WorldWideScience

Sample records for additional nitrogen responses

  1. Soil biochemical responses to nitrogen addition in a bamboo forest.

    Li-hua Tu

    Full Text Available Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to elevated atmospheric N deposition in bamboo forest ecosystems, a two-year field N addition experiment in a hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis daii plantation was conducted. Four levels of N treatment were applied: (1 control (CK, without N added, (2 low-nitrogen (LN, 50 kg N ha(-1 year(-1, (3 medium-nitrogen (MN, 150 kg N ha(-1 year(-1, and (4 high-nitrogen (HN, 300 kg N ha(-1 year(-1. Results indicated that N addition significantly increased the concentrations of NH4(+, NO3(-, microbial biomass carbon, microbial biomass N, the rates of nitrification and denitrification; significantly decreased soil pH and the concentration of available phosphorus, and had no effect on the total organic carbon and total N concentration in the 0-20 cm soil depth. Nitrogen addition significantly stimulated activities of hydrolytic enzyme that acquiring N (urease and phosphorus (acid phosphatase and depressed the oxidative enzymes (phenol oxidase, peroxidase and catalase activities. Results suggest that (1 this bamboo forest ecosystem is moving towards being limited by P or co-limited by P under elevated N deposition, (2 the expected progressive increases in N deposition may have a potential important effect on forest litter decomposition due to the interaction of inorganic N and oxidative enzyme activities, in such bamboo forests under high levels of ambient N deposition.

  2. Global response patterns of terrestrial plant species to nitrogen addition.

    Xia, Jianyang; Wan, Shiqiang

    2008-07-01

    Better understanding of the responses of terrestrial plant species under global nitrogen (N) enrichment is critical for projection of changes in structure, functioning, and service of terrestrial ecosystems. Here, a meta-analysis of data from 304 studies was carried out to reveal the general response patterns of terrestrial plant species to the addition of N. Across 456 terrestrial plant species included in the analysis, biomass and N concentration were increased by 53.6 and 28.5%, respectively, under N enrichment. However, the N responses were dependent upon plant functional types, with significantly greater biomass increases in herbaceous than in woody species. Stimulation of plant biomass by the addition of N was enhanced when other resources were improved. In addition, the N responses of terrestrial plants decreased with increasing latitude and increased with annual precipitation. Dependence of the N responses of terrestrial plants on biological realms, functional types, tissues, other resources, and climatic factors revealed in this study can help to explain changes in species composition, diversity, community structure and ecosystem functioning under global N enrichment. These findings are critical in improving model simulation and projection of terrestrial carbon sequestration and its feedbacks to global climate change, especially when progressive N limitation is taken into consideration. PMID:19086179

  3. Quantifying nitrogen leaching response to fertilizer additions in China's cropland.

    Gao, Shuoshuo; Xu, Peng; Zhou, Feng; Yang, Hui; Zheng, Chunmiao; Cao, Wei; Tao, Shu; Piao, Shilong; Zhao, Yue; Ji, Xiaoyan; Shang, Ziyin; Chen, Minpeng

    2016-04-01

    Agricultural soils account for more than 50% of nitrogen leaching (LN) to groundwater in China. When excess levels of nitrogen accumulate in groundwater, it poses a risk of adverse health effects. Despite this recognition, estimation of LN from cropland soils in a broad spatial scale is still quite uncertain in China. The uncertainty of LN primarily stems from the shape of nitrogen leaching response to fertilizer additions (Nrate) and the role of environmental conditions. On the basis of 453 site-years at 51 sites across China, we explored the nonlinearity and variability of the response of LN to Nrate and developed an empirical statistical model to determine how environmental factors regulate the rate of N leaching (LR). The result shows that LN-Nrate relationship is convex for most crop types, and varies by local hydro-climates and soil organic carbon. Variability of air temperature explains a half (∼52%) of the spatial variation of LR. The results of model calibration and validation indicate that incorporating this empirical knowledge into a predictive model could accurately capture the variation in leaching and produce a reasonable upscaling from site to country. The fertilizer-induced LN in 2008 for China's cropland were 0.88 ± 0.23 TgN (1σ), significantly lower than the linear or uniform model, as assumed by Food and Agriculture Organization and MITERRA-EUROPE models. These results also imply that future policy to reduce N leaching from cropland needs to consider environmental variability rather than solely attempt to reduce Nrate. PMID:26774771

  4. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, pHumification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, psoil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. Both time and the temperature presented the statistically significant effects on DOM characteristics of soil samples while the N-addition exhibited the insignificant difference among the samples.

  5. Soil microbial responses to nitrogen addition in arid ecosystems

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  6. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem.

    Kim, Yong-Chan; Gao, Cheng; Zheng, Yong; He, Xin-Hua; Yang, Wei; Chen, Liang; Wan, Shi-Qiang; Guo, Liang-Dong

    2015-05-01

    Understanding the response of arbuscular mycorrhizal (AM) fungi to warming and nitrogen (N) fertilization is critical to assess the impact of anthropogenic disturbance on ecosystem functioning under global climate change scenarios. In this study, AM fungal communities were examined in a full factorial design with warming and N addition in a semiarid steppe in northern China. Warming significantly increased AM fungal spore density, regardless of N addition, whilst N addition significantly decreased AM fungal extraradical hyphal density, regardless of warming. A total of 79 operational taxonomic units (OTUs) of AM fungi were recovered by 454 pyrosequencing of SSU rDNA. Warming, but not N addition, had a significant positive effect on AM fungal OTU richness, while warming and N addition significantly increased AM fungal Shannon diversity index. N addition, but not warming, significantly altered the AM fungal community composition. Furthermore, the changes in AM fungal community composition were associated with shifts in plant community composition indirectly caused by N addition. These findings highlight the different effects of warming and N addition on AM fungal communities and contribute to understanding AM fungal community responses to global environmental change scenarios in semiarid steppe ecosystems. PMID:25307533

  7. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    Wenjuan Huang

    Full Text Available Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2 concentrations and nitrogen (N deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K, calcium (Ca, magnesium (Mg, aluminum (Al, copper (Cu and manganese (Mn in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1 and N addition (100 kg N ha(-1 yr(-1 from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics.

  8. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition

    Johnson Jillian G

    2011-07-01

    Full Text Available Abstract Background The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Results Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes

  9. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis.

    Aronson, E L; Helliker, B R

    2010-11-01

    The controls on methane (CH4) flux into and out of soils are not well understood. Environmental variables including temperature, precipitation, and nitrogen (N) status can have strong effects on the magnitude and direction (e.g., uptake vs. release) of CH4 flux. To better understand the interactions between CH4-cycling microorganisms and N in the non-wetland soil system, a meta-analysis was performed on published literature comparing CH4 flux in N amended and matched control plots. An appropriate study index was developed for this purpose. It was found that smaller amounts of N tended to stimulate CH4 uptake while larger amounts tended to inhibit uptake by the soil. When all other variables were accounted for, the switch occurred at 100 kg N x ha(-1) x yr(-1). Managed land and land with a longer duration of fertilization showed greater inhibition of CH4 uptake with added N. These results support the hypotheses that large amounts of available N can inhibit methanotrophy, but also that methanotrophs in upland soils can be N limited in their consumption of CH4 from the atmosphere. There were interactions between other variables and N addition on the CH4 flux response: lower temperature and, to a lesser extent, higher precipitation magnified the inhibition of CH4 uptake due to N addition. Several mechanisms that may cause these trends are discussed, but none could be conclusively supported with this approach. Further controlled and in situ study should be undertaken to isolate the correct mechanism(s) responsible and to model upland CH4 flux. PMID:21141185

  10. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands

    Sediment microalgae play an important role in nutrient cycling and are important primary producers in the food web in Pacific Northwest estuaries. This study examines the effects of nitrogen addition to benthic microalgae in tidal wetlands of Yaquina Bay estuary on the Oregon c...

  11. The responses of soil respiration to nitrogen addition in a temperate grassland in northern China.

    Luo, Qinpu; Gong, Jirui; Zhai, Zhanwei; Pan, Yan; Liu, Min; Xu, Sha; Wang, Yihui; Yang, Lili; Baoyin, Taoge-Tao

    2016-11-01

    Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of soil N availability on soil respiration (RS) is critical to understand soil carbon balances and their responses to global climate change. A 2-year field experiment was conducted to evaluate the response of RS to soil mineral N in a temperate grassland in northern China. RS, abiotic and biotic factors, and N mineralization were measured in the grassland, at rates of N addition ranging from 0 to 25gNm(-2)yr(-1). Annual and dormant-season RS ranged from 241.34 to 283.64g C m(-2) and from 61.34 to 83.84g C m(-2) respectively. High N application significantly increased RS, possibly due to increased root biomass and increased microbial biomass. High N treatment significantly increased soil NO3-N and inorganic N content compared with the control. The ratio of NO3-N to NH4-N and the N mineralization rate were significantly positively correlated with RS, but NH4-N was not correlated or negatively correlated with RS during the growing season. The temperature sensitivity of RS (Q10) was not significantly affected by N levels, and ranged from 1.90 to 2.20, but decreased marginally significantly at high N. RS outside the growing season is an important component of annual RS, accounting for 25.0 to 29.6% of the total. High N application indirectly stimulated RS by increasing soil NO3-N and net nitrification, thereby eliminating soil N limitations, promoting ecosystem productivity, and increasing soil CO2 efflux. Our results show the importance of distinguishing between NO3-N and NH4-N, as their impact on soil CO2 efflux differed. PMID:27396319

  12. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model–data comparison using observed responses to nitrogen addition

    R. Q. Thomas

    2013-06-01

    Full Text Available In many forest ecosystems, nitrogen (N deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a global biogeochemical model (CLM-CN 4.0. We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1 by increasing the aboveground C storage in response to historical N deposition (1850–2004 from 14 to 34 kg C per additional kg N added through deposition and (2 by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m−2 yr−1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition and N pulse additions of N over multiple years (N fertilization allows for greater understanding of the mechanisms governing C–N coupling.

  13. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Fang, Yun-ting; Zhu, Wei-xing; Mo, Jiang-ming;

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon...

  14. Soil Organic Matter Responses to Chronic Nitrogen Additions in a Temperate Forest (Invited)

    Frey, S. D.; Nadelhoffer, K.; Bowden, R.; Brzostek, E. R.; Caldwell, B. A.; Crow, S. E.; Finzi, A. C.; Goodale, C. L.; Grandy, S.; Lajtha, K.; Ollinger, S. V.; Plante, A. F.

    2010-12-01

    The Chronic Nitrogen Addition Experiment at Harvard Forest in central Massacusetts, USA was established in 1988 to investigate the effects of increasing anthropogenic atmospheric N deposition on forests in the eastern United States. Located in an old red pine plantation and a mixed hardwood forest, the treated plots have received 50 and 150 kg N/ha/yr, as ammonium sulfate, in six equal monthly applications during the growing season each year since the start of the experiment. Additionally, the control and low N treatments were given a single pulse label of 15N-nitrate or 15N-ammonium in 1991 and 1992. Regular measurements have been made over the past 20 years to assess woody biomass production and mortality, foliar chemistry, litter fall, and soil N dynamics. Less frequent measurements of soil C pools, soil respiration, fine root dynamics, and microbial biomass and community structure have been made. For the 20th anniversary, an intensive sampling campaign was carried out in fall 2008 with a focus on evaluating how the long-term N additions have impacted ecosystem C storage and N dynamics. Our primary objective was to assess the amount of C and N stored in wood, foliage, litter, roots, and soil (to a depth of ~50 cm). We also wanted to examine the fate of N by comparing patterns of 15N recovery to those observed previously. An additional objective was to further examine how chronic N additions impact microbial biomass, activity and community structure. Results indicate that chronic N additions over the past 20 years have increased forest floor mass and soil organic matter across the soil profile; decreased microbial biomass, especially the fungal component; and altered microbial community composition (i.e., significantly lower fungal:bacterial biomass ratios in the N amended plots). N15 tracer recoveries in soils and forest floors were much higher than in tree biomass, ranging from 49 to 101% of additions across forest types and N addition rates. Stoichiometric

  15. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  16. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition

    R. Q. Thomas

    2013-01-01

    Full Text Available In many forest ecosystems, nitrogen (N deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a~global biogeochemical model (CLM-CN 4.0. We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1 by increasing the aboveground C storage in response to historical N deposition (1850–2004 from 14 to 34 kg C per additional kg N added through deposition and (2 by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m−2 yr−1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition and N pulse additions of N over multiple years (N fertilization allows for greater understanding of the mechanisms

  17. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  18. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  19. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    Dong, W. Y.; Zhang, X. Y.; Liu, X. Y.; Fu, X. L.; Chen, F. S.; Wang, H. M.; Sun, X. M.; Wen, X. F.

    2015-09-01

    Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha-1 yr-1 of N +50 kg ha-1 yr-1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.

  20. Response of wheat to additional nitrogen fertilizer application after pig slurry on over-fertilized soils

    Guillaumes Cullell, Elisenda; Carrasco Martín, Israel; Villar Mir, Josep Ma.

    2006-01-01

    Pig slurry is a valuable nutrient resource but constitutes a waste disposal problem in areas of high animal density. In the semiarid area of Pla d’Urgell, in the Ebro Valley, North-East Spain, irrigated crops receive large amounts of nutrients in the form of manure and mineral fertilizers. We studied the effect of pig slurry and additional side-dress mineral fertilizers on irrigated wheat, Triticum aestivum L., on a coarse loam soil, with high soil P and K levels. Yields increased by 62...

  1. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem

    Arens, Seth J. T.; Sullivan, Patrick F.; Welker, Jeffrey M.

    2008-09-01

    Significant changes in ecosystem CO2 exchange and vegetation characteristics were observed following multiple additions of nitrogen (N) and factorial additions of N and phosphorus (P) to prostrate dwarf-shrub, herb tundra in Northwest Greenland. Ecosystem CO2 exchange and vegetation cover and composition were very sensitive to low rates of N inputs (0.5 g m-2 y-1), indicating that even low rates of atmospheric N deposition may alter high arctic ecosystem structure and function. Increasing N addition from 1 to 5 g N m-2 y-1 did not alter CO2 exchange or vegetation characteristics, suggesting the ecosystem had become N saturated. Factorial additions of both N and P released the ecosystem from N saturation and dramatically increased gross ecosystem photosynthesis (+500%) and ecosystem respiration (+250%), such that the ecosystem switched from a small source of CO2 to a small sink for CO2 at midday during the 2005 growing season. Changes in the component fluxes of CO2 exchange were largely explained by a doubling of the normalized difference vegetation index, a 100% increase in vascular plant cover and dramatic increases in the abundance of several previously rare grass species. Our results clearly demonstrate that high arctic prostrate dwarf-shrub, herb tundra is highly sensitive to low levels of N addition and that future increases in N deposition or N mineralization will likely lead to change in carbon cycling and vegetation characteristics, but the magnitude of the response will be constrained by P availability.

  2. Responses of secondary chemicals in sugar maple (Acer saccharum) seedlings to UV-B, springtime warming and nitrogen additions

    Sager, E.P.S.; Hutchinson, T.C. [Trent Univ., Peterborough, ON (Canada). Environmental Studies

    2006-10-15

    Elevated UV-B radiation due to climatic change and ozone depletion may represent a significant springtime environmental stressor to germinating seedlings in temperate forest regions. This study aimed to determine the effects of UV-B, nitrogen (N) fertilization and climate warming on the concentrations of base cations and secondary metabolites in the foliage of sugar maple seedlings growing in acid or alkaline soils. The influence of measured flavonoids and phenolics on herbivore activity was examined, as well as the relationship between foliar concentrations of calcium (Ca); manganese (Mn); and N and the production of phenolic and flavonoid compounds. Experimental plots were established in mature hardwood forests in alkaline and acid soil locations in Bobcaygeon and Haliburton, Ontario. Pentagonal open-top chambers were used to lengthen the growing season and simulate an earlier spring. Ammonium nitrate was applied at a rate comparable with an additional deposition of 5 g N per m per year. Fertilizer was applied on 3 separate occasions. Ambient UV-B radiation was screened out with Mylar D polyester film. Sites, treatments and time of sampling had complex effects on foliar elemental chemistry, production of secondary compounds and herbivory. Foliar concentrations of individual phenols were higher in seedlings in the UV-B exclusion treatments. At both sites, removal of ambient UV-B led to increases in flavonoids and chlorogenic acid, and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar Mn. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites. It was concluded that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors. 63 refs., 5 tabs., 8 figs.

  3. Physiological Responses of Two Epiphytic Bryophytes to Nitrogen, Phosphorus and Sulfur Addition in a Subtropical Montane Cloud Forest.

    Chen, Xi; Liu, Wen-Yao; Song, Liang; Li, Su; Wu, Yi; Shi, Xian-Meng; Huang, Jun-Biao; Wu, Chuan-Sheng

    2016-01-01

    Atmospheric depositions pose significant threats to biodiversity and ecosystem function. However, the underlying physiological mechanisms are not well understood, and few studies have considered the combined effects and interactions of multiple pollutants. This in situ study explored the physiological responses of two epiphytic bryophytes to combined addition of nitrogen, phosphorus and sulfur. We investigated the electrical conductivity (EC), total chlorophyll concentration (Chl), nutrient stoichiometry and chlorophyll fluorescence signals in a subtropical montane cloud forest in south-west China. The results showed that enhanced fertilizer additions imposed detrimental effects on bryophytes, and the combined enrichment of simulated fertilization exerted limited synergistic effects in their natural environments. On the whole, EC, Chl, the effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP) were the more reliable indicators of increased artificial fertilization. However, conclusions on nutrient stoichiometry should be drawn cautiously concerning the saturation uptake and nutrient interactions in bryophytes. Finally, we discuss the limitations of prevailing fertilization experiments and emphasize the importance of long-term data available for future investigations. PMID:27560190

  4. Linkages Between Biotic and Abiotic Belowground Processes in a Mojave Desert Ecosystem: Responses to Experimental Nitrogen and Water Additions

    Verburg, P. S.; Marion, G. M.; Young, A. C.; Glanzmann, I.; Stevenson, B.; Arnone, J. A.; Nowak, R. S.

    2007-05-01

    Fine roots play a critical role in nutrient acquisition and water uptake. Yet it is unclear how fine roots in arid environments respond to increased nitrogen deposition and rainfall, two important global change factors in arid lands in the southwestern United States. In addition it is unclear how changes in root activity may impact soil CO2 concentrations, an important parameter affecting carbonate dynamics. We measured fine root length density (RLD) and soil CO2 concentrations for two years in experimentally manipulated plots in a Mojave Desert ecosystem. The study was conducted at the Mojave Global Change Facility located at the Nevada Test Site 60 miles northwest of Las Vegas. The treatments included: 1) three 25 mm water additions during the summer, 2) one nitrogen addition in the fall equivalent to 40 kg per hectare per year, 3) a combined water and nitrogen addition and, 4) untreated controls. Root data were collected using minirhizotron imaging approximately every 90 days underneath shrubs and intershrub areas. Soil CO2 concentrations were collected at the same sampling times and locations at 10, 40 and 90 cm depth using gas wells. The RLD showed clear seasonal patterns with the fastest increase in RLD occurring between February and April. During the winter the increase in RLD was higher underneath shrubs than in intershrub areas but during the summer months increases in RLD were similar under shrubs and in intershrub areas. Water additions slightly increased root mortality during the summer but this increase in mortality was not large enough to cause consistent differences in RLD between control and irrigated plots. Nitrogen addition had no effect on root dynamics in any of the plots. In contrast to RLD, irrigation consistently increased soil CO2 concentrations at all depths during the summer even when roots were not actively growing anymore. We speculate that the increased mortality under irrigation causes increased heterotrophic respiration which may

  5. Nitrogen laser with additional components

    The development and construction of a Nitrogen laser with low cost domestic components is described. The model built is operated at 50 pulses per second with a 50 kW power per pulse at the ultraviolet 337.1 nm wavelength. (Author)

  6. Response of Kobresia pygmaea and Stipa purpurea Grassland Communities in Northern Tibet to Nitrogen and Phosphate Addition

    Jingsheng Wang

    2015-02-01

    Full Text Available The Tibetan Plateau is of fundamental ecological significance to China, Asia, and the world. In recent years, Tibetan grasslands have suffered from severe degradation due to climate change and anthropogenic disturbance. In this study, nitrogen (N and phosphate were applied to a moderately degraded Kobresia pygmaea meadow and Stipa purpurea steppe in the arid alpine northern Tibetan Plateau. The results showed that with increasing nitrogenous fertilizer, the height, coverage, biomass, and importance value of the K. pygmaea population decreased whereas the population of S. purpurea exhibited the opposite trend. Application of a mixed fertilizer with the same amount of N and phosphorus (P (5 g each per m2 doubled the biomass of the K. pygmaea meadow and increased the aboveground biomass of the S. purpurea steppe by 72.3%. The nitrogenous fertilizer increased the total biomass and belowground biomass of the S. purpurea steppe, whereas the mixed fertilizer was beneficial to aboveground grass recovery. Application of 10 g N + 5 g P m−2 fertilizer increased aboveground biomass by 164.8%, whereas the belowground biomass was less than the control by 4.7%. The N and P fertilizer did not affect soil pH, except for some changes in soil N and P contents.

  7. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity

    Tao Zhang; Xue Yang; Rui Guo; Jixun Guo

    2016-01-01

    To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal lengt...

  8. Photosynthetic and growth response of sugar maple (Acer saccharum Marsh.) mature trees and seedlings to calcium, magnesium, and nitrogen additions in the Catskill Mountains, NY, USA

    Momen, Bahram; Behling, Shawna J; Lawrence, Gregory B.; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the

  9. Photosynthetic and Growth Response of Sugar Maple (Acer saccharum Marsh.) Mature Trees and Seedlings to Calcium, Magnesium, and Nitrogen Additions in the Catskill Mountains, NY, USA.

    Momen, Bahram; Behling, Shawna J; Lawrence, Greg B; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the forest floor

  10. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  11. Nitrogen addition to an O-1 tool steel

    Rawers, J.; Uggoweitzer, P.

    1999-05-01

    A new processing technique makes nitrogen alloying possible by adding nitrogen under elevated nitrogen pressure to prealloyed Fe-C ingots during continuous casting, producing a whole new class of precipitation-free, iron-carbon-nitrogen alloys. When both carbon and nitrogen bulk concentration levels exceeded 0.5 wt%, a duplex fcc-/(bcc-bct-) Fe microstructure resulted that is iron carbide- and nitride-free. With increasing carbon and nitrogen concentrations, there was an increase in the retained fcc-Fe phase. In cooling rate studies, increasing carbon and nitrogen concentrations shifted the knee of the fcc-Fe-to-bcc-Fe phase time-temperature-transformation (T-T-T) curve to longer times. Hardness, compression strength, and wear resistance increased with increasing carbon and nitrogen concentrations and were superior to iron-carbon alloys without the nitrogen addition.

  12. Grassland biodiversity bounces back from long-term nitrogen addition

    Storkey, J.; MacDonald, A. J.; Poulton, P. R.; Scott, T.; Köhler, I. H.; Schnyder, H.; Goulding, K. W. T.; Crawley, M. J.

    2015-12-01

    The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to ‘bounce back’ in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.

  13. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    B. Koehler; M. D. Corre; Veldkamp, E.; Sueta, J. P.

    2009-01-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2) efflux to long-term experimental N addition (125 kg N ha−1 yr−1) in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In th...

  14. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    B. Koehler; M. D. Corre; Veldkamp, E.; Sueta, J. P.

    2009-01-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1) in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane fo...

  15. Transcriptome response to nitrogen starvation in rice

    Hongmei Cai; Yongen Lu; Weibo Xie; Tong Zhu; Xingming Lian

    2012-09-01

    Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88% of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1% transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.

  16. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-06-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.

  17. Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China.

    Qi, Yuchun; Liu, Xinchao; Dong, Yunshe; Peng, Qin; He, Yating; Sun, Liangjie; Jia, Junqiang; Cao, Congcong

    2014-04-01

    We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry June and a rainy August. The treatments included NH4NO3 additions at rates of 0, 5, 10, and 20 g N/(m(2)·year) with or without water. Immediately after the experimental simulated rainfall events, the CO2 effluxes in the watering plots without N addition (WCK) increased greatly and reached the maximum value at 2 hr. However, the efflux level reverted to the background level within 48 hr. The cumulative CO2 effluxes in the soil rang ed from 5.60 to 6.49 g C/m(2) over 48 hr after a single water application, thus showing an increase of approximately 148.64% and 48.36% in the effluxes during both observation periods. By contrast, the addition of different N levels without water addition did not result in a significant change in soil respiration in the short term. Two-way ANOVA showed that the effects of the interaction between water and N addition were insignificant in short-term soil CO2 effluxes in the soil. The cumulative soil CO2 fluxes of different treatments over 48 hr accounted for approximately 5.34% to 6.91% and 2.36% to 2.93% of annual C emission in both experimental periods. These results stress the need for improving the sampling frequency after rainfall in future studies to ensure more accurate evaluation of the grassland C emission contribution. PMID:25079414

  18. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species.

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role ('trait portfolio') that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide further

  19. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    B. Koehler

    2009-09-01

    Full Text Available Atmospheric nitrogen (N deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1 in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1 explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2 determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger from the lowland (15.20±1.25 Mg C ha−1 than the montane forest (9.36±0.29 Mg C ha−1. In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance in decadal scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2- and 3 yr N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots where stem diameter growth was promoted.

  20. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    B. Koehler

    2009-12-01

    Full Text Available Atmospheric nitrogen (N deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2 efflux to long-term experimental N addition (125 kg N ha−1 yr−1 in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1 explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2 determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger in the lowland (15.44 ± 1.02 Mg C ha−1 than in the montane forest (9.37 ± 0.28 Mg C ha−1. In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance on a decadal time scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2nd and 3rd year N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots in which stem diameter growth was promoted.

  1. Key ecological responses to nitrogen are altered by climate change

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, J. S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  2. Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition.

    Pastore, Melissa A; Megonigal, J Patrick; Langley, J Adam

    2016-01-01

    Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2 . Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine-year CO2 xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a (15) N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or (15) N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced (15) N label retention. These findings suggest that in N-limited ecosystems, elevated CO2 is unlikely to increase long-term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant-microbe competition and allow for increased plant N uptake. PMID:26577708

  3. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    Lu Xiankai [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510160 (China); Mo Jiangming, E-mail: mojm@scib.ac.cn [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510160 (China); Gilliam, Frank S. [Department of Biological Sciences, Marshall University, Huntington, WV 25755-2510 (United States); Yu Guirui [Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang Wei; Fang Yunting; Huang Juan [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510160 (China)

    2011-10-15

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha{sup -1} yr{sup -1}, and 100 kg N ha{sup -1} yr{sup -1}. Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: > Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. > Nitrogen addition significantly decreased understory plant cover. > Nitrogen addition had no effect on richness and density in the rehabilitated forest. > The decrease is largely a function of a significant increase in canopy closure. > Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  4. 落叶松原始林树木生长对氮添加的响应%Response of tree growth to nitrogen addition in a Larix gmelinii primitive forest

    刘修元; 杜恩在; 徐龙超; 沈海花; 方精云; 胡会峰

    2015-01-01

    氮沉降对树木生长的影响是全球变化研究的一个核心问题。该文通过设置4种氮添加水平(对照(0)、低氮(20 kg N·hm–2·a–1)、中氮(50 kg N·hm–2·a–1)和高氮(100 kg N·hm–2·a–1)),研究了模拟氮沉降对落叶松(Larix gmelinii)原始林树木胸径生长的影响。结果表明:中氮和高氮添加对落叶松胸径相对生长率有显著影响,而且这种影响随施氮年限的增加而增强。不同高度的树木对氮添加的响应有很大差异,较低树木(树高16.5 m)的树木在中氮和高氮处理下胸径生长有显著加速(胸径相对生长率增幅>79.5%),但随着树木高度的进一步增加,这种加速作用明显下降。研究结果显示氮添加会促进落叶松胸径生长,这种促进作用主要发生在较高的落叶松个体中。%Aims Global nitrogen (N) deposition has been consistently enhanced and significantly influenced the carbon (C) cycle of forest ecosystem. However, studies on the quantitive response of C sequestration to N deposition in China’s boreal forest ecosystem still remains insufficient. Tree growth is one of important components of C sequestration in forest ecosystem. In order to accurately evaluate the influence of N deposition on C sequestration in China’s boreal forest ecosystem, This study was designed to investigate how N deposition influenced the tree diameter at breast height (DBH) growth of a Larix gmelinii primitive forest. Methods We carried out a N enrichment experiment in an L. gmelinii primitive forest in Greater Khingan Mountains with four N addition levels (control (0), low N (20 kg N·hm–2·a–1), medium N (50 kg N·hm–2·a–1) and high N (100 kg N·hm–2·a–1)). DBH was measured from 2012–2014 within all treatments. Important findings Medium N and high N additions significantly influenced the relative DBH growth of L. gmelinii, and the influence became more pronounced through time. N deposition significantly

  5. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  6. EFFECTS OF WATER TABLE AND NITROGEN ADDITION ON CO2 EMISSION FROM WETLAND SOIL

    YANG Ji-song; LIU Jing-shuang; YU Jun-bao; WANG Jin-da; QIN Sheng-jin; LI Xin-hua

    2005-01-01

    Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study.Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control,were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table ( Ⅰ )and a fluctuant water table (Ⅳ),averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table ( Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments,low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland.

  7. [Effects of nitrogen addition on available nitrogen content and acidification in cold-temperate coniferous forest soil in the growing season].

    Chen, Gao-Qi; Fu, Wa-Li; Luo, Ya-Chen; Gao, Wen-Long; Li, Sheng-Gong; Yang, Hao

    2014-12-01

    Based on a low-level and multi-form N addition control experiment, this study took cold-temperate coniferous forest in Daxing'an Ling as the research object. After long-term and continuous nitrogen addition in situ, the available nitrogen (NH4(+) -N & NO3(-) -N) contents and pH values of the soil (0-10 cm) were measured in the early growing season (May) and the peak growing season (August) in 2010, 2012 and 2013. The results showed that, the available nitrogen in the early and peak growing seasons was mainly NH4(+) -N which accounted for over 96% of the inorganic nitrogen content, while the content of NO3(-) -N was very low. With the time extension of nitrogen addition, the effects of nitrogen addition on the NH4(+) -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH4(+) -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO3(-) -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO3(-) -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO3(-) -N. As time went on, the response of NH4(+) -N and NO3(-) -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0 - 10 cm soil in this cold-temperate coniferous forest was obviously acidified. PMID:25826942

  8. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Lin-Na Ma

    Full Text Available BACKGROUND: Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland. CONCLUSIONS/SIGNIFICANCE: Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  9. Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand

    Kelly, J.M.

    2002-10-29

    The objective of this study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0-, 275-, and 55-kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; 29, 27 and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interfaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r = 0.70) between bacterial population and litter weight loss.

  10. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems

    X. Lu

    2013-01-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  11. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  12. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe.

    Qi Li

    Full Text Available Climate warming and atmospheric nitrogen (N deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the interactive effects of warming and N addition on soil food web. The experiment was established in 2006 in a temperate steppe in northern China. After three to four years (2009-2010, we found that N addition positively affected microbial biomass and negatively influenced trophic group and ecological indices of soil nematodes. However, the warming effects were less obvious, only fungal PLFA showed a decreasing trend under warming. Interestingly, the influence of N addition did not depend on warming. Structural equation modeling analysis suggested that the direct pathway between N addition and soil food web components were more important than the indirect connections through alterations in soil abiotic characters or plant growth. Nitrogen enrichment also affected the soil nematode community indirectly through changes in soil pH and PLFA. We conclude that experimental warming influenced soil food web components of the temperate steppe less than N addition, and there was little influence of warming on N addition effects under these experimental conditions.

  13. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  14. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  15. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. PMID:24140689

  16. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability. PMID:25764551

  17. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition

    Chen, Hao; Gurmesa, Geshere A.; Zhang, Wei;

    2016-01-01

    Nitrogen (N) saturation hypothesis suggests that when an ecosystem reaches N-saturation, continued N input will cause increased N leaching, nitrous oxide (N2O) emission, and N mineralization and nitrification rates. It also suggests that a different element will become the main limiting...

  18. Improved nitrogenous additives for engine fuels and additived engine fuels

    Denis, J.; Montagnea, X.; Mulard, P.; Eber, D.

    1990-12-21

    Fuel additive for spark ignition engines inhibiting deposits on inlet valves comprising a polyglycol, soluble in the fuel, with a molecular weight between 480 and 2100 and two other components A and B, which are obtained by reaction of an alcenyl or polyalcenyl-succinic derivative on a polyamine for A and on a 1.2 hydroxyethyl imidazoline.

  19. Soil carbon mineralization following biochar addition associated with external nitrogen

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  20. The Impact of Long-Term Nitrogen Addition on Microbial Community Composition in Three Hawaiian Forest Soils

    Teri C. Balser

    2001-01-01

    We evaluated the microbial communities in three Hawaiian forest soils along a natural fertility gradient and compared their distinct responses to long-term nitrogen (N) additions. The sites studied have the same elevation, climate, and dominant vegetation, but vary in age of development, and thus in soil nutrient availability and nutrient limitation to plant growth. Fertilized plots at each site have received 100 kg ha year-1 N addition for at least 8 years. Soil parameters, water content, pH...

  1. Plant Responses to Rising Carbon Dioxide and Nitrogen Relations

    Bloom, Arnold J.

    2009-01-01

    The responses of higher plants to rising carbon dioxide concentration in the atmosphere are strongly dependent on their ability to acquire mineral nitrogen, ammonium and nitrate. Elevated atmospheric carbon dioxide limits both sources and sinks of plant mineral nitrogen. With regard to sources, elevated carbon dioxide stimulates microbial immobilization and inhibits nitrogen fixation. With regard to sinks, elevated carbon dioxide inhibits nitrate assimilation into amino acids within the shoo...

  2. Plant Responses to Varying Nitrogen Levels

    APAYDIN, FATMA MUGE

    2012-01-01

    Studies show that nitrogen enrichment of the soil decreases plant diversity. From this point ofview, anthropogenic N enrichment is a threat to global plant biodiversity. Roadside verges remained one ofthe high potential of floral diversity. Regularly managed roadside verges could partly replace the grasslandhabitats loss in recent decades. However grassland biodiversity is under the threat of high anthropogenicinput of nitrogen.On the other hand roadside verges have been qualified as a habita...

