturally occurring radioactive elements, arsenic and other metals in drinking water from private wells

    island of Gotland, where the bedrock is dominated by Silurian limestones, the majority of the water samples showed boron concentrations far exceeding the provisional guide line value 500 μg/l set by WHO. Metals like lead, cadmium, nickel and chromium are only rarely found in harmful concentrations in Swedish drinking-water. A conclusion of the results from this study is that ordinary analyses of physico-chemical and microbiological parameters as well as radon-222, should be complemented with analyses of metals including uranium and arsenic, especially in waters from drilled wells in bedrock. A direct finding from this study is that radium-226 accumulates in some types of common water filters, which are often used to decrease iron and manganese. With arsenic concentrations in the drinking water exceeding the guide line 10 μg/l, actions should be taken to reduce the concentrations below this limit. Recent tests by the National Board of Health and Welfare of Sweden have shown that adsorption and ion exchange can reduce arsenic in drinking water up to 98 %. This project has shown that arsenic accumulates to a large degree in common water filters installed to remove iron and manganese. This study gives an overview of how drinking water, extracted from private wells, is influenced by various elements that occur naturally in our environment. New problem areas such as a radiation dose from lead-210 and polonium-210 have been identified. Information campaigns addressing different target groups, like county councils and municipalities, are necessary to inform well owners about the issues on radon, uranium, arsenic, fluoride and water filters. Additional studies are needed to further increase our knowledge on radioactive elements, arsenic and other possibly harmful elements in drinking water. A further mapping of lead-210 and polonium-210 occurrence in drinking water would allow for better estimates o

  7. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece

    An integrate study aiming at the occurrence and distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece has been carried out. Groundwater samples from public water supply wells and private wells were analysed for arsenic and other quality parameters (T, pH, EC, Ca, Mg, Na, K, Cl, HCO3, NO3, SO4, B, Fe, Mn). Arsenic showed high spatial variation; ranged from 0.001 to 1.840 mg/L. Almost 65% of the examined groundwaters exhibit arsenic concentrations higher than the maximum concentration limit of 0.010 mg/L, proposed for water intended for human consumption. Correlation analysis and principal component analysis were employed to find out possible relationships among the examined parameters and groundwater samples. Arsenic is highly correlated with potassium, boron, bicarbonate, sodium, manganese and iron suggesting common geogenic origin of these elements and conditions that enhance their mobility. Three groups of groundwater with different physicochemical characteristics were found in the study area: (a) groundwater with extremely high arsenic concentrations (1.6-1.9 mg/L) and high temperature (33-42 deg. C) from geothermal wells, (b) groundwater with relatively high arsenic concentrations (>0.050 mg/L), lower temperatures and relatively high concentrations of major ions, iron and manganese and, (c) groundwater with low arsenic concentrations that fulfil the proposed limits for dinking water

  8. Massive acute arsenic poisonings.

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  9. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  10. Arsenic Trioxide Injection

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  11. Electrochemical arsenic remediation for rural Bangladesh

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  12. Electrochemical arsenic remediation for rural Bangladesh

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water

  13. Arsenic removal from water

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  14. Influence of groundwater composition on subsurface iron and arsenic removal.

    Moed, D H; van Halem, D; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L(-1) phosphate, 0.2 mmol L(-1) silicate, and 1 mmol L(-1) nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L(-1) calcium and 0.06 mmol L(-1) manganese. PMID:22678215

  15. Influence of groundwater composition on subsurface iron and arsenic removal

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  16. SEASONAL VARIATIONS OF ARSENIC AND OTHER TRACE ELEMENTS IN BAY MUSSELS 'MYTILUS EDULIS' (JOURNAL VERSION)

    The purposes of this study were to investigate seasonal variations of arsenic in a population of bay mussels (Mytilus edulis) and to compare results with variations of several other trace elements more commonly measured in environmental studies. Seasonal variations of manganese, ...

  17. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  18. Environmental Source of Arsenic Exposure

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  19. Process for producing manganese-52

    The manganese is obtained by shooting at a target with He ions. Vanadium is suitable as target material. The reactions take place according to V(He,n)Mn, and V(He,2n)Mn. The isolation of the manganese is done by a chemical separation process. The manganese is used for radio pharmaceutical preparations. (orig./PW)

  20. Manganese biomining: A review.

    Das, A P; Sukla, L B; Pradhan, N; Nayak, S

    2011-08-01

    Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future. PMID:21632238

  1. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Harris, Robin B; Burgess, Jefferey L.; Maria Mercedes Meza-Montenegro; Luis Enrique Gutiérrez-Millán; Mary Kay O’Rourke; Jason Roberge

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and...

  2. The global menace of arsenic and its conventional remediation - A critical review.

    Sarkar, Arpan; Paul, Biswajit

    2016-09-01

    Arsenic is a ubiquitous element found in the earth crust with a varying concentration in the earth soil and water. Arsenic has always been under the scanner due to its toxicity in human beings. Contamination of arsenic in drinking water, which generally finds its source from arsenic-containing aquifers; has severely threatened billions of people all over the world. Arsenic poisoning is worse in Bangladesh where As(III) is abundant in waters of tube wells. Natural occurrence of arsenic in groundwater could result from both, oxidative and reductive dissolution. Geothermally heated water has the potential to liberate arsenic from surrounding rocks. Inorganic arsenic has been found to have more toxicity than the organic forms of arsenic. MMA and DMA are now been considered as the organic arsenic compounds having the potential to impair DNA and that is why MMA and DMA are considered as carcinogens. Endless efforts of researchers have elucidated the source, behavior of arsenic in various parts of the environment, mechanism of toxicity and various remediation processes; although, there are lots of areas still to be addressed. In this article, attempts have been made to lay bare an overview of geochemistry, toxicity and current removal techniques of arsenic together. PMID:27239969

  3. Arsenic Mobility and Availability in Sediments by Application of BCR Sequential Extractions Method

    Arsenic is a metalloid found in nature, both naturally and due to anthropogenic activities. Among them, mining works are an important source of arsenic release to the environment. Asturias is a region where important mercury mines were exploited, and in them arsenic occurs in para genesis with mercury minerals. The toxicity and mobility of this element depends on the chemical species it is found. Fractionation studies are required to analyze the mobility of this metalloid in soils and sediments. Among them, the proposed by the Bureau Community of Reference (BCR) is one of the most employed. This method attempts to divide up, by operationally defined stages, the amount of this element associated with carbonates (fraction 1), iron and manganese oxy hydroxides (fraction 2), organic matter and sulphides (fraction 3), and finally as the amount associated residual fraction to primary and secondary minerals, that is, from the most labile fractions to the most refractory ones. Fractionation of arsenic in sediments from two mines in Asturias were studied, La Soterrana and Los Rueldos. Sediments from La Soterrana showed high levels of arsenic in the non-residual phases, indicating that the majority of arsenic has an anthropogenic origin. By contrast, in sediments from Los Rueldos most of the arsenic is concentrated in the residual phase, indicating that this element remains bound to very refractory primary minerals, as is also demonstrated by the strong correlation of arsenic fractionation and the fractionation of elements present in refractory minerals, such as iron, aluminum and titanium. (Author) 51 refs.

  4. Manganese in sintered steels

    Based on the review of papers the results of the investigations of sintered manganese steels are presented. The effect of additional alloying elements such as copper, molybdenum and silicon on dimensional changes, density, tensile strength, hardness and elongation of such steels are also reported. (author)

  5. Drinking Water Fact Sheet: Arsenic

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about arsenic in drinking water. It includes sections about what arsenic is, where it comes from, health concerns from exposure, drinking water standards, how to know if there is arsenic in a water supply and how to reduce arsenic in drinking water.

  6. Arsenic in Food

    ... Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share Tweet Linkedin Pin it More ... and previous or current use of arsenic-containing pesticides. Are there ... compounds in water, food, air, and soil: organic and inorganic (these together ...

  7. Arsenic and drinking water. Part 1. A review of the source, distribution and behaviour of arsenic in the environment; Arsen und Trinkwasser. Teil 1. Ein Ueberblick ueber Vorkommen, Verteilung und Verhalten von Arsen in der Umwelt

    Oberacker, F.; Maier, D. [Heinrich-Sontheimer-Lab., DVGW-Technologiezentrum Wasser, Karlsruhe (Germany); Maier, M. [Stadtwerke Karlsruhe GmbH, Karlsruhe (Germany)

    2002-11-01

    Arsenic is ubiquituously distributed in our environment and is subject to continuous bio-geochemical cycling. Besides the acute toxicity of arsenic its chronic effects are of special importance. The permanent uptake with drinking water for example might cause cancer. Today, arsenic compounds hardly serve as pesticides anymore, although chromated copper arsenate is still used to preserve wood. Furthermore, arsenic is used in the alloy, glass and semiconductor industry. The main part of the earths' arsenic resources are bound to sulfur in the lithosphere. By means of rock weathering and volcanism it is transferred into pedo-, hydro- and atmosphere, where it is mainly bound to oxygen. Microorganisms are able to methylate the arsenic, whereby gaseous arsenic compounds are carried into the atmosphere. Also, it is released from the lithosphere through anthropogenic mining activities, although only for a small part of the released amount useful applications exist. The arsenic behaviour in natural waters is closely related to sulfur on the one hand and to iron oxides on the other. Under strongly reducing conditions the arsenic is precipitated as sulfide, while under oxidising conditions it is adsorbed to the surfaces of iron oxides. Therefore, under aerobic conditions the arsenic concentrations of aqueous solutions are controlled by these adsorption processes rather than by the solubility of solid arsenic phases. Manganese oxides also play an important role as they are able to rapidly oxidise As(III) to As(V). These processes of release and fixation of arsenic in the nature must be studied carefully, because they are applied for arsenic elimination during drinking water production as well. (orig.)

  8. 21 CFR 184.1449 - Manganese citrate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS... manganese carbonate from manganese sulfate and sodium carbonate solutions. The filtered and...

  9. Complementary arsenic speciation methods: A review

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  10. Complementary arsenic speciation methods: A review

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  11. IP Addressing

    2006-01-01

    tut quiz anim This interactive tutorial covers the following: The concept of halving a binary number space., Using the halving concept to explain how the Internet IP space is segmented into the A, B, and C address classifications., How the first octet ranges for the A, B, and C IP space are produced.In this tutorial, explanations are illustrated by simple animations. Students are asked to observe number patterns, and check their observations against automated 'answers.' There is a qu...

  12. Inaugural Address

    Syed Yousaf Raza Gilani

    2008-01-01

    Sardar Aseff Ahmad Ali, Deputy Chairman, Planning Commission, Dr Rashid Amjad, President, Pakistan Society of Development Economists, Honourable Ministers, Excellencies, Ladies and Gentlemen! It is indeed a privilege and honour to address this distinguished gathering of economists. I am very happy that this meeting is being attended by internationally acclaimed economists and academics from both within and outside the country. I am especially heartened to see that students of economics from a...

  13. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  14. Manganese toxicity upon overexposure

    Crossgrove, Janelle; Zheng, Wei

    2004-01-01

    Manganese (Mn) is a required element and a metabolic byproduct of the contrast agent mangafodipir trisodium (MnDPDP). The Mn released from MnDPDP is initially sequestered by the liver for first-pass elimination, which allows an enhanced contrast for diagnostic imaging. The administration of intravenous Mn impacts its homeostatic balance in the human body and can lead to toxicity. Human Mn deficiency has been reported in patients on parenteral nutrition and in micronutrient studies. Mn toxicit...

  15. Manganese dipyridoxyl diphosphate:

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson;

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart m...... is concluded that MnDPDP and MnPLED possess SOD mimetic activities and may thereby protect the heart in oxidative stress. (C) 1999 Academic Press....

  16. Process for producing 52manganese

    The 52manganese is obtained by shooting at a target with 3He ions. Vanadium is suitable as target material. The reactions take place according to 50V(3He,n)52Mn, and 51V(3He,2n)52Mn. The isolation of the 52manganese is done by a chemical separation process. The 52manganese is used for radio pharmaceutical preparations. (DG)

  17. Keynote address

    This paper addresses various aspects of the bases underlying the nuclear third party liability regime, and also analyses the distinction between danger and risk and the manner in which damage caused by flood, mass unemployment (economic damage mainly) and certain diseases is dealt with in the absence of liability provisions similar to those applicable to nuclear incidents. It also is suggested that the State because of its duty under the Basic Law to ensure adequate energy supplies, should be co-responsible for liability questions along with the nuclear operator. (NEA)

  18. Complementary arsenic speciation methods: A review

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  19. MODIFICATION OF CARBONACEOUS ADSORBENTS WITH MANGANESE COMPOUNDS

    Irina Ginsari; Larisa Postolachi; Vasile Rusu; Oleg Petuhov; Tatiana Goreacioc; Tudor Lupascu; Raisa Nastas

    2015-01-01

    Four series of samples containing manganese supported carbonaceous adsorbents were prepared. Obtained results reveal the importance of surface chemistry of carbonaceous adsorbents on the manganese loading.

  20. Welcome Address

    2001-01-01

    @@  On behalf of the International Life Sciences Institute, I welcome you to Beijing and to the Third Asian Conference on Food Safety and Nutrition. Many of you will remember the first Asian conference on Food Safety held in Kuala Lumpur in 1990 and the second held in Bangkok in 1994. These meetings have been so successful that ILSI made the commitment to host such a conference periodically in order to provide a forum to share the latest information and to set new goals and priorities.   This year, we have broadened the scope of the agenda to include issues on nutrition. I want to thank all of our co-sponsors and members of the Planning Committee for preparing such a comprehensive and timely program. Some of the issues and challenges facing Asia that will be addressed at this meeting are:

  1. Opening address

    The impact of the Chernobyl accident on health has been dramatic but different than expected. It has posed a tremendous health, social and economic burden on the people of Belarus, the Russian Federation and Ukraine. Now the picture of the impact of the accident on health and environment is clearer and the agenda can further move towards development and focused health programmes. The work of the Chernobyl Forum, which allowed this important objective to be reached, is an example of the multiplied added value that different United Nations agencies working together can achieve when addressing complex problems affecting large communities in an independent, comprehensive and credible way. This model should be the basis for future action with the Member States towards reconstruction, development and better health

  2. USEPA Arsenic Demonstration Program

    The presentation provides background information on the USEPA arsenic removal program. The summary includes information on the history of the program, sites and technology selected, and a summary of the data collected from two completed projects.

  3. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    HUANG Zechun; CHEN Tongbin; LEI Mei; HU Tiandou; HUANG Qifei

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  4. Inaugural address

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  5. Manganese Neurotoxicity in Oreochromis niloticus

    Annabelle Herrera; Elena Catap

    1992-01-01

    Manganese is not an acutely hazardous environmental contaminant at low levels, but increased dose produces serious degenerative disorders in Oreochromis niloticus. Sublethal exposure of fry to 2000 mg/L manganese chloride for eight days displays evidences of poisoning, and hard hit is the brain. Light microscopy shows appearance of gaps between brain layers and cell destruction. Electron microscopy shows damage to subcellular structures.

  6. Opening Address

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  7. Opening address

    Full text: Honourable Representatives of His Majesty King Mohammed VI and of the Government of Morocco, representatives of sponsoring organizations, distinguished participants, on behalf of the Director General of the IAEA, it is my pleasure and privilege to welcome you to this International Conference on National Infrastructures for Radiation Safety: Towards Effective and Sustainable Systems. I would like to express my sincere appreciation to His Majesty King Mohammed VI for his patronage, to the Government of Morocco and the University Mohammed V, Agdal, for hosting this conference in the beautiful and historic city of Rabat, and to the local organizers for their diligent planning and gracious hospitality. I would also like to thank the four organizations that are co-operating with the IAEA in holding this conference: the World Health Organization, the Pan American Health Organization, the International Labour Organization, the European Commission and the OECD/Nuclear Energy Agency. National infrastructure for radiation safety has emerged as an issue of international concern over the last two decades. Systematic and strategic consideration of infrastructure has become widely recognized as an essential prerequisite for safety. The first IAEA conference to address the topic was in Munich, Germany, in 1990. The 1996 edition of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (known as the Basic Safety Standards or BSS) highlighted the issue, and the IAEA's technical co-operation Model Project for Upgrading Radiation Protection Infrastructure was introduced to help address it. The Model Project has helped, and continues to help, more than 85 IAEA Member States to work towards the goal of a radiation safety infrastructure in accordance with the Basic Safety Standards. A great deal has been achieved, but this work is not complete. Furthermore, not all States are members of the IAEA or the Model

  8. Opening address

    This opening address covers two main areas: first, a snapshot of the continuing threat and the recent changes having been made to the United Kingdom's counterterrorism structures to respond to it; and second, how the United Kingdom is combating nuclear terrorism through a range of measures covering physical security, decreasing vulnerability to attack and increasing resilience. Combating the threat of nuclear terrorism requires an international effort. Radiological and fissile materials are present throughout the world and, as such, it should be secured wherever it is found. All countries are encouraged to continue to enhance security and protection mechanisms for radiological and fissile material; and to develop contingency plans should the worst happen. The United Kingdom has responded to the very serious and real threat by consolidating and strengthening elements of its counterterrorist planning via the creation in May this year of the Office for Security and Counter-Terrorism (OSCT). These changes have been coupled with an unprecedented level of investment to enable the delivery of the United Kingdom counterterrorist strategy - known as CONTEST - through which we aim to (a) stop terrorist attacks; (b) where it cannot be stopped, to mitigate its impact; (c) strengthen our overall protection against terrorist attack; (d) stop people becoming terrorists or supporting violent extremism. In the case of radiological and nuclear terrorism, it is not sufficient merely to prepare for such an attack; one must also devote efforts to preventing such attacks in the first instance by intercepting dangerous materials before they reach their intended target; and by strengthening the protection of vulnerable places and detecting or mitigating any devices before they are placed or activated. As such, in terms of the United Kingdom's efforts on radiological and nuclear terrorism, there are three main strands to this work: physical protection of materials including the global

  9. Keynote address

    This keynote address describes the reasons why Ontario restructured its electricity sector to include open market competition. Much effort, time, money and expertise have been devoted to developing the Ontario competitive market. The 1997 White Paper issued by the Ontario Ministry of Energy, Science and Technology was the first paper to express the urgent need for change because the old system was failing. Prices increased by 60 per cent between 1986 and 1993. Although governments imposed a price freeze, it is recognized that such prices freezes cannot be sustained. Between 1980 and 1986, Ontario Hydro's debt rose from $12 billion to over $30 billion. The cause was attributed to poor business performance which was putting the taxpayers at risk. The author states that the potential and social benefits of competitive electricity markets are significant. Opening the power markets improves the efficiency of electricity systems and offers significant benefits. It is noted that restructuring does not mean deregulation. The Ontario Energy Board and the Independent Market Operator continue to regulate the market to ensure its proper operation and to protect consumers. In a properly functioning competitive market, prices change in response to market conditions. Electricity prices have generally declined where competitive markets have been introduced in other jurisdictions around the world. The author also cautions that it is easy to create unfounded fears about a competitive market and cited California as an example. California's problems arose from a lack of generating capacity, regulation which discouraged new power generation, inadequate transmission capacity, lack of snow in the northeast where hydropower is produced, and a consumer price cap that encouraged power consumption at a time when supply was short. The author notes that these factors do not exist in Ontario and that the competitive market should not be abandoned

  10. Keynote address

    DOE biomass R ampersand D programs have the potential to provide America with both plentiful, clean-burning domestic transportation fuels and cost-competitive industrial and utility fuels, benefiting energy security in the United States. Biofuels developed under our programs will also help improve air quality, reduce greenhouse gases, reduce the large daily quantities of waste we produce, and revitalize rural America. These research motivations have been documented in the National Energy Strategy. DOE looks forward to expanding its biofuels research program and to forging a partnership with private sector for cost-shared commercialization of new fuels and vehicle technologies. Many alternative fuels (e.g., ethanol, methanol, compressed natural gas, propane, or electricity) are candidates for gaining market share. Indeed, there may be significant regional variation in the future fuel mix. Alcohol fuels from biomass, particularly ethanol, have the potential to make a major contribution. Currently, ethanol in the United States is almost entirely made from corn; and the limitations of that process are well known (e.g., costly feedstock, end product requiring subsidy to be competitive, use of fossil fuels in renewable feedstock production and processing, and potential adverse impact of corn ethanol production on the price of food). To address these concerns, the DOE biofuels program is pursuing an ambitious research program to develop the technologies needed to convert these crops into alternative transportation fuels, primarily cellulose-based ethanol and methanol. Program R ampersand D has reduced the estimated cost per gallon of cellulose-based ethanol from $3.60 in 1980 to the current $1.35, with a program goal of $0.60 by the year 2000. DOE is also investigating the thermochemical conversion of biomass to methanol. The program goal is to achieve commercial production of methanol (like ethanol) at the gasoline equivalent of $0.90 per gallon by the year 2000. 4 figs

  11. Presidential address.

    Vohra, U

    1993-07-01

    The Secretary of India's Ministry of Health and Family Welfare serves as Chair of the Executive Council of the International Institute for Population Sciences in Bombay. She addressed its 35th convocation in 1993. Global population stands at 5.43 billion and increases by about 90 million people each year. 84 million of these new people are born in developing countries. India contributes 17 million new people annually. The annual population growth rate in India is about 2%. Its population size will probably surpass 1 billion by the 2000. High population growth rates are a leading obstacle to socioeconomic development in developing countries. Governments of many developing countries recognize this problem and have expanded their family planning programs to stabilize population growth. Asian countries that have done so and have completed the fertility transition include China, Japan, Singapore, South Korea, and Thailand. Burma, Malaysia, North Korea, Sri Lanka, and Vietnam have not yet completed the transition. Afghanistan, Bangladesh, Iran, Nepal, and Pakistan are half-way through the transition. High population growth rates put pressure on land by fragmenting finite land resources, increasing the number of landless laborers and unemployment, and by causing considerable rural-urban migration. All these factors bring about social stress and burden civic services. India has reduced its total fertility rate from 5.2 to 3.9 between 1971 and 1991. Some Indian states have already achieved replacement fertility. Considerable disparity in socioeconomic development exists among states and districts. For example, the states of Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh have female literacy rates lower than 27%, while that for Kerala is 87%. Overall, infant mortality has fallen from 110 to 80 between 1981 and 1990. In Uttar Pradesh, it has fallen from 150 to 98, while it is at 17 in Kerala. India needs innovative approaches to increase contraceptive prevalence rates

  12. Opening address

    The opening address by the host country started by thanking to the International Atomic Energy Agency for holding this important scientific event in in Morocco. The themes to be considered by this conference are among the priorities of the Scientific Research Department in its endeavour to promote scientific research in the field of nuclear science and technology for peaceful uses in Morocco. By so doing, this Department is following and supporting the efforts being made by our country to provide training, and elaborate rules and regulations, and to create infrastructure, acquire material and, equipment and encourage qualified and active researchers. Hence, the convening of this conference responds to a strategic interest of our country, which, similar to other countries, is committed to the achievement of comprehensive and sustainable development for the protection of human kind and the environment. This is considered nowadays as a strategic and vital objective as it entails the protection of people from radiation and against all kinds of professional risks and health hazards. Morocco attaches great importance to radiation safety issues. Our country adhered to all international conventions related to nuclear safety. It is in the process of adapting its internal regulations to international norms and standards, and it is making progress towards the establishment of a national safety body which meets those norms and standards, with the assistance of the IAEA. For this purpose, a standing committee for the follow-up of nuclear affairs has been created on the basis of Royal Instructions, and placed under the authority of the Prime Minister. Its task is to serve as a think-tank on nuclear safety issues and to make proposals on ways and means of reinforcing radiation safety measures. It goes without saying that the peaceful uses of nuclear energy must meet the safety standards elaborated by the IAEA. However, we are convinced that the elaboration of safety standards

  13. Opening address

    and become more technical. Involving experts from all fields is then crucial for success. This perception is reflected in the goals of this meeting. It is designed as an extensive information exchange forum between decision makers, regulators, radiation and waste safety specialists, and the nuclear industry. It is this mix which promises high efficiency with respect to solving the problems that you are addressing. I am sure that the safe termination of practices involving radioactive materials during the decommissioning of nuclear installations is one of the major challenges that industrialized nations will have to face during the next decades

  14. Welcome Address

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  15. Opening address

    Nuclear terrorism has been recognized as a potential threat to human security and economic prosperity since at least the 1970s. Evidence of Al Qaeda's interest in acquiring nuclear material came to light during the 1990s. However, it is since the attacks of 11 September 2001 that the risk of nuclear terrorist acts has come to be a widespread public and governmental concern, for understandable reasons, and that efforts to combat illicit trafficking, which could lead to nuclear or other radioactive materials falling into the hands of terrorists, have intensified. Six years on, it makes sense to take stock of what has been achieved in the combat to stem illicit trafficking and of where further actions - actions of individual States and cooperative international actions - might usefully be initiated. The IAEA has maintained an Illicit Trafficking Database since 1995. Information reported to this database confirms that concerns about illicit trafficking in nuclear material are justified. Database information points to persistent theft and loss of radioactive sources. States' international obligations relevant to international nuclear trafficking are based on the Convention on the Physical Protection of Nuclear Material (CPPNM), the International Convention for the Suppression of Acts of Nuclear Terrorism, the United Nations Security Council Resolution 1540, which deals with weapons of mass destruction, including nuclear weapons and non-State actors, and the United Nations Security Council Resolution 1375, which requires all States to take the necessary steps to prevent the commission of terrorist acts, including early warning to other States. In addition to these legally binding instruments, there is the non-binding Code of Conduct on the Safety and Security of Radioactive Sources, which Member States of the IAEA agreed in 2003. The Code addresses the establishment of an adequate system of regulatory control, from the production of radioactive sources to their final

  16. Acute and chronic arsenic toxicity

    Ratnaike, R.

