WorldWideScience

Sample records for additional reversible mechanism

  1. Nano-mechanical magnetization reversal

    Kovalev, Alexey A.; Bauer, Gerrit E. W.; Brataas, Arne

    2004-01-01

    The dynamics of the ferromagnetic order parameter in thin magnetic films is strongly affected by the magnetomechanical coupling at certain resonance frequencies. By solving the equation of motion of the coupled mechanical and magnetic degrees of freedom we show that the magnetic-field induced magnetization switching can be strongly accelerated by the lattice and illustrate the possibility of magnetization reversal by mechanical actuation.

  2. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    The Grignard addition reaction is known to be a reversible process with allylic reagents, but so far the reversibility has not been demonstrated with other alkylmagnesium halides. By using crossover experiments it has been established that the benzyl addition reaction is also a reversible...... transformation. The retro benzyl reaction was shown by the addition of benzylmagnesium chloride to di-tert-butyl ketone followed by exchange of both the benzyl and the ketone moiety with another substrate. Similar experiments were performed with phenylmagnesium bromide and tert-butylmagnesium chloride, but in...... these two cases the Grignard addition reaction did not show any sign of a reverse transformation....

  3. Reversal of Neurological Deficit with Naloxone: An Additional Report

    Hans, Pol; BRICHANT, Jean-François; Longerstay, E.; DAMAS, François; Remacle, J M

    1992-01-01

    We report the repeated improvement in neurological function following naloxone administration in a patient who developed acute hemiplegia after an intracranial neurological procedure. The mechanisms responsible for the neurological deficit and for its reversal by naloxone are discussed. A review of the literature suggests that the beneficial effect of naloxone can result from an improvement in haemodynamic status or from metabolic effects that could be favorable during cerebral ischaemia.

  4. Reversible addition-fragmentation chain transfer polymerization in microemulsion.

    O'Donnell, Jennifer M

    2012-04-21

    This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed. PMID:22246214

  5. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  6. Mechanical properties of additively manufactured octagonal honeycombs.

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. PMID:27612831

  7. Mechanical Stability and Reversible Fracture of Vault Particles

    Llauró, Aida; Guerra, Pablo; Irigoyen, Nerea; Rodríguez, José F.; Verdaguer, Núria; de Pablo, Pedro J.

    2014-01-01

    Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear cellular function and promising applications as vehicles for drug delivery. In this article, we examine the local stiffness of individual vaults and probe their structural stability with atomic force microscopy under physiological conditions. Our data show that the barrel, the central part of the vault, governs both the stiffness and mechanical strength of these particles. In addition, we induce single-protein fractures in the barrel shell and monitor their temporal evolution. Our high-resolution atomic force microscopy topographies show that these fractures occur along the contacts between two major vault proteins and disappear over time. This unprecedented systematic self-healing mechanism, which enables these particles to reversibly adapt to certain geometric constraints, might help vaults safely pass through the nuclear pore complex and potentiate their role as self-reparable nanocontainers. PMID:24507609

  8. Effects of small ionic amphiphilic additives on reverse microemulsion morphology

    Hopkins Hatzopoulos, Marios T; James, Craig; Rogers, Sarah E.; Grillo, Isabelle; Dowding, Peter J; Eastoe, Julian

    2014-01-01

    HypothesisInitial studies (Hopkins Hatzopoulos et al. (2013)) have shown that ionic hydrotropic additives can drive a sphere-to-cylinder (ellipsoid) transition in water-in-oil (w/o) microemulsions stabilized by the anionic surfactant Aerosol-OT; however the origins of this behaviour remained unclear. Here systematic effects of chemical structure are explored with a new set of hydrotropes, in terms of an aromatic versus a saturated cyclic hydrophobic group, and linear chain length of alkyl car...

  9. Remanence Properties and Magnetization Reversal Mechanism of Fe Nanowire Arrays

    WANG Jian-Bo; LIU Qing-Fang; XUE De-Sheng; LI Fa-Shen

    2004-01-01

    @@ Remanence properties and magnetization reversal mechanism of Fe nanowire arrays with diameters 16 nm and130nm are studied. Isothermal remanent magnetization curves show that the contribution of irreversible magnetization decreases when the diameter changes from 16nm to 130nm. The remanence coercivities of these nanowires obtained in dc-demagnetization curve are about 2400 Oe and 800 Oe, respectively. The magnetization reversal mechanism is different in these two samples. For the nanowire array with diameter 16nm, both the nucleation and the pinning have effects on magnetization reversal mechanism, and the pinning field (about 2500Oe) is larger than the nucleation field (about 2200 Oe). However, for the nanowire array with diameter 130nm,the magnetization reversal mechanism is dominated by the pinning effect of domain walls.

  10. Mechanisms of Cytochrome C Extraction by Reverse Micelles

    2001-01-01

    The extraction of cytochrome C was carried out by means of phase transfer technique with three different reverse micellar systems, i.e., a CTAB micellar solution in n-butyl alcohol-chloroform(volume ratio 4∶1), an AOT micellar solution in isooctane and a SDSS-D2EHPA micellar solution in isooctane. The extraction mechanisms were studied. The results show that the extraction mechanisms for the same proteins with different types of reverse micellar systems can be distinct. The extraction of cytochrome C with CTAB and SDSS-D2EHPA reverse micellar systems are carried out according to the mechanism of electrostatic interaction. However, in the extraction of cytochrome C with the AOT reverse micellar system, the electrostatic interaction between the protein and the surfactant is not important.

  11. Reverse mechanical after effect during hydrogenation of zone refined iron

    Spivak, L.V.; Skryabina, N.E.; Kurmaeva, L.D.; Smirnov, L.V. (Permskij Gosudarstvennyj Univ. (USSR); AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The relationship between the process of hydrogenation and the reverse mechanical after effect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities.

  12. Reverse mechanical after effect during hydrogenation of zone refined iron

    The relationship between the process of hydrogenation and the reverse mechanical aftereffect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities

  13. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Yu Ko, Hnin Yu [Data Storage Institute, Agency for Science, Technology and Research (A-Star), 5 Engineering Drive 1, Singapore 117608 (Singapore); Wu, B. L.; Ng, V. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Asbahi, M.; Yang, J. K. W. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-Star), 3 Research Link, Singapore 117602 (Singapore)

    2014-10-20

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The average percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.

  14. Additive strengthening mechanisms in dispersion hardened polycrystals

    Hansen, Niels; Ralph, B.

    1986-01-01

    the addition of strength components from various elements of the microstructure and substructure might explain this behaviour are investigated. It is shown that a linear combination of a matrix friction stress, an Orowan bowing stress, a matrix mean stress from the particles and a combined dislocation...... the dislocation density contributions from each of these three sources. The type of additivity suggested here not only gives very good agreement with the stress-strain data but it also uses and is in accord with the experimental measurements of dislocation densities made using transmission electron...

  15. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method

    Koole, R; van Schooneveld, M.M.; Hilhorst, J.; De Mello Donega, C.; 't Hart, D.C.; van Blaaderen, A.; Vanmaekelbergh, D.A.M.; Meijerink, A.

    2008-01-01

    In this work, we show strong experimental evidence in favor of a proposed incorporation mechanism of hydrophobic semiconductor nanocrystals (or quantum dots, QDs) in monodisperse silica spheres (diameter ∼35 nm) by a water-in-oil (W/O) reverse microemulsion synthesis. Fluorescence spectroscopy is used to investigate the rapid ligand exchange that takes place at the QD surface upon addition of the various synthesis reactants. It is found that hydrolyzed TEOS has a high affinity for the QD surf...

  16. Reversion of Hormone Treatment Resistance with the Addition of an mTOR Inhibitor in Endometrial Stromal Sarcoma

    J. Martin-Liberal

    2014-01-01

    Full Text Available Background. Endometrial stromal sarcomas (ESS are a subtype of gynaecological sarcomas characterized by the overexpression of hormone receptors. Hormone treatment is widely used in ESS but primary or acquired resistance is common. The mammalian target of rapamycin (mTOR pathway has been suggested to play a key role in the mechanisms of hormone resistance. Recent studies in breast and prostate cancer demonstrate that this resistance can be reversed with the addition of an mTOR inhibitor. This phenomenon has never been reported in ESS. Methods. We report the outcome of one patient with pretreated, progressing low grade metastatic ESS treated with medroxyprogesterone acetate in combination with the mTOR inhibitor sirolimus. Results. Partial response was achieved following the addition of sirolimus to the hormone treatment. Response has been maintained for more than 2 years with minimal toxicity and treatment is ongoing. Conclusion. This case suggests that the resistance to the hormone manipulation in ESS can be reversed by the addition of an mTOR pathway inhibitor. This observation is highly encouraging and deserves further investigation.

  17. Additively homomorphic encryption with a double decryption mechanism, revisited

    Peter, A.; Kronberg, M.; Trei, W.; Katzenbeisser, S.

    2012-01-01

    We revisit the notion of additively homomorphic encryption with a double decryption mechanism (DD-PKE), which allows for additions in the encrypted domain while having a master decryption procedure that can decrypt all properly formed ciphertexts by using a special master secret. This type of encryp

  18. Evaluation of the clenbuterol imprinted monolithic column prepared by reversible addition-fragmentation chain transfer polymerization

    Mamat Turson; Xiao Lei Zhuang; Hui Na Liu; Ping Jiang; Xiang Chao Dong

    2009-01-01

    To make more homogenous organic monolithic structure,reversible addition-fragmentation chain transfer(RAFT)process was employed in the synthesis of the clenbuterol imprinted polymer.In the synthesis,the influence of synthetic conditions on the polymer structure and separation efficiency was studied.The result demonstrated that the imprinted columns prepared with RAFT process have higher column efficiency and selectivity than the columns prepared with conventional polymerization in the present study,which may result from the higher surface area,smaller pore size and the narrower globule size distribution in their structures.The result indicated that RAFT polymerization provided better conditions for the clenbuterol imprinted monolithic polymer preparation.

  19. Atomic mechanics and reversibility of failure in nanoscale

    Full text: Mechanics of nanotubes serves as a benchmark in atomically-precise modeling of elasticity, buckling, yield and failure mechanisms. The molecular simplicity combined with the hollow morphology, permit synergism of continuum elasticity, shell stability, classical and quantum molecular dynamics and kinetic rate theory. Recent quantum ab initio calculations of structures and moduli for C, BN and CFx shells are connected with their persistence length and vibrations. Further, a comparative ab initio density functional analysis of yield thermodynamics for carbon (C, purely covalent) and boron nitride (BN, covalent-ionic) structures will be presented and their strengths compared. Consistent approach to strength evaluation based on the rate equations and transition state theory, adapted from chemical kinetics, is outlined. Its implementation with classical potentials and more recent density functional realization permits obtaining the realistic strength estimates. Finally we will discuss in detail a novel phenomenon in nanoscale: coalescence or 'welding' of nanostructures. These processes are opposite to yield relaxation and failure. We have identified the exact paths-trajectories for chemical bond rearrangements that lead to complete and seamless fusion of the generic types, e.g. (10,10) + (10,10) → (10,10), or (15,0) + (15,0) → (15,0), etc. This is important for engineering of new nanostructures through stretching or 'welding', as well as for improvement of bulk material properties due to increased connectivity of the tubules. Same class of processes includes incorporation of a C60-ball into a tubule, an important step in the growth mechanism. Bond rotation (Stone-Wales transformation in chemistry) plays the key role in these molecular 'beam-and-truss' constructions. A lateral fusion of adjacent cylinders is analyzed, and the SW-sequence is shown to lead to complete merging and diameter doubling. We will finally discuss an intriguing physics of possible

  20. Rejection mechanisms for contaminants in polymeric reverse osmosis membranes

    Shen, Meng; Lueptow, Richard M

    2016-01-01

    Despite the success of reverse osmosis (RO) for water purification, the molecular-level physico-chemical processes of contaminant rejection are not well understood. Here we carry out NEMD simulations on a model polyamide RO membrane to understand the mechanisms of transport and rejection of both ionic and neutral contaminants in water. We observe that the rejection changes non-monotonously with ion sizes. In particular, the rejection of urea, 2.4 A radius, is higher than ethanol, 2.6 A radius, and the rejections for organic solutes, 2.2-2.8 A radius, are lower than Na+, 1.4 A radius, or Cl-, 2.3 A radius. We show that this can be explained in terms of the solute accessible intermolecular volume in the membrane and the solute-water pair interaction energy. If the smallest open spaces in the membrane's molecular structure are all larger than the hydrated solute, then the solute-water pair interaction energy does not matter. However, when the open spaces in the polymeric structure are such that solutes have to s...

  1. Mechanical Properties of Iron Alumininides Intermetallic Alloy with Molybdenum Addition

    In this work, FeAl-based alloys with and without molybdenum addition were fabricated by sintering of mechanically alloyed powders in order to investigate the effect of molybdenum on iron aluminide mechanical properties. Bulk samples were prepared by mechanical alloying for 4 hours, pressing at 360 MPa and sintering at 1000 deg. C for 2 hours. The specimens were tested in compression at room temperature using Instron machine. The phase identification and microstructure of the consolidated material was examined by x-ray diffraction and scanning electron microscope correspondingly. Results show that 2.5 wt%Mo addition significantly increased the ultimate stress and ultimate strain in compressive mode due to solid solution hardening. However, the addition of Mo more than 2.5 wt% was accompanied by a reduction in both properties caused by the presence of Mo-rich precipitate particles.

  2. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms

    Lewis, Kayla A.; Tollefsbol, Trygve O.

    2016-01-01

    Chromosome-shortening is characteristic of normal cells, and is known as the end replication problem. Telomerase is the enzyme responsible for extending the ends of the chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant cancers. There are three subunits of telomerase: human telomerase RNA (hTERC), human telomerase associated protein (hTEP1), or dyskerin, and human telomerase reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so the enzymatic activity of telomerase is dependent on the transcription of hTERT. DNA methylation, histone methylation, and histone acetylation are basic epigenetic regulations involved in the expression of hTERT. Non-coding RNA can also serve as a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT is important in providing a mechanism for reversibility of hTERT control in various biological states. These include embryonic down-regulation of hTERT contributing to aging and the upregulation of hTERT playing a critical role in over 90% of cancers. Normal human somatic cells have a non-methylated/hypomethylated CpG island within the hTERT promoter region, while telomerase-positive cells paradoxically have at least a partially methylated promoter region that is opposite to the normal roles of DNA methylation. Histone acetylation of H3K9 within the promoter region is associated with an open chromatin state such that transcription machinery has the space to form. Histone methylation of hTERT has varied control of the gene, however. Mono- and dimethylation of H3K9 within the promoter region indicate silent euchromatin, while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target epigenetic-modifying enzymes, as well as transcription factors involved in the control of hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent fascination that has received much attention. By combining portions of this diet with

  3. In-line monitoring and reverse 3D model reconstruction in additive manufacturing

    Pedersen, David Bue; Hansen, Hans Nørgaard; Nielsen, Jakob Skov

    2010-01-01

    Additive manufacturing allows for close-to unrestrained geometrical freedom in part design. The ability to manufacture geometries of such complexity is however limited by the fact that it proves difficult to verify tolerances of these parts. Tolerancs of featuress that are inaccessible with tradi......D printing (3DP), or Selective Laser Sintering (SLS) equipment. The system will be implemented and tested on a 3DP machine with modifications developed at the author's university.......Additive manufacturing allows for close-to unrestrained geometrical freedom in part design. The ability to manufacture geometries of such complexity is however limited by the fact that it proves difficult to verify tolerances of these parts. Tolerancs of featuress that are inaccessible with...... traditional measuring equipment such as Coordinate Measurement Machines (CMM's) can not easily be verified. This paradox is addresses by the proposal of an in-line reverse engineering and 3D reconstruction method that alows for a true to scale reconstruction of a part that is being additivelymanufactures on 3...

  4. Metal Additive Manufacturing: A Review of Mechanical Properties

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  5. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  6. Synthesis of carboxylic block copolymers via reversible addition fragmentation transfer polymerization for tooth erosion prevention.

    Lei, Y; Wang, T; Mitchell, J W; Qiu, J; Kilpatrick-Liverman, L

    2014-12-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611

  7. Time reversal noninvariance in quantum mechanics and in nonlinear optics

    Kuz'menko, V. A.

    2005-01-01

    The experimental proofs of strong time invariance violation in optics are discussed. Time noninvariance is the only real physical base for explanation the origin of the most phenomena in nonlinear optics. The experimental study of forward and reversed transitions in oriented in uniform electric field molecules is proposed.

  8. Effect and mechanism of siderite on reverse flotation of hematite

    Yin, Wan-zhong; Li, Dong; Luo, Xi-mei; Yao, Jin; Sun, Qian-yu

    2016-04-01

    The effects of siderite on reverse flotation of hematite were investigated using micro flotation, adsorption tests, and Fourier transform infrared spectroscopy. The flotation results show that interactions between siderite and quartz are the main reasons that siderite significantly influences the floatability. The interactions are attributed to dissolved siderite species and fine siderite particles. The interaction due to the dissolved species is, however, dominant. Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculations reveal that adhesion on quartz increases when the siderite particle size decreases and that fine particles partly influence quartz floatability. Chemical solution calculations indicate that the dissolved species of siderite might convert the surface of active quartz to CaCO3 precipitates that can be depressed by starch. The theoretical calculations are in good agreement with the results of adsorption tests and FTIR spectroscopy and explain the reasons why siderite significantly influences reverse flotation of hematite.

  9. Early Career: Templating of Liquid Crystal Microstructures by Reversible Addition-Fragmentation Chain Transfer Polymerization

    Heinen, Jennifer M

    2014-12-31

    This research has shown that the microstructure of self-assembled copolymers can be decoupled from the polymer chemistry. The simplest polymer architecture, linear block copolymers, is valuable for a broad range of applications, including adhesives and coatings, medical devices, electronics and energy storage, because these block copolymers reproducibly self-assemble into microphase separated nanoscale domains. Unfortunately, the self-assembled microstructure is tuned by polymer composition, thus limiting the potential to simultaneously optimize chemical, mechanical, and transport properties for desired applications. To this end, much work was been put into manipulating block copolymer self-assembly independently of polymer composition. These efforts have included the use of additives or solvents to alter polymer chain conformation, the addition of a third monomer to produce ABC triblock terpolymers, architectures with mixed blocks, such as tapered/gradient polymers, and the synthesis of other nonlinear molecular architectures. This work has shown that the microstructures formed by linear ABC terpolymers can be altered by controlling the architecture of the polymer molecules at a constant monomer composition, so that the microstructure is tuned independently from the chemical properties.

  10. REVERSE DESIGN APPROACH FOR MECHANISM TRAJECTORY BASED ON CODE-CHAINS MATCHING

    ZHANG Shuyou; YI Guodong; XU Xiaofeng

    2007-01-01

    Aiming at the problem of reverse-design of mechanism, a method based on the matching of trajectory code-chains is presented. The motion trajectory of mechanism is described with code-chain,which is normalized to simplify the operation of geometric transformation. The geometric transformation formulas of scale, mirror and rotation for trajectory code-chain are defined, and the reverse design for mechanism trajectory is realized through the analysis and solution of similarity matching between the desired trajectory and the predefined trajectory. The algorithm program and prototype system of reverse design for mechanism trajectory are developed. Application samples show that the method can break the restriction of trajectory patterns in matching, meet the demand of partial matching, and overcome the influence of geometric transformation of trajectory on the reverse design for mechanism.

  11. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    Trukhin, Vladimir I. [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)]. E-mail: trukhin@phys.msu.ru; Bezaeva, Natalia [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation); Kurochkina, Evgeniya [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)

    2006-05-15

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented.

  12. Additional mechanisms conferring genetic susceptibility to Alzheimer's disease

    Miguel Calero

    2015-04-01

    Full Text Available Familial Alzheimer's disease (AD, mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1 and PSEN2 involved in the production of the amyloid  peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies (GWAS there is a mounting list of genetic risk factors associated to common genetic variants that have been associated to sporadic AD. Besides APOE, that presents a strong association with the disease (OR~4, the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated to AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways and networks rather than the contribution of specific genes.

  13. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe

  14. Molecular imprinting in hydrogels using reversible addition-fragmentation chain transfer polymerization and continuous flow micro-reactor

    Kadhirvel, Porkodi; Machado, Carla; Freitas, Ana; Oliveira, Tânia; Dias, Rolando; Costa, Mário

    2015-01-01

    Abstract BACKGROUND Stimuli responsive imprinted hydrogel micro-particles were prepared using reversible addition-fragmentation chain transfer polymerization for targeting genotoxic impurity aminopyridine in aqueous environment using a continuous flow micro-reactor. RESULTS The feasibility of operation with a continuous flow micro-reactor for particles production was demonstrated. A comparative evaluation was carried out between batch and micro-reactor produced imprinted and non...

  15. Coercivity, microstructure and magnetization reversal mechanism in TiNi-doped L10 FePt thin films

    Zhang, Yongmei; Li, Xiaohong; Jing, Jingjing; Zhang, Xiangyi; Zhao, Yuhong

    2016-06-01

    Controlling coercivity and understanding how it is affected by the microstructure are of essential importance for practical application of FePt thin films as a recording media. In this study, the small size of ordered domain, lower coercivity and weak intergranular exchange coupling interaction in TiNi-doped L10 FePt thin films are obtained. The TiNi additions maybe diffuse out of the FePt lattice into FePt grain boundaries, which separate FePt grains. The doping in grain boundary provides the nucleation center of reversed domain, which leads both nucleation-type and pinning-type mechanism to coexist in magnetization reversal processes for TiNi-doped FePt thin films. The decrease of anisotropy constant and nucleation field of reversed domain provides an explanation for the coercivity reduction of FePt thin films after TiNi doping.

  16. Additives That Prevent Or Reverse Cathode Aging In Drift Chambers With Helium-Isobutane Gas

    Noise and Malter breakdown have been studied at high rates in a test chamber having the same cell structure and gas as in the BaBar drift chamber. The chamber was first damaged by exposing it to a high source level at an elevated high voltage, until its operating current at normal voltages was below 0.5nA/cm. Additives such as water or alcohol allowed the damaged chamber to operate at 25 nA/cm, but when the additive was removed the operating point reverted to the original low value. However with 0.02% to 0.05% oxygen or 5% carbon dioxide the chamber could operate at more than 25 nA/cm, and continued to operate at this level even after the additive was removed. This shows for the first time that running with an O2 or CO2 additive at high ionization levels can cure a damaged chamber from breakdown problems

  17. Additives That Prevent Or Reverse Cathode Aging In Drift Chambers With Helium-Isobutane Gas

    Boyarski, A M

    2003-01-01

    Noise and Malter breakdown have been studied at high rates in a test chamber having the same cell structure and gas as in the BaBar drift chamber. The chamber was first damaged by exposing it to a high source level at an elevated high voltage, until its operating current at normal voltages was below 0.5nA/cm. Additives such as water or alcohol allowed the damaged chamber to operate at 25 nA/cm, but when the additive was removed the operating point reverted to the original low value. However with 0.2% to 0.5% oxygen or 5% carbon dioxide the chamber could operate at more than 25 nA/cm, and continued to operate at this level even after the additive was removed. This shows for the first time that running with an O2 or CO2 additive at high ionisation levels can cure a damaged chamber from breakdown problems.

  18. Additives that prevent or reverse cathode aging in drift chambers with helium-isobutane gas

    Noise and Malter breakdown have been studied at high rates in a test chamber with the same cell structure and gas as the BaBar drift chamber. The chamber was first damaged by exposing it to a high source level at an elevated high voltage, until its operating current at normal voltages was only ∼0.5 nA/cm. Additives such as water or alcohol allowed the damaged chamber to operate at 25 nA/cm, but when the additive was removed, the operating point reverted to the original low value. However, with 0.02-0.05% oxygen or 5% carbon dioxide, the chamber could operate at more than 25 nA/cm and continued to operate at this level even after the additive was removed. This shows for the first time that running with an O2 or CO2 additive at high ionization levels can cure a damaged chamber from breakdown problems

  19. Spectroscopic studies of the mechanism of reversible photodegradation of 1-substituted aminoanthraquinone-doped polymers

    Hung, Sheng-Ting; Schademan, Kyle; Steverlynck, Joost; McCluskey, Matthew D; Koeckelberghs, Guy; Clays, Koen; Kuzyk, Mark G

    2015-01-01

    The mechanism of reversible photodegradation of 1-substituted aminoanthraquinones doped into poly(methyl methacrylate) and polystyrene is investigated. Time-dependent density functional theory is employed to predict the transition energies and corresponding oscillator strengths of the proposed reversibly- and irreversibly-damaged dye species. Ultraviolet-visible and Fourier transform infrared (FTIR) spectroscopy are used to characterize which species are present. FTIR spectroscopy indicates that both dye and polymer undergo reversible photodegradation when irradiated with a visible laser. These findings suggest that photodegradation of 1-substituted aminoanthraquinones doped in polymers originates from interactions between dyes and photoinduced thermally-degraded polymers, and the metastable product may recover or further degrade irreversibly.

  20. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation ...

  1. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.