  3. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  4. Response of N2 O Fluxes to the Addition of Nitrogen and Phosphorous in a Southern Subtropical Fir Forest%南方亚热带杉木林土壤 N2O排放对氮磷添加的响应

    孙凡; 张磊

    2015-01-01

    利用国际森林土壤温室气体采集、分析最普遍的方法———静态箱法和气相色谱法,对石溪林场杉木林土壤主要温室气体的排放和吸收通量进行了研究.探讨氮磷添加后土壤主要温室气体的响应规律,以及对森林温室气体通量的影响.研究表明,高氮及高氮加磷对提高地表N2 O的排放量有统计学意义(p<0.01);低氮及低氮加磷也提高了地表N2 O的排放量,但是不具有统计学意义.施肥对地表N2 O的排放量的影响主要表现在施肥初期,施肥后一周内,添加氮肥会导致N2 O的排放量出现一个明显的峰值.随着时间的推移,N2 O的排放量明显下降,直到与对照样地的差异不具有统计学意义.%Using the most common method for sampling and analyzing gas sample ,the static chamber‐gas chromatography method ,we studied the greenhouse gas fluxes of the fir forest soil ,exploring the response pattern of the major greenhouse gases of nitrogen and phosphorus addition and the mechanism of green‐house gas fluxes of fir forest soil at Shixi forest .T his experiment show s high nitrogen and high nitrogen and phosphorus significantly improved surface N2O emissions(p <0.01) .low nitrogen and low nitrogen plus phosphorus increased surface N2 O emissions ,but did not reach the level of significance .The effect of fertilization on the N2 O emissions was mainly observed in the early stages of fertilization ,within a week after fertilization ,nitrogen fertilization will lead to an obvious peak of N 2 O ,and as time goes on ,N2 O e‐missions decreased until there was no significant difference compared with the blank .

  5. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests

    Jinsong Wang; Wensheng Bu; Bo Zhao; Xiuhai Zhao; Chunyu Zhang; Juan Fan; Gadow, Klaus V.

    2015-01-01

    The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N) deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture decomposition processes to N addition in Chinese pine (Pinus tabulaeformis Carr.) ecosystems. Chinese ...

  6. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    Zhuwen Xu

    Full Text Available Global nitrogen (N deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  7. Calendula and camelina response to nitrogen fertility

    The emerging oil-seed crops calendula (Calendula officinalis) and camelina (Camelina sativa L.) can provide a domestic, renewable, non-food alternative to imported oil sources for bioenergy and industrial purposes. However, very little information exists concerning nitrogen (N) fertilizer guidelines...

  8. Nitrogen Addition Altered the Effect of Belowground C Allocation on Soil Respiration in a Subtropical Forest.

    He, Tongxin; Wang, Qingkui; Wang, Silong; Zhang, Fangyue

    2016-01-01

    The availabilities of carbon (C) and nitrogen (N) in soil play an important role in soil carbon dioxide (CO2) emission. However, the variation in the soil respiration (Rs) and response of microbial community to the combined changes in belowground C and N inputs in forest ecosystems are not yet fully understood. Stem girdling and N addition were performed in this study to evaluate the effects of C supply and N availability on Rs and soil microbial community in a subtropical forest. The trees were girdled on 1 July 2012. Rs was monitored from July 2012 to November 2013, and soil microbial community composition was also examined by phospholipid fatty acids (PLFAs) 1 year after girdling. Results showed that Rs decreased by 40.5% with girdling alone, but N addition only did not change Rs. Interestingly, Rs decreased by 62.7% under the girdling with N addition treatment. The reducing effect of girdling and N addition on Rs differed between dormant and growing seasons. Girdling alone reduced Rs by 33.9% in the dormant season and 54.8% in the growing season compared with the control. By contrast, girdling with N addition decreased Rs by 59.5% in the dormant season and 65.4% in the growing season. Girdling and N addition significantly decreased the total and bacterial PLFAs. Moreover, the effect of N addition was greater than girdling. Both girdling and N addition treatments separated the microbial groups on the basis of the first principal component through principal component analysis compared with control. This indicated that girdling and N addition changed the soil microbial community composition. However, the effect of girdling with N addition treatment separated the microbial groups on the basis of the second principal component compared to N addition treatment, which suggested N addition altered the effect of girdling on soil microbial community composition. These results suggest that the increase in soil N availability by N deposition alters the effect of

  9. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.

    Qiao, Na; Xu, Xingliang; Hu, Yuehua; Blagodatskaya, Evgenia; Liu, Yongwen; Schaefer, Douglas; Kuzyakov, Yakov

    2016-01-01

    Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs. PMID:26806914

  10. Reassessing carbon sequestration in the North China Plain via addition of nitrogen.

    Dong, Wenxu; Duan, Yongmei; Wang, Yuying; Hu, Chunsheng

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0-100cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4N application treatments (0, 200, 400, and 600kgNha(-1)yr(-)(1)) for 15years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO2 in an agricultural system. Results showed that after 15years of N fertilizer application the SOC contents at depths of 0-100cm significantly increased, whereas the SIC contents significantly decreased at depths of 0-60cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO3(-) and the HCO3(-)/(Ca(2+)+Mg(2+)) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0-80cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO2 and less influenced by protons through the nitrification which would release CO2. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. PMID:27135576

  11. Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe

    Li, Q.; Bai, H.; Liang, W.; Xia, J.; Wan, S.; Putten, van der W.H.

    2013-01-01

    Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil

  12. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  13. Mechanisms and modeling of the effects of additives on the nitrogen oxides emission

    Kundu, Krishna P.; Nguyen, Hung Lee; Kang, M. Paul

    1991-01-01

    A theoretical study on the emission of the oxides of nitrogen in the combustion of hydrocarbons is presented. The current understanding of the mechanisms and the rate parameters for gas phase reactions were used to calculate the NO(x) emission. The possible effects of different chemical species on thermal NO(x), on a long time scale were discussed. The mixing of these additives at various stages of combustion were considered and NO(x) concentrations were calculated; effects of temperatures were also considered. The chemicals such as hydrocarbons, H2, CH3OH, NH3, and other nitrogen species were chosen as additives in this discussion. Results of these calculations can be used to evaluate the effects of these additives on the NO(x) emission in the industrial combustion system.

  14. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  15. Fuzzy Control of Nitrate Recirculation and External Carbon Addition in A/O Nitrogen Removal Process

    马勇; 彭永臻; 王淑莹; 王晓莲

    2005-01-01

    Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict.Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parazneter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at-86 mV and -90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.

  16. The Impact of Long-Term Nitrogen Addition on Microbial Community Composition in Three Hawaiian Forest Soils

    Teri C. Balser

    2001-01-01

    Full Text Available We evaluated the microbial communities in three Hawaiian forest soils along a natural fertility gradient and compared their distinct responses to long-term nitrogen (N additions. The sites studied have the same elevation, climate, and dominant vegetation, but vary in age of development, and thus in soil nutrient availability and nutrient limitation to plant growth. Fertilized plots at each site have received 100 kg ha year-1 N addition for at least 8 years. Soil parameters, water content, pH, and ammonium and nitrate availability differed by site, but not between control and N-addition treatments within a site at the time of sampling. Microbial biomass also varied by site, but was not affected by N addition. In contrast, microbial community composition (measured by phospholipid analysis varied among sites and between control and N-addition plots within a site. These data suggest that microbial community composition responds to N addition even when plant net primary productivity is limited by nutrients other than N. This may have implications for the behavior of forests impacted by atmospheric N deposition that are considered to be “nitrogen saturated,” yet still retain N in the soil.

  17. Resposta do dendezeiro à adição de nitrogênio e sua influência na população de bactérias diazotróficas Response of African oil palm to nitrogen addition and its influence on the diazotrophic bacteria population

    André Vieira de Carvalho

    2006-02-01

    Full Text Available O dendê (Elaeis guineensis, Jaquim pode produzir até sete toneladas de óleo por hectare por ano. O óleo vegetal é muito versátil e pode ser usado desde a indústria alimentícia até a produção de biocombustíveis. A planta é capaz de se associar com bactérias diazotróficas que colonizam raízes e caules. O objetivo deste trabalho foi avaliar a resposta à adubação nitrogenada de 17 genótipos de dendê no primeiro ano de cultivo e avaliar a influência da adição do N mineral sobre a população de bactérias diazotróficas, naturalmente presentes nas plântulas de dendezeiro. Foram utilizados potes de plástico completados com 50% de areia quartzoza e 50% de horizonte B de um Argissolo Vermelho-Amarelo, série Itaguaí, não esterilizado e extremamente pobre em nitrogênio. A uréia foi aplicada na dosagem de 33,68 kg ha-1 de N. Na presença do N, todos os genótipos melhoram os parâmetros biométricos, e houve aumento tanto do N total quanto do N acumulado. As populações de bactérias diazotróficas não foram influenciadas pela adição desse elemento. Dois genótipos foram selecionados, na presença e ausência de N, respectivamente, C-2001 e La Mé.African oil palm (Elaeis guineensis, Jaquim can produce up to 7 tons of oil per hectare per year. The vegetable oil is greatly versatile in its use, since food industry up to the production of fuels favorable to environmental protection. The plant has the potential to be associative with diazotrophic bacteria which colonize the roots and stem. The objective of this work was to evaluate 17 genotypes of E. guineensis in response to nitrogen addition and to verify the influence of this nitrogen on the diazotrophic population in an experiment using plastic pots filled with 50% quartz sand and 50% of non sterilized Horizon B; Red-Yellow Podzolic Soil series Itaguaí, extremely poor in nitrogen. Urea was used at a dose of 33.68 kg ha-1 de N. In the presence of the nitrogen, all

  18. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study. - Nitrogen additions at sites impacted by air pollution were associated with altered foliar herbivore communities and increased densities of a catkin-feeding beetle on Quercus kellogii

  19. 氮素和水分添加对贝加尔针茅草原土壤氨氧化微生物群落结构的影响%Differential Responses of Ammonia-oxidizers Communities to Nitrogen and Water Addition inStipa baicalensis Steppe, Inner Mongolia, Northern China

    王杰; 李刚; 赖欣; 宋晓龙; 赵建宁; 杨殿林

    2015-01-01

    Atmospheric nitrogen deposition and precipitation as an important phenomenon of global climate change have a great impact on grassland ecosystems. However, little is known about how the soil ammonia-oxidizing microorganisms respond to the both changes. Ammonia oxidization is a crucial step in the soil nitrification and greatly inlfuenced by soil nitrogen availability. We used PCR and DGGE (denaturing gradient gel electrophoresis) approaches to investigate the responses of AOB (ammonia-oxidizing bacteria) 16S rRNA and AOA (ammonia-oxidizing archaea)amoA genes to nitrogen and water input inStipa baicalensis steppe, Inner Mongolia, northern China. After two years of nitrogen and water addition treatment, it was found that PNA (potential nitriifcation activity) was greatly enhanced by lower N fertilization treatment under water addition and higher N fertilization under no-water addition, while it decreased markedly in higher N fertilization under water addition. The community structure of AOB responded more sensitively to N fertilization and water input than AOA, resulting in the significantly decreased diversity in the AOB community along with a higher N fertilizer rate, but an obvious increase in the AOA community, demonstrating the active growth of AOA in higher N fertilization soils. Phylogenetic analysis showed that AOB communities were dominated byNitrosospira clusters3, 4 andNitrososmonas clusters 6 under water addition andNitrosospira culsters 1, 3 and 4 and under no-water addition, while AOA communities were grouped intoCrenarchaeote clusters 1, 2 and 5 under no-water addition and Crenarchaeote clusters 1, 2 and water lineage under water addition. The differences between the two water addition regimes strongly suggest that water input acts as an important role in shifting AOA and AOB communities. Moreover, in contrast to the AOA, the diversity of AOB was negatively correlated with total N, NH4+, NO3-andpH under water addition, implying a signiifcant N

  20. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests

    Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhu, Weixing; Zhang, Wei; Mo, Jiangming

    2016-01-01

    Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-gr...

  1. Comparison of Nitrogen Fertilizers, Induce and Zinc Addition on Glyphosate Efficacy on Three Different Weed Species.

    Hussein F. Abouziena; Ibraheem M. El-Metwally; H.M. El-Saeid; Megh Singh

    2014-01-01

    Herbicides are often tank-mixed with fertilizers to save time, labour, energy, and equipment costs. However addition of some additives with glyphosate may result in reducing glyphosate efficacy. Therefore we evaluated the potential of three nitrogen sources (ammonium sulphate (AMS) at 2 or 4% w/v, ammonium nitrate (AN) at 1 or 2% w/v, urea at 1 or 2 % w/v), nonionic adjuvant (Induce at 0.05% v/v) and Zn at 250 g Zn/ha (1321 ppm) to enhance glyphosate efficacy on pig weed (Amaranthus retroflex...

  2. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    Anthony Stuart Amend

    2015-02-01

    Full Text Available Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity. This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between phylogenetic diversity and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial phylogenetic diversity, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of sixty-six days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial phylogenetic diversity failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which phylogenetic diversity predicts ecosystem function will depend on environmental context.

  3. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    The effects of elevated carbon dioxide (CO2) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N2 fixers and one N2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO2 and N addition. Foliar N:P ratios in the non-N2 fixers showed some negative responses to elevated CO2, while N addition reduced foliar N:P ratios in the N2 fixer. The results suggest that N addition would facilitate the N2 fixer rather than the non-N2 fixers to regulate the stoichiometric balance under elevated CO2. - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N2 fixer under elevated CO2. - N addition could facilitate the N2 fixer rather than the non-N2 fixers to regulate foliar N and P stoichiometry under elevated CO2 in subtropical forests.

  4. The effect of oxygen and nitrogen additives on the growth of nanocrystalline diamond films

    Nanocrystalline diamond (NCD) films have been synthesized by using either nitrogen addition or oxygen addition to conventional CH4/H2 mixtures besides the most commonly used Ar/CH4 with or without H2 chemistry. However, the synthesis of NCD films using both nitrogen and oxygen addition simultaneously into CH4/H2 gases has not been reported thus far. In this work, we investigate the effect of simultaneous O2 and N2 addition to CH4/H2 plasma on the growth of nanocrystalline diamond (NCD) films, focusing particularly on the ratio between the amount of O2 and N2 additives into conventional CH4/H2 gas mixtures on the morphology, microstructure, texture, and crystalline quality of the NCD films. The NCD samples were produced by using a high microwave power (3 kW) in a microwave plasma-assisted chemical vapour deposition reactor with a maximum power of 5 kW on large silicon wafers, 2 inches in diameter, and characterized by high-resolution scanning electron microscopy, x-ray diffraction and micro-Raman spectroscopy. Our work demonstrates that, under the conditions investigated here, NCD films can be formed when the ratio of O2/N2 addition is increased from 0 through 1 up to 7/3 (at higher than 7/3, for example 4, a large-grained polycrystalline diamond film will form), and the crystalline quality is significantly enhanced with the increase of oxygen addition. The mechanism of O2 and N2 additives on the formation of NCD films is briefly studied

  5. Molecular Response of Liquid Nitrogen Multiply Shocked to 40 GPa

    Lacina, David; Gupta, Y. M.

    2015-06-01

    Liquid nitrogen was subjected to multiple shock compression to examine its response to pressures (15-40 GPa) and temperatures (1800-4000K) previously unexplored in static and shock compression. Raman spectroscopy measurements (of the 2330 cm-1 mode) were used to characterize the molecular bond response and to experimentally determine temperature in the peak P-T state. By extending our analysis of the measured Raman shifts to include Raman spectroscopy measurements from previous studies, an empirical relation was developed that describes the pressure and temperature dependence of the Raman shifts for both static and shock compression. Examining the P-T dependence of all measured Raman shifts showed that the molecular response of liquid nitrogen is both pressure and temperature dependent, and that the molecular response is best understood by considering three temperature regimes (below 1500K, 1500-4000K, above 4000K). Multiply shocked liquid nitrogen remained a molecular fluid at the pressures and temperatures accessed in our work, and became a greybody emitter at the highest pressures. Present Address: University of Dayton Research Institute.

  6. Autotrophic nitrogen removal from black water: calcium addition as a requirement for settleability.

    de Graaff, M S; Temmink, H; Zeeman, G; van Loosdrecht, M C M; Buisman, C J N

    2011-01-01

    Black (toilet) water contains half of the organic load in the domestic wastewater, as well as the major fraction of the nutrients nitrogen and phosphorus. When collected with vacuum toilets, the black water is 25 times more concentrated than the total domestic wastewater stream, i.e. including grey water produced by laundry, showers etc. A two-stage nitritation-anammox process was successfully employed and removed 85%-89% of total nitrogen in anaerobically treated black water. The (free) calcium concentration in black water was too low (42 mg/L) to obtain sufficient granulation of anammox biomass. The granulation and retention of the biomass was improved considerably by the addition of 39 mg/L of extra calcium. This resulted in a volumetric nitrogen removal rate of 0.5 gN/L/d, irrespective of the two temperatures of 35 °C and 25 °C at which the anammox reactors were operated. Nitrous oxide, a very strong global warming gas, was produced in situations of an incomplete anammox conversion accompanied by elevated levels of nitrite. PMID:20822793

  7. Examining the Role of Nitrogen Cycling in the Terrestrial Response to CO2, Climate, and Nitrogen Deposition

    Yang, X.; Jain, A.; Post, W.

    2007-12-01

    Assessment of simulations to date with coupled carbon cycle-climate models show that carbon cycle feedbacks to climate change could significantly alter the rate of atmospheric CO2 concentration increase and climate change over the century. However, the terrestrial carbon cycle is not only directly altered by increasing atmospheric CO2 and climate change; it is also indirectly altered by feedbacks from nitrogen(N) cycle perturbations induced by changes in CO2 concentration, climate and N deposition. A process-based terrestrial nitrogen cycle model has been developed and coupled with the terrestrial carbon cycle component of Integrated Science Assessment Model (ISAM) to study terrestrial carbon cycle and nitrogen cycle in an integrated way. The coupled carbon-nitrogen model has been applied to a series of modeling experiments examining the influence of nitrogen cycling on the response of the terrestrial biosphere to elevated CO2, climate change, and nitrogen deposition. The results show that the interactions between carbon and nitrogen cycles greatly influence the sensitivity of terrestrial biosphere to the increase of CO2, temperature, precipitation and N deposition leads to an important carbon sink in the coming decades. This model accounts for all the major nitrogen processes such as immobilization, mineralization, nitrification, denitrification, leaching and can be used to estimate nitrogen gas emissions. This talk will focus on describing the results of a series of modeling experiments examining the influence of nitrogen cycling on the response of the terrestrial biosphere to elevated CO2, climate change, and nitrogen deposition.

  8. Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury

    Au, Liemin; Meisch, Jeffrey P.; Das, Lopa M; Binko, Amy M; Boxer, Rebecca S.; Wen, Amy M.; Steinmetz, Nicole F.; Lu, Kurt Q.

    2015-01-01

    DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal macrophages that exacerbate local tissue damage in an inducible nitri...

  9. Effects of nitrogen dioxide on airway responsiveness in allergic asthma

    Strand, Victoria

    1998-01-01

    Asthma is one of the most common chronic diseases in the industrialized world and its prevalence is increasing. Clinical symptoms of airway obstruction and bronchial hyper responsiveness can be induced by specific agents, such as allergens and non-specific stimuli, such as cold air and irritants. In order to avoid exacerbation it is important to identify these stimuli and to study how they interact with each other and amplify inflammation in asthma. Nitrogen dioxide (NO2) is...

  10. Effects of wood-ash addition on nitrogen turnover in a highly nitrogen loaded spruce site. Final project report

    During two consecutive years, it was studied how a fertilization with 4.2 tonnes pelleted bark ash per ha, made six-seven years earlier, affected soil chemistry, nitrogen turnover and soil-water chemistry on a Norway spruce site in SW Sweden. The actual site has a very acidic soil. At the same time, the supply of inorganic N is rich. Measures against soil acidification, e. g. addition of ash or lime, may significantly influence the turnover of N with a subsequent risk for increased leaching. Thus, there is a potential conflict between two urgent environmental goals, i. e. to decrease acidification and to decrease the N load on aquatic ecosystems. In the humus layer and the upper 5 cm of the mineral soil, pH(H2O) had increased with at the most 0.2 units because of the ash addition. The easily extractable amounts of Mg, P and nitrate were slightly increased. The potential nitrification in the humus layer was generally higher in the ash treatment, but the difference. was not statistically significant. The soil water at 50 cm depth was 0.1-0.2 pH-units more acidic where ash had been applied. Simultaneously, there were tendencies for higher concentrations of nitrate, Al and K. This is the first time in Sweden that ash fertilization of a closed forest has given clear indications of an increased N leaching. As expected, the ash fertilization decreased the acidity of the top soil. On the contrary, the runoff became more acidic and more rich in Al. Thus, the ash fertilization has counteracted one of its primary goals, i. e. to produce a runoff less toxic to aquatic life. The acidification of the runoff may partially be because of acid production during nitrification

  11. Response of sunflower to various levels of nitrogen and phosphorus

    To study the response of sunflower to various levels of nitrogen and phosphorous, an experiment was conducted in pots at NWFP Agricultural University Peshawar, during 1997. Four nitrogen levels 0, 80, 120, 160 kg/ha and three phosphorous levels 0,60,90 kg/ha were included in the experiment. Increase in nitrogen levels significantly increased head diameter, grain yield per head and thousand-grain weight. Maximum head diameter (25.71), grain yield per head (114.84g) and thousand-grain weight (75.67g) was recorded at nitrogen level of 160 kg/ha. Increased in phosphorus level increased plant height and thousand grains weight. Tallest plants (198.92cm) were observed at 6Okg P/ha while heavy grains (70.67g) were recorded at P level of 9Okg P/sub 2/O/sub 5/ha. It is concluded that l60kg N/ha and 9Okg P/ha is proper dose of N and P for sunflower hybrid. (author)

  12. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    Moseman-Valtierra, S.; Gonzalez, R.; Kroeger, K.D.; Tang, J.; Chao, W.C.; Crusius, J.; Bratton, J.; Green, A.; Shelton, J.

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m-2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged -33 ??mol N2O m-2 day-1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 ??mol N2O m-2 day-1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half the magnitude of typical

  13. Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge

    A hybrid PIC/MC model is developed in this work for H2-xN2 capacitively coupled radio-frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e−, H+3, H+2, H+, N+2, N+) and ground-state molecules (H2, N2). In addition, the mean energies and densities of electrons and ions (H+3, H+2, H+), and electric field distributions in the H2-N2 CCRF discharge are simulated by this model. Furthermore, the effects of addition of a variable percentage of nitrogen (0–30%) into the H2 discharge on the plasma processes and discharge characteristics are studied. It is shown that by increasing the percentage of nitrogen added to the system, the RF sheath thickness will narrow, the sheath electric field will be enhanced, and the mean energy of hydrogen ions impacting the electrodes will be increased. Because the electron impact ionization and dissociative ionization rates increase when N2 is added to the system, the electron mean density will increase while the electron mean energy and hydrogen ion density near the electrodes will decrease. This work aims to provide a theoretical basis for experimental studies and technological developments with regard to H2-N2 CCRF plasmas

  14. Comparison of Nitrogen Fertilizers, Induce and Zinc Addition on Glyphosate Efficacy on Three Different Weed Species.

    Hussein F. Abouziena

    2014-05-01

    Full Text Available Herbicides are often tank-mixed with fertilizers to save time, labour, energy, and equipment costs. However addition of some additives with glyphosate may result in reducing glyphosate efficacy. Therefore we evaluated the potential of three nitrogen sources (ammonium sulphate (AMS at 2 or 4% w/v, ammonium nitrate (AN at 1 or 2% w/v, urea at 1 or 2 % w/v, nonionic adjuvant (Induce at 0.05% v/v and Zn at 250 g Zn/ha (1321 ppm to enhance glyphosate efficacy on pig weed (Amaranthus retroflexus L., crowfoot grass (Dactyloctenium egyptium L. and yellow nutsedge (Cyperus esculentus L. under greenhouse conditions. The results indicated that there were variations in susceptibility of the three weeds to glyphosate+adjuvant treatments. Addition of AN at 2% reduced the efficacy of glyphosate on crowfoot grass. There was an antagonistic effect between glyphosate herbicide and Zn; the phytotoxic effect of glyphosate on the three weeds was less than 50 %. Zinc tank-mixed with glyphosate resulted in a greater number of tubers and shoots per plant than the untreatedol. Addition of AN or urea at 2% reduced glyphosate efficacy by about 2.3 and 9 %, respectively, relative to their addition at 1%. Tankmixes of urea (1%, AN (1%, AMS (2% and Induce adjuvant (0.05% generally enhanced the efficacy of glyphosate (0.85 kg/ha, whereas the addition of Zn, as zinc sulphate, to glyphosate sprays adversely affected herbicide efficacy.

  15. Biochar Addition to Stormwater Treatment Media for Enhanced Removal of Nitrogen

    Imhoff, P. T.; Jin, J.; Tian, J.; Chiu, P.; Guo, M.

    2015-12-01

    Urban stormwater management systems, such as bioretention facilities, require substantial land area and are often ineffective in removing nitrogen. This project seeks to improve nitrogen removal in bioretention media by modifying the hydraulic and treatment characteristics of the infiltration medium with biochar addition. A commercial wood biochar pyrolyzed from Southern Yellow Pine at 500°C was used. Laboratory experiments demonstrated that biochar addition to a typical bioretention medium (soil-mix: 4% saw dust, 88% sand, 8% clay) increased ammonium sorption at typical stormwater concentrations (2 mg/L) by a factor of 6, total porosity by 16.6%, and water retention at most matric potentials. The effect of the biochar-amended medium on nitrate removal was evaluated in pilot-scale experiments. Side-by-side experimental cells (91 cm dia., 1.2 m deep) were constructed to treat stormwater runoff from a parking lot. The control cell contained 100% soil mix while the biochar cell contained 4% biochar and 96% soil-mix by mass. Treatment media were 76.2 cm in depth and overlain by 5.1 cm of wood mulch in both cells, with a water table maintained at the bottom of the treatment zones. Cells were instrumented with TDR moisture sensors, pressure transducers, and redox and temperature sensors. Two pilot-scale experiments were conducted that included a bromide tracer and nitrate with a hydraulic loading of 5.5cm/h for 24 h in early spring and 36 h in summer. Effluent was continuously sampled for nitrogen compounds during these tests. Tracer tests and TDR measurements showed that biochar increased the average volumetric water content of the vadose zone by 14.7% and the mean residence time by 12.6%. For the spring field test at 14°C, nitrate in the control cell effluent increased by 6.1% but decreased by 43.5% for the biochar cell. For the summer field test at 22°C, 30.6% and 84.7% of influent nitrate was removed in the control and biochar cells, respectively. In the summer

  16. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq.

    Choi, Sun Young; Park, Byeonghyeok; Choi, In-Geol; Sim, Sang Jun; Lee, Sun-Mi; Um, Youngsoon; Woo, Han Min

    2016-01-01

    The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities. PMID:27488818

  17. Tailoring of structure formation and phase composition in reactively sputtered zirconium oxide films using nitrogen as an additional reactive gas

    Severin, D.; Sarakinos, Kostas; Kappertz, O.; Pflug, A; Wuttig, M.

    2008-01-01

    The structure of ZrO(2) films has been controlled during reactive sputtering in an argon/oxygen atmosphere by adding an amount of nitrogen gas to the process. Depending on the deposition conditions, amorphous, cubic, or monoclinic films have been obtained without any additional substrate heating. The resulting film structure is explained in terms of the control of fast negative oxygen ions generated at the target surface and accelerated toward the growing film. Furthermore, the nitrogen addit...

  18. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests

    Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhu, Weixing; Zhang, Wei; Mo, Jiangming

    2016-06-01

    Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha-1 yr-1), P addition (150 kg P ha-1 yr-1), and NP addition (150 kg N ha-1 yr-1 plus 150 kg P ha-1 yr-1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m-2 h-1) than in the mixed (9.9 ± 0.4 µg N2O-N m-2 h-1) or pine (10.8 ± 0.5 µg N2O-N m-2 h-1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O

  19. Chlorophyll fluorescence response to water and nitrogen deficit

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  20. Direct-Seeded Broccoli Responses to Reduced Nitrogen Application at Shoot-Tip Straightened Stage

    LI Hong; Li, Tingxian; Robert J. Gordon; Asiedu, Samuel K.

    2009-01-01

    Broccoli (Brassica oleracea var. italica) is an important high-nutritional-value vegetable yet broccoli plant and nitrogen nutrition relations are not well understood. We conducted a study of broccoli plant response to nitrogen nutrient treatments in a commercial production field in Nova Scotia. The objectives were to quantify the effects of nitrogen nutrition on direct-seeded broccoli development and plant nitrogen uptake in different soils. The nitrogen treatments consisted of the rates of ...

  1. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    Nitrogen (N) availability is the main constraint on primary production in most Arctic ecosystems, with microbial fixation of atmospheric N as the primary source of N input. However, there are only few reports on N fixation rates in relation to climate change in the Arctic. In order to investigate...... years before the measurements. We analyzed N fixation rates on both whole-ecosystem level and specifically on two moss species: Sphagnum warnstorfii and Hylocomium splendens. The whole-ecosystem N fixation of the warmed plots almost tripled compared with the control plots. However, in the Sphagnum and...... Hylocomium mosses we observed either no change or occasionally even a decrease in N fixation after warming. Both measured on whole-ecosystem level and on the two moss species separately, litter addition increased N fixation rates. The results suggest that warming will lead to a general increased ecosystem N...

  2. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics. PMID:26645232

  3. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    Nordin, Annika [Umeaa Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: annika.nordin@genfys.slu.se; Strengbom, Joachim [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: joachim.strengbom@ebc.uu.se; Ericson, Lars [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: lars.ericson@eg.umu.se

    2006-05-15

    Separate effects of ammonium (NH{sub 4} {sup +}) and nitrate (NO{sub 3} {sup -}) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha{sup -1} year{sup -1} was added to 2 m{sup 2} sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO{sub 3} {sup -}. Bryophytes took up predominately NH{sub 4} {sup +} and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH{sub 4} {sup +} and NO{sub 3} {sup -} to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen.

  4. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    Separate effects of ammonium (NH4+) and nitrate (NO3-) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha-1 year-1 was added to 2 m2 sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO3-. Bryophytes took up predominately NH4+ and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH4+ and NO3- to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen

  5. Warming and Nitrogen Addition Alter Photosynthetic Pigments, Sugars and Nutrients in a Temperate Meadow Ecosystem

    Zhang, Tao; Yang, Shaobo; Guo, Rui; Guo, Jixun

    2016-01-01

    Global warming and nitrogen (N) deposition have an important influence on terrestrial ecosystems; however, the influence of warming and N deposition on plant photosynthetic products and nutrient cycling in plants is not well understood. We examined the effects of 3 years of warming and N addition on the plant photosynthetic products, foliar chemistry and stoichiometric ratios of two dominant species, i.e., Leymus chinensis and Phragmites communis, in a temperate meadow in northeastern China. Warming significantly increased the chlorophyll content and soluble sugars in L. chinensis but had no impact on the carotenoid and fructose contents. N addition caused a significant increase in the carotenoid and fructose contents. Warming and N addition had little impact on the photosynthetic products of P. communis. Warming caused significant decreases in the N and phosphorus (P) concentrations and significantly increased the carbon (C):P and N:P ratios of L. chinensis, but not the C concentration or the C:N ratio. N addition significantly increased the N concentration, C:P and N:P ratios, but significantly reduced the C:N ratio of L. chinensis. Warming significantly increased P. communis C and P concentrations, and the C:N and C:P ratios, whereas N addition increased the C, N and P concentrations but had no impact on the stoichiometric variables. This study suggests that both warming and N addition have direct impacts on plant photosynthates and elemental stoichiometry, which may play a vital role in plant-mediated biogeochemical cycling in temperate meadow ecosystems. PMID:27171176

  6. Effects of Nitrogen and Phosphorus Additions on Carbon Cycling of Tropical Mountain Rainforests in Hainan, China

    Lai, J.

    2015-12-01

    Nitrogen (N) and Phosphorus (P) deposition is projected to increase significantly in tropical regions in the coming decades, which has changed and will change the structure and function of ecosystems, and affects on ecosystem Carbon (C) cycle. As an important part in global C cycle, how the C cycle of tropical rainforests will be influenced by the N and P deposition should be focused on. This study simulated N and P deposition in a primary and secondary forest of tropical mountain rainforest in Jianfengling, Hainan, China, during five-year field experiment to evaluate the effects of N and P deposition on C cycling processes and relate characteristics. Six levels of N and P treatments were treated: Control, Low-N, Medium-N, High-N, P and N+P. The relative growth rates (RGR) of tree layer in treatment plots were different from that in control plots after years of N and P addition. Simulated N and P deposition also increased ANPP in primary forest. N and P addition changed the growth of trees by altering soil nutrient and microbial activities. N and P addition increased soil organic carbon (SOC) and total N (TN) content, and significantly increased soil total P (TP) content, not changing soil pH. During the whole process of N and P addition, as net nitrification rate and net N mineralization rate were promoted by N and P addition, and effective N content (nitrate) of soil increased in the plot treated with N treatments compared to the control treatment. The microbial P content was increased by N and P addition, and microbial N was not changed. The increasing N deposition may enhance soil nutrient and stimulate growth of trees, which will lead to an increase of the C sequestration.

  7. Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation▿ †

    Mendes-Ferreira A; Olmo Muñoz, Marcel·lí del; García Martínez, José; Jiménez Martí, Elena; Mendes-Faia A; Pérez Ortín, José Enrique; Leão C.

    2007-01-01

    Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing t...

  8. Influence of Nitrogen Containing Wastes Addition on Natural Aerobic Composting of Rice Straw

    Thaniya Kaosol

    2012-01-01

    Full Text Available Problem statement: Rice straw is an agricultural residue. Typically, the rice straw can be burn in the rice field after the harvesting process. The burning can cause air pollution. Another alternative rice straw management method is animal feed. The amount of rice straw is enormus in Thailand. Another sustainable way to manage rice straw is required. Rice straw is used as main waste to compost with nitrogen containing wastes such as golden apple snail, cattle dung and urea in natural aerobic composting reactors. The golden apple snail is a pesticide and cattle dung is an animal waste. Both materials are all waste of low values. The main purpose of this study was to determine the influence of nitrogen containing wastes addition to rice straw on the performance of natural aerobic composting process in terms of the following parameters: pH, temperature, organic matter, C/N ratio, electrical conductivity and GI. The impact of this study is to reuse agriculture residue by composting. Approach: The experiments was consisted of three reactors. The reactor 1 contains the rice straws and golden apple snails while the reactor 2 contains the rice straws, golden apple snails and urea. The reactor 3 contains the rice straws, cattle dung and urea. The experiments were carried out in designed natural aerobic reactors (60 L under controlled laboratory conditions over 60 days. The analysis was done every 5 days however the temperature was measured daily. Results: The experimental results showed that the initial C/N ratio was 30.7, 30.3 and 31.8 in the reactor 1, 2 and 3, respectively. After the 60-day period, the final C/N ratio was reduced to 17.9, 16.9 and 18.4 in the reactor 1, 2 and 3, respectively. The main nutrients (N: P: K from all reactors achieved the standard level for Thai compost standard. The rice straw as agricultural residue was suitable for co-composting with golden apple snails and cattle dung as the nitrogen containing wastes. Conclusion: The

  9. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests.