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  17. 21 CFR 184.1452 - Manganese gluconate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese gluconate. 184.1452 Section 184.1452 Food... Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate (C12H22MnO14... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  18. 21 CFR 184.1461 - Manganese sulfate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  19. Opening address

    Being fully aware of the IAEA's central and important roles in the field of nuclear security, Japan has cooperated closely with the IAEA in the field of nuclear security. One of Japan's efforts was holding a seminar on strengthening nuclear security in Asian countries in November 2006, making use of Japan's contribution to the IAEA Nuclear Security Fund. The seminar was organized for the first time in Asia to address nuclear security matters, in which more than 100 experts from 19 countries participated. Japan also hosted a seminar, aimed at promoting the accession to the international counterterrorism conventions and protocols, inviting government officials and experts from Asia Pacific countries. At the seminar, Japan presented its experience and lessons learned with regard to its ratification of relevant international conventions such as the International Convention for the Suppression of Acts of Nuclear Terrorism and the Convention on the Physical Protection of Nuclear Material. Japan has also provided assistance for capacity building in the field of physical protection measures, and is preparing three projects for Asian countries through the IAEA Nuclear Security Fund. In Thailand, Japan has a project aimed at improving physical protection of nuclear research facilities. In Vietnam, Japan plans to host a workshop on radiation detection equipment for border officials and is also preparing for a seminar aimed at capacity building of control on nuclear material in Vietnam. Japan is committed to continue its efforts to make the IAEA Comprehensive Safeguards Agreement together with an Additional Protocol the universally accepted verification standard for the peaceful use undertakings of the Nuclear Non-Proliferation Treaty. Japan's basic policy on bilateral nuclear cooperation agreements is as follows. Considering the dual nature of nuclear material and technology, Japan is of the view that three Ss, that is, S for 'safeguards' (non-proliferation), S for 'safety

  20. Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic

    Mendoza-Cózatl, David G.; Jobe, Timothy O.; Hauser, Felix; Schroeder, Julian I

    2011-01-01

    Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification o...

  1. Attenuation of arsenic in a karst subterranean stream and correlation with geochemical factors: a case study at Lihu, South China.

    Zhang, Liankai; Yang, Hui; Tang, Jiansheng; Qin, Xiaoqun; Yu, Au Yik

    2014-11-01

    Arsenic (As) pollutants generated by human activities in karst areas flow into subterranean streams and contaminate groundwater easily because of the unique hydrogeological characteristics of karst areas. To elucidate the reaction mechanisms of arsenic in karst subterranean streams, physical-chemical analysis was conducted by an inductively coupled plasma mass spectrometer and an X-ray fluorescence spectrometer. The results show that inorganic species account for most of the total arsenic, whereas organic arsenic is not detected or occurs in infinitesimal amounts. As(III) accounts for 51.0%±9.9% of the total inorganic arsenic. Arsenic attenuation occurs and the attenuation rates of total As, As(III) and As(V) in the Lihu subterranean stream are 51%, 36% and 59%, respectively. To fully explain the main geochemical factors influencing arsenic attenuation, SPSS 13.0 and CANOCO 4.5 bundled with CanoDraw for Windows were used for simple statistical analysis and redundancy analysis (RDA). Eight main factors, i.e., sediment iron (SFe), sediment aluminum (SAl), sediment calcium (SCa), sediment organic matter (SOM), sediment manganese (SMn), water calcium (WCa(2+)), water magnesium (WMg(2+)), and water bicarbonate ion (WHCO3(-)) were extracted from thirteen indicators. Their impacts on arsenic content rank as: SFe>SCa>WCa(2+)>SAl>WHCO3(-)>SMn>SOM>WMg(2+). Of these factors, SFe, SAl, SCa, SOM, SMn, WMg(2+) and WCa(2+) promote arsenic attenuation, whereas WHCO3(-) inhibits it. Further investigation revealed that the redox potential (Eh) and pH are adverse to arsenic removal. The dramatic distinction between karst and non-karst terrain is that calcium and bicarbonate are the primary factors influencing arsenic migration in karst areas due to the high calcium concentration and alkalinity of karst water. PMID:25458676

  2. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  3. Arsenic: The Silent Killer

    Foster, Andrea (USGS)

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  4. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  5. Manganese borohydride; synthesis and characterization

    Richter, Bo; Ravnsbæk, Dorthe B.; Tumanov, Nikolay; Filinchuk, Yaroslav; Jensen, Torben R.

    2015-01-01

    Solvent-based synthesis and characterization of α-Mn(BH4)2 and a new nanoporous polymorph of manganese borohydride, γ-Mn(BH4)2, via a new solvate precursor, Mn(BH4)2·1/2S(CH3)2, is presented. Manganese chloride is reacted with lithium borohydride in a toluene/dimethylsulfide mixture at room temperature, which yields halide and solvent-free manganese borohydride after extraction with dimethylsulfide (DMS) and subsequent removal of residual solvent. This work constitutes the first example of es...

  6. Arsenic Speciation of Terrestrial Invertebrates

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ((Simon)); ((Royal))

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  7. Manganese dipyridoxyl diphosphate:

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson; S, Skarra; K, Berg; Laursen, Ib; P, Jynge

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart...... model. Superoxide ((.)O(2)(-)) and hydroxyl radicals ((.)OH(-)) were generated in xanthine oxidase and Fenton reactions. Spin adducts with 5,5-dimethyl-1-pyrroline-N-oxide were detected by electron spin resonance spectroscopy. Contractile function and enzyme release were monitored in rat hearts during...... is concluded that MnDPDP and MnPLED possess SOD mimetic activities and may thereby protect the heart in oxidative stress. (C) 1999 Academic Press....

  8. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched. PMID:26515534

  9. High manganese non magnetic steel

    A high-manganese, non-magnetic steel is specified, having excellent weldability and machinability and suitable for use in the structural parts of electrical equipment or nuclear fusion equipment. (author)

  10. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  11. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    Gong, Gordon, E-mail: gordon.gong@ttuhsc.edu [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Basom, Janet [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Mattevada, Sravan [Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX (United States); Onger, Frederick [Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States)

    2015-04-15

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population.

  12. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population

  13. Rural methods to mitigate arsenic contaminated water

    Parajuli, Krishna

    2013-01-01

    Consumption of arsenic contaminated water is one of the burning issues in the rural world. Poor public awareness program about health effects of drinking arsenic contaminated water and the rural methods to mitigate this problem poses a great threat of arsenic poisoning many people of the rural world. In this thesis, arsenic removal efficiency and the working mechanism of four rural and economical arsenic mitigation technologies i.e. solar oxidation and reduction of arsenic (SORAS), Bucket tr...

  14. The effectiveness of water-treatment systems for arsenic used in 11 homes in Southwestern and Central Ohio, 2013

    Thomas, Mary Ann; Ekberg, Mike

    2016-01-01

    the raw water. In general, the treatment systems were less effective at treating higher concentrations of arsenic. For five sites with raw-water arsenic concentrations of 10–30 µg/L, the systems removed 65–81 percent of the arsenic, and the final concentrations were less than the maximum contamination level. For three sites with higher raw-water arsenic concentrations (50–75 µg/L), the systems removed 22–34 percent of the arsenic; and the final concentrations were 4–5 times more than the maximum contamination level. Other characteristics of the raw water may have affected the performance of treatment systems; in general, raw water with the higher arsenic concentrations also had higher pH, higher concentrations of organic carbon and ammonia, and more reducing (methanogenic) redox conditions.For sites with raw-water arsenic concentrations of 10–30 µg/L, two types of systems (reverse osmosis and oxidation/filtration) removed similar amounts of arsenic, but the quality of the treated water differed in other respects. Reverse osmosis caused substantial decreases in pH, alkalinity, and concentrations of most ions. On the other hand, oxidation/filtration using manganese-based media caused a large increase of manganese concentrations, from less than 50 µg/L in raw water to more than 700 µg/L in outflow from the oxidation filtration units.It is not known if the results of this study are widely applicable; the number of systems sampled was relatively small, and each system was sampled only once. Further study may be warranted to investigate whether available methods of arsenic removal are effective/practical for residential use in areas like Ohio, were groundwater with elevated arsenic concentrations is strongly reducing, and the predominant arsenic species is arsenite (As3+).

  15. Bog Manganese Ore: A Resource for High Manganese Steel Making

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-05-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  16. Bog Manganese Ore: A Resource for High Manganese Steel Making

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  17. Extraction of manganese from electrolytic manganese residue by bioleaching.

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. PMID:21050747

  18. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    Liu, Jie; Zheng, Baoshan; Aposhian, H. Vasken; Zhou, Yunshu; Chen, Ming-liang; Zhang, Aihua; Waalkes, Michael P.

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooki...

  19. Transplacental Arsenic Carcinogenesis in Mice

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation,...

  20. Determination of manganese content in aqueous solutions

    The three analytical methods used in the hydrogen-to-manganese cross-section ratio measurement were: volumetric determination of manganese, gravimetric analysis of manganous sulfate; and densimetric determination of manganous sulfate

  1. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    郝瑞霞; 彭省临

    1999-01-01

    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  2. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  3. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron-manganese-modified clinoptilolite-rich tuffs

    Jimenez-Cedillo, M.J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica, A.P. 18-1027, Col, Escandon, Del, Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, Toluca (Mexico); Olguin, M.T. [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica, A.P. 18-1027, Col, Escandon, Del, Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail: mog@nuclear.inin.mx; Fall, Ch. [Centro Interamericano de Recursos del Agua, CIRA, km 14.5 de la Carretera Toluca - Ixtlahuaca, Unidad San Cayetano, Estado de Mexico (Mexico)

    2009-04-30

    Arsenate adsorption from aqueous solutions onto clinoptilolite-heulandite rich tuffs modified with iron or manganese or a mixture of both iron and manganese in this work was investigated. A kinetic model was considered to describe the arsenates adsorption on each zeolitic material. The modified clinoptilolite-heulandite rich tuffs were characterized by scanning electron microscopy and X-ray diffraction analysis. The elemental composition and the specific surface area of the zeolitic material were also determined. The arsenate adsorption by the modified zeolites was carried on in a batch system considering a contact time from 5 min to 24 h for the kinetic experimentation. The arsenic was detected by atomic absorption spectrometer using a hydride generator. The kinetics of the arsenate adsorption processes were described by the pseudo-second-order model and the obtained parameter k varies from 0.15 to 5.66 {mu}g/gh. In general, the results suggested that the kinetic adsorption of arsenates on the modified clinoptilolite-rich tuffs depend of the metallic specie that modified the surface characteristics of the zeolitic material, the chemical nature of the metal as well as the association between different metallic chemical species in the zeolitic surface.

  4. Speciation and Localization of Arsenic in White and Brown Rice Grains

    Meharg, Andrew A.; Lombi, Enzo; Williams, Paul N.; Scheckel, Kirk G.; Feldmann, Joerg; Raab, Andrea; Zhu, Yongguan; Islam, Rafiql (EPA); (Bangladesh); (UCopenhagen); (Aberdeen); (Chinese Aca. Sci.)

    2008-06-30

    Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP?MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (?-XANES) and bulk extraction followed by anion exchange HPLC?ICP?MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n = 39) and brown (n = 45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.

  5. Arsenic pilot plant operation and results - Socorro Springs, New Mexico - phase 1.

    Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Kottenstette, Richard Joseph; Holub, William E. Jr; Wright, Jeremy B.; Dwyer, Brian P.

    2007-05-01

    Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The first pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Socorro New Mexico between January 2005 and July 2005. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Socorro Springs site obtained arsenic removal performance data for five different adsorptive media under constant ambient flow conditions. Well water at Socorro Springs has approximately 42 ppb arsenic in the oxidized (arsenate-As(V)) redox state with moderate amounts of silica, low concentrations of iron and manganese and a slightly alkaline pH (8). The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Near the end of the test the feedwater pH was lowered to assess the affect on bed capacity and as a prelude to a controlled pH study (Socorro Springs Phase 2).

  6. 21 CFR 73.2775 - Manganese violet.

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium...

  7. Manganese depresses rat heart muscle respiration

    It has previously been reported that moderately high dietary manganese (Mn) in combination with marginal magnesium (Mg) resulted in ultrastructural damage to heart mitochondria. Manganese may replace Mg in biological functions, including the role of enzyme cofactor. Manganese may accumulate and subs...

  8. 21 CFR 582.5449 - Manganese citrate.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  9. 21 CFR 582.5461 - Manganese sulfate.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  10. 21 CFR 582.5455 - Manganese glycerophosphate.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate....

  11. 21 CFR 582.5446 - Manganese chloride.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  12. 21 CFR 582.5452 - Manganese gluconate.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  13. 21 CFR 582.5458 - Manganese hypophosphite.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  14. A Phytoremediation Strategy for Arsenic

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  15. Arsenic Is A Genotoxic Carcinogen

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  16. Address Points - Volusia County Addresses (Point)

    NSGIC GIS Inventory (aka Ramona) — Situs Addresses for Volusia County. Maintained by Growth and Resource Management. Addresses are determined by the cities for their jurisdiction and by the County...

  17. Noncollinear magnetism in manganese nanostructures

    Zelený, Martin; Šob, Mojmír; Hafner, J.

    2009-01-01

    Roč. 80, č. 14 (2009), 144414/1-144414/19. ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100920; GA MŠk OC09011 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnetism of nanostructures * nanowires * noncollinear magnetism * manganese Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  18. Arsenic concentrations in Chinese coals

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  19. Arsenic in drinking-water and risk for cancer in Denmark

    Baastrup, Rikke; Sørensen, Mette; Balstrøm, Thomas;

    2008-01-01

    BACKGROUND: Arsenic is a well-known carcinogen, which is often found in drinking-water. Epidemiologic studies have shown increased cancer risks among individuals exposed to high concentrations of arsenic in drinking-water, whereas studies of the carcinogenic effect of low doses have had...... inconsistent results. OBJECTIVE: Our aim was to determine if exposure to low levels of arsenic in drinking-water in Denmark is associated with an increased risk for cancer. METHODS: The study was based on a prospective Danish cohort of 57,053 persons in the Copenhagen and Aarhus areas. Cancer cases were...... identified in the Danish Cancer Registry, and the Danish civil registration system was used to trace and geocode residential addresses of the cohort members. We used a geographic information system to link addresses with water supply areas, then estimated individual exposure to arsenic using residential...

  20. Spatial and seasonal changes of arsenic species in Lake Taihu in relation to eutrophication.

    Yan, Changzhou; Che, Feifei; Zeng, Liqing; Wang, Zaosheng; Du, Miaomiao; Wei, Qunshan; Wang, Zhenhong; Wang, Dapeng; Zhen, Zhuo

    2016-09-01

    Spatial and seasonal variations of arsenic species in Lake Taihu (including Zhushan Bay, Meiliang Bay, Gonghu Bay, and Southern Taihu) were investigated. Relatively high levels of total arsenic (TAs) and arsenate (As(V)) were observed in hyper-eutrophic regions during summer and autumn, which is attributed to exogenous contamination and seasonal endogenous release from sediments. The distributions of TAs and As(V) were significantly affected by total phosphorus, iron, manganese, and dissolved organic carbon. Arsenite (As(III)) and methylarsenicals (the sum of monomethylarsenic acid (MMA(V)) and dimethylarsenic acid (DMA(V))), mainly from biotransformation of As(V), were affected by temperature-controlled microalgae activities and local water quality parameters, exhibiting significantly higher concentrations and proportions in hyper-eutrophic and middle eutrophic regions during summer compared to mesotrophic region. The eutrophic environment, which induces changes in the main water quality parameters such as phosphorus, chlorophyll-a, iron, manganese, and dissolved organic carbon, can favor the biogeochemical cycling of arsenic in the aquatic systems. PMID:27152991

  1. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Linsheng Yang; Jianwei Gao; Jiangping Yu

    2011-01-01

    In contrast to arsenic (As) poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP) induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions), who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the ...

  2. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  3. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    Thomas, Mary Ann

    2016-01-01

    Arsenic concentrations were measured in samples from 168 domestic wells in Licking County, Ohio, to document arsenic concentrations in a wide variety of wells and to identify hydrogeologic factors associated with arsenic concentrations in groundwater. Elevated concentrations of arsenic (greater than 10.0 micrograms per liter [µg/L]) were detected in 12 percent of the wells (about 1 in 8). The maximum arsenic concentration of about 44 µg/L was detected in two wells in the same township.A subset of 102 wells was also sampled for iron, sulfate, manganese, and nitrate, which were used to estimate redox conditions of the groundwater. Elevated arsenic concentrations were detected only in strongly reducing groundwater. Almost 20 percent of the samples with iron concentrations high enough to produce iron staining (greater than 300 µg/L) also had elevated concentrations of arsenic.In groundwater, arsenic primarily occurs as two inorganic species—arsenite and arsenate. Arsenic speciation was determined for a subset of nine samples, and arsenite was the predominant species. Of the two species, arsenite is more difficult to remove from water, and is generally considered to be more toxic to humans.Aquifer and well-construction characteristics were compiled from 99 well logs. Elevated concentrations of arsenic (and iron) were detected in glacial and bedrock aquifers but were more prevalent in glacial aquifers. The reason may be that the glacial deposits typically contain more organic carbon than the Paleozoic bedrock. Organic carbon plays a role in the redox reactions that cause arsenic (and iron) to be released from the aquifer matrix. Arsenic concentrations were not significantly different for different types of bedrock (sandstone, shale, sandstone/shale, or other). However, arsenic concentrations in bedrock wells were correlated with two well-construction characteristics; higher arsenic concentrations in bedrock wells were associated with (1) shorter open intervals and

  4. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health. PMID:27049126

  5. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  6. Allegheny County Address Points

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  7. Manganese Inhalation as a Parkinson Disease Model

    José Luis Ordoñez-Librado; Verónica Anaya-Martínez; Ana Luisa Gutierrez-Valdez; Laura Colín-Barenque; Enrique Montiel-Flores; Maria Rosa Avila-Costa

    2011-01-01

    The present study examines the effects of divalent and trivalent Manganese (Mn2+/Mn3+) mixture inhalation on mice to obtain a novel animal model of Parkinson disease (PD) inducing bilateral and progressive dopaminergic cell death, correlate those alterations with motor disturbances, and determine whether L-DOPA treatment improves the behavior, to ensure that the alterations are of dopaminergic origin. CD-1 male mice inhaled a mixture of Manganese chloride and Manganese acetate, one hour twice...

  8. Manganese in long term paediatric parenteral nutrition.

    Reynolds, A. P.; Kiely, E; Meadows, N

    1994-01-01

    The current practice of providing manganese supplementation to neonates on long term parenteral nutrition is leading to a high incidence of hypermanganesaemia. Magnetic resonance imaging (MRI) studies in adults on long term manganese parenteral nutrition have shown changes in TI weighted MRI images and similar findings in a neonate receiving trace element supplementation are reported here. Whole blood manganese concentration in the infant was 1740 nmol/l (or 8.3 times upper reference limit). ...

  9. Discovery of the Arsenic Isotopes

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  10. Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh

    Amal K. Mitra

    2005-08-01

    Full Text Available Excessive amounts of arsenic (As in the groundwater in Bangladesh and neighboring states in India are a major public health problem. About 30% of the private wells in Bangladesh exhibit high concentrations of arsenic. Over half the country, 269 out of 464 administrative units, is affected. Similar problems exist in many other parts of the world, including the Unites States. This paper presents an assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh. Four competing hypotheses, each addressing the sources, reaction mechanisms, pathways, and sinks of arsenic in groundwater, were analyzed in the context of the geologic history and land-use practices in the Bengal Basin. None of the hypotheses alone can explain the observed variability in arsenic concentration in time and space; each appears to have some validity on a local scale. Thus, it is likely that several bio-geochemical processes are active among the region’s various geologic environments, and that each contributes to the mobilization and release of arsenic. Additional research efforts will be needed to understand the relationships between underlying biogeochemical factors and the mechanisms for arsenic release in various geologic settings.

  11. Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011

    Ayotte, Joseph D.; Cahillane, Matthew; Hayes, Laura; Robinson, Keith W.

    2012-01-01

    wells, and in ecological-level analysis of disease outcomes. The approach for modeling arsenic in groundwater could also be applied to other environmental contaminants that have potential implications for human health, such as uranium, radon, fluoride, manganese, volatile organic compounds, nitrate, and bacteria.

  12. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials. PMID:21133431

  13. Response of the microbial metallome to arsenic stress

    Wolfe-Simon, F.; Lancaster, W. A.; Menon, A. L.; Yannone, S. M.; Adams, M. W.; Tainer, J. A.

    2012-12-01

    Life depends on access to nutrients in the environment. While elements such as nitrogen, carbon, sulfur and phosphorus are fundamental to microbial survival, trace nutrient elements like iron, molybdenum and copper show dramatically different profiles depending on environmental conditions. These elements are known nutrients but also can be toxic at higher concentrations. For low or limiting concentrations of one nutrient element, microbes may utilize another element to serve similar functions often, but not always, in similar macromolecular structures. Well-characterized elemental exchanges include manganese for iron and tungsten for molybdenum. Here we report on our preliminary metallomic analyses of the Gammaproteobacterium Halomonas sp. str. GFAJ-1 grown under severe arsenic stress. We analyzed 53 elements by ICP-MS, in order to determine which elements are tightly, weakly or not bound to soluble macromolecules (> 3 kDa). We specifically investigated the changes to the metallome of GFAJ-1cells that were grown in the synthetic minimal medium AML60 supplemented with 50 mM arsenate (As(V)), 50 μM phosphate (P) or 50 mM As(V) plus 50 μM P. Further studies will identify which macromolecules are associated with the various elements. This research extends our understanding of metal assimilation in microbes in response to tandem phosphorus limitation coupled to extreme arsenic concentrations and furthermore contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  14. Manganese mineralogy and diagenesis in the sedimentary rock record

    Johnson, Jena E.; Webb, Samuel M.; Ma, Chi; Fischer, Woodward W.

    2016-01-01

    Oxidation of manganese(II) to manganese(III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction...

  15. Battles with Iron: Manganese in Oxidative Stress Protection*

    Aguirre, J. Dafhne; Culotta, Valeria C.

    2012-01-01

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton c...

  16. Arsenic removal by lime softening

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  17. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  18. Arsenic Toxicity in Male Reproduction and Development.

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-12-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity. PMID:26973968

  19. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  20. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation

    In this study, a combination of sequential extraction and mineralogical investigation by X-ray diffraction and X-ray photoelectron spectroscopy was employed in order to evaluate arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from mining and smelting. Combination of these techniques indicated that iron oxides and the weathering products of sulfide minerals played an important role in regulating the arsenic retention in the soils. Higher bioaccessibility of arsenic was observed in the following order; i) arsenic bound to amorphous iron oxides (smelter-2), ii) arsenic associated with crystalline iron oxides and arsenic sulfide phase (smelter-1), and iii) arsenic associated with the weathering products of arsenic sulfide minerals, such as scorodite, orpiment, jarosite, and pyrite (mine). Even though the bioaccessibility of arsenic was very low in the mine soil, its environmental impact could be significant due to its high arsenic concentration and mobility. Highlights: • Combination of sequential extraction and mineralogical investigation was employed. • Arsenic was primarily associated with iron oxides and sulfide minerals in soils. • Bioaccessibility of arsenic was affected by arsenic solid-phase speciation. -- We investigated arsenic solid-state speciation in soils, which is crucial for risk assessment and developing suitable remediation strategies in arsenic contaminated sites

  1. About the presence of arsenic in prebiotic species

    Ellinger Y.; Toulouze M.; Pilmé J.; Pauzat F.

    2014-01-01

    The recent publication that some bacteria could use arsenic instead of phosphorus for building their DNA triggered a large controversy in the astro/exobiology community. Most comments claim that such a substitution is not possible. Here, we address the same question of the presence of As in DNA from a pure theoretical point of view, beyond any biological consideration. By means of “First principle“ quantum calculations we found that there is no energetical or structural argument to reject the...

  2. Analytical approaches for arsenic determination in air: A critical review.

    Sánchez-Rodas, Daniel; de la Campa, Ana M Sánchez; Alsioufi, Louay

    2015-10-22

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed. PMID:26526905

  3. Arsenic Mobility and Availability in Sediments by Application of BCR Sequential Extractions Method; Movilidad y Disponibilidad de Arsenico en Sedimentos Mediante la Aplicacion del Metodo de Extracciones Secuenciales BCR

    Larios, R.; Fernandez, R.; Rucandio, M. I.