    Lee, Subin; Im, Jiseong; Yoo, Youngdong; Bitzek, Erik; Kiener, Daniel; Richter, Gunther; Kim, Bongsoo; Oh, Sang Ho

    2014-01-01

    Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning-detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength. PMID:24398783

  2. Green certificates - additional instruments at Kyoto Protocol's flexible mechanisms

    The paper presents four mechanisms, designed to realize certain objectives - to stimulate the use of electricity produced from renewable energy sources and to mitigate greenhouse gas emissions. The operation mode of these mechanisms is analyzed and their common characteristics are determined, as well as the possibility to interact each other. The systems analysed are Tradable Green Certificates and Flexible Mechanisms of Kyoto Protocol. The Green Certificates System is explained more thoroughly because the Romanian Government chose them to promote electricity from renewable energy sources on the internal electricity market. The main characteristic of these systems, which combine elements of centralization with the use of market mechanisms are outlined

  3. Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending

    We study the Bauschinger effect on a bent and straightened micro-sized single-crystal copper beam (width: 8.64 μm; thickness: 7.05 μm) over three consecutive cycles. The reverse yield strengths (straightening step) are much smaller than those in forward loading (bending step). An upper bound estimate shows a load drop of 73% (1st cycle), 76% (2nd cycle) and 83% (3rd cycle) relative to the forward yield stress. Electron backscatter diffraction reveals a dramatic reduction in the bending-induced misorientation gradients upon load reversal (straightening), documenting an unexpected form of microstructure reversibility. The observed Bauschinger softening is interpreted in terms of two effects. The first consists of internal backstresses that support load reversal. They are created by polarized dislocation arrays that are accumulated during forward bending. The second effect is the reduced requirement to activate dislocation sources during reverse loading as the dislocations that were stored during bending did not participate much in cross-hardening and, hence, serve as mobile dislocations upon reverse loading. After straightening the misorientation gradients are largely removed but the non-polarized dislocations remain. We therefore introduce a revised terminology, namely the 'mechanical Bauschinger effect' and the 'microstructural Bauschinger effect'. The former term describes a yield stress drop and the latter one the degree of microstructure reversibility upon load path changes.

  4. Kinetics of reversible addition of cycloalkyl hydroperoxides to C/sub 6/-C/sub 12/ cyclic ketones

    Lipos, V.V.; Bakova, E.A.; Groshina, N.M.; Koshel' , G.N.; Kurkchi, G.A.; Timrot, T.N.

    1985-11-01

    This paper examines the influence of ring size on the reaction of hydroperoxide addition to the C=O bond. The authors investigated the kinetics of hemiperketal formation in the interaction of cycloalkanones C /SUB n/ H /SUB 2n-20/ (n = 6, 8, 12) with cycloalkyl hydroperoxidides C /SUB n/ H /SUB 2n-1/ OOH (n = 6, 8) in the temperature interval 25-50 degrees. The temperature dependence of the rate constants for the forward and reverse reactions of cyclohexanone interaction were determined with cyclohexyl and cyclooctyl hydroperoxides.

  5. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).

    Fairbanks, Benjamin D; Gunatillake, Pathiraja A; Meagher, Laurence

    2015-08-30

    RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired. PMID:26050529

  6. A possible mechanism for pressure reversal of general anaesthetics from molecular simulations

    Chau, P.-L.; Hoang, Paul N. M.; Picaud, Sylvain; Jedlovszky, Pál

    2007-04-01

    The effect of general anaesthetics is pressure-dependent. We have simulated a fully hydrated dimyristoylphosphatidylcholine bilayer with halothane (a general anaesthetic) embedded, at pressures of 1, 200 and 400 atm, respectively. We find that at higher pressures, halothane molecules tend to cluster together. Based on these results, we propose a possible mechanisms for pressure reversal of anaesthesia.

  7. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Hamada, A.S., E-mail: atef.hamada@suezuniv.edu.eg [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Box 43721, Suez (Egypt); Kisko, A.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Sahu, P. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Karjalainen, L.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland)

    2015-03-25

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing.

  8. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  9. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing

  10. Investigation of the magnetization reversal mechanism of electrolessly deposited Co-B nanotubes

    Richardson, David; Kingston, Samuel; Rhen, Fernando M. F.

    2016-05-01

    Co-B nanotubes were prepared via an electroless deposition method. The morphology, magnetic properties and the magnetization reversal mechanism of the nanotubes were investigated. Deposition was carried out in porous polycarbonate membranes leading to the formation of Co-B nanotubes with an average external diameter of 400 nm and lengths up to 6 μm. Electroless deposition resulted in the formation of alloys with composition Co70B30 and a specific magnetization of 65.6 J T-1kg-1, which is about 40 % of that of pure Co (161 J T-1kg-1). The transversal and vortex modes were identified as the mechanisms responsible for magnetization reversal in the nanotubes. A crossover between the two modes is observed at low angles and the results are in line with current models for switching mechanisms of nanotubes.

  11. Recent additions to fundament aspects of quantum mechanics

    Problems like those of Schroedinger's can comprise quantum systems as classical systems, the measurement process and reality. After a reviewing the history of interpretation of quantum mechanics it is shown how a generalized algebraic quantum theory (e.g. G.G. Emch 1986) can tackle these problems and paradoxes. This theory treats systems with infinite degrees of freedom and open systems. It is applicable both to quantum as to classical systems and thus to the measurement process with its irreversibility. The usual linear Schroedinger equation is replaced by a non-linear one where the nonlinear terms reflect the interaction of the system with its environment or with the measuring apparatus. (Quittner) To appear also in 'Naturwissenschaft und Weltbild', 1992

  12. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    In contrast to what is predicted by classical Darwinian theory (phyletic gradualism), the fossil record typically displays a pattern of relatively sudden, dramatic changes as detailed by Eldregde and Gould's model of punctuated equilibrium. Evolutionary biologists have been at a loss to explain the ultimate source of the new mutations that drive evolution. One hypothesis holds that the abrupt speciation seen in the punctuated equilibrium model is secondary to an increased mutation rate resulting from periodically increased levels of ionizing radiation on the Earth's surface. Sporadic geomagnetic pole reversals, occurring every few million years on the average, are accompanied by alterations in the strength of the Earth's magnetic field and magnetosphere. This diminution may allow charged cosmic radiation to bombard Earth with less attenuation, thereby resulting in increased mutation rates. This episodic fluctuation in the magnetosphere is an attractive mechanism for the observed fossil record. Selected periods and epochs of geologic history for which data was available were reviewed for both geomagnetic pole reversal history and fossil record. Anomalies in either were scrutinized in greater depth and correlations were made. A 35 million year span (118-83 Ma) was identified during the Early/Middle Cretaceous period that was devoid of geomagnetic polarity reversals(the Cretaceous normal superchron). Examination of the fossil record (including several invertebrate and vertebrate taxons) during the Cretaceous normal superchron does not reveal any significant gap or slowing of speciation. Although increased terrestrial radiation exposure due to a diminution of the Earth's magnetosphere caused by a reversal of geomagnetic polarity is an attractive explanation for the mechanism of punctuated equilibrium, our investigation suggests that such polarity reversals cannot fully provide the driving force behind biological evolution. Further research is required to determine if

  13. Thermo-Responsive and Biocompatible Diblock Copolymers Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT Radical Polymerization

    Kenichi Fukuda

    2014-03-01

    Full Text Available Poly(2-(methacryloyloxyethyl phosphorylcholine-b-poly(N,N-diethyl acrylamide (PMPCm-PDEAn was synthesized via reversible addition-fragmentation chain transfer (RAFT controlled radical polymerization. Below, the critical aggregation temperature (CAT the diblock copolymer dissolved in water as a unimer with a hydrodynamic radius (Rh of ca. 5 nm. Above the CAT the diblock copolymers formed polymer micelles composed of a PDEA core and biocompatible PMPC shells, due to hydrophobic self-aggregation of the thermo-responsive PDEA block. A fluorescence probe study showed that small hydrophobic small guest molecules could be incorporated into the core of the polymer micelle above the CAT. The incorporated guest molecules were released from the core into the bulk aqueous phase when the temperature decreased to values below the CAT because of micelle dissociation.

  14. Study on the performance of polycarboxylate-based superplasticizers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization

    Yu, Binbin; Zeng, Zhong; Ren, Qinyu; Chen, Yang; Liang, Mei; Zou, Huawei

    2016-09-01

    A series of block type polycarboxylate-based superplasticizers (PCs) with different molecular architectures were synthesized with macromonomer butenyl alkylene polyoxyethylene-polyoxypropylene ether (BAPP) and acrylic acid (AA) by reversible addition-fragmentation chain transfer (RAFT) polymerization. Fourier-Transformed Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS) were applied to investigate the PCs' molecular structure. The dispersion capacity of the PCs in cement were also measured, and the results showed that the polycarboxylic dispersing agents prepared by this method were suitable for portlant cement. It was found that the PCs could affect the hydration process, which was performed through retarding the generation of ettringite in the hydrated product. Our studies with X-ray diffraction (XRD), scanning electron microscopy (SEM) and compressive strength measurement of hydrated production were all supporting this conclusion.

  15. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    Nicolas Sluis-Cremer

    2013-11-01

    Full Text Available HIV-1 reverse transcriptase (RT plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs, which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s of NNRTIs.

  16. Exterior beam-column joint study with non-conventional reinforcement detailing using mechanical anchorage under reversal loading

    S Rajagopal; S Prabavathy

    2014-10-01

    Reinforced concrete structures beam-column joints are the most critical regions in seismic prone areas. Proper reinforcement anchorage is essential to enhance the performance of the joints. An attempt has been made to appraise the performance of the anchorages and joints. The anchorages are detailed as per ACI-352 (mechanical anchorages), ACI-318 (conventional bent hooks) and IS-456 (conventional full anchorage). The joints are detailed without confinement in group-I and with additional X-cross bar in group-II. To assess the seismic performance, the specimens are assembled into two groups of three specimens each and were tested under reversal loading, The specimen with T-type mechanical anchorage (Headed bar) and T-type mechanical anchorage combination with X-cross bar exhibited significant improvement in seismic performance: load-displacement capacity, displacement ductility, stiffness degradation, controlled crack capacity in the joint shear panel and also reduced congestion of reinforcement in joint core.

  17. The effect of temperature on the magnetization reversal mechanism in sintered PrFeB

    To understand the effects of nucleation fields and intergranular dipolar interactions on the magnetization reversal mechanism, recoil curves from the major hysteresis loop have been measured on a sample of sintered PrFeB as a function of temperature from 150 to 300 K. At room temperature the reversible magnetization behavior indicates a reversal mechanism of nucleation of domain walls whose motion after nucleation is resisted by dipolar fields. As the temperature is reduced, the coercivity, and hence the nucleation field, is observed to increase while the dipolar fields, dependent on microstructure and saturation magnetization, remain approximately constant. These temperature-dependent changes in the relative magnitudes of the dipolar field and nucleation field cause the reversible magnetization behavior to change from domain wall motion to rotation. This change in behavior is attributed to the supposition that at temperatures where the nucleation field exceeds the dipolar field, once nucleated, domain walls are swept out of the material. (c) 2000 American Institute of Physics

  18. Nucleation controlled magnetization reversal mechanism in oriented L10 FeCoPt ternary alloys

    Goyal, Rajan; Sehdev, Neeru; Lamba, S.; Annapoorni, S.

    2016-01-01

    The angular dependence of scaled coercivity is investigated within the framework of various theoretical models to gather an insight into the magnetization reversal mechanism in hard magnetic materials. FeCoPt ternary alloy thin films with low concentration of Co were successfully fabricated on an Si substrate with different working pressures in order to attain an optimum energy product. The structural and hysteresis curve analysis show an improvement in atomic ordering and orientation of easy axis with annealing temperature. The experimental data for angular dependence of coercivity along with the theoretical predications based on the nucleation model indicates that the dominant reversal mechanism is nucleation along with a slight contribution from pinning. The magnetic force microscopy (MFM) imaging also supports the above model. The evolution of morphology and microstructure characterized by atomic force microscopy (AFM) was directly linked to an increase in surface roughness.

  19. Modeling astrophysical outflows via the unified Dynamo-Reverse Dynamo mechanism

    Lingam, Manasvi

    2015-01-01

    The unified Dynamo-Reverse Dynamo (Dy-RDy) mechanism, capable of simultaneously generating large scale outflows and magnetic fields from an ambient microscopic reservoir, is explored in a broad astrophysical context. The Dy-RDy mechanism is derived via Hall magnetohydrodynamics, which unifies the evolution of magnetic field and fluid vorticity. It also introduces an intrinsic length scale, the ion skin depth, allowing for the proper normalization and categorization of microscopic and macroscopic scales. The large scale Alfv\\'en Mach number $\\mathcal{M}_{A}$, defining the relative "abundance" of the flow field to the magnetic field is shown to be tied to a microscopic scale length that reflects the characteristics of the ambient short scale reservoir. The dynamo (Dy), preferentially producing the large scale magnetic field, is the dominant mode when the ambient turbulence is mostly kinetic, while the outflow producing reverse dynamo (RDy) is the principal manifestation of a magnetically dominated turbulent res...

  20. Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling?

    Randall, Matthew J.; Hristova, Milena; van der Vliet, Albert

    2013-01-01

    Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4-8 hrs by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein-acrolein a...

  1. A Study on Efficient Mobile IPv6 Fast Handover Scheme Using Reverse Binding Mechanism

    Tolentino, Randy S.; Lee, Kijeong; Kim, Sung-Gyu; Kim, Miso; Park, Byungjoo

    This paper proposes a solution for solving the packet handover issues of MIPv6. We propose an efficient scheme that can support fast handover effectively in standard Mobile IPv6 (MIPv6) by optimizing the associated data and the flow of signal during handover. A new signaling message Reverse Packet Binding Mechanism is defined and utilized to hasten the handover procedure by adding a buffer in access point (AP) and home agent (HA).

  2. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo

    Hirokazu Yoshimura

    2000-09-01

    We briefly describe historical development of the concept of solar dynamo mechanism that generates electric current and magnetic field by plasma flows inside the solar convection zone. The dynamo is the driver of the cyclically polarity reversing solar magnetic cycle. The reversal process can easily and visually be understood in terms of magnetic field line stretching and twisting and folding in three-dimensional space by plasma flows of differential rotation and global convection under influence of Coriolis force. This process gives rise to formation of a series of huge magnetic flux tubes that propagate along iso-rotation surfaces inside the convection zone. Each of these flux tubes produces one solar cycle. We discuss general characteristics of any plasma flows that can generate magnetic field and reverse the polarity of the magnetic field in a rotating body in the Universe. We also mention a list of problems which are currently being disputed concerning the solar dynamo mechanism together with observational evidences that are to be constraints as well as verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, particularly time variations of its magnetic field, plasma flows, and luminosity.

  3. Gamma radiation induced synthesis of poly(N-isopropylacrylamide) mediated by Reversible Addition-Fragmentation Chain Transfer (RAFT) process

    Kiraç, Feyza; Güven, Olgun

    2015-07-01

    Poly(N-isopropylacrylamide) (PNiPAAm) is synthesized by gamma radiation induced Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization. The monomer is polymerized in the presence of two different trithiocarbonate-based RAFT agents i.e., Cyanomethyldodecyltrithiocarbonate (CDTC) and 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DMPA) in dimethylformamide (DMF) at room temperature under nitrogen atmosphere. Number-average molecular weights (Mn) and dispersities of the polymers were determined by Size Exclusion Chromatography (SEC). Dispersities (Ɖ) of the resulting polymers are narrow, i.e., Ɖ≤1.18, indicating the occurrence of well-controlled polymerization via radiation induced RAFT process. %Conversion is determined by gravimetric method and also confirmed by Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy. By selecting proper [Monomer]/[RAFT] ratio and controlling conversion it is possible to synthesize PNiPAAm in the molecular weight range of 2400-72400 with extremely low molecular weight distributions with the anticipation of preparing corresponding size-controlled nanogels. The phase transition of PNiPAAm with low dispersity synthesized by RAFT is sharper than PNiPAAm synthesized by free radical polymerization.

  4. Scale-up of the Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization Using Continuous Flow Processing

    Nenad Micic

    2014-01-01

    Full Text Available A controlled radical polymerization process using the Reversible Addition-Fragmentation Chain Transfer (RAFT approach was scaled up by a factor of 100 from a small laboratory scale of 5 mL to a preparative scale of 500 mL, using batch and continuous flow processing. The batch polymerizations were carried out in a series of different glass vessels, using either magnetic or overhead stirring, and different modes of heating: Microwave irradiation or conductive heating in an oil bath. The continuous process was conducted in a prototype tubular flow reactor, consisting of 6 mm ID stainless steel tubing, fitted with static mixers. Both reactor types were tested for polymerizations of the acid functional monomers acrylic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in water at 80 °C with reaction times of 30 to 40 min. By monitoring the temperature during the exothermic polymerization process, it was observed that the type and size of reactor had a significant influence on the temperature profile of the reaction.

  5. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist.

    Toledo, Míriam; Busquets, Sílvia; Penna, Fabio; Zhou, Xiaolan; Marmonti, Enrica; Betancourt, Angelica; Massa, David; López-Soriano, Francisco J; Han, H Q; Argilés, Josep M

    2016-04-15

    Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species. Myostatin/activin inhibition reverses skeletal muscle loss and prolongs survival of tumor-bearing animals. The aim of this investigation was to evaluate the effects of a combination of the soluble myostatin receptor ActRIIB (sActRIIB) and the β2-agonist formoterol in the cachectic Lewis lung carcinoma model. The combination of formoterol and sActRIIB was extremely effective in reversing muscle wasting associated with experimental cancer cachexia in mice. Muscle weights from tumor-bearing animals were completely recovered following treatment and this was also reflected in the measured grip strength. This combination increased food intake in both control and tumor-bearing animals. The double treatment also prolonged survival significantly without affecting the weight and growth of the primary tumor. In addition, it significantly reduced the number of metastasis. Concerning the mechanisms for the preservation of muscle mass during cachexia, the effects of formoterol and sActRIIB seemed to be additive, since formoterol reduced the rate of protein degradation (as measured in vitro as tyrosine release, using incubated isolated individual muscles) while sActRIIB only affected protein synthesis (as measured in vivo using tritiated phenylalanine). Formoterol also increased the rate of protein synthesis and this seemed to be favored by the presence of sActRIIB. Combining formoterol and sActRIIB seemed to be a very promising treatment for experimental cancer cachexia. Further studies in human patients are necessary and may lead to a highly effective treatment option for muscle wasting associated with cancer. PMID:26595367

  6. Preparation and formation mechanism of Al2O3 nanoparticles by reverse microemulsion

    HUANG Ke-long; YIN Liang-guo; LIU Su-qin; LI Chao-jian

    2007-01-01

    Al2O3 nanoparticles were prepared by polyethylene glycol octylphenyl ether(Triton X-100)/n-butyl alcohol/cyclohexane/ water W/O reverse microemulsion. The proper calcination temperature was determined at 1 150 ℃ by thermal analysis of the precursor products. The structures and morphologies of Al2O3 nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and UV-Vis spectra. The influences of mole ratio of water to surfactant on the morphologies and the sizes of the Al2O3 nanoparticles were studied. With the increase of surfactant content, the particles size becomes larger. The agglomeration of nanoparticles was solved successfully. And the formation mechanisms of Al2O3 nanoparticles in the reverse microemulsion were also discussed.

  7. Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer

    Embaye, Natnael B; Kuzyk, Mark G

    2008-01-01

    We use amplified spontaneous emission (ASE) and linear absorption spectroscopy to study the mechanisms of reversible photodegradation of 1-amino-2-methylanthraquinone (disperse orange 11-DO11) in solid poly(methyl methacrylate). Measurements as a function of intensity, concentration, and time suggest that ASE originates in a state (be it a tautomer or a vibronic level) that can form a dimer or some other aggregate upon relaxation, which through fluorescence quenching leads to degradation of the ASE signal. Whatever the degradation route, a high concentration of DO11 is required and the polymer plays a key role in the process of opening a new reversible degradation pathway that is not available at lower concentrations or in liquid solutions. We construct an energy level diagram that describes all measured quantities in the decay and recovery processes and propose a hypothesis of the nature of the associated states.

  8. The Reversal Effect and Its Mechanisms of Tetramethylpyrazine on Multidrug Resistance in Human Bladder Cancer

    Wang, Shanshan; Lei, Ting; Zhang, Man

    2016-01-01

    Chemotherapy is an important strategy for the treatment of bladder cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance (MDR). To improve the management of bladder cancer, it is an urgent matter to search for strategies to reverse MDR. We chose three kinds of herbal medicines including ginsenoside Rh2, (-)-Epigallocatechin gallate (EGCG) and Tetramethylpyrazine (TMP) to detect their effects on bladder cancer. Reversal effects of these three herbal medicines for drug resistance in adriamycin (ADM)-resistant Pumc-91 cells (Pumc-91/ADM) were assessed by Cell Counting Kit-8 (CCK-8) cell proliferation assay system. The mechanisms of reversal effect for TMP were explored in Pumc-91/ADM and T24/DDP cells. After Pumc-91/ADM and T24/DDP cells were treated with TMP, cell cycle distribution analysis was performed by flow cytometry. The expression of MRP1, GST, BCL-2, LRP and TOPO-II was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), immunefluorescence assay and western blot. It was observed that TMP was capable of enhancing the cytotoxicity of anticancer agents on Pumc-91/ADM cells in response to ADM, however Rh2 and EGCG were unable to. The reversal effect of TMP was also demonstrated in T24/DDP cells. Moreover, the treatment with TMP in Pumc-91/ADM and T24/DDP cells led to an increased of G1 phase accompanied with a concomitant decrease of cell numbers in S phase. Compared to the control group, an obvious decrease of MRP1, GST, BCL-2 and an increase of TOPO-II were shown in TMP groups with a dose-dependency in mRNA and protein levels. However, there was no difference on LRP expression between TMP groups and the control group. TMP could effectively reverse MDR of Pumc-91/ADM and T24/DDP cells and its mechanisms might be correlated with the alteration of MRP1, GST, BCL-2 and TOPO-II. TMP might be a potential candidate for reversing drug resistance in bladder cancer chemotherapy. PMID

  9. Reverse micelle mediated synthesis, processing, mechanical and biological characterization of hydroxyapatite nanopowders for bone graft application

    Banerjee, Ashis

    Hydroxyapatite (HA) is the most widely used bioceramic material in bone graft applications because of its compositional similarity with natural bone. However, synthetic HA does not show similar mechanical and biological properties to the inorganic component of bone. Properties of ceramic material depend on starting materials, processing techniques, densification and microstructure of the final product. The objective of this research was to process HA whisker reinforced HA composite using HA nanopowders and whiskers. HA nanopowders with different length scale and morphology were synthesized by reverse micelle system using NP5 and NP12 as surfactants and cyclohexane as organic solvent. The lowest average aspect ratio was 1.357+/-0.39 with average particle size of 66 nm and the highest average aspect ratio was 7.277+/-3.227 with average length of 150 nm and width of 20 nm, were synthesized. Micron sized HA whiskers with aspect ratio between 20 and 50, average particle length of 15 mum and width of 400 nm was synthesized using urea as a precipitating agent. Desired microstructure was obtained after sintering with spherical HA nanopowder and whiskers along with dopants. Addition of whiskers decreased density of the sintered compacts. However, at 10 wt% whisker content sample showed microhardness and fracture toughness of 3.6 GPa and 1.5 MPa.m1/2, respectively, and a compressive strength of 80 MPa was obtained. Mineralization study in simulated body fluid (SBF) showed formation of apatite layer on the dense HA compacts indicating a good tendency of bond formation with natural bone. Cytotoxicity results showed excellent cell attachment on the HA surface. In the Appendices, 3 journal articles have been attached which describe synthesis, processing and characterization of undoped and doped PZT nanopowders. Free standing and agglomerated PZT nanopowders were synthesized by the sucrose templated method and the citrate nitrate autocombustion method. Particle size in the range

  10. Reversal-mechanism of perpendicular switching induced by an in-plane current

    Bi, Chong, E-mail: cbi@email.arizona.edu; Liu, Ming, E-mail: liuming@ime.ac.cn

    2015-05-01

    We propose a magnetization reversal model to explain the perpendicular switching of a single ferromagnetic layer induced by an in-plane current. Contrary to previously proposed reversal mechanisms that such magnetic switching is directly from the Rashba or spin Hall effects, we suggest that this type of switching arises from the current-induced chirality dependent domain wall motion. By measuring the field dependent switching behaviors, we show that such switching can also be achieved between any two multidomain states, and all of these switching behaviors can be well explained by this model. This model indicates that the spin Hall angle in such structures may be overestimated and also predicts similar switching behaviors in other ferromagnetic structures with chiral domain walls or skyrmions. - Highlights: • A reversal model is proposed to explain current-induced perpendicular switching. • Chirality-dependent domain nucleation and expansion dominate switching behaviors. • The switching between any two multidomain states was observed. • Similar switching behaviors are predicted for chiral domain walls or skyrmions.

  11. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    Jimcy Platholi

    Full Text Available General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.