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Zhang, Weixin; Shao, Yuanhu; Ha, Denglong; Li, Yuanqiu; Zhang, Chuangmao; Cai, Xi-An; Rao, Xingquan; Lin, Yongbiao; Zhou, Lixia; Zhao, Ping; Ye, Qing; Zou, Xiaoming; Fu, Shenglei

    2016-05-15

    Anthropogenic N deposition has been well documented to cause substantial impacts on the chemical and biological properties of forest soils. In most studies, however, atmospheric N deposition has been simulated by directly adding N to the forest floor. Such studies thus ignored the potentially significant effect of some key processes occurring in forest canopy (i.e., nitrogen retention) and may therefore have incorrectly assessed the effects of N deposition on soils. Here, we conducted an experiment that included both understory addition of N (UAN) and canopy addition of N (CAN) in two contrasting forests (temperate deciduous forest vs. subtropical evergreen forest). The goal was to determine whether the effects on soil exchangeable cations and microbial biomass differed between CAN and UAN. We found that N addition reduced pH, BS (base saturation) and exchangeable Ca and increased exchangeable Al significantly only at the temperate JGS site, and reduced the biomass of most soil microbial groups only at the subtropical SMT site. Except for soil exchangeable Mn, however, effects on soil chemical properties and soil microbial community did not significantly differ between CAN and UAN. Although biotic and abiotic soil characteristics differ significantly and the responses of both soil exchangeable cations and microbial biomass were different between the two study sites, we found no significant interactive effects between study site and N treatment approach on almost all soil properties involved in this study. In addition, N addition rate (25 vs. 50kgNha(-1)yr(-1)) did not show different effects on soil properties under both N addition approaches. These findings did not support previous prediction which expected that, by bypassing canopy effects (i.e., canopy retention and foliage fertilization), understory addition of N would overestimate the effects of N deposition on forest soil properties, at least for short time scale. PMID:26930308

  10. How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea.

    Robroek, Bjorn J M; Adema, Erwin B; Venterink, Harry Olde; Leonardson, Lars; Wassen, Martin J

    2009-03-15

    Conservation and restoration of fens and fen meadows often aim to reduce soil nutrients, mainly nitrogen (N) and phosphorus (P). The biogeochemistry of P has received much attention as P-enrichment is expected to negatively impact on species diversity in wetlands. It is known that N, sulphur (S) and hydrological conditions affect the biogeochemistry of P, yet their interactive effects on P-dynamics are largely unknown. Additionally, in Europe, climate change has been predicted to lead to increases in summer drought. We performed a greenhouse experiment to elucidate the interactive effects of N, S and a single drought event on the P-availability for Phalaris arundinacea. Additionally, the response of plant phosphatase activity to these factors was measured over the two year experimental period. In contrast to results from earlier experiments, our treatments hardly affected soil P-availability. This may be explained by the higher pH in our soils, hampering the formation of Fe-P or Fe-Al complexes. Addition of S, however, decreased the plants N:P ratio, indicating an effect of S on the N:P stoichiometry and an effect on the plant's P-demand. Phosphatase activity increased significantly after addition of S, but was not affected by the addition of N or a single drought event. Root phosphatase activity was also positively related to plant tissue N and P concentrations, plant N and P uptake, and plant aboveground biomass, suggesting that the phosphatase enzyme influences P-biogeochemistry. Our results demonstrated that it is difficult to predict the effects of wetland restoration, since the involved mechanisms are not fully understood. Short-term and long-term effects on root phosphatase activity may differ considerably. Additionally, the addition of S can lead to unexpected effects on the biogeochemistry of P. Our results showed that natural resource managers should be careful when restoring degraded fens or preventing desiccation of fen ecosystems. PMID:19101022

  11. Effects of Increased Summer Precipitation and Nitrogen Addition on Root Decomposition in a Temperate Desert.

    Hongmei Zhao

    Full Text Available Climate change scenarios that include precipitation shifts and nitrogen (N deposition are impacting carbon (C budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands.Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content had a slower decomposition rate in comparison to coarse roots.Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover.

  12. California black oak response to nitrogen amendment at a high O3, nitrogen-saturated site

    In a nitrogen (N) saturated forest downwind from Los Angeles, California, the cumulative response to long-term background-N and N-amendment on black oak (Quercus kelloggii) was described in a below-average and average precipitation year. Monthly measurements of leaf and branch growth, gas exchange, and canopy health attributes were conducted. The effects of both pollutant exposure and drought stress were complex due to whole tree and leaf level responses, and shade versus full sun leaf responses. N-amended trees had lower late summer carbon (C) gain and greater foliar chlorosis in the drought year. Leaf water use efficiency was lower in N-amended trees in midsummer of the average precipitation year, and there was evidence of poor stomatal control in full sun. In shade, N-amendment enhanced stomatal control. Small differences in instantaneous C uptake in full sun, lower foliar respiration, and greater C gain in low light contributed to the greater aboveground growth observed. - Despite ecosystem-level N saturation, lower foliar respiration and significant photosynthetic gains under low light conditions resulted in greater wood production in black oak

  13. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    Elise S Gornish

    Full Text Available Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  14. Pretreatment with nitrogen dioxide modifies plant response to ozone

    Runeckles, V. C.; Palmer, K.

    Plant growth inhibition by ozone is significantly affected by previous exposure to nitrogen dioxide. Experiments on the early growth of four crop species showed that daily pretreatment with NO 2 (0.08-0.10 ppm for 3 h) immediately prior to exposure to O 3 (0.08-0.10 ppm for 6 h) increased the inhibition of radish and wheat growth, decreased the inhibition of bush bean growth, but had no effect on the growth of mint. The magnitudes of the interactive effects indicate that in regions where relatively high concentrations of O 3 are produced by photochemical processes, for example, downwind from urban centres, assessments of the impact of O 3 on vegetation based on knowledge of response to O 3 alone may be seriously flawed.

  15. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    Fraś E.

    2007-01-01

    Full Text Available Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V and niobium (about 0,05 and 0,16% Nb as well as nitrogen (32 - 58 ppm. on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing magnesium and silicon.

  16. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V) and niobium (about 0,05 and 0,16% Nb) as well as nitrogen (32 - 58 ppm.) on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing m...

  17. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests

    Jinsong Wang

    2015-12-01

    Full Text Available The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture decomposition processes to N addition in Chinese pine (Pinus tabulaeformis Carr. ecosystems. Chinese pine litter, Mongolian oak (Quercus mongolica Fisch. ex Ledeb. litter, and a pine–oak mixture were selected from a plantation and a natural forest of Chinese pine. Four N addition treatments, i.e., control (N0: 0 kg N ha−1·year−1, low-N (N1: 5 kg N ha−1·year−1, medium-N (N2: 10 kg N ha−1·year−1, and high-N (N3: 15 kg N ha−1·year−1, were applied starting May 2010. In the plantation, N addition significantly stimulated the decomposition of the Chinese pine litter. In the natural forest, N addition had variable effects on the decomposition of single-species litter and the litter mixture. A stimulatory effect of the high-N treatment on the Chinese pine litter decomposition could be attributed to a decrease in the substrate C:N ratio. However, an opposite effect was found for the Mongolian oak litter decomposition. The stimulating effect of N addition on the Chinese pine litter may offset the suppressive effect on the Mongolian oak litter, resulting in a neutral effect on the litter mixture. These results suggest that the different responses in decomposition of single-species litter and the litter mixture to N addition are mainly attributed to litter chemical composition. Further investigations are required to characterize the effect of long-term high-level N addition on the litter decomposition as N deposition is likely to increase rapidly in the region where this study was conducted.

  18. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China

    Faming Wang; Jian Li; Xiaoli Wang; Wei Zhang; Bi Zou; Deborah A Neher; Zhian Li

    2014-01-01

    Nutrient availability greatly regulates ecosystem processes and functions of tropical forests. However, few studies have explored impacts of N addition (aN), P addition (aP) and N×P interaction on tropical forests N2O fluxes. We established an N and P addition experiment in a tropical forest to test whether: (1) N addition would increase N2O emission and nitrification, and (2) P addition would increase N2O emission and N transformations. Nitrogen and P addition had no effect on N mineralizati...

  19. Kinetics of addition of nitrogen-15 labelled nitrates to organic matter in a calcareous soil

    In a calcareous soil the transformation of added nitrates with or without wheat straw was studied. By using 15N it was possible to compare the net and real nitrification of the organic soil nitrogen, the mineral nitrogen organization and the denitrification losses. The observed priming effect was interpreted as a result of some modifications of nitrification-organization kinetics due to the high nitrate fertilization. The net nitrification is about three times less than the primary nitrification which is likely to be found even in a period of high organization. Finally the losses by denitrification appear even with a straw which immobilizes the nitrate nitrogen

  20. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives.

    Khan, Muhammad Imran; Yang, Jihoon; Yoo, Byungun; Park, Joonhong

    2015-04-28

    In this work, we developed and characterized a novel nitrogen-fixing aerobic microbial consortium for the complete detoxification of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Aerobic RDX biodegradation coupled with microbial growth and nitrogen fixation activity were effectively stimulated by the co-addition of starch and RDX under nitrogen limiting conditions. In the starch-stimulated nitrogen-fixing RDX degradative consortium, the RDX degradation activity was correlated with the xplA and nifH gene copy numbers, suggesting the involvement of nitrogen fixing populations in RDX biodegradation. Formate, nitrite, nitrate, and ammonia were detected as aerobic RDX degradation intermediates without the accumulation of any nitroso-derivatives or NDAB (4-nitro-2,4-diazabutanal), indicating nearly complete mineralization. Pyrosequencing targeting the bacterial 16S rRNA genes revealed that the Rhizobium, Rhizobacter and Terrimonas population increased as the RDX degradation activity increased, suggesting their involvement in the degradation process. These findings imply that the nitrogen-fixing aerobic RDX degrading consortium is a valuable microbial resource for improving the detoxification of RDX-contaminated soil or groundwater, especially when combined with rhizoremediation. PMID:25661171

  1. Influence of microelement addition on the pitting corrosion resistance of nitrogen-containing stainless steel

    To improve the performance of stainless steel, we subjected solid-state steel to a nitrogen absorption treatment. In the fabrication process, a commercially available high-chromium ferritic stainless steel (Fe-22Cr-1Mo) was heat-treated at 1423 K in a nitrogen atmosphere. The heat-treatment transformed the ferric phase into the austenite phase. This process loaded over 1 mass% of nitrogen into the steel material. Most of the added nitrogen formed a solid solution in the matrix, but a minor portion formed nitrides with the very small quantities of elements such as titanium and aluminum that pre-existed in the steel. The nitrogen-containing steels were then analyzed by pitting potential measurements and ferric chloride corrosion examination. The pitting corrosion resistance of Fe-22Cr-1Mo-1N exceeded that of conventional materials such as Fe-18Cr-12Ni and Fe-22Cr-1Mo. However in the ferric chloride corrosion tests, pits developed in Fe-22Cr-1Mo-1N at temperatures above 323 K. These pits were possibly initiated at the sites of minute nitride resulting from the nitrogen absorption process. (author)

  2. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  3. Decomposition of conifer tree bark under field conditions: effects of nitrogen and phosphorus additions

    Lopes de Gerenyu, Valentin; Kurganova, Irina; Kapitsa, Ekaterina; Shorokhova, Ekaterina

    2016-04-01

    In forest ecosystems, the processes of decomposition of coarse woody debris (CWD) can contribute significantly to the emission component of carbon (C) cycle and thus accelerate the greenhouse effect and global climate change. A better understanding of decomposition of CWD is required to refine estimates of the C balance in forest ecosystems and improve biogeochemical models. These estimates will in turn contribute to assessing the role of forests in maintaining their long-term productivity and other ecosystems services. We examined the decomposition rate of coniferous bark with added nitrogen (N) and phosphorus (P) fertilizers in experiment under field conditions. The experiment was carried out in 2015 during 17 weeks in Moscow region (54o50'N, 37o36'E) under continental-temperate climatic conditions. The conifer tree bark mixture (ca. 70% of Norway spruce and 30% of Scots pine) was combined with soil and placed in piles of soil-bark substrate (SBS) with height of ca. 60 cm and surface area of ca. 3 m2. The dry mass ratio of bark to soil was 10:1. The experimental design included following treatments: (1) soil (Luvisols Haplic) without bark, (S), (2) pure SBS, (3) SBS with N addition in the amount of 1% of total dry bark mass (SBS-N), and (4) SBS with N and P addition in the amount of 1% of total dry bark mass for each element (SBS-NP). The decomposition rate expressed as CO2 emission flux, g C/m2/h was measured using closed chamber method 1-3 times per week from July to early November using LiCor 6400 (Nebraska, USA). During the experiment, we also controlled soil temperature at depths of 5, 20, 40, and 60 cm below surface of SBS using thermochrons iButton (DS1921G, USA). The pattern of CO2 emission rate from SBS depended strongly on fertilizing. The highest decomposition rates (DecR) of 2.8-5.6 g C/m2/h were observed in SBS-NP treatment during the first 6 weeks of experiment. The decay process of bark was less active in the treatment with only N addition. In this

  4. The Response of a Footbridge to Pedestrians Carrying Additional Mass

    O'Sullivan, Darragh; Caprani, Colin C.; Keogh, Joe

    2012-01-01

    Footbridges with low natural frequency are susceptible to excessive vibration serviceability problems if the pedestrian pacing frequency matches the bridge natural frequency. Much research has been done into describing the response of a footbridge to single pedestrian loading. However, many pedestrians carry additional mass such as shopping bags and backpacks, and this has generally not been accounted for in previous research. This work examines this problem using an experimental bridge excit...

  5. Nitrogen

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  6. Carbon dynamics in subtropical forest soil. Effects of atmospheric carbon dioxide enrichment and nitrogen addition

    Liu, Juxiu X.; Zhou, Guoyi Y.; Zhang, Deqiang Q.; Duan, Honglang L.; Deng, Qi; Zhao, Liang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong H. [Griffith Univ., Nathan, Queensland (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2010-06-15

    The levels of atmospheric carbon dioxide concentration ([CO{sub 2}]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO{sub 2}]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO{sub 2} enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO{sub 2}] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China. Materials and methods Above- and below-ground C input (tree biomass) into soil, soil respiration, soil organic C, and total N as well as dissolved organic C (DOC) were measured periodically in each of the open-top chambers. Soil samples were collected randomly in each chamber from each of the soil layers (0-20, 20-40, and 40-60 cm) using a standard soil sampling tube (2.5-cm inside diameter). Soil leachates were collected at the bottom of the chamber below-ground walls in stainless steel boxes. Results and discussion The highest above- and below-ground C input into soil was found in the high CO{sub 2} and high N treatment (CN), followed by the only high N treatment (N+), the only high CO{sub 2} treatment (C+), and then the control (CK) without any CO{sub 2} enrichment or N addition. DOC in the leachates was small for all the treatments. Export of DOC played a minor role in C cycling in our experiment. Generally, soil respiration rate in the chambers followed the order: CN treatment > C + treatment > N + treatment > the control. Except for the C+ treatment, there were no significant differences in soil total N among the CN treatment, N + treatment, and the control. Overall, soil organic C (SOC) was significantly affected by the treatments (p < 0.0001). SOC

  7. Cell Production and Expansion in the Primary Root of Maize in Response to Low-Nitrogen Stress

    GAO Kun; CHEN Fan-jun; YUAN Li-xing; MI Guo-hua

    2014-01-01

    Maize plants respond to low-nitrogen stress by enhancing root elongation. The underlying physiological mechanism remains unknown. Seedlings of maize (Zea mays L., cv. Zhengdan 958) were grown in hydroponics with the control (4 mmol L-1) or low-nitrogen (40 µmol L-1) for 12 d, supplied as nitrate. Low nitrogen enhanced root elongation rate by 4.1-fold, accompanied by increases in cell production rate by 2.2-fold, maximal elemental elongation rate (by 2.5-fold), the length of elongation zone (by 1.5-fold), and ifnal cell length by 1.8-fold. On low nitrogen, the higher cell production rate resulted from a higher cell division rate and in fact the number of dividing cells was reduced. Consequently, the residence time of a cell in the division zone tended to be shorter under low nitrogen. In addition, low nitrogen increased root diameter, an increase that occurred speciifcally in the cortex and was accompanied by an increase in cell number. It is concluded that roots elongates in response to low-nitrogen stress by accelerating cell production and expansion.

  8. Wheat-yield response to irrigation and nitrogen

    Wheat-yield responses to the application of different rates of N fertilizer, under irrigated and rainfed conditions, were evaluated over four growing seasons. Nitrogen applied at tillering was utilized more effectively with proportionately less residual in the soil compared to that applied at planting. Subsequent crops of maize or cotton were positively affected by residual fertilizer N. Volatilization and leaching losses of applied N were small. Crop-water consumption showed strong positive associations with N rate. No wheat-grain-yield benefits accrued from irrigation, although straw yields were increased. Tiller production increased with N-fertilizer usage, however, tiller survival decreased at high N and was highest at 160 kg N ha-1. Higher N rates produced higher stomatal conductance, increased rates of CO2 assimilation and higher water-use efficiency. The CERES-Wheat growth-simulation model predicted rather closely the progress of dry-matter production, leaf area index, seasonal evapotranspiration, phenological development and of many other plant-growth attributes. The data indicated that the rate of 160 kg N ha-1, which is commonly used by the farmers of the region, is acceptable, not only for optimum grain yields but also to minimize the risks of leaching NO3- to groundwater. (author)

  9. Effect of nitrogen addition on the performance of microbial fuel cell anodes

    Saito, Tomonori

    2011-01-01

    Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. © 2010 Elsevier Ltd.

  10. Study on Tribological Behaviors of Boron-Nitrogen Modified Fatty Acid as Water-Based Lube Additives

    FANG Jian-hua; CHEN Bo-shui; DONG Ling; WANG Jiu

    2008-01-01

    A new type of boron-nitrogen modified fatty acid as water base lube additive was prepared and the chemical structure characterized by infrared spectrum. The tribological properties of the additive in water were evaluated by friction testers. The morphographies and tribochemical species of the worn surfaces were analyzed by means of X-ray Photoelectron Spectroscope (XPS). The results showed that the additive is excellent in increasing loadcarrying capacity, anti-wear and friction-reducing abilities of water. The lubrication mechanism is inferred that a high strength adsorption film and a tribochemical reaction film are formed on the rubbing surfaces due to the carrier effect of the long chain fatty acid molecules, high reaction activities of nitrogen, electron-deficient orbit of boron and their synergisms.

  11. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania...... this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...... as well as organic nitrogen sources indicated reduced expression levels of nitrate reductase when cells were grown on NH4+ and a reduced expression level of the putative formamidase when growth was on NO3-. The data reported here suggest the presence of a nitrogen preference hierarchy in E. huxleyi...

  12. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium.

    Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong

    2015-12-30

    In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification. PMID:26342802

  13. Response of FFTF core to protected reactivity addition transients

    The response of the FFTF core to protected reactivity insertion events was evaluated. Reactivity addition transients ranging from .05 cents/s to 3$/s have been considered. The evaluation method is based on a calculational model which predicts cladding strain from modified fuel-cladding differential thermal expansion. The results show that for all ramp rates considered, the Plant Protection System (PPS) controls consequences to required limits. Comparisons made between predicted fuel damage and results of TREAT transient tests support the conservatism of the results

  14. Response of rice to nitrogenous fertilizer and irradiated sewage sludge

    A greenhouse pot experiment was conducted to study the effect of Gamma-irradiated sewage sludge, applied alone or along with /sup 15/N-labelled ammonium sulphate (1.0 atom % /sup 15/N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended wit sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg/sub -1/ soil. In other treatments nitrogen was applied at 120 mg kg/sup -1/ as /sup 15/N-labelled ammonium sulphate or 120 mg kg/sub -1/ as /sup 15/NH/sub 4/-N + sludge-N in the ratios of 1:3, 1:1, or 3:1. All the treatments were given before transplanting rice. Three healthy seedlings (4-week old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted pot/sup -1/ and the plants harvested at maturity. Application of sewage sludge caused a significant improvement in rice yield. Grain yield increased by 188% at sludge-N of 120 mg N kg/sup -1/. The yield benefit at similar rate of fertilizer N was 304%, the increase being more at higher rates of application. The increase in rice yield was dependent on uptake of N and sewage sludge significantly improved the availability of N to the plants. The additional plant N in sludge treated soil was partially attributable to enhanced mineralization of soil N and N/sub 2/ fixation by free living microorganisms. Application of inorganic N led to a significant increase in the availability of N to plants from soil organic matter and sewage sludge. Results of combined application suggested that substantial savings of fertilizer N can be made by using sewage sludge on rice-fields. (author)

  15. Prediction of Nitrogen Responses of Corn by Soil Nitrogen Mineralization Indicators

    R.R. Simard

    2001-01-01

    Full Text Available Soil nitrogen mineralization potential (Nmin has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil Nmin potential based on clay and organic matter (OM contents and the impact of grouping soils using these criteria on corn grain (Zea mays L. yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150 were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha-1 were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The Nmin indicators were spatially structured but soil nitrate (NO3– was not. The N fertilizer rate to reach maximum grain yield (Nmax, as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha-1. The proportion of variability (R2 and the standard error of the estimate (SE varied among textural groups and Nmin indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha-1 rate, the apparent Nmin potential (ANM was significantly larger in the clay loam (122 kg ha-1 than in the fine sandy loam (80 kg ha-1 or clay (64 kg ha-1 soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict Nmax. The Nmin indicators may also assist the variable rate N fertilizer inputs for corn production.

  16. Prediction of nitrogen responses of corn by soil nitrogen mineralization indicators.

    Simard, R R; Ziadi, N; Nolin, M C; Cambouris, A N

    2001-11-01

    Soil nitrogen mineralization potential (N min) has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil N min potential based on clay and organic matter (OM) contents and the impact of grouping soils using these criteria on corn grain (Zea mays L.) yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150) were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha(-1)) were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The N min indicators were spatially structured but soil nitrate (NO3-) was not. The N fertilizer rate to reach maximum grain yield (N max), as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha(-1). The proportion of variability (R2) and the standard error of the estimate (SE) varied among textural groups and N min indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha(-1) rate, the apparent N min potential (ANM) was significantly larger in the clay loam (122 kg ha(-1)) than in the fine sandy loam (80 kg ha(-1)) or clay (64 kg ha(-1)) soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict N max. The N min indicators may also assist the variable rate N fertilizer inputs for corn production. PMID:12805786

  17. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories.

    Chen, Xianni; Wang, Xudong; Liebman, Matt; Cavigelli, Michel; Wander, Michelle

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1); 8.6%) from the IAsoil than the MDsoil (0.9 g kg(-1), 6.3%); fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents. PMID:25078458

  18. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories.

    Xianni Chen

    Full Text Available To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil] comparing conventional grain systems (Conv amended with inorganic fertilizers with 3 yr (Med and longer (Long, more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs and decay rates (ka, ks of active and slow C pools which we compared with total particulate organic matter (POM and occluded-POM (OPOM. The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1; 8.6% from the IAsoil than the MDsoil (0.9 g kg(-1, 6.3%; fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230% and Cs (38% vs 21% and decreases in ka (58% vs 9% in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.

  19. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  20. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    Lei Liu; Per Gundersen; , Wei Zhang; Tao Zhang; Hao Chen; Jiangming Mo

    2015-01-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m−2·yr−1), P addition (15 g P m−2·yr−1), and N and P addition (15 + 15 g N and P m−2·yr−1, respectively) in disturbed (plan...

  1. The effect of nitrogen addition on biomass production and competition in three expansive tall grasses

    Holub, Petr; Tůma, I.; Fiala, Karel

    2012-01-01

    Roč. 170, NOV 2012 (2012), s. 211-216. ISSN 0269-7491 R&D Projects: GA ČR(CZ) GA526/06/0556; GA MZe QJ1220007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67985939 ; RVO:67179843 Keywords : aboveground biomass * aggressivity * crowding coefficient * Nitrogen * tall grasses Subject RIV: EH - Ecology, Behaviour; EF - Botanics (BU-J) Impact factor: 3.730, year: 2012

  2. Influence of Nitrogen Containing Wastes Addition on Natural Aerobic Composting of Rice Straw

    Thaniya Kaosol; Suchinun Kiepukdee; Prawit Towatana

    2012-01-01

    Problem statement: Rice straw is an agricultural residue. Typically, the rice straw can be burn in the rice field after the harvesting process. The burning can cause air pollution. Another alternative rice straw management method is animal feed. The amount of rice straw is enormus in Thailand. Another sustainable way to manage rice straw is required. Rice straw is used as main waste to compost with nitrogen containing wastes such as golden apple snail, cattle dung and urea in natural aerobic ...

  3. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  4. Comparative transcriptomic analysis reveals similarities and dissimilarities in saccharomyces cerevisiae wine strains response to nitrogen availability

    Barbosa, Catarina; García Martínez, José; Pérez Ortín, José Enrique; Mendes Ferreira, A.

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and ...

  5. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    Es-sebbar, Et-touhami

    2012-11-27

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.

  6. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest.

    Xiaoming Sun

    Full Text Available The environmental changes arising from nitrogen (N deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O, while the opposite trend was found in the mineral horizon (A. Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.

  7. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes.

    Ximei Zhang

    Full Text Available Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem by removing plant functional groups, mowing, adding nitrogen, adding phosphorus, watering, warming, and manipulating some of their combinations. We quantified the abundance of seven nitrogen-cycling genes, including those for fixation (nifH, mineralization (chiA, nitrification (amoA of ammonia-oxidizing bacteria (AOB or archaea (AOA, and denitrification (nirS, nirK and nosZ. First, for each gene, we compared its sensitivities to different environmental changes and found that the abundances of various genes were sensitive to distinct and different factors. Overall, the abundances of nearly all genes were sensitive to nitrogen enrichment. In addition, the abundances of the chiA and nosZ genes were sensitive to plant functional group removal, the AOB-amoA gene abundance to phosphorus enrichment when nitrogen was added simultaneously, and the nirS and nirK gene abundances responded to watering. Second, for each single- or multi-factorial environmental change, we compared the sensitivities of the abundances of different genes and found that different environmental changes primarily affected different gene abundances. Overall, AOB-amoA gene abundance was most responsive, followed by the two denitrifying genes nosZ and nirS, while the other genes were less sensitive. These results provide, for the first time, systematic insights into how the abundance of each type of nitrogen-cycling gene and the equilibrium state of all these nitrogen-cycling gene abundances would shift under each single- or multi-factorial global change.

  8. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  9. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow

    Wei Li; Ji-Min Cheng; Kai-Liang Yu; Howard E. Epstein; Liang Guo; Guang-Hua Jing; Jie Zhao; Guo-Zhen Du

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alp...

  10. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method. PMID:27337641

  11. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m-2·yr-1), P addition (15 g P m-2·yr-1), and N and P addition (15 + 15 g N and P m-2·yr-1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  12. Effect of SF6 and NF3 additives on UV and IR lasing in nitrogen

    The lasing regimes of nitrogen laser on the C3Πu - B3Πg transition with a high-energy long laser pulse under pumping by a transverse discharge in N2 - SF6 (NF3) mixtures from generators with a semiconductor opening switch is studied. Laser pulses with two peaks and controlled delay between these peaks are obtained. It is shown that the time interval between the peaks may exceed 50 ns for N2 - NF3 mixtures. The conditions for obtaining effective UV lasing with a laser pulse width of more than 50 ns at the base level are determined. A possibility of depopulating the lower level of the C3Πu - B3Πg transition by induced transitions in the first positive B3Πg - A3Σu+ system is shown; this process makes it possible to expand the pulse to 100 ns at λ = 337.1 nm. The highest lasing energy and power in the IR and UV spectral ranges are obtained for nitrogen lasers with spark preionisation. (lasers)

  13. Effect of SF6 and NF3 additives on UV and IR lasing in nitrogen

    Genin, D. E.; Panchenko, Aleksei N.; Tarasenko, Viktor F.; Tel'minov, A. E.

    2011-04-01

    The lasing regimes of nitrogen laser on the C3Πu — B3Πg transition with a high-energy long laser pulse under pumping by a transverse discharge in N2 — SF6 (NF3) mixtures from generators with a semiconductor opening switch is studied. Laser pulses with two peaks and controlled delay between these peaks are obtained. It is shown that the time interval between the peaks may exceed 50 ns for N2 — NF3 mixtures. The conditions for obtaining effective UV lasing with a laser pulse width of more than 50 ns at the base level are determined. A possibility of depopulating the lower level of the C3Πu — B3Πg transition by induced transitions in the first positive B3Πg — A3Σu+ system is shown; this process makes it possible to expand the pulse to 100 ns at λ = 337.1 nm. The highest lasing energy and power in the IR and UV spectral ranges are obtained for nitrogen lasers with spark preionisation.

  14. 复合酵母培养物对奶牛产奶性能、氮排放及血液生化指标的影响%Milk production,nitrogen excretion and blood biochemical parameter responses to di-etary addition of compound yeast cultures in dairy cows

    王玲; 吕永艳; 程志伟; 杜高唐; 李金林; 付石军; 孙国强

    2015-01-01

    group (P <0.05).2)Compound yeast cultures significantly increased milk fat and protein concentra-tion (P <0.05),and reduced somatic cell counts (P <0.05),with treatment group 2 again the greatest re-sponse.3)The supply of compound yeast cultures in dairy cow feed concentrate reduced nitrogen excretion by 8.47%,12.01%,9.36% compared to the control group (P <0.05).4)Dietary supplementation with com-pound yeast cultures significantly increased the levels of glucose (GLU ),total protein (TP ),globulin (GLOB),and insulin (INS)(P <0.05 )in the serum,and reduced blood urea nitrogen (BUN)(P <0.05 ). Based on the data for milk yield,milk composition,nitrogen excretion and blood biochemical parameters,the optimal concentration of compound yeast cultures administered as a supplement for dairy cow diets is 1.0%.

  15. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I–Q–T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I–Q–T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I–Q–T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance

  16. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  17. Microbial nitrogen metabolism: response to warming and resource supply

    Buckeridge, K. M.; Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2013-12-01

    Ecosystem nitrogen (N) dynamics are dependent on microbial metabolic responses to a changing climate. Most studies that investigate soil microbial N dynamics in response to temperature employ measurements reflective of many interacting and confounding phenomena, as altering soil temperature can simultaneously alter moisture regime, substrate availability, and competitive dynamics between microbial populations. As a result, it is difficult to discern how temperature alone can alter patterns of microbial N metabolism using whole soils. Without that knowledge, it is impossible to parse temperature effects on soil N fluxes from other drivers. We address this issue by exploring the sensitivity of microbial partitioning of N between assimilation (growing biomass) and dissimilation (releasing N to the environment) in response to changes in temperature and quality (C:N ratio) of substrate, using a chemostat approach in which a microbial population is maintained at steady state. We perform our experiments using a Gram-negative bacterium (Pseudomonas fluorescens), ubiquitous in soils and dependent on organic compounds to satisfy its resource demand. Individual chemostat runs, all conducted at similar microbial growth rates, generate data describing microbial biomass N, solution N pools and microbial biomass and solution d15N. With these data we can calculate d15N enrichment (d15N microbial biomass - d15N nutrient solution) a proxy for microbial N partitioning. From a recently published model of microbial biomass d15N drivers, fractionation of N occurs with both uptake and excretion of NH3+ so that microbes with a net dissimilation become 15N enriched relative to their source. Because a related study has demonstrated increased microbial C demand with temperature, we predict that in a warming environment microorganisms will become relatively C limited. Accordingly, we hypothesize that warming will enhance microbial dissimilation, and that this N release will be exacerbated as

  18. Soil Nitrogen Response to Coupling Cover Crops with Manure Injection

    Coupling winter small grain cover crops (CC) with manure (M) application may increase retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this research was to quantify soil N changes after application of liquid swine M (Sus scrofa L.) at target N rates of 112, 224, an...

  19. Nitrogen Addition as a Result of Long-Term Root Removal Affects Soil Organic Matter Dynamics

    Crow, S. E.; Lajtha, K.

    2004-12-01

    A long-term field litter manipulation site was established in a mature coniferous forest stand at the H.J. Andrews Experimental Forest, OR, USA in 1997 in order to address how detrital inputs influence soil organic matter formation and accumulation. Soils at this site are Andisols and are characterized by high carbon (C) and low nitrogen (N) contents, due largely to the legacy of woody debris and extremely low atmospheric N deposition. Detrital treatments include trenching to remove roots, doubling wood and needle litter, and removing aboveground litter. In order to determine whether five years of detrital manipulation had altered organic matter quantity and lability at this site, soil from the top 0-5 cm of the A horizon was density fractionated to separate the labile light fraction (LF) from the more recalcitrant mineral soil in the heavy fraction (HF). Both density fractions and whole soils were incubated for one year in chambers designed such that repeated measurements of soil respiration and leachate chemistry could be made. Trenching resulted in the removal of labile root inputs from root exudates and turnover of fine roots and active mycorrhizal communities as well as an increase of available N by removing plant uptake. Since 1999, soil solution chemistry from tension lysimeters has shown greater total N and dissolved organic nitrogen (DON) flux and less dissolved organic carbon (DOC) flux to stream flow in the trenched plots relative to the other detrital treatments. C/N ratio and C content of both light and heavy fractions from the trenched plots were greater than other detrital treatments. In the lab incubation, over the course of a year C mineralization from these soils was suppressed. Cumulative DOC losses and CO2 efflux both were significantly less in soils from trenched plots than in other detrital treatments including controls. After day 150 of the incubation, leachates from the HF of plots with trenched treatments had a DOC/DON ratio significantly

  20. Microbial Enzymatic Response to Reduced Precipitation and Added Nitrogen in a Southern California Grassland Ecosystem

    Alster, C. J.; German, D.; Allison, S. D.