    2011-05-13

    Arsenic is a metalloid found in nature, both naturally and due to anthropogenic activities. Among them, mining works are an important source of arsenic release to the environment. Asturias is a region where important mercury mines were exploited, and in them arsenic occurs in para genesis with mercury minerals. The toxicity and mobility of this element depends on the chemical species it is found. Fractionation studies are required to analyze the mobility of this metalloid in soils and sediments. Among them, the proposed by the Bureau Community of Reference (BCR) is one of the most employed. This method attempts to divide up, by operationally defined stages, the amount of this element associated with carbonates (fraction 1), iron and manganese oxy hydroxides (fraction 2), organic matter and sulphides (fraction 3), and finally as the amount associated residual fraction to primary and secondary minerals, that is, from the most labile fractions to the most refractory ones. Fractionation of arsenic in sediments from two mines in Asturias were studied, La Soterrana and Los Rueldos. Sediments from La Soterrana showed high levels of arsenic in the non-residual phases, indicating that the majority of arsenic has an anthropogenic origin. By contrast, in sediments from Los Rueldos most of the arsenic is concentrated in the residual phase, indicating that this element remains bound to very refractory primary minerals, as is also demonstrated by the strong correlation of arsenic fractionation and the fractionation of elements present in refractory minerals, such as iron, aluminum and titanium. (Author) 51 refs.

  4. Potential of Using ROSA Centifolia to Remove Iron and Manganese in Groundwater Treatment

    Aslina Abdul Kadir

    2012-11-01

    Full Text Available Groundwater is source for water supply because of its good natural quality. However, groundwater may be exposed toward to contamination by various anthropogenic activities such as agricultural, domestic and industrial. Groundwater quality problem are typically associated with high hardness, high salinity and elevated concentration of iron, manganese, ammonium, fluoride and occasionally nitrate and arsenic.  Therefore, groundwater should be treated to acceptable level before consumption. This study is carried out with the objectives to optimize the feasibility condition of contact time, biosorbent dosage and pH range in removing heavy metal by using Rosa Centifolia (R. Centifolia and also to determine the water quality of groundwater sources.  A dried Rosa Centifolia pretreated before being used as biosorbent. Experiment was done by varying contact time, biosorbent dosage and pH range to get the optimum value. The removal characteristic of Iron and Manganese by Rosa Centifolia was analyzed using Atomic Absorption Spectrophotometer (AAS. The optimum condition is achieved at 240minutes, 0.05g/ml and pH 5 respectively. The optimum percentage removal of Iron and Manganese was found to be more than 70%. The finding indicated that Rosa Centifolia is a promising biosorbent in treating groundwater from RECESS UTHM well.

  5. Large Magnetic Moments of Arsenic-Doped Mn Clusters and their Relevance to Mn-Doped III-V Semiconductor Ferromagnetism

    Kabir, M; Mookerjee, A; Kabir, Mukul; Mookerjee, Abhijit

    2005-01-01

    We report electronic and magnetic structure of arsenic-doped manganese clusters from density-functional theory using generalized gradient approximation for the exchange-correlation energy. We find that arsenic stabilizes manganese clusters, though the ferromagnetic coupling between Mn atoms are found only in Mn$_2$As and Mn$_4$As clusters with magnetic moments 9 $\\mu_B$ and 17 $\\mu_B$, respectively. For all other sizes, $x=$ 3, 5-10, Mn$_x$As clusters show ferrimagnetic coupling. It is suggested that, if grown during the low temperature MBE, the giant magnetic moments due to ferromagnetic coupling in Mn$_2$As and Mn$_4$As clusters could play a role on the ferromagnetism and on the variation observed in the Curie temperature of Mn-doped III-V semiconductors.

  6. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  7. Arsenic Exposure and Toxicology: A Historical Perspective

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states o...

  8. Arsenic in contaminated soil and river sediment

    Bombach, G. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Pierra, A. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Klemm, W. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany))

    1994-09-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As[sup 3+], As[sup 5+]) and the bonding types have been analyzed. (orig.)

  9. Arsenic in contaminated soil and river sediment

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As3+, As5+) and the bonding types have been analyzed. (orig.)

  10. 21 CFR 556.60 - Arsenic.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  11. Arsenic removal from industrial effluent through electrocoagulation

    Balasubramanian, N. [Central Electrochemical Research Inst., Karaikudi (India). Dept. of Pollution Control; Madhavan, K. [Coimbatore Inst. of Technology, Coimbatore (India). Dept. of Chemistry

    2001-05-01

    In the present investigation, it is attempted to remove arsenic from smelter industrial wastewater through electro-coagulation. Experiments covering a wide range of operating conditions for removal of the arsenic present in the smelter wastewater are carried out in a batch electrochemical reactor. It has been observed from the present work that arsenic can be removed effectively through electrocoagulation. (orig.)

  12. Chloride sublimation of gold-arsenic concentrates

    Present article is devoted to chloride sublimation of gold-arsenic concentrates. The results of studies of chloride sublimation of gold-arsenic comprising concentrates of Chore deposit of Tajikistan are considered. It is found that by application sodium chloride for gold-arsenic comprising concentrates it is possible to extract gold and silver from flotation concentrates.

  13. Preparation of Manganese Oxide Nanobelts

    Jisen WANG; Jinquan SUN; Ying BAO; Xiufang BIAN

    2003-01-01

    Oriented nanobelts of manganese oxide have been firstly and successfully prepared by a microemulsion techniqueunder controlled circumstances. The samples were characterized by X-ray diffraction (XRD), transmission electronmicroscope (TEM). Influences of sodium chloride and annealed temperature on the synthesis of Mn3O4 nanobeltswere investigated. It was found that NaCl is the key factor to synthesize oriented Mn3O4 nanobelts and 827 K isoptimum temperature to produce fine nanobelts. Oriented growth mechanism of Mn3O4 nanobelts was discussed.

  14. Arsenic – Poison or medicine?

    Karolina Kulik-Kupka

    2016-04-01

    Full Text Available Arsenic (As is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. Med Pr 2016;67(1:89–96

  15. Reach Address Database (RAD)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  16. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations...

  17. Arsenic mobility in contaminated lake sediments

    An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates. - Arsenic accumulates at the ground water/lake interface, where it forms insoluble precipitates

  18. Neutron activation analysis of arsenic in Greece

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  19. Removal processes for arsenic in constructed wetlands.

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems. PMID:21549410

  20. Deposition of manganese in a drinking water distribution system.

    Sly, L I; M.C. Hodgkinson; Arunpairojana, V

    1990-01-01

    The deposition of manganese in a water distribution system with manganese-related "dirty water" problems was studied over a 1-year period. Four monitoring laboratories with Robbins biofilm sampling devices fitted to the water mains were used to correlate the relationship among manganese deposition, the level of manganese in the water, and the chlorination conditions. Manganese deposition occurred by both chemical and microbial processes. Chemical deposition occurred when Mn(II) not removed du...

  1. EFFECTS OF MANGANESE ON THYROID HORMONE HOMEOSTASIS: POTENTIAL LINKS

    Soldin, OP; Aschner, M.

    2007-01-01

    Manganese (Mn) is an essential trace nutrient that is potentially toxic at high levels of exposure. As a constituent of numerous enzymes and a cofactor, manganese plays an important role in a number of physiologic processes in mammals. The manganese-containing enzyme, manganese superoxide dismutase (Mn-SOD), is the principal antioxidant enzyme which neutralizes the toxic effects of reactive oxygen species. Other manganese-containing enzymes include oxidoreductases, transferases, hydrolases, l...

  2. Manganese transport in Brevibacterium ammoniagenes ATCC 6872.

    Schmid, J.; Auling, G

    1987-01-01

    Uptake of manganese by Brevibacterium ammoniagenes ATCC 6872 was energy dependent and obeyed saturation kinetics (Km = 0.65 microM; Vmax = 0.12 mumol/min per g [dry weight]). Uptake showed optima at 27 degrees C and pH 9.5. 54Mn2+ accumulated by the cells was released by treatment with toluene or by exchange for unlabeled manganese ions, via an energy-dependent process. Co2+, Fe2+, Cd2+, and Zn2+ inhibited manganese uptake. Inhibition by Cd2+ and Zn2+ was competitive (Ki = 0.15 microM Cd2+ an...

  3. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil

    Fayiga, Abioye O. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States) and Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)]. E-mail: lqma@ifas.ufl.edu; Zhou Qixing [Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-06-15

    This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200 mg kg{sup -1} Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8 weeks using NH{sub 4}Cl (water-soluble plus exchangeable, WE-As), NH{sub 4}F (Al-As), NaOH (Fe-As), and H{sub 2}SO{sub 4} (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8 weeks of plant growth, the Al-As and Fe-As fractions were significantly (p < 0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p = 0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic. - Arsenic taken up by P. vittata was from all fractions with most from the Ca-fraction.

  4. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  5. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W.; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  6. Manganese concentrate usage in steelmaking

    Nokhrina, O. I.; Rozhihina, I. D.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands. The paper describes experiments on effects of metal deoxidizer composition, component proportion, pelletizing mixture, particle size distribution of basic materials and flux on manganese recovering from oxides under direct melting.

  7. Manganese-based Permanent Magnets

    Ian Baker

    2015-08-01

    Full Text Available There is a significant gap between the energy product, BH, where B is the magnetic flux density and H is the magnetic field strength, of both the traditional ferrite and AlNiCo permanent magnets of less than 10 MGOe and that of the rare earth magnets of greater than 30 MGOe. This is a gap that Mn-based magnets could potentially, inexpensively, fill. This Special Issue presents work on the development of both types of manganese permanent magnets. Some of the challenges involved in the development of these magnets include improving the compounds’ energy product, increasing the thermal stability of these metastable compounds, and producing them in quantity as a bulk material.[...

  8. Bimetallic nanoparticles for arsenic detection.

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  9. Determination of arsenic compounds in earthworms

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  10. Variability in human metabolism of arsenic

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  11. Synthesis and Characterization of Manganese Carboxylates

    Maryudi; R.M. Yunus; A.H. Nour; M.H. Abidin

    2009-01-01

    The explorations of prodegradant additives for plastics from trans-metals organic salts have been being conducted. This study reports a method of synthesis of manganese carboxylates and their characterization. The new method involves reaction between molten carboxylic acid with sodium hydroxide in alcoholic solution to produce sodium carboxylate and continued by reacting sodium carboxylate with chloride salt of manganese. First reaction and second reaction were conducted at 80-85°C and under ...

  12. Breast-feeding Protects against Arsenic Exposure in Bangladeshi Infants

    Fängström, Britta; Moore, Sophie; Nermell, Barbro; Kuenstl, Linda; Goessler, Walter; Grandér, Margaretha; Kabir, Iqbal; Palm, Brita; Arifeen, Shams El; Vahter, Marie

    2008-01-01

    Background Chronic arsenic exposure causes a wide range of health effects, but little is known about critical windows of exposure. Arsenic readily crosses the placenta, but the few available data on postnatal exposure to arsenic via breast milk are not conclusive. Aim Our goal was to assess the arsenic exposure through breast milk in Bangladeshi infants, living in an area with high prevalence of arsenic-rich tube-well water. Methods We analyzed metabolites of inorganic arsenic in breast milk ...

  13. Composition and recovery method for electrolytic manganese residue

    陶长元; 李明艳; 刘作华; 杜军

    2009-01-01

    According to the statistic analysis,the reserve of manganese in electrolytic manganese residue deposit is over 780 kt. The average contents of available manganese and ammonium reach 3.90% and 1.68% (mass fraction),respectively. Large amount of manganese compounds and ammonium sulfate are detruded without any treatment or recovery. The compositions of the main elements in electrolytic manganese residue were analyzed comprehensively based on the extensive research data. According to the new development of electrolytic manganese residue comprehensively used in recent years,a water washing residue-twice precipitation process was also proposed. The experimental results indicate that manganese dioxide silicon dioxide and calcium sulfate are presented as amorphous state in the manganese residues. The recovery rates of manganese and nitrogen reach up to 99.5% and 94.5 %,respectively. The recovery process can be easily implemented,environment-friendly and fitting for industrial production.

  14. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia. PMID:27463026

  15. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-01-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001)...

  16. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; ISLAM, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2012-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning kn...

  17. Manganese mineralogy and diagenesis in the sedimentary rock record

    Johnson, Jena E.; Webb, Samuel M.; Ma, Chi; Fischer, Woodward W.

    2016-01-01

    Oxidation of manganese (II) to manganese (III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction is promoted by a variety of chemical species, these ancient manganese deposits are often significantly more reduced than modern environmental manganese-rich sediments. We document the impacts of manganese reduction and the mineral phases that form stable manganese deposits from seven sedimentary examples spanning from modern surface environments to rocks over 2 billion years old. Integrating redox and coordination information from synchrotron X-ray absorption spectroscopy and X-ray microprobe imaging with scanning electron microscopy and energy and wavelength-dispersive spectroscopy, we find that unlike the Mn(IV)-dominated modern manganese deposits, three manganese minerals dominate these representative ancient deposits: kutnohorite (CaMn(CO3)2), rhodochrosite (MnCO3), and braunite (Mn(III)6Mn(II)O8SiO4). Pairing these mineral and textural observations with previous studies of manganese geochemistry, we develop a paragenetic model of post-depositional manganese mineralization with kutnohorite and calcian rhodochrosite as the earliest diagenetic mineral phases, rhodochrosite and braunite forming secondarily, and later alteration forming Mn-silicates.

  18. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole

  19. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  20. Effect of water hyacinth root extract on arsenic level in different organs of arsenic-treated rat

    Shaheen Lipika Quayum

    2007-01-01

    The present study investigated whether the administration of the ethanol extract of water hyacinth (Eichhornia crassipes) ameliorates arsenic from arsenic-treated rats. To induce arsenic accumulation in different organs, arsenic trioxide was administered orally by gavage at a dose of 500 µg/rat/day for 7 days. In search of an effective therapeutic agent to counteract arsenic accumulation and arsenic-induced oxidative stress, different concentrations of ethanol extract of root of water hyacint...

  1. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future. PMID:26062467

  2. Current developments in toxicological research on arsenic

    Bolt, Hermann M.

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwate...

  3. Dissolved Air Flotation of arsenic adsorbent particles

    Santander, M.; Valderrama, L.

    2015-01-01

    The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF) and dissolved air flotation (DAF). A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808) as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with fl...

  4. Arsenic Toxicity in Male Reproduction and Development

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-01-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic a...

  5. Manganese exposure in foundry furnacemen and scrap recycling workers

    Lander, F; Kristiansen, J; Lauritsen, Jens

    1999-01-01

    Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder that...... bears many similarities to Parkinson's disease. The aim of the study was to investigate the sources and levels of manganese exposure in foundry furnacemen by a combined measuring of blood-manganese (B-Mn) and manganese in ambient air (air-Mn)....

  6. Applications of nano-structured metal oxides for treatment of arsenic in water and for antimicrobial coatings

    Sadu, Rakesh Babu

    Dependency of technology has been increasing radically through cellular phones for communication, data storage devices for education, drinking water purifiers for healthiness, antimicrobial-coated textiles for cleanliness, nanomedicines for deadliest diseases, solar cells for natural power, nanorobots for engineering and many more. Nanotechnology develops many unprecedented products and methodologies with its adroitness in this modern scientific world. Syntheses of nanomaterials play a significant role in the development of technology. Solution combustion and hydrothermal syntheses produce many nanomaterials with different structures and pioneering applications. Nanometal oxides, like titania, silver oxide, manganese oxide and iron oxide have their unique applications in engineering, chemistry and biochemistry. Likewise, this study talks about the syntheses and applications of nanomaterials such as magnetic graphene nanoplatelets (M-Gras) decorated with uniformly dispersed NPs, manganese doped titania nanotubes (Mn-TNTs), and silver doped titania nanopartcles (nAg-TNPs) and their polyurethane based polymer nanocomposite coating (nAg-TiO2 /PU). Basically, M-Gras, and Mn-TNTs were applied for the treatment of arsenic contaminated water, and nAg- TiO2/PU applied for antimicrobial coatings on textiles. Adsorption of arsenic over Mn- TNTs, and M-Gras was discussed while considering all the regulations of arsenic contamination in drinking water and oxidation of arsenic over Mn-TNTs also discussed with the possible surface reactions. Silver doped titania and its polyurethane nanocomposite was coated on polyester fabric and examined the coated fabric for bactericidal activity for gram-negative (E. coli) and gram-positive ( S. epidermidis) bacteria. This study elucidates the development of suitable nanomaterials and their applications to treat or rectify the environmental hazards while following the scientific standards and regulations.

  7. Manganese-electrolysed slag treatment: bioleaching of manganese by Fusarium sp.

    Cao, Jian-Bing; Li, Xiao-Ming; Ouyang, Yu-Zhu; Zheng, Wei; Wang, Dong-Bo; Shen, Ting-Ting; Yue, Xiu; Yang, Qia

    2012-06-01

    A fungi strain named Fusarium sp. was isolated from manganese-electrolysed slag by using a gradient dilution spread plate method, identified by 26S RNA sequence analysis and phylogenetic tree analysis, and explored for the bioleaching capacity to manganese (II) from manganese-electrolysed slag in liquid mineral medium under different environmental conditions, including system temperature, incubator rotation speed and initial pH value. DNA sequence and phylogenetic analysis indicated the name of this fungi strain, that is, Fusarium sp., and higher bioleaching efficiencies (71.6%) of manganese by this fungi were observed when the bioleaching was carried out under the optimized conditions as follows: contact time: 72 h; system temperature: 28 degrees C; inoculums concentration: 2% (v/v); incubator rotation speed: 150 rpm; pH 4.0. Because of its low cost, environment friendliness and better efficiency, the bioleaching technique will have a significant impact on manganese-electrolysed slag pollution mitigation. PMID:22856303

  8. Addressivity in cogenerative dialogues

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  9. Acute arsenic poisoning in two siblings.

    Lai, Melisa W; Boyer, Edward W; Kleinman, Monica E; Rodig, Nancy M; Ewald, Michele Burns

    2005-07-01

    We report a case series of acute arsenic poisoning of 2 siblings, a 4-month-old male infant and his 2-year-old sister. Each child ingested solubilized inorganic arsenic from an outdated pesticide that was misidentified as spring water. The 4-month-old child ingested a dose of arsenic that was lethal despite extraordinary attempts at arsenic removal, including chelation therapy, extracorporeal membrane oxygenation, exchange transfusion, and hemodialysis. The 2-year-old fared well with conventional therapy. PMID:15995066

  10. XAS Studies of Arsenic in the Environment

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples

  11. Arsenic in the soils of Zimapan, Mexico

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg-1. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg-1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  12. Hydrogeological and geochemical investigations of elevated arsenic (As) abundances in groundwater in Ireland

    Full text: This study will use hydrogeology, geochemistry and chemical speciation studies to investigate the presence of elevated arsenic (As) abundances in groundwater in Ireland. Comparative studies of groundwater, bedrock and mineral chemistry will be linked to hydrogeology, GIS and statistical studies. This approach will facilitate characterization of the temporal and spatial distribution of As as a function of groundwater and bedrock geology using the pressures, pathways and receptors approach. Arsenic speciation studies will determine As toxicity, bioavailability and potential for migration in this environment thus addressing human health issues. (author)

  13. Sorption properties of hydrous manganese oxide for the removal of radioactive manganese from aqueous solution

    Radioactive manganese (54Mn) is formed in the structural and clad components of fast nuclear reactors due to the high energy neutron flux encountered in the core. It is a corrosion activation product having a half-life of 312.5 days and gamma energy of 835 keV. Hence, its removal from the waste which generates after washing the above mentioned components is very important. The removal properties of radioactive manganese, 54Mn, from an aqueous solution were studied here in a batch process using hydrous manganese oxide (HMO) coated with polyurethane foam as an inorganic sorbent. The HMO was synthesized by alkaline precipitation in air using manganese sulphate monohydrate and potassium permanganate. The synthesized material was found to be in powder form which took lot of time for settlement in solution; hence, it was coated with polyurethane foam, so that it can be easily used in a batch process. The removal of the radioisotope by the sorbent was studied by varying different experimental conditions such as solution pH, contact time, and effect of presence of other divalent ions. The studies carried out in our laboratory found that the sorption of manganese by hydrous manganese oxide followed pseudo-second order kinetics. On the other hand, with increasing pH of the solution (pH range studied: 1-8), the removal of manganese by the sorbent also increases until pH reaches 4.5, after that the sorption was almost same. The present studies confirmed that in the presence of other divalent ions, e.g. cobalt (ii) ions, the sorption was effected which may be due to the sorption of both the ions on hydrous manganese oxide. The sorption was very fast and more than 95% of manganese was removed within one hour of contact with hydrous manganese oxide. (author)

  14. Manganese in dwarf spheroidal galaxies

    North, P; Jablonka, P; Hill, V; Shetrone, M; Letarte, B; Lemasle, B; Venn, K A; Battaglia, G; Tolstoy, E; Irwin, M J; Primas, F; Francois, P

    2012-01-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and ...

  15. Infrared spectrum of arsenic pentafluoride

    After a literature review about arsenic fluorides, we give several methods of obtaining very pure AsF5 in order to ascertain the right spectrum of this compound. Our spectra fit well with Akers's observations, and we note that AsF5 structure can be explained in terms of C3v molecular symmetry, with the As-F bond stretching lying at 786 cm-1 and 811 cm-1. (author)

  16. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  17. Arsenic Removal by Liquid Membranes

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  18. Chromosome analysis of arsenic affected cattle

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  19. Arsenic Adsorption Onto Iron Oxides Minerals

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  20. Interactions between arsenic species and marine algae

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  1. Impaired arsenic metabolism in children during weaning

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  2. ARSENIC REMOVAL AND ECOLOGICALLY SAFE CONTAINMENT OF ARSENIC-WASTE: A SUSTAINABLE SOLUTION FOR ARSENIC CRISIS IN CAMBODIA

    An appalling degree of arsenic contamination in groundwater has affected more than a million people in wide region of Mekong delta flood plain in Cambodia. Arsenic is by far the most toxic species of all naturally occurring groundwater contaminants and disposal of removed arse...

  3. Addressing the nuclear misconception

    There is a perception, fostered and encouraged by the anti-nuclear groups, that the nuclear industry generates large quantities of waste with no idea how to deal with it, that it is unsafe, uneconomic, and environmentally damaging. The task is to change these perceptions, by demonstrating that the industry is not a problem in itself, but in fact provides solutions to problems. This paper, while primarily concerned with waste, addresses all of these issues as each has a bearing on the perception of the industry and therefore must be considered when addressing the issue of waste. The paper concludes that evidence exists to support the industry view, but that the mission of the industry should be to change the perception of the industry, by influencing and working together with its stake holders to address their concerns, rather than merely presenting more and more facts. (author)

  4. Addressing the nuclear misconception

    There is a perception, fostered and encouraged by the anti-nuclear groups, that the nuclear industry generates large quantities of waste with no idea how to deal with it, is unsafe, uneconomic, and environmentally damaging. The task of the industry is to change the perception by demonstrating that the industry provides solutions to problems, and is not a problem in itself. This paper, whilst primarily concerned with waste, addresses all of these issues as each has a bearing on the perception of the industry and therefore must be considered when addressing the issue of waste. The paper concludes that evidence exists to support the industry, but that the mission of the industry should be to change the perception of it, by influencing and working together with its stakeholders to address their concerns, rather than merely presenting more and more facts. (author)

  5. Manganese and acute paranoid psychosis: A case report

    W.M.A. Verhoeven (Wim); J.I.M. Egger (Jos); H.J. Kuijpers (Harold)

    2011-01-01

    textabstractIntroduction: Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instabi

  6. Manganese and acute paranoid psychosis: a case report

    Verhoeven, W.M.A.; Egger, J.I.M.; Kuijpers, H.J.H.

    2011-01-01

    Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later,

  7. Redox-controlled groundwater mobilization of soil arsenic: A case study and model

    Lieberman, J.; Gerath, M.; Duvel, W.

    1996-12-31

    Arsenic contaminates the groundwater beneath and downstream from a chemical manufacturing plant, although historical waste emissions from the plant have consisted principly of isopropanol, and fatty acids. Groundwater and soil analysis of organics, metals, anions, D.O. (dissolved oxygen), and redox potential are consistent with a model for redox-controlled mobilization of that arsenic which is naturally present in the soil at background concentrations of around 10 mg/kg. According to this model, aerobic biodegradation of organic compounds from the plant`s waste stream consumes D.O. and lowers the redox potential of portions of the aquifer. Somewhere below 0.5 mg/l D.O., particles of iron and manganese hydroxide tend to dissolve and release the arsenic adsorbed to their surfaces. Bacterial mediation and organic complexation are then believed to determine the formation of soluble arsenite and arsenate complexes. A numerical flow/transport/reaction model of the plant site was set up using the BIOPLUME II code in order to simulate bacterial D.O. consumption in the aquifer and evaluate remedial alternatives. Modeling results show that site cleanup (increase of D.O. above 0.5 mg/l) will require approximately nine years with no action, four years with excavation of the source leachfield, and two years with source excavation plus oxygen injection. A combination of soil excavation and oxygen injection is presently under design in order to quickly reduce the consumption of D.O. in the saturated aquifer and remove a necessary condition for arsenic mobilization.

  8. Long-Term Exposure to Low-Level Arsenic in Drinking Water and Diabetes Incidence

    Bräuner, Elvira; Nordsborg, Rikke Baastrup; Andersen, Zorana;

    2014-01-01

    Background: Established causes of diabetes do not fully explain the epidemic. High level arsenic exposure has been implicated in diabetes risk but the effect of low-level arsenic exposure in drinking water remains unclear. Objective: To determine if long-term exposure to low-level arsenic in...... drinking water in Denmark is associated with increased risk of diabetes using a large prospective cohort. Methods: During 1993-1997 we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the...... diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition, where cases of diabetes based solely on blood glucose results were excluded. Results: Over a mean follow-up of 9.7 years of 52,931 eligible subjects, there were 4,304 (8.1%) diabetes cases in total, and...