  12. Simulation study of toroidal phase-locking mechanism in reversed-field pinch plasma

    The toroidal phase locking process of kink modes in the reversed-field pinch (RFP) plasma is investigated in detail by means of the magnetohydrodynamic (MHD) simulation. The physical mechanism of phase locking is clarified. The most dominant two linearly unstable kink modes rule over the evolution of other kink modes whereby phase locking takes place. It is confirmed that the phase locking process is not a special phenomenon subject to the resistive boundary condition, but a common feature of the MHD relaxation process in the RFP. The relation between the phase locking and MHD relaxation processes is briefly discussed. (author)

  13. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel

    Highlights: ► Cu contributes to refine the grains. ► Cu solutes in matrix under quenching and precipitates as ε-Cu during tempering. ► Cu promotes the kinetics of reversed austenite formation. ► Mechanical properties are significantly influenced by austenite amount. ► Cu alloyed super martensitic stainless steel exhibits greatly improved mechanical properties. -- Abstract: The effect of adding different content of Cu (0 wt.%, 1.5 wt.% and 3 wt.%) to the 15%Cr super martensitic stainless steel (SMSS) was investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Its consequence on mechanical properties was examined to clarify the role of Cu in the tested steels. The experimental results indicate that the microstructures of three tested steels are tempered martensite, retained austenite and reversed austenite; two kinds of austenites are dispersedly distributed among martensite matrix. Cu can solute in matrix under quenching condition and can precipitate as Cu-rich nanometer phase (ε-Cu) during tempering. Cu is helpful for the grain refinement and to promote the formation of reversed austenite during tempering. The maximum volume fraction of austenite is 55.9% in the steel with 3 wt.% Cu, which is responsible for the improvement of ductility. The results of the mechanical properties tests reveal that the mechanical properties are significantly influenced by the volume fraction of austenite. Cu can cause solid solution strengthening, precipitation strengthening and grain refinement strengthening in SMSS. Cu alloyed super martensitic stainless steel exhibits greatly improved mechanical properties.

  14. Molecular mechanism of carvedilol in attenuating the reversion to fetal energy metabolism during cardiac hypertrophy development

    胡琴; 李隆贵

    2003-01-01

    Objective: To explore the molecular regulation mechanism of carvedilol in attenuating the reversion back towards fetal energy metabolism during the development of cardiac hypertrophy induced by coarctation of abdominal aorta (CAA) in male Wistar rats. Methods: Hemodynamic and ventricular remodeling parameters, free fatty acid content in the serum were measured in the experimental animals at 16 weeks after the surgical CAA, the rats receiving carvedilol intervention (CAR) after CAA, and those with sham operation (SH). The expressions of muscle carnitine palmitoyltransferaseⅠ (M-CPTⅠ) and medium chain acyl-CoA dehydrogenase (MCAD) mRNA in the cardiac myocytes from every group were studied with RT-PCR. Results: Significant left ventricular hypertrophy were observed in the rats 16 weeks after coarctation operation (P<0.05), together with significant free fatty acids accumulation and downregulation of M-CPTⅠ and MCAD mRNA (P<0.05) in CAA group. Carvedilol at a dose of 30 mg/kg/d for 12 weeks inhibited the left ventricular hypertrophy induced by pressure overload and enhanced the gene expressions of rate-limiting enzyme (M-CPTⅠ) and key enzyme of fatty acid (MCAD) in the CAR group compared with CAA group (P<0.05). Conclusion: Pressure overload-induced hypertrophy in CAA rats causes the reversion back towards fetal enery metabolism, that is, downregulates the expressions of rate-limiting enzyme and key enzyme of fatty acid oxidation. The intervention therapy with carvedilol, a vasodilating alpha- and beta-adrenoreceptor antagonist, attenuates the reversion of the metabolic gene expression to fetal type through upregulating M-CPTⅠ and MCAD mRNA expressions. Thus, carvedilol may exert cardioprotective effects on heart failure by the mechanism of preserving the adult metabolic gene regulation.

  15. Influence of Polymer Addition on Performance and Mechanical Properties of Lightweight Aggregate Concrete

    Jiang Cong-sheng; Wang Tao; Ding Qing-jun; Huang Shao-long; Wang Fa-zhou; Geng Jian; Hu Shu-guang

    2004-01-01

    The influence of polymer addition on microstructure, performance and mechanical properties of lightweight aggregate concrete was investigated. It was found that the addition of polymer improved the performance and mechanical properties of lightweight aggregate concrete. It was asccrtaincd thai the modification of microstructural uniformity and dcnsification with the addition of polymer is responsible for the enhancement of mechanical properties.With respect to compressive strength and bending strcngth, the lightweight aggregate concrete added with 13% ethylene-acetate ethylene interpolymer (EVA) exhibits preferred mechanical properties.

  16. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism

    Na, Tae-Won; Choi, Jun-Ho; Jung, Jin-Young; Kim, Hyeong-Geon; Han, Jae-Hung; Park, Kwang-Chun; Oh, Il-Kwon

    2016-09-01

    We report a hierarchical piezoelectric tripod manipulator based on a reverse bridge-type displacement amplifier. The reverse bridge-type amplification mechanism is pre-strained by each piezo-stack actuator up to 60 μm and is cross-stacked in a series arrangement to make a compact and high-stroke manipulator having load-bearing characteristics. The designed manipulator with three degrees of freedom is compact with a height of 56.0 mm, a diameter of 48.6 mm and total weight of 115 g. It achieves a translational stroke of up to 880 μm in heaving motion and a tilting angle of up to 2.0° in rotational motion within the operating voltage and power range of the piezoelectric stack actuator. A key feature of the present design is built-in and pre-strained displacement amplification mechanisms integrated with piezoelectric stacked actuators, resulting in a compact tripod manipulator having exceptionally high stroke and load-bearing capacity.

  17. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain.

    Coloma, M; Schaffer, J D; Carare, R O; Chiarot, P R; Huang, P

    2016-08-01

    Beta-amyloid accumulation within arterial walls in cerebral amyloid angiopathy is associated with the onset of Alzheimer's disease. However, the mechanism of beta-amyloid clearance along peri-arterial pathways in the brain is not well understood. In this study, we investigate a transport mechanism in the arterial basement membrane consisting of forward-propagating waves and their reflections. The arterial basement membrane is modeled as a periodically deforming annulus filled with an incompressible single-phase Newtonian fluid. A reverse flow, which has been suggested in literature as a beta-amyloid clearance pathway, can be induced by the motion of reflected boundary waves along the annular walls. The wave amplitude and the volume of the annular region govern the flow magnitude and may have important implications for an aging brain. Magnitudes of transport obtained from control volume analysis and numerical solutions of the Navier-Stokes equations are presented. PMID:26729476

  18. Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy

    This article reports the effect of boron addition on the grain refinement efficiency and mechanical properties of AZ91 magnesium alloy. The results show that the addition of boron in the form of Al-4B master alloy, significantly refines the grain size of AZ91 alloy. This refinement is due to the presence of AlB2 particles, which act as potential nucleants for Mg grains. Improved mechanical properties are obtained with the addition of boron due to the finer grains.

  19. Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space

    The problem considered here is that of finding conditions ensuring that a reversible Hamiltonian system has integrals polynomial in momenta. The kinetic energy is a zero-curvature Riemannian metric and the potential a smooth function on a two-dimensional torus. It is known that the existence of integrals of degrees 1 and 2 is related to the existence of cyclic coordinates and the separation of variables. The following conjecture is also well known: if there exists an integral of degree n independent of the energy integral, then there exists an additional integral of degree 1 or 2. In the present paper this result is established for n = 3 (which generalizes a theorem of Byalyi), and for n = 4, 5, and 6 this is proved under some additional assumptions about the spectrum of the potential

  20. Apparent anti-Woodward-Hoffmann addition to a nickel bis(dithiolene) complex: the reaction mechanism involves reduced, dimetallic intermediates.

    Dang, Li; Shibl, Mohamed F; Yang, Xinzheng; Harrison, Daniel J; Alak, Aiman; Lough, Alan J; Fekl, Ulrich; Brothers, Edward N; Hall, Michael B

    2013-04-01

    Nickel dithiolene complexes have been proposed as electrocatalysts for alkene purification. Recent studies of the ligand-based reactions of Ni(tfd)2 (tfd = S2C2(CF3)2) and its anion [Ni(tfd)2](-) with alkenes (ethylene and 1-hexene) showed that in the absence of the anion, the reaction proceeds most rapidly to form the intraligand adduct, which decomposes by releasing a substituted dihydrodithiin. However, the presence of the anion increases the rate of formation of the stable cis-interligand adduct, and decreases the rate of dihydrodithiin formation and decomposition. In spite of both computational and experimental studies, the mechanism, especially the role of the anion, remained somewhat elusive. We are now providing a combined experimental and computational study that addresses the mechanism and explains the role of the anion. A kinetic study (global analysis) for the reaction of 1-hexene is reported, which supports the following mechanism: (1) reversible intraligand addition, (2) oxidation of the intraligand addition product prior to decomposition, and (3) interligand adduct formation catalyzed by Ni(tfd)2(-). Density functional theory (DFT) calculations were performed on the Ni(tfd)2/Ni(tfd)2(-)/ethylene system to shed light on the selectivity of adduct formation in the absence of anion and on the mechanism in which Ni(tfd)2(-) shifts the reaction from intraligand addition to interligand addition. Computational results show that in the neutral system the free energy of activation for intraligand addition is lower than that for interligand addition, in agreement with the experimental results. The computations predict that the anion enhances the rate of the cis-interligand adduct formation by forming a dimetallic complex with the neutral complex. The [(Ni(tfd)2)2](-) dimetallic complex then coordinates ethylene and isomerizes to form a Ni,S-bound ethylene complex, which then rapidly isomerizes to the stable interligand adduct but not to the intraligand adduct

  1. Action mechanism of antioxidation and anticorrosion and molecular design for perfluoropolyether fluid additives (I) --Action mechanism of additive and property of donating-accepting electron

    2001-01-01

    The combination energy and chemical adsorption energy of N-substituted perfluoropoly- alkyletherphenylamide (PFPEA) additive to perfluoropolyalkylether oxygen radical (RfO.) and to Fe atom have been calculated by quantum chemical methods. Structural characteristics, action mechanism, property of donating-accepting electron and substituent effect for antioxidant and anticorrosive additive are investigated. It is found that HOMO of the additives is a p-molecular orbital with lone pair electron of heteroatom. The HOMO of PFPEA additive reacts with LUMO of Fe atom to result in chemical adsorption. The LUMO of additive can interact with the SOMO of RfO. and accept electron of RfO. to form stable addition product. The additives have the property of donating-accepting electron. The electron-releasing group, particularly, the phenyl group, introduced to N atom of phenylamide can increase the combination energy and chemical adsorption energy, and enhance the antioxidant and anticorrosive efficiency. The research achievements can provide useful information for the designing of new antioxidant and anticorrosive additive. Based on the calculated results, antioxidant and anticorrosive efficiency can be predicted roughly as the following order: compounds III>II>I>IV>V.

  2. Study of the micelle formation and the effect of additives on this process in reversed micellar systems by positron annihilation techniques

    The positron annihilation technique was applied to the study of the micelle formation process in reversed micellar systems, Aerosol OT and dodecylammonium propionate in apolar solvents, such as benzene, isooctane, and cyclohexane. The results indicate that the positronium formation probability responds very sensitively to microphase changes in reversed micellar solutions. The abrupt changes in positronium formation probability observed at certain surfactant concentrations appear to coincide with variations in the aggregation state of the surfactant molecules in solutions, as postulated by the modified pseudophase model which considers the possibility of conformational changes between premicellar aggregates, and the surfactant concentrations at which they occur may be interpreted as operational critical micelle concentrations. Additives or probe molecules can affect these changes and shift them to lower surfactant concentrations. The additions of H2O and its solubilization in form of clusters inside the reverse micelle leads to microphase changes also detectable by the positron annihilation technique. From a comparison of the rate constants between positronium and probe molecules observed in the neat solvents and in the corresponding micellar solutions, it was concluded that the probe molecules are attracted to various degrees by the reverse micelles, the nature of the surfactant and solvent determining the relative distribution of the probe molecule in the outer hydrocarbon layer and in the bulk apolar solvent of the reversed micelles

  3. Transient yield in reversible colloidal gels: a micro-mechanical perspective

    Johnson, Lilian; Landrum, Benjamin; Zia, Roseanna

    2015-11-01

    We study the nonlinear rheology of colloidal gels via large-scale dynamic simulation, with a view toward understanding the micro-mechanical origins of the transition from solid-like to liquid-like behavior during flow startup, and post-cessation relaxation, and its connection to energy storage and viscous dissipation. Such materials often exhibit an overshoot in the stress during startup, but the underlying microstructural origins of this behavior remain unclear. To understand this behavior, a fixed strain rate is imposed on a reversible colloidal gel, where thermal fluctuations enable quiescent gel aging. It has been suggested flow occurs only after clusters first break free from the network and then disintegrate, leading to two stress peaks that vary with age, flow strength, volume fraction, bond strength, and pre-strain history. However, our detailed studies of the microstructural evolution during startup challenge this view. We present a new model of stress development, relaxation, and microstructural evolution in reversible colloidal gels in which the ongoing age-coarsening process plays a central role.

  4. Mechanically clamped PZT ceramics investigated by First-order reversal curves diagram

    Laurentiu Stoleriu

    2010-09-01

    Full Text Available The First Order Reversal Curves (FORC diagrams method was developed for characterizing the switching properties of ferroelectrics. In the present paper, the FORC method was applied for hard Pb(Zr,TiO3 ceramics with symmetric and asymmetric clamping. An ideal high-oriented single-crystalline ferroelectric with rectangular P(E loop would be characterised by a delta-function FORC distribution, while real ferroelectrics and mostly the polycrystalline ceramics show dispersed FORC distributions. All the investigated ceramics show FORC distributions with non-Gaussian shape, slightly elongated along the coercitive axis, meaning a high dispersion of the energy barriers separating the two bi-stable polarizations ±P. The degree of dispersion is enhanced by clamping. The maximum FORC coercivity is located at ~ (1.9-2 MV/m for all the hard ceramics. The FORC cycling experiment causes the reversal of the initial poling and result in a positive/negative bias on the FORC diagrams. According to the observed features, it results that FORC coercivity is more related to the nature of the material, while the bias field is more sensitive to the electrical and mechanical boundary conditions in which the ferroelectric ceramics evolves while switching.

  5. Magnetization Reversal Mechanism for CoFeB Ferromagnetic Nanotube Arrays

    CoFeB nanotube arrays are fabricated in anodic aluminum oxide (AAO) membranes and track etched polycarbonate (PCTE) membranes by using an electrochemical method, and their magnetic properties are investigated by vibrating sample magnetometry. The coercivity Hc and remanent squareness SQ of these CoFeB nanotube arrays are derived from hysteresis loops as a function of angle between the field and tube axis. The Hc(θ) curves for CoFeB nanotube arrays in AAO and PCTE membranes show M-type variation, while they change shape from M to mountain-type as the tube length increases. However, the overall easy axis perpendicular to tube axis does not change with tube length. The different angular dependences are attributed to different magnetization reversal mechanisms. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  6. A mechanical nanogate based on a carbon nanotube for reversible control of ion conduction.

    He, Zhongjin; Corry, Ben; Lu, Xiaohua; Zhou, Jian

    2014-04-01

    Control of mass transport through nanochannels is of critical importance in many nanoscale devices and nanofiltration membranes. The gates in biological channels, which control the transport of substances across cell membranes, can provide inspiration for this purpose. Gates in many biological channels are formed by a constriction ringed with hydrophobic residues which can prevent ion conduction even when they are not completely physically occluded. In this work, we use molecular dynamics simulations to design a nanogate inspired by this hydrophobic gating mechanism. Deforming a carbon nanotube (12,12) with an external force can form a hydrophobic constriction in the centre of the tube that controls ion conduction. The simulation results show that increasing the magnitude of the applied force narrows the constriction and lowers the fluxes of K(+) and Cl(-) found under an electric field. With the exerted force larger than 5 nN, the constriction blocks the conduction of K(+) and Cl(-) due to partial dehydration while allowing for a noticeable water flux. Ion conduction can revert back to the unperturbed level upon force retraction, suggesting the reversibility of the nanogate. The force can be exerted by available experimental facilities, such as atomic force microscope (AFM) tips. It is found that partial dehydration in a continuous water-filled hydrophobic constriction is enough to close the channel, while full dewetting is not necessarily required. This mechanically deformed nanogate has many potential applications, such as a valve in nanofluidic systems to reversibly control ion conduction and a high-performance nanomachine for desalination and water treatment. PMID:24566473

  7. Mechanism of chirality reversal for planar interface domain walls in exchange-coupled hard/soft magnetic bilayers

    McCord, J; Henry, Y; Hauet, Thomas; Montaigne, F.; Fullerton, Eric E.; Mangin, S.

    2008-01-01

    International audience The mechanism of chirality reversal for a planar interface domain wall in a hard/soft magnetic bilayer has been identified by combining magnetoresistance measurements, modeling, and direct magnetic domain observations. The reversal occurs through IDW nucleation and lateral domain wall propagation. Over an unpredicted wide range of applied magnetic fields, the chirality transition takes place by an unwinding followed by a rewinding of the IDW. The chirality transition...

  8. Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

    Bogucki R.; Pytel S.M.

    2014-01-01

    The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C) for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with ...

  9. Effect of small additions of vanadium and niobium on structure and mechanical properties of ductile iron

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (up to 0,15 % V) and niobium (up to 0,04% Nb) on structure of ductile iron is presented in this work. Effect of these additions on distribution of graphite nodule diameter, nodule count, fraction and carbide count have been determined. Investigations of effect of small additions of vanadium and niobium on mechanical properties taking into account tensile strength, yield strength and elongation have also been made.

  10. Enhancement of mechanical strength in Y-Ba-Cu-O bulk superconductor through liquid binder addition

    We studied the effects of the binder addition on the green compacts. We studied the superconducting properties of bulk Y-Ba-Cu-O superconductors. The mechanical properties of the green compacts with binder addition were characterized with the compression tests. We could produce bulk Y-Ba-Cu-O superconductors with binder additions. We have studied the effects of the liquid binder (polyvinyl alcohol) addition (0-10 wt%) on the mechanical properties of the green compacts and also on the superconducting properties of bulk Y-Ba-Cu-O superconductors of 20 mm diameter produced with the top-seeded melt growth (TSMG) process. The mechanical properties of the green compacts with binder addition were characterized with the compression tests, which revealed that mechanical strength increased dramatically with increasing the amount of the binder addition. The binder-added green compacts were then subjected to the TSMG process and oxygen annealing. The trapped field measurements showed that we could produce single-grain bulk Y-Ba-Cu-O samples with binder additions up to 8 wt% without any deterioration in the superconducting properties.

  11. Chronic ethanol exposure produces tolerance to elevations in neuroactive steroids: Mechanisms and reversal by exogenous ACTH

    Boyd, Kevin N.; Kumar, Sandeep; O'Buckley, Todd K.; Morrow, A. Leslie

    2010-01-01

    Acute ethanol administration increases potent GABAergic neuroactive steroids, specifically (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one. In addition, neuroactive steroids contribute to ethanol actions. Chronic ethanol exposure results in tolerance to many effects of ethanol, including ethanol-induced increases in neuroactive steroid levels. To determine the mechanisms of tolerance to ethanol-induced increases in neuroactive steroids, we investigated cri...

  12. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same

  13. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    Andrade, A.R., E-mail: arandrade@gmail.com [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP (Brazil); Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Bolfarini, C. [Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP (Brazil); Ferreira, L.A.M.; Vilar, A.A.A. [Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Souza Filho, C.D.; Bonazzi, L.H.C. [Department of Research and Development, ENGEMASA – Engineering and Materials Ltda., Rua Ernesto Cadinalli, 303, São Carlos, SP (Brazil); Department of Materials, Aeronautical and Automotive Engineering, University of São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP (Brazil)

    2015-03-25

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same.

  14. Effect of Zn addition on microstructure and mechanical properties of an Al–Mg–Si alloy

    Lizhen Yan

    2014-04-01

    Full Text Available In the present work, an Al–0.66Mg–0.85Si–0.2Cu alloy with Zn addition was investigated by electron back scattering diffraction (EBSD, high resolution electron microscopy (HREM, tensile and Erichsen tests. The mechanical properties of the alloy after pre-aging met the standards of sheet forming. After paint baking, the yield strength of the alloy was improved apparently. GP(II zones and ηʹ phases were formed during aging process due to Zn addition. With the precipitation of GP zones, β″ phases, GP(II zones and ηʹ phases, the alloys displayed excellent mechanical properties.

  15. Effect of Zn addition on microstructure and mechanical properties of an Al-Mg-Si alloy

    Lizhen Yan; Yongan Zhang; Xiwu Li; Zhihui Li; Feng Wang; Hongwei Liu; Baiqing Xiong

    2014-01-01

    In the present work, an Al-0.66Mg-0.85Si-0.2Cu alloy with Zn addition was investigated by electron back scattering diffraction (EBSD), high resolution electron microscopy (HREM), tensile and Erichsen tests. The mechanical properties of the alloy after pre-aging met the standards of sheet forming. After paint baking, the yield strength of the alloy was improved apparently. GP(II) zones andηʹphases were formed during aging process due to Zn addition. With the precipitation of GP zones,β″phases, GP(II) zones andηʹphases, the alloys displayed excellent mechanical properties.

  16. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  17. Evaluation of the mechanical properties of acetic-cure silicone with the addition of magnesium silicate

    Ronald Vargas Orellana; Neide Pena Coto; Igor Studart Medeiros; Reinaldo Brito Dias

    2015-01-01

    Current study evaluates the mechanical properties (tensile and tear strength) of an acetic-cure silicone with the addition of 10 or 20% vol. magnesium silicate. Magnesium silicate was added to the silicone at concentrations of 10 (MS-10) and 20% (MS-20) volume, followed by the analysis of tensile strength, maximal elongation during tensile and tear strength. Results were compared to control group of silicone without additives (CG). Mean rates were determined and compared by analysis of v...

  18. First order reversal curves analysis of the temperature effect on magnetic interactions in barium ferrite with La-Co addition

    First order reversal curves (FORCs) distributions are a powerful tool for investigating hysteresis and interactions in magnetic systems and have been widely applied. La-Co substitution in barium hexaferrites has also been extensively studied. The most effective substitution to improve the magnetic properties (coercive field and energy product) is given by x=y=0.2 in the formula Ba1-xLaxFe12-yCoyO19. In this work, this stoichiometry is initially used to obtain a state where more than one phase is present. The magnetic behavior as a function of temperature was studied in order to have an insight into the magnetic interactions that originate a decrease in the magnetic performance of Ba hexaferrite magnets. The sample was structurally characterized by X-ray diffraction (XRD) and magnetically studied in a SQUID magnetometer. FORC distributions were used to study the dependence of the magnetic interactions with the temperature. FORC diagrams performed on the sample at different temperatures exhibit similar characteristics, such as the spread in the hc-hu plane and a spread out of the hc-axes. These features are interpreted in terms of exchange-interacting particles and dipolar interactions, respectively. As the temperature decreases, stronger interactions are noticed among hard and soft phases.

  19. The relation between the distribution behaviour of the hysteresis loss and magnetization reversal mechanism in CoCr films

    Li, Cheng-Zhang; Lodder, J.C.

    1988-01-01

    The distribution of the hysteresis loss as a function of the applied field has been successfully used to investigate the magnetization reversal mechanism in our CoCr films. For high Hc/Hk films, the distribution of the hysteresis loss vs. applied field exhibits a monotonically decreasing curve with

  20. Thickness dependence of structural,magnetic properties and reversal mechanism of Co Cr Ta/Cr longitudinal recording media

    Kim, P.L.; Lodder, J.C.

    2002-01-01

    In this paper,a series of five samples of X nm Co Cr Ta/100 nm Cr (X 10 2 100 nm) longitudinal recording media was studied.The relationships between structural, magnetic properties and the reversal mechanism were investigated and discussed.It was found that the maximums of coercivity and squarenesse

  1. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  2. Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility.

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay; Chiam, Keng-Hwee

    2013-08-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call "pause." In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new "run-reverse-turn" paradigm for polar-flagellated Pseudomonas motility that is different from the "run-and-tumble" paradigm established for peritrichous Escherichia coli. PMID:23728820

  3. Mechanical behavior of polymer-matrix biocomposites modified by nano/micro additives

    Suchý, Tomáš; Balík, Karel; Sucharda, Zbyněk; Černý, Martin; Sochor, M.

    -, 77-78 (2008), s. 8-10. ISSN 1429-7248. [Conference Biomaterials in Medicine and Veterinary Medicine /18./. Rytro, 13.11.2008-16.11.2008] R&D Projects: GA ČR(CZ) GA106/06/1576 Institutional research plan: CEZ:AV0Z30460519 Keywords : additives * calcium phosphates * mechanical properties Subject RIV: JI - Composite Materials

  4. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets – a survey

    Tesař, Václav

    Liberec: Polypress s.r.o, 2015 - (Dančová, P.; Veselý, M.), s. 800-808 [Experimental Fluid Mechanics 2015. Praha (CZ), 17.11.2015-20.11.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : additive manufacturing * molten metal droplets * power beams Subject RIV: BK - Fluid Dynamics

  5. Mechanisms of Mn(OAc)3-based oxidative free-radical additions and cyclizations

    Snider, Barry B.

    2009-01-01

    The mechanistic details of Mn(OAc)3-based oxidative free-radical additions and cyclizations are reviewed. The mechanisms of electron transfer to generate radicals, electron transfer to convert the radicals to oxidized products, and further oxidation of the products are covered.