    2011-12-01

    Microbial enzymes play a fundamental role in ecosystem processes and nutrient mineralization. Although there have been many studies concluding that global climate change affects plant communities, the effects on microbial communities in leaf litter have been much less studied. We measured extracellular enzyme activities in litter decomposing in plots with either reduced precipitation or increased nitrogen in a grassland ecosystem in Loma Ridge National Landmark in Southern California. We used a reciprocal transplant design to examine the effects of plot treatment, litter origin, and microbial community origin on litter decomposition and extracellular enzyme activity. Our hypothesis was that increased nitrogen would increase activity because nitrogen often limits microbial growth, while decreased precipitation would decrease activity due to lower litter moisture levels. Samples were collected in March 2011 and analyzed for the activities of cellobiohydrolase (CBH), β-glucosidase (BG), α-glucosidase (AG), N-acetyl-β-D-glucosaminidase (NAG), β-xylosidase (BX), acid phosphatase (AP), and leucine aminopeptidase (LAP). None of the factors in the nitrogen manipulation had a significant effect on any of the enzymes, although BG, CBH, and NAG increased marginally significantly in plots with nitrogen addition (p = 0.103, p = 0.082, and p = 0.114, respectively). For the precipitation manipulation, AG, BG, BX, CBH, and NAG significantly increased in plots with reduced precipitation (p = 0.015, p enzyme turnover in the reduced precipitation treatment. We also observed that AP significantly increased (p = 0.014) in litter originating from reduced precipitation plots, while AG, BX, and LAP significantly decreased (p = 0.011, p = 0.031, and 0.005, respectively). There were no significant correlations found between fungal or bacterial mass and enzymatic activity with either of the treatment types. Our results suggest that increased enzymatic activity due to drought could

  1. The effect of nitrogen addition on biomass production and competition in three expansive tall grasses

    A large increase of grasses Calamagrostis epigejos, Bromus inermis and Brachypodium pinnatum has often been observed in many regions enriched by higher nitrogen (N) wet deposition inputs. Competitive relationships between these grasses under enhanced N loads have not yet been studied. Therefore an outdoor experiment was established which involved monocultures of Calamagrostis, Bromus and Brachypodium and their 1:1 mixtures in containers under two N treatments, i.e., unfertilized and fertilized (+50 kg N ha−1). In monocultures, the total aboveground biomass of Calamagrostis, Bromus and Brachypodium were 1.1, 3.6 and 2.5 times higher respectively due to enhanced N fertilization. Relative crowding and aggressivity coefficients indicate that Calamagrostis and Bromus dominate when mixed with Brachypodium at both levels of N availability. When mixed with Bromus, Calamagrostis is the poorer competitor at lower N loads, however, it can be dominating in N fertilized treatments. - Highlights: ► A large increase of tall grasses has often been observed in many ecosystems. ► Data on competitive relationships between grasses were investigated. ► Competition indices indicate that Calamagrostis and Bromus dominate in mixtures with Brachypodium. ► Calamagrostis is a better competitor when mixed with Bromus but only at higher N loads. ► N deposition may play a critical role in the expansion and persistence of grasses in the landscape. - Competition abilities of Calamagrostis and Bromus were greater than Brachypodium and the competitive superiority of Calamagrostis to Bromus was in N rich substrate.

  2. Growth and sporulation of Trichoderma polysporum on organic substrates by addition of carbon and nitrogen sources

    During the present study nine different organic substrates viz., rice grains, sorghum grains, wheat grains, millet grains, wheat straw, rice husk, cow dung, sawdust and poultry manure were used for mass multiplication of Trichoderma polysporum. Grains, especially sorghum grains were found to be the best substrate for T. polysporum. Wheat straw and rice husk were less suitable, whereas, cow dung, sawdust and poultry manure were not suitable for growth of the fungus. Sucrose at the rate of 30,000 ppm and ammonium nitrate at the rate of 3,000 ppm were found to be the best carbon and nitrogen sources for growth and sporulation of T. polysporum. Amendment of the selected C and N sources to wheat straw, rice husk and millet grains resulted in significantly higher growth and conidia production by T. polysporum as compared to un-amended substrates. Sorghum and rice grains showed suppression in growth and sporulation of T. polysporum when amended with C and N sources. During studies on shelf life, populations of T. polysporum attained the peck at 60-135 days intervals on different substrates and declined gradually thereafter. However, even after 330 days, the populations were greater than the population at 0-day. At 345-360 days interval, populations were less than the initial populations at 0- days. Shelf life on C+N amended wheat straw and rice husk were more as compared to un-amended substrates. (author)

  3. Analysis of the influence of helium additions on the laser output and stability of a TEA nitrogen laser

    An experimental method to study the laser output and stability of a small TEA nitrogen laser is presented. The method is based on the amplitude analysis of the fluorescence produced by the interaction of the laser ultraviolet radiation with a yellow filter. Using this method, the influence of helium additions on the laser output energy and stability is analyzed. The experimental data shows that in our conditions, the higher laser output energy and stability are reached when the He presents the 45 % of the gas mixture coinciding with the helium concentration for which a spark-free laser discharge is produced. (Author)

  4. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    M. O. Rappe-George

    2012-09-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in the Stråsan experimental forest (Norway spruce in Central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity, but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n=6 and tension lysimeters were installed in the underlying B horizon (n=4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B-horizon leachates, the N1 treatment approximately doubled leachate concentration of DOC and DON. DON returned to control levels but DOC remained elevated in B-horizon leachates in N2 plots 19 yr after termination of N addition. Increased aromaticity of the sampled DOM in mineral B horizon in both the ongoing and terminated N treatment indicated that old SOM in the mineral soil was a source of the increased DOC.

  5. A kelp with integrity: Macrocystis pyrifera prioritises tissue maintenance in response to nitrogen fertilisation.

    Stephens, Tiffany A; Hepburn, Christopher D

    2016-09-01

    Our understanding of the response of vascular, terrestrial plants to nitrogen (N) addition is advanced and provides the foundation for modern agriculture. In comparison, information on responses of marine macroalgae to increased nitrogen is far less developed. We investigated how in situ pulses of nitrate (NO3 (-)) affected the growth and N physiology of Macrocystis pyrifera by adding N using potassium nitrate dissolution blocks during a period of low seawater N concentration. Multiple parameters (e.g. growth, pigments, soluble NO3 (-)) were measured in distinct tissues throughout entire fronds (apical meristem, stipe, adult blade, mature blade, sporophyll, and holdfast). Unexpectedly, N fertilisation did not enhance elongation rates within the frond, but instead thickness (biomass per unit area) increased in adult blades. Increased blade thickness may have enhanced tissue integrity as fertilised kelp had lower rates of blade erosion. Tissue chemistry also responded to enrichment; pigmentation, soluble NO3 (-), and % N were higher throughout fertilised fronds. Labelled (15)N traced N uptake and translocation from N sources in the kelp canopy to sinks in the holdfast, 10 m below. This is the first evidence of long-distance (>1 m) transport of N in macroalgae. Patterns in physiological parameters suggest that M. pyrifera displays functional differentiation between canopy and basal tissues that may aid in nutrient-tolerance strategies, similar to those seen in higher plants and unlike those seen in more simple algae (i.e. non-kelps). This study highlights how little we know about N additions and N-use strategies within kelp compared to the wealth of literature available for higher plants. PMID:27170330

  6. Response of soil fauna to simulated nitrogen deposition: A nursery experiment in Subtropical China

    XU Guo-liang; MO Jiang-ming; FU Sheng-lei; PER Gundersen; ZHOU Guo-yi; XUE Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  7. Effects of nitrogen fertilizer application and solar radiation on the growth response of sorghum [Sorghum bicolor] seedlings to soil moisture

    The effects of nitrogen fertilizer application and solar radiation on the growth response to soil moisture were examined in sorghum seedlings grown in culture boxes. The effects of soil moisture (f) and amount of nitrogen fertilizer application (g) on the increment of total dry matter weight of sorghum seedling (ΔW) were represented satisfactorily by the following reciprocal equation, 1/ΔW = A/(f - f0) + B(g + g0)/(f - f0) + C/[(f - f0) (g + g0)] + D/(g + g0) + E, where f0 and g0 were the uppermost value of unavailable soil moisture and the amount of nitrogen supplied from soil and seeds. A, B, C, D and E were coefficients. The effects of soil moisture (f) and solar radiation (S) on ΔW were expressed approximately by the following reciprocal equation, 1/ΔW = A/(S - S0) + B/(f - f0) + C(f - f0) + D, where S0 was the daily compensation point. These results indicated that the effects of solar radiation and soil moisture are additive, but the interaction between soil moisture and nitrogen fertilizer is not negligible. The transpiration efficiency was unaffected by soil moisture, nitrogen fertilizer and solar radiation

  8. Quantifying the Stress Responses of Brassica Rapa Genotypes, With Experimental Drought in Two Nitrogen Treatments

    Hickerson, J. L.; Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B. E.; Weinig, C.

    2014-12-01

    In a greenhouse study designed to quantify and compare stress responses of four genotypes of Brassica rapa, broccolette (bro), cabbage (cab), turnip (tur), and oil, leaf water potential and net CO2 assimilations were measured. Individuals from each genotype, grown either with high or low nitrogen, were exposed to experimental drought of the same duration. One hypothesis was that the genotypes would differ significantly in their responses to periodic drought. The other hypothesis was that the nitrogen treatment versus no nitrogen treatment would play a significant role in the stress responses during drought. It would be expected that the nitrogen treated would have greater dry leaf mass. A LI-6400 XT portable photosynthesis system was used to obtain A/Ci curves (net CO2 assimilation rate versus substomatal CO2) for each treatment group. Predawn and midday water potentials were obtained throughout the hydrated and drought periods using a Model 670 pressure chamber. The dry leaf mass was significantly greater among the high nitrogen group versus the low nitrogen group for each genotype. Nitrogen and genotype were both determinants in variation of water potentials and net CO2 assimilation. Bro and cab genotypes with high nitrogen showed the highest net CO2 assimilation rates during hydration, but the assimilation rates dropped to the lowest during droughts. The water potentials for bro and cab were lower than values for tur and oil. Nitrogen treated genotypes had lower water potentials, but higher net CO2 assimilation rates. Bayesian ecophysiological modeling with the TREES model showed significant differences in trait expression, quantified in terms of differences in model parameter posteriors, among the four genotypes.

  9. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  10. Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition

    Müller, Anke; Matson, Amanda; Corre, Marife; Veldkamp, Edzo

    2015-10-01

    Nutrient deposition to tropical forests is increasing, which could affect soil fluxes of nitrous oxide (N2O), a powerful greenhouse gas. We assessed the effects of 35-56 months of moderate nitrogen (N) and phosphorus (P) additions on soil N2O fluxes and net soil N-cycling rates, and quantified the relative contributions of nitrification and denitrification to N2O fluxes. In 2008, a nutrient manipulation experiment was established along an elevation gradient (1000, 2000 and 3000 m) of montane forests in southern Ecuador. Treatments included control, N, P and N+P addition (with additions of 50 kg N ha-1 yr-1 and 10 kg P ha-1 yr-1). Nitrous oxide fluxes were measured using static, vented chambers and N cycling was determined using the buried bag method. Measurements showed that denitrification was the main N2O source at all elevations, but that annual N2O emissions from control plots were low, and decreased along the elevation gradient (0.57 ± 0.26 to 0.05 ± 0.04 kg N2O-N ha-1 yr-1). We attributed the low fluxes to our sites’ conservative soil N cycling as well as gaseous N losses possibly being dominated by N2. Contrary to the first 21 months of the experiment, N addition did not affect N2O fluxes during the 35-56 month period, possibly due to low soil moisture contents during this time. With P addition, N2O fluxes and mineral N concentrations decreased during Months 35-56, presumably because plant P limitations were alleviated, increasing plant N uptake. Nitrogen plus phosphorus addition showed similar trends to N addition, but less pronounced given the counteracting effects of P addition. The combined results from this study (Months 1-21 and 35-56) showed that effects of N and P addition on soil N2O fluxes were not linear with time of exposure, highlighting the importance of long-term studies.

  11. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized (15)N following N addition was lowest among treatments. Litter (15)N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  12. Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Wang, Lili; Guo, Yuedong

    2016-06-01

    Freeze-thaw (FT) events and increasing nitrogen (N) availability may alter N turnover and nitrous oxide (N2O) emissions in permafrost peatlands. However, the responses of N2O emissions to different N levels and additions during FT events are far from clear. We conducted an incubation study to investigate the impacts of different N addition levels (LN: 0.07 mg N g-1, HN: 0.14 mg N g-1) and N addition forms (AC: ammonium chloride, NS: sodium nitrate) on the emissions of N2O under FT and non-freeze-thaw (NFT) conditions in boreal peatlands of Northeast China. Results indicated that the FT condition significantly increased N2O emissions compared with the NFT condition and peaks occurred during thawing. Compared with AC treatments, NS treatments significantly elevated the accumulation of N2O emissions under the FT condition, exhibiting significant differences in different NS levels. N2O emissions were also positively dependent on soil NO3- concentrations to supply nitrate for denitrification. Nitrate-N addition was mainly responsible for the burst of N2O with denitrification as the main process during FT events. Therefore, these results suggest that N2O emissions potentially increase during FT events with increasing nitrate-N deposition in permafrost peatlands, which would contribute to global climate warming.

  13. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  14. Preparation method and use of visible light responsive nitrogen-doped titanium dioxide nano-tube

    Jiang, Zheng; Zhu, Qingshan; Yang, Fan; Zhang, Yayuan; Li, Hongzhong

    2010-01-01

    The invention discloses a preparation method of a nitrogen-doped titanium dioxide nanotube with response to visible lights, and comprises the following steps: a. metallic titanium or titaniferous compounds are used for preparing a metatitanic acid nanotube with a hydrothermal or solvothermal method; b. the metatitanic acid or titanium dioxide nanotube that is prepared by step a or a commercial metatitanic acid or titanium dioxide nanotube is dispersed in a water solution with nitrogen sources...

  15. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs

    ZHANG Wei-jian; W.ZHU; S.HU

    2005-01-01

    Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N),and a grassland soil (1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity. New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone,cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total Creleased induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5%and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs.

  16. Utilization of nitrogen by soybean (Glycine max) influenced by the addition of sugar cane bagasse

    N2-fixation in soybean and soil-N and 15N-urea utilization where studied in a glasshouse. Doses of fertilizer were 0, 40 and 80 kgN/ha added either to cultivated - or virgin soil, where sugar cane bagasse was also added (20 ton/ha). Non-nodulating soybean was used as a control to determine the absorption of the three N-sources: soil, fertilizer and N2-fixation. The N-immobilization effect caused by bagasse addition was observed even after a pre-incubation period of 40 days, being greater in the cultivated than in the soil without organic matter. Accumulations of N, P and S where also smaller in these plants. Additions of N were not sufficient to equal the values observed in soils without organic matter. Addition of 40 kgN/ha showed a sinergistic and positive effect on treatments that had N-immobilization, reinforcing the idea that starter doses of N are necessary for maximization of nodulation and N2-fixation in soybean, in soils with low N. N2-fixation contributed with mean values of 54% and 84% N, respectively, in the aerial part and pools in non-treated soil. When bagasse was added, the percentages of N2-fixed increased, however in smaller amounts, showing a necessity of different sources of N to increase the total N in plant. The greatest N2-fixation (48,6 kgN/ha) was found in the cultivated soil, where only bagasse had been added. (M.A.)

  17. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 d...

  18. Salt additions alter short-term nitrogen and carbon mobilization in a coastal Oregon Andisol.

    Compton, Jana E; Church, M Robbins

    2011-01-01

    Deposition of sea salts is commonly elevated along the coast relative to inland areas, yet little is known about the effects on terrestrial ecosystem biogeochemistry. We examined the influence of NaCl concentrations on N, C, and P leaching from a coastal Oregon forest Andisol in two laboratory studies: a rapid batch extraction (approximately 1 d) and a month-long incubation using microlysimeters. In the rapid extractions, salt additions immediately mobilized significant amounts of ammonium and phosphate but not nitrate. In the month-long incubations, salt additions at concentrations in the range of coastal precipitation increased nitrate leaching from the microcosms by nearly 50% and reduced the mobility of dissolved organic carbon. Our findings suggest that coupled abiotic-biotic effects increase nitrate mobility in these soils: exchange of sodium for ammonium, then net nitrification. Changes in sea salt deposition to land and the interactions with coastal soils could alter the delivery of N and C to sensitive coastal waters. PMID:21869523

  19. Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon

    Richard Poir; Vincent Chochois; Xavier R.R.Sirault; John P.Vogel; Michelle Watt; Robert T.Furbank

    2014-01-01

    This work evaluates the phenotypic response of the model grass (Brachypodium distachyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2>0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response to nitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina-tion of genomic regions associated with superior nutrient use efficiency.

  20. Role of Escherichia coli Nitrogen Regulatory Genes in the Nitrogen Response of the Azotobacter vinelandii NifL-NifA Complex

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2001-01-01

    The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like signal transduction protein, has been implicated in nitrogen control. However, the precise function of A. vinelandii glnK in this respons...

  1. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  2. Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa

    Edison A. Díaz-Álvarez

    2015-06-01

    Full Text Available Potential ecophysiological responses to nitrogen deposition, which is considered to be one of the leading causes for global biodiversity loss, were studied for the endangered endemic Mexican epiphytic orchid, Laelia speciosa, via a shadehouse dose-response experiment (doses were 2.5, 5, 10, 20, 40, and 80 kg N ha−1 yr−1 in order to assess the potential risk facing this orchid given impending scenarios of nitrogen deposition. Lower doses of nitrogen of up to 20 kg N ha yr−1, the dose that led to optimal plant performance, acted as fertilizer. For instance, the production of leaves and pseudobulbs were respectively 35% and 36% greater for plants receiving 20 kg N ha yr−1 than under any other dose. Also, the chlorophyll content and quantum yield peaked at 0.66 ± 0.03 g m−2 and 0.85 ± 0.01, respectively, for plants growing under the optimum dose. In contrast, toxic effects were observed at the higher doses of 40 and 80 kg N ha yr−1. The δ13C for leaves averaged −14.7 ± 0.2‰ regardless of the nitrogen dose. In turn, δ15N decreased as the nitrogen dose increased from 0.9 ± 0.1‰ under 2.5 kg N ha−1yr−1 to −3.1 ± 0.2‰ under 80 kg N ha−1yr−1, indicating that orchids preferentially assimilate NH4+ rather than NO3− of the solution under higher doses of nitrogen. Laelia speciosa showed a clear response to inputs of nitrogen, thus, increasing rates of atmospheric nitrogen deposition can pose an important threat for this species.

  3. Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China

    Global nitrogen (N) deposition has been enhanced with anthropogenic N emissions, and its impacts on mosses are receiving more and more attention. This study investigates how N deposition influence the biomass and stoichiometry of moss Rhytidium rugosum, using a 3-year N enrichment experiment with 0, 2, 5 and 10 g N m−2 yr−1 in a boreal forest in Northeast China. Low N additions caused an N redundancy and moderate to high N additions resulted in a biomass loss. N additions reduced biomass ratios of green to brown tissues and increased N and phosphorus (P) contents, suggesting changes in photosynthetic capacity and litter decomposition. Biomass N pools showed a unimodal response to the N additions, and P pools decreased under moderate and high N additions. Our findings indicate significant stoichiometric and biomass changes caused by N deposition may lead to a substantial carbon and nutrient loss in boreal moss carpets. - Highlights: • Effects of N deposition on moss biomass and stoichiometry were investigated. • N deposition reduced biomass ratios of green to brown moss tissues. • N deposition increased N and P contents in moss tissues. • N deposition caused significant changes of moss carbon and nutrient pools. - Significant stoichiometric and biomass changes of mosses can be caused by N deposition and may lead to a substantial carbon and nutrient loss in boreal moss carpets

  4. Identification of Soil Organic Nitrogen Substance Acting as Indicator of Response of Cocoa Plants to Nitrogen Fertilizer

    John Bako Baon

    2008-07-01

    Full Text Available An indicator needed for estimating the presence of response of cocoa (Theobroma cacao trees to nitrogen (N fertilizer has been well understood, however there is still little progress on the work on identification of organic N fraction which regulates the response of cocoa to N fertilizer. The objective of this study is to identify a fraction of soil organic N which is very closely related with degree of cocoa response to N fertilizer. Hydrolyses were performed on soil samples derived from 23 sites of cocoa plantations distributed both in Banyuwangi district (12 sites and in Jember district (11 sites. Analysis of organic N fractions consisted of total hydrolysable N, ammonium N, amino sugar N, amino acid N and combinations of those fractions. To investigate the level of cocoa plants response to N fertilizer, seedlings of cocoa were planted in plastic pots treated with and without urea as source of N. Degree of response of cocoa plants to N fertilizer was measured based on growth parameters, such as plant height, leaf number, stem girth, fresh weight of stem, leaf and shoot; and dry weight of stem, leaf and shoot. Results of this study showed that biggest response of cocoa was shown by dry weight of leaf at the level of 29,22% (in the range of -17,43% – 95,98%, whereas the smallest response was shown by stem dry weight at the level of -1,04 (in the range of -26,16 – 47,54. From those of organic N fractions analyzed, only N ammonium did not show any significant correlations with all the growth parameters observed. Leaf dry weight was the most closely related parameter with nearly all organic N fractions followed by shoot dry weight and stem girth. The soil organic N fraction which had very significant relation with cocoa plant response was total hydrolysable N. Using the method of Cate-Nelson, it was revealed that cocoa gardens contain total hydrolysable N less than 1273 mg/kg were classified as responsive to N fertilizer.Key words: plant

  5. Are priors responsible for cosmology favoring additional neutrino species?

    Gonzalez-Morales, Alma X; Sherwin, Blake D; Verde, Licia

    2011-01-01

    It has been suggested that both recent cosmological data and the results of flavor oscillation experiments (MiniBooNE and LSND) lend support to the existence of low-mass sterile neutrinos. The cosmological data appear to weakly favor additional forms of radiation in the Universe, beyond photons and three standard neutrino families. We reconsider the cosmological evidence by making the resulting confidence intervals on the additional effective neutrino species as prior-independent as possible. We find that, once the prior-dependence is removed, the latest cosmological data show no evidence for deviations from the standard number of neutrino species.

  6. Effect of hydrogen addition on the deposition of titanium nitride thin films in nitrogen added argon magnetron plasma

    Saikia, P.; Bhuyan, H.; Diaz-Droguett, D. E.; Guzman, F.; Mändl, S.; Saikia, B. K.; Favre, M.; Maze, J. R.; Wyndham, E.

    2016-06-01

    The properties and performance of thin films deposited by plasma assisted processes are closely related to their manufacturing techniques and processes. The objective of the current study is to investigate the modification of plasma parameters occurring during hydrogen addition in N2  +  Ar magnetron plasma used for titanium nitride thin film deposition, and to correlate the measured properties of the deposited thin film with the bulk plasma parameters of the magnetron discharge. From the Langmuir probe measurements, it was observed that the addition of hydrogen led to a decrease of electron density from 8.6 to 6.2  ×  (1014 m‑3) and a corresponding increase of electron temperature from 6.30 to 6.74 eV. The optical emission spectroscopy study reveals that with addition of hydrogen, the density of argon ions decreases. The various positive ion species involving hydrogen are found to increase with increase of hydrogen partial pressure in the chamber. The thin films deposited were characterized using standard surface diagnostic tools such as x-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), x-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Although it was possible to deposit thin films of titanium nitride with hydrogen addition in nitrogen added argon magnetron plasma, the quality of the thin films deteriorates with higher hydrogen partial pressures.

  7. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    M. O. Rappe-George

    2013-03-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in Stråsan experimental forest (Norway spruce in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6, and tension lysimeters were installed in the underlying B horizon (n = 4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii indirectly via priming of old SOM, and/or (iii a suppression of extracellular oxidative enzymes.

  8. 48 CFR 819.202-71 - Additional contracting officer responsibilities.

    2010-10-01

    ... OF VETERANS AFFAIRS SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 819.202-71 Additional..., contracting officers must perform the following functions in support of the small business program: (a) Make maximum use of small business source lists. (b) Assure that small business firms are identified...

  9. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats

    Stevens, C.J. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Manning, P. [School of Agriculture Food and Rural Development, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE1 7RU (United Kingdom); Van den Berg, L.J.L. [Environment Department, University of York, Heslington, York, YO 5DD (United Kingdom); De Graaf, M.C.C. [University of Applied Sciences, HAS Den Bosch, PO BOX 90108, 5200 MA ' s-Hertogenbosch (Netherlands); Wieger Wamelink, G.W. [Alterra, Droevendaalsesteeg 3a, P.O. Box 47, 6700 AA Wageningen (Netherlands); Boxman, A.W.; Vergeer, P.; Lamers, L.P.M. [Department of Aquatic Ecology and Environmental Biology, University of Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Bleeker, A. [Energy research Centre of the Netherlands, Petten, NH, 1755 ZG (Netherlands); Arroniz-Crespo, M. [Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid (Spain); Limpens, J. [Nature Conservation and Plant Ecology Group, Wageningen University, Bornsesteeg 69, 6708 PD Wageningen (Netherlands); Bobbink, R. [Ware Research Centre, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen (Netherlands); Dorland, E. [Staatsbosbeheer, PO Box 1300, 3970 BH, Driebergen (Netherlands)

    2011-03-15

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NHx and NOy) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NHx:NOy ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH4+ concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NHx:NOy deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems.

  10. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica

    Pomraning, Kyle R.; Kim, Young-Mo; Nicora, Carrie D.; Chu, Rosalie K.; Bredeweg, Erin L.; Purvine, Samuel O.; Hu, Dehong; Metz, Thomas O.; Baker, Scott E.

    2016-02-25

    Background Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to deepen our understanding of how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. Results Using a variety of -omic techniques, we found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1,219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in β-oxidation are down-regulated, suggesting that storage lipid accumulation is due either to increased lipogenesis from excess citrate and regulated by phosphorylation of key enzymes, decreased capacity for β-oxidation, or both. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. Conclusions Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for β-oxidation.

  11. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation.

    Tesnière, Catherine; Brice, Claire; Blondin, Bruno

    2015-09-01

    Nitrogen is an important nutrient in alcoholic fermentation because its starvation affects both fermentation kinetics and the formation of yeast metabolites. In most alcoholic fermentations, yeasts have to ferment in nitrogen-starved conditions, which requires modifications of cell functions to maintain a high sugar flux and enable cell survival for long periods in stressful conditions. In this review, we present an overview of our current understanding of the responses of the wine yeast Saccharomyces cerevisiae to variations of nitrogen availability. Adaptation to nitrogen starvation involves changes in the activity of signaling pathways such as target of rapamycin (TOR) and nitrogen catabolite repression (NCR), which are important for the remodeling of gene expression and the establishment of stress responses. Upon starvation, protein degradation pathways involving autophagy and the proteasome play a major role in nitrogen recycling and the adjustment of cellular activity. Recent progress in the understanding of the role of these mechanisms should enable advances in fermentation management and the design of novel targets for the selection or improvement of yeast strains. PMID:26201494

  12. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. PMID:23603467

  13. Assessing responses of the Hiroshima Bay ecosystem to increasing or decreasing phosphorus and nitrogen inputs.

    Kittiwanich, Jutarat; Yamamoto, Tamiji; Kawaguchi, Osamu; Madinabeitia, Ione

    2016-01-30

    The Japanese Government is seeking an appropriate level of nutrient load from the land to maintain the highest possible estuarine fishery production and water transparency simultaneously. To provide a scientific basis for the governmental inquiry, we conducted sensitivity analyses using an ecosystem model of Hiroshima Bay in order to assess the ecosystem's responses to phosphorus and nitrogen inputs. Load levels of phosphorus (Case P), nitrogen (Case N) and both phosphorus and nitrogen (Case NP) that were different from the average loading recorded during 1991-2000 (±25%, ±50%, and ±75%) were applied. The results showed that phosphorus had a significantly greater impact on the primary production of the bay than nitrogen. Case P+25 increased the primary production but led to N-limitation. However, it was found that Case NP at the levels over +25% could bring the Hiroshima Bay ecosystem back to its eutrophic state of 30years ago. PMID:25936573

  14. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.

    Goh, Chooi-Hua; Nicotra, Adrienne B; Mathesius, Ulrike

    2016-04-01

    All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains. PMID:26523414

  15. Nitrogen Dioxide Exposure and Airway Responsiveness in Individuals with Asthma

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway r...

  16. Microbial nitrogen cycling response to forest-based bioenergy production.

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  17. Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply.

    Larbat, R; Adamowicz, S; Robin, C; Han, P; Desneux, N; Le Bot, J

    2016-05-01

    Plant-insect interactions are strongly modified by environmental factors. This study evaluates the influence of nitrogen fertilisation on the tomato (Solanum lycopersicum L.) cv. Santa clara and the leafminer (Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae). Greenhouse-grown tomato plants were fed hydroponically on a complete nutrient solution containing either a high nitrogen concentration (HN) sustaining maximum growth or a low nitrogen concentration (LN) limiting plant growth. Insect-free plants were compared with plants attacked by T. absoluta. Seven and 14 days after artificial oviposition leading to efficacious hatching and larvae development, we measured total carbon, nitrogen and soluble protein as well as defence compounds (phenolics, glycoalkaloids, polyphenol oxidase activity) in the HN versus LN plants. Only in the HN treatment did T. absoluta infestation slightly impair leaf growth and induce polyphenol oxidase (PPO) activity in the foliage. Neither the concentration of phenolic compounds and proteins nor the distribution of nitrogen within the plant was affected by T. absoluta infestation. In contrast, LN nutrition impaired T. absoluta-induced PPO activity. It decreased protein and total nitrogen concentration of plant organs and enhanced the accumulation of constitutive phenolics and tomatine. Moreover, LN nutrition impaired T. absoluta development by notably decreasing pupal weight and lengthening the development period from egg to adult. Adjusting the level of nitrogen nutrition may thus be a means of altering the life cycle of T. absoluta. This study provides a comprehensive dataset concerning interrelated responses of tomato plants and T. absoluta to nitrogen nutrition. PMID:26661406

  18. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4–N (2100%), the proportion of soil NO3–N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. -- Highlights: •Spruces were fertilized with anaerobically digested and composted sewage sludge (CSS). •CSS increased soil N, proportion of NO3–N, and N concentration of spruce needles. •CSS reduced the abundances of enchytraeids, tardigrades and collembolans. •CSS increased the proportion and abundance of bacterial-feeding nematodes. •Sucrose did not reduce N pools or counteract negative CSS effects on soil animals. -- Composting and carbohydrate addition do not mitigate the harmful effects of anaerobically digested sewage sludge in boreal forest soil

  19. Nitrogen-Efficient and Nitrogen-Inefficient Indian Mustard Showed Differential Expression Pattern of Proteins in Response to Elevated CO2 and Low Nitrogen.

    Yousuf, Peerzada Y; Ganie, Arshid H; Khan, Ishrat; Qureshi, Mohammad I; Ibrahim, Mohamed M; Sarwat, Maryam; Iqbal, Muhammad; Ahmad, Altaf

    2016-01-01

    Carbon (C) and nitrogen (N) are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2], and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE) revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard. PMID:27524987

  20. Corn growth response to elevated CO2 varies with the amount of nitrogen applied

    Corn, with C4 photosynthetic carbon metabolism, often has no photosynthetic, growth, or yield response to elevated carbon dioxide concentrations. In C3 species, the yield stimulation at elevated carbon dioxide concentrations often decreases with nitrogen limitation. I tested whether such a nitroge...

  1. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, Anthony; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon

  2. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; McGuire, A. David; Post, Wilfred; Kicklighter, David

    2009-12-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr-1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr-1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr-1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr-1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources

  3. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Jain, Atul [University of Illinois, Urbana-Champaign; Yang, Xiaojuan [University of Illinois, Urbana-Champaign; Kheshgi, Haroon [Exxon Mobil Research and Engineering; Mcguire, David [University of Alaska; Post, Wilfred M [ORNL

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and

  4. California black oak response to nitrogen amendment at a high O{sub 3}, nitrogen-saturated site

    Grulke, N.E. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)]. E-mail: ngrulke@fs.fed.us; Dobrowolski, W. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Mingus, P. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Fenn, M.E. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2005-10-15

    In a nitrogen (N) saturated forest downwind from Los Angeles, California, the cumulative response to long-term background-N and N-amendment on black oak (Quercus kelloggii) was described in a below-average and average precipitation year. Monthly measurements of leaf and branch growth, gas exchange, and canopy health attributes were conducted. The effects of both pollutant exposure and drought stress were complex due to whole tree and leaf level responses, and shade versus full sun leaf responses. N-amended trees had lower late summer carbon (C) gain and greater foliar chlorosis in the drought year. Leaf water use efficiency was lower in N-amended trees in midsummer of the average precipitation year, and there was evidence of poor stomatal control in full sun. In shade, N-amendment enhanced stomatal control. Small differences in instantaneous C uptake in full sun, lower foliar respiration, and greater C gain in low light contributed to the greater aboveground growth observed. - Despite ecosystem-level N saturation, lower foliar respiration and significant photosynthetic gains under low light conditions resulted in greater wood production in black oak.

  5. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  6. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration

  7. Physiological responses of Vigna radiata L. to nitrogen and argon+ laser irradiation - Short Communication

    The effect of nitrogen laser (337.1 nm) and argon+ laser (514.5 nm) irradiation on physiological responses in the green gram seedlings was studied. The shoot and root lengths and fresh and dry weights of the seedlings increased with 30 min exposure to nitrogen laser and 5 min exposure to Argon+ laser. Protein content was maximum with 20 min exposure to N laser and 5 min exposure to Ar+ laser, while DNA and RNA contents were maximum at 5 min exposure with both the laser treatments

  8. Production and nutrition of irrigated Tanzania guinea grass in response to nitrogen fertilization

    Maria Celuta Machado Viana

    2014-05-01

    Full Text Available The objective of this study was to evaluate the effects of nitrogen (N fertilization in the four seasons of the year on forage production, nitrate (NO3 in the sap, total N in the forage and relative chlorophyll index (SPAD reading in the leaves of irrigated Panicum maximum cv. Tanzania grass, establishing their critical ranges. In addition, we evaluated the ability to predict forage production based on NO3 in the sap, total N in the forage and relative chlorophyll index. The soil in the experimental area was classified as an Oxisol (Red-Yellow Latosol with a clayey texture. Annual rates of N (0, 200, 400 and 800 kg ha-1 in the form of urea were the treatments tested. Irrigation was performed through a conventional spray system. The NO3 content in the sap and the relative chlorophyll index were measured in leaves using a portable meter with NO3 selective electrode and the SPAD-502 portable chlorophyll meter device, respectively. Tanzania guinea grass was very responsive to N fertilization, except in the winter. The critical ranges of the SPAD reading proved to be more adequate for monitoring the nutritional state of N of Tanzania guinea grass in the different seasons of the year than the NO3content in the sap and the total N content in the dry matter. Use of the chlorophyll meter is more advantageous than the use of the portable meter with an nitrate selective electrode for predicting the nutritional status of Tanzania guinea grass.