  9. The catalytic oxidation of manganese in water treatment clarification processes

    Lloyd, A.

    1982-01-01

    The removal of dissolved manganese in water treatment floc blanket clarifiers has been studied. The removal mechanisms may be broadly classed as adsorption and oxidation. Adsorption of manganese (II) occurs rapidly and is completed in less than five minutes under conditions prevailing in a floe blanket clarifier. The extent of adsorption is determined by pH, iron and manganese concentrations. Manganese adsorption is relatively insensitive to the concentration of other cations and anions prese...

  10. Reductive Acid Leaching of Low Grade Manganese Ores

    Alok Prasad Das; Sarpras Swain; Shriyanka Panda; Nilotpala Pradhan; Lala Behari Sukla

    2012-01-01

    Manganese recoveries from low-grade ores using organic acids as reducing agents were investigated in the present work. The acid leaching potential of both oxalic acid and citric acid were estimated. Manganese leaching amount were measured by using standard manganese curve and estimated by titration method. Effects of various acid concentrations on leaching efficiency were studied. The observed result suggested prominent manganese recovery of 66% by oxalic acid at 2 M concentration whereas cit...

  11. Bioaccumulation of Arsenic by Fungi

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  12. Addressing Sexual Harassment

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  13. 29 CFR 1915.1018 - Inorganic arsenic.

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  14. 29 CFR 1926.1118 - Inorganic arsenic.

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  15. The Chemistry and Metabolism of Arsenic

    I. IntrodctionA century of study of the process by which many organisms convert inorganic arsenic into an array of methylated metabolites has answered many questions and has posed some new ones. The capacity of microorganisms to. form volatile arsenic compounds was first recogniz...

  16. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  17. Arsenic and human health effects: A review.

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed. PMID:26476885

  18. Arsenic Consumption in the United States.

    Wilson, Denise

    2015-10-01

    Exposure limits for arsenic in drinking water and minimal risk levels (MRLs) for total dietary exposure to arsenic have long been established in the U.S. Multiple studies conducted over the last five years have detected arsenic in foods and beverages including juice, rice, milk, broth (beef and chicken), and others. Understanding whether or not each of these foods or drinks is a concern to certain groups of individuals requires examining which types of and how much arsenic is ingested. In this article, recent studies are reviewed and placed in the context of consumption patterns. When single sources of food or drink are considered in isolation, heavy rice eaters can be exposed to the most arsenic among adults while infants consuming formula containing contaminated organic brown rice syrup are the most exposed group among children. Most food and drink do not contain sufficient arsenic to exceed MRLs. For individuals consuming more than one source of contaminated water or food, however, adverse health effects are more likely. In total, recent studies on arsenic contamination in food and beverages emphasize the need for individual consumers to understand and manage their total dietary exposure to arsenic. PMID:26591332

  19. 40 CFR 721.10003 - Manganese heterocyclic tetraamine complex (generic).

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese heterocyclic tetraamine... Specific Chemical Substances § 721.10003 Manganese heterocyclic tetraamine complex (generic). (a) Chemical... as manganese heterocyclic tetraamine complex (PMNs P-98-625/626/627/628/629 and P-00-614/617)...

  20. Studies on inorganic exchangers - manganese dioxide

    As a part of investigation of separation processes for long lived fission products from fuel reprocessing solution, manganese dioxide has been studied as an ion exchanger for cerium using 137Cs, 106Ru, 141Ce, sup(85,89)Sr, 95Zr and 95Nb as tracers. For different concentrations of HNO3, distribution ratios and breakthrough capacities were determined. Cerium was eluted by manganese sulphate and nitric acid. Results show that : (1) at all acidities cerium is adsorbed with almost no uptake of other rare earths, sodium, uranium and plutonium, (2) Ce (IV) gives better adsorption than Ce(III), (3) a combination of manganese sulphate (1 mg/ml) and 3M nitric acid elutes 99% cerium in 5-6 column volumes and (4) as for effect of absorption-elution cycles on MnO2 column, initially there is a decrease in capacity of cerium uptake but thereafter the capacity remains constant. (M.G.B.)

  1. Filling Narrow Trenches by Iodine-Catalyzed CVD of Copper and Manganese on Manganese Nitride Barrier/Adhesion Layers

    Gordon, Roy Gerald; Lin, Youbo; Au, Yeung Billy

    2011-01-01

    We present a process for the void-free filling of sub-100 nm trenches with copper or copper-manganese alloy by chemical vapor deposition (CVD). Conformally deposited manganese nitride serves as an underlayer that initially chemisorbs iodine. CVD of copper or copper-manganese alloy releases the adsorbed iodine atoms from the surface of the manganese nitride, allowing iodine to act as a surfactant catalyst floating on the surface of the growing copper layer. The iodine increases the growth rate...

  2. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca

    Norwood, W.P. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada) and Aquatic Ecosystems Protection Research Branch, National Water Research Institute, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada)]. E-mail: warren.norwood@ec.gc.ca; Borgmann, U. [Aquatic Ecosystems Protection Research Branch, National Water Research Institute, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Dixon, D.G. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2006-10-15

    Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r {sup 2}: 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g{sup -1} appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment. - Bioaccumulation of As, Co, Cr and Mn follow a saturation model in Hyalella azteca and can be useful for environmental assessment.

  3. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  4. Methylation of inorganic arsenic by murine fetal tissue explants.

    Broka, Derrick; Ditzel, Eric; Quach, Stephanie; Camenisch, Todd D

    2016-07-01

    Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (∼7% of total arsenic/48 h incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues. PMID:26446802

  5. Luminescence channels of manganese-doped spinel

    Two independent luminescence channels are observed from manganese-doped spinel Mn:MgAl2O4. The luminescence around 520 nm is assigned to transition from the lowest electronic excited state 4T1 to the ground state 6A1 of Mn2+ (3d)5 ion by analyzing the excitation spectrum and electron spin resonance measurement. The emission at 650 nm is triggered by the band edge excitation and is assigned similarly to the charge-transfer process associated with the manganese ion

  6. Kinetics of Nitrogen Diffusion in Granular Manganese

    ZHANG Jin-zhu; XU Chu-shao; ZHAO Yue-ping

    2008-01-01

    The kinetics and the influence of time on granular manganese nitriding were studied by means of a vacuum resistance furnace, X-ray diffraction technique, and LECO TC-436 oxygen/nitrogen determinator. The longer the nitriding time, the more the nitrogen pickup. Except for a trace of oxide MnO that developed, the metal manganese could thoroughly be nitrided to form Mn4N and a little ζ-phase (the stoichiometric components as Mn2N) with the nitriding time lasting. A kinetic model is developed to reveal the nitriding situation and agrees well with the experimental results.

  7. Elucidating the pathway for arsenic methylation

    Although biomethylation of arsenic has been studied for more than a century, unequivocal demonstration of the methylation of inorganic arsenic by humans occurred only about 30 years ago. Because methylation of inorganic arsenic activates it to more reactive and toxic forms, elucidating the pathway for the methylation of this metalloid is a topic of considerable importance. Understanding arsenic metabolism is of public health concern as millions of people chronically consume drinking water that contains high concentrations of inorganic arsenic. Hence, the focus of our research has been to elucidate the molecular basis of the steps in the pathway that leads from inorganic arsenic to methylated and dimethylated arsenicals. Here we describe a new S-adenosylmethionine (AdoMet)-dependent methyltransferase from rat liver cytosol that catalyzes the conversion of arsenite to methylated and dimethylated species. This 42-kDa protein has sequence motifs common to many non-nucleic acid methyltransferases and is closely related to methyltransferases of previously unknown function that have been identified by conceptual translations of cyt19 genes of mouse and human genomes. Hence, we designate rat liver arsenic methyltransferase as cyt19 and suggest that orthologous cyt19 genes encode an arsenic methyltransferase in the mouse and human genomes. Our studies with recombinant rat cyt19 find that, in the presence of an exogenous or a physiological reductant, this protein can catalyze the entire sequence of reactions that convert arsenite to methylated metabolites. A scheme linking cyt19 and thioredoxin-thioredoxin reductase in the methylation and reduction of arsenicals is proposed

  8. Arsenic burden survey among refuse incinerator workers

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  9. Bioreactors Addressing Diabetes Mellitus

    Minteer, Danielle M.; Gerlach, Jorg C; Marra, Kacey G.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor develop...

  10. Holographic content addressable storage

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  11. Addressing mathematics & statistics anxiety

    Kotecha, Meena

    2015-01-01

    This paper should be of interest to mathematics and statistics educators ranging from pre-university to university education sectors. It will discuss some features of the author’s teaching model developed over her longitudinal study conducted to understand and address mathematics and statistics anxiety, which is one of the main barriers to engaging with these subjects especially in non-specialist undergraduates. It will demonstrate how a range of formative assessments are used to kindle, as w...

  12. Mechanistic and Synthetic Approaches for Activation of Water-and Oxygen-Species by Biomimetic Systems (Containing Manganese and Cobalt)

    Lieb, Dominik

    2013-01-01

    The current work deals with elementary reaction steps involved in the mechanisms that lead to the activation of water and oxygen species by biomimetic systems featuring redox-active manganese and cobalt centers, respectively. The first part of this work (Chapter 2 and Chapter 3) deals with the role of water exchange on metal centers that are relevant for water oxidation in nature. The first of two studies about this subject is addressing the role of manganese(III) in the oxygen evolving clust...

  13. Arsenic Geochemistry in Source Waters of the Los Angeles Aqueduct

    Hering, Janet G; Wilkie, Jennifer A; Chiu, Van Q

    1997-01-01

    Arsenic is a widely distributed constituent of geologic materials, with an average crustal abundance of 1.8 ppm. The natural processes of weathering of arsenic-containing minerals and volcanism contribute arsenic to groundwaters, surface freshwaters, and seawater. Recently, increased attention has focused on arsenic geochemistry in natural waters. This attention has been motivated by concern over the human health effects of arsenic exposure; consumption of drinking water can be a significant,...

  14. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens

    Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of 14C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanero-chaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen

  15. A review on environmental factors regulating arsenic methylation in humans

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  16. Mitigating arsenic crisis in the developing world: role of robust, reusable and selective hybrid anion exchanger (HAIX).

    German, Michael; Seingheng, Hul; SenGupta, Arup K

    2014-08-01

    In trying to address the public health crisis from the lack of potable water, millions of tube wells have been installed across the world. From these tube wells, natural groundwater contamination from arsenic regularly puts at risk the health of over 100 million people in South and Southeast Asia. Although there have been many research projects, awards and publications, appropriate treatment technology has not been matched to ground level realities and water solutions have not scaled to reach millions of people. For thousands of people from Nepal to India to Cambodia, hybrid anion exchange (HAIX) resins have provided arsenic-safe water for up to nine years. Synthesis of HAIX resins has been commercialized and they are now available globally. Robust, reusable and arsenic-selective, HAIX has been in operation in rural communities over numerous cycles of exhaustion-regeneration. All necessary testing and system maintenance is organized by community-level water staff. Removed arsenic is safely stored in a scientifically and environmentally appropriate manner to prevent future hazards to animals or people. Recent installations have shown the profitability of HAIX-based arsenic treatment, with capital payback periods of only two years in ideal locations. With an appropriate implementation model, HAIX-based treatment can rapidly scale and provide arsenic-safe water to at-risk populations. PMID:24321388

  17. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens.

    Périé, F H; Gold, M H

    1991-01-01

    Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of 14C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were...

  18. Competition for Manganese at the Host-Pathogen Interface.

    Kelliher, J L; Kehl-Fie, T E

    2016-01-01

    Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria. PMID:27571690

  19. A broad view of arsenic.

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  20. ARSENIC SPECIATION IN CARROT EXTRACTS WITH AN EMPHASIS ON THE DETECTION OF MMA(III) AND MMTA

    The two predominant routes of arsenic exposure are dietary ingestion and drinking water consumption. Dietary arsenic, unlike drinking water arsenic, contains a variety of arsenicals with dramatically different toxicities. The list of arsenicals detected in dietary samples conti...

  1. Address delivered in Vilnius

    Piłsudski, Józef

    2013-01-01

    Title: Przemówienie w Wilnie 20 kwietnia 1922 roku (Address delivered in Vilnius, 20 April, 1922) Originally published: Pisma-mowy-rozkazy, vol. V, Warsaw, Instytut Józefa Piłsudskiego, 1933, pp. 255–260. Language: PolishThe excerpt used is from the original About the author Józef Piłsudski [1867, Zułów (in the district of Święciany, Lit. Zalave/Švenčionys, present-day Lithuania) – 1935, Warsaw]: politician. Piłsudski was born to a family belonging to the Polish-speaking gentry in the Lithuan...

  2. Crystallization and spectroscopic studies of manganese malonate

    Varghese Mathew; Jochan Joseph; Sabu Jacob; K E Abraham

    2010-08-01

    The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflectance spectroscopy (DRS) is used to measure the bandgap (g) of the material.

  3. Mesoporous manganese oxide for warfare agents degradation

    Štengl, Václav; Králová, Daniela; Opluštil, F.; Němec, T.

    2012-01-01

    Roč. 156, JULY (2012), s. 224-232. ISSN 1387-1811 R&D Projects: GA MPO FI-IM5/231 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : homogeneous hydrolysis * chloroacetamide * manganese(IV) oxide * warfare agents Subject RIV: CA - Inorganic Chemistry Impact factor: 3.365, year: 2012

  4. 21 CFR 184.1446 - Manganese chloride.

    2010-04-01

    ..., and crystallized. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  5. Iron and manganese deposits in Uruguay

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  6. Arsenic contamination and arsenicosis in China

    Arsenicosis is a serious environmental chemical disease in China mainly caused by drinking water from pump wells contaminated by high levels of arsenic. Chronic exposure of humans to high concentrations of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and high risk of cancers. Lead by the Ministry of Health of China, we carried out a research about arsenicosis in China recently. Areas contaminated with arsenic from drinking water are determined by 10% pump well water sample method while areas from burning coal are determined by existing data. Two epidemic areas of Shanxi Province and Inner Mongolia are investigated for the distribution of pump wells containing high arsenic. Well water in all the investigated villages of Shanxi Province showed polluted by high arsenic, and the average rate of unsafe pump well water is 52%. In Inner Mongolia, the high percentage of pump wells containing elevated arsenic is found only in a few villages. The average rate of unsafe pump well water is 11%. From our research, we find that new endemic areas are continuously emerging in China. Up to now, epidemic areas of arsenicosis mainly involve eight provinces and 37 counties in China. In the affected areas, the discovery of wells and coal with high levels of arsenic is continuing sporadically, and a similar scattered distribution pattern of patients is also being observed

  7. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant

  8. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    Hinhumpatch, Pantip; Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education (Thailand); Chaisatra, Krittinee; Promvijit, Jeerawan [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Mahidol, Chulabhorn [Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Ruchirawat, Mathuros, E-mail: mathuros@cri.or.th [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education (Thailand); Department of Pharmacology, Faculty of Science, Mahidol University, Phayathai, Bangkok (Thailand)

    2013-12-15

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.

  9. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    Despina-Maria Bordean

    Full Text Available Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  10. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  11. Quantum entanglement in manganese(II) hexakisimidazole nitrate: on electronic structure imaging - A polarized neutron diffraction and DFT study

    Wallace, Warren A.

    2016-04-01

    Quantum entanglement has been visualized for the first time, in view of the spin density distribution and electronic structure for manganese in manganese(II)hexakisimidazole nitrate. Using polarized neutron diffraction and density functional theory modelling we have found for the complex, which crystallizes in the R3¯ spacegroup, a = b = 12.4898(3) Å, c = 14.5526(4) Å, α = γ = 90°, β = 120°, Z = 3, that spatially antisymmetric and spatially symmetric shaped regions of negative spin density, in the spin density map for manganese, are a result of quantum entanglement of the high spin d5 configuration due to dative imidazole- manganese π- donation and σ-bonding interactions respectively. We have found leakage of the entangled states for manganese observed as regions of positive spin density with spherical (3.758(2) μB) and non-spherical (1.242(3) μB) contributions. Our results, which are supportive of Einstein's theory of general relativity, provide evidence for the existence of a black hole spin density distribution at the origin of an electronic structure and also address the paradoxical views of entanglement and quantum mechanics. We have also found the complex, which is an insulator, to be suitable for spintronic studies.

  12. Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China

    Li, Dasheng; An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P.

    2006-01-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnos...

  13. Environmental arsenic exposure and sputum metalloproteinase concentrations.

    Josyula, Arun B.; Poplin, Gerald S.; Kurzius-Spencer, Margaret; McClellen, Hannah E.; Kopplin, Michael J.; Stürup, Stefan; Clark Lantz, R.; Jefferey L. Burgess

    2006-01-01

    Biomarkers of exposure & early effects: field studiesBiomarker: arsenic, creatinin, MMP levelsExposure/effect represented: arsenicStudy design: cross-sectionalStudy size: 73 subjectsAnalytical technique: ELISA, HPLCTissue/biological material/sample size: urine samplesRelationship with exposure or effect of interest (including dose-response): inorganic arsenic positively correlated with logMMP-9/TIMP-1 ratio in sputum (Pearson's r Ό 0:351, P Ό 0:009) and negatively correlated with the log of s...

  14. Arsenic in rice: A cause for concern

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri;

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, strict...... regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. While rice protein based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content...

  15. Arsenic(III) Immobilization on Rice Husk

    Malay Chaudhuri; Mohammed Ali Mohammed

    2013-01-01

    A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III)] and pentavalent arsenate [As(V)]. As(III) is more toxic and more difficult to remove from water by adsorption on activated alumina. In this stud...

  16. [Advance on oxidative stress mechanism of arsenic toxicology].

    Li, Zhen; An, Yan

    2009-09-01

    Inorganic arsenic is one of proven human carcinogens, which there are so far no sound laboratory-based evidences and there are very few reports in the literature regarding arsenic carcinogenic effects in in vivo animal experiment. Because of this lack of adequate evidences, the mechanism for understanding arsenic toxicology remains vague. Recently, many modes of action for arsenic carcinogenesis have been proposed, oxidative stress is one of the stronger theories of arsenic action modes which have a substantial mass of supporting data. Further more, many researchers have pointed out that induction of oxidative stress by methylated metabolites of inorganic arsenics plays an important role in the toxicity and carcinogenicity of arsenics. The role of oxidative stress induced by arsenic in arsenic toxicology was reviewed. PMID:19877531

  17. Global Atmospheric Transport and Source-Receptor Relationships for Arsenic.

    Wai, Ka-Ming; Wu, Shiliang; Li, Xueling; Jaffe, Daniel A; Perry, Kevin D

    2016-04-01

    Arsenic and many of its compounds are toxic pollutants in the global environment. They can be transported long distances in the atmosphere before depositing to the surface, but the global source-receptor relationships between various regions have not yet been assessed. We develop the first global model for atmospheric arsenic to better understand and quantify its intercontinental transport. Our model reproduces the observed arsenic concentrations in surface air over various sites around the world. Arsenic emissions from Asia and South America are found to be the dominant sources for atmospheric arsenic in the Northern and Southern Hemispheres, respectively. Asian emissions are found to contribute 39% and 38% of the total arsenic deposition over the Arctic and Northern America, respectively. Another 14% of the arsenic deposition to the Arctic region is attributed to European emissions. Our results indicate that the reduction of anthropogenic arsenic emissions in Asia and South America can significantly reduce arsenic pollution not only locally but also globally. PMID:26906891

  18. Mathematical model insights into arsenic detoxification

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  19. Efficacies of stable manganese for enhancing the elimination of incorporated manganese-54 in mice

    Efficacies of intraperitoneal injection of stable manganese for enhancing the elimination of incorporated 54Mn was studied in mice. At the start of the experiment, each mouse was given 37 kBq of 54Mn and initial whole-body radioactivities were measured. Forty-eight hours after the injection, mice were given intraperitoneally a single dose of stable manganese at 0.3, 1.0, 3.0 and 10 mg/kg, respectively. Then whole-body retentions and principal organ distributions were measured at suitable intervals. Whole-body retentions of 54Mn decreased markedly following the stable manganese injection, and the efficacies for elimination were estimated to be 45.3% for 0.3 mg/kg, 59.6% for 1.0 mg/kg, 71.4% for 3.0 mg/kg and 78.0% for 10 mg/kg. The substitution rates of incorporated 54Mn for the injected stable manganese were 61.5, 70.8, 79.5 and 83.7%, respectively, suggesting that most of the manganese exists in free or exchangeable state in the body. The concentrations of 54Mn in organs also decreased by stable manganese injection, however, the efficacies for elimination varied with organs. It was generally effective in the soft tissues, and it was ineffective in the bone. In conclusion, intraperitoneal injection of stable manganese was very effective to eliminate the incorporated 54Mn and it could reduce the risk of possible future biological effects. (author)

  20. Manganese binding proteins in human and cow's milk

    Manganese nutrition in the neonatal period is poorly understood, due in part to a lack of information on the amount of manganese in infant foods and its bioavailability. Since the molecular localization of an element in foods is one determinant of its subsequent bioavailability, a study was made of the binding of manganese in human and cow's milk. An extrinsic label of 54Mn was shown to equilibrate isotopically with native manganese in milks and formulas. Milk samples were separated into fat, casein and whey by ultracentrifugation. In human milk, the major part (71%) of manganese was found in whey, 11% in casein and 18% in the lipid fraction. In contrast, in cow's milk, 32% of total manganese was in whey, 67% in casein and 1% in lipid. Within the human whey fraction, most of the manganese was bound to lactoferrin, while in cow's whey, manganese was mostly complexed to ligands with molecular weights less than 200. The distribution of manganese in formulas was closer to that of human milk than of cow's milk. The bioavailability of manganese associated with lactoferrin, casein and low molecular weight complexes needs to be assessed

  1. MANGANESE SPECIATION IN SELECTED AGRICULTURAL SOILS OF PENINSULAR MALAYSIA

    J. Habibah

    2014-01-01

    Full Text Available Manganese speciation in selected agricultural soils of Peninsular Malaysia is discussed in this study. Manganese concentration in the Easily Leacheable and Ion Exchangeable (ELFE, Acid Reducible (AR, Organic Oxidizable (OO and Resistant (RR fractions of soils developed on weathered rocks, soils of mixed nature, alluvium and peat deposits are described. The total manganese concentration in soils developed on weathered rocks was found to be higher than that in soils of mixed nature, alluvium and peat deposits because of the occurrence of resistant manganese oxide at the topsoils. Manganese speciation in paddy soils is influenced by the redox condition resulting from the alternate flooding and drying of the soils. Under reducing conditions, this metal tends to get dissolved and be available for plant uptake. Upon oxidation, manganese is precipitated into the acid reducible fraction as poorly crystalline manganese oxide and hydroxide and/or the resistant Fe-Mn mottles. In non-paddy cultivated alluvial soils, manganese speciation varies widely and is less understood. For the non-paddy cultivated peat soils, manganese is mainly associated with organic material, as indicated by the high manganese concentration in the OO fraction.

  2. Manufacture of high purity low arsenic anhydrous hydrogen fluoride

    A process for manufacturing anhydrous hydrogen fluoride with reduced levels of arsenic impurity from arsenic contaminated anhydrous hydrogen fluoride is described which comprises: (a) contacting the anhydrous hydrogen fluoride with an effective amount of hydrogen peroxide to oxidize the arsenic impurity in the presence of a catalyst which comprises a catalytic amount of (i) molybdenum or an inorganic molybdenum compound and (ii) a phosphate compound, at a temperature and for a period of time sufficient to oxidize volatile trivalent arsenic impurities in the anhydrous hydrogen fluoride to non-volatile pentavalent arsenic compounds, and (b) distilling the resulting mixture and recovering anhydrous hydrogen fluoride with reduced levels of arsenic impurity

  3. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  4. Arsenic stress after the Proterozoic glaciations

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  5. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  6. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  7. ARSENIC REMOVAL BY SOFTENING AND COAGULATION

    Drinking water regulations for arsenic (As) and disinfection by-product precursor materials (measured as TOC) are becoming increasingly stringent. Among the modifications to conventional treatment that can improve removal of As and TOC, precipitative softening and coagulation are...

  8. Speciation of arsenic in water samples

    Two methods are presented in this report for the determination of inorganic species of arsenic. For both methods, the parameters influencing the separations have been investigated using radiotracers. Following optimization of the methods; the applicability was tested by determining As(III) and As(V) in real water samples. The detection limit of these arsenic species in both fresh and sea water was about 0.02 μg/L. (author). 2 refs, 3 figs, 3 tabs

  9. Arsenic Induced Decreases in the Vascular Matrix

    Hays, Allison M.; Lantz, R. Clark; Rodgers, Laurel S.; Sollome, James J.; Vaillancourt, Richard R.; Andrew, Angeline S; Hamilton, Joshua W.; Camenisch, Todd D.

    2008-01-01

    Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expres...

  10. Arsenic biotransformation and volatilization in transgenic rice

    Meng, Xiang-yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants.Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica r...

  11. Arsenic: Not So Evil After All?

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  12. Arsenic accumulation in some higher fungi

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to have an affinity for the toxic element. The arsenic concentrations in the principal edible mushrooms of commerce were found to be very low, i.e. on the average 0.5 mg/kg on dry matter. Among the asc...

  13. Aquatic arsenic: phytoremediation using floating macrophytes.

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  14. Earthworms produce phytochelatins in response to arsenic.