  6. Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics

    Zhu, Guangtian; Singh, Chandralekha

    2013-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…

  7. Effect of carbon nanofibre addition on the mechanical properties of different f carbon-epoxy composites

    I Srikanth; Suresh Kumar; Vajinder Singh; B Rangababu; Partha Ghosal; Ch Subrahmanyam

    2015-04-01

    Carbon-epoxy (C-epoxy) laminated composites having different fibre volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of aminofunctionalized carbon nanofibres (A-CNF). Flexural strength, interlaminar shear strength (ILSS) and tensile strength of the composite laminates were determined. It was observed that, the ability of A-CNF to enhance the mechanical properties of C-epoxy diminished significantly as the fibre volume fraction (f) of the C-epoxy increased from 40 to 60. At 70f, the mechanical properties of the A-CNF reinforced C-epoxy were found to be lower compared to the C-epoxy composite made without the addition of A-CNF. In this paper suitable mechanisms for the observed trends are proposed on the basis of the fracture modes of the composite.

  8. Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

    Bogucki R.

    2014-10-01

    Full Text Available The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with the copper addition. The sudden drop of impact resistance after tempering from 575 °C to 600 °C was caused probably by precipitates of Laves phase of type Fe2Mo.

  9. Effects of recrystallization and Nb additions on texture and mechanical anisotropy of Zircaloy

    Murty, K.L. (North Carolina State University, Raleigh, NC 27695-7909 (United States)); Jallepalli, Ravi (North Carolina State University, Raleigh, NC 27695-7909 (United States)); Mahmood, S.T. (North Carolina State University, Raleigh, NC 27695-7909 (United States))

    1994-06-01

    The effect of recrystallization on the crystallographic textures and anisotropic mechanical properties of Zircaloy-4 sheets was investigated. In addition, the influence of niobium additions on these properties was studied using three different alloys. The mechanical anisotropy parameters were determined by mechanical testing of gridded tensile samples. The textures were characterized by X-ray pole figure measurements and crystallite orientation distribution functions (CODFs). The CODFs were combined with a crystal plasticity model to predict the anisotropy parameters based on the dominance individually of basal, prism and pyramidal slip systems. Good agreement was noted between the experimental results and model predictions based on prism slip for the recrystallized materials, while the results on cold-worked sheets differed from model predictions for all the three slip systems. ((orig.))

  10. Effects of recrystallization and Nb additions on texture and mechanical anisotropy of Zircaloy

    The effect of recrystallization on the crystallographic textures and anisotropic mechanical properties of Zircaloy-4 sheets was investigated. In addition, the influence of niobium additions on these properties was studied using three different alloys. The mechanical anisotropy parameters were determined by mechanical testing of gridded tensile samples. The textures were characterized by X-ray pole figure measurements and crystallite orientation distribution functions (CODFs). The CODFs were combined with a crystal plasticity model to predict the anisotropy parameters based on the dominance individually of basal, prism and pyramidal slip systems. Good agreement was noted between the experimental results and model predictions based on prism slip for the recrystallized materials, while the results on cold-worked sheets differed from model predictions for all the three slip systems. ((orig.))

  11. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    Raj, Abhijeet Dhayal

    2014-04-24

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot formation in flames. Although the hydrogen abstraction C2H2 addition (HACA) mechanism is believed to be the main contributor to PAH growth, it has been shown to under-predict some of the experimental data on PAHs and soot concentrations in flames. This article presents a submechanism of PAH growth that is initiated by propargyl (C 3H3) addition onto naphthalene (A2) and the naphthyl radical. C3H3 has been chosen since it is known to be a precursor of benzene in combustion and has appreciable concentrations in flames. This mechanism has been developed up to the formation of pyrene (A4), and the temperature-dependent kinetics of each elementary reaction has been determined using density functional theory (DFT) computations at the B3LYP/6-311++G(d,p) level of theory and transition state theory (TST). H-abstraction, H-addition, H-migration, β-scission, and intramolecular addition reactions have been taken into account. The energy barriers of the two main pathways (H-abstraction and H-addition) were found to be relatively small if not negative, whereas the energy barriers of the other pathways were in the range of (6-89 kcal·mol-1). The rates reported in this study may be extrapolated to larger PAH molecules that have a zigzag site similar to that in naphthalene, and the mechanism presented herein may be used as a complement to the HACA mechanism to improve prediction of PAH and soot formation. © 2014 American Chemical Society.

  12. Phosphopeptide Characterization by Mass Spectrometry using Reversed-Phase Supports for Solid-Phase β-Elimination/Michael Addition

    Nika, Heinz; Lee, Jaehoon; Willis, Ian M.; Angeletti, Ruth Hogue; Hawke, David H.

    2012-01-01

    We have adapted the Ba2+ ion-catalyzed concurrent Michael addition reaction to solid-phase derivatization on ZipTipC18 pipette tips using 2-aminoethanethiol as a nucleophile. This approach provides several advantages over the classical in-solution-based techniques, including ease of operation, completeness of reaction, improved throughput, efficient use of dilute samples, and amenability to automation. Phosphoseryl and phosphothreonyl peptides, as well as phosphoserine peptides with adjoining...

  13. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm

    Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-01-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  14. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm.

    Marpalli, Sapna; Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-03-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  15. [Simultaneous rapid determination of eight food additives in foods by reversed-phase high performance liquid chromatography].

    Zhang, X Y

    2000-11-01

    A simple and rapid method for the determination of eight food additives by RP-HPLC is described. They were saccharin, aspartame, benzoic acid, sorbic acid, vanillin, caffeine, carmine and sunset yellow. The experiments were carried on Shim-pack CLC-ODS (150 mm x 6.0 mm i.d.) with methanol-20 mmol/L NH4Ac (44:56, V/V; pH 7.0) as the eluent at a flow rate of 1.0 mL/min. The UV detection wavelength was fixed at 220 nm. The food samples, after precipitation of the impurities with Carrez reagent, were injected directly into the HPLC system. The average recoveries of all the eight additives were between 91.9%-108.5%, and the RSDs were lower than 4% (n = 5). The analysis of a single sample required only 8 min. This method has been successfully applied to the routine analysis of these additives in foods. PMID:12541745

  16. Dehydrogenation kinetics, reversibility, and reaction mechanisms of reversible hydrogen storage material based on nanoconfined MgH2-NaAlH4

    Plerdsranoy, Praphatsorn; Meethom, Sukanya; Utke, Rapee

    2015-12-01

    Studies of dehydrogenation kinetics, reversibility, and reaction mechanisms during de/rehydrogenation of nanoconfined MgH2-NaAlH4 into carbon aerogel scaffold (CAS) for reversible hydrogen storage material are for the first time proposed. Two different MgH2:NaAlH4 molar ratios (1:1 and 2:1) of hydride composite are melt infiltrated into CAS under 1:1 (CAS:hydride composite) weight ratio. Successful nanoconfinement is confirmed by N2 adsorption-desorption. Multiple-step dehydrogenation of milled samples is reduced to two-step reaction due to nanoconfinement. Peak temperatures corresponding to main dehydrogenation of nanoconfined samples significantly reduce as compared with those of milled samples, i.e., ∆T=up to 50 and 34 °C for nanoconfined sample with 1:1 and 2:1 (MgH2:NaAlH4) molar ratios, respectively. Hydrogen content released (the 1st cycle) and reproduced (the 2nd, 3rd, and 4th cycles) of nanoconfined samples enhance up to 80% and 68% with respect to theoretical hydrogen storage capacity, respectively, while those of milled samples are 71% and 38%, respectively. Remarkable hydrogen content reproduced after nanoconfinement is due to the fact that metallic Al obtained after dehydrogenation (T=300 °C under vacuum) of nanoconfined samples prefer to react with MgH2 and produces Al12Mg17, favorable for reversibility of MgH2-NaAlH4 system, whereas that of milled samples stays in the form of unreacted Al under the same temperature and pressure condition.

  17. Magnetization reversal mechanism in hard magnetic epitaxial bilayers: SmCo5/Pr-Co

    Single layer of hard magnetic Re-Co thin films have been intensively investigated to exploit their magnetic properties for magnetic MEMS applications and to understand the origin of magnetocrystalline anisotropy. Although detail investigations on single epitaxial layers (such as Sm-Co and Pr-Co thin films) with excellent hard magnetic properties have been carried out, there are no reports on hard magnetic bilayers/multilayers which combine different intrinsic properties. Such hard magnetic bilayers are interesting systems to investigate from two perspectives: (1) from the application point of view they allow for the optimization of the extrinsic properties by merging individual layers with different properties, e.g. high coercive SmCo5 + high moment PrCo8 and (2) from the point of fundamental understanding they present a model system to study how two materials with the same (pinning) coercivity mechanism but different pinning strength (different coercivities) combine. Epitaxial SmCo5/PrCoy (y = 5 and 8) films with varying thickness of the PrCoy sublayer are prepared on Cr buffered MgO(110) substrate by pulsed laser deposition and, their structural and magnetic properties are examined. A representative X-ray diffractogram of the SmCo5/PrCo5 bilayer is shown. These bilayer films grow epitaxially with a single orientation of the magnetic easy axis, which is laying in the film plane along the MgO(001) substrate edge. Despite the largely different coercivities of the individual layers magnetization reversal in bilayers occurs in a single depinning event. The intrinsic magnetic properties of the bilayer, such as saturation polarization and anisotropy field, vary linearly with the relative PrCoy sub layer thickness. Surprisingly, coercivity shows a non-trivial dependence on the sublayer thickness and stacking order. This is discussed in a pinning dominated model and micomagnetic simulations are carried out to give an intriguing picture. (author)

  18. Mechanism underlying the reversal of contractility dysfunction in experimental colitis by cyclooxygenase-2 inhibition.

    Khan, I; Oriowo, M A

    2006-03-01

    Inflammatory bowel diseases are associated with reduced colonic contractility and induction of cyclooxygenase-2. In this study a possible role of cyclooxygenase-2 in and the underlying mechanism of the reduced contractility were investigated in experimental colitis. The effects of meloxicam, a cyclooxygenase-2 selective inhibitor were examined on colonic contractility and MAP kinase p38 and ERK(1/2) expression. Colitis was induced in Sprague-Dawley male rats by intra-colonic instillation of trinitrobenzenesulphonic acid (TNBS; 40 mg/rat in 50 ethanol). The animals were divided into three groups. Group 1 (n=9) received meloxicam (3 mg/kg-day) gavage 1 h before and 1 day (Group 2) after induction of colitis. Group 3 (n=9) received phosphate buffered saline (PBS) in a similar manner and served as colitic control. The non colitic control animals received meloxicam in a similar manner. The animals were sacrificed after 5 days of treatment, colon was cleaned with PBS and colonic smooth muscle was obtained which was used in this study. Meloxicam treatment given 1 h before or 1 day after administration of colitis restored the reduced colonic contractility without affecting the sensitivity to carbachol. The levels of colonic smooth muscle IL-1beta mRNA, PGE(2), ERK(1/2), p38, malondialdehyde, myeloperoxidase activity and colonic mass were increased, whereas the body weight was decreased due to TNBS. The changes except colonic muscle mass and p38 expression were reversed by meloxicam treatment. These findings indicate that restoration of reduced colonic contractility by meloxicam is mediated by ERK(1/2), and that ERK(1/2) may serve as an important anti inflammatory target for treatment of colitis. PMID:16835710

  19. Investigation on mechanism of magnetization reversal for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element methods

    ZHENG Bo; ZHAO Sufen

    2009-01-01

    Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method. According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed. For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries. However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucleated domain. For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment.

  20. Geomagnetic reversal rates following Palaeozoic superchrons have a fast restart mechanism.

    Hounslow, Mark W

    2016-01-01

    Long intervals of single geomagnetic polarity (superchrons) reflect geodynamo processes, driven by core-mantle boundary interactions; however, it is not clear what initiates the start and end of superchrons, other than superchrons probably reflect lower heat flow across the core-mantle boundary compared with adjacent intervals. Here geomagnetic polarity timescales, with confidence intervals, are constructed before and following the reverse polarity Kiaman (Carboniferous-Permian) and Moyero (Ordovician) superchrons, providing a window into the geodynamo processes. Similar to the Cretaceous, asymmetry in reversal rates is seen in the Palaeozoic superchrons, but the higher reversal rates imply higher heatflow thresholds for entering the superchron state. Similar to the Cretaceous superchron, unusually long-duration chrons characterize the ∼10 Myr interval adjacent to the superchrons, indicating a transitional reversing state to the superchrons. This may relate to a weak pattern in the clustering of chron durations superimposed on the dominant random arrangement of chron durations. PMID:27572303

  1. Effect of niobium addition on magnetization reversal behavior for SmCo-based magnets with TbCu7-type structure

    胡晨宇; 泮敏翔; 吴琼; 葛洪良; 王秀敏; 卢阳春; 张朋越

    2016-01-01

    The effect of Nb addition on the microstructure and magnetic properties of nanocrystalline Sm(CobalNbxZr0.02)7 permanent magnet were investigated. The magnetization reversal behavior for ball milled Sm(CobalNbxZr0.02)7 samples with high coercivity was investigated by analyzing hysteresis curves and recoil loops of demagnetization curves. Nb addition proved to result in relevant im-provement in the magnetic properties, especially in the coercivityHc. It was shown that the magnetic properties of Sm(CobalNbx-Zr0.02)7 nanocrystalline magnets were improved by an additional 0.06 at.% Nb. In particular, Hc was improved from 602 to 786 kA/m at room temperature. The maximum value of the integrated recoil loops area for 0.06 at.% Nb-doped samples of 1.81 kJ/m3 was much lower than that of the Nb-free sample, which could be explained by a smaller recoverable portion of the magnetization remaining in the Nb-doped sample when the applied field was below the coercivityHc. The nucleation fieldHn for irreversible magnetization re-versal of the magnetically hard phase were calculated by analyzed in terms of theΔMirev-Hcurve and the Kondorsky model.

  2. EFFECT OF MONTMORILLONITE ADDITION ON MECHANICAL CHARACTERIZATIONS OF POLYIMIDE NANOCOMPOSITE FILMS

    Wang Xishu; Zhang Yihe; Fu Shaoyun; Feng Xiqiao

    2005-01-01

    Tensile deformation and fracture characteristics of polyimide/montmorillonite nanocomposite films are investigated to enhance the particular mechanical properties and understand the effective factors in dominating the mechanical properties of nanocomposites, such as the nanolayer, matrix and nanolayer/matrix interface. How to contribute to the mechanical properties of nanocomposite film is a very complex problem. In this paper, these factors are analyzed based on the addition amount and fracture mechanics. The results indicate that the specimen at 20 wt% MMT breaks prematurely with a fracture strength (σb=78 MPa) much lower than that (σb = 128 MPa) at the 1wt% MMT. However, the Young's modulus (3.2 GPa) of the former is higher than that (1.9 GPa) of the latter. Fractography also indicates that the brittle cracking formed in high content addition is the main cause of failure but microscopically ductile fracture morphology still exists locally. And for the trace element addition, the smaller threading slipping veins are evenly distributed on the entire fracture section of these films. Therefore, these characteristics would presumably be associated with both the concentration effects of size of nanocomposite sheets and the increasing deformation harmony in nanolayers.

  3. Mechanisms of inhibition of HIV replication by nonnucleoside reverse transcriptase inhibitors

    Sluis-Cremer, Nicolas; Tachedjian, Gilda

    2008-01-01

    The nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are a therapeutic class of compounds that are routinely used, in combination with other antiretroviral drugs, to treat HIV-1 infection. NNRTIs primarily block HIV-1 replication by preventing RT from completing reverse transcription of the viral single-stranded RNA genome into DNA. However, some NNRTIs, such as efavirenz, have been shown to inhibit the late stages of HIV-1 replication by interfering with HIV-1 Gag-Pol polyprotein...

  4. Influence of cementitious additions on rheological and mechanical properties of reactive powder concretes

    Zenati, A.; Arroudj, K.; Lanez, M.; Oudjit, M. N.

    2009-11-01

    Following needs of concrete market and the economic and ecological needs, several researchers, all over the world, studied the beneficial effect which the incorporation of the mineral additions in Portland cement industry can bring. It was shown that the incorporation of local mineral additions can decrease the consumption of crushing energy of cements, and reduce the CO2 emission. Siliceous additions, moreover their physical role of filling, play a chemical role pozzolanic. They contribute to improving concrete performances and thus their durability. The abundance of dunes sand and blast furnace slag in Algeria led us to study their effect like cementitious additions. The objective of this paper is to study the effect of the incorporation of dunes sand and slag, finely ground on rheological and mechanical properties of reactive powder concretes containing ternary binders.

  5. Resonant vortex-core reversal in magnetic nano-spheres as robust mechanism of efficient energy absorption and emission

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Jae-Hyeok; Kim, Min-Kwan

    2016-01-01

    We report on novel vortex-core reversal dynamics in nano-spheres of single-vortex spin configuration as revealed by micromagnetic simulations combined with analytical derivations. When the frequency of an AC magnetic field is tuned to the frequency of the vortex-core precession around the direction of a given static field, oscillatory vortex-core reversals occur, and additionally, the frequency is found to change with both the strength of the applied AC field and the particle size. Such resonant vortex-core reversals in nano-spheres may provide a new and efficient means of energy absorption by, and emission from, magnetic nanoparticles, which system can be effectively implemented in bio-applications such as magnetic hyperthermia. PMID:27531408

  6. Molecular mechanism of indirubin-3'-monoxime and Matrine in the reversal of paclitaxel resistance in NCI-H520/TAX25 cell line

    LUO Su-xia; DENG Wen-ying; WANG Xin-feng; L(U) Hui-fang; HAN Li-li; CHEN Bei-bei; CHEN Xiao-bing

    2013-01-01

    Background Multidrug resistance (MDR) is a main reason for paclitaxel (TAX) treatment failure.Indirubin-3'-monoxime (IRO) and Matrine are traditional Chinese medicines,which may reverse the resistance of tumor cells to some chemotherapy drugs,but the relationship between paclitaxel resistance and Matrine is still unclear.The aim of this study was to explore the potential molecular mechanism of IRO and Matrine in reversal of TAX resistance.Methods In this study,MTT assay was used to measure the non-cytotoxic dosage of IRO and Matrine on NCI-H520/TAX25 cells and determine the reversal extent of TAX resistance under non-toxic doses.In addition,RT-PCR and Western blotting were used to evaluate the mRNA expression and the protein level of survivin,Oct-4,and Sox-2 in NCI-H520/FAX25 cells using semi-quantitative methods.Results There was no obvious inhibition on sensitive cell strains and drug-resistant strains,when the final concentration was at lest 4 μmol/L for IRO and 100 μmol/L for Matrine.So 4 μmol/L of IRO and 100 μmol/L of Matrine were considered as the reversal dosage.When 4 μmol/L of IRO or 100 μmol/L of Matrine were used together with TAX,the sensitivity to TAX increased evidently in NCI-H520/TAX2 cells; the reversal rate of IRO and Matrine was about 1.92 (43.56/22.6 nmol/L) and 1.74 (43.56/25.0 nmol/L),respectively.The mRNA expression and the protein level of survivin,Oct-4,and Sox-2 in NCI-H520/TAX25 decreased significantly (P <0.05) after addition of IRO or Matrine in TAX treatment,compared to that of TAX treatment alone.Conclusion The decrease in both mRNA expression and protein level of survivin,Oct-4,and Sox-2 might be the molecular mechanism,by which IRO and Matrine mediate the reversal of TAX resistance.

  7. Mechanism for the addition of carbenoid CH2ClLi to formaldehyde

    2000-01-01

    Ab initio HF/6-31G* calculations have been performed for the addition mechanism of carbenoid CH2ClLi with formaldehyde in tetrahydrofuran. An early complex of formaldehyde with CH2ClLi is first formed with quite exothermic effect. Only a little activation energy of 14.6 kJ/mol is needed for the complex developing into the product through a transition state with coplanar bicyclic structure. In this process, the eletrophilic attack of carbonyl carbon of formaldehyde is more active than the nucleophilic attack of carbon of carbenoid. The exothermal effect of this addition process is up to 216.5 kJ/mol.

  8. Mechanism for the addition of carbenoid CH2ClLi to formaldehyde

    李吉海[1; 孙昌俊[2; 刘少杰[3; 冯圣玉[4; 冯大诚[5

    2000-01-01

    Ab initlo HF/6-31G* calculations have been performed for the addition mechanism of carbenoid CH2CILi with formaldehyde in tetrahydrofuran. An early complex of formaldehyde with CH2CILi is first formed with quite exothermic effect. Only a little activation energy of 14.6 kJ/mol is needed for the complex developing into the product through a transition state with coplanar bicyclic structure. In this process, the eletrophilic attack of carbonyl carbon of formaldehyde is more active than the nucleophilic attack of carbon of carbenoid. The exothermal effect of this addition process is up to 216.5 kJ/mol.

  9. The role of additives in the recombination luminescence mechanism of irradiated 2-methyltetrahydrofuran glasses

    The radiothermoluminescence (RTL) of γ-irradiated pure glassy 2-methyltetrahydrofuran (2-MTHF) and of 2-MTHF glasses containing additives was measured. For pure 2-MTHF a very weak luminescence peak at 93 K (heating rate 0,05 K/s) was found which in the presence of certain additives was enhanced by several orders of magnitude. Using data of radiothermoluminescence, absorption and phosphorescence measurements and bleaching experiments an attempt was made to derive a reaction mechanism. It was found to exist different possibilities for activation the ionic species to give recombination luminescence. (author)

  10. Mechanical Effects of Hafnium and Boron Addition to Aluminum Alloy Films for Submicrometer LSI Interconnects

    Onoda, Hiroshi; Takahashi, Eishi; Kawai, Yasuaki; Madokoro, Shoji; Fukuyo, Hideaki; Sawada, Susumu

    1993-11-01

    This is the first report on the mechanical properties of hafnium- and boron-added Al-Si-Cu alloy film for LSI interconnects. Two to three hundred ppm of hafnium and boron addition into Al-Si-Cu alloy film does not influence the Al alloy properties for metal lines as LSI interconnects, such as its low resistivity, low ohmic contact resistance with Si, and fine-line patterning feasibility. The mechanical properties of the Al alloy film, however, change greatly. Vertical hillock and lateral hillock formation is considerably suppressed during heat treatments used in LSI fabrication processes. Stress-induced void formation is also reduced during aging test at 125°C. These effects due to hafnium and boron addition are considered to be an impurity precipitation effect ihat was confirmed by X-ray diffraction analysis and electron probe microanalysis.

  11. Microstructure and mechanical properties of the Al-Ti alloy with calcium addition

    L.A. Dobrzański; K. Labisz; Olsen, A

    2008-01-01

    Purpose: In this paper there are presented the investigation results of mechanical properties and microstructure with intermetallic phases of the aluminium – titanium alloy with a defined content of Ca addition. The purpose of this work was also to determine the heat treatment conditions for solution heat treatment of the investigation alloys.Design/methodology/approach: The reason of this work was to determine the heat treatment influence, particularly solution heat treatment time to the cha...

  12. EFFECTS OF PHENOL RESIN ADDITIVE ON DYNAMIC MECHANICAL PROPERTIES OF ACRYLATE RUBBER AND ITS BLENDS

    Chi-fei Wu

    2003-01-01

    The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylate rubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubber and its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.

  13. Additive manufacture of an aluminium alloy: processing, microstructure, and mechanical properties

    Aboulkhair, Nesma T.

    2016-01-01

    Additive manufacturing of aluminium alloys using selective laser melting (SLM) is of research interest nowadays because of its potential benefits in industry sectors such as aerospace and automotive. However, in order to demonstrate the credibility of aluminium SLM for industrial needs, a comprehensive understanding of the interrelation between the process parameters, produced microstructure, and mechanical behaviour is still needed. This thesis aims at contributing to developing this compreh...

  14. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets – a survey

    Tesař Václav

    2016-01-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillati...

  15. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curaua fiber composites

    Borba, Patricia M. [Servico Nacional de Aprendizagem Industrial (CETEPO/SENAI/RS), Sao Leopoldo, RS (Brazil). Centro Tecnologico de Polimeros; Tedesco, Adriana [Braskem S. A., III Polo Petroquimico, Triunfo, RS (Brazil); Lenz, Denise M., E-mail: denise.lenz@gmail.com [Universidade Luterana do Brasil (ULBRA), Canoas, RS (Brazil). Programa de Pos-graduacao em Engenharia de Materiais e Processos Sustentaveis

    2014-03-15

    Composites of styrene-butadiene-styrene triblock copolymer (SBS) matrix with curauá fiber and/or a nanoparticulated mineral (montmorillonite clay - MMT) used as reinforcing agents were prepared by melt-mixing. The influence of clay addition on properties like tensile and tear strength, rebound resilience, flex fatigue life, abrasion loss, hardness and water absorption of composites with 5, 10 and 20 wt% of curauá fiber was evaluated in presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene triblock copolymer (MA-g-SEBS) coupling agent. Furthermore, the effect of mineral plasticizer loading on tensile strength of selected composites was investigated. The hybrid SBS composite that showed the best overall mechanical performance was composed by 2 wt% of MMT and 5 wt% of curauá fiber. Increasing fiber content up to 20 wt% resulted in a general decrease in all mechanical properties as well as incorporation of 5 wt% MMT caused a decrease in the tensile strength in all fiber contents. The hybrid composites showed clay agglomerates (tactoids) poorly dispersed that could explain the poor mechanical performance of composites at higher concentrations of curauá fiber and MMT nanoparticles. The addition of plasticizer further decreased the tensile strength while the addition of MMT nanoparticles decreased water absorption for all SBS composites. (author)

  16. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curaua fiber composites

    Composites of styrene-butadiene-styrene triblock copolymer (SBS) matrix with curauá fiber and/or a nanoparticulated mineral (montmorillonite clay - MMT) used as reinforcing agents were prepared by melt-mixing. The influence of clay addition on properties like tensile and tear strength, rebound resilience, flex fatigue life, abrasion loss, hardness and water absorption of composites with 5, 10 and 20 wt% of curauá fiber was evaluated in presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene triblock copolymer (MA-g-SEBS) coupling agent. Furthermore, the effect of mineral plasticizer loading on tensile strength of selected composites was investigated. The hybrid SBS composite that showed the best overall mechanical performance was composed by 2 wt% of MMT and 5 wt% of curauá fiber. Increasing fiber content up to 20 wt% resulted in a general decrease in all mechanical properties as well as incorporation of 5 wt% MMT caused a decrease in the tensile strength in all fiber contents. The hybrid composites showed clay agglomerates (tactoids) poorly dispersed that could explain the poor mechanical performance of composites at higher concentrations of curauá fiber and MMT nanoparticles. The addition of plasticizer further decreased the tensile strength while the addition of MMT nanoparticles decreased water absorption for all SBS composites. (author)

  17. Increased Mechanical Properties Through the Addition of Zr to GRCop-84

    Ellis, David L.; Lerch, Bradley A.