  9. "RESPONSE OF DIFFERENT WHEAT (Triticum aestivum L. VARIETIES TO GRADED LEVELS OF NITROGEN" - A Critical review

    M Satyanarayana

    2015-07-01

    Full Text Available Wheat is the most important and widely cultivated food crop in the world. In India, Wheat is the second important cereal crop, first being Rice. To improve the production of wheat, as in any other crop, introduction of varieties with a high yield potential is essential. Variety contributes more than 50 percent of the increased production. The next important component for increased production is the nutrient availability. Native fertility level of the tropical soils with special reference to nitrogen is invariably insufficient for touching the peak production mark of a variety and hence, the need for supplementing this nutrient is obvious with most varieties. Selection of suitable genotype is of prime importance as the genetic potential of varieties limits response to nitrogen. Moreover, varieties differ both in yield and nutrient uptake. Hence, it is necessary to find out the correct dose of nitrogen and suitable varieties for maximizing wheat yields in Southern Telangana agro-climatic zone.

  10. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  11. Effect of nitrogen fertilizer rats combined with organic additives on sorghum growth using 15N isotope technique

    A pot experiment was conducted under green house conditions to evaluate the benefits from N fertilizer and organic manure to sorghum plants grown in calcareous soil. Labelled ammonium sulphate with 1% 15N atom excess was applied at rates of 0, 100 and 150 kg fed-1. Organic compost was applied at rates of 0, 50 and 100 g pot-1 on basis of its nitrogen content. Zinc, as zinc sulphate, was added at rates of 0, 5 and 10 mg kg-1 soil. The obtained data indicated that the dry matter yield of both shoot and roots of sorghum was positively affected by addition of N fertilizer, organic compost and Zn levels. Similarly, the N uptake was enhanced by application of 150 kg N fed-1, 100 g pot-1 of compost and 5 mg Zn kg-1 soil. 15N data revealed that the portion of N derived from fertilizer (Ndff) by shoots and roots was remarkable and followed the same trend of N uptake. Ndff utilized by shoots was higher than those uptakes by roots

  12. Influence of Residue and Nitrogen Fertilizer Additions on Carbon Mineralization in Soils with Different Texture and Cropping Histories

    Xianni Chen; Xudong Wang; Matt Liebman; Michel Cavigelli; Michelle Wander

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double...

  13. Suppression of hydrogenated carbon film deposition and hydrogen isotope retention by nitrogen addition into cold remote H/D and CH4 mixture plasmas

    Control of tritium retention and its removal from the first wall of future fusion devices are one of the most crucial issues for safety and effective use for fuel. Nitrogen addition into remote edge plasmas has been considered and tested as an effective method for suppression of carbon film deposition and reduction of hydrogen isotope absorption in the deposited films. In this paper we have investigated the scavenger effects of nitrogen injected into low temperature D2/CH4 plasmas on hydrogenated carbon film growth using a small helical device. The result of the deposition shows that the key reactive particles with CN and ND(H) bonds to suppression of hydrogenated carbon film growth and hydrogen isotope absorption are much slowly generated compared with hydrocarbon particles such as CD(H)x and C2D(H)x. This may be due to the slow atomic nitrogen diffusion into hydrogenated carbon layer and the chemical equilibrium between nitrogen absorption

  14. Suppression of hydrogenated carbon film deposition and hydrogen isotope retention by nitrogen addition into cold remote H/D and CH4 mixture plasmas

    Iida, K.; Notani, M.; Uesugi, Y.; Tanaka, Y.; Ishijima, T.

    2015-08-01

    Control of tritium retention and its removal from the first wall of future fusion devices are one of the most crucial issues for safety and effective use for fuel. Nitrogen addition into remote edge plasmas has been considered and tested as an effective method for suppression of carbon film deposition and reduction of hydrogen isotope absorption in the deposited films. In this paper we have investigated the scavenger effects of nitrogen injected into low temperature D2/CH4 plasmas on hydrogenated carbon film growth using a small helical device. The result of the deposition shows that the key reactive particles with CN and ND(H) bonds to suppression of hydrogenated carbon film growth and hydrogen isotope absorption are much slowly generated compared with hydrocarbon particles such as CD(H)x and C2D(H)x. This may be due to the slow atomic nitrogen diffusion into hydrogenated carbon layer and the chemical equilibrium between nitrogen absorption.

  15. Nitrogen Under- and Over-supply Induces Distinct Protein Responses in Maize Xylem Sap

    Chengsong Liao; Renyi Liu; Fusuo Zhang; Chunjian Li; Xuexian Li

    2012-01-01

    Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants.However,it remains largely unknown how nitrogenous compounds,especially proteins in xylem sap,respond to N under- or over-supply.We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap.Proteomic analysis showed that 23 proteins in the xylem sap of maize plants,including 12 newly identified ones,differentially accumulated in response to various N supplies.Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses,whereas the other five proteins appeared to respond largely to N under- or over-supply,suggesting distinct protein responses in maize xylem upon N under- and over-supply.Furthermore,one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.

  16. Growth and yield of corn hybrids in response to association with Azospirillum brasilense and nitrogen fertilization

    Deniele Marini

    2015-02-01

    Full Text Available There is a growing interest in optimizing the positive effects of the association between Azospirillum bacteria and corn crop in order to reduce the use of nitrogen fertilizers. This study aimed to evaluate the inoculation efficiency of an A. brasilense-based commercial product in association with different rates of nitrogen fertilization in two corn genotypes. The experiment was arranged in a 2 x 2 x 5 factorial randomized block design, with four replications. The treatments consisted of two corn hybrids (30F53 and CD386; with and without inoculation with a commercial product based on A. brasilense and five nitrogen rates (0, 40, 80, 120 and 160 kg ha-1. The variables plant height, basal stem diameter, leaf area, shoot dry matter, leaf nitrogen content, length and diameter of the cob, weight of 100 grains and grain yield were evaluated. Inoculation with A. brasilense provided increases of 11 and 12% in leaf area and shoot dry matter, respectively. There were differences in the response of the corn hybrids for most variables and the increase in nitrogen supply provided increments in the growth and yield of corn.

  17. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect. PMID:26838999

  18. Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere.

    Cheng, Yanhong; Jiang, Ying; Wu, Yue; Valentine, Tracy A; Li, Huixin

    2016-01-01

    It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is "exclusion", where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter), and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm) and a control treatment (5μm). The second method is "inoculation", whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas) and Nematodes (Cephalobus and C. elegans). In order to detect the changes in the rice's perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA)), rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion), low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation), a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status. PMID:26841062

  19. Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere.

    Yanhong Cheng

    Full Text Available It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is "exclusion", where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter, and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm and a control treatment (5μm. The second method is "inoculation", whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas and Nematodes (Cephalobus and C. elegans. In order to detect the changes in the rice's perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA, rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion, low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation, a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status.

  20. Total dose radiation response of modified commercial silicon-on-insulator materials with nitrogen implanted buried oxide

    Zheng Zhong-Shan; Liu Zhong-Li; Yu Fang; Li Ning

    2012-01-01

    Nitrogen ions of various doses are implanted into the buried oxide (BOX) of commercial silicon-on-insulator (SOI)materials,and subsequent annealings are carried out at various temperatures.The total dose radiation responses of the nitrogen-implanted SOI wafers are characterized by the high frequency capacitance-voltage (C-V) technique after irradiation using a Co-60 source.It is found that there exist relatively complex relationships between the radiation hardness of the nitrogen implanted BOX and the nitrogen implantation dose at different irradiation doses.Fhe experimental results also suggest that a lower dose nitrogen implantation and a higher post-implantation annealing temperature are suitable for improving the radiation hardness of SOI wafer.Based on the measured C-V data,secondary ion mass spectrometry (SIMS),and Fourier transform infrared (FTIR) spectroscopy,the total dose responses of the nitrogen-implanted SOI wafers are discussed.

  1. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    Deirdre C. Rooney

    2010-01-01

    Full Text Available Agricultural improvement of seminatural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming on ammonia-oxidising bacterial (AOB communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaris and L. perenne were planted in microcosms, and lime, nitrogen (NH4NO3, or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP of the amoA gene. AOB community structure was largely altered by NH4NO3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure.

  2. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH4NO3), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH4NO3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  3. Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex.

    Reyes-Ramirez, F; Little, R; Dixon, R

    2001-05-01

    The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like signal transduction protein, has been implicated in nitrogen control. However, the precise function of A. vinelandii glnK in this response is difficult to establish because of the essential nature of this gene. We have shown previously that A. vinelandii NifL is able to respond to fixed nitrogen to control NifA activity when expressed in Escherichia coli. In this study, we investigated the role of the E. coli PII-like signal transduction proteins in nitrogen control of the A. vinelandii NifL-NifA regulatory system in vivo. In contrast to recent findings with Klebsiella pneumoniae NifL, our results indicate that neither the E. coli PII nor GlnK protein is required to relieve inhibition by A. vinelandii NifL under nitrogen-limiting conditions. Moreover, disruption of both the E. coli glnB and ntrC genes resulted in a complete loss of nitrogen regulation of NifA activity by NifL. We observe that glnB ntrC and glnB glnK ntrC mutant strains accumulate high levels of intracellular 2-oxoglutarate under conditions of nitrogen excess. These findings are in accord with our recent in vitro observations (R. Little, F. Reyes-Ramirez, Y. Zhang, W. Van Heeswijk, and R. Dixon, EMBO J. 19:6041-6050, 2000) and suggest a model in which nitrogen control of the A. vinelandii NifL-NifA system is achieved through the response to the level of 2-oxoglutarate and an interaction with PII-like proteins under conditions of nitrogen excess. PMID:11325935

  4. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  5. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought. PMID:27017604

  6. An interpretation of focal point responses as non-additive beliefs

    Aylit Tina Romm

    2014-01-01

    This paper provides a novel interpretation of focal point responses (0, 50, 100 percent) in terms of ambiguous beliefs dynamics that arise in new developments of decision theory such as Choquet expected utility theory. In particular, focal point responses that have been updated from nonfocal responses can be interpreted as non-additive beliefs that account for psychological bias. A focal point response of 100 that has been updated from a nonfocal response can be represented ...

  7. Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen.

    Adamczyk, B; Godlewski, M; Zimny, J; Zimny, A

    2008-11-01

    This paper reports on the role of proteases secreted by roots in nitrogen capture by plants. The study was conducted on aseptically cultivated wheat seedlings (Triticum aestivum cv. Tacher) obtained from embryos isolated from grains. Seedlings were cultivated for 21 days on deionised water, Murashige Skoog medium (MS), MS without inorganic nitrogen (IN), and MS without IN, in which IN was replaced by casein (0.01%, 0.1% or 1%). Comparison of seedlings grown on these media showed that casein entirely compensated for the lack of inorganic nitrogen in the medium. Shoots and roots of seedlings cultivated on MS medium with this protein had higher fresh weight than those cultivated on MS medium without casein. The increase in fresh weight of seedlings was correlated with casein concentration and proteolytic activity in the medium. In conclusion, wheat that uses proteases secreted by the roots can directly utilise proteins in the medium as a source of nitrogen without prior digestion by microbial proteases and without protein mineralisation. These results suggest the important role of organic nitrogen fertilisers in increasing wheat yield. PMID:18950429

  8. Rapid Nitrogen Cycling Following Wet-Up Results from Heterotroph, then Nitrifier Response

    Placella, S.; Herman, D.; Firestone, M.

    2009-12-01

    The first rainfall following the hot, dry summer in arid and semi-arid ecosystems, known as wet-up, results in large pulses of carbon dioxide and nitrous oxide, two radiatively important gases. Nitrous oxide in general, is produced by nitrifiers and denitrifiers. Using laboratory simulations of wet-up, we monitored soil pools of ammonium and nitrate, gross rates of nitrogen mineralization and nitrification, effluxes of carbon dioxide and nitrous oxide, and gene expression of archaeal and bacterial amoA, a functional gene for nitrification and nirK, a functional gene for denitrification. Results from a California annual grassland soil show significant increases in the ammonium pool within one hour of water addition followed by a significant increase in the nitrate pool within three hours of water addition. Gross nitrogen mineralization and gross nitrification were very high with nitrogen mineralization being highest within three hours of wet-up. Ammonia-oxidizers were most active at nine hours after water addition. Nitrous oxide emissions followed the same pattern as nitrifiers, suggesting nitrification may play an important role in nitrous oxide emissions during wet-up.

  9. Influence of additional alloying with nitrogen on structure and properties of high chromium steel Kh17 after hot rolling

    A study was made into the structure and mechanical properties of steel Kh17 with 0.16% N after hot rolling under various conditions. It is shown that nitrogen alloying promotes steel transition into a two-phase state (α+γ) in heating above 850 deg C and affects mechanical properties of the steel in a hot rolled state. Impact strength is at its maximum in nitrogen containing steel kh17 if the rolling is in the temperature range of α-phase solid solution. Depending on the temperatures of hot rolling beginning and completion the distinctions in steel microstructure are investigated

  10. Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply.

    Alsouleman, Khulud; Linke, Bernd; Klang, Johanna; Klocke, Michael; Krakat, Niclas; Theuerl, Susanne

    2016-05-01

    An anaerobic digestion experiment was investigated to evaluate the impact of increasing amounts of ammonium nitrogen due to poultry manure addition on the reactor performance, especially on the microbiome response. The microbial community structure was assessed by using a 16S rRNA gene approach, which was further correlated with the prevalent environmental conditions by using statistical analyses. The addition of 50% poultry manure led to a process disturbance indicated by a high VFA content (almost 10gHAc-EqL(-1)) in combination with elevated concentrations of ammonium nitrogen (5.9gNH4(+)-NkgFM(-1)) and free ammonia (0.5gNH3kgFM(-1)). Simultaneously the microbiome, changed from a Bacteroidetes-dominated to a Clostridiales-dominated community accompanied by a shift from the acetoclastic to the hydrogenotrophic pathway. The "new" microbial community was functional redundant as the overall process rates were similar to the former one. A further increase of poultry manure resulted in a complete process failure. PMID:26965668

  11. Response of Cotton to Irrigation Methods and Nitrogen Fertilization: Yield Components, Water-Use Efficiency, Nitrogen Uptake, and Recovery

    Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)

  12. Effect of nitrogen addition and drought on above-ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2011-01-01

    Roč. 66, č. 2 (2011), s. 275-281. ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA526/06/0556 Institutional research plan: CEZ:AV0Z60050516 Keywords : nitrogen * drought * above-ground biomass Subject RIV: EF - Botanics Impact factor: 0.557, year: 2011

  13. Response of CH4 emission to moss removal and N addition in boreal peatland of Northeast China

    H. N. Meng

    2014-02-01

    Full Text Available Boreal peatlands are an important natural source of atmospheric methane (CH4. Recently, boreal peatlands have been experiencing increased nitrogen (N input and decreased moss production. However, little is known about the interactive effect of moss and N availability on CH4 emission in boreal peatlands. In this study, the effects of moss removal and N addition (6 g N m−2 yr−1 on CH4 emission were examined during the growing seasons of 2011 to 2013 in a boreal peatland in the Great Hinggan Mountain of Northeast China. Notably, the response of CH4 emission to moss removal and N addition varied with experimental duration. Moss removal and N addition did not affect CH4 emission in 2011 and 2012, but respectively declined CH4 emission by 50% and 66% in 2013. However, moss removal and N addition did not produce an interactive effect on CH4 emission. Specifically, moss removal plus N addition had no effect on CH4 emission in 2011 and 2012, but decreased CH4 emission by 68% in 2013. These results suggest that the effects of moss removal and N enrichment on CH4 emission are time-dependent in boreal peatlands, and also imply that increased N loading and decreased moss growth would independently inhibit CH4 emission in the boreal peatlands of Northeast China.

  14. Response of Sunflower to Nitrogen Application and Water in Northern Brazil Alfisol

    João Tadeu de Lima Oliveira

    2012-01-01

    Full Text Available Decline in crop yield has been a problem in Northern Brazil region due to inherent low fertility status of the soils and water deficit of different crops. In order to study the effects of nitrogen and available soil water levels on growth and yield components of sunflower, an experiment was carried out from March to June 2010 in a semi-controlled greenhouse condition of the Federal University of Campina Grande, Paraiba, Brazil using Alfisol soil. The treatments were arranged as a completely randomized design, in a 4×4 factorial experiment (four nitrogen levels and four available soil water levels, in triplicates, total of 48 experimental units. The nitrogen levels in kg/ha were 0; 60; 80 and 100 which was added as urea; the available soil water levels were 55; 70; 85 and 100%. The results of this research indicate that nitrogen had a significant effect only on leaf area at 40 DAS and % achenes viable. The effect of available soil water on sunflower cv. Embrapa 122/V-2000 biometry and the yield showed that there were significant differences, on average, in all growth traits (stem height and diameter at 40 and 60 DAS, in leaf number at 40 DAS, in leaf area at 40 and 60 DAS and in all production traits. The biometry and yield response to available soil water of different crops is of major importance in production planning. In this study, the maximum biometry and yield response factor of sunflower was determined at 100 % of available soil water.

  15. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Head Steven R

    2011-06-01

    Full Text Available Abstract Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc sp. strain PCC 7120 (hereafter Anabaena is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs, and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide

  16. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

    Chandran, Anil Kumar Nalini; Priatama, Ryza A; Kumar, Vikranth; Xuan, Yuanhu; Je, Byoung Il; Kim, Chul Min; Jung, Ki-Hong; Han, Chang-Deok

    2016-08-01

    Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant. PMID:27340859

  17. RESPONSES IN NITROGEN MASS AND NITROGEN METABOLISM OF WILD SUGARCANE (SACCHARUM SPONTANEUM L.) CLONES TO ENHANCED UV-B RADIATION UNDER FIELD CONDITIONS

    Yanqun Zu; Yuan Li; Haiyun Wang; Yongmei He

    2013-01-01

    Field experiments were conducted to evaluate effects of enhanced UV-B radiation (280-315 nm) on intraspecific responses in nitrogen mass and nitrogen metabolism of six wild sugarcane (Saccharum spontaneum L.) clones. The clones were collected from original sites with different altitudes (4-1780 m above sea-level) and latitudes (18-38°N). The supplemental UV-B radiation was 5.00 kJâ¢m-2, simulating a depletion of 20% stratospheric ozone. Out of the six tested wild sugarcane clones, available ...

  18. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source. PMID:26988362

  19. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  20. Differences in the growth response of three bryophyte species to nitrogen

    The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m-2 during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators. - Boreal bryophytes display differences in their sensitivity to nitrogen

  1. Differences in the growth response of three bryophyte species to nitrogen

    Salemaa, Maija [Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa (Finland)], E-mail: maija.salemaa@metla.fi; Maekipaeae, Raisa [Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa (Finland)], E-mail: raisa.makipaa@metla.fi; Oksanen, Jari [University of Oulu, Department of Biology, P.O. Box 3000, FI-90014 Oulu (Finland)], E-mail: jarioksa@sun3.oulu.fi

    2008-03-15

    The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m{sup -2} during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators. - Boreal bryophytes display differences in their sensitivity to nitrogen.

  2. The response of streambed nitrogen cycling to spatial and temporal hyporheic vertical flux patterns and associated residence times

    Briggs, M. A.; Lautz, L. K.; Hare, D. K.

    2011-12-01

    Small beaver dams enhance the development of patchy micro-environments along the stream corridor by trapping sediment and creating complex streambed morphologies. This generates intricate hyporheic flux patterns that govern the exchange of oxygen and redox sensitive solutes between the water column and the streambed, and exert control on the biogeochemical cycling of nitrogen. Specifically, flowpaths from the stream into the subsurface with low residence times create oxic conditions that favor nitrification, while flowpaths with longer residence times become anoxic and favor denitrification. To investigate these processes we collected vertical profiles of pore water upstream of two beaver dams in Wyoming, USA at nine locations with varied morphology. We sampled pore water to the 0.55 m depth every week for five weeks as stream discharge dropped by 45% and subsequently measured concentrations of dissolved oxygen and several redox sensitive solutes, including nitrate. Additionally, estimates of hyporheic flux along these nine vertical profiles through time were made using high-resolution heat data combined with 1-D heat transport modeling. The data show that areas of rapid, deep hyporheic flux at the glides immediately upstream of the dams were oxygen rich, and were generally sites of moderate net nitrification to at least the 0.35 m depth. These conditions were relatively steady over the study period. Hyporheic zones at sediment bars closest to the dams were hotspots of nitrate production to a depth of 0.35 m, with nitrate concentrations increasing by as much as 400% as vertical flux fell sharply and residence times increased over the study period. In contrast, shallow bars farther upstream from the dams showed increasing fluxes and decreased residence times, which caused a shift from net denitrification to net nitrification over the period at shallow depths. These results support previous work indicating threshold behavior of nitrogen cycling in response to

  3. Production and nutrition of irrigated Tanzania guinea grass in response to nitrogen fertilization

    Maria Celuta Machado Viana; Inêz Pereira da Silva; Francisco Morel Freire; Mozart Martins Ferreira; Édio Luiz da Costa; Maria Helena Tabim Mascarenhas; Matheus Ferreira França Teixeira

    2014-01-01

    The objective of this study was to evaluate the effects of nitrogen (N) fertilization in the four seasons of the year on forage production, nitrate (NO3) in the sap, total N in the forage and relative chlorophyll index (SPAD reading) in the leaves of irrigated Panicum maximum cv. Tanzania grass, establishing their critical ranges. In addition, we evaluated the ability to predict forage production based on NO3 in the sap, total N in the forage and relative chlorophyll index. The soil in the ex...

  4. Beyond the Call of Duty: A Qualitative Study of Teachers' Additional Responsibilities Related to Sexuality Education

    Eisenberg, Marla E.; Madsen, Nikki; Oliphant, Jennifer A.; Resnick, Michael

    2011-01-01

    Seven focus groups were conducted with sexuality educators in Minnesota to explore ways that teaching sexuality education differs from teaching other health education content and to determine if additional supports or resources are needed for sexuality educators. Teachers described many specific additional responsibilities or concerns related to…

  5. Switchgrass, Bermudagrass, Flaccidgrass, and Lovegrass biomass yield response to nitrogen for single and double harvest

    Aravindhakshan, Sijesh C.; Epplin, Francis M. [Department of Agricultural Economics, Oklahoma State University, Stillwater, OK 74078-6026 (United States); Taliaferro, Charles M. [Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2011-01-15

    Switchgrass (Panicum virgatum) has been identified as a model dedicated energy crop species. After a perennial grass is established, the major variable costs are for nitrogen (N) fertilizer and harvest. Prior to establishing switchgrass on millions of ha in a particular agro-climatic region, it would be useful to determine switchgrass yield response to N and its response to harvest frequency relative to alternative grass species. The objective of this research is to determine biomass yield response to N for four perennial grass species and to determine the species, N level, and harvest frequency that will maximize expected net returns, given the climate and soils of the U.S.A. Southern Plains. Yield data were produced in an experiment that includes four species (switchgrass, bermudagrass (Cynodon dactylon), weeping lovegrass (Eragrostis curvula), and carostan flaccidgrass (Pennisetum flaccidum)), four N levels, and two harvest levels. Linear response plateau (LRP), linear response stochastic plateau (LRSP), and quadratic response (QR) functions are estimated. For all combinations of biomass and N prices considered, the optimal species is switchgrass. For most price situations, it is economically optimal to fertilize established stands of switchgrass with 69 kg N ha{sup -1} yr{sup -1} and to harvest once yr{sup -1} after senescence. (author)

  6. Switchgrass, Bermudagrass, Flaccidgrass, and Lovegrass biomass yield response to nitrogen for single and double harvest

    Switchgrass (Panicum virgatum) has been identified as a model dedicated energy crop species. After a perennial grass is established, the major variable costs are for nitrogen (N) fertilizer and harvest. Prior to establishing switchgrass on millions of ha in a particular agro-climatic region, it would be useful to determine switchgrass yield response to N and its response to harvest frequency relative to alternative grass species. The objective of this research is to determine biomass yield response to N for four perennial grass species and to determine the species, N level, and harvest frequency that will maximize expected net returns, given the climate and soils of the U.S.A. Southern Plains. Yield data were produced in an experiment that includes four species (switchgrass, bermudagrass (Cynodon dactylon), weeping lovegrass (Eragrostis curvula), and carostan flaccidgrass (Pennisetum flaccidum)), four N levels, and two harvest levels. Linear response plateau (LRP), linear response stochastic plateau (LRSP), and quadratic response (QR) functions are estimated. For all combinations of biomass and N prices considered, the optimal species is switchgrass. For most price situations, it is economically optimal to fertilize established stands of switchgrass with 69 kg N ha-1 yr-1 and to harvest once yr-1 after senescence. (author)

  7. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.

    Zhang, Sheng; Jiang, Hao; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2014-04-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies. PMID:24739232

  8. The response of winter wheat to water stress and nitrogen fertilizer use efficiency

    The response of winter wheat to water stress imposed at different crop growth stages by deficit irrigation and fertilizer use under several schemes of irrigation were evaluated on fine sandy soil and sand loam soil. The results showed that according to grain yield response factor K, the order of sensitive growth stages of winter wheat to water stress in decreasing sequence were booting to flowering ( K= 0.90), winter afterward to booting ( K= 0.69), flowering to milking ( K= 0.44) and milking to ripening ( K= 0.25). Field water efficiency would get 16.7 kg/mm.ha when no water stress in growth period, and when water stress has occurred in some growth stages, the value of it decreased by 5 - 20 percent. It was also found that high fertilizer application rate without split application would not significantly influence the yield on fine sandy soil. But schedule of irrigation affected the translocation of nitrogen in the plant. When water stress occurred in later growth stage, the ratio of NUE in gain to straw decreased, and fertilizer was available for crop only about one month after fertilizer application, excessive fertilizer rate would result in decrease of NUE by leaching of nitrogen in sandy soil. Total recovery of fertilizer at harvest was half amount of application. 6 refs; 10 tabs; ( author)

  9. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    The objectives of the present study were to test (i) whether the effect of season-long CO2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r2 > 0.94). The slopes of the curves depended on the CO2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO2 from 2.7 g MJ−1 to 3.9 g MJ−1. CO2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO2 enrichment. However, at later growth stages, when the plants depended solely on N2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease due to the

  10. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences

    Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m3/ha is obtained during a 10 yr period following an application of 150 kg N/ha. Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N/ha has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t/ha) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not promote

  11. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sha, G., E-mail: gang.sha@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Cao, L.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, W.Q. [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-07-15

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy.

  12. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy

  13. Methods to classify maize cultivars in use efficiency and response to nitrogen

    Cleiton Lacerda Godoy

    2013-10-01

    Full Text Available n plant breeding programs that aim to obtain cultivars with nitrogen (N use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1 in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.

  14. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-03-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective. PMID:25676153

  15. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.

    Jaiswal, Vinay; Kalyani; Umrao, Sima; Rastogi, Rashmi B; Kumar, Rajesh; Srivastava, Anchal

    2016-05-11

    The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting

  16. Role of nitrogen addition in stabilizing the γ phase of Biomedical Co–29Cr–6Mo alloy

    Highlights: ► 3-D atomic probe observation + thermodynamic calculations. ► N addition does not change the Gibbs energy of alloy system greatly. ► Generate the energy barrier by formation of N–Cr cluster. ► N addition stabilizes the γ phase of Co–Cr–Mo alloy. ► Phase transition slows down but the transition point does not change with N addition. - Abstract: Three-dimensional atom probe observations and thermodynamic calculations revealed that the mechanism of γ-phase stabilization by N addition in the Co–29Cr–6Mo alloy is different from that in stainless steel: N addition does not lower the free energy of the γ phase in Co–29Cr–6Mo but increases the energy barrier and thus lowers the kinetic rate of the γ → ε transition through the formation of Cr–N short range order.

  17. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  18. Effect of extracellular calcium on the additive effect of theophylline on the cardiac response to catecholamine

    Shamkuwar Prashant

    2008-01-01

    Full Text Available At different extracellular calcium concentrations, the positive inotropic effect of isoproterenol and isoproterenol in combination with theophylline, a phosphodiesterase inhibitor have been evaluated in the isolated frog heart and the isolated guinea pig left atria to investigate whether extracellular calcium produces any effect on the additive effect of the theophylline on the cardiac response to catecholamine. Cumulative dose response study of isoproterenol and isoproterenol in presence of theophylline at different extracellular calcium concentration was performed. The study revealed an increase in additive effect of theophylline on the cardiac response to catecholamine with increase in extracellular calcium concentration, but increase in extracellular calcium concentration decreased the myocardial responsiveness to additive effect of theophylline and isoproterenol combination. The mechanism of positive inotropic effect of isoproterenol and in combination with theophylline involves increase in intracellular cAMP by different pathways and extracellular calcium produces positive inotropic effect by initiating the interaction between the contractile proteins actin and myosin. The study revealed that an increase in the concentration of extracellular calcium increased the additive effect of theophylline and isoproterenol combination, but a decrease in the myocardial responsiveness was observed.

  19. Influences of Nitrogen Addition and Annealing on the Microstructure and Corrosion Resistance of Fe-Cr-Mn-W Stainless Steels(I)

    Influences of Nitrogen addition and annealing heat treatment on the properties of Fe-Cr-Mn-W Stainless Steels for the low activation material of a fusion reactor component were studied. OM, TEM, VSM, and XRD analyses wee used to study the microstructural changes of the alloys. Mechanical properties were investigated by means of a tension test and a Vickers hardness test, and corrosion resistance was evaluated using an anodic polarization test, 6% FeCl3 immersion test, 65% boiling nitric acid immersion test, and hydrogen embrittlement test. Increasing nitrogen content in Fe-Cr-Mn-W alloys reduced ferrite content and improved partitioning coefficient of chromium between austenite and ferrite. The microstructures of the alloys observed by OM were in accordance with the thermodynamically calculated phase diagram, but ε martensite was formed by water quenching when the stable phase at annealing temperature was austenite. With increasing annealing temperature, corrosion resistance was improved, and anodic polarization resistance of high nitrogen bearing Alloy 6 was better than that of STS 304. The results of the corrosion tests showed that corrosion resistance of Fe-Cr-Mn-W alloys was affected by not only alloying elements but also the presence of the 2' nd phase

  20. Solvent extraction of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction - Improvement of separation performance by addition of aluminum chloride to solvent

    Egashira, R.; Salim, C. [Tokyo Institute of Technology, Tokyo (Japan). Dept. of International Development Engineering, Graduate School of Science and Engineering

    2001-05-01

    The liquid-liquid equilibrium properties between the coal tar absorption oil fraction feed and the solvent (aqueous solution of methanol and aluminum chloride) were experimentally measured for nitrogen heterocyclic compounds (2,3-benzopyridine (quinoline), 3,4-benzopyridine (isoquinoline), and 2,3-benzopyrrole (indole)), homocyclic compounds (aromatics), and oxygen heterocyclic compounds. Nitrogen compounds were, extracted preferentially to the other compounds, and no oxygen compound was detected in the extract under all conditions. The distribution ratios of nitrogen compounds and aromatics increased with a larger mass fraction of AlCl{sub 3} in the extract. This increase in the distribution ratio was especially large for quinoline and isoquinoline, and the maximum ratios of quinoline and isoquinoline were 26 and 85 times larger, respectively, than in the cases without AlCl{sub 3} in the solvent. The separation selectivities for quinoline and isoquinoline relative to aromatics increased considerably with the mass fraction of AlCl{sub 3} in the extract, and the maximum ratios were 5 and 17 times higher than in the cases without AlCl{sub 3}. The separation selectivity for indole was apparently not affected by the addition of AlCl{sub 3}.

  1. Nitrogen and oxygen functionalized hollow carbon materials: The capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte

    Nie, Yong Fu; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-07-01

    In present work, we have developed a simple but effective template carbonization method for producing hollow carbon materials with high content of nitrogen and oxygen from thiocarbanilide. Among all samples, the NPC-1 exhibits high specific surface area (736 m2 g-1) and large pore volume (5.93 cm3 g-1) with high content of heteroatoms (∼11.25 at% nitrogen and ∼5.74 at% oxygen), which is conducive to the improvement of electrochemical performance. Specifically, the high specific capacitance and excellent cycling stability over 5000 cycles of the NPC-1-based electrode are achieved in 1 mol L-1 H2SO4 electrolyte. Additionally, pyrocatechol and rutin as novel redox additives that can easily cause redox-reactions have been incorporated into H2SO4 electrolyte to improve the capacitances. As a result, the NPC-1-R-0.15 and NPC-1-P-0.15 samples deliver high specific capacitances of 120.5 and 368.7 F g-1 at 2 A g-1, respectively, which are much higher than that of the NPC-1 sample (66.2 F g-1) without redox-additives at same current density. Furthermore, the large energy density of 18.9 and 11.9 Wh kg-1 of the NPC-1-based symmetric supercapacitors have been obtained in H2SO4+pyrocatechol and H2SO4+rutin electrolyte, respectively, and both samples also demonstrate excellent cyclic performance for 5000 cycles.

  2. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo

    Aquila. Valentina; Oman, Luke D.; Stolarsk, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo, indicating an enhanced heterogeneous chemistry. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  3. The Chemical and Dynamical Responses of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    Aquila, V.; Oman, L. D.; Stolarski, R.; Douglass, A. R.

    2012-01-01

    Observations have shown that the concentration of nitrogen dioxide decreased in both hemispheres in the years following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little or no change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the seasonal phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  4. 34 CFR 403.12 - What are the additional responsibilities of the State board?

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are the additional responsibilities of the State board? 403.12 Section 403.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE VOCATIONAL AND...

  5. Role of nitrogen addition in stabilizing the {gamma} phase of Biomedical Co-29Cr-6Mo alloy

    Li, Y.P., E-mail: lyping@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Aoba-ku, Katahira 2-1-1, Sendai, 980-8577 (Japan); Yu, J.S. [Department of Materials Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Kurosu, S.; Koizumi, Y. [Institute for Materials Research, Tohoku University, Aoba-ku, Katahira 2-1-1, Sendai, 980-8577 (Japan); Matsumoto, H. [Institute for Materials Research, Tohoku University, Aoba-ku, Katahira 2-1-1, Sendai, 980-8577 (Japan); Department of Materials Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Chiba, A. [Institute for Materials Research, Tohoku University, Aoba-ku, Katahira 2-1-1, Sendai, 980-8577 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer 3-D atomic probe observation + thermodynamic calculations. Black-Right-Pointing-Pointer N addition does not change the Gibbs energy of alloy system greatly. Black-Right-Pointing-Pointer Generate the energy barrier by formation of N-Cr cluster. Black-Right-Pointing-Pointer N addition stabilizes the {gamma} phase of Co-Cr-Mo alloy. Black-Right-Pointing-Pointer Phase transition slows down but the transition point does not change with N addition. - Abstract: Three-dimensional atom probe observations and thermodynamic calculations revealed that the mechanism of {gamma}-phase stabilization by N addition in the Co-29Cr-6Mo alloy is different from that in stainless steel: N addition does not lower the free energy of the {gamma} phase in Co-29Cr-6Mo but increases the energy barrier and thus lowers the kinetic rate of the {gamma} {yields} {epsilon} transition through the formation of Cr-N short range order.