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  15. Determination of leachable arsenic from glass ampoules

    Appreciable amounts of different arsenic compounds are used in the manufacture of glass and glass ampoules (injection vials and bottles) used to store drugs. Exposure/intake of arsenic to human beings may result in skin ulceration, injury to mucous membranes, perforation of nasal septum, skin cancer and keratoses, especially of the palms and soles and may cause detrimental effects. Considering the toxicity of arsenic, even if traces of arsenic from such glass containers/ampoules are leached out, it can impart damage to human beings. To check the possibility of leaching of arsenic from glass ampoules, a simple methodology has been developed. Different makes and varieties of glass ampoules filled with de-ionized water were subjected to high pressure and temperature leaching for varying amount of time using autoclave to create extreme conditions for the maximum leaching out of the analyte. Subsequently, the determination of the arsenic contents in leached water using neutron activation analysis is reported in detail with observations. (author)

  16. Arsenic, reactive oxygen, and endothelial dysfunction.

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  17. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  18. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  19. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  20. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  1. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H2O2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  2. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC. L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4. 1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  3. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  4. Bioleaching of a manganese and silver Ore

    The bioleaching with a strain of Thiobacillus thiooxidans of the ore of Farallon Negro (Catamarca, Argentina) was studied in order to estimate its application to the solution and recovery of the manganese, and to improve the silver extraction. The State company which works the mine has not yet found an economical process to extract the manganese and has only reached a 30% efficiency in the recovery of silver by cianuration. The effects of pulp density variations and the addition of different quantities of FeS were analysed looking for the best working conditions. 74 μm (mesh Tyler 200) of ore particles were used because that is the size used in this plant for the cianuration process. (Author)

  5. Monitoring of natural radioactivity in manganese ore

    The natural radionuclides (238U, 232Th, and 40K) contents of Manganese ore collected by Sinai Manganese Company in Egypt-Cairo have been determined by low background spectroscopy using hyper-pure germanium (HPGe) detector. The mean activities due to the three radionuclides (238U, 232Th, and 40K) were found to be 3543 ± 106, 222 ± 6.6 and 3483 ± 104 Bq/kg, respectively. The absorbed dose rates due to the natural radioactivity in samples under investigation ranged from 1522 ± 45 to 1796 ± 53 nGy/h. The radium equivalent activity varied from 3807 ± 114 to 4446 ± 133 Bq/kg. Also, the representative external hazard index values for the corresponding samples were estimated.

  6. Soil arsenic in Armadale, Scotland

    Smith, G.H.; Lloyd, O.L.; Hubbard, F.H.

    1986-03-01

    As part of an investigation into the high mortality from lung cancer and the high sex ratios of births in Armadale, central Scotland, concentrations of arsenic were measured in soil cores from 48 sites in Armadale and 6 sites in a comparison town. Concentrations in Armadale were substantially higher than those in the comparison town, and many of the highest range of values were in that part of the town where the epidemiological abnormalities of lung cancer and of birth sex ratios were most pronounced. The study indicated that clues to the etiology of high rates of disease in small areas could be sought most profitably if close links were maintained between epidemiological and environmental investigations.

  7. Welding of high manganese- and carbon steels

    Technology and conditions of welding of high manganese and carbon steel by a resistance welding technique using an intermediate part are developed. Austenitic chromium-nickel 12Kh18N10T steel is chosen as a material of the intermediate part. The recommended welding conditions insure a high quality of the weld joint in terms of metal structure and its mechanical properties. It is the basic metal of the joint that fractures under mechanical testing

  8. Incoherent Charge Dynamics in Perovskite Manganese Oxides

    NAKANO, HIROKI; Motome, Yukitoshi; Imada, Masatoshi

    2000-01-01

    A minimal model is proposed for the perovskite manganese oxides showing the strongly incoherent charge dynamics with a suppressed Drude weight in the ferromagnetic and metallic phase near the insulator. We investigate a generalized double-exchange model including three elements; the orbital degeneracy of $e_g$ conduction bands, the Coulomb interaction and fluctuating Jahn-Teller distortions. We demonstrate that Lancz$\\ddot{\\rm o}$s diagonalization calculations combined with Monte Carlo sampli...

  9. Manganese concentration in human saliva using NAA

    Lewgoy, Hugo R., E-mail: hugorl@usp.br [Universidade Bandeirante Anhanguera (UNIBAN), Sao Paulo, SP (Brazil); Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  10. Manganese concentration in human saliva using NAA

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  11. Pathophysiology of Manganese-Associated Neurotoxicity

    Racette, Brad A.; Aschner, Michael; Guilarte, Tomas R.; Dydak, Ulrike; Criswell, Susan R; Zheng, Wei

    2011-01-01

    Manganese (Mn) is a well established neurotoxin associated with specific damage to the basal ganglia in humans. The phenotype associated with Mn neurotoxicity was first described in two workers with occupational exposure to Mn oxide.(Couper, 1837) Although the description did not use modern clinical terminology, a parkinsonian illness characterized by slowness of movement (bradykinesia), masked facies, and gait impairment (postural instability) appears to have predominated. Nearly 100 years l...

  12. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China

    With the aim of better understanding the distribution of arsenic, 144 coal samples were collected from southwestern Guizhou, and the concentrations of arsenic were determined by atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS). The content of arsenic varies from 0.3 ppm to 3.2 wt.%. In most coal samples, the arsenic content was lower than 30 ppm, which was close to a representative value of arsenic concentration of coal in China. Arsenic contents in 37 samples, which were from several small coal mines, were more than 30 ppm, among which only 16 samples were more than 100 ppm, and only a few samples contained more than 1000 ppm, which were very restricted and the coal seams were generally unworkable. Combustion of two kinds of high arsenic coal with and without CaO additive was studied in a bench scale drop tube furnace (DTF) to understand the partition and emission of arsenic in the process. The PM was size segregated by low pressure impactor (LPI) into 13 size stages ranging from 9.8 to 0.0281 μm. X-ray fluorescence spectrometry (XRF) was used to determine the chemical composition of the PM, and inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the arsenic content. A bimodal mode distribution of the PM was formed during coal combustion; the large mode (coarse particle) was formed at 4.0 μm, and the other mode (fine particles) was at about 0.1 μm. A middle mode was gradually obvious in high temperature for both of the two coal combustions, which may have been derived from coagulation and agglomeration of metal elements vapors. More gaseous arsenic was formed in 50% oxygen content than 20% oxygen content. Arsenic in sulfide is easier to vaporize than as arsenate. Along with the increasing temperature from 1100 oC to 1400 oC, the arsenic concentration in PM1 increased from 0.07 mg/N m3 to 0.25 mg/N m3. With the addition of the calcium based sorbent, the arsenic concentration in

  13. 40 CFR 424.60 - Applicability; description of the electrolytic manganese products subcategory.

    2010-07-01

    ... electrolytic manganese products subcategory. 424.60 Section 424.60 Protection of Environment ENVIRONMENTAL... CATEGORY Electrolytic Manganese Products Subcategory § 424.60 Applicability; description of the electrolytic manganese products subcategory. The provisions of this subpart are applicable to...

  14. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L. Comparison of arsenic concentrations in Pennsylvania groundwater by physiographic province indicates that the Central Lowland physiographic province had the highest median arsenic concentration (4.5 µg/L) and the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L (59 percent) and greater than or equal to 10.0 µg/L (43 percent). Evaluation of four major aquifer types (carbonate, crystalline, siliciclastic, and surficial) in Pennsylvania showed that all types had median arsenic concentrations less than 4.0 µg/L, and the highest arsenic concentration (490.0 µg/L) was in a siliciclastic aquifer. The siliciclastic and surficial aquifers had the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L and 10.0 µg/L. Elevated arsenic concentrations were associated with low pH (less than or equal to 4.0), high pH (greater than or equal to 8.0), or reducing conditions. For waters classified as anoxic (405 samples), 20 percent of sampled wells contained water with elevated concentrations of arsenic; for waters classified as oxic (1,530 samples) only 10 percent of sampled wells contained water with elevated arsenic concentrations. Nevertheless, regardless of the reduction

  15. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  16. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    S. Ilaiyavel; Venkatesan, A.

    2013-01-01

    In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear...

  17. Widespread Distribution of Ability to Oxidize Manganese Among Freshwater Bacteria

    Gregory, Eileen; Staley, James T.

    1982-01-01

    Manganese-oxidizing heterotrophic bacteria were found to comprise a significant proportion of the bacterial community of Lake Washington (Seattle, Wash.) and Lake Virginia (Winter Park, Fla.). Identification of these freshwater bacteria showed that members of a variety of genera are capable of oxidizing manganese. Isolates maintained in the laboratory spontaneously lost the ability to oxidize manganese. A direct correlation was found between the presence of plasmid DNA and the ability of the ...

  18. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Kenan Yıldız

    2010-01-01

    Acidic leaching of mechanically activated manganese ore from Denizli Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accele...

  19. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Yıldız, Kenan

    2000-01-01

    Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and acce...

  20. MANGANESE SPECIATION IN SELECTED AGRICULTURAL SOILS OF PENINSULAR MALAYSIA

    J. Habibah; J. Khairiah; Ismail, B. S.; M.D. Kadderi

    2014-01-01

    Manganese speciation in selected agricultural soils of Peninsular Malaysia is discussed in this study. Manganese concentration in the Easily Leacheable and Ion Exchangeable (ELFE), Acid Reducible (AR), Organic Oxidizable (OO) and Resistant (RR) fractions of soils developed on weathered rocks, soils of mixed nature, alluvium and peat deposits are described. The total manganese concentration in soils developed on weathered rocks was found to be higher than that in soils of mixed nature, alluviu...

  1. Manganese oxide nanowires, films, and membranes and methods of making

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  2. Conference President's address

    The objective of the Conference is to promote the development of a coherent international policy on the protection of the environment from the effects of ionizing radiation and to foster information exchange on this subject. The organizers, the IAEA in cooperation with United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the European Commission (EC) and the International Union of Radioecology (IUR), as well as the hosts of the conference, the Government of Sweden through the Swedish Radiation Protection Authority (SSI), are pleased that so nearly 300 delegates from 53 countries have been nominated by their governments to attend this meeting. Another objective is to discuss the implications of the ICRP's proposal for a framework to assess radiation effects in the environment. A framework for radiological protection of the environment must be practical and simple, as should be international standards for discharges into the environment that take account of such an approach. This is a task for the IAEA, in cooperation with other international organizations. This conference therefore provides an opportunity for you to influence the development of both ICRP and IAEA policy in this area. The background session today will give information on the current situation as well as social and political drivers for change. A number of organizations will provide an insight to the present status of international policies on the radiological protection related to releases to the environment. During the course of the conference, there will be five topical sessions that will cover selected subjects related to protection of the environment, such as stakeholders' views, case studies, approaches for non-radioactive pollutants, the state of current scientific knowledge and, finally, the implications of ICRP proposals for international safety standards. Keynote speakers will address key issues within each topical session, and a rapporteur will summarize the

  3. Chromium-manganese steels of transition class

    Possibilities of nickel replacing by manganese and preparing the same level of mechanical properties as in chromium-nickel steels due to γ-α transformations taking place during property tests, are studied. Chromium-manganese steels with the composition of 0.05-0.1%C, 13-14%Cr, 5.0-6.5%Mn, 0.2-0.5%Si, 0.03-0.13%N, 0.05-0.01%Al and additionally alloyed 0.3-2.0%Cu, 0.05-0.6%V, 0.3-1.0%Mo, 0.02-0.05%Ca in various combinations have been melted. It is shown, that using alloying and heat treatment one can control the phase composition, austenite resistance to martensite transformation during loading and mechanical properties of chromium-manganese steels of the transition class. The use of the phase transformation in the process of testing determines the level of mechanical properties. The optimum development of the transformation accompanied by a sufficient development of processes of hardening and microstresses relaxation permits to obtain a high level of mechanical properties: σsub(B)=1500 MPa, σsub(0.2)-1130MPa, delta=15%, psi=37%, asub(H)=1000 kJ/msup(2) which exceeds the level for chromium-nickel steels. Steels have a lower cost and do not require any complecated heat treatment regime

  4. Manganese Inhalation as a Parkinson Disease Model

    José Luis Ordoñez-Librado

    2011-01-01

    Full Text Available The present study examines the effects of divalent and trivalent Manganese (Mn2+/Mn3+ mixture inhalation on mice to obtain a novel animal model of Parkinson disease (PD inducing bilateral and progressive dopaminergic cell death, correlate those alterations with motor disturbances, and determine whether L-DOPA treatment improves the behavior, to ensure that the alterations are of dopaminergic origin. CD-1 male mice inhaled a mixture of Manganese chloride and Manganese acetate, one hour twice a week for five months. Before Mn exposure, animals were trained to perform motor function tests and were evaluated each week after the exposure. By the end of Mn exposure, 10 mice were orally treated with 7.5 mg/kg L-DOPA. After 5 months of Mn mixture inhalation, striatal dopamine content decreased 71%, the SNc showed important reduction in the number of TH-immunopositive neurons, mice developed akinesia, postural instability, and action tremor; these motor alterations were reverted with L-DOPA treatment. Our data provide evidence that Mn2+/Mn3+ mixture inhalation produces similar morphological, neurochemical, and behavioral alterations to those observed in PD providing a useful experimental model for the study of this neurodegenerative disease.

  5. Microporosity of heat-treated manganese dioxide

    Arnott, J.B.; Donne, S.W. [Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia); Williams, R.P. [Delta EMD Australia Pty Limited, McIntosh Drive, Mayfield West, NSW 2304 (Australia); Pandolfo, A.G. [CSIRO Division of Energy Technology, Bayview Avenue, Clayton, Victoria 3169 (Australia)

    2007-03-20

    A structural and micro-pore analysis of a series of heat treated electrolytic manganese dioxide (EMD) samples has been conducted. In terms of crystal structure, the original EMD with {gamma}-MnO{sub 2} structure (orthorhombic unit cell) was found to progressively convert to {beta}-MnO{sub 2} (tetragonal unit cell) at elevated temperatures. The structural transition was kinetically limited, with the higher temperatures leading to a greater degree of transformation. The orthorhombic {gamma}-MnO{sub 2} unit cell was found to contract along the a and b axes, while along the c axis an expansion was observed only at the highest heat treatment temperatures. These changes occur as a result of manganese ion diffusion leading to the formation of a denser, more defect free material. The porosity of these heat treated EMD samples was also examined by N{sub 2} gas adsorption combined with various interpretive techniques such as the Kelvin equation, MP method, Dubinin-Radushkevich method, Dubinin-Astakhov method and a more modern density functional theory based approach. Despite shortcomings associated with certain techniques, all clearly indicated that the EMD micro-pore volume decreased and the meso- and macro-pore volume increased as the heat treatment temperature was increased. This was justified as a result of manganese ion movement during the structural rearrangement causing the small pores to be progressively sintered shut, while the larger pores were formed as a result of stress-induced cracking in the denser final product. (author)

  6. Manganese and the II system in photosynthesis

    The evolution during greening of some components of system II of photosynthesis has been followed in plastids extracted from Zea mays grown in the dark. Manganese studies were done by means of neutron activation, electron spin resonance (ESR) was also used in some experiments. Oxygen evolution of isolated plastids was followed by polarography (with a membrane electrode). The evolution of manganese/carotenoids ratio can be divided in three parts. During the first hour of greening, the increase shows an input of Mn in the plastids; then, whereas carotenoids content of those plastids presents no changes, Mn is released in the medium; at last, carotenoids synthesis is parallel to Mn fixation in the plastids, the ratio being constant after 24 hours of greening. From various measurements on chloroplastic manganese, it is shown that the development of system II can be divided in two main phases: during the first one (that is during the first day of light) the components are not yet bound together but the relations become more and more strong. Then, during the last period of the development, the organisation of system II is complete and the transformations of the plastids are parallel to the raise of their activity. (author)

  7. Manganese abundances in Galactic bulge red giants

    Barbuy, B; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A; Trevisan, M; Dutra, N

    2013-01-01

    Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut beween the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Gala...

  8. Determining Arsenic Distribution in Urban Soils: A Comparison with Nonurban Soils

    Tait Chirenje

    2002-01-01

    Full Text Available There are many challenges in the determination of arsenic background concentrations in soils. However, these challenges are magnified when those determinations are carried out on urban soils. Irrespective of this, it is important to correctly identify and understand the extent of pollution in order to provide efficient preventative, remedial actions and cost-effective management of contaminated areas. This review paper discusses the factors that make the determination of arsenic background concentrations in urban areas different from similar determinations in nonurban areas. It also proposes solutions, where applicable, that are based on experience in determining arsenic background concentrations in both urban and nonurban areas in Florida, and from other studies in the literature. Urban soils are considerably different from nonurban areas because they have significant human disturbance, making them more difficult to study. They are characterized by high spatial and temporal variability, compaction, and modified chemical and physical characteristics. These differences have to be addressed during site selection, sample collection, and statistical analyses when determining arsenic distribution.

  9. Arsenic in private well water part 1 of 3: Impact of the New Jersey Private Well Testing Act on household testing and mitigation behavior.

    Flanagan, Sara V; Spayd, Steven E; Procopio, Nicholas A; Chillrud, Steven N; Braman, Stuart; Zheng, Yan

    2016-08-15

    Regularly ingesting water with elevated arsenic increases adverse health risks. Since September 2002, the NJ Private Well Testing Act (PWTA) has required testing untreated well water for arsenic during real estate transactions in 12 counties. Its implementation provides an opportunity to investigate the effects of policy intervention on well testing and treatment behavior. Here we analyze results of a survey mailed to 1943 random addresses (37% response), including responses from 502 private well households who purchased their homes prior to PWTA commencement and 168 who purchased after. We find the PWTA has significantly increased arsenic testing rates in an area where 21% of wells contain arsenic above the 5μg/L NJ drinking water standard. The PWTA has allowed identification of more wells with arsenic (20% of post-PWTA vs. 4% of pre-PWTA households) and more treatment for arsenic (19% of post-PWTA vs. 3% of pre-PWTA households). Such an Act is a partial answer to significant socioeconomic disparities in testing observed among households for whom it is not required. Additionally residents purchasing homes since 2002 are younger and disproportionately more likely to have children in their household (60% vs. 32%), a priority group given their particular vulnerability to effects of arsenic. Despite more wells tested under the PWTA, post-PWTA well owners forget or misremember arsenic test results more often, are more likely to report not knowing what kind of treatment they are using, and are not reporting better maintenance or monitoring of their treatment systems than pre-PWTA households. This suggests serious challenges to reducing arsenic exposure remain even when testing is a requirement. Furthermore, only a fraction of wells have been tested under the PWTA due to the slow pace of housing turnover. We recommend more public resources be made available to support private well testing among socially and biologically vulnerable groups. PMID:27118151

  10. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  11. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  12. Arsenic uptake by Lemna minor in hydroponic system.

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  13. Arsenic and the Epigenome: Linked by Methylation(SOT)

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  14. Map of Arsenic concentrations in groundwater of the United States

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  15. Role of manganese in materials damage at high temperature

    The investigation was performed using six austenitic structural and welding materials with manganese concentration ranging from 0.5 to 5-7 mass.%. The tests were carried out under conditions of high-temperature power plants (vacuum, helium coolant, 750-900 deG C, 103-104 hours). Equilibrium manganese concentration on the surface is achieved after 100-200 h and in 2-2.5 times lower fraom fue initial one. Material loosening due to the loss of manganese in thinwall (1-2 mm) parts can be commensurable with 'plastic' loosening in the creep process which negatively affects the durability of high-manganese steels and alloys

  16. Manganese-enhanced magnetic resonance microscopy of mineralization

    Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.

    2007-01-01

    Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.

  17. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  18. Methanogenesis from wastewater stimulated by addition of elemental manganese

    Sen Qiao; Tian Tian; Benyu Qi; Jiti Zhou

    2015-01-01

    This study presents a novel procedure for accelerating methanogenesis from wastewater by adding elemental manganese into the anaerobic digestion system. The results indicated that elemental manganese effectively enhanced both the methane yield and the production rate. Compared to the control test without elemental manganese, the total methane yield and production rate with 4 g/L manganese addition increased 3.4-fold (from 0.89 ± 0.03 to 2.99 ± 0.37 M/gVSS within 120 h) and 4.4-fold (from 6.2 ...

  19. Manganese Reduction by Microbes from Oxic Regions of the Lake Vanda (Antarctica) Water Column

    Bratina, Bonnie Jo; Stevenson, Bradley S.; Green, William J.; Schmidt, Thomas M.

    1998-01-01

    Depth profiles of metals in Lake Vanda, a permanently ice-covered, stratified Antarctic lake, suggest the importance of particulate manganese oxides in the scavenging, transport, and release of metals. Since manganese oxides can be solubilized by manganese-reducing bacteria, microbially mediated manganese reduction was investigated in Lake Vanda. Microbes concentrated from oxic regions of the water column, encompassing a peak of soluble manganese [Mn(II)], reduced synthetic manganese oxides (...

  20. Arsenic

    ... may also expose normal cells in a lab dish to the substance to see if it causes ... www.cancer.org . Known and Probable Human Carcinogens National organizations and websites Along with the American Cancer ...

  1. Accumulation and transport mechanisms of arsenic in rice

    Islam, Md. Rafiqul; Kamiya, Takehiro; Uraguchi, Shimpei; Fujiwara, Toru

    2009-01-01

    Both species of arsenic (As), arsenate and arsenite are highly toxic to plants. Arsenic contamination is a major problem in Southeast Asia particularly in Bangladesh and West Bengal. In these countries, As-contaminated groundwater is widely used for irrigating rice in dry season that results in elevated As accumulation in soils and in rice grain and straw. So it is important for understanding the accumulation and transport mechanisms of arsenic in rice. We monitored increased arsenic content ...

  2. Environmental arsenic exposure and serum matrix metalloproteinase-9

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B

    2012-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was anal...

  3. Effect of drinking arsenic-contaminated water in children

    Majumdar, Kunal K.; Guha Mazumder, D.N.

    2012-01-01

    Chronic arsenic toxicity due to drinking of arsenic-contaminated water has been a major environmental health hazard throughout the world including India. Although a lot of information is available on health effects due to chronic arsenic toxicity in adults, knowledge of such effect on children is scanty. A review of the available literature has been made to highlight the problem in children. Scientific publications on health effects of chronic arsenic toxicity in children with special referen...

  4. Arsenic removal in drinking water by reverse osmosis

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  5. Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M. A.; Bodnar, Wanda M.; Wishnok, John S.; Styblo, Miroslav; Swenberg, James A.; Fox, James G; Tannenbaum, Steven R.

    2014-01-01

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect th...

  6. Removal of arsenic and COD from industrial wastewaters by electrocoagulation

    H. POIROT; Michon, C.; O. POTIE; S. ZOD; Valentin, G.; Leclerc, J.P.; F. LAPICQU

    2011-01-01

    The paper deals with the treatment of arsenic-containing industrial wastewaters by electrocoagulation. The waste issued from a paper mill industry downstream of the biological treatment by activated sludge was enriched with arsenic salts for the purpose of investigation of the treatment of mixed pollution. First, the treatment of single polluted waters, i.e. containing either the regular organic charge from the industrial waste or arsenic salts only, was studied. In the case of arsenic-contai...

  7. Arsenic on the Hands of Children after Playing in Playgrounds

    Kwon, Elena; Zhang, Hongquan; Wang, Zhongwen; Jhangri, Gian S; Lu, Xiufen; Fok, Nelson; Gabos, Stephan; Li, Xing-Fang; Le, X. Chris

    2004-01-01

    Increasing concerns over the use of wood treated with chromated copper arsenate (CCA) in playground structures arise from potential exposure to arsenic of children playing in these playgrounds. Limited data from previous studies analyzing arsenic levels in sand samples collected from CCA playgrounds are inconsistent and cannot be directly translated to the amount of children’s exposure to arsenic. The objective of this study was to determine the quantitative amounts of arsenic on the hands of...

  8. Arsenic-related Bowen's disease, palmar keratosis, and skin cancer.

    Cöl, M; Cöl, C; Soran, A; Sayli, B S; Oztürk, S

    1999-01-01

    Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic...

  9. Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI.

    Grünecker, B; Kaltwasser, S F; Zappe, A C; Bedenk, B T; Bicker, Y; Spoormaker, V I; Wotjak, C T; Czisch, M

    2013-05-01

    Manganese-enhanced MRI has recently become a valuable tool for the assessment of in vivo functional cerebral activity in animal models. As a result of the toxicity of manganese at higher dosages, fractionated application schemes have been proposed to reduce the toxic side effects by using lower concentrations per injection. Here, we present data on regional-specific manganese accumulation during a fractionated application scheme over 8 days of 30 mg/kg MnCl2 , as well as on the clearance of manganese chloride over the course of several weeks after the termination of the whole application protocol supplying an accumulative dose of 240 mg/kg MnCl2 . Our data show most rapid accumulation in the superior and inferior colliculi, amygdala, bed nucleus of the stria terminalis, cornu ammonis of the hippocampus and globus pallidus. The data suggest that no ceiling effects occur in any region using the proposed application protocol. Therefore, a comparison of basal neuronal activity differences in different animal groups based on locally specific manganese accumulation is possible using fractionated application. Half-life times of manganese clearance varied between 5 and 7 days, and were longest in the periaqueductal gray, amygdala and entorhinal cortex. As the hippocampal formation shows one of the highest T1 -weighted signal intensities after manganese application, and manganese-induced memory impairment has been suggested, we assessed hippocampus-dependent learning as well as possible manganese-induced atrophy of the hippocampal volume. No interference of manganese application on learning was detected after 4 days of Mn(2+) application or 2 weeks after the application protocol. In addition, no volumetric changes induced by manganese application were found for the hippocampus at any of the measured time points. For longitudinal measurements (i.e. repeated manganese applications), a minimum of at least 8 weeks should be considered using the proposed protocol to allow for

  10. Dissolved Air Flotation of arsenic adsorbent particles

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  11. Arsenic management through well modification and simulation.