    2011-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has shown exceptional mechanical properties above 932 F (773 K). However, its properties below 932 F (773 K) are inferior to precipitation strengthened alloys such as Cu-Cr, Cu-Zr and Cu-Cr-Zr when they are in the fully aged, hard-drawn condition. It has been noted that the addition of small amounts of Zr, typically 0.1 wt.% to 0.5 wt.%, can greatly enhance the mechanical properties of copper-based alloys. Limited testing was conducted upon GRCop-84 with an addition of 0.4 wt.% Zr to determine its tensile, creep and low cycle fatigue (LCF) properties. Very large increases in strength (up to 68%) and ductility (up to 123%) were observed at both room temperature and 932 F (773 K). Creep properties at 932 F (773 K) demonstrated more than an order of magnitude decrease in the creep rate relative to unmodified GRCop-84 with a corresponding order of magnitude increase in creep life. Limited LCF testing showed that the modified alloy had a comparable LCF life at room temperature, but it was capable of sustaining a much higher load. While more testing and composition optimization are required, the addition of Zr to GRCop-84 has shown clear benefits to mechanical properties.

  18. Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition

    Highlights: • Influence of the strontium (Sr) addition on the Zn25Al–Si alloys were investigated. • The microstructure was improved upon the addition of strontium. • The hardness and compressive yield stress did not change significantly. • The wear resistance was improved, and coefficient of friction was slightly increased. • The increase in wt.% Sr showed an effect of a double-nature on the wear resistance. - Abstract: The ZA-27 alloy is a zinc–aluminium casting alloy that has been frequently used as the material for sleeves of plain bearings. It has good physical, mechanical and tribological properties. However, one of the major disadvantages is its dimensional instability over a period of time (ageing). To overcome this, copper in the alloy may be replaced with silicon. Coarsening of silicon particles can be controlled by a suitable addition of strontium. In this paper, the commercial ZA-27 alloy and six different Zn25Al alloys (with 1 and 3 wt.% silicon; and with 0, 0.03 and 0.05 wt.% strontium) were obtained by casting in the preheated steel mould. Casting of the alloys was carried out at a laboratory level. In the alloys containing silicon, a finer dendritic structure was noticed compared to the structure of the commercial ZA-27 alloy. The addition of strontium influenced the size and distribution of primary silicon particles. Needle-like particles of eutectic silicon were changed into the fibrous ones. The presence of silicon and strontium did not significantly affect mechanical properties of the obtained Zn25Al alloys compared to mechanical properties of the commercial ZA-27 alloy. Wear rate of the alloys containing silicon was lower than that of the ZA-27 alloy. The addition of strontium further lowers the wear rate and slightly increases the coefficient of friction

  19. The mechanism of venous valve closure. Its relationship to the velocity of reverse flow.

    van Bemmelen, P S; Beach, K; Bedford, G; Strandness, D E

    1990-05-01

    Venous valves will close when the reversal of the normal pressure gradient generates a sufficient reverse flow velocity. By testing 20 healthy subjects with ultrasonic duplex scanning and controlled limb compression. It was found that the velocity of reflux is related to the external compression pressure. Valve closure is an abrupt cessation of reverse flow. In this study, with subjects in a supine position, valve closure was achieved only after reverse velocities exceeded 30 cm/s. This velocity was not generated by manual compression of the limb. With a Valsalva maneuver, this velocity is achieved only in the common femoral vein in 90% of the tested individuals. The reflux velocities in response to a Valsalva maneuver are progressively lower in more distal veins--the profunda femoris, the superficial femoral vein, and the popliteal vein. With reverse velocities lower than 30 cm/s, the valves will not close and reflux can persist. Valsalva's maneuver only allows a diagnosis of valvular competence at the most proximal level in the venous tree. PMID:2184798

  20. Addition of Fructooligosaccharides and Dried Plum to Soy-Based Diets Reverses Bone Loss in the Ovariectomized Rat

    Catherine D. Johnson

    2011-01-01

    Full Text Available Dietary bioactive components that play a role in improving skeletal health have received considerable attention in complementary and alternative medicine practices as a result of their increased efficacy to combat chronic diseases. The objectives of this study were to evaluate the additive or synergistic effects of dried plum and fructooligosaccharides (FOS and to determine whether dried plum and FOS or their combination in a soy protein-based diet can restore bone mass in ovarian hormone deficient rats. For this purpose, 72 3-month-old female Sprague-Dawley rats were divided into six groups (n = 12 and either ovariectomized (Ovx, five groups or sham-operated (sham, one group. The rats were maintained on a semipurified standard diet for 45 days after surgery to establish bone loss. Thereafter, the rats were placed on one of the following dietary treatments for 60 days: casein-based diet (Sham and Ovx, soy-based diet (Ovx + soy or soy-based diet with dried plum (Ovx + soy + plum, FOS (Ovx + soy + FOS and combination of dried plum and FOS (Ovx + soy + plum + FOS. Soy protein in combination with the test compounds significantly improved whole-body bone mineral density (BMD. All test compounds in combination with soy protein significantly increased femoral BMD but the combination of soy protein, dried plum and FOS had the most pronounced effect in increasing lumbar BMD. Similarly, all of the test compounds increased ultimate load, indicating improved biomechanical properties. The positive effects of these test compounds on bone may be due to their ability to modulate bone resorption and formation, as shown by suppressed urinary deoxypyridinoline excretion and enhanced alkaline phosphatase activity.

  1. Stabilisation of mechanical properties in silver alloys by addition of lanthanides

    W. Głuchowski

    2008-10-01

    Full Text Available Purpose: Silver alloys intended for industrial application should characterise by high electrical conductivity (as pure silver as well as high mechanical and functional properties, stable also at elevated temperature. The objective of this work was to investigate the mechanical properties stability of Ag-La (0.5% and Ag-mishmetal (1 and 4% alloys caused by severe plastic deformation compared to the Ag+(7.5 wt %Cu alloy and pure Ag materials.Design/methodology/approach: Tests were made with the samples obtained by casting and further plastic working included KOBO® extrusion process and drawing. Wires were annealed in temperature range 50 - 500°C. The mechanical properties (at room temperature, elevated temperature and after annealing and microstructure were examined. The values of yield strength obtained in a tension tests have been compared to the values calculated theoretically.Findings: Additive of rare earth metals contributed to fine structure obtaining, particles formed in grain boundaries stabilized microstructure at elevated temperature. Increase of mechanical properties of investigated alloys was connected with presence of fine precipitations in silver matrix, which confirmed susceptibility to precipitation hardening of silver – mishmetal alloys.Research limitations/implications: Ability of new alloys to precipitation hardening should be confirmed by further investigations, including solution heat treatment and ageing, also for materials prepared in vacuum furnace.Practical implications: Stability of mechanical properties at elevated temperature, gives possibility to use of new silver allays for producing elements designed to operate at elevated temperatures or exposed to rapid temperature changes. Increased mechanical properties and good tarnish resistance indicates possibility of new applications of investigated alloys in jewellery and medicine, after additional and essential investigations.Originality/value: The wire made from

  2. Mechanism of strengthening of cube texture for high purity aluminum foils by additional-annealing

    张新明; 刘胜胆; 唐建国; 周卓平

    2003-01-01

    The mechanism of strengthening of cube texture ({001}〈100〉) by additional-annealing of high purity aluminum foils was investigated by using orientation distribution functions (ODFs) and electron back scattered diffraction (EBSD). The results of ODFs and fiber show that the orientation densities of the S {123}〈634〉 and Cu {112}〈111〉 components increase in both the additional-annealed samples and the 0.11 mm final cold-rolled foils. And the EBSD results demonstrate that cube nuclei can be identified in the deformed matrix of those additional-annealed samples. It is suggested that the strengthening of cube texture can be brought out by the increasing of components of S and Cu and the formation of cube nuclei caused by additional-annealing. Moreover, it is found that the cube texture increases first and then decreases with increasing additional-annealing temperature, and it is the strongest at 180 ℃.The strengthening of cube texture by additional-annealing is proposed as the result of oriented growth of cube subgrains.

  3. Influence of niobium additions on mechanical properties and corrosion of INCOLOY 800 H

    The studies were carried out with six model alloys of the type INCOLOY alloy 800 H (32 Ni/20 Cr), obtained by variation of the niobium additions with up to 1.55 wt. p.c. of Nb. The mechanical properties and structural characteristics of these samples are listed after treatments as follows: - Aging at 650, 800, and 9000C (Notch bending tests and tensile tests at room temperature). - Carbonisation at 800 and 9000C in PNP standard helium (C-analysis, long-term creep tests at 9000C). Alloys with Nb additions showed constant good strength and ductility after aging, values being better than those for material without Nb additions. The creep tests showed that tensile strengths is improved with increasing niobium content; carbonisation is less than in alloys without Nb. (orig./IHOE)

  4. Mechanisms and modeling of the effects of additives on the nitrogen oxides emission

    Kundu, Krishna P.; Nguyen, Hung Lee; Kang, M. Paul

    1991-01-01

    A theoretical study on the emission of the oxides of nitrogen in the combustion of hydrocarbons is presented. The current understanding of the mechanisms and the rate parameters for gas phase reactions were used to calculate the NO(x) emission. The possible effects of different chemical species on thermal NO(x), on a long time scale were discussed. The mixing of these additives at various stages of combustion were considered and NO(x) concentrations were calculated; effects of temperatures were also considered. The chemicals such as hydrocarbons, H2, CH3OH, NH3, and other nitrogen species were chosen as additives in this discussion. Results of these calculations can be used to evaluate the effects of these additives on the NO(x) emission in the industrial combustion system.

  5. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  6. Additional degrees of freedom associated with position measurements in non-commutative quantum mechanics

    Rohwer, CM

    2012-01-01

    In this thesis we shall demonstrate that a measurement of position alone in non-commutative space cannot yield complete information about the quantum state of a particle. Indeed, the formalism used entails a description that is non-local in that it requires all orders of positional derivatives through the star product that is used ubiquitously to map operator multiplication onto function multiplication in non-commutative systems. It will be shown that there exist several equivalent local descriptions, which are arrived at via the introduction of additional degrees of freedom. Consequently non-commutative quantum mechanical position measurements necessarily confront us with some additional structure which is necessary to specify quantum states completely. The remainder of the thesis, will involve investigations into the physical interpretation of these additional degrees of freedom. For one particular local formulation, the corresponding classical theory will be used to demonstrate that the concept of extended...

  7. Magnetization reversal mechanisms in hybrid resin-bonded Nd-Fe-B magnets

    The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd-Fe-Co-B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries

  8. The Effects and Mechanisms of Periplaneta americana Extract Reversal of Multi-Drug Resistance in BEL-7402/5-FU Cells

    Falu Yuan

    2016-06-01

    Full Text Available The present study reports the reversing effects of extracts from P. americana on multidrug resistance of BEL-7402/5-FU cells, as well as a preliminary investigation on their mechanism of action. A methylthiazolyl tetrazolium (MTT method was applied to determine the multidrug resistance of BEL-7402/5-FU, while an intracellular drug accumulation assay was used to evaluate the effects of a column chromatography extract (PACC and defatted extract (PADF from P. americana on reversing multi-drug resistance. BEL-7402/5-FU reflected high resistance to 5-FU; PACC and PADF could promote drug accumulation in BEL-7402/5-FU cells, among which PADF was more effective than PACC. Moreover, results from the immunocytochemical method showed that PACC and PADF could downregulate the expression of drug resistance-associated proteins (P-gp, MRP, LRP; PACC and PADF had no effects on the expression of multidrug resistance-associated enzymes (GST-π, but PACC could increase the expression of multidrug resistance-associated enzymes (PKC. Results of real-time fluorescence quantitative PCR revealed that PACC and PADF were able to markedly inhibit the expression of multidrug resistance-associated genes (MDR1, LRP and MRP1; PACC presented a significant impact on the gene expression of multidrug resistance-associated enzymes, which increased the gene expression of GST-π and PKC. However, PADF had little impact on the expression of multidrug resistance-associated enzymes. These results demonstrated that PACC and PADF extracted from P. americana could effectively reverse MDR in BEL-7402/5-FU cells, whose mechanism was to inhibit the expression of P-gp, MRP, and LRP, and that PADF was more effective in the reversal of MDR than did PACC. In addition, some of extracts from P. americana altered (sometimes increasing the expression of multidrug resistance-associated enzymes.

  9. The Effects and Mechanisms of Periplaneta americana Extract Reversal of Multi-Drug Resistance in BEL-7402/5-FU Cells.

    Yuan, Falu; Liu, Junyong; Qiao, Tingting; Li, Ting; Shen, Qi; Peng, Fang

    2016-01-01

    The present study reports the reversing effects of extracts from P. americana on multidrug resistance of BEL-7402/5-FU cells, as well as a preliminary investigation on their mechanism of action. A methylthiazolyl tetrazolium (MTT) method was applied to determine the multidrug resistance of BEL-7402/5-FU, while an intracellular drug accumulation assay was used to evaluate the effects of a column chromatography extract (PACC) and defatted extract (PADF) from P. americana on reversing multi-drug resistance. BEL-7402/5-FU reflected high resistance to 5-FU; PACC and PADF could promote drug accumulation in BEL-7402/5-FU cells, among which PADF was more effective than PACC. Moreover, results from the immunocytochemical method showed that PACC and PADF could downregulate the expression of drug resistance-associated proteins (P-gp, MRP, LRP); PACC and PADF had no effects on the expression of multidrug resistance-associated enzymes (GST-π), but PACC could increase the expression of multidrug resistance-associated enzymes (PKC). Results of real-time fluorescence quantitative PCR revealed that PACC and PADF were able to markedly inhibit the expression of multidrug resistance-associated genes (MDR1, LRP and MRP1); PACC presented a significant impact on the gene expression of multidrug resistance-associated enzymes, which increased the gene expression of GST-π and PKC. However, PADF had little impact on the expression of multidrug resistance-associated enzymes. These results demonstrated that PACC and PADF extracted from P. americana could effectively reverse MDR in BEL-7402/5-FU cells, whose mechanism was to inhibit the expression of P-gp, MRP, and LRP, and that PADF was more effective in the reversal of MDR than did PACC. In addition, some of extracts from P. americana altered (sometimes increasing) the expression of multidrug resistance-associated enzymes. PMID:27367657

  10. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing

    Highlights: ► Finite element (FE) models were used to predict the mechanical properties of porous biomaterials. ► Porous materials were produced using additive manufacturing techniques. ► Manufacturing irregularities need to be implemented in FE models. ► FE models are more accurate than analytical models in predicting mechanical properties. - Abstract: An important practical problem in application of open-cell porous biomaterials is the prediction of the mechanical properties of the material given its micro-architecture and the properties of its matrix material. Although analytical methods can be used for this purpose, these models are often based on several simplifying assumptions with respect to the complex architecture and cannot provide accurate prediction results. The aim of the current study is to present finite element (FE) models that can predict the mechanical properties of porous titanium produced using selective laser melting or selective electron beam melting. The irregularities caused by the manufacturing process including structural variations of the architecture are implemented in the FE models using statistical models. The predictions of FE models are compared with those of analytical models and are tested against experimental data. It is shown that, as opposed to analytical models, the predictions of FE models are in agreement with experimental observations. It is concluded that manufacturing irregularities significantly affect the mechanical properties of porous biomaterials

  11. Physical and mechanical characterization of Portland cement mortars made with expanded polystyrene particles addition (EPS

    Ferrándiz-Mas, V.

    2012-12-01

    Full Text Available On this work the influence of the addition of different types (commercial and recycled and contents of expanded polystyrene on the physical and mechanical properties of Portland cement mortars has been studied. Variables studied are: workability, air content, bulk density, mechanical strength, porosity, water absorption and sound absorption. Mixtures have been also characterized by scanning electron microscopy. Air-entraining agents, water retainer and superplasticizer additives have been used in order to improve the workability of mortars. The results show that the workability and mechanical strength decreases with increasing content of expanded polystyrene. Additives improve the workability and porosity, allowing manufacture mortars with high levels of recycled material that show mechanical properties suitable for use as masonry mortars, stucco and plaster.

    El objetivo de este estudio es evaluar la influencia de la adición de distintos tipos y dosificaciones de poliestireno expandido, tanto comerciales como procedentes de reciclado, sobre las características físicas y mecánicas de morteros de cemento portland. Las variables estudiadas fueron: consistencia, aire ocluido, densidad aparente, resistencias mecánicas, porosidad, absorción de agua y absorción acústica. Los morteros también se han caracterizado por microscopia electrónica de barrido. Con objeto de mejorar la trabajabilidad de los morteros se ha empleado aditivos aireante, retenedor de agua y fluidificante. Los resultados muestran que al aumentar la cantidad de poliestireno expandido la trabajabilidad y las resistencias mecánicas disminuyen. El empleo de aditivos mejora la trabajabilidad y la porosidad, permitiendo fabricar morteros con altos contenidos de residuo, con propiedades mecánicas adecuadas para su empleo como morteros de albañilería, revoco y enlucido.

  12. Mechanism of Fast Axially--Symmetric Reversal of Magnetic Vortex Core

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2012-01-01

    The magnetic vortex core in a nanodot can be switched by an alternating transversal magnetic field. We propose a simple collective coordinate model which describes comprehensive vortex core dynamics, including resonant behavior, weakly nonlinear regimes, and reversal dynamics. A chaotic dynamics of the vortex polarity is predicted. All analytical results were confirmed by micromagnetic simulations.

  13. Influence of silicon addition on the mechanical properties and corrosion resistance of low-alloy steel

    M Hebda; H Dębecka; J Kazior

    2015-12-01

    The addition of silicon to low-alloy steel allows to modify the materials' microstructure and thus to improve their corrosion resistance and mechanical properties. The influence of adding different amounts of silicon on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low-alloy steel was investigated. Samples were prepared via the mechanical alloying process, which is the most useful method to homogeneously introduce silicon to low-alloy steel. Sintering was performed by using the spark plasma sintering (SPS) technique. After the SPS process, half of each of the obtained samples was heat-treated in a vacuum furnace. The results show that high-density materials were achieved, and a homogeneous and fine microstructure was obtained. The investigated compositions containing 1 wt% of silicon had better corrosion resistance than samples with 3 wt% of silicon addition. Furthermore, corrosion resistance as well as the mechanical and plastic properties of the samples with 1 wt% of silicon can be further improved by applying heat treatment.

  14. The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing

    Simple models describing the relationship between basic mechanical properties and the relative density of various types of porous metals (such as foams, sponges and lattice structures) are well established. Carefully evaluating these relationships experimentally is challenging, however, because of the stochastic structure of foams and the fact that it is difficult to systematically isolate density changes from variations in other factors, such as pore size and pore distribution. Here a new method for producing systematic sets of stochastic foams is employed based on electron beam melting (EBM) additive manufacturing (AM). To create idealised structures, structural blueprints were reverse-engineered by inverting X-ray computed tomographs of a randomly packed bed of glass beads. This three-dimensional structure was then modified by computer to create five foams of different relative density ρr, but otherwise consistent structure. Yield strength and Young’s modulus have been evaluated in compression tests and compared to existing models for foams. A power of 3 rather than a squared dependence of stiffness on relative density is found, which agrees with a recent model derived for replicated foams. A similar power of 3 relation was found for yield strength. Further analysis of the strength of nominally fully dense rods of different diameters built by EBM AM suggest that surface defects mean that the minimum size of features that can be created by EBM with similar strengths to machined samples is ∼1 mm

  15. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials

    Galao, O.

    2012-09-01

    Full Text Available This paper reports on recent work that is directed at studying the changes in the mechanical properties of Portland cement based mortars due to the addition of carbon nanofiber (CNF. Both flexural and compression strength has been determined and related to the CNF addition to the mix, to the curing time and to the porosity and density of the matrix. Also, corrosion of embedded steel rebars in CNF cement pastes exposed to carbonation and chloride attacks has been investigated. The increase in CNF addition implies higher corrosion intensity and higher levels of mechanical properties.En este artículo se han estudiado los cambios en las propiedades mecánicas de los morteros de cemento Portland debido a la adición de nanofibras de carbono (NFC. Se han determinado las resistencias a flexotracción y a compresión de los morteros en relación a la cantidad de NFC añadidas a la mezcla, al tiempo de curado y a la porosidad y densidad de los mismos. Además se han investigado los niveles de corrosión de barras de acero embebidas en pastas de cemento con NFC expuestos al ataque por carbonatación y por ingreso de cloruros. El aumento en el porcentaje de NFC añadido se traduce en un aumento la intensidad de corrosión registrada y una mejora de las propiedades mecánicas.

  16. Effects of Mo and Al addition on the Mechanical Properties of 15Cr ODS steel

    Shim, Jaewon; Noh, Sanghoon; Kang, Sukhoon; Chun, Youngbum; Choi, Byoungkwon; Han, Changhee; Kim, Taekyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Oxide particle controls the strength of the ODS steel and the addition of Mo, W, and Al, which changes the microstructures and remarkably influences the strength of ODS steel. In this study, Fe-based ODS alloys with Mo, W, and Al additions were fabricated by HIP and hot rolling processes, and their microstructures and mechanical properties were investigated. Some Fe-based ODS alloys were fabricated by a HIP process, and their microstructures and mechanical properties were investigated. Mo, W, and Al are considered to be very effective alloying elements for high strength and formability in Fe-based ODS alloys. As a result of a microstructure observation, grain refinement occurred in the case of the addition of W and Mo. However, the grain size and oxide particles of Fe-15Cr-ODS alloy Al added became coarse. Therefore, the hardness and tensile strength were decreased. On the other hand, the elongation was increased owing to the coarser grain. These preliminary results will be useful for developing advanced Fe-15Cr ODS alloy. The structural components for nuclear systems need to have formability as well as strength.

  17. Mechanical and Thermal Properties of Glass/Polyester Composite with Glycerol as Additive

    K.S.Siddharthan

    2014-01-01

    Full Text Available There has been an increasing interest to improve the mechanical properties of the polymer based laminated composites. In this paper, glycerol is used as a solvent to improve the mechanical properties of glass/polyester laminated composites. Polyester resin is modified with 0, 5 and 10 wt% of glycerol. Glycerol and polyester resin are synthesized by hand stirrer. Hand layup method is used to manufacture the laminate made of bi-directional glass woven roving mat and modified polyester. The effect of glycerol is validated by subjecting all samples to the laminate mechanical testing. Results revealed improvement in the mechanical properties of the composites subjected to direct tension and compression test at ambient temperature (27oC. Impact toughness is evaluated under both ambient and low temperature (-10oC conditions, as polyester resin is more brittle at low temperatures. Thermo gravimetric analysis results showed minor weight loss due to decrease in the cross-linking density of polyester with the addition of glycerol. It leads to the result that we can use this composite with glycerol as advanced material for wind turbine blade.

  18. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. PMID:26143351

  19. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets – a survey

    Tesař Václav

    2016-01-01

    Full Text Available Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  20. Effects of Additive on the Mechanical Properties of Bamboo/pbs Composites

    Lee, Yeon-Hee; Yoon, Han-Ki; Takagi, Hitoshi; Ohkita, Kazuya

    Compared with general composites which are produced from fossil fuel, biodegradable resins have received considerable attention as an environment-friendly material. Bamboo fiber has relatively high strength compared with other natural fibers. Therefore, the focus of this study is to produce bamboo fiber reinforced Poly butylene succinate (PBS) composites by injection molding and to study the effects of additive on mechanical properties of this bamboo/PBS composite. The injection-molding is a highly productive fabrication technique. Bamboo/PBS composites were examined by flexural test and Vickers hardness. Also we examined fracture surface and microstructure of the bamboo/PBS composites by microscope.

  1. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets - a survey

    Tesař, Václav

    2016-03-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  2. On Self-Recovery Mechanism and Additional Maneuverability of a Mini Mobile Robot

    1999-01-01

    Ordinary mobile robots have some kind of moving mechanisms attached to one rigid body. When working on rough terrain or in other hazard environments, there existed some possibilities that the robot will be turned up side down, thus causing losses to the robot's expedition. Multi-bodied mobile robots provide a solution to that problem. Using active joints between bodies, the robot can recover from turnover situation by itself. In this paper, the authors discuss the joint arrangements and the additional maneuverability resulted from joints between body segments.