  6. The effect of atmospheric nitrogen deposition on marine nitrogen cycling throughout the global ocean

    Somes, Christopher; Oschlies, Andreas

    2014-05-01

    The rapidly increasing rate of anthropogenic nitrogen deposition has the potential to perturb marine ecosystems and biogeochemical cycles because nitrogen is one of the major limiting nutrients in the ocean. We use an Earth System Climate Model that includes ocean biogeochemistry to assess the impact of atmospheric nitrogen deposition. Experiments are conducted where we artificially add nitrogen to nearly all locations individually throughout the global surface ocean using a nitrogen deposition rate of 700 mg N m-2 yr-1, which is consistent with modern estimates near industrial areas. We identify oceanic "biomes" that respond differently to atmospheric nitrogen deposition. (1) When nitrogen is deposited near oxygen minimum zones where water column denitrification occurs, locally increased primary production stimulates additional denitrification. Since water column denitrification removes 7 mol N for every mol N of newly formed organic matter respired, the global oceanic nitrogen inventory declines in response to nitrogen deposition in these areas. This slow, but steady decline persists for at least 1,000 years. (2) When nitrogen is deposited above shallow continental shelves where benthic denitrification occurs, our benthic denitrification model predicts an increase that is nearly equal to the nitrogen deposited and thus no net change in the global nitrogen inventory. (3) When nitrogen is deposited into the high latitude open ocean far removed from nitrogen fixation and denitrification, all of this deposited nitrogen initially accumulates in the ocean. This nitrogen eventually circulates into the tropical oxygen minimum zones where it fuels additional primary production and denitrification, which removes nitrogen at a rate equal to the deposition after 1,000 years and leads to a stable, but increased nitrogen inventory in our model. (4) When nitrogen is deposited into the open ocean where nitrogen fixation occurs, nitrogen fixation decreases due to less nitrogen

  7. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively. PMID:26508324

  8. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions. PMID:22728197

  9. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    Damien Giurco

    2014-05-01

    Full Text Available The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i responsible minerals supply chains and (ii additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores future interlinked questions which arise in the circular economy for responsible supply chains, additive manufacturing, and metals recycling. For example, where do mined and recycled resources fit in responsible supply chains as inputs to responsible production? What is required to ensure 3D production systems are resource efficient? How could more distributed models of production, enabled by additive manufacturing, change the geographical scale at which it is economic or desirable to close the loop? Examples are given to highlight the need for an integrated research agenda to address these questions and to foster Australian opportunities in the circular economy.

  10. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    O. Marx

    2011-12-01

    Full Text Available The input and loss of plant available nitrogen (N from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all

  11. Responses of Bog Vegetation and CO2 Exchange to Experimental N and PK Addition

    Juutinen, S.; Bubier, J. L.; Shrestha, P.; Smith, R.; Moore, T.

    2008-12-01

    Atmospheric nitrogen (N) deposition has the potential to alter the structure and functioning of nutrient poor wetland ecosystems. It is important to quantify the effect of N input on ecosystem carbon (C) sequestration in these globally important C storages. We address this issue at the temperate Mer Bleue bog, ON, Canada. After 6 years of experimental fertilization, we saw that high N deposition can change mixed Sphagnum and dwarf shrub dominated communities to taller and denser dwarf shrub communities that are losing moss cover, and which might have even lower net C uptake. Now, after 8 years of fertilization and with new treatments we quantify the relationship between the plant community structure and ecosystem CO2 exchange. Three levels of N fertilization were applied with or without phosphorus and potassium (PK) into triplicate plots. We measured light saturated net ecosystem CO2 exchange (NEE), and its components ecosystem respiration and gross photosynthesis using clear and dark chambers (May-August). Vegetation characteristics were quantified by measuring foliage cover (LAI), amount of woody and foliar biomass, and abundance of moss species (point interception technique), moss growth (cranked wires) and green area of vascular leaves and moss. Addition of PK fertilizer did not alter NEE or its components relative to the control. The 8-year low N addition alone and with PK, and the 4-year fertilization with high N levels resulted in the highest net ecosystem CO2 uptake relative to the control. The ecosystem respiration increased with increasing N input rate. All levels of N fertilization resulted in higher gross photosynthesis than the control, but there was no increasing trend with increasing N input. Vascular foliage increased, while moss cover drastically decreased with increasing levels of N fertilization. At the highest level of N (and PK) addition woody biomass increased at the expense of leaf increment. Dependencies of ecosystem CO2 exchange on the

  12. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  13. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes.

    Barbour, Margaret M; Kaiser, Brent N

    2016-10-01

    Increased mesophyll conductance (gm) has been suggested as a target for selection for high productivity and high water-use efficiency in crop plants, and genotypic variability in gm has been reported in several important crop species. However, effective selection requires an understanding of how gm varies with growth conditions, to ensure that the ranking of genotypes is consistent across environments. We assessed the genotypic variability in gm and other leaf gas exchange traits, as well as growth and biomass allocation for six wheat genotypes under different water and nitrogen availabilities. The wheat genotypes differed in their response of gm to growth conditions, resulting in genotypic differences in the mesophyll limitation to photosynthesis and a significant increase in the mesophyll limitation to photosynthesis under drought. In this experiment, leaf intrinsic water-use efficiency was more closely related to stomatal conductance than to mesophyll conductance, and stomatal limitation to photosynthesis increased more in some genotypes than in others in response to drought. Screening for gm should be carried out under a range of growth conditions. PMID:27593470

  14. Species-specific Response of Photosynthesis to Burning and Nitrogen Fertilization

    Yanfang Zhang; Shuli Niu; Wenhua Xu; Yi Han

    2008-01-01

    The present study was conducted to examine photosynthetic characteristics of three dominant grass species (Agropyron cristatum, Leymus chinensis, and Cleistogenes squarrosa) and their responses to burning and nitrogen fertilization in a semiarid grassland in northern China. Photosynthetic rate (Pn), stomatal conductance (gs), and water use efficiency (WUE) showed strong temporal variability over the growing season. C. squarrosa showed a significantly higher Pn and WUE than A. cristatum and L. chinensis. Burning stimulated Pn of A. cristatum and L. chinensis by 24-59% (P<0.05) in the early growing season, but not during other time periods. Light-saturated photosynthetic rate (φmax) in A. cristatum C. squarrosa. The burning-induced changes in soil moisture could explain 51% (P=0.01) of the burning-induced changes The stimulation of Pn under N fertilization was mainly observed in the early growing season when the soil extractable N content was significantly higher in the fertilized plots. The N fertilization-induced changes in soil extractable N content could explain 66% (P=0.001) of the changes in Pn, under N fertilization. The photosynthetic responses of the three species indicate that burning and N fertilization will potentially change the community structure and ecosystem productivity in the semiarid grasslands of northern China.

  15. 氮添加对生长季寒温带针叶林土壤有效氮和酸化的影响%Effects of Nitrogen Addition on Available Nitrogen Content and Acidification in Cold-temperate Coniferous Forest Soil in the Growing Season

    陈高起; 傅瓦利; 罗亚晨; 高文龙; 李胜功; 杨浩

    2014-01-01

    +4 -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH +4 -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO -3 -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO -3 -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO -3 -N. As time went on, the response of NH +4 -N and NO -3 -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0- 10 cm soil in this cold-temperate coniferous forest was obviously acidified.

  16. Tomato response to legume cover crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression

    Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...

  17. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.;

    2013-01-01

    organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...... activity. The large ELFA concentrations relative to soil organic carbon and the increases in ELFA response to organic carbon addition are both interpreted as evidence for the soil microbial community containing organisms with efficient scavenging mechanisms for carbon. The diversity of the ELFA profiles......The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon and...

  18. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlNx, AlOy and AlNxOy films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained. • Composition, structure and morphology were correlated with physical properties. • Thermal

  19. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    Damien Giurco; Anna Littleboy; Thomas Boyle; Julian Fyfe; Stuart White

    2014-01-01

    The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i) responsible minerals supply chains and (ii) additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores fu...

  20. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  1. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Macedo, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Couto, F.M. [Physics Sciences Laboratory, Norte Fluminense State University, 28013-602 Campos–RJ (Brazil); Rodrigues, M.S.; Lopes, C. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Pedrosa, P. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Polcar, T. [Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Engineering Materials & nCATS, FEE, University of Southampton, Highfield Campus, SO17 1BJ, Southampton (United Kingdom); Marques, L.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-08-01

    The ternary aluminium oxynitride (AlN{sub x}O{sub y}) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlN{sub x} and AlO{sub y} and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlN{sub x}O{sub y} thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlO{sub y} and AlN{sub x} systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N{sub 2} and/or O{sub 2}) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlN{sub x}, AlO{sub y} and AlN{sub x}O{sub y} films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained.

  2. Carbon And Nitrogen Storage Of A Mediterranean-Type Shrubland In Response To Post-Fire Succession And Long-Term Experimental Nitrogen Deposition

    Vourlitis, G. L.; Hentz, C. S.

    2015-12-01

    Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed

  3. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA.

    Minocha, Rakesh; Turlapati, Swathi A; Long, Stephanie; McDowell, William H; Minocha, Subhash C

    2015-08-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha(-1) year(-1)) and high N (HN, 150 kg NH4NO3 ha(-1) year(-1)) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha(-1) year(-1). However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites

  4. Nitrogen and Phosphorus Loss Potential from Biosolids-Amended Soils and Biotic Response in the Receiving Water.

    Hanief, Aslam; Matiichine, Denis; Laursen, Andrew E; Bostan, I Vadim; McCarthy, Lynda H

    2015-07-01

    Application of municipal biosolids to agricultural soil can improve soil quality and improve crop yields. However, runoff or tile leachate from biosolids-applied fields may contribute to localized eutrophication of surface water. A laboratory experiment was conducted to determine loss potential of nutrients from soils amended with two different biosolids (anaerobically digested and chemically stabilized) relative to loss from a reference soil and to determine response in freshwater microcosms to nutrients lost from soils. Total phosphorus (TP) and total nitrogen (TN) were measured in runoff, and equivalent amounts were added to reference microcosms to determine if aquatic systems would respond similarly to TN and TP loading in bioavailable forms (PO, NH, NO) simulating loading related to inorganic fertilizer application. Nutrient concentrations (TP, TN, PO, NH, NO, and organic P and N) were similar in the runoff from the two biosolids-amended soils and higher than those in the runoff from the reference soil. Runoff from biosolids-amended soils stimulated algal growth and production (chlorophyll a and dissolved oxygen) relative to runoff from reference soil, but the response was weaker than in microcosms receiving equivalent amounts of inorganic N and P. Nutrient runoff from land-applied biosolids does have potential to increase algal production in receiving waters; however, this experiment suggests receiving waters may absorb a single large nutrient loading event associated with runoff from biosolids-amended soil without substantial impact. Moreover, the response to N and P in biosolids versus inorganic nutrient additions suggests biosolids may contribute relatively less to eutrophication than inorganic fertilizers, assuming equivalent TN and TP loading to aquatic systems. PMID:26437111

  5. Alteration of the Fates and Fluxes of Nitrogen by Detritivorous Fish: a Whole-Stream Manipulation and a 15N-tracer Addition

    Taylor, B. W.; Hall, R. O.; Flecker, A. S.; Fisher, C. A.; Grant, M. B.; Jeffs, L.; Richmond, E. L.; Thomas, S. A.

    2005-05-01

    The key roles played by a few species and the non-random order of human-induced biodiversity loss provide compelling reasons for predicting the consequences of individual species losses on ecosystem functioning. This is especially true for vertebrates such as fish that are more vulnerable to extinction and are often over-harvested. Here we test the consequences of losing a single detritivorous fish species, Prochilodus mariae that constitutes 80% of the South American freshwater fishery and is declining. We used a large-scale experimental approach to remove Prochilodus from a diverse assemblage, and measured the effects of its loss on the stream nitrogen cycle using a 15NH4-N addition during years with high and low fish abundance. There was no difference in gross uptake of dissolved 15NH4-N, but when detritivorous fish were present nitrification was 30% higher. The flux of nitrogen into fine benthic particulate compartments was 46% greater when detritivorous fish were removed, but long-term N loss was much higher from these compartments. In contrast, in the presence of detritivorous fish N was retained by more stable epilithic biofilms. In the ecologically intact system, detritivorous fish influence the fates and fluxes of N, which increases N storage by this headwater stream.

  6. Impact of high microwave power on hydrogen impurity trapping in nanocrystalline diamond films grown with simultaneous nitrogen and oxygen addition into methane/hydrogen plasma

    Tang, C. J.; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2016-01-01

    In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.

  7. Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery

    DL-malic acid and L-aspartic acid are investigated as additives for the negative electrolyte of vanadium redox flow battery (VFRB) to improve its stability and electrochemical performance. The stability experiments indicate that the addition of L-aspartic acid into the 2 M V(III) electrolyte can stabilize the electrolyte by delaying its precipitation. The results of cyclic voltammetry and electrochemical impedance spectroscopy show that the V(III) electrolyte with both additives demonstrates enhanced electrochemical activity and reversibility. The introduction of DL-malic acid and L-aspartic acid can increase the diffusion coefficient of V(III) species and facilitate the charge transfer of V(III)/V(II) redox reaction. Between the two additives, the effect of L-aspartic acid is more remarkable. Moreover, the VFRB cell employing negative electrolyte with L-aspartic acid exhibits excellent cycling stability and achieves higher average energy efficiency (76.4%) compared to the pristine cell (73.8%). The comparison results with the cell employing L-aspartic acid pre-treated electrode confirm that L-aspartic acid in the electrolyte can modify the electrode by constantly providing oxygen- and nitrogen-containing groups, leading to the enhancement of electrochemical performance

  8. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria;

    2015-01-01

    (DCAA), natural organic matter (NOM)) or with nitrate as the sole nitrogen source. Monocultures of Chlamydomonas spp., Cyclotella meneghiniana, Microcystis aeruginosa and Anabaena flos-aquae were incubated with dissolved nitrogen compounds at concentrations ranging from 0.01 to 0.5 mg N L−1, which is...

  9. Response of yield and quality of cauliflower varieties (Brassica oleracea var. botrytis) to nitrogen supply

    Rather, K.; Schenk, M.K.; Everaarts, A.P.; Vethman, S.

    1999-01-01

    The fertilizer nitrogen (N) inputs to some vegetables such as cauliflower (Brassica oleracea var. botrytis) can be large. One approach to decreasing the input of N may be to select for cultivars efficient in the use of nitrogen. The objective of this investigation was to identify a cultivar which wa

  10. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage

    Caio Fortes

    2013-01-01

    Full Text Available The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009. Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application. In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows. In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH, and samples were collected in the field for analysis of sugar content (TSH. Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.

  11. Response of chickpea (cicer aeritinum L.) to sulphur fertilization for yield, nodulation and nitrogen fixation

    Sulphur fertilization (5, 10, 15, 20, 25, 30 mg/kg soil) of the chickpea as ground elemental sulphur in the presence of uniform dressing of nitrogen, phosphorus (P/sub 2/O/sub 5/) and Potash (K /sub 2/O) each applied at the rate of 5, 40, 20 mg/kg soil, respectively improved significantly the modulation response (number and weight of nodules/plant), and increased significantly the dry matter yield of pods of the crop by 23.0 to 59.0 percent, of shoots by 22 to 61.0 percent and of roots by 13.0 to 22.0 percent. Sulphur application also improved significantly the N concentration and uptake by pods, shoots and roots of chickpea. The increase in N uptake by pods was in the range of 33 to 92 percent, by shoots in the range of 65 to 115 percent and by the roots in the range of 52 to 65.0 percent. Sulphur at the rate of 10 mg/kg soil was the optimum dose in the present experiment, which increased the dry matter yield of roots, shoots and pods by 22.0 to 59.0 percent and N uptake by roots, shoots and pods of chickpea by 65.0 to 115.0 percent. (author)

  12. Responses of barley root and shoot proteomes to long‐term nitrogen deficiency, short‐term nitrogen starvation and ammonium

    Laurell Blom Møller, Anders; Pedas, Pai; Andersen, Birgit;

    2011-01-01

    plants grown hydroponically for 33 d with 5 mm nitrate, plants grown under N deficiency (0.5 mm nitrate, 33 d) or short‐term N starvation (28 d with 5 mm nitrate followed by 5 d with no N source) were compared. N deficiency caused changes in C and N metabolism and ascorbate‐glutathione cycle enzymes in...... shoots and roots. N starvation altered proteins of amino acid metabolism in roots. Both treatments caused proteome changes in roots that could affect growth. Shoots of plants grown with ammonium as N source (28 d with 5 mm nitrate followed by 5 d with 5 mm ammonium) showed responses similar to N...

  13. Different Growth Responses of an Invasive Weed and a Native Crop to Nitrogen Pulse and Competition.

    Lu, Ping; Li, Jingxin; Jin, Chenggong; Jiang, Baiwen; Bai, Yamei

    2016-01-01

    Resource pulses are a common event in agro-ecosystems. A pot experiment was conducted to assess the effects of nitrogen (N) pulses and competition on the growth of an invasive weed, Amaranthus retroflexus, and a native crop, Glycine max. A. retroflexus and G. max were planted in pure culture with two individuals of one species in each pot and in mixed culture with one A. retroflexus and one G. max individual and subjected to three N pulse treatments. The N treatments included a no-peak treatment (NP) with N applied stably across the growing period, a single-peak treatment (SP) with only one N addition on the planting date, and a double-peak treatment (DP) with two N additions, one on the planting date and the other on the flowering date. N pulse significantly impacted biomass and height of the two species across the whole growing season. However, only the relative growth rate (RGR) of A. retroflexus was significantly affected by N pulse. A. retroflexus had the greatest biomass and height in the SP treatment at the first harvest, and in the DP treatment at the last three harvests. Pure culture G. max produced the greatest biomass in the DP treatment. In mixed culture, G. max produced the greatest biomass in the NP treatment. Biomass production of both species was significantly influenced by species combination, with higher biomass in mixed culture than in pure culture at most growth stages. Relative yield total (RYT) values were all greater than 1.0 at the last three harvests across the three N treatments, suggesting partial resource complementarity occurred when A. retroflexus is grown with G. max. These results indicate that A. retroflexus has a strong adaptive capacity to reduce interspecific competition, likely leading to its invasion of G. max cropland in China. PMID:27280410

  14. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  15. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Inconomou, D.; Arapoglou, D.; Israilides, C.

    2010-07-01

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and {beta}-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N{sub 2} flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  16. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    Humbert Sabrina

    2013-01-01

    Full Text Available Abstract Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between our empirical knowledge of the physiological changes observed in the field in response to nitrogen and water stresses, and our limited understanding of the molecular processes leading to those changes. Results This work examines in particular the impact of simultaneous stresses on the transcriptome. In a greenhouse setting, corn plants were grown under tightly controlled nitrogen and water conditions, allowing sampling of various tissues and stress combinations. A microarray profiling experiment was performed using this material and showed that the concomitant presence of nitrogen and water limitation affects gene expression to an extent much larger than anticipated. A clustering analysis also revealed how the interaction between the two stresses shapes the patterns of gene expression over various levels of water stresses and recovery. Conclusions Overall, this study suggests that the molecular signature of a specific combination of stresses on the transcriptome might be as unique as the impact of individual stresses, and hence underlines the difficulty to extrapolate conclusions obtained from the study of individual stress responses to more complex settings.

  17. Carbon dioxide test as an additional clinical measure of treatment response in panic disorder

    Valença Alexandre M; Nardi Antonio Egidio; Nascimento Isabella; Zin Walter A.; Versiani Márcio

    2002-01-01

    OBJECTIVE: We aim to determine if a treatment with a dose of clonazepam - 2 mg/day, for 6 weeks, blocks spontaneous panic attacks and the ones induced by the inhalation of 35% carbon dioxide (CO2) in panic disorder (PD) patients. The CO2 challenge-test may be a useful addition tool for measuring the pharmacological response during the initial phase (6 weeks) in the treatment of PD. METHOD: Eighteen PD patients drug free for a week participated in a carbon dioxide challenge test. Fourteen had ...

  18. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.)

    Yang, Jun; Chen, Xiaorong; Zhu, Changlan; Peng, Xiaosong; He, Xiaopeng; Fu, Junru; Ouyang, Linjuan; Bian, Jianmin; Hu, Lifang; Sun, Xiaotang; Xu, Jie; He, Haohua

    2015-01-01

    Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen

  19. Response of Popcorn (Zea mays everta) to Nitrogen Rates and Plant Densities

    GÖKMEN, Sabri; SENCAR, Özer; SAKİN, Mehmet Ali

    2001-01-01

    The objective of this study was to evaluate grain yield and yield components of popcorn with different nitrogen rates and plant densities. Field studies were conducted in 1995 and 1996 at Kazova Plain in Tokat. The experiment was designed in a randomized-complete-block design with a split-plot arrangement with three replications. The treatments comprised six levels of nitrogen (0, 50, 100, 150, 200 and 250 kg N /ha) and four plant densities (5.7, 7.0, 9.5 and 14.0 plants /m2). Nitrogen rat...

  20. Changes in water, carbon, and nitrogen fluxes with the addition of biochar to soils: lessons learned from laboratory and greenhouse experiments

    Barnes, R. T.; Gallagher, M. E.; Masiello, C. A.; Liu, Z.; Dugan, B.; Rudgers, J. A.

    2011-12-01

    The addition of biochar to agricultural soils has the potential to provide a number of ecosystem services, ranging from carbon (C) sequestration to increased soil fertility and crop production. It is estimated that 0.5 to 0.9 Pg of C yr-1 can be sequestered through the addition of biochar to soils, significantly increasing the charcoal flux to the biosphere over natural inputs from fire (0.05 to 0.20 Pg C yr-1). There remain large uncertainties about biochar mobility within the environment, making it a challenge to assess the ecosystem residence time of biochar. We conducted laboratory and greenhouse experiments to understand how soil amendment with laboratory-produced biochar changes water, C, and nitrogen (N) fluxes from soils. We used column experiments to assess how biochar amendment to three types of soils (sand, organic, clay-rich) affected hydraulic conductivity and dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes. Results varied with soil type; biochar significantly decreased the hydraulic conductivity of the sand and organic soils by a factor of 10.6 and 2.7, respectively. While not statistically significant, biochar addition increased the hydraulic conductivity of the clay-rich soil by 50% on average. The addition of biochar significantly increased the DOC fluxes from the C-poor sand and clay soils while it significantly decreased the DOC flux from the organic-rich soil. In contrast, TDN fluxes decreased with biochar additions from all soil types, though the results were not statistically significant from the clay-rich soil. These laboratory experiments suggest that changes in the hydraulic conductivity of soil due to biochar amendments could play a significant role in understanding how biochar additions to agricultural fields will change watershed C and N dynamics. We additionally conducted a 28-day greenhouse experiment with sorghum plants using a three-way factorial treatment (water availability x biochar x mycorrhizae) to

  1. Dynamic compressive response of wrought and additive manufactured 304L stainless steels

    Nishida Erik

    2015-01-01

    Full Text Available Additive manufacturing (AM technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids, grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

  2. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop

    Bhuvaneshwari, K.; Singh, Pawan Kumar

    2014-01-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influen...

  3. Growth and yield of corn hybrids in response to association with Azospirillum brasilense and nitrogen fertilization

    2015-01-01

    There is a growing interest in optimizing the positive effects of the association between Azospirillum bacteria and corn crop in order to reduce the use of nitrogen fertilizers. This study aimed to evaluate the inoculation efficiency of an A. brasilense-based commercial product in association with different rates of nitrogen fertilization in two corn genotypes. The experiment was arranged in a 2 x 2 x 5 factorial randomized block design, with four replications. The treatments consisted of two...

  4. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions

    Alysia eCox

    2013-12-01

    Full Text Available Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd -generally considered a toxin- cultures were grown in a matrix of high and low zinc (Zn and phosphate (PO43- and were then exposed to an addition of 4.4 pM free Cd2+ at mid-log phase and harvested after 24 h. Whereas Zn and PO43- had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: i low PO43- treatments showed increased growth rates relative to high PO43- treatments, ii the Zn/high PO43- treatment appeared to enter stationary phase, and iii Cd increased growth rates further in both the low PO43- and Zn treatments. Global proteomic analysis revealed that: i Zn appeared to be critical to the PO43- response in this organism, ii bacterial metallothionein (SmtA appears correlated with PO43- stress-associated proteins, iii Cd has the greatest influence on the proteome at low PO43- and Zn, iv Zn buffered the effects of Cd, and v in the presence of both replete PO43- and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO43- stress (with replete Zn in this organism, including the greater relative abundance of ALP (PhoA, ABC phosphate binding protein (PstS and other proteins. Yet with no Zn in this proteome experiment the PO43- response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO43- response in this cyanobacterium. Alternate ALP PhoX (Ca was found to be a low abundance protein, suggesting that PhoA (Zn, Mg may be more environmentally relevant than PhoX.

  5. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Megan P Keville

    Full Text Available Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP (Pinus albicaulis ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺ concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  6. Responses of Nitrogen and related enzyme Activities to Fertilization in Rhizosphere of Wheat

    YUANLING; YUSHANGQI; 等

    1997-01-01

    In the present experiment,wheat seedlings(Trticucum aestivum L.)were grown on a purple soil with various fertilizer treatments in order to investigate the responses of nitrogen and related enzyme activities in the rhizosphere,The results revealed the increments of both organic matter and total N in the soil with the proximity to the growing roots,especially in treatment of supplying pig manure in combination with chemical fertilizer,suggesting that they could ome from root and microorganism exudation which could be intensified by inorganic-organic fertiliztion,being of benefit to improving the physical and bilogical envi-ronment in the rhizosphere of wheat.Much more inorganic N was observed in the fertilized soils surrounding wheat roots than in the CK treatment ,indicating ,the improvement of crop N supply in the rhizosphere of wheat by fertilization. The activities of invertase,urease and protease in the root zone were greatly enhanced as compared to those in the other parts of soil except that the urease activities were similar in the rhizospher and nonrhi-zosphere of the CK and pig manure treatments,indicating that invertase and protese could be produced by growing roots and rhizosphere microorganisms,in contrast to urease which could be stimulated by urea,Also,significant increment of chemical fertilizer combined with pig manure,suggested that fertilization not only accelerated the renewal of organic matter bu also enhanced bioavailability of organic N in that soil zone .This could be the reason why the total amount of inorganic N available for plants was increased more obviously in the rhizosphere of wheat of the fertilizaton treatments than in taht of the CK treatment.

  7. Tillering of Tifton 85 bermudagrass in response to nitrogen rates and time of application after cutting

    Premazzi Linda Monica

    2003-01-01

    Full Text Available Nitrogen fertilization is determinant for pasture productivity, as it results in increasing forage yield and is associated with the growth physiology of forage plants. An experiment was carried out in a greenhouse to evaluate the effects of nitrogen rates and times of application after cutting on Tifton 85 Bermuda grass (Cynodon spp. tillering. Plants were grown in a Typic Quartzipsamment soil and nitrogen rates were 0, 80, 160 and 240 mg kg-1 of soil; times of application were immediately after and seven days after cutting. A 4 x 2 factorial experiment was set in a completely randomized block design (n= 4. Plants were evaluated in two sequential growth periods - 39 and 41 days. Nitrogen rates affected tiller density, considering the initial number of tillers in the second growth and the emerged and final number of tillers at the end of the growth periods. Tiller weight increased up to the nitrogen rate of 201 and 185 mg kg-1 of soil in the first and second growth periods, and the correlation coefficients between the final number of tillers and dry matter yields in the top part of the plant for these periods were 0.92 and 0.94, respectively. The rate of tiller development, evaluated in each of the seven-day periods, was affected by nitrogen rates and time of application. There was an effect of rates and time of application in the first and a significant interaction between rates and time in the second growth period.

  8. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasi...

  9. Rapid and dissimilar response of ammonia oxidising archaea and bacteria to nitrogen and water amendment in two temperate forest soils

    Szukics, Ute; Hackl, Evelyn; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela

    2011-01-01

    Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental ...

  10. Per-plant eco-physiological responses of maize to varied nitrogen availability at low and high plant densities

    Boomsma, Christopher R; Vyn, Tony J.

    2009-01-01

    Although maize (Zea mays L.) routinely experiences both intra- and inter-specific competition for limited resources, most plant-plant interaction studies have principally focused on maize-weed interactions. Thus very few investigations have considered the impacts of plant crowding and nitrogen (N) availability on maize intra-specific competition. The primary objective of this two-year field study near West Lafayette, IN was to investigate the per-plant eco-physiological responses of modern ma...

  11. Herbage and animal production responses to fertilizer nitrogen in perennial ryegrass swards. II. rotational grazing and cutting

    Lantinga, E.A.; Deenen, P.J.A.G.; Keulen, van, S.

    1999-01-01

    The yield response of grass swards to fertilizer nitrogen (N) differs under cutting and grazing, as grazing cattle exert positive and negative effects on pasture production, with varying negative effects on different soil types. Nevertheless, current N fertilization recommendations in the Netherlands are based mainly on economic cost-benefit analyses of long-term cutting trials in small plots. To contribute to formulation of improved N fertilizer recommendations for grassland, experiments wer...

  12. Non-additive response of larval ringed salamanders to intraspecific density.

    Ousterhout, Brittany H; Semlitsch, Raymond D

    2016-04-01

    Conditions experienced in early developmental stages can have long-term consequences for individual fitness. High intraspecific density during the natal period can affect juvenile and eventually adult growth rates, metabolism, immune function, survival, and fecundity. Despite the important ecological and evolutionary effects of early developmental density, the form of the relationship between natal density and resulting juvenile phenotype is poorly understood. To test competing hypotheses explaining responses to intraspecific density, we experimentally manipulated the initial larval density of ringed salamanders (Ambystoma annulatum), a pond-breeding amphibian, over 11 densities. We modeled the functional form of the relationship between natal density and juvenile traits, and compared the relative support for the various hypotheses based on their goodness of fit. These functional form models were then used to parameterize a simple simulation model of population growth. Our data support non-additive density dependence and presents an alternate hypothesis to additive density dependence, self-thinning and Allee effects in larval amphibians. We posit that ringed salamander larvae may be under selective pressure for tolerance to high density and increased efficiency in resource utilization. Additionally, we demonstrate that models of population dynamics are sensitive to assumptions of the functional form of density dependence. PMID:26683834

  13. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  14. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities

  15. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China.

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-01-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3(-)-N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau. PMID:27334692

  16. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates

    Nazim HUSSAIN; Hui LI; Yu-xiao JIANG; Zahra JABEEN; Imran Haider SHAMSI; Essa ALI; Li-xi JIANG

    2014-01-01

    本文题目:氮肥种类与施量对油菜种子生育酚的影响Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates研究目的:生育酚是菜籽重要的品质指标,氮肥是影响作物生物学与籽粒产量最常用的肥料。这项研究旨在搞清楚氮肥种类与施量对油菜种子生育酚含量与组分的确切影响,以及这种影响在基因型之间的差异。创新要点:这篇论文研究了不同的氮肥种类(硝态氮与铵态氮)与低、中、高施用量对种子生育酚总量与组分的影响,并分析了其中的原因,为通过合理的氮肥施用方案配置,以达到最理想的菜籽生育酚含量或组分提供依据。研究方法:采用盆钵实验控制氮肥施量与流失的精准方法,五种基因型、二种氮肥种类、三档施量水平,三重复控制误差;尝试用气相色谱法检测菜籽生育酚含量的新方法。重要结论:尿素比硝酸氨更有利于菜籽总生育酚、阿尔法生育酚及伽马生育酚的有效形成;提高氮肥施量对于菜籽形成高含量的总生育酚与伽马生育酚非常有效,但对提高菜籽阿尔法生育酚含量的效果却不太明显。%Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important see d oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increasedα-,γ-, and total

  17. PAT-1 safety analysis report addendum author responses to request for additional information.

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The National Nuclear Security Administration (NNSA) submitted SAND Report SAND2009-5822 to NRC that documented the incorporation of plutonium (Pu) metal as a new payload for the PAT-1 package. NRC responded with a Request for Additional Information (RAI), identifying information needed in connection with its review of the application. The purpose of this SAND report is to provide the authors responses to each RAI. SAND Report SAND2010-6106 containing the proposed changes to the Addendum is provided separately.

  18. Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots.

    Yang, Yu; Wang, Jing; Zhu, Huiguang; Colvin, Vicki L; Alvarez, Pedro J

    2012-03-20

    Little is known about the potential impacts of accidental or incidental releases of manufactured nanomaterials to microbial ecosystem services (e.g., nutrient cycling). Here, quantum dots (QDs) coated with cationic polyethylenimine (PEI) were more toxic to pure cultures of nitrogen-cycling bacteria than QDs coated with anionic polymaleic anhydride-alt-1-octadecene (PMAO). Nitrifying bacteria (i.e., Nitrosomonas europaea) were much more susceptible than nitrogen fixing (i.e., Azotobacter vinelandii, Rhizobium etli, and Azospirillum lipoferum) and denitrifying bacteria (i.e., Pseudomonas stutzeri). Antibacterial activity was mainly exerted by the QDs rather than by their organic coating or their released QD components (e.g., Cd and Zn), which under the near-neutral pH tested (to minimize QD weathering) were released into the bacterial growth media at lower levels than their minimum inhibitory concentrations. Sublethal exposure to QDs stimulated the expression of genes associated with nitrogen cycling. QD-PEI (10 nM) induced three types of nitrogenase genes (nif, anf, and vnf) in A. vinelandii, and one ammonia monooxygenase gene (amoA) in N. europaea was up-regulated upon exposure to 1 nM QD-PEI. We previously reported up-regulation of denitrification genes in P. stutzeri exposed to low concentrations of QD-PEI. (1) Whether this surprising stimulation of nitrogen cycling activities reflects the need to generate more energy to overcome toxicity (in the case of nitrification or denitrification) or to synthesize organic nitrogen to repair or replace damaged proteins (in the case of nitrogen fixation) remains to be determined. PMID:22360857

  19. Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes.