    Halford, Keith J; Stamos, Christina L; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 microg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 microg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 microg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 microg/L over a 20-year period. PMID:20113363

  12. Arsenic management through well modification and simulation

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  13. Manganese Catalyzed C-H Halogenation.

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  14. Assessing correlations between geological hazards and health outcomes: addressing complexity in medical geology

    Wardrop, Nicola A.; Le Blond, Jennifer S

    2015-01-01

    Background: The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further...

  15. Observations of IPv6 Addresses

    Malone, David

    2008-01-01

    IPv6 addresses are longer than IPv4 addresses, and are so capable of greater expression. Given an IPv6 address, conventions and standards allow us to draw conclusions about how IPv6 is being used on the node with that address. We show a technique for analysing IPv6 addresses and apply it to a number of datasets. The datasets include addresses seen at a busy mirror server, at an IPv6-enabled TLD DNS server and when running traceroute across the production IPv6 network. The technique quantif...

  16. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  17. Population Based Exposure Assessment of Bioaccessible Arsenic in Carrots

    The two predominant arsenic exposure routes are food and water. Estimating the risk from dietary exposures is complicated, owing to the chemical form dependent toxicity of arsenic and the diversity of arsenicals present in dietary matrices. Two aspects of assessing dietary expo...

  18. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Madhurima Pandey; Sushma Yadav; Piyush Kant Pandey

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically ...

  19. Well Water Arsenic Exposure, Arsenic Induced Skin-Lesions and Self-Reported Morbidity in Inner Mongolia

    Yajuan Xia; Wade, Timothy J; Kegong Wu; Yanhong Li; Zhixiong Ning; X Chris Le; Binfei Chen; Yong Feng; Mumford, Judy L.; Xingzhou He

    2009-01-01

    Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with...

  20. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Yongfang Li; Feng Ye; Anwei Wang; Da Wang; Boyi Yang; Quanmei Zheng; Guifan Sun; Xinghua Gao

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking ...

  1. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    Nachman, Keeve E.; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were colle...

  2. Role of Amorphous Manganese Oxide in Nitrogen Loss

    LILIANG-MO; WUQI-TU

    1991-01-01

    Studies have been made,by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions.The fact that the total nitrogen recovery was decreased and that 15NO2,15N2O,15N14NO,15NO,15N2 and 15N14N were emitted has proved that,like amorphous iron oxide,amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss.This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides.The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging.The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension) was larger than that by amorphous manganese oxide alone.In the system,nitrogen loss was associated with the specific surface ares and oxidation-reduction of amorphous manganese oxide.However,their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.

  3. Carbonate ions and arsenic dissolution by groundwater

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  4. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  5. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Yongfang Li

    2016-01-01

    Full Text Available In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members. Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  6. Comparative Distribution and Retention of Arsenic in Arsenic (+3 Oxidation State) Methyltransferase Knockout and Wild Type Mice

    The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...

  7. About the presence of arsenic in prebiotic species

    Ellinger Y.

    2014-02-01

    Full Text Available The recent publication that some bacteria could use arsenic instead of phosphorus for building their DNA triggered a large controversy in the astro/exobiology community. Most comments claim that such a substitution is not possible. Here, we address the same question of the presence of As in DNA from a pure theoretical point of view, beyond any biological consideration. By means of “First principle“ quantum calculations we found that there is no energetical or structural argument to reject the As to P substitution in the DNA helix. However, a topological analysis of the electron density shows that As-DNA is much more fragile and most probably will not survive because it lacks the covalent bonds that insure the stability of biological P-DNA.

  8. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.; Reimer, K.J. (Royal)

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.

  9. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth, and...

  10. Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia.

    Phan, Kongkea; Kim, Kyoung-Woong; Huoy, Laingshun; Phan, Samrach; Se, Soknim; Capon, Anthony Guy; Hashim, Jamal Hisham

    2016-06-01

    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia. PMID:26298061

  11. Alternative irradiation system for efficiency manganese bath determination

    The Manganese Sulphate Bath (MSB) is the main method used in most metrological laboratories to measure the neutron sources emission rate Q(t) . The MSB technique consists, basically, in dipping a neutron source in the center of a large tank (∼500 L) containing a concentrated aqueous solution of manganese sulphate. The neutron source emission rate is determined through the activity solution measurement produced by captured neutrons in manganese nuclei. In order to obtain the value of Q(t) it must be taken into account the detection system efficiency and still determine some corrections. The MSB system efficiency is usually determined by irradiating a solution sample from MSB system in a reactor or accelerator. This paper proposes an alternative irradiation system (Irradiation Bath), which works with a radionuclide neutron source and manganese sulphate solution volume for efficiency determination of MSB system. This irradiation system was designed by simulation with MCNP code, considering a californium neutron source in several manganese sulphate volumes and different neutron reflectors. The goal of this simulation was to determine the materials and dimensions of Irradiation Bath which will derive the maximum manganese neutron capture. Although the specific activated irradiated samples are less than those in reactors, the simulation results for optimized Irradiation Bath have showed a manganese neutron capture increase up to 100 times with dimensions less than 15 cm in diameter when it compared to manganese neutron capture in a MSB System whose diameter is about 100 cm . (author)

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  13. Manganese encrustation of zygospores of a chlamydomonas (chlorophyta: volvocales).

    Schulz-Baldes, M; Lewin, R A

    1975-06-13

    In media containing normal trace-element supplements, but not in manganese-deficient media, zygospores of a new species of Chlamydomonas (isolated from soil) become encrusted with a dark brown mineral coating. Staining with benzidine indicates that the encrustation is rich in manganese. This has been confirmed by x-ray analysis in combination with a scanning electron microscope. PMID:17798436

  14. Manganese encephalopathy: utility of early magnetic resonance imaging.

    Nelson, K; Golnick, J; Korn, T; Angle, C

    1993-01-01

    The use of magnetic resonance imaging (MRI) provides visual evidence of cerebral deposits of paramagnetic metals. The usefulness of MRI is described in connection with the manganese poisoning of a 44 year old arc welder who had been engaged in the repair and recycling of railroad track made of manganese steel alloy.

  15. Formation of manganese oxides by bacterially generated superoxide

    Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M.

    2011-02-01

    Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria-Roseobacter sp. AzwK-3b-to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

  16. Current developments in toxicological research on arsenic.

    Bolt, Hermann M

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwater, and pollution due to mining activities. As-induced cardiovascular disorders and carcinogenesis present themselves as a major research focus. The high priority of this issue is now recognized politically in a number of countries, research funds have been made available. Also experimental research on toxicokinetics and toxicodynamics and on modes of toxic action is moving very rapidly. The matter is of high regulatory concern, and effective preventive measures are required in a number of countries. PMID:27092031

  17. Developments in austenitic steels containing manganese

    Two broad categories of austenitic steels are considered in this review: (a) alloys based on the Fe-Mn-C system, typified by austenitic wear resistant (Hadfield) steels and (b) alloys based on the Fe-Mn-Cr system, typified by austenitic corrosion resistant steels. Advances made in recent years in understanding and improving the relevant properties and manufacturing methods of these steels are critically appraised. The development of austenitic manganese bearing high technology steels for fusion reactor and other non-magnetic applications, as well as those that can be used in cryogenic structures, is also considered. (author)

  18. Redundancy among Manganese Peroxidases in Pleurotus ostreatus

    Salame, Tomer M.; Knop, Doriv; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2013-01-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn2+ amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn2+-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubat...

  19. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  20. [Characterization of manganese oxidation by Pseudomonas sp. QJX-1].

    Zhou, Na-Na; Bai, Yao-Hui; Liang, Jin-Song; Luo, Jin-Ming; Liu, Rui-Ping; Hu, Cheng-Zhi; Yuan, Lin-Jiang

    2014-02-01

    A manganese-oxidizing bacteria (QJX-1) was isolated from the soil of a manganese mine. It was identified as Pseudomonas sp. QJX-1 by 16S rDNA sequencing. Experimental results showed that the Pseudomonas sp. QJX-1 has a multi-copper oxidase gene CumA, which is an essential component for manganese oxidation by Pseudomonas sp. Under the condition of low initial inoculum level (D600, 0.020), 5.05 mg x L(-1 Mn2+ could be oxidized by QJX-1 within 48 h with a conversion rate of as high as 99.4%. In comparison with the eutrophic conditions, the oligotrophic condition dramatically increased the biological manganese oxidation rate. Biofilm formation by employing the quartz sand could further improve the oxidation rate of Mn2+. Based on these results, it is speculated that biological manganese oxidation in underground water treatment is comparatively high. PMID:24812972

  1. Inorganic arsenic levels in baby rice are of concern

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  2. Arsenic in the environment: enrichments in the Slovenian soils

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  3. Inorganic arsenic levels in baby rice are of concern

    Meharg, Andrew A. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom)], E-mail: a.meharg@abdn.ac.uk; Sun, Guoxin [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Williams, Paul N. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Adomako, Eureka; Deacon, Claire [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Zhu, Yong-Guan [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Feldmann, Joerg; Raab, Andrea [Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE (United Kingdom)

    2008-04-15

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as {mu}g/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe.

  4. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  5. Functional mapping of the auditory tract in rodent tinnitus model using manganese-enhanced magnetic resonance imaging.

    Jung, Da Jung; Han, Mun; Jin, Seong-Uk; Lee, Sang Heun; Park, Ilyong; Cho, Hyun-Ju; Kwon, Tae-Jun; Lee, Hui Joong; Cho, Jin Ho; Lee, Kyu-Yup; Chang, Yongmin

    2014-10-15

    Animal models of salicylate-induced tinnitus have demonstrated that salicylate modulates neuronal activity in several brain structures leading to neuronal hyperactivity in auditory and non-auditory brain areas. In addition, these animal tinnitus models indicate that tinnitus can be a perceptual consequence of altered spontaneous neural activity along the auditory pathway. Peripheral and/or central effects of salicylate can account for neuronal activity changes in salicylate-induced tinnitus. Because of this ambiguity, an in vivo imaging study would be able to address the peripheral and/or central involvement of salicylate-induced tinnitus. Therefore, in the present study, we developed a novel manganese-enhanced magnetic resonance imaging (MEMRI) method to map the in vivo functional auditory tract in a salicylate-induced tinnitus animal model by administrating manganese through the round window. We found that acute salicylate-induced tinnitus resulted in higher manganese uptake in the cochlea and in the central auditory structures. Furthermore, serial MRI scans demonstrated that the manganese signal increased in an anterograde fashion from the cochlea to the cochlear nucleus. Therefore, our in vivo MEMRI data suggest that acute salicylate-induced tinnitus is associated with higher spontaneous neural activity both in peripheral and central auditory pathways. PMID:24983712

  6. Anionic sorbents for arsenic and technetium species

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  7. Trivalent arsenic inhibits the functions of chaperonin complex.

    Pan, Xuewen; Reissman, Stefanie; Douglas, Nick R; Huang, Zhiwei; Yuan, Daniel S; Wang, Xiaoling; McCaffery, J Michael; Frydman, Judith; Boeke, Jef D

    2010-10-01

    The exact molecular mechanisms by which the environmental pollutant arsenic works in biological systems are not completely understood. Using an unbiased chemogenomics approach in Saccharomyces cerevisiae, we found that mutants of the chaperonin complex TRiC and the functionally related prefoldin complex are all hypersensitive to arsenic compared to a wild-type strain. In contrast, mutants with impaired ribosome functions were highly arsenic resistant. These observations led us to hypothesize that arsenic might inhibit TRiC function, required for folding of actin, tubulin, and other proteins postsynthesis. Consistent with this hypothesis, we found that arsenic treatment distorted morphology of both actin and microtubule filaments. Moreover, arsenic impaired substrate folding by both bovine and archaeal TRiC complexes in vitro. These results together indicate that TRiC is a conserved target of arsenic inhibition in various biological systems. PMID:20660648

  8. Arsenic detection in water: YPO4:Eu3+ nanoparticles

    Ghosh, Debasish; Luwang, Meitram Niraj

    2015-12-01

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu3+ (5%) doped YPO4nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescence intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste.

  9. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M A; Bodnar, Wanda M; Wishnok, John S; Styblo, Miroslav; Swenberg, James A; Fox, James G; Tannenbaum, Steven R

    2014-02-17

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism. PMID:24490651

  10. Method development for arsenic analysis by modification in spectrophotometric technique

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  11. Diffusion abnormalities of the globi pallidi in manganese neurotoxicity

    McKinney, Alexander M.; Filice, Ross W.; Teksam, Mehmet; Casey, Sean; Truwit, Charles; Clark, H. Brent; Woon, Carolyn; Liu, Hai Ying [Department of Radiology, Medical School, Box 292, 420 Delaware Street S.E., 55455, Minneapolis, MN (United States)

    2004-04-01

    Manganese is an essential trace metal required for normal central nervous system function, which is toxic when in excess amounts in serum. Manganese neurotoxicity has been demonstrated in patients with chronic liver/biliary failure where an inability to excrete manganese via the biliary system causes increased serum levels, and in patients on total parenteral nutrition (TPN), occupational/inhalational exposure, or other source of excess exogenous manganese. Manganese has been well described in the literature to deposit selectively in the globi pallidi and to induce focal neurotoxicity. We present a case of a 53-year-old woman who presented for a brain MR 3 weeks after liver transplant due to progressively decreasing level of consciousness. The patient had severe liver failure by liver function tests and bilirubin levels, and had also been receiving TPN since the transplant. The MR demonstrated symmetric hyperintensity on T1-weighted images in the globi pallidi. Apparent diffusion coefficient (ADC) map indicated restricted diffusion in the globi pallidi bilaterally. The patient eventually succumbed to systemic aspergillosis 3 days after the MR. The serum manganese level was 195 mcg/l (micrograms per liter) on postmortem exam (over 20 times the upper limits of normal). The patient was presumed to have suffered from manganese neurotoxicity since elevated serum manganese levels have been shown in the literature to correlate with hyperintensity on T1-weighted images, neurotoxicity symptoms, and focal concentration of manganese in the globi pallidi. Neuropathologic sectioning of the globi pallidi at autopsy was also consistent with manganese neurotoxicity. (orig.)

  12. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full scal

  13. Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man.

    Luten, J B; Riekwel-Booy, G; Rauchbaar, A

    1982-01-01

    The arsenic content in 255 samples of plaice (Pleuronectes platessa) varied between 3 and 166 mg/kg. About 65% of the samples had an arsenic content above 10 mg/kg. High (low) arsenic concentration in the fillet corresponds with a high (low) concentration in milt or roe. An excretion experiment with eight human volunteers showed that after the consumption of plaice, 69-85% of the ingested arsenic was excreted in the urine within five days. The organo-arsenic compound present in plaice was iso...

  14. Biosensors for Inorganic and Organic Arsenicals

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  15. Solubility and transport of arsenic coal ash

    An experimental method combined with a numerical model allows a comparison of two methods for the disposal of ash that contains arsenic, from the Rio Escondido coal-fired power plant. The calculation yields significant differences in aquifer migration times for the site. The wet disposal method gave 10 years time and the dry method gave 22 years. Experiments were performed on the rate of dissolution of the arsenic from ash samples; and these results indicate a first order kinetics reaction. 8 refs., 8 figs., 8 tabs

  16. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements.

    WOOLFOLK, C A; WHITELEY, H R

    1962-10-01

    Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647-658. 1962.-Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842

  17. Determination of arsenic in crude petroleum and liquid hydrocarbons.

    Puri, B K; Irgolic, K J

    1989-12-01

    Total arsenic was determined in crude petroleum and liquid hydrocarbons derived from crude petroleum by extraction with boiling water or boiling aqueous nitric acid (concentration 0.25 to 2.5 M), mineralization of the extracts with concentrated nitric/sulphuric acid, and reduction of the arsenate to arsine in a hydride generator. The arsine was flushed into a helium-DC plasma. The arsenic emission was monitored at 228.8 nm. The total arsenic concentration in 53 crude oil samples ranged from 0.04 to 514 mg L(-1) (median 0.84 mg L(-1)). Arsenic was also determined in several refined liquid hydrocarbons and in a commercially available arsenic standard in an organic matrix (triphenylarsine in xylene). The method was checked with NIST 1634b "Trace Elements in Residual Fuel Oil". The arsenic concentration found in this standard agreed with the certified value (0.12±0.2 μg g(-1)) within experimental error. Viscous hydrocarbons such as the fuel oil must be dissolved in xylene for the extraction to be successful. Hydride generation applied to an aqueous not-mineralized extract from an oil containing 1.67 μg As mL(-1) revealed, that trimethylated arsenic (520 ng mL(-1)) is the predominant arsenic species among the reducible and detectable arsenic compounds. Monomethylated arsenic (104 ng ml(-1)), inorganic arsenic (23 ng mL(-1)), and dimethylated arsenic (low ng mL(-1)) were also detected. The sum of the concentrations of these arsenic species accounts for only 39% of the total arsenic in the sample. PMID:24202418

  18. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  19. THE ROLE OF ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE IN ARSENIC METABOLISM

    Arsenic (As) is widely distributed in the environment. Epidemiological studies have linked chronic exposures to inorganic As (iAs) to adverse health effects such as skin lesions, peripheral neuropathy, cardiovascular, hepatic and renal disorders, diabetes mellitus, skin cancer,...

  20. Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile).

    Escalante, G; Campos, V L; Valenzuela, C; Yañez, J; Zaror, C; Mondaca, M A

    2009-11-01

    In this study, arsenic resistant bacteria were isolated from sediments of an arsenic contaminated river. Arsenic tolerance of bacteria isolated was carried out by serial dilution on agar plate. Redox abilities were investigated using KMnO4. arsC and aox genes were detected by PCR and RT-PCR, respectively. Bacterial populations were identified by RapID system. Forty nine bacterial strains were isolated, of these, 55 % corresponded to the reducing bacteria, 4% to oxidizing bacteria, 8% presented both activities and in 33% of the bacteria none activity was detected. arsC gene was detected in 11 strains and aox genes were not detected. The activity of arsenic transforming microorganisms in river sediment has significant implications for the behavior of the metalloid. PMID:19779656

  1. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    Lin, Katie

    biological processes and the interaction between them. Some studies have indicated a direct competition between iron and ammonium removal when oxygen is limited, and both processes may have a negative effect on the manganese removal (de Vet et al., 2009; Tekerlekopoulou et al., 2008). However the reasons for.......g. flocculation) and physical (e.g. membrane filtration) based technologies. The removal of dissolved manganese and iron is important. If manganese and iron enter the distribution system, the water will become coloured and have a metallic taste, and it may cause problems in the distribution network due to...... precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal of...

  2. The determination, by atomic-absorption spectrophotometry, of impurities in manganese dioxide

    This report describes various methods for the determination of impurities in electrolytic manganese dioxide by atomic-absorption spectrophotometry (AAS). The sample is dissolved in a mixture of acids, any residue being ignited and retreated with acid. Several AAS methods were applied so that the analysis required to meet the specifications could be attained. These involved conventional flame AAS, AAS with electrothermal atomization (ETA), hydride generation coupled with AAS, and cold-vapour AAS. Of the elements examined, copper, iron, zinc, and lead can be determined direct with confidence with or without corrections based on recoveries obtained from spiked solutions. Nickel can be determined direct by use of the method of standard additions, and copper, nickel, and lead by ETA with the method of standard additions. Arsenic and antimony are determined by hydride generation coupled with AAS, and mercury by cold-vapour AAS. The precision of analysis (relative standard deviation) is generally less than 0,050. Values were obtained for aluminium, molybdenum, magnesium, sodium, copper, chromium, and cadmium, but the accuracy of these determinations has not been fully established

  3. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10 microg/L.

    Steinmaus, Craig M; George, Christine M; Kalman, David A; Smith, Allan H

    2006-05-15

    Millions of people worldwide are exposed to arsenic-contaminated drinking water. Arsenic field test kits may offer a cost-effective approach for measuring these exposures in the field, although the accuracy of some kits used in the past has been poor. In this study, arsenic concentrations were measured in 136 water sources in western Nevada using two relatively new arsenic test kits and compared to laboratory measurements using atomic fluorescence spectroscopy (AFS). Spearman's rank correlation coefficients comparing the Quick Arsenic and Hach EZ kits to laboratory measurements were 0.96 (p or = 500 microg/L), test kit and AFS measurements were in the same category in 71% (Quick Arsenic) and 62% (Hach EZ) of samples, and within one category of each other in 99% (Quick Arsenic) and 97% (Hach EZ) of samples. Both kits identified all water samples with high arsenic concentrations (> 15 microg/L) as being above the United States Environmental Protection Agency's drinking water standard and the World Health Organization's guideline value for arsenic of 10 microg/L. These results suggestthatthese easily portable kits can be used to identify water sources with high arsenic concentrations and may provide an important tool for arsenic surveillance and remediation programs. PMID:16749706

  4. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic.

    Kala, S V; Neely, M W; Kala, G; Prater, C I; Atwood, D W; Rice, J S; Lieberman, M W

    2000-10-27

    Worldwide, millions of people are exposed to arsenic in drinking water that exceeds the World Health Organization standard of 10 microg/liter by as much as 50-300-fold, yet little is known about the molecular basis for arsenic excretion. Here we show that transport of arsenic into bile depends on the MRP2/cMOAT transporter and that glutathione is obligatory for such transport. Using reversed phase liquid chromatography/mass spectrometry, we demonstrate that two arsenic-glutathione complexes not previously identified in vivo, arsenic triglutathione and methylarsenic diglutathione, account for most of the arsenic in the bile. The structure of the compounds was also confirmed by nuclear magnetic resonance spectroscopy. Our findings may help explain the increased susceptibility of malnourished human populations to arsenic. PMID:10938093

  5. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    丁振华; 郑宝山; 张杰; H.; E.; Belkin; R.; B.; Finkelman; 赵峰华; 周代兴; 周运书; 陈朝刚

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer ( EMPA) , scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX) , X-ray diffraction analysis (XRD) , low temperature ashing (LTA) , transmission electron microscopy (TEM) , X-ray absorption fine structure (XAFS) , instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+ , combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  6. Iron and manganese removal from drinking water

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  7. LOCA analysis for manganese-stabilized steel

    Manganese-stabilized steels have been proposed as candidate structural materials for fusion reactors, because they have been perceived as ''low-activation'' materials. Depending on the neutron spectra and the neutron fluence, the decay heat in Mn-stabilized steels is about 3--7 times larger than that in the Ni-stabilized steels. This large amount of decay heat could have serious impact in the case of loss of coolant accident (LOCA). A two-dimensional LOCA model has been used to examine the LOCA temperature response of the manganese steel when utilized in an earlier US design of ITER. The results show that the Mn-steel has approached its melting temperature by less than 100 degree C after about 7 hours from the onset of LOCA. On the other hand, the results for the nickel stabilized steel alloy 316SS show that the maximum temperature reached is 532 degree C in about the same time. 14 refs., 13 figs., 2 tabs

  8. Thermoelectric performance of higher manganese silicide nanocomposites

    Saleemi, M. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Kista, Stockholm (Sweden); Famengo, A.; Fiameni, S.; Boldrini, S.; Battiston, S. [CNR, Institute for Energetics and Interphases (IENI-CNR), Corso Stati Uniti 4, I-35127 Padua (Italy); Johnsson, M. [Department of Materials and Environmental Chemistry, Stockholm University, Stockholm (Sweden); Muhammed, M.; Toprak, M.S. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Kista, Stockholm (Sweden)

    2015-01-15

    Highlights: • Fabrication of p-type higher manganese silicide by mechanical alloying. • Different concentrations Ytterbium (Yb) was used to form HMS nanocomposites. • HMS nanostructures were preserved by using spark plasma sintering (SPS). • HMS–Yb nanocomposites showed improved electrical performance. - Abstract: Higher manganese silicides (HMS) are proven to be promising candidates as p-type thermoelectric material in the temperature range of 400–700 K. In this work, a series of nanostructured (NS) bulk MnSi{sub 1.73} with different levels of Ytterbium inclusions were fabricated via ball milling and the solid state reaction was completed by spark plasma sintering (SPS). Nanopowders and SPS consolidated Yb–HMS nanocomposites (NC) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to reveal the crystal structure and morphology respectively. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray spectroscopy (EDS) was used to investigate the material composition in bulk grains. Yb was observed to stay as nanoinclusions at the grain boundaries. TE transport properties, including Seebeck coefficient, electrical resistivity, and thermal diffusivity as well as charge carrier concentrations were evaluated. Thermal conductivity decreased with increasing Yb content, while the electrical conductivity improved for the highest Yb content. A highest figure of merit (ZT) of 0.42 at 600 °C was achieved for 1% Yb–HMS NC sample.