  3. Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials.

    Davidson, Joshua R; Appuhamillage, Gayan A; Thompson, Christina M; Voit, Walter; Smaldone, Ronald A

    2016-07-01

    A design paradigm is demonstrated that enables new functional 3D printed materials made by fused filament fabrication (FFF) utilizing a thermally reversible dynamic covalent Diels-Alder reaction to dramatically improve both strength and toughness via self-healing mechanisms. To achieve this, we used as a mending agent a partially cross-linked terpolymer consisting of furan-maleimide Diels-Alder (fmDA) adducts that exhibit reversibility at temperatures typically used for FFF printing. When this mending agent is blended with commercially available polylactic acid (PLA) and printed, the resulting materials demonstrate an increase in the interfilament adhesion strength along the z-axis of up to 130%, with ultimate tensile strength increasing from 10 MPa in neat PLA to 24 MPa in fmDA-enhanced PLA. Toughness in the z-axis aligned prints increases by up to 460% from 0.05 MJ/m(3) for unmodified PLA to 0.28 MJ/m(3) for the remendable PLA. Importantly, it is demonstrated that a thermally reversible cross-linking paradigm based on the furan-maleimide Diels-Alder (fmDA) reaction can be more broadly applied to engineer property enhancements and remending abilities to a host of other 3D printable materials with superior mechanical properties. PMID:27299858

  4. Reversible Adaptive Plasticity: A Mechanism for Neuroblastoma Cell Heterogeneity and Chemo-Resistance

    AnthonyDSandler

    2012-01-01

    We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nest...

  5. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors

    Wenheng eZhang

    2013-08-01

    Full Text Available Malpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy, which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World Malpighiaceae. In New World Lasiocarpus and Old World Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in New World Psychopterys and Old World Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program.

  6. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials

    Ultrasonic Additive Manufacturing (UAM) enables the integration of a wide variety of components into solid metal matrices due to the process induced high degree of metal matrix plastic flow at low bulk temperatures. Exploitation of this phenomenon allows the fabrication of previously unobtainable novel engineered metal matrix components. The feasibility of directly embedding electrical materials within UAM metal matrices was investigated in this work. Three different dielectric materials were embedded into UAM fabricated aluminium metal-matrices with, research derived, optimal processing parameters. The effect of the dielectric material hardness on the final metal matrix mechanical strength after UAM processing was investigated systematically via mechanical peel testing and microscopy. It was found that when the Knoop hardness of the dielectric film was increased from 12.1 HK/0.01 kg to 27.3 HK/0.01 kg, the mechanical peel testing and linear weld density of the bond interface were enhanced by 15% and 16%, respectively, at UAM parameters of 1600 N weld force, 25 µm sonotrode amplitude, and 20 mm/s welding speed. This work uniquely identified that the mechanical strength of dielectric containing UAM metal matrices improved with increasing dielectric material hardness. It was therefore concluded that any UAM metal matrix mechanical strength degradation due to dielectric embedding could be restricted by employing a dielectric material with a suitable hardness (larger than 20 HK/0.01 kg). This result is of great interest and a vital step for realising electronic containing multifunctional smart metal composites for future industrial applications

  7. Translation of Time-Reversal Violation in the Neutral K-Meson System into a Table-Top Mechanical System

    Reiser, Andreas; Stiewe, Juergen

    2012-01-01

    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K mesons. We present and discuss a two-state mechanical system, a Foucault-type pendulum on a rotating table, for a full representation of K0 K0bar transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical with the differential equation for the real part of the CPT-symmetric K-meson wave function. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are shown as supplementary material.

  8. A theoretical study of the mechanism of the addition reaction between carbene and azacyclopropane

    XIAOJUN TAN

    2010-05-01

    Full Text Available The mechanism of the addition reaction between carbene and azacyclopropane was investigated using the second-order Moller–Plesset perturbation theory (MP2. By using the 6-311+G* basis set, geometry optimization, vibrational analysis and the energy properties of the involved stationary points on the potential energy surface were calculated. From the surface energy profile, it can be predicted that there are two reaction mechanisms. The first one (1 is carbene attack at the N atom of azacyclopropane to form an intermediate, 1a (IM1a, which is a barrier-free exothermic reaction. Then, IM1a can isomerize to IM1b via a transition state 1a (TS1a, in which the potential barrier is 30.0 kJ/mol. Subsequently, IM1b isomerizes to a product (Pro1 via TS1b with a potential barrier of 39.3 kJ/mol. The other one (2 is carbene attack at the C atom of azacyclopropane, firstly to form IM2 via TS2a, the potential barrier is 35.4 kJ/mol. Then IM2 isomerizes to a product (Pro2 via TS2b with a potential barrier of 35.1 kJ/mol. Correspondingly, the reaction energy for the reactions (1 and (2 is –478.3 and –509.9 kJ/mol, respectively. Additionally, the orbital interactions are also discussed for the leading intermediate.

  9. TDDFT Study on Different Sensing Mechanisms of Similar Cyanide Sensors Based on Michael Addition Reaction

    Guang-yue Li; Ping Song; Guo-zhong He

    2011-01-01

    The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino-3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena.The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysical properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore,the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescencefor the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.

  10. Possible Mechanism of ``Additional'' Production of H^- in a Glow Discharge

    Belostotskiy, S.; Economou, D.; Lopaev, D.; Rakhimova, T.

    2006-10-01

    Based on measurements of H^- and H densities a DC glow discharge in H2 (P=0.1-3 Torr) the rate coefficient of H^- production as a function of E/N was determined. To analyze the mechanisms of H^- production, a simple model of H2 vibrational excitation was developed. Estimations of vibrational level densities (v=3-5) obtained from VUV absorption measurements were in reasonable agreement with the calculated data. The analysis revealed that standard mechanisms of H^- production (dissociative attachment to vibrationally excited molecules H2(v) and molecules in Rydberg states H2(Ry)) were not enough to explain the experimental results. In order to describe both the shape (vs E/N) and the magnitude of the measured H^- production rate coefficient, an ``additional'' source of H^-, having a strong resonant electron attachment CS in the range of ˜5-9 eV, should be invoked. Although H2 has no resonances in the 5-9 eV range, water is known to strongly dissociatively attach in this range. Thus, even small amounts (0.1-1%) of water vapor in the apparatus can explain the origin of the ``additional'' H^- production. This result is corroborated by the work of Cadez et. al. in Proc. of XXVII ICPIG, 2005. This work was supported by the RFBR (No.05-02-17649a), Scientific School - 171113.2003.2 and NATO Collaborative Linkage Grant (No.980097).

  11. Mechanisms underlying the additive and redundant Qrr phenotypes in Vibrio harveyi and Vibrio cholerae.

    Hunter, Geoffrey A M; Keener, James P

    2014-01-01

    Vibrio harveyi and Vibrio cholerae regulate their virulence factors according to the local cell-population density in a regulatory system called quorum sensing. Their quorum sensing systems contain a small RNA (sRNA) circuit to regulate expression of a master transcriptional regulator via multiple quorum regulated RNA (Qrr) and a protein chaperon Hfq. Experiments and genetic analysis show that their respective quorum sensing networks are topologically equivalent and have homologous components, yet they respond differently to the same experimental conditions. In particular, V. harveyi Qrr are additive because all of its Qrr are required to maintain wild-type-like repression of its master transcriptional regulator. Conversely, V. cholerae Qrr are redundant because any of its Qrr is sufficient to repress its master transcriptional regulator. Given the striking similarities between their quorum sensing systems, experimentalists have been unable to identify conclusively the mechanisms behind these phenotypic differences. Nevertheless, the current hypothesis in the literature is that dosage compensation is the mechanism underlying redundancy. In this work, we identify the mechanisms underlying Qrr redundancy using a detailed mathematical model of the V. harveyi and V. cholerae sRNA circuits. We show that there are exactly two different cases underlying Qrr redundancy and that dosage compensation is unnecessary and insufficient to explain Qrr redundancy. Although V. harveyi Qrr are additive when the perturbations in Qrr are large, we predict that V. harveyi and V. cholerae Qrr are redundant when the perturbations in Qrr are small. We argue that the additive and redundant Qrr phenotypes can emerge from parametric differences in the sRNA circuit. In particular, we find that the affinity of Qrr and its expression relative to the master transcriptional regulator determine the level of redundancy in V. harveyi and V. cholerae. Furthermore, the additive and redundant Qrr

  12. Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization

    High roughness and a greater number of defects were created by lithium niobate (LN; LiNbO3) processes such as traditional grinding and mechanical polishing (MP), should be decreased for manufacturing LN device. Therefore, an alternative process for gaining defect-free and smooth surface is needed. Chemical mechanical planarization (CMP) is suitable method in the LN process because it uses a combination approach consisting of chemical and mechanical effects. First of all, we investigated the LN CMP process using commercial slurry by changing various process conditions such as down pressure and relative velocity. However, the LN CMP process time using commercial slurry was long to gain a smooth surface because of lower material removal rate (MRR). So, to improve the material removal rate (MRR), the effects of additives such as oxidizer (hydrogen peroxide; H2O2) and complexing agent (citric acid; C6H8O7) in a potassium hydroxide (KOH) based slurry, were investigated. The manufactured slurry consisting of H2O2-citric acid in the KOH based slurry shows that the MRR of the H2O2 at 2 wt% and the citric acid at 0.06 M was higher than the MRR for other conditions.

  13. Design of a mechanical system in gait rehabilitation with progressive addition of weight

    Braidot, Ariel A. A.; Aleman, Guillermo L.

    2011-12-01

    In this paper we designed and developed a mechanical device for gait rehabilitation based on the application of "partial body weight reduction therapy". An evaluation of the characteristics of devices based on this therapy currently available on the market was carried out obtaining information of the different mechanisms used in it. The device was designed to adapt to different height and weight of patients and to be used with additional equipment in gait rehabilitation, for example, treadmills, elliptical trainers and vertical scalers. It was envisaged to be used by patients with asymmetry in the lower extremities capabilities. We developed a stable structure in steel ASTM A36 which does not depend on the building conditions of the installation site. RamAdvanse software was used to calculate structural stability. A winch with automatic brake mechanism was used to raise/lower the patient, who was tied to a comfortable harness which provided safety to the patient and therapist. It was possible to quantify precisely, using counterweights, the weight borne by the patient during therapy. We obtained a small-sized and ergonomic low-cost prototype, with similar features to those currently considered cutting-edge devices.

  14. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys

    Liquid phase sintering, heat treatment and swaging studies on three tungsten heavy alloys, 93W–4.9Ni–2.1Fe (wt%), 93W–4.2Ni–1.2Fe–1.6Co (wt%) and 93W–4.9Ni–1.9Fe–0.2Re (wt%) were carried out in detail with respect to microstructure, tensile and impact properties. All the alloys were sintered and swaged to 40% deformation. The results indicate that Re addition reduces the grain size of the alloy compared to W–Ni–Fe and W-Ni-Fe-Co alloys. W–Ni–Fe–Re alloy shows superior tensile properties in heat treated condition as compared to W–Ni–Fe and W–Ni–Fe–Co alloys. SEM study of fractured specimens clearly indicates that the failure in case of W–Ni–Fe–Re was due to transgranular cleavage of tungsten grains and W–W de-cohesion. W–Ni–Fe and W–Ni–Fe–Co alloys also failed by mixed mode failure. However, in these cases, ductile dimples corresponding the failure of the matrix phase was rarely seen. Thermo-mechanical processing resulted in significant changes in mechanical properties. While W–Ni–Fe–Re alloy showed the highest tensile strength (1380 MPa), W–Ni–Fe–Co exhibited the highest elongation (12%) to failure. A detailed analysis involving microstructure, mechanical properties and failure behavior was undertaken in order to understand the property trends

  15. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys

    Ravi Kiran, U., E-mail: uravikiran@gmail.com [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Panchal, A.; Sankaranarayana, M. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Nageswara Rao, G.V.S. [National Institute of Technology, Warangal 506004 (India); Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India)

    2015-07-29

    Liquid phase sintering, heat treatment and swaging studies on three tungsten heavy alloys, 93W–4.9Ni–2.1Fe (wt%), 93W–4.2Ni–1.2Fe–1.6Co (wt%) and 93W–4.9Ni–1.9Fe–0.2Re (wt%) were carried out in detail with respect to microstructure, tensile and impact properties. All the alloys were sintered and swaged to 40% deformation. The results indicate that Re addition reduces the grain size of the alloy compared to W–Ni–Fe and W-Ni-Fe-Co alloys. W–Ni–Fe–Re alloy shows superior tensile properties in heat treated condition as compared to W–Ni–Fe and W–Ni–Fe–Co alloys. SEM study of fractured specimens clearly indicates that the failure in case of W–Ni–Fe–Re was due to transgranular cleavage of tungsten grains and W–W de-cohesion. W–Ni–Fe and W–Ni–Fe–Co alloys also failed by mixed mode failure. However, in these cases, ductile dimples corresponding the failure of the matrix phase was rarely seen. Thermo-mechanical processing resulted in significant changes in mechanical properties. While W–Ni–Fe–Re alloy showed the highest tensile strength (1380 MPa), W–Ni–Fe–Co exhibited the highest elongation (12%) to failure. A detailed analysis involving microstructure, mechanical properties and failure behavior was undertaken in order to understand the property trends.

  16. Design of a mechanical system in gait rehabilitation with progressive addition of weight

    In this paper we designed and developed a mechanical device for gait rehabilitation based on the application of partial body weight reduction therapy. An evaluation of the characteristics of devices based on this therapy currently available on the market was carried out obtaining information of the different mechanisms used in it. The device was designed to adapt to different height and weight of patients and to be used with additional equipment in gait rehabilitation, for example, treadmills, elliptical trainers and vertical scalers. It was envisaged to be used by patients with asymmetry in the lower extremities capabilities. We developed a stable structure in steel ASTM A36 which does not depend on the building conditions of the installation site. RamAdvanse software was used to calculate structural stability. A winch with automatic brake mechanism was used to raise/lower the patient, who was tied to a comfortable harness which provided safety to the patient and therapist. It was possible to quantify precisely, using counterweights, the weight borne by the patient during therapy. We obtained a small-sized and ergonomic low-cost prototype, with similar features to those currently considered cutting-edge devices.

  17. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys

    Highlights: • Effect of boron and carbon on properties of three beta titanium alloys studied. • Ti–15V–3Cr–3Mo–3Sn, Ti–10V–2Fe–3Al, and Ti–5V–5Mo–5Al–3Cr alloys studied. • Hardness and 0.2% YS increases and elongation to failure deteriorates with the B and C addition. • Ageing in comparison to solution treatment results in increase in strength and decrease in elongation. • Low ‘n′ values and multiple slopes are observed in log–log plots of true stress–true strain curves. - Abstract: Effect of boron and carbon on microstructure and mechanical properties of β titanium alloys Ti–15V–3Cr–3Mo–3Sn, Ti–10V–2Fe–3Al, and Ti–5V–5Mo–5Al–3Cr has been studied in detail. The addition of boron and carbon results in refinement of β grain size and α-precipitates during ageing. While the hardness and tensile strength increase with the addition of boron and carbon, the elongation to failure deteriorates. The increase in strength is attributed to a synergistic effect of grain refinement and load sharing by TiB and TiC particles; whereas decrease in elongation is due to the brittleness of these hard particles. Ageing results in increase in strength and decrease in elongation as compared to solution treatment condition. In this case, the effect of boron and carbon is marginal. Further enhancement in the properties can be achieved by fine tuning heat treatment parameters. Multiple slopes are observed in log–log plots of true stress–true strain thereby implying different deformation mechanisms over a large range of plastic deformation

  18. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods. PMID:22268355

  19. Examining the mechanisms underlying contextual preference reversal: Comment on Trueblood, Brown, and Heathcote (2014).

    Tsetsos, Konstantinos; Chater, Nick; Usher, Marius

    2015-10-01

    Trueblood, Brown, and Heathcote (2014) provide a new model of multiattribute choice, which accounts for 3 contextual reversal effects (similarity, attraction and compromise). We review the details of the model and highlight some novel predictions. First, we show that the model works by setting a "fine balance" between 2 opposing factors that influence choice. As a result, small changes in the attributes of choice alternatives can disturb this balance. Second, we show that the model gives a partial account of the compromise effect. We describe a number of experiments that could distinguish the MLBA from other models of multiattribute choice. PMID:26437153

  20. Reverse α′ → γ transformation mechanisms of martensitic Fe–Mn and age-hardenable Fe–Mn–Pd alloys upon fast and slow continuous heating

    The mechanisms governing the reverse martensite (α′) to austenite (γ) transformation (α′ → γ) and the effect of prior precipitation on the austenite reversion are investigated for martensitic Fe–Mn alloys containing 5 and 10 wt.% Mn and their age-hardenable variants with the addition of 1 wt.% Pd, respectively. Dilatometric experiments employing heating rates between 0.5 and 200 K min−1, atom-probe tomography measurements on continuously heated specimens and thermo-kinetic simulations were performed. On fast heating (200 K min−1), the α′ → γ transformation appeared in a single stage and can be regarded as a partitionless and interface-controlled reaction. In comparison to the binary alloys, the transformation temperatures of the Pd-containing steels are considerably increased, due to precipitates which act as obstacles to migrating austenite/martensite interfaces. For low heating rates of 0.5 and 2 K min−1, splitting of the α′ → γ transformation into two consecutive stages is observed for both the binary and the ternary alloys. With the assistance of thermo-kinetic simulations, a consistent description of this phenomenon is obtained. The first transformation stage is associated with the decomposition of the martensite matrix into Mn-rich and Mn-deficient regions, and the austenite formation is dominated by long-range diffusion. In the second stage, the austenite reversion mechanism changes and the Mn-depleted regions transform in a predominantly interface-controlled mode. This is corroborated by the results for the ternary alloys. The precipitates mainly impede the austenite formation in the second stage, which occurs over a considerably wider temperature range compared to the binary alloys

  1. Mechanical properties of fine grained superalloy K4169 with addition of refiners

    HUANG Tai-wen; LIU Lin; YANG Ai-min; XIONG Yu-hua; ZHANG Rong

    2005-01-01

    Grain refinement of superalloy K4169 was achieved by adding refiners into the alloy melt and their effects on the mechanical properties were investigated. The tensile properties at room temperature and 700 ℃ and low cycle fatigue properties at room temperature were compared for both conventional and fine grained test bars.The results indicate that the rupture strength, yield strength, elongation and reduction of area for refined grains are all much superior to those for coarse ones. Whereas the elongation and reduction of area of fine grained samples decrease at 700 ℃. Low cycle fatigue properties of samples with refined grains at room temperature are improved significantly. In addition, the degree of dispersion of low cycle fatigue data of samples with refined grains is diminished.

  2. Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061

    The microstructures of Al alloy 6061 subjected to very-high-power ultrasonic additive manufacturing were systematically examined to understand the underlying ultrasonic welding mechanism. The microstructure of the weld interface between the metal tapes consisted of fine, equiaxed grains resulting from recrystallization, which is driven by simple shear deformation along the ultrasonically vibrating direction of the tape surface. Void formation at the weld interface is attributed to surface asperities resulting from pressure induced by the sonotrode at the initial tape deposition. Transmission electron microscopy revealed that Al–Al metallic bonding without surface oxide layers was mainly achieved, although some oxide clusters were locally observed at the original interface. The results suggest that the oxide layers were broken up and then locally clustered on the interface by ultrasonic vibration

  3. Effects of organic additives on microstructure and mechanical properties of porous Si3N4 ceramics

    Yu Fangli; Wang Huanrui; Yang Jianfeng; Gao Jiqiang

    2010-06-01

    Green bodies of porous Si3N4 ceramics were shaped by extrusion technique using different organic additives as binder during extrusion molding. Different porosity, microstructures and mechanical properties after the extrusion, drying, debinding and sintering stages were investigated. The solid slurry content of 70–75% and extrusion pressure of 0.5–1.0 MPa had played a decisive role in the smooth realization of extrusion molding. The porous Si3N4 ceramics were obtained with excellent properties using 4% hydroxypropyl methyl cellulose (HPMC) as binder and polyethylene glycol (PEG) of molecular weight, 1000, as plasticizer with a density of 1.91 g cm-3, porosity of 41.70%, three-point bending strength of 166.53 ± 20 MPa, fracture toughness of 2.45 ± 0.2 MPa m1/2 and Weibull modulus (m) of 20.75.

  4. Mechanical Characterization of an Additively Manufactured Inconel 718 Theta-Shaped Specimen

    Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; Cooper, Ryan C.; Cornwell, Paris A.; Wang, Yanli; Sochalski-Kolbus, Lindsay M.; Dehoff, Ryan R.; Babu, Sudarsanam S.

    2016-02-01

    Two sets of "theta"-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlation between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. The spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.

  5. Novel Additive Manufacturing Pneumatic Actuators and Mechanisms for Food Handling Grippers

    Carlos Blanes

    2014-07-01

    Full Text Available Conventional pneumatic grippers are widely used in industrial pick and place robot processes for rigid objects. They are simple, robust and fast, but their design, motion and features are limited, and they do not fulfil the final purpose. Food products have a wide variety of shapes and textures and are susceptible to damaged. Robot grippers for food handling should adapt to this wide range of dimensions and must be fast, cheap, reasonably reliable, and with cheap and reasonable maintenance costs. They should not damage the product and must meet hygienic conditions. The additive manufacturing (AM process is able to manufacture parts without significant restrictions, and is Polyamide approved as food contact material by FDA. This paper presents that, taking the best of plastic flexibility, AM allows the implementation of novel actuators, original compliant mechanisms and practical grippers that are cheap, light, fast, small and easily adaptable to specific food products. However, if they are not carefully designed, the results can present problems, such as permanent deformations, low deformation limits, and low operation speed. We present possible solutions for the use of AM to design proper robot grippers for food handling. Some successful results, such as AM actuators based on deformable air chambers, AM compliant mechanisms, and grippers developed in a single part will be introduced and discussed.

  6. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  7. Mechanically tunable aspheric lenses via additive manufacture of hanging elastomeric droplets for microscopic applications

    Fuh, Yiin-Kuen; Chen, Pin-Wen; Lai, Zheng-Hong

    2016-07-01

    Mechanically deformable lenses with dynamically tunable focal lengths have been developed in this work. The fabricated five types of aspheric polydimethylsiloxane (PDMS) lenses presented here have an initial focal length of 7.0, 7.8, 9.0, 10.0 and 10.2 mm. Incorporating two modes of operation in biconvex and concave-convex configurations, the focal lengths can be tuned dynamically as 5.2-10.2, 5.5-9.9, 6.6-11.9, 6.1-13.5 and 6.6-13.5 mm respectively. Additive manufacturing was utilized to fabricate these five types of aspheric lenses (APLs) via sequential layering of PDMS materials. Complex structures with three-dimensional features and shorter focal lengths can be successfully produced by repeatedly depositing, inverting and curing controlled PDMS volume onto previously cured PDMS droplets. From our experiments, we empirically found a direct dependence of the focal length of the lenses with the amount (volume) of deposited PDMS droplets. This new mouldless, low-cost, and flexible lens fabrication method is able to transform an ordinary commercial smartphone camera into a low-cost portable microscope. A few microscopic features can be readily visualized, such as wrinkles of ladybird pupa and printed circuit board. The fabrication technique by successively applying hanging droplet and facile mechanical focal-length-tuning set-up can be easily adopted in the development of high-performance optical lenses.

  8. Beyond Mutations: Additional Mechanisms and Implications of SWI/SNF Complex Inactivation

    Stefanie eMarquez

    2015-02-01

    Full Text Available SWI/SNF is a major regulator of gene expression. Its role is to facilitate the shifting and exposure of DNA segments within the promoter and other key domains to transcription factors and other essential cellular proteins. This complex interacts with a wide range of proteins and does not function within a single, specific pathway; thus, it is involved in a multitude of cellular processes, including DNA repair, differentiation, development, cell adhesion, and growth control. Given SWI/SNF’s prominent role in these processes, many of which are important for blocking cancer development, it is not surprising that the SWI/SNF complex is targeted during cancer initiation and progression both by mutations and by nonmutational mechanisms. Currently, the understanding of the types of alterations, their frequency, and their impact on the SWI/SNF subunits is an area of intense research that has been bolstered by a recent cadre of NextGen sequencing studies. These studies have revealed mutations in SWI/SNF subunits, indicating that this complex is thus important for cancer development. The purpose of this review is to put into perspective the role of mutations versus other mechanisms in the silencing of SWI/SNF subunits, in particular, BRG1 and BRM. In addition, this review explores the recent development of synthetic lethality and how it applies to this complex, as well as how BRM polymorphisms are becoming recognized as potential clinical biomarkers for cancer risk.

  9. Effect of addition of semi refined carrageenan on mechanical characteristics of gum arabic edible film

    Setyorini, D.; Nurcahyani, P. R.