    Sinha, Subodh Kumar; Rani, Manju; Bansal, Niketa; Gayatri; Venkatesh, K; Mandal, P K

    2015-11-01

    Improvement of nutrient use efficiency in cereal crops is highly essential not only to reduce the cost of cultivation but also to save the environmental pollution, reduce energy consumption for production of these chemical fertilizers, improve soil health, and ultimately help in mitigating climate change. In the present investigation, we have studied the morphological (with special emphasis on root system architecture) and biochemical responses (in terms of assay of the key enzymes involved in N assimilation) of two N-responsive wheat genotypes, at the seedling stage, under nitrate-optimum and nitrate-starved conditions grown in hydroponics. Expression profile of a few known wheat micro RNAs (miRNAs) was also studied in the root tissue. Total root size, primary root length, and first- and second-order lateral root numbers responded significantly under nitrate-starved condition. Morphological parameters in terms of root and shoot length and fresh and dry weight of roots and shoots have also been observed to be significant between N-optimum and N-starved condition for each genotypes. Nitrate reductase (NR), glutamine synthatase (GS), and glutamate dehydrogenase (GDH) activity significantly decreased under N-starved condition. Glutamine oxoglutarate amino transferase (GOGAT) and pyruvate kinase (PK) activity was found to be genotype dependent. Most of the selected miRNAs were expressed in root tissues, and some of them showed their differential N-responsive expression. Our studies indicate that one of the N-responsive genotype (NP-890) did not get affected significantly under nitrogen starvation at seedling stage. PMID:26315134

  20. Effects of wood-ash addition on nitrogen turnover in a highly nitrogen loaded spruce site. Final project report; Effekter av askaaterfoering paa kvaeveomsaettningen i ett kvaeverikt granbestaand i Halland. Slutrapport foer projektet

    Nohrstedt, H.Oe.; Hoegbom, Lars; Nordlund, Sten [Forestry Research Inst. of Sweden, Uppsala (Sweden)

    2000-04-01

    During two consecutive years, it was studied how a fertilization with 4.2 tonnes pelleted bark ash per ha, made six-seven years earlier, affected soil chemistry, nitrogen turnover and soil-water chemistry on a Norway spruce site in SW Sweden. The actual site has a very acidic soil. At the same time, the supply of inorganic N is rich. Measures against soil acidification, e. g. addition of ash or lime, may significantly influence the turnover of N with a subsequent risk for increased leaching. Thus, there is a potential conflict between two urgent environmental goals, i. e. to decrease acidification and to decrease the N load on aquatic ecosystems. In the humus layer and the upper 5 cm of the mineral soil, pH(H{sub 2}O) had increased with at the most 0.2 units because of the ash addition. The easily extractable amounts of Mg, P and nitrate were slightly increased. The potential nitrification in the humus layer was generally higher in the ash treatment, but the difference. was not statistically significant. The soil water at 50 cm depth was 0.1-0.2 pH-units more acidic where ash had been applied. Simultaneously, there were tendencies for higher concentrations of nitrate, Al and K. This is the first time in Sweden that ash fertilization of a closed forest has given clear indications of an increased N leaching. As expected, the ash fertilization decreased the acidity of the top soil. On the contrary, the runoff became more acidic and more rich in Al. Thus, the ash fertilization has counteracted one of its primary goals, i. e. to produce a runoff less toxic to aquatic life. The acidification of the runoff may partially be because of acid production during nitrification.

  1. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg2+ ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells

  2. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  3. Agronomic performance and chemical response of sunflower ( Helianthus annuus L.) to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Helmy, A. M.; Fawzy Ramadan, M. F.

    2009-07-01

    Sunflower ( Helianthus annuus L.) is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt) during the 2005 season. The objective of this research was to determine the effect of organic nitrogen (ON) sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS) as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macro nutrients by sunflowers grown on sandy soil.The treatments of chicken manure (CM) and a mixture of farmyard manure (FYM) with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR)> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N), phosphorus (P) and potassium (K) by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control. (Author) 58 refs.

  4. Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gardsjoen, Sweden (NITREX)

    The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gardsjoen, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha-1 yr-1 as NH4NO3 to the ambient 9 kg N ha-1 yr-1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g-1. - Research highlights: → The fraction of input N lost to runoff has increased from 0% to 10%. → Increased concentrations of NO3 in runoff slowed ecosystem recovery from acid deposition. → About 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. → N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g-1. - N addition has led to increased flux of N and increased C sequestration at a forested catchment in Sweden; the NO3 released has partially offset recovery from acidification.

  5. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.

    Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A

    2007-07-01

    Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased

  6. Sugarcane Genotype Response to Nitrogen on a Sand Soil in Florida

    Technical Abstract: Approximately 20% of sugarcane (Saccharum spp.) grows on sand soils in Florida. Nitrogen deficiency may limit sugarcane yields on these sand soils. The objective of this study was to determine the effects of N fertilizer rate on growth and physiological characteristics of three ...

  7. Soil organic carbon and total nitrogen responses after 34 years of tillage of a sandy ultisol

    Conservation tillage and crop management strategies are available to increase soil organic carbon (SOC) and total nitrogen (TN) contents, but long-term (> 30 yrs) field results quantifying these increases are sparse. Our objectives were to quantity above ground biomass inputs and changes in vertica...

  8. Seedling geranium response to nitrogen deprivation and subsequent recovery in hydroponic culture

    Nitrogen (N) fertilization recommendations to achieve optimum growth are well established for most floricultural crops. While it has been shown that plant functions can recover from N-deficiency in other crops, little research has investigated the threshold beyond which a bedding plant crop is reco...

  9. YIELD RESPONSE OF VALENCIA PEANUT WITH DIFFERENT ROW ORIENTATIONS, NITROGEN RATES AND RHIZOBIUM INOCULUM

    Peanut grown in the southeast with twin row orientation has shown an increase in yield and grade over conventional single row. Peanut farmers in New Mexico do not use rhizobium inoculum at the time of planting, but do apply high rates of nitrogen fertilizer (300 to 350 kg ha-1). A study was conduct...

  10. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction

    Matsui, Takeshi; Ehrenreich, Ian M.

    2016-01-01

    How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C (‘E37’), a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose) and temperature (37°C as opposed to 30°C). Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose) and temperature (30 or 37°C) in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur. PMID:27437938

  11. Effect of saccharide additives on response of ferrous-agarose-xylenol orange radiotherapy gel dosimeters

    Glucose, sucrose, starch, and locust bean gum have been used as additives to the ferrous-agarose-xylenol orange (FAX) gel dosimeter. The saccharide enhanced dosimeters were found to have a higher dose sensitivity over a standard FAX gel as measured by both optical density change and magnetic resonance imaging (MRI). With optical density measurement, OD-dose sensitivity increases were up to 55% for glucose, 122% for sucrose and 43% for starch, while locust bean gum did not give a consistent response. With MRI, R1-dose sensitivity increases were up to 178% with sucrose addition. The FAX gel with sucrose was studied in greatest detail. The OD-dose sensitivity dependence on cooling rate was reduced for the sucrose FAX gel over the standard FAX gel, which has significant implications for uniform dose sensitivity in large gel phantoms. The thermal oxidation rate in the sucrose FAX gel was up to 2.3 times higher than in the standard gel. The OD-dose sensitivity of oxygenated sucrose FAX gels was 4.3 times greater than standard FAX gels, while continued enhancement in OD-dose sensitivity with increased sucrose concentrations beyond 2.0 g/l was found only for the oxygenated sucrose FAX gels. Both the molar absorption coefficient of the ferric ion-xylenol orange complex at 543 nm and gel pH were not affected by the presence of sucrose, with the implication that the higher OD-dose sensitivity of gels with saccharides is due to increased chain reaction production of ferric ions

  12. Reciprocal Leaf and Root Expression of AtAmt1.1 and Root Architectural Changes in Response to Nitrogen Starvation1[W

    Engineer, Cawas B.; Kranz, Robert G.

    2007-01-01

    Nitrogen is an essential macronutrient for plant growth and survival. Here, the temporal and spatial sensing of nitrogen starvation is analyzed in Arabidopsis (Arabidopsis thaliana). The promoter for the high-affinity ammonium transporter, AtAmt1.1, is shown to be a valid indicator for nitrogen status in leaves and roots. An AtAmt1.1-Gal4 transgene using three 5× upstream activating sequence-driven reporters (luciferase, green fluorescent protein, and β-glucuronidase) facilitated in vivo profiling at the whole-plant and cellular levels. The effects of nitrogen supply, light duration, light intensity, and carbon on the expression of the AtAmt1.1 gene in the roots and aerial tissues are reported. Under nitrogen starvation, high expression is observed in the roots and, under nitrogen-sufficient conditions, high expression is observed in the leaves. This reciprocal regulation of AtAmt1.1 was confirmed by quantitative reverse transcription-polymerase chain reaction, which was also used to quantitate expression of the five other Amt genes in Arabidopsis. Although some of these show tissue specificity (roots or leaves), none exhibit reciprocal regulation like the AtAmt1.1-encoded high-affinity transporter. This robust reciprocal expression suggests that Arabidopsis undergoes rapid resource reallocation in plants grown under different nitrogen supply regimens. Ultimately, nitrogen starvation-mediated reallocation results in root architectural restructuring. We describe the precise timing and cellular aspects of this nitrogen limitation response. PMID:17085512

  13. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    Madjelia Cangre Ebou eDAO; Sergio eRossi; Denis eWalsh; Hubert eMorin; Daniel eHoule

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Quebec, Canada. During 2008-2013, the soil...

  14. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce

    Dao, Madjelia C. E.; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008–2013, the ...

  15. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    Ning Zong

    2013-01-01

    Full Text Available Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco; nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.

  16. S. cerevisiae Sit4 Phosphatase Is Active Irrespective of the Nitrogen Source Provided and Gln3 Phosphorylation Levels Become Nitrogen Source-Responsive In a sit4 Deleted Strain

    Tate, Jennifer J.; Feller, André; Dubois, Evelyne; Cooper, Terrance G.

    2006-01-01

    Tor1,2 control of type-2A-related phosphatase activities in S. cerevisiae has been reported to be responsible for the regulation of Gln3 phosphorylation and intracellular localization in response to the nature of the nitrogen source available. According to the model, excess nitrogen stimulates Tor1,2 to phosphorylate Tip41 and/or Tap42. Tap42 then complexes with and inactivates Sit4 phosphatase, thereby preventing it from dephosphorylating Gln3. Phosphorylated Gln3 complexes with Ure2 and is ...

  17. Mechanisms of nitrogen re-distribution in response to enzyme activities and the effects on nitrogen use efficiency in brassica napus during later growth stages

    In order to investigate the mechanisms of nitrogen (N) re-distribution in response to proteolytic enzyme (PE), glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities and the effects on N use efficiency (NUE). Two oilseed rape genotypes were grown in sand culture in a greenhouse under normal (15.0 mmol L-1 NO/sub 3/) and limited-N (7.5 mmol L-1 NO/sub 3/) levels. Isotope (15N) labeling and enzyme inhibitors against the PE, GS and GOGAT enzymes were used. We found that, when the two genotypes were subjected to specific inhibitors of PE, GS, and GOGAT, the activities of these enzymes were significantly decreased, resulting in reduced N re-distributed from leaf to grain, as well as reduced NUE. L-glutamine and free amino acid contents in the phloem sap were primarily influenced by PE and GS activities, whereas grain yield was primary regulated by GOGAT activity during the later growth stages. These findings suggest that PE, GS, and GOGAT are key enzymes for the regulation of N re-distribution in plant tissues during later growth stages, with grain yield and NUE of oilseed rape being positively regulated by PE, GS and GOGAT activities. (author)

  18. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds

    Yoshio Nosaka, Masami Matsushita, Junichi Nishino and Atsuko Y. Nosaka

    2005-01-01

    Full Text Available In order to utilize visible light in photocatalytic reactions, nitrogen atoms were doped in commercially available photocatalytic TiO2 powders by using an organic compound such as urea and guanidine. Analysis by X-ray photoelectron spectroscopy (XPS indicated that N atoms were incorporated into two different sites of the bulk phase of TiO2. A significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. These N-doped TiO2 powders exhibited photocatalytic activity for the decomposition of 2-propanol in aqueous solution under visible light irradiation. The photocatalytic activity increased with the decrease of doped N atoms in O site, while decreased with decrease of the other sites. Degradation of photocatalytic activity based on the release of nitrogen atoms was observed for the reaction in the aqueous suspension system.

  19. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla;

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate and ecos......Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... and ecosystems models. Recent research indicate the need for incorporating the ammonia (NH3) compensation point in atmospheric N deposition models to quantify the N budget for vegetative surfaces. This poster presents a PhD project within ECOCLIM of incorporating the NH3 compensation point in a coupled...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  20. Potential Hydrological Responses, and Carbon and Nitrogen Pools of a Two Distinct Watersheds to Rainfall and Brush Management

    Ray, R. L.; Fares, A.; Awal, R.; Johnson, A. B.

    2014-12-01

    Investigating the effects of brush management on hydrologic fluxes, in the parts of the Texas where brush is a dominant component of the landscape is essential for the State of Texas's water management strategy and planning. The main goal of this study is to test the performance of brush management as an effective approach for protecting soil quality (carbon and nitrogen pools), and water resources management and planning. Specifically, this work reports on the potential i) hydrological response and ii) carbon and nitrogen pools of two watersheds, one in Colorado River Basin (arid) and the second one in Neches River Basin (humid), to brush management (uniform thinning vs. clear cutting) simulated using Regional Hydro-ecological Simulation System (RHESSys) model and site specific input data. The selected watersheds have similar potential evapotranspiration level, but their average elevations are 600 m and 250 m for the arid and humid watersheds, respectively. Results are showing that light thinning alone may not be enough to significantly impact water yield and soil quality. They further indicate that the streamflow response to brush reduction is a non-linear positive response.

  1. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment

    Lee, Mark; Manning, Pete; Rist, Janna; Power, Sally A.; Marsh, Charles

    2010-01-01

    Grassland ecosystems cover vast areas of the Earth's surface and provide many ecosystem services including carbon (C) storage, biodiversity preservation and the production of livestock forage. Predicting the future delivery of these services is difficult, because widespread changes in atmospheric CO2 concentration, climate and nitrogen (N) inputs are expected. We compiled published data from global change driver manipulation experiments and combined these with climate data to assess grassland...

  2. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Kelly A. Nelson

    2015-01-01

    Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1) the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010), and (2) strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L.) growth (2008–2010) prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated contr...

  3. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    Millstein, Dev

    2009-01-01

    Fine particulate matter (PM) affects public health, visibility, climate, and influences ecosystem productivity and species diversity. Diesel engines are an important source of air pollution and will face a variety of new regulations, so emissions from these vehicles are expected to undergo changes over the next decade that will have important effects on primary PM emissions, especially black carbon (BC) emissions, as well as nitrogen oxide (NOx) emissions and therefore secondary pollutants su...

  4. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    2014-01-01

    The effects of nitrogen deposition (N-deposition) on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their r...

  5. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Kelly A. Nelson

    2015-01-01

    Full Text Available Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1 the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010, and (2 strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L. growth (2008–2010 prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated control when applying certain N sources in autumn or early preplant for no-till corn. Anhydrous ammonia had the lowest average weed density (95 weeds m−2, though results were inconsistent over the years. Winter annual weed biomass was lowest (43 g m−2 when applying 32% urea ammonium nitrate in autumn and was similar to applying anhydrous ammonia in autumn or early preplant and the nontreated control. Henbit biomass was 28% greater when applying N in the autumn compared to an early preplant application timing. Nitrogen placement along with associated tillage with strip-till placement was important in reducing henbit biomass. Nitrogen source selection, application timing, and placement affected the impact of N on winter annual weed growth and should be considered when recommending a burndown herbicide application timing.

  6. Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment

    Flury, Sabine; McGinnis, Daniel Frank; Gessner, Mark O.

    2010-01-01

    We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel ...... to the atmosphere, even when they occupy only relatively small littoral areas. More detailed investigations are clearly needed to assess whether global warming and nitrogen deposition can have climate feedbacks by altering methane fluxes from these wetlands.  ......We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel...... traps deployed in a series of enclosures for two 3 week periods. Diffusive fluxes were estimated on the basis of measured CH4 concentrations and application of Fick's law. Neither diffusive nor ebullitive fluxes of methane were significantly affected by warming or nitrate enrichment, possibly because...

  7. Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes.

    Yejian Wang

    Full Text Available Nitrogen (N is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported. We constructed sixteen libraries to identify low N-responsive miRNAs on a genome-wide scale using samples from 2 different genotypes (low N sensitive and low N tolerant subjected to various periods of low nitrogen stress. Using high-throughput sequencing technology (Illumina-Solexa, we identified 362 known miRNAs variants belonging to 158 families and 90 new miRNAs belonging to 55 families. Among these known miRNAs variants, almost 50% were not different from annotated miRNAs in miRBase. Analyses of their expression patterns showed 150 known miRNAs variants as well as 2 novel miRNAs with differential expressions. These differentially expressed miRNAs between the two soybean genotypes were compared and classified into three groups based on their expression patterns. Predicted targets of these miRNAs were involved in various metabolic and regulatory pathways such as protein degradation, carbohydrate metabolism, hormone signaling pathway, and cellular transport. These findings suggest that miRNAs play important roles in soybean response to low N and contribute to the understanding of the genetic basis of differences in adaptive responses to N limitation between the two soybean genotypes. Our study provides basis for expounding the complex gene regulatory network of these miRNAs.

  8. Response of Nodularia spumigena to pCO2 – Part I: Growth, production and nitrogen cycling

    M. Nausch

    2012-03-01

    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea contributing substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem, when inorganic nitrogen concentration in summer is low. Thus, it is of great ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the ocean. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover during batch growth of the heterocystous cyanobacterium Nodularia spumigena under glacial (180 ppm, present (380 ppm, and future (780 ppm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 resulted in an elevation in growth rate, C and N2 fixation by 23%, 36% and 25%, respectively (180 ppm vs. 380 ppm and by 27%, 2% and 4%, respectively (380 ppm vs. 780 ppm. Additionally, elevation in the carbon and nitrogen to phosphorus quota of the particulate biomass formed (POC:POP and PON:POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for non-heterocystous diazotrophs. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.

  9. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  10. Application of response surface methodology in optimization of lactic acid fermentation of radish: effect of addition of salt, additives and growth stimulators.

    Joshi, V K; Chauhan, Arjun; Devi, Sarita; Kumar, Vikas

    2015-08-01

    Lactic acid fermentation of radish was conducted using various additive and growth stimulators such as salt (2 %-3 %), lactose, MgSO4 + MnSO4 and Mustard (1 %, 1.5 % and 2 %) to optimize the process. Response surface methodology (Design expert, Trial version 8.0.5.2) was applied to the experimental data for the optimization of process variables in lactic acid fermentation of radish. Out of various treatments studied, only the treatments having ground mustard had an appreciable effect on lactic acid fermentation. Both linear and quadratic terms of the variables studied had a significant effect on the responses studied. The interactions between the variables were found to contribute to the response at a significant level. The best results were obtained in the treatment with 2.5 % salt, 1.5 % lactose, 1.5 % (MgSO4 + MnSO4) and 1.5 % mustard. These optimized concentrations increased titrable acidity and LAB count, but lowered pH. The second-order polynomial regression model determined that the highest titrable acidity (1.69), lowest pH (2.49) and maximum LAB count (10 × 10(8) cfu/ml) would be obtained at these concentrations of additives. Among 30 runs conducted, run 2 has got the optimum concentration of salt- 2.5 %, lactose- 1.5 %, MgSO4 + MnSO4- 1.5 % and mustard- 1.5 % for lactic acid fermentation of radish. The values for different additives and growth stimulators optimized in this study could successfully be employed for the lactic acid fermentation of radish as a postharvest reduction tool and for product development. PMID:26243913

  11. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.

  12. EFFECTS OF PROTEIN-XANTHOPHYLL (PX CONCENTRATE OF ALFALFA ADDITIVE TO CRUDE PROTEIN-REDUCED DIETS ON NITROGEN EXCRETION, GROWTH PERFORMANCE AND MEAT QUALITY OF PIGS

    Eugeniusz GRELA

    2009-06-01

    Full Text Available The infl uence of protein-xanthophyll (PX concentrate of alfalfa supplement to crude protein-reduced diets was examined in relation to nitrogen excretion, performance parameters and pig meat quality. The investigations included 60 growers (PL x PLW x Duroc crossbreeds assigned to 3 groups. The conclusion is that there is a large potential to decrease nitrogen emission to the environment by 10% lowering of dietary crude protein intake along with reduced animal growth rate and elevated mixture utilization. Inclusion of a protein-xanthophyll concentrate (PX of alfalfa to the diet is likely to diminish disadvantageous productive parameters arising from limiting of total crude protein level in relation to the requirements of pigs feeding norms [1993]. At the same time, it improves feed nitrogen utilization and reduces noxious odour emissions from a piggery. The components of a protein-xanthophyll concentrate (PX contribute to increased liver and kidney weight.

  13. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    Liu, L; Hu, C; Yang, P;

    2015-01-01

    experiment was conducted at Luancheng research station in the North China Plain from 2008 to 2013. Two levels of temperature (T: increase on average 1.5 °C at 5 cm soil depth by infrared heaters, C: ambient temperature) were combined with two levels of nitrogen (N) treatments (N1: with 315 kg N ha−1 y−1, N0......: no nitrogen input) in the farmland. Soil was found to be a sink for CH4 with no marked seasonal variations. In the wheat-growing season, warming and N input both decreased cumulative CH4 uptake, probably because warming-induced soil drying in N1 treatment reduced (or limited) methanotroph activity by...... affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...

  14. Carbon rhizodeposition by plants of contrasting strategies for resource acquisition: responses to various nitrogen fertility regimes

    Baptist, Florence; Aranjuelo, I.; Lopez-Sangil, L.; Rovia, P.; Nogués, S.

    2010-05-01

    Rhizodeposition by plants is one of the most important physiological mechanisms related to carbon and nitrogen cycling which is also believed to vary along the acquisition-conservation continuum. However, owing to methodological difficulties (i.e. narrow zone of soil around roots and rapid assimilation by soil microbes), root exudation and variations between species are one of the most poorly understood belowground process. Although previous approaches such as hydroponic culture based system, permit the chemical analysis of exudates, the fact that this protocol is qualitative, conditions its utility (see review in Phillips et al. 2008). Others techniques based on pulse-labelling approach have been developed to quantify rhizodeposition but are rarely sufficient to uniformly label all plant inputs to soil. Consequently with this typical pulse chase methods, recent assimilates are labeled but the recalcitrant carbon will not be labeled and therefore the contribution of this carbon will not be considered. Hence, traditional pulse labelling is not a quantitative means of tracing carbon due to inhomogeneous labelling and so limits greatly comparative studies of rhizodeposition fluxes at the interspecific level. In this study we developped a new protocole based on a long-term (3 months) steady state 13C labelling in order (1) to quantify rhizodeposition fluxes for six graminoid species caracterized by contrasted nutrient acquisition strategies and (2) to investigate to what extent various level of nitrogen fertility regimes modulate rhizodeposition fluxes. This method will enable to quantify under natural soil conditions both the accumulation of 13C in the soil but also the quantity that has been respired by the microorganisms during a given time and so will give an integrated picture of rhizodeposition fluxes for each species under each nitrogen fertility level. Results are currently being processed and will be presented at the conference. References: Phillips RP, Erlitz

  15. Dry matter accumulation and mineral nutrition of arracacha in response to nitrogen fertilization

    Luis Augusto Magolbo; Ezequiel Lopes do Carmo; Emerson Loli Garcia; Adalton Mazetti Fernandes; Magali Leonel

    2015-01-01

    Abstract:The objective of this work was to evaluate the effect of nitrogen fertilization on the growth and yield of arracacha (Arracacia xanthorrhiza), as well as on the plant's nutrient uptake, distribution, and removal. The experiment was carried out in a typical Oxisol, with sandy texture. A randomized complete block design was used, with four replicates. The treatments consisted of five N rates: 0, 50, 100, 200, and 400 kg ha-1. The plots were composed of three 8-m-length rows, spaced at ...

  16. Response of Sphagnum papillosum and Drosera rotundifolia to reduced and oxidised wet nitrogen deposition

    Millett, Jonathan; Leith, Ian; Sheppard, Lucy; Newton, Jason

    2012-01-01

    We transplanted Sphagnum ‘turfs’ containing abundant Drosera rotundifolia into an existing nitrogen deposition experiment at Whim Moss near Edinburgh. These mesocosms received simulated N deposition as either NH 4 + or NO 3 - , to give total N deposition rates of approximately 8, 16 or 32, or 64 kg N ha-1 year-1. Simulated N deposition was added in a realistic way (i.e., with rainfall throughout the year). The δ15N of this added N was elevated relative to background N. We measured the tissue ...

  17. Growth and yield responses of broccoli cultivars to different rates of nitrogen at western Chitwan, Nepal

    Giri, Raj Kumar; Sharma, Moha Datta; Shakya, Santa Man;

    2013-01-01

    A field experiment was conducted with the objective to determine the optimum rate of nitrogen (N) fertilizer for effective growth and yield of two varieties of broccoli in southern plain of Nepal. The experiment was laid out with two-factorial completely random block design (RCBD) comprising two...... varieties of broccoli (Calabrese and Green Sprouting) and five N rates (0, 50, 100, 150 and 200 kg ha-1) with three replication in each treatment combinations. The effects of variety and N rate on total curd yield were significant but the interaction effect was non-significant. Green Sprouting produced 11...

  18. Effects of nitrogen-related defects on visible light photocatalytic response in N{sup +} implanted TiO{sub 2}: A first-principles study

    Senga, Junya [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tatsumi, Kazuyoshi, E-mail: k-tatsumi@nucl.nagoya-u.ac.jp; Muto, Shunsuke; Yoshida, Tomoko [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-09-21

    It was found that the visible-light responsiveness of a nitrogen ion-implanted TiO{sub 2} photocatalyst was attributable to the predominant chemical states of nitrogen, depending on the local nitrogen concentration near the surface. In the present study, we examined the effects of conceivable nitrogen-related defects on the visible light responsiveness, based on electronic structures calculated from first principles. Possible chemical states were proposed by comparing previously reported experiments with the present theoretical N-K X-ray absorption spectra. The theoretically predicted visible light absorption spectra and carrier trap states due to the bandgap states associated with the defects well explained the relationship between the catalytic reactivity and the proposed chemical states.

  19. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Iconomou, D.

    2010-09-01

    Full Text Available The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L. of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall ogranoleptic quality, but also increased the olive oil yield.

    La evolución de los compuestos fenólicos y su contribución a las caracterísiticas de calidad de aceite de oliva virgen durante el procesado del fruto fue estudiado mediante la adición de una combinación de varias enzimas comerciales conteniendo pectinasas, poligalacturonasa, celulasa y β-glucanasa con y sin flujo de nitrógeno. Las aceitunas (Olea europaea, L. de la variedad Megaritiki, con un estado de madurez correspondiente a una pigmentación semi-negra, fueron usadas en un experimento a escala industrial mediante un sistema de extracción de 3-fase. La

  20. Dry matter accumulation and mineral nutrition of arracacha in response to nitrogen fertilization

    Luis Augusto Magolbo

    2015-08-01

    Full Text Available Abstract:The objective of this work was to evaluate the effect of nitrogen fertilization on the growth and yield of arracacha (Arracacia xanthorrhiza, as well as on the plant's nutrient uptake, distribution, and removal. The experiment was carried out in a typical Oxisol, with sandy texture. A randomized complete block design was used, with four replicates. The treatments consisted of five N rates: 0, 50, 100, 200, and 400 kg ha-1. The plots were composed of three 8-m-length rows, spaced at 0.60 m between rows and 0.40 m between plants. The plants were harvested after an 8-month cycle. Nitrogen fertilization significantly increased the proportion of N and S accumulated in stems, and of Ca, Mg, Fe, and Mn in leaves. N supply increased Zn distribution to stems and leaves, whereas high N rates increased Cu allocation to stems more than to the rootstock. High N rates increase plant dry matter (DM production and nutrient uptake and removal, but do not result in the greatest yield due to the greater development of leaves and stems, and to the lower allocation of DM in storage roots.

  1. Plant yield and nitrogen content of a digitgrass in response to azospirillum inoculation

    Schank, S.C.; Weier, K.L.; MacRae, I.C.

    1981-02-01

    Two Australian soils, a vertisol (pH 6.8, 0.299% N) and a sandy yellow podzol (pH 6.2, 0.042% N), were used with digitgrass, Digitaria sp. X46-2 (PI 421785), in a growth room experiment. Comparisons were made between plants inoculated with live and autoclaved bacterial suspensions of Australian and Brazilian isolates of Azospirillum brasilense. Seedlings were inoculated on days 10 and 35. Acetylene-reducing activity was measured five times during the experiment. Dry matter yields of the digitgrass on the podzol (low N) inoculated with liver bacteria were 23% higher than those of the controls. On the vertisol (high N), yield increases from inoculation with live bacteria were 8.5%. The higher-yielding plants had significantly lower precent nitrogen, but when total nitrogen of the tops was calculated, the inoculated plants had a higher total N than did the controls (P = 0.04). Acetylene-reducing activity was variable in the experiment, ranging from 0.5 to 11.9 mu mol of C2H2 core -1 day -1. Live bacterial treatment induced a proliferation of roots, possible earlier maturity, higher percent dry matter, and a higher total N in the tops. (Refs. 21).

  2. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots did not differ, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor using in situ incubations; fertilized soil mineralized 277 kg/ha/y in contrast to 18 kg/ha/y in control plots. Relative recovery of 15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  3. Additional support for the existence of skin conductance responses at unconditioned stimulus omission.

    Spoormaker, Victor I; Blechert, Jens; Goya-Maldonado, Roberto; Sämann, Philipp G; Wilhelm, Frank H; Czisch, Michael

    2012-11-15

    The existence of a skin conductance response to an expected but omitted aversive stimulus has recently been challenged. To counter this claim, we provide a review of the literature and a temporal analysis of two independent skin conductance data sets during aversive conditioning and extinction that demonstrates a consistent and reproducible skin conductance response at omission of an anticipated aversive stimulus. The validity of this so-called unconditioned stimulus (US) omission response is relevant for skin conductance modeling in the context of neuroimaging and more generally for conditioning theory. PMID:22922467

  4. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  5. Protozoan Response to the Addition of Bacterial Predators and Other Bacteria to Soil †

    Casida, L. E.

    1989-01-01

    Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-proba...

  6. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  7. Nitrogen processing in the hyporheic zone and its response to stream-groundwater interactions

    Grant, Stanley; Azizian, Morvarid; Boano, Fulvio

    2016-04-01

    Modeling and experimental studies have shown that stream-groundwater interactions reduce hyporheic exchange, but the implications of this observation for hyporheic zone function are not yet clear. In this study we develop and test a simple process-based model for nitrate cycling in the hyporheic zone of a gaining or losing stream. Our model reproduces field measurements of nitrate uptake velocity and predicts that stream-groundwater interactions: (1) reduce hyporheic exchange; (2) reduce the residence time of water in the hyporheic zone; (3) slow denitrification; and (4) can cause stream sediments to switch from a net sink to source of nitrate. Stream-groundwater interactions attenuate denitrification across at least two scales of hyporheic exchange (fluvial dunes and riffle-pool bedforms). These results suggest that changes in regional groundwater hydrology (e.g., brought on by climate change) can indirectly affect stream nitrogen budgets by altering the form and function of the hyporheic zone.

  8. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae and Nannochloropsis sp. (Eustigmatophyceae.

    Gregory J O Martin

    Full Text Available Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs, the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.

  9. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    The main objective of this work was to study the effects of different CO2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO2 and N treatments, and (iv) species dependent differences in potential NH4+ and NO3- uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO2. The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO2 concentration. The effects of CO

  10. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  11. Effects of nitrogen addition and precipitation change on soil methane and carbon dioxide fluxes%施氮和降水格局改变对土壤CH4和CO2通量的影响

    李伟; 白娥; 李善龙; 孙建飞; 彭勃; 姜萍

    2013-01-01

    氮沉降增加和降水格局改变是全球变化的两项重要内容,但是同时考虑上述两因素对温室气体CH4和CO2通量影响的原位双因子模拟研究还相当有限.本研究以长白山温带阔叶红松林土壤为研究对象,采用静态箱法研究了外施氮源(50 kg N·hm-2·a-1)和增减30%降水对土壤CH4和CO2通量的影响.结果表明:施氮能抑制土壤CH4吸收,有时甚至能将土壤对CH4的吸收转为释放,但这种抑制效应只能维持5d左右,且能在一定程度上改变CH4通量和环境因子(温度、土壤pH、粘粒含量)的相关关系.降水改变未能显著影响土壤CH4通量.对CO2通量而言,施氮能降低土壤CO2排放,长白山阔叶红松林连续施氮第4年的平均抑制效应为27.4%.长期连续施氮的平均抑制效应随施氮时间延长而逐渐增大,一定年限后达到最大值.单次施氮的抑制效应随时间延长逐渐减弱,并在1个月的施氮周期末期基本消失.施氮的抑制效应和土壤充水孔隙度(WFPS)呈显著负相关关系,且升温能增强施氮对CO2释放的抑制效应并延长抑制时间.施氮、降水有可能改变土壤呼吸的温度敏感性.本研究表明,长白山森林土壤氮素尚未达到一定阈值,未来氮沉降增加将抑制CO2的释放和CH4的吸收,因此总体来看施氮抑制土壤碳排放.%Increased nitrogen deposition and changed precipitation pattern are the two important factors of global change,while the in situ experiments studying how the two factors affect greenhouse gases CO2 and CH4 fluxes are still limited.Taking the temperate broad-leaved Korean pine (Pinus koraiensis) forest in Changbai Mountains of Northeast China as the object,and by using static chambers,this paper studied the effects of nitrogen addition (50 kg N · hm-2 · a-1) and changed precipitation regime (30% increase and decrease of precipitation) on the soil CO2 and CH4 fluxes.Nitrogen addition inhibited the soil CH4 consumption

  12. HCl-ractopamine level addition on reproductive response, carcass characteristics and meat quality of pork

    Francisco Gerardo Ríos Rincón

    2010-12-01

    Full Text Available To determinate the effect of ractopamine hydrochloride (HCl-R in reproductive response, carcass characteristics, primary cuts yield and meat quality, 80 pork (Large White Landrace X Large White-Pietrain at end stage (Live weight 73.1 kg were feed during 31 days with an integral ration with 15.12% PC and 2.32 Mcal of ME/kg with different HCL-R levels (0, 5, 10, 15 and 20ppm. Pigs were randomly distributed in the different treatments. HCl-R inclusion had no effect on reproductive response and carcass weight. Rib eye area wee improved with 15 and 20 ppm HCL-R. HCL-R levels of 10 and 20 ppm increased red coloration. The pH24 and drip loss were also no affected. HCl-R in end stage pigs had no effect on reproductive response, but improved rib eye area, red coloration and leg weight.