  9. The cosmic origin of carbon and manganese

    Bensby, Thomas

    2008-01-01

    [ABRIDGED] We have determined carbon abundances for 51 dwarf stars and manganese abundances for 95 dwarf stars in two distinct and well defined stellar populations - the Galactic thin and thick disks. As these two populations have different chemical histories we have been able to, through a differential abundance analysis using high-resolution spectra, constrain the formation sites for carbon and manganese in the Galactic disk(s). The analysis of carbon is based on the forbidden [C I] line at 872.7 nm which is an abundance indicator that is insensitive to errors in the stellar atmosphere parameters. Combining these data with our previously published oxygen abundances, based on the forbidden [O I] line at 630.0 nm, we can form very robust [C/O] ratios that we then used to investigate the origin of carbon and the chemical evolution of the Galactic thin and thick disks..... Our interpretation of our abundance trends is that the sources that are responsible for the carbon enrichment in the Galactic thin and thick...

  10. Evaluating the Spatial Distribution of Quantitative Risk and Hazard Level of Arsenic Exposure in Groundwater, case Study of Qorveh County, Kurdistan Iran

    Touraj Nasrabadi

    2013-04-01

    Full Text Available Regional distribution of quantitative risk and hazard levels due to arsenic poisoning in some parts of Iran’s Kurdistan province is considered. To investigate the potential risk and hazard level regarding arsenic-contaminated drinking water and further carcinogenic and non-carcinogenic effects on villagers, thirteen wells in rural areas of Qorveh County were considered for evaluation of arsenic concentration in water. Sampling campaign was performed in August 2010 and arsenic concentration was measured via the Silver Diethyldithiocarbamate method. The highest and lowest arsenic concentration are reported in Guilaklu and Qezeljakand villages with 420 and 67 μg/L, respectively. None of thirteen water samples met the maximum contaminant level issued by USEPA and Institute of Standards and Industrial Research of Iran (10 ppb. The highest arsenic concentration and consequently risk and hazard levels belong to villages situated alongside the eastern frontiers of the county. Existence of volcanic activities within the upper Miocene and Pleistocene in this part of the study area may be addressed as the main geopogenic source of arsenic pollution. Quantitative risk values are varying from 1.49E-03 in Qezeljakand to 8.92E-03 in Guilaklu and may be interpreted as very high when compared by similar studies in Iran. Regarding non-carcinogenic effects, all thirteen water samples are considered hazardous while all calculated chronic daily intakes are greater than arsenic reference dose. Such drinking water source has the potential to impose adverse carcinogenic and non-carcinogenic effects on villagers. Accordingly, an urgent decision must be made to substitute the current drinking water source with a safer one.

  11. Stabilisation of carbonyl free amidinato-manganese(II) hydride complexes: "masked" sources of manganese(I) in organometallic synthesis.

    Fohlmeister, Lea; Jones, Cameron

    2016-01-28

    Reaction of the amidinato-manganese(ii) bromide complex, [{(κ(2)-N,N'-Piso)Mn(μ-Br)}3(THF)2] (Piso = [(DipN)2CBu(t)](-), Dip = 2,6-diisopropylphenyl), with K[BHEt3] affords the first example of a structurally authenticated amidinato-manganese(ii) hydride complex, [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2], via a process which involves a change in the amidinate coordination mode. Treatment of the bulkier precursor complex, [{(Piso'')Mn(μ-Br)}n] (Piso'' = [(Dip''N)2CBu(t)](-), Dip'' = C6H2Pr(i)2(CPh3)-2,6,4), with K[BHEt3] did not lead to an isolable manganese hydride complex, but its reaction with the magnesium(i) complex, [{((Mes)Nacnac)Mg}2] ((Mes)Nacnac = [(MesNCMe)2CH](-), Mes = mesityl), did. This reaction presumably proceeds via a reactive manganese(i) intermediate, which abstracts hydrogen from a reaction component to give [{(κ(2)-N,N'-Piso'')Mn(μ-H)}3]. A comparison of the reactivities of [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2] and the isomorphous manganese(i) complex, [{(N-,η(3)-arene-Piso)Mn}2], toward CO, O2 and N2O was carried out. Reactions with the manganese(i) and manganese(ii) species gave identical results, namely the formation of the manganese(i) carbonyl complex, [(κ(2)-N,N'-Piso)Mn(CO)4] (reactions with CO), and the manganese(iii)-μ-oxo complex, [{(κ(2)-N,N'-Piso)Mn(μ-O)}2] (reactions with O2 and N2O). These results indicate that [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2] can act as a "masked" source of an amidinato-manganese(i) fragment in synthetic transformations. PMID:26674008

  12. Port virtual addressing for PC

    Instruments for nuclear signal measurements based on add-on card for a personal computer (PC) are designed often. Then one faces the problem of the addressing of data input/output devices which show an integration level or intelligence that makes the use of several port address indispensable, and these are limited in the PC. The virtual addressing offers the advantage of the occupation of few addresses to accede to many of these devices. The principles of this technique and the appliances of a solution in radiometric in a radiometric card based on programmed logic are discussed in this paper

  13. Reclaiming unused IPv4 addresses

    IT Department

    2016-01-01

    As many people might know, the number of IPv4 addresses is limited and almost all have been allocated (see here and here for more information).   Although CERN has been allocated some 340,000 addresses, the way these are allocated across the site is not as efficient as we would like. As we face an increasing demand for IPv4 addresses with the growth in virtual machines, the IT Department’s Communication Systems Group will be reorganising address allocation during 2016 to make more efficient use of the IPv4 address ranges that have been allocated to CERN. We aim, wherever possible, to avoid giving out fixed IP addresses, and have all devices connected to the campus network obtain an address dynamically each time they connect. As a first stage, starting in February, IP addresses that have not been used for more than 9 months will be reclaimed. No information about the devices concerned will be deleted from LANDB, but a new IP address will have to be requested if they are ever reconnected to t...

  14. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  15. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  16. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  17. Critical Aspects of Alloying of Sintered Steels with Manganese

    Hryha, Eduard; Dudrova, Eva; Nyborg, Lars

    2010-11-01

    This study examines the sintering behavior and properties of Fe-0.8Mn-0.5C manganese powder metallurgy steels. The study focuses on the influence of mode of alloying—admixing using either high-purity electrolytic manganese or medium carbon ferromanganese as well as the fully prealloying of water-atomized powder. Three main aspects were studied during the whole sintering process—microstructure development, interparticle necks evolution, and changes in the behavior of manganese carrier particles during both heating and sintering stages. The prealloyed powder shows considerable improvement in carbon homogenization and interparticle neck development in comparison with admixed materials. The first indication of pearlite for the fully prealloyed material was registered at ~1013 K (740 °C) in comparison with ~1098 K (825 °C) in the case of the admixed systems. The negative effect of the oxidized residuals of manganese carrier particles and high microstructure inhomogeneity, which is a characteristic feature of admixed systems, is reflected in the lower values of the mechanical properties. The worst results in this respect were obtained for the system admixed with electrolytic manganese because of more intensive manganese sublimation and resulting oxidation at lower temperatures. According to the results of X-ray photoelectron spectroscopy and high-resolution scanning electron microscopy and energy dispersive X-ray analyses, the observed high brittleness of admixed materials is connected with intergranular decohesion failure associated with manganese oxide formation on the grain boundaries.

  18. Selection and Use of Manganese Dioxide by Neanderthals

    Heyes, Peter J.; Anastasakis, Konstantinos; de Jong, Wiebren; van Hoesel, Annelies; Roebroeks, Wil; Soressi, Marie

    2016-02-01

    Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these ‘manganese oxides’ were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l’Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood’s auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l’Azé I used manganese dioxide in fire-making and produced fire on demand.

  19. Parageneses and Crystal Chemistry of Arsenic Minerals

    Majzlan, J.; Drahota, P.; Filippi, Michal

    Chantilly: Mineralogical Society of America, 2014 - (Bowell, J.; Alpers, C.; Jamieson, H.; Nordstrom, D.; Majzlan, J.), s. 17-184. (Reviews in Mineralogy and Geochemistry. 79). ISBN 978-0-939950-94-2 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : arsenic * mineralogy * parageneses * crystal structure Subject RIV: DB - Geology ; Mineralogy

  20. 29 CFR 1910.1018 - Inorganic arsenic.

    2010-07-01

    ... rise to radiological evidence or pneumoconiosis. Arsenic does have a depressant effect upon the bone... regulated areas, food or beverages are not consumed, smoking products, chewing tobacco and gum are not used...-practice controls. (ii) Work operations, such as maintenance and repair activities, for which the...

  1. Arsenic - Multiple Languages: MedlinePlus

    ... español) Chinese - Simplified (简体中文) Arsenic English 关于砷的常问问题 - 简体中文 (Chinese - Simplified) Food and Drug Administration Spanish (español) Arsénico Characters not ...

  2. Questions and Answers: Apple Juice and Arsenic

    ... and monomethylarsonic acid (MMA), may also be a health concern. Are apple and other fruit juices safe to drink? The FDA has been ... this, the FDA is considering how any possible health risk from these two forms of ... arsenic in fruit juice? The FDA has proposed an “action level” ...

  3. Understanding arsenic contamination of groundwater in Bangladesh

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  4. Arsenic accumulation in some higher fungi

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to h

  5. Speciation of arsenic in environmental waters

    A system for speciation of arsenic in environmental waters by selective hydride formation and on-line AAS is described. Starting from literature data, the separation scheme and the necessary apparatus are outlined. Preliminary practical experience then leads to the formulation of further improvements and accompanying testing experiments. (author). 51 refs, 7 figs, 1 tab

  6. Arsenic(III Immobilization on Rice Husk

    Malay Chaudhuri

    2013-02-01

    Full Text Available A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III] and pentavalent arsenate [As(V]. As(III is more toxic and more difficult to remove from water by adsorption on activated alumina. In this study, immobilization (adsorption of As(III by quaternized rice husk was examined. Batch adsorption test showed that extent of adsorption was dependent on pH, As (III concentration, contact time and rice husk dose. Maximum adsorption occurred at pH 7-8, and equilibrium adsorption was attained in 2 h. Equilibrium adsorption data were described by the Langmuir and Freundlich isotherm models. According to the Langmuir isotherm, adsorption capacity of quaternized rice husk is 0.775 mg As(III/g, which is 4.3x higher than that (0.180 mg As(III/g of activated alumina. Quaternized rice husk is a potentially useful adsorbent for removing arsenic from groundwater.

  7. An address by AECL's president

    This complete address given by Reid Morden, the President of Atomic Energy of Canada Limited, at the June 1997 meeting of the Canadian Nuclear Association. In his address, Morden discusses Canada's success in at home and abroad. He also corrects myths about nuclear energy

  8. Arsenic mobilization from sediments in microcosms under sulfate reduction.

    Sun, Jing; Quicksall, Andrew N; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-06-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful. PMID:27037658

  9. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  10. Evaluation of Exposure to Arsenic in Residential Soil

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  11. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  12. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  13. Soil Contamination by Arsenic in Urban Areas: A case study of Arak City

    E Solgi

    2015-08-01

    Conclusion: It seems that arsenic in soil is controlled by natural and anthropogenic factors. The highest concentrations of arsenic in center and the north areas reflected arsenic loading is originated from anthropogenic sources such as vehicles and industrial processes.

  14. Impact of speciation on removal of manganese and organic matter by nanofiltration

    De Munari, Annalisa; Schäfer, Andrea

    2010-01-01

    The removal of manganese and humic acid (HA) by two nanofiltration membranes, TFC-SR2 and TFC-SR3, was investigated in order to highlight the influence of speciation on manganese and HA retention. Manganese speciation and complexation with HA were modelled to understand how speciation could affect NF removal mechanisms. The behaviour of the two membranes was drastically different for manganese retention. Manganese retention for TFC-SR3 was higher and dominated by size exclusion...

  15. Manganese cycles and the origin of manganese nodules, Oneida Lake, New York, U.S.A.

    Dean, W.E.; Moore, W.S.; Nealson, K.H.

    1981-01-01

    Oneida Lake is a large shallow lake in central New York that is characterized by high algal productivity and concentrated deposits of freshwater manganese nodules. Budgets for Mn in the lake and its tributaries show a net loss of 23 metric tons of manganese within the lake per year with ???95% deposited in manganese nodules and the rest incorporated in the sediments. Erosion of nodules in the shallow well-oxygenated central part of the lake produces fragments of nodules as well as Mn-coated sand grains that are transported to adjacent deeper, more reducing parts of the lake where they sink into the anoxic sediments and MnO2 is reduced to Mn2+. This produces a high concentration of Mn2+ in the pore waters of these sediments and Mn2+ diffuses back into the water column. Growth of manganese nodules in Oneida Lake is characterized by periods of rapid accretion (> 1 mm 100 yr.) alternating with periods of no-growth or erosion. Rapid growth of nodules may be aided by the stripping of Mn from the water column by algae and bacteria. In addition, the high algal productivity of Oneida Lake produces a high-pH high-oxygen environment during the summer months that is maintained throughout the water column in the central part of the lake by almost continuous wind mixing. Thus, the cycle of Mn within the lake involves an interaction of the weather, the biota, the sediments, the nodules, and Mn dissolved in the lake and interstitial waters. ?? 1981.

  16. Structural and surface changes of copper modified manganese oxides

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  17. Influence of manganese ions on recombination luminescence in potassium phospate

    The investigation of recombination luminescence was carried out for crystal KDP doped by manganese ions after full and partial dehydration. It was established that manganese ions bring about increase the velocities of radiation defects accumulation in matrix. It was expected the appearance of two new TL peaks are connected with influence radiation defects thermal stability in matrix by impurity ions. The TL peal 100 K is connected with defect PO32-. The manganese ions become ion replacement after full dehydration. The radiation induced impurity defects are a centers of recombination. (author)

  18. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  19. Inverse association between toenail arsenic and body mass index in a population of welders

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C; Weisskopf, Marc G.; Christiani, David C.; Kile, Molly L.; Cavallari, Jennifer M

    2014-01-01

    Recent data show that arsenic may play a role in obesity-related diseases. However, urinary arsenic studies report an inverse association between arsenic level and body mass index (BMI). We explored whether toenail arsenic, a long-term exposure measure, was associated with BMI in 74 welders with known arsenic exposure. BMI showed significant inverse associations with toenail arsenic (p=0.01), which persisted in models adjusted for demographics, diet and work history. It is unclear whether low...

  20. In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment

    Juhasz, Albert L.; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2006-01-01

    Background Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. Objectives In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. Results In supermarket-bought rice, arsenic was present entirely in the inorganic form compared to greenhous...

  1. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  2. geochemical controls on arsenic and phosphorus in natural and engineered systems

    Davis, Jason Edward

    2000-01-01

    This thesis elucidates fundamental reactions that can control concentrations of arsenic and phosphate in water sources. High levels of arsenic or phosphorus have significant implications for the environment-- arsenic is extremely toxic to humans while phosphorus can cause eutrophication. Initial work focused on arsenic solids that might exert geochemical control on soluble arsenic. Formation of proposed iron, barium, copper and zinc-arsenic solids were systematically examined under ...

  3. Identification of the Origin and Behaviour of Arsenic in Mine Waste Dumps Using Correlation Analysis: A Case Study Sarcheshmeh Copper Mine

    Saeed Yousefi

    2013-12-01

    Full Text Available Knowledge of the probable origin and behaviour of arsenic certainly gives valuable insights into the potential for transfer in the environment and of the risks involved in mining sites. Sequential extraction analyses are common experiments often used to study the origin and behaviour of potentially toxic elements. The method, however, presents some deficiencies, including labor-intensive procedure, interferences of phases, being impractical for testing large number of samples in heterogeneous environment as well as inability for determining the individual minerals as source or sink terms for toxic elements. This study attempts to determine the origin and behaviour of arsenic in waste dump using correlation analysis approach. To this end, sixty samples were collected from two waste dumps at the Sarcheshmeh Copper Mine in Kerman Province, Iran. The statistical results along with previous experimental investigations and also sequential extraction experiment revealed that adsorption on muscovite is the main source, and that oxy hydroxides of iron and manganese are the main adsorbent minerals which control the concentrations of arsenic in the waste dumps of the Sarcheshmeh copper mine.

  4. Low carbon manganese-nickel-niobium steel

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 11000C to 13000C and of finish rolling temperatures between 7100C and 9300C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author)

  5. Manganese superoxide dismutase and breast cancer recurrence

    Cronin-Fenton, Deirdre; Christensen, Mariann; Lash, Timothy;

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non...

  6. Double manganese(III) cesium triphosphate

    Double triphosphates have been identified in research on interactions in the P2O5-M2O3-Cs2O-H2O system, where M(III) = Al, Ga, Cr, Fe, at 570-770K, which have the M(III)Cs2 - P3O10 composition; here we report the identification of a new phase made under analogous conditions in a system containing Mn(III) together with some of its physicochemical properties. The product was analyzed for phosphorus by a colorimetric method, for manganese by titration with EDTA, and for cesium by atomic absorption. The x-ray phase analysis was performed with a DRON-3.0 diffractometer. The IR spectra were recorded. Thermogravimetry indicates that the product is MnCs2P3O10·H2O

  7. Untangling the Manganese-α-Synuclein Web

    Peres, Tanara Vieira; Parmalee, Nancy L.; Martinez-Finley, Ebany J.; Aschner, Michael

    2016-01-01

    Neurodegenerative diseases affect a significant portion of the aging population. Several lines of evidence suggest a positive association between environmental exposures, which are common and cumulative in a lifetime, and development of neurodegenerative diseases. Environmental or occupational exposure to manganese (Mn) has been implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction, oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction cannot be ruled out. In this review we will examine the current knowledge surrounding the interaction of α-Syn and Mn in neurodegenerative process. PMID:27540354

  8. Mechanical properties of two manganese steels

    M. Cagala

    2012-01-01

    Full Text Available The article is focused on thermomechanical and plastic properties of two high-manganese TRIPLEX type steels with an internal marking 1043 and 1045. Tensile tests at ambient temperature and at a temperature interval 600°C to 1100°C were performed for these heats with a different chemical composition. After the samples having been ruptured, ductility was observed which was expressed by reduction of material after the tensile test. Then the stacking fault energy was calculated and dilatation of both high-manganese steels was measured. At ambient temperature (20°C, 1043 heat featured higher tensile strength by 66MPa than 1045 heat. Microhardness was higher by 8HV0,2 for 1045 steel than for 1043 steel (203HV0,2. At 20°C, ductility only differed by 3% for the both heats. Decrease of tensile properties occurred at higher temperatures of 600 up to 1100°C. This tensile properties decrease at high temperatures is evident for most of metals. The strength level difference of the both heats in the temperature range 20°C up to 1100°C corresponded to 83 MPa, while between 600°C and 1100°C the difference was only 18 MPa. In the temperature range 600°C to 800°C, a decrease in ductility values down to 14 % (1045 heat, or 22 % (1043 heat, was noticed.This decrease was accompanied with occurrence of complex Aluminium oxides in a superposition with detected AlN particles. Further ductility decrease was only noted for 1043 heat where higher occurrence of shrinkage porosity was observed which might have contributed to a slight decrease in reduction of area values in the temperature range 900°C to 1100°C, in contrast to 1045 heat matrix.

  9. Phase transformations in Higher Manganese Silicides

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  10. Total and inorganic arsenic in fish samples from Norwegian waters

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.;

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast...... of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography–ICP-MS following microwave......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  11. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi; Trang, Pham Thi Kim; Jakobsen, Rasmus; Nhan, Pham Quy; Long, Tran Vu; Viet, Pham Hung; Murray, Andrew Sean

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5...

  12. The evolving use of arsenic in pharmacotherapy of malignant disease.

    Kritharis, Athena; Bradley, Thomas P; Budman, Daniel R

    2013-06-01

    For more than 2,000 years, arsenic and its derivatives have shown medical utility. Owing to the toxicities and potential carcinogenicity of arsenicals, their popularity has fluctuated. The exact mechanism of action of therapeutic arsenic is not well characterized but likely to involve apoptosis, generation of reactive oxygen species, inhibition of intracellular transduction pathways, and cell functions. Arsenic trioxide has received approval for use in patients with relapsed acute promyelocytic leukemia for remission induction. Arsenic has additionally shown activity in a range of solid tumors, myelodysplastic syndrome, multiple myeloma, and in autoimmune diseases. The following is a review of the history of arsenic, its cellular metabolism, pharmacology, genetic basis of disposition, associated toxicities, and clinical efficacy. PMID:23494203

  13. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  14. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters

    Winkel, Lenny; Berg, Michael; Amini, Manouchehr; Hug, Stephan J.; Annette Johnson, C.

    2008-08-01

    Arsenic contamination of groundwater resources threatens the health of millions of people worldwide, particularly in the densely populated river deltas of Southeast Asia. Although many arsenic-affected areas have been identified in recent years, a systematic evaluation of vulnerable areas remains to be carried out. Here we present maps pinpointing areas at risk of groundwater arsenic concentrations exceeding 10μgl-1. These maps were produced by combining geological and surface soil parameters in a logistic regression model, calibrated with 1,756 aggregated and geo-referenced groundwater data points from the Bengal, Red River and Mekong deltas. We show that Holocene deltaic and organic-rich surface sediments are key indicators for arsenic risk areas and that the combination of surface parameters is a successful approach to predict groundwater arsenic contamination. Predictions are in good agreement with the known spatial distribution of arsenic contamination, and further indicate elevated risks in Sumatra and Myanmar, where no groundwater studies exist.

  15. A critical review of arsenic exposures for Bangladeshi adults.

    Joseph, Tijo; Dubey, Brajesh; McBean, Edward A

    2015-09-15

    Groundwater, the most important source of water for drinking, cooking, and irrigation in Bangladesh, is a significant contributor to the daily human intake of arsenic. Other arsenic intake pathways, established as relevant for Bangladeshi adults through this review, include consumption of contaminated edible plant parts and animal-origin food, inhalation of contaminated air, soil ingestion, betel quid chewing, and tobacco smoking. This review qualifies and quantifies these arsenic intake pathways through analysis of the range of arsenic levels observed in different food types, water, soil, and air in Bangladesh, and highlights the contributions of dietary intake variation and cooking method in influencing arsenic exposures. This study also highlights the potential of desirable dietary patterns and intakes in increasing arsenic exposure which is relevant to Bangladesh where nutritional deficiencies and lower-than-desirable dietary intakes continue to be a major concern. PMID:26004539

  16. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    S. Ilaiyavel

    2013-03-01

    Full Text Available In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 3.0 m/s under normal load of 40 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Heat treated Manganese Phosphate with oil lubricant exhibited the lowest average wear coefficient and the lowest wear loss under 40 N load.

  17. Electrospun Manganese Oxides Nanofibers Electrode for Lithium Ion Batteries

    SUN Ke,LU Hai-Wei,LI Da,ZENG Wei,LI Yue-Sheng,FU Zheng-Wen

    2009-03-01

    Full Text Available Manganese oxides nanofibers were successfully fabricated by an electrospinning method and its electrochemical behavior was investigated as three-dimensional (3D architecture of cathodic materials. Scanning electron microscope, X-ray diffraction and the discharge/charge curves were used to characterize their structures and electrochemical properties. Manganese oxides nanofibers are achieved after calcination at 450¡䬠The high reversible discharge capacity reaches 160mAh/g and the discharge capacity is about 132.5mAh/g with capacity loss less than 1.0% per cycle in 50 cycling. SEM observations show that the structure of manganese oxides nanofibers is stable without the mechanical destruction of nanofibers during the Li+ ion intercalation and deintercalation. The results demonstrate that manganese oxides nanofibers are promising cathodic materials for 3D lithium batteries.

  18. India's manganese nodule mine site in the Central Indian Ocean

    Banakar, V.K.

    This commentary highlights the activities of massive exploration programme for manganese nodule deposits in the Central Indian Basin located 5 km below the ocean surface and India's claim for mine site development and registration with UNCLOS...

  19. Manganese nodules in the Exclusive Economic Zone of Mauritius

    Nath, B.N.; ShyamPrasad, M.

    The distribution of manganese nodules in the Exclusive Economic Zone of the island nation Mauritius was delineated during cruise SK-35 of ORV Sagar Kanya in 1987. The areas surveyed included Saya de Malha and Nazareth Banks, the Cargados Carajos...

  20. Manganese, Iron, and sulfur cycling in Louisiana continental shelf sediments

    Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cyclin...

  1. By lithology Zbruch deposits (Lower Sarmatian Nikopol manganese ore Basin

    Bogdanovich V.V.

    2010-06-01

    Full Text Available Based on lithologic-paleogeographic study Zbruch layers of Nikopol manganese ore Basin sediments described lithological and genetic types of rocks and facies conditions of formation of deposits.

  2. Analysis for blood manganese used to assess environmental exposure

    Hams, G.A.; Fabri, J.K.

    1988-06-01

    In this graphite-furnace atomic-absorption spectrometric method for measuring manganese in whole blood, we use a pyrolytic platform to minimize interference by sample matrix. For optimal sample ashing we denature the sample within the furnace with nitric acid and use oxygen as the purge gas at low temperatures. The mean manganese concentration found in blood from 15 unexposed city dwellers was 215 (2 SD 135) nmol/L. By comparison, the range of manganese concentrations in blood sampled from a group of Australian aborigines living near a surface manganese ore deposit on Groote Eylandt, Northern Territory, was much higher (median 405 nmol/L, range 175 to 990 nmol/L).