    2016-04-01

    Currently the seaweed is processed flour and Semi Refined Carraagenan (SRC). However, total production is small, but both of these products have a high value and are used in a wide variety of products such as cosmetics, processed foods, medicines, and edible film. The aim of this study were (1) to determine the effect of SRC on mechanical characteristics of edible film, (2) to determine the best edible film which added by SRC with different concentration. The edible film added by SRC flour which divided into three concentrations of SRC. There are 1.5%; 3%; and 4.5% of SRC, then added 3% glycerol and 0.6% arabic gum. The mechanical properties of the film measured by a universal testing machine Orientec Co. Ltd., while the water vapor permeability measured by the gravimetric method dessicant modified. The experimental design used was completely randomized design with a further test of Duncan. The result show SRC concentration differences affect the elongation breaking point and tensile strength. But not significant effect on the thickness, yield strength and the modulus of elasticity. The best edible film is edible film with the addition of SRC 4.5%.

  10. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and 1H nuclear magnetic resonance spectrometry (1H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization

  11. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    Fang, Weizhen; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-04-10

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and {sup 1}H nuclear magnetic resonance spectrometry ({sup 1}H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization.

  12. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  13. Nonlinear time reversal signal processing techniques applied to acousto-mechanical imaging of complex materials

    Dos Santos, S.; Dvořáková, Zuzana; Caliez, M.; Převorovský, Zdeněk

    2015-01-01

    Roč. 138, č. 3 (2015). ISSN 0001-4966 Institutional support: RVO:61388998 Keywords : acousto-mechanical characterization of skin aging * nonlinear elastic wave spectroscopy (NEWS) * PM-space statistical approach Subject RIV: BI - Acoustics

  14. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.

    2015-06-01

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (-10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

  15. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (−10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials

  16. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization.

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. PMID:25493655

  17. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers.

  18. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. (paper)

  19. Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1−xSrxFe2O4 spinel thin film

    Highlights: • Nanoparticles and thin films of Co1−xSrxFe2O4 were successfully synthesized by a sol–gel process. • The value of strength of interaction was enhanced from −0.23 for x = 0 to −0.75 for x = 0.5. • The magnetization reversal process for x = 0, 0.1 was almost controlled by Kondorsky models. • The reversal mechanism for x = 0.2–0.5 obey the Stoner–Wohlfarth rule. - Abstract: Co1−xSrxFe2O4, (x varies from 0 to 0.5 in a step of 0.1) nanoparticles were formed by means of sol–gel processing method. The morphological and structural features of nanoparticles were evaluated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) equipped by EDS analysis, Mössbauer spectroscopy and vibrating sample magnetometer. It was found that almost narrow size distribution of nanoparticles with cation distribution occupancy preference in octahedral site was synthesized. The nanoparticles were used for addition in subsequent solution for fabricating ferrite thin films with similar mentioned chemical composition. Several techniques including FE-SEM, atomic force microscopy and vibrating sample magnetometer were employed to find the role of strontium cation distribution on the structural and magnetic properties of films. The Curie temperature, coercivity and magnetic interaction which was evaluated by Henkel plot were reduced by an increase in substitution contents. Coercivity of thin films reduced from 0.65 MA/m to 0.39 MA/m and Curie temperature declined from 690 to 455 °C. The value of strength of interaction was enhanced from −0.23 for x = 0 to −0.75 for x = 0.5. Angular dependence of coercivity proved that the magnetization reversal process was accompanied by the combination of domain wall motion and Stoner–Wohlfarth rotation, however for thin film with x = 0.2–0.5, the reversal mechanism obey the Stoner–Wohlfarth rule

  20. The Reversing and Molecular Mechanisms of miR-503 on the Drug-resistance 
to Cisplatin in A549/DDP Cells

    Yi WU

    2014-01-01

    Full Text Available Background and objective Cisplatin-resistance in lung cancer cells is general in clinic, hence it is significant to investigate the mechanisms of cisplatin-resistant and develop new methods of reversing drug-resistance. Recent researches showed that miRNA could regulate cell growth, apoptosis, migration and invasion even in drug therapy in cancer by its target gene. The aim of this study is to investigate the effects and molecular mechanisms of miR-503 on reversing the cisplatin-resistance in lung cancer DDP-resistant cell line A549/DDP. Methods MTS assay was employed to determine the effect of miR-503 on A549/DDP’ sensitivity to cisplatin. Apoptosis rate and intracellular concentration of rhodamine-123 (Rh-123 were determined by flow cytometry, the expression of multi-drugs resistant proteins MDR1 and MRP1, ERCC1, RhoE, Survivin and Bcl-2 were determined by Western blot and real time PCR. The phosphorylation of Akt was analyzed by Western blot, the transcriptional activities of NF-κB and AP-1 were detected by dual-luciferase reporter gene systems. Results MiR-503 was able to increase the cisplatin sensitivity of A549/DDP. After treatment with miR-503, the reverse folds (RF to cisplatin was 2.48 fold, the intracellular level of Rh-123 was 2.49 fold, the apoptosis rate was 10.3 fold, the expressions of several drug-resistant related proteins, such as MDR1, MRP1, ERCC1, Survivin and Bcl-2 were downregulated significantly, as shown by WB, in contrast, the level of RhoE was elevated, the mRNA epression of MDR1 was 18.5%, the mRNA epression of MRP1 was 22.3%, the mRNA epression of ERCC1 was 18.6%, the mRNA epression of Survivin was 42.8%, the mRNA expression of Bcl-2 was 68.1%, the mRNA epression of RhoE was 206.5%, in addition, the phosphorylation of Akt decreased and transcriptional activities of NF-κB was 53.7%, AP-1 was 47.4% compared with control group. Conclusion MiR-503 was able to reverse the cisplatin resistance of A549/DDP. MiR-503

  1. Nearest-neighbor non-additivity versus long-range non-additivity in TATA-box structure and its implications for TBP-binding mechanism

    Faiger, Hana; Ivanchenko, Marina; Haran, Tali E.

    2007-01-01

    TBP recognizes its target sites, TATA boxes, by recognizing their sequence-dependent structure and flexibility. Studying this mode of TATA-box recognition, termed ‘indirect readout’, is important for elucidating the binding mechanism in this system, as well as for developing methods to locate new binding sites in genomic DNA. We determined the binding stability and TBP-induced TATA-box bending for consensus-like TATA boxes. In addition, we calculated the individual information score of all st...

  2. Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties

    Xu, W.; Sun, S.; Elambasseril, J.; Liu, Q.; Brandt, M.; Qian, M.

    2015-03-01

    The Achilles' heel of additively manufactured Ti-6Al-4V by selective laser melting (SLM) is its inferior mechanical properties compared with its wrought (forged) counterparts. Acicular α' martensite resulted from rapid cooling by SLM is primarily responsible for high strength but inadequate tensile ductility achieved in the as-fabricated state. This study presents a solution to eliminating the adverse effect of the nonequilibrium α' martensite. This is achieved by enabling in situ martensite decomposition into a novel ultrafine (200-300 nm) lamellar ( α + β) microstructure via the selection of an array of processing variables including the layer thickness, energy density, and focal offset distance. The resulting tensile elongation reached 11.4% while the yield strength was kept above 1100 MPa. These properties compare favorably with those of mill-annealed Ti-6Al-4V consisting of globular α and β. The fatigue life of SLM-fabricated Ti-6Al-4V with an ultrafine lamellar ( α + β) structure has approached that of the mill-annealed counterparts and is much superior to that of SLM-fabricated Ti-6Al-4V with α' martensite.

  3. Effect of sulfur aggregates on mechanical resistance and durability for SFRHPC with the addition of slag

    Boutiba Aldjia

    2014-04-01

    Full Text Available The transformation of sulfides present in the aggregate to sulfates causes internal sulfate attack (ISA by formation of secondary ettringite in the hardened concrete. This pathological ettringite crystallizes, the generated pressure is greater than the tensile strength of the concrete. It generates internal swelling and causes disorders that can severely damage the structures. Favors to their structural and economic performance, high performance concrete steel fiber (SFRHPC are increasingly used in construction. Increase productivity and reduce construction time on site. They provide substantial weight savings, therefore it is possible to build with less formwork, less concrete to set up and fewer reinforcement than ordinary concrete. The purpose of this study is to determine the effect of sulfur present in the hornfels crushed aggregates, on the mechanical strength, durability, and the microstructure of SFRHPC with the addition of blast furnace slag. In ordinary concrete, the pyrite aggregates cause cracking by expansion when they are in wet land. In high performance concretes this phenomenon is greatly reduced or absent. This is the result of a very low porosity, reduced flow of moisture that cannot propagate to aggregate. And sulfide is stable and cannot be transformed into aggressive sulfate.

  4. Modification mechanism of hypereutectic Al-Si alloy with P-Na addition

    吴树森; 涂小林; 福田葉椰; 菅野利猛; 中江秀雄

    2003-01-01

    Effect of P-Na united modification on Al-22%Si-1.0%Cu-0.5%Mg-0.5%Mn alloy was studied.The results show that the refining effect of P-Na addition on primary silicon is superior to that of P and the former could modify eutectic silicon at the same time.Effects of P-Na modification on crystallization and microstructure of hypereutectic Al-Si alloys were studied with Electron-Scanning Microscope,Electron-Probe and X-ray diffractometer.The modification mechanism represents that on one hand,the primary silicon is refined by AlP as heterogeneous nucleus;on the other hand,when Na is added at the same time,P atoms are difficult to diffuse in the melt,and then enrichs on the growing faces of silicon phase.Moreover,a SiP compound was also discovered in Si crystals,which prevents the growth of silicon phase and refines the primary silicon.

  5. Additional funding mechanisms for Public Hospitals in Greece: the case of Chania Mental Health Hospital

    Golna Christina

    2010-11-01

    Full Text Available Abstract Objectives To investigate whether the long term lease of public hospital owned land could be an additional financing mechanism for Greek public (mental health hospitals. Methods We performed a financial analysis of the official 2008 data of a case - study hospital (Mental Health Hospital of Chania. We used a capital budgeting approach to investigate whether value is created for the public hospital by engaging its assets in a project for the development of a private renal dialysis Unit. Results The development of the private unit in hospital owned land is a good investment decision, as it generates high project Net Present Value and Internal Rate of Return. When the project commences generating operating cash flows, nearly €400.000 will be paid annually to the Mental Health Hospital of Chania as rent, thereby gradually decreasing the annual deficit of the hospital. Conclusions Revenue generated from the long term lease of public hospital land is crucial to gradually eliminate hospital deficit. The Ministry of Health should encourage similar forms of Public Private Partnerships in order to ensure the sustainability of public (mental hospitals.

  6. Gamma ray attenuation studies of interception from Sitka spruce: some evidence for an additional transport mechanism

    Various forest canopy characteristics of stands of Sitka spruce (Picea sitchensis (Bong.) Carr.), including canopy density, the aerodynamic resistance to the transfer of water vapor, and the rates of change of drainage and evaporation of water with respect to canopy storage, were investigated using direct measurements of canopy mass and water storage. The measurements, made at sites located in Wales and Scotland, utilized the attenuation of a horizontal beam of gamma rays which was arranged to scan through the canopy at different levels. The aerodynamic resistance to the transport of water vapor from the canopy to a reference level 5 m above mean tree height was found to be consistent with the value of 3.5 s m−1, determined from earlier modeling studies (I. R. Calder, 1977). This value is, however, lower and shows less wind speed dependence than would be expected from conventional formulae which are based on eddy diffusion theory and tree height. The possibility of explaining these discrepancies in terms of an additional transport mechanism involving large-scale eddies is discussed

  7. Agmatine reversed mechanical allodynia in a rat model of neuropathic pain

    YANGHong-Ju; ZhAONan; GONGZheng-Hua; YUANWei-Xiou; LIYunFeng; LI-Jin; LUOZhi-Pu

    2004-01-01

    AIM: Agmatine is an endogenous neuromodulator present in the brain and spinal cord, agmatine has both NMDA receptor antagonist and NOS inhibitor activities, which may participate the pathological process in the neuropathic pain. The effect of agmatine on the mechanical allodynia in a rat model of the neuropathic pain was investigated in this experiment.

  8. Reverse Faulting as a Crucial Mechanism for Magma Ascent in Compressional Volcanic Arcs: Field Examples from the Central Andes

    Aron, F. A.; Gonzalez, G.; Cembrano, J. M.; Veloso, E. E.

    2010-12-01

    The nature of crustal deformation in active arcs and the feedback mechanisms between tectonics and magma transport constitute fundamental problems in the understanding of volcanic systems. Additionally, for geothermal energy exploration, a better understanding of how crustal architecture and stress field controls fluid ascent and heat transfer from deep levels to the surface is crucial. The Central Andes volcanic belt is an excellent, modern example of such systems but, the scarcity of good outcrops has limited our ability to define the relations between structure and volcanism. In the Salar de Atacama Basin of northern Chile, there are good exposures of folded and faulted Neogene units (continental sediments, volcanic rocks and ignimbrites) and reverse faults spatially and temporally related to volcanic edifices. The subsurface of the study area has been interpreted by previous authors as a thin-skinned, 6-8 km-deep, east-vergent compressional belt. We carried out structural mapping, Digital Elevation Models (DEMs) analyses, strain tensor analyses and fault-related fold kinematic modelling to assess the causal relationship between compressional deformation and magmatism in this region. Field observations indicate that the structures deformed progressively Oligocene-Miocene continental sedimentary units, the upper sedimentary infill of the Salar de Atacama basin (Pliocene-Present), and Pliocene-Pleistocene Ignimbrites. The topographic expression of the compressional belt corresponds to a set of subparallel, asymmetric, fault-related-folds, which can be seen in the field as prominent NS-trending ridges with heights ranging between 50 and 400 m. Furthermore, we found evidence of a ~100 km-long structure along the active magmatic arc, so-called Miscanti Fault. This fault represents the easternmost expression of the above mentioned compressional belt. Pleistocene-Holocene monogenetic cones and strato-volcanoes are located either at the hinge zone of fault

  9. Proposed mechanisms for oligonucleotide IMT504 induced diabetes reversion in a mouse model of immunodependent diabetes.

    Bianchi, María S; Bianchi, Stefanía; Hernado-Insúa, Andrés; Martinez, Leandro M; Lago, Néstor; Libertun, Carlos; Chasseing, Norma A; Montaner, Alejandro D; Lux-Lantos, Victoria A

    2016-08-01

    Type 1 diabetes (T1D) originates from autoimmune β-cell destruction. IMT504 is an immunomodulatory oligonucleotide that increases mesenchymal stem cell cloning capacity and reverts toxic diabetes in rats. Here, we evaluated long-term (20 doses) and short-term (2-6 doses) effects of IMT504 (20 mg·kg(-1)·day(-1) sc) in an immunodependent diabetes model: multiple low-dose streptozotocin-injected BALB/c mice (40 mg·kg(-1)·day(-1) ip for 5 consecutive days). We determined blood glucose, glucose tolerance, serum insulin, islet morphology, islet infiltration, serum cytokines, progenitor cell markers, immunomodulatory proteins, proliferation, apoptosis, and islet gene expression. IMT504 reduced glycemia, induced β-cell recovery, and impaired islet infiltration. IMT504 induced early blood glucose decrease and infiltration inhibition, increased β-cell proliferation and decreased apoptosis, increased islet indoleamine 2,3-dioxygenase (IDO) expression, and increased serum tumor necrosis factor and interleukin-6 (IL-6). IMT504 affected islet gene expression; preproinsulin-2, proglucagon, somatostatin, nestin, regenerating gene-1, and C-X-C motif ligand-1 cytokine (Cxcl1) increased in islets from diabetic mice and were decreased by IMT504. IMT504 downregulated platelet endothelial cell adhesion molecule-1 (Pecam1) in islets from control and diabetic mice, whereas it increased regenerating gene-2 (Reg2) in islets of diabetic mice. The IMT504-induced increase in IL-6 and islet IDO expression and decreased islet Pecam1 and Cxcl1 mRNA expression could participate in keeping leukocyte infiltration at bay, whereas upregulation of Reg2 may mediate β-cell regeneration. We conclude that IMT504 effectively reversed immunodependent diabetes in mice. Corroboration of these effects in a model of autoimmune diabetes more similar to human T1D could provide promising results for the treatment of this disease. PMID:27329801

  10. Physicochemical investigation of biocompatible mixed surfactant reverse micelles: II. Dynamics of conductance percolation, energetics of droplet clustering, effect of additives and dynamic light scattering studies

    Graphical abstract: Tp/°C: Threshold temperature of percolation; ω: molar ratio of water to surfactant; IPM: isopropyl myristate; EO: ethyl oleate; IPP: isopropyl palmitate. Highlights: • Percolation temperature depends on contents of water, nonionic surfactant and [NaCl]. • Acetyl modified amino acids retard the temperature-induced percolation process. • The clustering process is spontaneous, endothermic and entropically driven. • Enthalpy and entropy of clustering process increase with increasing nonionic content. • Chemical structures of oils influence thermodynamic parameters of droplet clustering. -- Abstract: Temperature-induced percolation behavior in mixed reverse micellar systems (RMs) comprising sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and polyoxyethylene(20) sorbitan trioleate (Tween-85) in polar lipophilic oils e.g., ethyl oleate (EO), isopropyl myristate (IPM) and isopropyl palmitate (IPP) was studied at a total surfactant concentration (ST) of 0.25 ⋅ 103 mol ⋅ m−3 in absence and presence of the additives (acetyl modified amino acids (MAA) of different chemical structures). The threshold temperature of percolation (Tp) of these systems was found to be dependent on water content (ω), content of nonionic surfactant (XTween-85), and concentration of NaCl. The standard free energy change (ΔGcl0), enthalpy change (ΔHcl0) and entropy change (ΔScl0) of cluster formation were evaluated based on an association model at different physicochemical environments. The clustering process was spontaneous and found to be endothermic and entropically driven. Scaling laws for the temperature-induced percolation demonstrated dynamic nature of the percolation process. The activation energy, Ep of these systems was estimated both in absence and presence of additives. Droplet sizes of these systems were measured using dynamic light scattering (DLS) technique at different physicochemical environments (comparable to conductivity measurements) to

  11. Microstructure and mechanical properties of the Al-Ti alloy with cerium addition

    L.A. Dobrzański

    2009-12-01

    Full Text Available Purpose: In this work there are presented the investigation results of mechanical properties and microstructure concerning mainly intermetallic phases of the aluminium – titanium alloy with a defined content of 2 and 4 % of cerium addition. The purpose of this work was also to determine the heat treatment conditions for solution heat treatment of the investigation alloys.Design/methodology/approach: The reason of this work was to determine the heat treatment influence, particularly solution heat treatment time to the changes of the microstructure, as well to determine which intermetallic phases occur after the heat treatment performed, and how is the morphology of these particles.Findings: After solution heat treatment for 4 hours the structure changes. The grains are larger and no more uniform as showed before. The most stable intermetallic in the Al-Ti system is the Al3Ti phase. The solution heat treatment time should be greater than 4 hours to ensure a proper solution of titanium and cerium in the Al-α solid solution.Research limitations/implications: The investigated aluminium samples were examined metallographically using optical microscope with different image techniques, scanning electron microscope and also analyzed using a Vickers micro-hardness tester, also EDS microanalysis was made.Practical implications: As an implication for the practice a new alloy can be developed, some other investigation should be performed in the future, but the knowledge found in this research shows an interesting investigation direction.Originality/value: The combination of light weight and high strength Ti-based alloys is very attractive for aerospace and automotive industries. Furthermore, the presence of calcium cerium into existence new unknown phases as well can enhance the thermal stability of ternary Al-Ti-Ce alloy because of its higher melting point then Al-Ti.

  12. Formation and adaptation of memory: Neurobiological mechanisms underlying learning and reversal learning

    Havekes, Robbert

    2008-01-01

    The hippocampus is a brain region that plays a critical role in memory formation. In addition, it has been suggested that this brain region is important for ‘updating’ information that is incorrect or outdated. The main goal of this thesis project was to investigate which neurobiological processes underlie these processes. In the majority of the experiments the following method was used: by means of training in a spatial maze, mice learned to visit a specific location to obtain a food reward....

  13. Effect of mechanical alloying and Ti addition on solution and ageing treatment of an AA7050 aluminium alloy

    Kátia Regina Cardoso; Dilermando Nagle Travessa; Asunción García Escorial; Marcela Lieblich

    2007-01-01

    In this work, solution heat treatments at different temperatures were performed in a commercial based AA7050 aluminium alloy, with and without titanium addition, produced by mechanical alloying and hot extrusion with the aim to investigate the effect of titanium addition and mechanical alloying in the precipitates stability. The same heat treatment conditions were used in a reference sample obtained from a commercial AA7050 alloy. Solution heat treated samples were characterised by differenti...

  14. CONDENSED MATTER: ELECTRONICSTRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICALPROPERTIES: Magnetization Reversal Mechanism for CoFeB Ferromagnetic Nanotube Arrays

    Liu, Hai-Rui; Shamaila, S.; Chen, Jun-Yang; Sharif, R.; Lu, Qing-Feng; Han, Xiu-Feng

    2009-07-01

    CoFeB nanotube arrays are fabricated in anodic aluminum oxide (AAO) membranes and track etched polycarbonate (PCTE) membranes by using an electrochemical method, and their magnetic properties are investigated by vibrating sample magnetometry. The coercivity Hc and remanent squareness SQ of these CoFeB nanotube arrays are derived from hysteresis loops as a function of angle between the field and tube axis. The Hc(θ) curves for CoFeB nanotube arrays in AAO and PCTE membranes show M-type variation, while they change shape from M to mountain-type as the tube length increases. However, the overall easy axis perpendicular to tube axis does not change with tube length. The different angular dependences are attributed to different magnetization reversal mechanisms.

  15. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate.

    Ljubić, Ivan; Clary, David C

    2010-04-28

    On the basis of density functional theory and coupled-cluster CCSD(T) calculations we propose a mechanism of the dehydrogenation of transition metal doped sodium alanate. Insertion of two early 3d-transition metals, scandium and titanium, both of which are promising catalysts for reversible hydrogen storage in light metal hydrides, is compared. The mechanism is deduced from studies on the decomposition of a model system consisting of one transition metal atom and two NaAlH(4) units. Subsequently, the significance of such minimal cluster model systems to the real materials is tested by embedding the systems into the surface of the NaAlH(4) crystal. It is found that the dehydrogenation proceeds via breaking of the bridge H-Al bond and consequent formation of intermediate coordination compounds in which the H(2) molecule is side-on (eta(2)-) bonded to the transition metal centre. The total barrier to the H(2) release is thus dependent upon both the strength of the Al-H bond to be broken and the depth of the coordinative potential. The analogous mechanism applies for the recognized three successive dehydrogenation steps. The gas-phase model structures embedded into the surface of the NaAlH(4) crystal exhibit an unambiguous kinetic stability and their general geometric features remain largely unchanged. PMID:20379493

  16. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  17. Microstructure and Mechanical Properties of WE43 Alloy Produced Via Additive Friction Stir Technology

    Calvert, Jacob Rollie

    2015-01-01

    In an effort to save weight, transportation and aerospace industries have increasing investigated magnesium alloys because of their high strength-to-weight ratio. Further efforts to save on material use and machining time have focused on the use of additive manufacturing. However, anisotropic properties can be caused by both the HCP structure of magnesium alloys as well as by layered effects left by typical additive manufacturing processes. Additive Friction Stir (AFS) is a relatively new add...

  18. Effect of La addition on glass-forming ability and stability of mechanically alloyed Zr-Ni amorphous alloys

    Research highlights: → The minor large atom La addition can improve the glass forming ability of Zr-Ni-La and enhance the stability of the amorphous phase against the mechanically induced crystallization. → The stability of the Zr-Ni-La amorphous phase decreases with increasing La content. → The effect of La addition in contrast with the small atomic size C addition plays a significant role in promoting the stability of the amorphous phase. → We try to systematically discuss the reasons of La addition effect on GFA and stability of the amorphous phase from three factor of negative heat of mixing, distance between neighboring atoms and atomic size mismatch, respectively. - Abstract: In this study, the role of La in the microstructural evolution of Zr66.7-xNi33.3Lax (x = 1, 3, 5 at.%) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results show that the single amorphous phase of Zr-Ni-La can be obtained through mechanical alloying. The minor La addition can improve the glass forming ability of Zr-Ni-La, enhance the mechanical stability of the amorphous phase against the mechanically induced crystallization and lead to an altered crystallization mode of Zr-Ni alloy. Moreover, the stability of the Zr-Ni-La amorphous phase decreases with further increasing La content. The best effect is obtained for the Zr65.7Ni33.3La1 alloy. Additionally, the effect of La addition in contrast with the small atomic size C addition plays a more significant role in promoting the stability of the amorphous phase. In addition, the reasons of La addition effect on GFA and stability have also been discussed from three factors of negative heat of mixing, distance between neighboring atoms and atomic size mismatch, respectively.

  19. Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading.

    Manoraj Navaratnarajah

    Full Text Available Clenbuterol (Cl, a β2 agonist, is associated with enhanced myocardial recovery during left ventricular assist device (LVAD support, and exerts beneficial remodelling effects during mechanical unloading (MU in rodent heart failure (HF. However, the specific effects of combined Cl+β1 blockade during MU are unknown.We studied the chronic effects (4 weeks of β2-adrenoceptor (AR stimulation via Cl (2 mg/kg/day alone, and in combination with β1-AR blockade using metoprolol ((Met, 250 mg/kg/day, on whole heart/cell structure, function and excitation-contraction (EC coupling in failing (induced by left coronary artery (LCA ligation, and unloaded (induced by heterotopic abdominal heart transplantation (HATx failing rat hearts. Combined Cl+Met therapy displayed favourable effects in HF: Met enhanced Cl's improvement in ejection fraction (EF whilst preventing Cl-induced hypertrophy and tachycardia. During MU combined therapy was less beneficial than either mono-therapy. Met, not Cl, prevented MU-induced myocardial atrophy, with increased atrophy occurring during combined therapy. MU-induced recovery of Ca2+ transient amplitude, speed of Ca2+ release and sarcoplasmic reticulum Ca2+ content was enhanced equally by Cl or Met mono-therapy, but these benefits, together with Cl's enhancement of sarcomeric contraction speed, and MU-induced recovery of Ca2+ spark frequency, disappeared during combined therapy.Combined Cl+Met therapy shows superior functional effects to mono-therapy in rodent HF, but appears inferior to either mono-therapy in enhancing MU-induced recovery of EC coupling. These results suggest that combined β2-AR simulation +β1-AR blockade therapy is likely to be a safe and beneficial therapeutic HF strategy, but is not as effective as mono-therapy in enhancing myocardial recovery during LVAD support.

  20. Moisture permeability mechanisms of some aqueous-based tablet film coatings containing soluble additives.

    Okhamafe, A O; Iwebor, H U

    1987-09-01

    Moisture permeation parameters--diffusion, solubility and permeation coefficients--for hydroxypropyl methylcellulose (HPMC) and partially hydrolyzed polyvinyl alcohol (PVA) films containing either of two water-soluble additives (citric acid and urea) have been evaluated from transmission and time lag data. Contrary to expectations, the moisture diffusivities of the films were markedly lowered by the presence of these additives. However, the solubility coefficients increased while the permeability coefficients were largely unchanged up to 10 wt% of the additives. A complex phenomenon involving an extensive interlacing network of mainly hydrogen bond interactions between additive and films former was believed to influence the permeation properties of the films. The estimated limits of compatibility of the additives with the film-former were in the range of 5-10 wt%. PMID:3432347

  1. Effect of Flyash Addition on Mechanical and Gamma Radiation Shielding Properties of Concrete

    Kanwaldeep Singh

    2014-01-01

    Full Text Available Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.

  2. Mechanical properties of 3D auxetic structures produced by additive manufacturing

    Jiroušek, O.; Koudelka_ml., Petr; Fíla, Tomáš

    Prague: Institute of theoretical and applied mechanics, Academy of Sciences of the Czech Republic, v. v. i., 2015 - (Náprstek, J.; Fischer, C.), s. 124-125 ISBN 978-80-86246-42-0. ISSN 1805-8248. [Engineering mechanics 2015 /21./. Svratka (CZ), 11.05.2015-14.05.2015] Institutional support: RVO:68378297 Keywords : auxetic structure * direct 3D printing * finite element method * digital image correlation Subject RIV: JJ - Other Materials

  3. Effect of Clay Addition on Mechanical Properties of Unsaturated Polyester/Glass Fiber Composites

    Kusmono; Zainal Arifin Mohd Ishak

    2013-01-01

    Unsaturated polyester (UP)/glass fiber/clay composites were prepared by hand layup method. The effect of clay loading on the morphological and mechanical properties of UP/glass fiber composites was investigated in this study. X-ray diffraction (XRD) was used to characterize the structure of the composites. The mechanical properties of the composites were determined by tensile, flexural, unnotched Charpy impact and fracture toughness tests. XRD results indicated that the exfoliated structure w...

  4. Facile Preparation and Formation Mechanism of Uniform Silver Nanoparticles Using OP-10 as Emulsifier in Reverse Microemulsion

    WU Xia; WANG Ting; WU Hui

    2011-01-01

    Using the polymerizable hydrophobic styrene monomer as the dispersion medium and the traditional nonionic surfactant OP-10 as emulsifier, stable silver nanoparticles of narrow size distribution were prepared by a reverse (w/o) microemulsion method. The powder X-ray diffraction (XRD) pattern indicated that the obtained silver nanoparticles were of face-centered cubic structure.The results of the transmission electron microscopy (TEM) show that the final silver nanoparticles are of spherical structure with an average diameter of 15.2 nm and ofa Gaussian distribution. The internal high-ordered structure of silver nanoparticles was characterized by the field-emission high-resolution transmission electron microscopy (FEHRTEM), indicating that the silver is monocrystalline and it has only one nucleation site during the formation process of a nanoparticle. The time-resolved UV-visible absorption spectra was used to monitor the process of the reaction in situ. The results show that the concentration of silver nanoparticles increases but the size changes little and the morphology transforms from obvious ellipsoidal shape to nearly spherical shape during the process. The experimental results indicate that the droplets' dynamic exchange which is closely related to the nature of surfactant film is the control factor of the kinetics. The dynamic exchange mechanism of silver nanoparticle formation is proposed to involve continual encounter of two separate droplets forming transient fused dimer in which the chemical reaction occurs followed by re-separation without combination. Attributed to the dual role of surfactant in the nanoparticle formation, tailored nanoparticles can be successfully synthesized in control in the premise of a certain stability of reverse microemulsion.

  5. HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions

    Francesca Esposito

    2012-01-01

    Full Text Available During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs and nonnucleoside RT inhibitors (NNRTIs. Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs.

  6. Influence of niobium addition on microstructure, mechanical properties and oxidation resistance of ZrN coatings

    In this study, Zr-Nb-N coatings with 0–3.8 at.% Nb addition were deposited by magnetron co-sputtering deposition. The results reveal that Nb atoms substitute Zr atoms in Zr-N lattice, forming the solid solution structure. All the Zr-Nb-N coatings illustrate a dense columnar structure with the preferred orientation of (200), showing independent of Nb addition. Nanoindentation result reveals a promoted hardness of the Zr-Nb-N coatings from 23.9 ± 0.7 GPa to 28.4 ± 0.5 GPa with enhanced Nb content from 0 to 2.8 at.% due to both the solid solution strengthening and Hall–Petch effect. Scratch tests show that adhesion between substrates and coatings can be improved by Nb addition. After oxidation in air at 600 °C for 2 h, microstructural studies indicate the oxide scales consist of monoclinic-ZrO2 outer layer and tetragonal-ZrO2 inner layer. Moreover, ZrO2 can be stabilized in the tetragonal phase by Nb doping. The Zr-Nb-N coating with 1.3 at.% Nb addition exhibits superior oxidation resistance, while excess Nb addition produces detrimental effects on oxidation resistance. - Highlights: • Moderate Nb addition improves the hardness and adhesion of Zr-Nb-N coatings. • Significant improvement of oxidation resistance is obtained by Nb addition. • GAXRD and TEM microstructural studies of the Zr-Nb-N coatings. • Phase stabilization of tetragonal-ZrO2 is achieved by Nb addition

  7. Influence of niobium addition on microstructure, mechanical properties and oxidation resistance of ZrN coatings

    Wu, Z.T. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Qi, Z.B. [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361005 (China); Jiang, W.F. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Wang, Z.C., E-mail: zcwang@xmu.edu.cn [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Liu, B. [Xiamen Annaiwy New Material CO., LTD, Xiamen 361005 (China)

    2014-11-03

    In this study, Zr-Nb-N coatings with 0–3.8 at.% Nb addition were deposited by magnetron co-sputtering deposition. The results reveal that Nb atoms substitute Zr atoms in Zr-N lattice, forming the solid solution structure. All the Zr-Nb-N coatings illustrate a dense columnar structure with the preferred orientation of (200), showing independent of Nb addition. Nanoindentation result reveals a promoted hardness of the Zr-Nb-N coatings from 23.9 ± 0.7 GPa to 28.4 ± 0.5 GPa with enhanced Nb content from 0 to 2.8 at.% due to both the solid solution strengthening and Hall–Petch effect. Scratch tests show that adhesion between substrates and coatings can be improved by Nb addition. After oxidation in air at 600 °C for 2 h, microstructural studies indicate the oxide scales consist of monoclinic-ZrO{sub 2} outer layer and tetragonal-ZrO{sub 2} inner layer. Moreover, ZrO{sub 2} can be stabilized in the tetragonal phase by Nb doping. The Zr-Nb-N coating with 1.3 at.% Nb addition exhibits superior oxidation resistance, while excess Nb addition produces detrimental effects on oxidation resistance. - Highlights: • Moderate Nb addition improves the hardness and adhesion of Zr-Nb-N coatings. • Significant improvement of oxidation resistance is obtained by Nb addition. • GAXRD and TEM microstructural studies of the Zr-Nb-N coatings. • Phase stabilization of tetragonal-ZrO2 is achieved by Nb addition.

  8. Thermo-mechanical analysis of wire and arc additive manufacturing process

    Ding, J

    2012-01-01

    Conventional manufacturing processes often require a large amount of machining and cannot satisfy the continuously increasing requirements of a sustainable, low cost, and environmentally friendly modern industry. Thus, Additive Manufacturing (AM) has become an important industrial process for the manufacture of custom-made metal workpieces. Among the different AM processes, Wire and Arc Additive Manufacture (WAAM) has the ability to manufacture large, low volume metal work-p...

  9. The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis

    van der Holt, B; Lowenberg, B; Burnett, AK; Knauf, WU; Shepherd, J; Piccaluga, PP; Ossenkoppele, GJ; Verhoef, GEG; Ferrant, A; Crump, M; Selleslag, D; Theobald, M; Fey, MF; Vellenga, E; Dugan, M; Sonneveld, P

    2005-01-01

    To determine whether MDR1 reversal by the addition of the P-glycoprotein (P-gp) inhibitor PSC-833 to standard induction chemotherapy would improve event-free survival (EFS), 419 untreated patients with acute myeloid leukemia (AML) aged 60 years and older were randomized to receive 2 induction cycles

  10. Effect of Ce addition on the mechanical and electrochemical properties of a lithium battery shell alloy

    Zhang, Junchao [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Xinglong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2014-12-25

    Highlights: • Fabrication of Ce-free and Ce-containing Al–Cu–Mn–Fe–Mg alloy. • TEM, tensile and electrochemical characterization of the alloys. • Ce element greatly affects the precipitation of the alloy. • Ce element had great impact on the tensile strength and corrosion potential of the alloys. - Abstract: Due to severe application environment lithium battery shell of new-energy automotives requires increasing demands for using high performance aluminum alloys. In the present work, effect of Ce addition on the microstructure, tensile and electrochemical properties of an Al–Cu–Mn–Mg–Fe alloy were investigated through using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile tests and electrochemical tests. The experimental results indicated that the addition of Ce element could promote the precipitation of second phases. With addition of 0.36% Ce, high melting point Al{sub 8}Cu{sub 4}Ce phase and many Al{sub 20}Cu{sub 2}Mn{sub 3} particles could be found. In addition, the precipitation of conventionally dominant phase of Al{sub 2}Cu could be suppressed in alloy. The Ce addition was found to result in enhanced tensile strength and improved corrosion resistance.

  11. Effect of Ce addition on the mechanical and electrochemical properties of a lithium battery shell alloy

    Highlights: • Fabrication of Ce-free and Ce-containing Al–Cu–Mn–Fe–Mg alloy. • TEM, tensile and electrochemical characterization of the alloys. • Ce element greatly affects the precipitation of the alloy. • Ce element had great impact on the tensile strength and corrosion potential of the alloys. - Abstract: Due to severe application environment lithium battery shell of new-energy automotives requires increasing demands for using high performance aluminum alloys. In the present work, effect of Ce addition on the microstructure, tensile and electrochemical properties of an Al–Cu–Mn–Mg–Fe alloy were investigated through using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile tests and electrochemical tests. The experimental results indicated that the addition of Ce element could promote the precipitation of second phases. With addition of 0.36% Ce, high melting point Al8Cu4Ce phase and many Al20Cu2Mn3 particles could be found. In addition, the precipitation of conventionally dominant phase of Al2Cu could be suppressed in alloy. The Ce addition was found to result in enhanced tensile strength and improved corrosion resistance

  12. Mechanism of unusual polymorph transformations in calcium carbonate: Dissolution-recrystallization vs additive-mediated nucleation

    Arpita Sarkar; Samiran Mahapatra

    2012-11-01

    Unusual transformation of one CaCO3 phase to another has been reported by the process of dissolution-recrystallization and under the influence of additive. In one case, while metastable vaterite transforms to another metastable phase aragonite by simple refluxing in distilled water, it instead transforms thermodynamically stable phase calcite upon refluxing in its `mother-liquor’. This is explained by the process of dissolution-recrystallization. In another case, aragonite is preferentially synthesized over calcite in the presence of molten lauric acid as an additive.

  13. Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation

    郑雪峰; 张进成; 郝跃; 范爽; 陈永和; 康迪; 张建坤; 王冲; 默江辉; 李亮; 马晓华

    2015-01-01

    The transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor (HEMT) becomes one of the most important reliability issues with the downscaling of feature size. In this paper, the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in a range from 298 K to 423 K. Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current. By comparing the experimental data with the numerical transport models, it is found that neither Fowler–Nordheim tunneling nor Frenkel–Poole emission can describe the transport of reverse surface leakage current. However, good agreement is found between the experimental data and the two-dimensional variable range hopping (2D-VRH) model. Therefore, it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at barrier layer. Moreover, the activation energy of surface leakage current is extracted, which is around 0.083 eV. Finally, the SiN passivated HEMT with high Al composition and thin AlGaN barrier layer is also studied. It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV, which demonstrates that the alteration of AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper.

  14. Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive.

    Qu, Jun; Bansal, Dinesh G; Yu, Bo; Howe, Jane Y; Luo, Huimin; Dai, Sheng; Li, Huaqing; Blau, Peter J; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald J

    2012-02-01

    An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential antiwear lubricant additive. Unlike most other ILs that have very low solubility in nonpolar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 °C, showed no corrosive attack to cast iron in an ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron lubricating oils. For example, a 5 wt % addition into a synthetic base oil eliminated the scuffing failure experienced in neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by 3 orders of magnitude. A synergistic effect on wear protection was observed with the current antiwear additive when added into a fully formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL's antiscuffing and antiwear functionality. PMID:22248297

  15. Effects of trace addition of vanadium and depression amount on recrystallization temperature and mechanical performance of 5182 belts

    GAO Jia-cheng; CHEN Zhi-qiang; MING Wen-liang; WANG Yong; CUI Xian-you; YUAN Li-jun

    2006-01-01

    Because the mechanical performances of 5182 belts used for carbonated drinks cover decrease after baking, the effects of trace addition of V and depression amount in last step on microstructure and properties of 5182 belts were investigated. The microstructure, mechanical performances and recrystallization temperature of 5182 belts and 5182V belts in different steps were analyzed comparatively with metallographic microscope, micro-hardness tester, electron universal materials test machine and differential thermal analyzer. The results show that the mechanical performances of the belts are remarkably improved by the trace addition of V and the reduction of depression amount in last step. In addition, the recrystallization temperature of the belts is also increased but not obviously. As the precipitation of V is not full, there are not enough disseminatedly distributed particles, and the recrystallization temperature increases little. However the solution strengthening and the fine grain strengthening are enough to improve the mechanical performances to satisfy customer requirements. The effects of reduction of depression amount in last step on mechanical performance were explained in view of energy. Moreover, the strengthening mechanism of V-compound interlocking grain boundary was also discussed.

  16. Effect of sulfonation and diethanolamine addition on the mechanical and physicochemical properties of SEPS copolymer

    Patiño, D.; Correa, E.; Acevedo-Morantes, M.

    2016-02-01

    Modification techniques have been developed to achieve changes in the processing of polymers, and modification of their mechanical, thermal and morphological properties, as well as their hydrophobicity and conductivity. Sulfonation improves ion conductivity, antistatic behaviour, hydrophilicity and solubility of the polymers. These characteristics are related to the presence of sulfonic groups in the polymer matrix. This research project focuses on the evaluation of mechanical, physical and chemical properties of membranes that are based on a sulfonated Styrene-Ethylene-Propylene-Styrene (SEPS) copolymer. The membranes were functionalized with diethanolamine at 5, 15 and 30% w/w, to separate carbon dioxide. FTIR and XRD analyses were used to characterize the membranes. The sulfonated-loaded membrane with 15% of diethanolamine showed the best results in each characterization.

  17. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  18. Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage

    Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

    2010-02-18

    In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and

  19. Physico-mechanical and dissolution behaviours of ibuprofen crystals crystallized in the presence of various additives

    Nokhodchi, A.; Amire, O.; Jelvehgari, M.

    2010-01-01

    "n  "n Background and the purpose of the study: The success of any direct-tableting procedure is strongly affected by the quality of the crystals used in the process. Ibuprofen is a poorly compactible drug with a high tendency for capping. In order to use ibuprofen in direct compression formulations, physico-mechanical properties of ibuprofen should be improved considerably. The aim of the present investigation was to employ crystallization techniques in order to i...

  20. Energy model of projected transfer with additional mechanical force in the welding process

    2000-01-01

    Based on the theory of electrodynamics and other relational subjects,through introducing "Surface Evolver" as the means of FEM analysis, by computing and describing the energy (electromagnetic, gravity, and so on) in the droplet transfer system, an energy model was accomplished for studying the mechanism of projected transfer mode.Furthermore, the behavior of droplet transfer was studied by analyzing its menisci with FEM, and the theoretical results coincide well with the experiment results.

  1. EFFECT OF COPPER ADDITION ON MECHANICAL PROPERTIES OF 4Cr16Mo

    H.M. Geng; X.C. Wu; Y.A. Min; H.B. Wang; H.K. Zhang

    2008-01-01

    Experiments conducted to determine the effect of copper addition on the machinability of plastic mold steel, 4Cr16Mo, were presented. The machinability of mold steel 4Cr16Mo was visibly improved by adding Cu. The top wear of 4Cr16Mo with copper was less than that without copper. The Cu-rich phase had the effect of a lubricant and the heat conductivity, which reduced cutting-tool wear, improved machinability, and increased the service life of the cutting-tool. Increasing of copper addition decreased the hot-working character of 4Cr16Mo. The optimal hot-working parameters for 4Cr16Mo with copper were determined by the tensile test and the compression test. The rate of deformation should be adopted as 0.6 s-1. The heating-up temperature, initial forging temperature, and terminal forging temperature were 1200℃, 1150℃, and 950℃, respectively.

  2. Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC) with the addition of static transverse magnetic fields

    Cohen, S.A.; Milroy, R.D.

    2000-01-13

    The effects on magnetic-field-line structure of adding various static transverse magnetic fields to a Solovev-equilibrium field-reversed configuration is examined. It is shown that adding fields that are anti-symmetric about the axial mid-plane maintains the closed field-line structure, while adding fields with planar or helical symmetry opens the field structure. Anti-symmetric modes also introduce pronounced shear.

  3. Flow mechanism of self-induced reversed limit-cycle wing rock for a chined forebody configuration

    Shi, Wei; Deng, Xueying; Wang, Yankui; Li, Qian

    2015-11-01

    The wing rock phenomenon reduces the maneuverability and affects the flight safety of modern advanced fighters, such as the F-35, which have chined forebodies. Understanding the flow mechanism is critical to suppressing this phenomenon. In this study, experiments were conducted to reveal the motion and flow behavior over a chined forebody configuration. The tests were performed in a wind tunnel at an angle of attack of 50∘ with a Reynolds number of 1.87 × 105. Reversed limit-cycle oscillation was discovered in the free-to-roll tests. The unstable rolling moment around zero roll angle in the static case suggests that the model tends to be driven away from zero roll angle. Thus, the model cannot maintain its equilibrium at zero roll angle during free-to-roll motion. The unstable rolling moment is generated by the wing vortex structure above the upward wing, which is induced by the forebody asymmetric vortices. During wing rock, the wing vortex structure appears above the upward wing at a large roll angle after crossing zero roll angle owing to a time lag in the forebody vortex position, which is conducive to the motion. The forebody asymmetric vortices are thus the key to induce and maintain the motion.

  4. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism.

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E; Napolitano, Alessandra; Payne, Gregory F

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin's pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin's redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  5. Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells.

    Ellen Weisberg

    Full Text Available Clinical responses achieved with FLT3 kinase inhibitors in acute myeloid leukemia (AML are typically transient and partial. Thus, there is a need for identification of molecular mechanisms of clinical resistance to these drugs. In response, we characterized MOLM13 AML cell lines made resistant to two structurally-independent FLT3 inhibitors.MOLM13 cells were made drug resistant via prolonged exposure to midostaurin and HG-7-85-01, respectively. Cell proliferation was determined by Trypan blue exclusion. Protein expression was assessed by immunoblotting, immunoprecipitation, and flow cytometry. Cycloheximide was used to determine protein half-life. RT-PCR was performed to determine FLT3 mRNA levels, and FISH analysis was performed to determine FLT3 gene expression.We found that MOLM13 cells readily developed cross-resistance when exposed to either midostaurin or HG-7-85-01. Resistance in both lines was associated with dramatically elevated levels of cell surface FLT3 and elevated levels of phosphor-MAPK, but not phospho-STAT5. The increase in FLT3-ITD expression was at least in part due to reduced turnover of the receptor, with prolonged half-life. Importantly, the drug-resistant phenotype could be rapidly reversed upon withdrawal of either inhibitor. Consistent with this phenotype, no significant evidence of FLT3 gene amplification, kinase domain mutations, or elevated levels of mRNA was observed, suggesting that protein turnover may be part of an auto-regulatory pathway initiated by FLT3 kinase activity. Interestingly, FLT3 inhibitor resistance also correlated with resistance to cytosine arabinoside. Over-expression of FLT3 protein in response to kinase inhibitors may be part of a novel mechanism that could contribute to clinical resistance.

  6. Quantified Mechanical Properties of the Deltoid Muscle Using the Shear Wave Elastography: Potential Implications for Reverse Shoulder Arthroplasty

    Hatta, Taku; Giambini, Hugo; Sukegawa, Koji; Yamanaka, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Itoi, Eiji; An, Kai-Nan

    2016-01-01

    The deltoid muscle plays a critical role in the biomechanics of shoulders undergoing reverse shoulder arthroplasty (RSA). However, both pre- and postoperative assessment of the deltoid muscle quality still remains challenging. The purposes of this study were to establish a novel methodology of shear wave elastography (SWE) to quantify the mechanical properties of the deltoid muscle, and to investigate the reliability of this technique using cadaveric shoulders for the purpose of RSA. Eight fresh-frozen cadaveric shoulders were obtained. The deltoid muscles were divided into 5 segments (A1, A2, M, P1 and P2) according to the muscle fiber orientation and SWE values were measured for each segment. Intra- and inter-observer reliability was evaluated using intraclass correlation coefficient (ICC). To measure the response of muscle tension during RSA, the humeral shaft was osteotomized and subsequently elongated by an external fixator (intact to 15 mm elongation). SWE of the deltoid muscle was measured under each stretch condition. Intra- and inter-observer reliability of SWE measurements for all regions showed 0.761–0.963 and 0.718–0.947 for ICC(2,1). Especially, SWE measurements for segments A2 and M presented satisfactory repeatability. Elongated deltoid muscles by the external fixator showed a progressive increase in passive stiffness for all muscular segments. Especially, SWE outcomes of segments A2 and M reliably showed an exponential growth upon stretching (R2 = 0.558 and 0.593). Segmental measurements using SWE could be reliably and feasibly used to quantitatively assess the mechanical properties of the deltoid muscle, especially in the anterior and middle portions. This novel technique based on the anatomical features may provide helpful information of the deltoid muscle properties during treatment of RSA. PMID:27152934

  7. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  8. On the importance of steady-state isotopic techniques for the investigation of the mechanism of the reverse water-gas-shift reaction.

    Tibiletti, Daniele; Goguet, Alexandre; Meunier, Frederic C; Breen, John P; Burch, Robbie

    2004-07-21

    The formation and reactivity of surface intermediates in the reverse water-gas-shift reaction on a Pt/CeO2 catalyst are critically dependent on the reaction conditions so that conclusions regarding the reaction mechanism cannot be inferred using ex operando conditions. PMID:15263955

  9. Histamine reverses IL-5-Afforded human eosinophil survival by inducing apoptosis: Pharmacological evidence for a novel mechanism of action of histamine

    Hasala, Hannele; Giembycz, Mark A.; Janka-Junttila, Mirkka; Moilanen, Eeva; Kankaanranta, Hannu

    2008-01-01

    Histamine reverses IL-5-Afforded human eosinophil survival by inducing apoptosis: Pharmacological evidence for a novel mechanism of action of histamine correspondence: Corresponding author. Tel.: +358335517318; fax: +358335518082. (Kankaanranta, Hannu) (Kankaanranta, Hannu) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere--> , Tampere--> - FINLAND (Hasala, H...

  10. Lipid Oxidation in Mechanically Deboned Chicken Meat: Effect of the Addition of Different Agents

    Alexandre da Trindade Alfaro; Cleusa Inês Weber; Juliana Bigolin

    2013-01-01

    The study evaluated the effect of sodium chloride (1.5%), sodium erythorbate (0.5% and 1.0%) and ascorbic acid (0.1% and 0.2%) on inhibiting lipid oxidation in mechanically deboned chicken meat (MDCM). The peroxide, acidity, pH, color and odor values of the samples were determined on the 1st, 3rd and 5th days. Treatments with sodium erythorbate and ascorbic acid had significant influence (p ≤ 0.05) on the peroxide, acidity and pH values. Ascorbic acid and erythorbate sodium were especially ef...