  3. Beneficiation studies of Bajaur manganese ore by different processing techniques

    The manganese ore of Bajaur Agency of Pakistan was subjected to flotation, heavy medium separation, gravity concentration and magnetic separation techniques for beneficiation. The original composition of the manganese ore was 45.56% Mn , 4% Fe/sub 2/O/sub 3/, 40% SiO/sub 2/. The Mn content was raised to a maximum 48.76 % in the concentrate with the recovery of 67.78 % through flotation technique. Other techniques rendered marginal increase in Mn concentration against the theoretical possibility of substantial enrichment by rejecting the 20 % gangue minerals. The separation of manganese minerals from associated gangue was difficult, due to mineralogical complexity of the ore, extreme fineness of the particle size, texture and minerals intergrowth. High Mn/Fe ratio, phosphorus, and silica contents were within tolerable limits for utilisation of the ore in ferro-manganese production. (author)

  4. Rice consumption contributes to arsenic exposure in US women

    Gilbert-Diamond, Diane; Cottingham, Kathryn L.; Gruber, Joann F.; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A. Jay; Baker, Emily R.; Jackson, Brian P.; Folt, Carol L; Margaret R Karagas

    2011-01-01

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's ho...

  5. Analytical approaches for arsenic determination in air : a critical review

    Sánchez-Rodas Navarro, Daniel Alejandro; Sánchez de la Campa Verdona, Ana María; Alsioufi, Louay

    2015-01-01

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particl...

  6. The Role of Photochemistry the Transport and Transformation of Arsenic

    Sedlak, David L.; Bentley, Abra

    1997-01-01

    Arsenic, a toxic trace element, enters surface waters from abandoned mines and geothermal springs. Once arsenic is discharged to surface waters, photochemical reactions can alter the oxidation state of the metal or cause the dissolution of the mineral phases onto which it could adsorb. To assess the role of these photochemical reactions arsenic fate and transport, we conducted laboratory studies and collected samples from arseniccontaminated surface waters. Results of laboratory studies indic...

  7. Resistance to Arsenic- and Antimony-Based Drugs

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  8. Arsenic geochemistry and human health in South East Asia

    McCarty, Kathleen M.; Hanh, Hoang Thi; Kim, Kyoung-Woong

    2011-01-01

    Arsenic occurs naturally in many environmental components and enters the human body through several exposure pathways. Natural enrichment of arsenic may result in considerable contamination of soil, water, and air. Arsenic in groundwater can exceed values hundreds of time higher than the concentration recommended for drinking water. Such exposure levels indicate a serious potential health risk to individuals consuming raw groundwater. Human activities that have an impact on the environment ma...

  9. Quality of our groundwater resources: arsenic and fluoride

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  10. Alternative technology for arsenic removal from drinking water

    Purenović Milovan

    2007-01-01

    Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in wat...

  11. Occupational neurotoxicology due to heavy metals-especially manganese poisoning

    The most hazardous manganese exposures occur in mining and smelting of ore. Recently, the poisoning has been frequently reported to be associated with welding. In occupational exposure, manganese is absorbed mainly by inhalation. Manganese preferentially accumulates in tissues rich in mitochondria. It also penetrates the blood brain barrior and accumulate in the basal ganglia, especially the globus pallidus, but also the striatum. Manganese poisoning is clinically characterized by the central nervous system involvement including psychiatric symptomes, extrapyramidal signs, and less frequently other neurological manifestations. Psychiatric symptomes are well described in the manganese miners and incrude sleep disturbance, disorientation, emotional lability, compulsive acts, hallucinations, illusions, and delusions. The main characteristic manifestations usually begin shortly after the appearance of these psychiatric symptomes. The latter neurological signs are progressive bradykinesia, dystonia, and disturbance of gait. Bradykinesia is one of the most important findings. There is a remarkable slowing of both active and passive movements of the extremities. Micrographia is frequently observed and a characteristic finding. The patients may show some symmetrical tremor, which usually not so marked. The dystonic posture of the limbs is often accompanied by painfull cramps. This attitudal hypertonia has a tendency to decrease or disappear in the supine position and to increase in orthostation. Cog-wheel rigidity is also elisited on the passive movement of all extremities. Gait disturbance is also characteristic in this poisoning. In the severe cases, cook gait has been reported. The patient uses small steps, but has a tendency to elevate the heels and to rotate them outward. He progress without pressing on the flat of his feet, but only upon the metatarsophalangeal articulations, mainly of the fourth and fifth toes. Increased signal in T1-weighted image in the basal

  12. Perinatal Manganese Exposure and Hydroxyl Radical Formation in Rat Brain

    Bałasz, Michał; Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Kasperczyk, Sławomir; Nowak, Damian; Kostrzewa, Richard M.; Nowak, Przemysław

    2014-01-01

    The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO•) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of ...

  13. Metal stoichiometry of isolated and arsenic substituted metallothionein: PIXE and ESI-MS study.

    Garla, Roobee; Mohanty, Biraja P; Ganger, Renuka; Sudarshan, M; Bansal, Mohinder P; Garg, Mohan L

    2013-12-01

    The stoichiometric analysis of the metal induced Metallothionein (MT) is pertinent for understanding the metal-MT interactions. Despite innumerable publications on MT, the literature addressing these aspects is limited. To bridge this gap, PIXE and ESI-MS analysis of the commercial rabbit liver MT1 (an isoform of MT), zinc induced isolated rat liver MT1, apo and Arsenic substituted rabbit liver MT1 have been carried out. These techniques in combination provide information about number and the signature of all the metal ions bound to MT. By using ESI-MS in the rabbit MT1, ions of Zn n MT1 (n = 0, 1, 4, 5, 6, 7) whereas, in rat MT1, the Zn1MT1 and Zn5MT1 ions are observed. PIXE analysis shows that some copper along with zinc is also present in the rabbit as well as rat MT1 which could not be assessed with ESI-MS. During As metallation reaction with rabbit MT1, with increase in arsenic concentration, the amount of arsenic bound to MT1 also increases, though not proportionally. The presence of both Zn and Cu in MT1 on Zn supplementation can be related to the role of MT in Zn and Cu homeostasis. Further, the presence of partially metallated MT1 suggests that MT1 may donate fractional amount of metal from it's fully metallated form to other proteins where Zn acts as a cofactor. PMID:23917727

  14. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  15. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Peltekov A.B.; Boyanov B.S.; Markova T.S.

    2014-01-01

    The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine...

  16. Arsenic-transforming microbes and their role in biomining processes.

    Drewniak, L; Sklodowska, A

    2013-11-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a toxic (also for themselves) form, and (2) How do these microorganisms cope with this toxic element? In this review, we summarize current knowledge about arsenic-transforming microbes and their role in biomining processes. Special consideration is given to studies that have increased our understanding of how microbial activities are linked to the biogeochemistry of arsenic, by examining (1) where and in which forms arsenic occurs in the mining environment, (2) microbial activity in the context of arsenic mineral dissolution and the mechanisms of arsenic resistance, (3) the minerals used and technologies applied in the biomining of arsenic, and (4) how microbes can be used to clean up post-mining environments. PMID:23299972

  17. Development of an arsenic trioxide vapor and arsine sampling train

    A sampling train was evaluated using 76As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  18. Chemical characteristics of arsenic in a marine food chain

    The various chemical forms of 74As accumulated from either water or food by the marine food chain [Fucus spiralis (L.) → Littorina littoralis (L.) → Nucella lapillus] have been separated and characterized. Arsenic components were separated by differential extraction followed by high-voltage paper electrophoresis/paper chromatography of the water-soluble farction and thin-layer chromatography of the lipid-soluble fraction. The algae assimilates arsenic mainly (60%) as one lipid-soluble compound with Rsub(f) = 0.18, and 12 water-soluble organo-arsenic compounds as minor components. On the other hand, the snails produce predominantly one major water-soluble organo-arsenic compound with Rsub(f) = 0.66. This water-soluble arsenic compound was produced by the snails and not by intestinal microbes. Time-course studies on the relative proportions of labelled arsenic compounds in algal tissue indicate a transition from arsenate through water-soluble organo-arsenic components to a lipid-soluble arsenic compound. The water-soluble organo-arsenic compounds in the food chain studied were different from those previously found or proposed in marine organisms. (orig.)

  19. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; Poplin, Gerald S;

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether...... selenium positively associated with sputum AAT (P=0.004 and P=0.002, respectively). In analyses stratified by town, these relationships remained significant only in Ajo, with the higher arsenic exposure. Reduction in AAT may be a means by which arsenic induces respiratory disease, and selenium may protect...

  20. Low copper and high manganese levels in prion protein plaques

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  1. Arsenic Attenuation By Oxidized Aquifer Sediments in Bangladesh

    Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.; Yount, J.C.; Whitney, J.W.; Foster, A.L.; Uddin, M.N.; Majumder, R.K.; Ahmed, N.; /Geological Survey, Denver /Geological

    2007-07-13

    Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 {micro}g/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwater has < 5 {micro}g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO{sub 3}) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results

  2. Arsenic attenuation by oxidized aquifer sediments in Bangladesh

    Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.; Yount, J.C.; Whitney, J.W.; Foster, A.L.; Uddin, M.N.; Majumder, R.K.; Ahmed, N.

    2007-01-01

    Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50??m and has maximum As concentrations in groundwater of 900????g/L. At depths greater than 50??m, geochemical conditions are more oxidizing and groundwater has < 5????g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO3) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these

  3. Understanding and Quantifying Controls of Arsenic Mobility during Deepwell Re-injection of CSG Waters

    Davis, J. A.; Rathi, B.; Prommer, H.; Donn, M.; Siade, A. J.; Berg, M.

    2014-12-01

    In Australia, the injection of reverse-osmosis treated production water from coal seams into the surrounding, deep aquifers may provide the most viable method to dispose of large quantities of production water. The geochemical disequilibrium between the injectant water composition and the target aquifer can potentially drive a range of water-sediment interactions that must be clearly understood and quantified in order to anticipate and manage future water quality changes at both the local and regional scale. In this study, we use a multi-scale geochemical characterisation of a proposed reinjection site in combination with geochemical/reactive transport modeling to understand and predict the long-term fate of arsenic; and explore means for suitably mitigating an undesired increase of naturally occurring arsenic concentrations. We use a series of arsenic sorption experiments with the aquifer material from an injection trial site in Queensland, Australia to quantify As sorption/desorption from mineral surfaces in response to changes in site-specific geochemical conditions. Batch experiments with arsenite were performed under anoxic conditions to replicate the highly reducing in-situ conditions. The results showed significant arsenic mobility at pH >8. Competitive sorption effects with phosphate and the impact of varying temperatures were also tested in batch mode. A site-specific general composite (GC) surface complexation model (SCM) was derived through inverse geochemical modeling, i.e., selection of appropriate surface complexation reactions and optimization of sorption constants. The SCM was subsequently tested and further improved during the interpretation of data from column flow-through experiments and from a field injection trial. Eventually the uncertainty associated with estimates of sorption constants was addressed and the effects of this uncertainty on field-scale model predictions were analyzed.

  4. [Study on the bioleaching mechanism of manganse (II) from manganese-electrolytic residue by manganese-resistant strain Fusarium sp].

    Huang, Yu-Xia; Cao, Jian-Bing; Li, Xiao-Ming; Yang, Qi; Huang, Hua-Jun; Liu, Xian; Yang, Hui

    2011-09-01

    The manganse bioleaching mechanism by a manganese-resistant strain Fusarium sp. was investigated, through analyzing the bioleaching rate and manganese-electrolytic residue characterizations with the presence of Fusarium sp. and with the addition of organic acids. Special attention was paid to explore the relationship among the manganese's leaching rate, pH, and organic acid concentration during Fusarium sp. bioleaching process. The research results showed that, with the addition of Fusarium sp., some looser and more porous manganese-electrolytic residues could be obtained. And after 47 hours, the leaching rate reached to 84% which was 2.30 times higher than that leached by individual organic acid even after 130 hours; the leaching rate of manganese and the concentrations of organic acids increased at the initial stage and then decreased, while pH was the reversed. Additionally, the concentration of Succinic acid and L-Malic acid reached their crest value (11.12 g/L and 10.23 g/L) at 57 and 62 hours respectively. Yet the pH reached the lowest (4.09) at 29 h, which implied that, Fusarium sp. and organic acid produced played an important role in the leaching of manganese, leading to a high-efficiency and time-saving process. However, due to the high density of manganese-electrolytic residue and the concurrence of the produce and consumption of organic acid together with the adsorption and complexation, the relationship among the extraction rate for manganese ion, pH, and the concentration of organic acid produced could not be described by simple linear correlation and the leaching rate decreased significantly in the later stage. PMID:22165242

  5. Research on arsenic content and its speciation distribution characteristics in overlying coal and fly ash recycling soil%覆煤及粉煤灰回用土壤砷质量比与赋存形态研究

    王明仕; 张晓; 杨娜娜; 钦凡; 刘克武

    2012-01-01

    higher than the natural background val-ues of arsenic content in the soil. Soil arsenic pollution of the study area has been becoming more serious. It is caused by the higher arsenic content of sandstone and silty sandstone in the study area, as well as wide distribution of overlying coal and a large amount of reused fly ash in the farmland. Soil arsenic in this study area mainly exists as residue state(72.16%), which is followed by sulfide combination state, iron manganese oxide combination state (5.89 % ) , organic state(3.06% ), carbonate combination state(2.51 % )and water soluble and exchangeable state (0.93 % ) . They can be arranged in order as: residue state arsenic > sulfide combination state arsenic > iron manganese oxide combination state arsenic > organic state arsenic > carbonate combination state arsenic > water soluble and exchangeable state arsenic. Although the total soil arsenic content of this area is too high, the arsenic transformation ability in residual state which arsenic mainly exists in is relatively weak. Therefore, its harm to the environment and human health has yet been in discussion.

  6. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported. PMID:25438126

  7. New Sorbents for Removing Arsenic From Water

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  8. Tropospheric arsenic over marine and continental regions

    Particulate and vapor concentrations of atmospheric As have been measured over various marine and continental areas. Particulate sample were collected on double Whatman 41 filters. Particulate-vapor samples were collected using an in-line filter system with a 0.45-μm pore size Nuclepore filters as a particle prefilter in front of two Whatman 41 filters impregnated with tetrabutylammonium hydroxide and glycerol for vapor As collection. Arsenic determinations were by destructive neutron activation. The data from the Nuclepore-impregnated filter samples indicates that the major fraction of As in the atmosphere is particulate but a vapor component of As is detectable, most frequently associated with high sampling temperatures and high total As concentrations. With the data presented here, estimates of representative global near-surface concentrations of atmospheric arsenic have been made

  9. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  10. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh

    Highlights: ► Concentrations of As and other elements in vegetables and drinking water. ► Concentrations of As and other elements in garden soils. ► Daily dietary intake of As and other elements for adults from vegetables and water. ► Potential health risk was estimated comparing with the FAO/WHO values of metals. ► Vegetables alone contribute the elemental intake below the PMTDI values. -- Abstract: The study assesses the daily consumption by adults of arsenic (As) and other elements in drinking water and home-grown vegetables in a severely As-contaminated area of Bangladesh. Most of the examined elements in drinking water were below the World Health Organization (WHO) guideline values except As. The median concentrations of As, cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), Mn, nickel (Ni), and zinc (Zn) in vegetables were 90 μg kg−1, 111 μg kg−1, 0.80 mg kg−1, 168 μg kg−1, 13 mg kg−1, 2.1 mg kg−1, 65 mg kg−1, 1.7 mg kg−1, and 50 mg kg−1, respectively. Daily intakes of As, Cd, Cr, Co, Cu, Pb, manganese (Mn), Ni, and Zn from vegetables and drinking water for adults were 839 μg, 2.9 μg, 20.8 μg, 5.5 μg, 0.35 mg, 56.4 μg, 2.0 mg, 49.1 μg, and 1.3 mg, respectively. The health risks from consuming vegetables were estimated by comparing these figures with the WHO/FAO provisional tolerable weekly or daily intake (PTWI or PTDI). Vegetables alone contribute 0.05 μg of As and 0.008 mg of Cu per kg of body weight (bw) daily; 0.42 μg of Cd, 8.77 mg of Pb, and 0.03 mg of Zn per kg bw weekly. Other food sources and particularly dietary staple rice need to be evaluated to determine the exact health risks from such foods

  11. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh

    Rahman, Mohammad Mahmudur; Asaduzzaman, Md. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106 (Australia)

    2013-11-15

    Highlights: ► Concentrations of As and other elements in vegetables and drinking water. ► Concentrations of As and other elements in garden soils. ► Daily dietary intake of As and other elements for adults from vegetables and water. ► Potential health risk was estimated comparing with the FAO/WHO values of metals. ► Vegetables alone contribute the elemental intake below the PMTDI values. -- Abstract: The study assesses the daily consumption by adults of arsenic (As) and other elements in drinking water and home-grown vegetables in a severely As-contaminated area of Bangladesh. Most of the examined elements in drinking water were below the World Health Organization (WHO) guideline values except As. The median concentrations of As, cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), Mn, nickel (Ni), and zinc (Zn) in vegetables were 90 μg kg{sup −1}, 111 μg kg{sup −1}, 0.80 mg kg{sup −1}, 168 μg kg{sup −1}, 13 mg kg{sup −1}, 2.1 mg kg{sup −1}, 65 mg kg{sup −1}, 1.7 mg kg{sup −1}, and 50 mg kg{sup −1}, respectively. Daily intakes of As, Cd, Cr, Co, Cu, Pb, manganese (Mn), Ni, and Zn from vegetables and drinking water for adults were 839 μg, 2.9 μg, 20.8 μg, 5.5 μg, 0.35 mg, 56.4 μg, 2.0 mg, 49.1 μg, and 1.3 mg, respectively. The health risks from consuming vegetables were estimated by comparing these figures with the WHO/FAO provisional tolerable weekly or daily intake (PTWI or PTDI). Vegetables alone contribute 0.05 μg of As and 0.008 mg of Cu per kg of body weight (bw) daily; 0.42 μg of Cd, 8.77 mg of Pb, and 0.03 mg of Zn per kg bw weekly. Other food sources and particularly dietary staple rice need to be evaluated to determine the exact health risks from such foods.

  12. Arsenic contamination of groundwater in Bangladesh

    Shallow groundwater with high arsenic concentrations from naturally occurring sources is the primary source of drinking water for millions of people in Bangladesh. It has resulted in a major public health crisis with as many as 70 million people possibly at risk. The International Atomic Energy Agency (IAEA) is supporting international efforts and the Government of Bangladesh to find alternative, safe and sustainable sources of drinking water. (IAEA)

  13. Arsenic toxicity: the effects on plant metabolism

    PatrickFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  14. Arsenic trioxide: safety issues and their management

    Wing-Yan AU; Yok-Lam KWONG

    2008-01-01

    Arsenic trioxide (As2O3) has been used medicinally for thousands of years.Its therapeutic use in leukaemia was described a century ago.Recent rekindling in the interest of As2O3 is due to its high efficacy in acute promyelocytic leukaemia (APL).As2O3 has also been tested clinically in other blood and solid cancers.Most studies have used intravenous As2O3,although an oral As2O3 is equally efficacious.Side effects of As2O3 are usually minor,including skin reactions,gastrointestinal upset,and hepatitis.These respond to symptomatic treatment or temporary drug cessation,and do not compromise subsequent treatment with As2O3.During induction therapy in APL,a leucocytosis may occasionally occur,which can be associated with fluid accumulation and pulmonary infiltration.The condition is similar to the APL differentiation syndrome during treatment with all-trans retinoic acid,and responds to cytoreductive treatment and corticosteroids.Intravenous As2O3 treatment leads to QT prolongation.In the presence of under-lying cardiopulmonary diseases or electrolyte disturbances,particularly hypokalaemia and hypomagnesaemia,serious arrhythmias may develop,with torsades du pointes reported in 1% of cases.This may be related to a dose-dependent arsenic-mediated inhibition of potassium ion channels that compro-mises cardiac repolarization.Because of slow intestinal absorption,oral-As2O3 gives a lower plasma arsenic concentration,which is associated with lesser QT prolongation and hence a more favorable cardiac safety profile.As2O3 does not appear to enter the central nervous system.However,if the blood brain barrier is breached,elemental arsenic may enter the cerebrospinal fluid.As2O3 is predomi-nantly excreted in the kidneys,and dose adjustment is required when renal func-tion is impaired.

  15. Arsenic concentrations in groundwaters of Cyprus

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  16. Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia

    Vibol, Sao [United Nations University – International Institute for Global Health, Kuala Lumpur (Malaysia); Faculty of Agricultural Technology and Management, Royal University of Agriculture, Phnom Penh (Cambodia); Hashim, Jamal Hisham, E-mail: jamalhas@hotmail.com [United Nations University – International Institute for Global Health, Kuala Lumpur (Malaysia); Department of Community Health, National University of Malaysia, Kuala Lumpur (Malaysia); Sarmani, Sukiman [Faculty of Science and Technology, National University of Malaysia, Bangi (Malaysia)

    2015-02-15

    The research was carried out at 3 study sites with varying groundwater arsenic (As) levels in the Kandal Province of Cambodia. Kampong Kong Commune was chosen as a highly contaminated site (300–500 μg/L), Svay Romiet Commune was chosen as a moderately contaminated site (50–300 μg/L) and Anlong Romiet Commune was chosen as a control site. Neurobehavioral tests on the 3 exposure groups were conducted using a modified WHO neurobehavioral core test battery. Seven neurobehavioral tests including digit symbol, digit span, Santa Ana manual dexterity, Benton visual retention, pursuit aiming, trail making and simple reaction time were applied. Children's hair samples were also collected to investigate the influence of hair As levels on the neurobehavioral test scores. The results from the inductively coupled plasma-mass spectrometry (ICP-MS) analyses of hair samples showed that hair As levels at the 3 study sites were significantly different (p<0.001), whereby hair samples from the highly contaminated site (n=157) had a median hair As level of 0.93 μg/g, while the moderately contaminated site (n=151) had a median hair As level of 0.22 μg/g, and the control site (n=214) had a median hair As level of 0.08 μg/g. There were significant differences among the 3 study sites for all the neurobehavioral tests scores, except for digit span (backward) test. Multiple linear regression clearly shows a positive significant influence of hair As levels on all the neurobehavioral test scores, except for digit span (backward) test, after controlling for hair lead (Pb), manganese (Mn) and cadmium (Cd). Children with high hair As levels experienced 1.57–4.67 times greater risk of having lower neurobehavioral test scores compared to those with low hair As levels, after adjusting for hair Pb, Mn and Cd levels and BMI status. In conclusion, arsenic-exposed school children from the Kandal Province of Cambodia with a median hair As level of 0.93 µg/g among those from the highly

  17. Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia

    The research was carried out at 3 study sites with varying groundwater arsenic (As) levels in the Kandal Province of Cambodia. Kampong Kong Commune was chosen as a highly contaminated site (300–500 μg/L), Svay Romiet Commune was chosen as a moderately contaminated site (50–300 μg/L) and Anlong Romiet Commune was chosen as a control site. Neurobehavioral tests on the 3 exposure groups were conducted using a modified WHO neurobehavioral core test battery. Seven neurobehavioral tests including digit symbol, digit span, Santa Ana manual dexterity, Benton visual retention, pursuit aiming, trail making and simple reaction time were applied. Children's hair samples were also collected to investigate the influence of hair As levels on the neurobehavioral test scores. The results from the inductively coupled plasma-mass spectrometry (ICP-MS) analyses of hair samples showed that hair As levels at the 3 study sites were significantly different (p<0.001), whereby hair samples from the highly contaminated site (n=157) had a median hair As level of 0.93 μg/g, while the moderately contaminated site (n=151) had a median hair As level of 0.22 μg/g, and the control site (n=214) had a median hair As level of 0.08 μg/g. There were significant differences among the 3 study sites for all the neurobehavioral tests scores, except for digit span (backward) test. Multiple linear regression clearly shows a positive significant influence of hair As levels on all the neurobehavioral test scores, except for digit span (backward) test, after controlling for hair lead (Pb), manganese (Mn) and cadmium (Cd). Children with high hair As levels experienced 1.57–4.67 times greater risk of having lower neurobehavioral test scores compared to those with low hair As levels, after adjusting for hair Pb, Mn and Cd levels and BMI status. In conclusion, arsenic-exposed school children from the Kandal Province of Cambodia with a median hair As level of 0.93 µg/g among those from the highly

  18. A Life’s Addresses

    Balle, Søren Hattesen

    2006-01-01

    number of different aspects of Koch’s own life such as marijuana, the Italian language, World War Two, etc. In this way, the book quite conventionally inscribes itself in the tradition of post-enlightenment apostrophic poetry as characterized by Culler, just as all its poems belong to the favourite......, are literally troped as and addressed in the manner of so many acquaintances, personal connections, relatives, friends, lovers, and family members in Koch’s life. My main claim is that Koch’s poetics in New Addresses is one that slightly dislocates the romantic dichotomy between the world of things...

  19. Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides

    Bahadar, Haji; Mostafalou, Sara; Abdollahi, Mohammad

    2014-01-01

    This review is undertaken to address the possible role of arsenic and pesticides in the prevalence of diabetes in Pakistan and to highlight a resourceful targeted research in this area. A bibliographic search of scientific databases was conducted with key words of “epidemics of diabetes in Pakistan”, “diabetes in Asia”, “diabetes mellitus and environmental pollutants”, “diabetes mellitus and heavy metals”, “diabetes mellitus and pesticides”, “prevalence of pesticides in Pakistan”, and “heavy ...

  20. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase

    Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail; Cascio, Duilio; Cabelli, Diane E.; Valentine, Joan Selverstone (EWHA); (UCLA); (BNL)

    2012-10-10

    Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusively through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.