  13. Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength

    2009-01-01

    To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm2, signifying optimum and excessive nitrogen application levels were applied.The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12—24 DPA. In 240 kgN/hm2 condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.

  14. HCl-ractopamine level addition on reproductive response, carcass characteristics and meat quality of pork

    Francisco Gerardo Ríos Rincón; Jorge Hernández Bautista; Héctor Raúl Güemez Gaxiola; Francisco Alfredo Nuñez González; Jesús Francisco Obregón; Jesús José Portillo Loera

    2010-01-01

    To determinate the effect of ractopamine hydrochloride (HCl-R) in reproductive response, carcass characteristics, primary cuts yield and meat quality, 80 pork (Large White Landrace X Large White-Pietrain) at end stage (Live weight 73.1 kg) were feed during 31 days with an integral ration with 15.12% PC and 2.32 Mcal of ME/kg with different HCL-R levels (0, 5, 10, 15 and 20ppm). Pigs were randomly distributed in the different treatments. HCl-R inclusion had no effect on reproductive response a...

  15. Responses of vegetative and reproductive traits to elevated CO{sub 2} and nitrogen in Raphanus varieties

    Jablonski, L.M. [McGill Univ., Montreal, PQ (Canada). Dept. of Biology

    1997-04-01

    The relationship between the vegetative and reproductive responses to increased CO{sub 2} and N fertilization in different varieties of Raphanus (radish) was studied to determine if an increase in nonfoliar vegetative storage capacity promotes reproductive output. Another objective was to determine if the capacity for nonfoliar carbon storage would be beneficial for reproductive output in an elevated CO{sub 2} environment. Three cultivars of radish were grown under two levels of CO{sub 2} and two levels of nitrogen fertilization. Growth conditions were discussed. The methodology included biomass allocation and growth analysis, reproductive characteristics, photosynthesis measurements, metabolite measurements, starch analysis and statistical analyses. Results showed that in the vegetative phase, there were several correlations between source leaf physiological and plant mass traits in the response to high CO{sub 2}. The reproductive response to CO{sub 2} cannot be inferred from increases in total vegetative mass. It was concluded that vegetative responses to elevated CO{sub 2} and N differed with ontogeny and with variations in the hypocotyl to shoot ratios. 55 refs., 5 tabs., 2 figs.

  16. Comparison of point injection and top-dressing application of nitrogen fertilizers with sulphur addition in winter rape (Brassica napus L.) in the Czech Republic

    Lucie Peklová; Jindřich Černý; Zuzana Peklová; Karin Kubešová; Ondřej Sedlář; Jiří Balík

    2015-01-01

    In this paper, we are analyzing the yield and yield parameters of winter rape, fertilized using CULTAN system (Controlled Uptake Long Term Ammonium Nutrition) in comparison with top-dressing application of nitrogen fertilizers, which were studied on Haplic Luvisol over 5 years. No significant differences in seed yields between the two systems of fertilization were observed in 2008, 2009 and 2011. The effect of sulphur on a higher seed yield was proved in 2010 and 2012. The seed yield was high...

  17. Monolayers of gold nanostars with two Near-IR LSPR capable of additive photothermal response

    Pallavicini, Piersandro

    2015-07-06

    Monolayers of photothermally responsive gold nanostars on PEI-coated surfaces display two Localized Surface Plasmon Resonances (LSPR) in the near-IR region that can be laser-irradiated either separately, obtaining two different T jumps, or simultaneously, obtaining a T jump equal to the sum of what obtained with separate irradiations

  18. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  19. Ecophysiological and anatomical responses of Vallisneria natans to nitrogen and phosphorus enrichment

    Wang Y.

    2012-06-01

    Full Text Available Here, we describe an experiment using four nitrogen (N and phosphorus (P concentrations to investigate the effects of nutrient enrichment on the submersed macrophyte Vallisneria natans (tape grass grown in a sand culture medium. The objective of this study was to examine the influence of nutrient enrichment in the water column on V. natans, especially with regard to anatomical structures. The results showed both the absolute growth rate (AGR and intrinsic efficiency of light energy conversion of PSII (Fv/Fm decreased with increasing nutrient levels. Root morphological characteristics, including the total root length (L, root surface area (SA, projected root area (PA, total root volume (V, average root diameter (AD, total root length per volume (LPV, total tips (T and total forks (F, also showed a generally negative relationship with increasing nutrient concentrations. The anatomical structures of stolons and leaves also changed with nutrient enrichment. The shrinkage of aerenchyma and disappearance of starches and chloroplasts were the main structural changes leading to poor growth. These phenomena, especially the anatomical changes, might be the mechanism underlying the effect of nutrient enrichment on V. natans growth.

  20. Differential Behavior of Young Eucalyptus Clones in Response to Nitrogen Supply

    Eric Victor de Oliveira Ferreira

    2015-06-01

    Full Text Available Eucalyptus requires large amounts of nitrogen (N; however, it responds in diverse manners to the application of this nutrient. The aim of this study was to evaluate the differential performance in growth, mineral nutrition, and gas exchanges of N-fertilized Eucalyptus clones. The treatments consisted of two Eucalyptus clones (VM-01 and I-144 and six N application rates (0, 0.74, 2.93, 4.39, 5.85, and 8 mmol L-1 NH4NO3 arranged in a randomized complete block design with five replications. VM-01 had greater plant height and greater height/collar diameter ratio, as well as higher leaf concentrations of all macronutrients and of Cu, Fe, Mo, and Zn. In terms of total and root dry matter production, root/shoot ratio, and collar diameter, as well as stomatal conductance and transpiration, I-144 performed better. The performance of the clones was clearly differentiated, and the growth of I-144, despite lower leaf N concentration, was in general better than VM-01.

  1. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  2. Carbon dioxide enrichment: Data on the response of cotton to varying CO sub 2 , irrigation, and nitrogen

    Sepanski, R.J. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. (Agricultural Research Service, Phoenix, AZ (United States)); Lakatos, E.A. (Arizona Univ., Tucs

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  3. Carbon dioxide enrichment: Data on the response of cotton to varying CO{sub 2}, irrigation, and nitrogen

    Sepanski, R.J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. [Agricultural Research Service, Phoenix, AZ (United States); Lakatos, E.A. [Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  4. Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China

    JIANG Peng; XIONG Hong; ZOU Ying-bin; XIE Xiao-bing; HUANG Min; ZHOU Xue-feng; ZHANG Rui-chun; CHEN Jia-na; WU Dan-dan; XIA Bing; XU Fu-xian

    2015-01-01

    In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, ifeld experiments were conducted in Huaiji County of Guangdong Province, Binyang of Guangxi Zhuang Autonomous Region and Changsha City of Hunan Province, southern China in 2011 and 2012. Two hybrid (Liangyoupeijiu and Y-liangyou 1) and two inbred rice cultivars (Yuxiangyouzhan and Huanghuazhan) were grown under three N treatments (N1, 225 kg ha–1;N2, 112.5–176 kg ha–1;N3, 0 kg ha–1) in each location. Results showed that grain yield was higher in Changsha than in Huaiji and Binyang for both hybrid and inbred cultivars. The higher grain yield in Changsha was attribut-ed to larger panicle size (spikelets per panicle) and higher biomass production. Consistently higher grain yield in hybrid than in inbred cultivars was observed in Changsha but not in Huaiji and Binyang. Higher grain weight and higher biomass production were responsible for the higher grain yield in hybrid than in inbred cultivars in Changsha. The better crop perfor-mance of rice (especial y hybrid cultivars) in Changsha was associated with its temperature conditions and indigenous soil N. N2 had higher internal N use efifciency, recovery efifciency of applied N, agronomic N use efifciency, and partial factor productivity of applied N than N1 for both hybrid and inbred cultivars, while the difference in grain yield between N1 and N2 was relatively smal . Our study suggests that whether hybrid rice can outyield inbred rice to some extent depends on the ecological conditions, and N use efifciency can be increased by using improved nitrogen management such as site-speciifc N management in both hybrid and inbred rice production.

  5. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  6. Phosphorus utilization and microbial community in response to lead/iron addition to a waterlogged soil

    ZHONG Shunqing; WU Yuping; XU Jianming

    2009-01-01

    Constructed wetlands have emerged as a viable option for helping to solve a wide range of water quality problems. However, heavy metals adsorbed by substrates would decrease the growth of plants, impair the functions of wetlands and eventually result in failure of contaminant removal. Typha latifolia L., tolerant to heavy metals, has been widely used for phytoremediation of Pb/Zn mine tailings under waterlogged conditions. This study examined effects of iron as ferrous sulfate (100 and 500 mg/kg) and lead as lead nitrate (0, 100, 500 and 1000 mg/kg) on phosphorus utilization and microbial community structure in a constructed wetland. Wetland plants (T. latifolia) were grown for 8 weeks in rhizobags filled with a paddy soil under waterlogged conditions. The results showed that both the amount of iron plaque on the roots and phosphorus adsorbed on the plaque decreased with the amount of lead addition. When the ratio of added iron to lead was 1:1, phosphorus utilized by plants was the maximum. Total amount of phospholipids fatty acids (PLFAs) was 23%-59% higher in the rhizosphere soil than in bulk soil. The relative abundance of Gram-negative bacteria, aerobic bacteria, and methane oxidizing bacteria was also higher in the rhizosphere soil than in bulk soil, but opposite was observed for other bacteria and fungi. Based on cluster analysis, microbial communities were mostly controlled by the addition of ferrous sulfate and lead nitrate in rhizosphere and bulk soil, respectively.

  7. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  8. Impact of arbuscular mycorrhizal fungi on maize physiology and biochemical response under variable nitrogen levels

    Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...

  9. PREDICTING RICE YIELD RESPONSE TO MIDSEASON NITROGEN WITH PLANT AREA MEASURMENTS

    A simple method is needed to aid farmers with midseason N decisions in dry-seeded, delayed flood rice (Oryza sativa L.). This study was conducted to develop thresholds using visual and digital image measurements for predicting rice yield response to N topdressing. 'Francis' and 'Cheniere' (cv) ric...

  10. Inoculation Policies in Response to Terrorist or WMD Attacks: Additional Factors to Consider

    When viewed on its own merits, the debate over who should be inoculated during a period of biological emergency is a rather straightforward public policy decision. The classic public policy 'balancing act' decision-making model is defaulted to as issues of fairness, efficiency, cost-effectiveness, adequacy of supply, mission performance, and constituencies are arrayed and adjudicated. This mainstream approach is appropriate as far as it goes but it also exemplifies a series of structural and perceptual weaknesses when applied to wartime or localized terrorism scenarios. In fact, the establishment of a vaccination policy appropriate to a flu pandemic falls squarely within this mainstream debate. Although the notion of a pandemic carries an assumption of a great many fatalities it does not possess the fear quotient, uncertainty, horror, unnaturalness, or inevitability of a bio-terror or biological warfare incident. As a result, the reliability and responsiveness of key personnel responding to a flu pandemic should be less of an issue than it will be in the event of an intentional man-made biological incident. The principal policy weakness in instances an intentional bio-attack stems from a generalized failure, or refusal, to systematically study the behavior of key personnel, first-responders, soldiers, or critical senior leadership during severe crises occurring in their own backyards. In other words, when the 'balloon goes up' how many of your responders and critical personnel will show up for work? This presentation considers many of the 'unaddressed' factors that experience has shown may have a determinative effect upon the efficacy of a response to a biological incident. Lessons are drawn from experiences of US forces station in the former West Germany, US Defense Department Continuity of Operations Programs, Hurricane Katrina, and the 9/11 attacks on the United States. (author)

  11. Inoculation Policies in Response to BW Attacks: Additional Factors to Consider

    When viewed on its own merits, the debate over who should be inoculated during a period of biological emergency is a rather straightforward public policy decision. The classic public policy 'balancing act' decision-making model is defaulted to as issues of fairness, efficiency, cost-effectiveness, adequacy of supply, mission performance, and constituencies are arrayed and adjudicated. This mainstream approach is appropriate as far as it goes but it also exemplifies a series of structural and perceptual weaknesses when applied to wartime or localized terrorism scenarios. In fact, the establishment of a vaccination policy appropriate to a flu pandemic falls squarely within this mainstream debate. Although the notion of a pandemic carries an assumption of a great many fatalities it does not possess the fear quotient, uncertainty, horror, unnaturalness, or inevitability of a bio-terror or biological warfare incident. As a result, the reliability and responsiveness of key personnel responding to a flu pandemic should be less of an issue than it will be in the event of an intentional man-made biological incident. The principal policy weakness in instances an intentional bio-attack stems from a generalized failure, or refusal, to systematically study the behavior of key personnel, first-responders, soldiers, or critical senior leadership during severe crises occurring in their own backyards. In other words, when the 'balloon goes up' how many of your responders and critical personnel will show up for work? This presentation considers many of the 'unaddressed' factors that experience has shown may have a determinative effect upon the efficacy of a response to a biological incident. Lessons are drawn from experiences of US forces station in the former West Germany, US Defense Department Continuity of Operations Programs, Hurricane Katrina, and the 9/11 attacks on the United States. (author)

  12. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    Madjelia Cangre Ebou eDAO

    2015-11-01

    Full Text Available The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill. BSP] in Quebec, Canada. During 2008-2013, the soil around mature trees was warmed up by 4 °C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  13. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: The effect on growth of kikuyu grass and fate of applied nutrients.

    Kaur, Navjot; Phillips, Ian; Fey, Martin V

    2016-04-15

    Bauxite residue, a waste product of aluminium processing operations is characterised by high pH, salinity and exchangeable sodium which hinders sustainable plant growth. The aim of this study was to investigate the uptake form, optimum application rate and timing of nitrogen fertiliser to improve bauxite residue characteristics for plant growth. Kikuyu grass was grown in plastic columns filled with residue sand/carbonated residue mud mixture (20:1) previously amended with gypsum, phosphoric acid and basal nutrients. The experiment was set up as a 4×4 factorial design comprising four levels of applied nitrogen (N) fertiliser (0, 3, 6 and 12mgNkg(-1) residue) and four frequencies of leaching (16, 8 and 4day intervals). We hypothesised that the use of ammonium sulfate fertiliser would increase retention of N within the rhizosphere thereby encouraging more efficient fertiliser use. We found that N uptake by kikuyu grass was enhanced due to leaching of excess salts and alkalinity from the residue profile. It was also concluded that biomass production and associated N uptake by kikuyu grass grown in residue is dependent on the type of fertiliser used. PMID:26824271

  14. Erratum to: Estimating the crop response to fertilizer nitrogen residues in long-continued field experiments

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattson, L;

    2012-01-01

    N offtake when the residual effect originated from organic applications, but the interaction was not significant when mineral N fertilizer had been used in the past, making the residual effect of N applied in the past additive to the effect of N applied in the test year. The dry matter (DM) grain...

  15. Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh.

    Ribeiro, Hugo; Mucha, Ana P; Almeida, C Marisa R; Bordalo, Adriano A

    2013-08-01

    Microbial communities play an important role in the biodegradation of organic pollutants in sediments, including hydrocarbons. The aim of this study was to evaluate the response of temperate salt marsh microbial communities to petroleum contamination, in terms of community structure, abundance and capacity to degrade hydrocarbons. Sediments un-colonized and colonized (rhizosediments) by Juncus maritimus, Phragmites australis and Triglochin striata were collected in a temperate estuary (Lima, NW Portugal), spiked with petroleum under variable nutritional conditions, and incubated for 15 days. Results showed that plant speciation emerged as the major factor for shaping the rhizosphere community structure, overriding the petroleum influence. Moreover, when exposed to petroleum contamination, the distinct salt marsh microbial communities responded similarly with (i) increased abundance, (ii) changes in structure, and (iii) decreased diversity. Communities, particularly those associated to J. maritimus and P. australis roots displayed a potential to degrade petroleum hydrocarbons, with degradation percentages between 15% and 41%, depending on sediment type and nutritional conditions. In conclusion, distinct salt marsh microbial communities responded similarly to petroleum contamination, but presented different pace, nutritional requirements, and potential for its biodegradation, which should be taken into account when developing bioremediation strategies. PMID:23707865

  16. A Lowland Catchment Response to Heavy Agricultural Nitrogen Loads Explained with a Multiple Isotope and Hydrochemical Approach

    Wexler, S. K.; Hiscock, K. M.; Dennis, P.

    2009-12-01

    East Anglia, UK, is a lowland area of intensive agriculture, producing much of the UK’s arable crops, while also supporting some of Europe’s most sensitive wetland habitats. The River Wensum in East Anglia is a calcareous lowland river with Site of Special Scientific Interest status. Within the catchment Special Areas of Conservation have been designated (EU Habitats Directive). The river supplies the city of Norwich with its drinking water (population 120 000), while downstream of Norwich water from the Wensum flows through the Norfolk Broads, a unique and protected wetland habitat, to enter the North Sea at Great Yarmouth. The Wensum catchment, covering an area of 570 km2, is heavily impacted by agricultural activity with a high nutrient load that affects both the underlying Cretaceous Chalk aquifer and the groundwater-dependent river, which has a base flow index of 0.78. Nitrate concentrations exceed the legal limit in places (up to 85 mg/ L). In this study, river, tributary, drain and groundwater samples from the Wensum catchment were collected over 27 months from February 2007, through all seasons and flow conditions, alongside samples of fertiliser, manure, waste water, precipitation and dry deposition. The nitrogen and oxygen isotopic composition of nitrate was analysed using the denitrifier method to understand nitrogen transport and cycling within the catchment. Water isotopes were used as an additional tracer, with major ion and trace element hydrochemistry. There is evidence of significant natural attenuation of nitrate which occurs in different locations and at varying rates within the catchment hydrology. Baseflow from highly impacted Chalk groundwater in the valley, with the lowest nitrate isotope ratios and highest concentration of catchment waters, is partially denitrified as it passes through a thick gravel hyporheic zone. Nitrate in surface drainage water undergoes assimilation and denitrification as it infiltrates through the soil and

  17. Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels.

    Zouhaier, Barhoumi; Mariem, Maatallah; Mokded, Rabhi; Rouached, Aida; Alsane, Khaldoun; Chedly, Abdelly; Abderrazek, Smaoui; Abdallah, Atia

    2016-05-01

    Salinity stress reduces plant productivity, but low levels of salinity often increase plant growth rates in some species. We herein describe the effects of salinity on plant growth while focusing on nitrogen use. We treated Trifolium alexandrinum with two nitrogen concentrations and salinity levels and determined growth rates, mineral concentrations, nitrogen use efficiency, photosynthesis rates, and nitrate reductase (NR, E.C. 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) activities. The T. alexandrinum growth rate increased following treatment with 100 mM NaCl in low nitrogen (LN) and high nitrogen (HN) conditions. Salt treatment also increased root volume, intrinsic water use efficiency, and nitrogen use efficiency in LN and HN conditions. These changes likely contributed to higher biomass production. Salinity also increased accumulations of sodium, chloride, and phosphate, but decreased potassium and calcium levels and total nitrogen concentrations in all plant organs independently of the available nitrogen level. However, the effect of salt treatment on magnesium and nitrate concentrations in photosynthetic organs depended on nitrogen levels. Salt treatment reduced photosynthesis rates in LN and HN conditions because of inhibited stomatal conductance. The effects of salinity on leaf NR and GS activities depended on nitrogen levels, with activities increasing in LN conditions. In saline conditions, LN availability resulted in optimal growth because of low chloride accumulation and increases in total nitrogen concentrations, nitrogen use efficiency, and NR and GS activities in photosynthetic organs. Therefore, T. alexandrinum is a legume forage crop that can be cultivated in low-saline soils where nitrogen availability is limited. PMID:26818949

  18. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  19. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.

    Sun, Huwei; Bi, Yang; Tao, Jinyuan; Huang, Shuangjie; Hou, Mengmeng; Xue, Ren; Liang, Zhihao; Gu, Pengyuan; Yoneyama, Koichi; Xie, Xiaonan; Shen, Qirong; Xu, Guohua; Zhang, Yali

    2016-07-01

    The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs. PMID:27194103

  20. The influence of different feed additives to performances and immune response in broiler chicken

    Tokić Vesna

    2007-01-01

    Full Text Available Our investigations were conducted in order to determine the influence of mannan-oligosaccharide (MOS based prebiotics and polysaccharide microelement complexes on the performance and immune response of Arbor Acre broiler chickens. Total of 186 chickens was included in the study which lasted 42 days. Birds were fed ad libitum three different complete food mixtures (from days 1- 21, 21 - 35 and 35-42 according to the standard fattening procedure. Mixtures for chickens from the first group were supplemented with mannanoligosaccharide based prebiotics and for the birds from the second group with polysaccharide microelement (Fe, Cu, ZN and Mn complexes. Broilers in the control group had daily weight gain of 49.1 g, daily food consumption of 115.5 g and a feed : gain ratio 2.35. In the group of broilers feed mixtures supplemented with mannan-oligosaccharides, the daily weight gain was higher (+ 14.95%, daily food consumption was lower (- 2.67 and feed : gain ratio was smaller (-15.32% when compared to the control group. In the group of broilers fed mixtures with polysaccharide microelement complexes, the daily weight gain was also higher (+ 11.43%, daily food consumption was lower (- 4.28 and feed: gain ratio was smaller (-14.0% when compared to the control group. Following revaccination against NCD, broilers fed MOS based prebiotics had significantly higher titers of antibodies than observed in the other two groups. The highest degree of cutaneous hypersensitivity to PHA was recorded in the group of broilers fed mixtures with polysaccharide microelement complexes.

  1. Investigating genotype specific response in photosynthetic behavior under drought stress and nitrogen limitation in Brassica rapa.

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.

    2015-12-01

    Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to

  2. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  3. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and δ13C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but δ13Cmoss became less negative. With measurements of atmospheric CO2 and δ13CO2, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of δ13Cmoss to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed. - Photosynthetic 13C discrimination of bryophytes might increase with elevated N deposition.

  4. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition

    Liu Xueyan, E-mail: liuxueyan@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xiao Huayun; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Youyi; Xiao Hongwei; Wang Yanli [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049 (China)

    2010-06-15

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and delta{sup 13}C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but delta{sup 13}C{sub moss} became less negative. With measurements of atmospheric CO{sub 2} and delta{sup 13}CO{sub 2}, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of delta{sup 13}C{sub moss} to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed. - Photosynthetic {sup 13}C discrimination of bryophytes might increase with elevated N deposition.

  5. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.

    Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo

    2013-12-01

    Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation

  6. Wheat-yield responses to irrigation and nitrogen fertilizers in Romania

    This 4-year study investigated the effects of applied N on growth and yield of winter wheat. Rates ranged from 40 to 180 kg N ha-1, applied as urea or ammonium sulphate, enriched in 15N, one third at sowing in the fall and the rest at tillering in the spring. The optimum rate was locally regarded as 120 kg N ha-1, or 80 kg N ha-1 after pea. Irrigation was applied to maintain soil moisture in excess of 75% field capacity. Wheat dry-matter and grain-yield responses, and soil mineral-N content, were influenced by the previous crop. Yield benefits were greater from N applied at tillering than when applied at planting; similarly, higher values of fertilizer-N recovery were obtained after application at tillering. (author)

  7. Responses of Greenhouse Tomato and Pepper Yields and Nitrogen Dynamics to Applied Compound Fertilizers

    ZHU Jian-Hua; LI Xiao-Lin; ZHANG Fu-Suo; LI Jun-Liang; P.CHRISTIE

    2004-01-01

    Yield and N uptake of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annuum L.) crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-11 N-P2O5-K2O) were studied to determine 1)crop responses,2) dynamics of NO3-N and NH4-N in different soil layers,3) N balance and 4) system-level N efficiencies.Five treatments (2 fertilizers,2 fertilizer rates and a control),each with three replicates,were arranged in the study.The higher N fertilizer rate,300 kg N ha-1 (versus 150 kg N ha-i),returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer (12-12-17) applied at 300 kg N ha-1 rather than with the high-N fertilizer (21-8-11). Ammonium-N in the top 90 cm of the soil profile declined during the experiment,while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N.At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha-1. About 200 kg N ha-1 was applied with irrigation to each crop using NO3-contaminated groundwater. In general,about 50% of the total N input was recovered from all treatments. Pepper,relative to tomato,used N more efficiently with smaller N losses,but the crops utilized less than 29% of the fertilizer N over the two and a half-year period. Local agricultural practices maintained high residual soil nutrient status. Thus,optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.

  8. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    development of this work, the Electron Cyclotron Emission system (ECE) of ASDEX Upgrade is crucial since it allows local measurements of the electron temperature with high temporal and spatial resolutions. The analysis and interpretation of perturbative MECH discharges for power deposition localisation using different diagnostics, such as ECE and SXR measurements, are presented. The most important problem is related to the phase locking between the MECH and the sawtooth activity of the plasma, which disturbs both ECE and SXR measurements. Several techniques have been adopted to circumvent this difficulty. In particular, the Singular Value Decomposition (SVD) and the Generalised Singular Value Decomposition (GSVD) have been tested in both TCV and ASDEX Upgrade discharges. However, both methods are incapable of treating the problem correctly, which leads to potential misinterpretation of the results. A new method based on system identification using the SVD (SI-SVD) is developed and applied. This method, within reasonable limits induced by the assumption of linearity, is capable of simultaneously separating the MECH from the sawtooth contributions to both ECE electron temperature measurements and SXR emission measurements. Such a method is in particular applied to a NBI heated ASDEX Upgrade discharge in which MECH is added in order to analyse electron heat transport in a mostly ion-heated plasma. Since the NBI heating is also partly modulated with short pulses, which coincide with the sawtooth crashes to improve their stability, both the MECH and the NBI deposition profiles are determined. Moreover, treating the signals with the SI-SVD procedure enables a study of the plasma dynamic response also at higher MECH harmonic numbers. The procedure is then used to analyse MECH discharges in TCV using different diagnostics. The profiles determined using the ECE and soft X-ray measurements are compared and interpreted, demonstrating in particular that line integrated soft X

  9. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    Manini, A

    2002-07-01

    development of this work, the Electron Cyclotron Emission system (ECE) of ASDEX Upgrade is crucial since it allows local measurements of the electron temperature with high temporal and spatial resolutions. The analysis and interpretation of perturbative MECH discharges for power deposition localisation using different diagnostics, such as ECE and SXR measurements, are presented. The most important problem is related to the phase locking between the MECH and the sawtooth activity of the plasma, which disturbs both ECE and SXR measurements. Several techniques have been adopted to circumvent this difficulty. In particular, the Singular Value Decomposition (SVD) and the Generalised Singular Value Decomposition (GSVD) have been tested in both TCV and ASDEX Upgrade discharges. However, both methods are incapable of treating the problem correctly, which leads to potential misinterpretation of the results. A new method based on system identification using the SVD (SI-SVD) is developed and applied. This method, within reasonable limits induced by the assumption of linearity, is capable of simultaneously separating the MECH from the sawtooth contributions to both ECE electron temperature measurements and SXR emission measurements. Such a method is in particular applied to a NBI heated ASDEX Upgrade discharge in which MECH is added in order to analyse electron heat transport in a mostly ion-heated plasma. Since the NBI heating is also partly modulated with short pulses, which coincide with the sawtooth crashes to improve their stability, both the MECH and the NBI deposition profiles are determined. Moreover, treating the signals with the SI-SVD procedure enables a study of the plasma dynamic response also at higher MECH harmonic numbers. The procedure is then used to analyse MECH discharges in TCV using different diagnostics. The profiles determined using the ECE and soft X-ray measurements are compared and interpreted, demonstrating in particular that line integrated soft X

  10. Hydrogen Regulation and Global Responses to Electron, Carbon and Nitrogen Sources of Methanococcus Maripaludis

    Leigh, John A.

    2013-05-20

    Methanogens catalyze the critical, methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. This project has generated the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and non-coding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time course experiments that were performed in chemostats or batch cultures, under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one non-coding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to inter-coordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase – a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions. In addition, we have published an analysis of transcriptome architecture in M. maripaludis and an analysis of the effects of H2 and formate on growth yield and regulation of methanogenesis in M. maripaludis.

  11. Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane-nitrogen jet in hot coflow under MILD conditions

    Sepman, Alexey; Abtahizadeh, Ebrahim; Mokhov, Anatoli; van Oijen, Jeroen; Levinsky, Howard; de Goey, Philip

    2013-01-01

    In this work we investigate the effects of hydrogen addition on the flame structure of MILD combustion both experimentally and numerically using a laminar-jet-in-hot-coflow (LJHC) geometry. The addition of hydrogen appreciably decreases the flame height (similar to 25%), however only modestly affect

  12. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. PMID:25958969

  13. Soil and fertilizer nitrogen

    As a result of the intensified practices and effectively diminishing land resources per capita, increasing weights of both native soil- and added fertilizer-nitrogen will be lost to agriculture and its products, and will find their way into the environment. Soil-nitrogen levels and contingent productivity can nevertheless be maintained in the face of these losses on the basis of improved soil-N management. In some local situations nitrate levels in water for drinking purposes are likely to continue rising. In some cases agriculture and clearance practices are only one of several sources. In others they are clearly mainly responsible. In developing countries these losses represent those of a relatively increasingly costly input. This is due to the fact that industrial fertilizer nitrogen production is a particularly high energy-consuming process. In the more advanced industrialized countries they represent an addition to the problems and costs of environmental quality and health protection. The programmes, information and data reviewed here suggest that these problems can be contained by improved and extended soil and water management in agriculture on the basis of existing technology. In particular there appears to be enormous scope for the better exploitation of existing legumes both as non-legume crop alternatives or as biofertilizers which also possess more desirable C:N ratios than chemical fertilizer

  14. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  15. Agronomic performance and chemical response of sunflower (Helianthus annuus L. to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Ramadan, Mohamed Fawzy

    2009-03-01

    Full Text Available Sunflower (Helianthus annuus L. is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt during the 2005 season. The objective of this research was to determine the effect of organicnitrogen (ON sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macronutrients by sunflowers grown on sandy soil. The treatments of chicken manure (CM and a mixture of farmyard manure (FYM with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N, phosphorus (P and potassium (K by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control.El girasol (Helianthus annuus es una opción para la producción de semillas oleaginosas, en particular en terrenos arenosos debido al buen desarrollo de sus raíces. En este trabajo, dos estudios de campo fueron realizados en la región de El-Ishattara (Sharkia Governorate, Egypt durante la estación 2005. El efecto de

  16. Switchgrass response to nitrogen and phosphorus during first growth after seeding

    Rocky Lemusa

    2014-05-01

    Full Text Available Switchgrass (Panicum virgatum L. is a high-yielding, native perennial that could serve as a biofuels feedstock. The objectives of this research were to establish switchgrass’ responses to N and P under well-defined, soilless conditions and to measure its fertilizer recovery. ‘Cave-in-Rock’ switchgrass was grown from seed in the greenhouse in a 2:1 (v/v vermiculite: perlite substrate. Treatments (nine rates of N up to 400 kg N ha-1 and four rates of P up to 90 kg ha-1 were replicated three times in a randomized complete block design. In a second study, treatments from two N sources (ammonium sulfate and urea were applied at rates up to 270 kg N ha-1. In both studies, plants were harvested 12 wk after germination, dried, weighed, and analyzed for tissue N and P concentrations. Shoot biomass increased with N fertilization up to 210 kg N ha-1. In these pot studies, root biomass increased with N only to 100 kg N ha-1. No significant effect above 30 kg P ha-1 was observed in shoot or root biomass. Biomass and tiller number were highly correlated. Increases in tillers plant-1 were observed up to 116 kg N ha-1. Shoot and root N concentrations generally increased with fertilization. Ammonium sulfate had a greater effect than urea on shoot and root biomass. In field studies found in the literature, maximum yields have been obtained with as little as 50 kg added N ha-1 to as much 744 kg N ha-1.These data suggest switchgrass can maximize biomass production with ~200 kg available N ha-1.

  17. Grasshoppers (Orthoptera: Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland

    Viviana Loaiza; Jayne L. Jonas; Anthony Joern

    2011-01-01

    Key elements such as nitrogen (N) and phosphorus (P) are often limiting relative to the nutritional needs of herbivores that feed on them. While N often limits insect herbivores in natural terrestrial ecosystems, the effect of P is poorly studied in the field, even though compelling hypotheses from the ecological stoichiometry literature predict its importance. We evaluated small-scale spatial distributions of, and herbivory by, grasshoppers among neighboring plots that vary in foliar-N and -P in tallgrass prairie.Grasshopper densities were 67% greater in N-fertilized plots but detected no effect to grasshopper densities from P-fertilizer. Leaf damage to the dominant grass Andropogon gerardii was 32% greater in N-fertilized plots, but no response to foliar-P was detected.Herbivore damage to a common forb, goldenrod (Solidago missouriensis), was not strongly linked by fertilizer treatments, although there was increased leaf damage in N-fertilizer treatments when no P was applied (a significant N × P interaction). Under field conditions at local scales, we conclude that spatially heterogeneous distributions of grasshoppers are primarily affected by foliar-N in host plants with little evidence that P-levels contribute to the spatial patterns.

  18. Response surface optimization of carbon and nitrogen sources for nuclease P1 production by Penicillium citrinum F-5-5

    Penicillium citrinum F-5-5, a nuclease P1 high-producing strain with 978.6 U/ml in potato glucose medium, was derived from the original Penicillium citrinum CICC 4011 with 60Co γ-rays irradiation mutation and then protoplasts fusion treatment. Culture components were optimized for the nuclease P1 production, and response surface methodology was applied for the critical medium components(carbon and nitrogen sources) which were preselected by Plackett-Burman design approach. Glucose, soluble starch and corn steep powder showed significant effects on production of nuclease. Central composite design was used for the optimization levels by software Minitab 15, and it showed that, the optimal values for the concentration of glucose, soluble starch and corn steep powder were 30.89, 42.46 and 11.60 g/L, respectively. With this medium,an enzyme activity of 1687.16 U/ml could be obtained theoretically. Using this optimized medium, an experimental enzyme activity of 1672.6 U/ml was reached. (authors)

  19. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha−1 yr−1. Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  20. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-01-01

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady–state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax–fleck) and the steady–state A under low light (Amin–fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax–fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax–fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance. PMID:27506927

  1. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha-1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  2. Fertilizer nitrogen prescription for cotton by 15N recovery method under integrated nutrient management using soil test crop response function

    Fertilizer efficiency is a vital parameter in prescription functions to compute fertilizer requirements of crops for achieving a specific yield target. In Soil Test Crop Response (STCR) function, nitrogen fertilizer efficiency is calculated by Apparent N Recovery (ANR) method, which includes the effect of added N interaction (ANI) on soil N reserves. In order to exclude soil effect and refine STCR function, the real efficiency of fertilizer N was estimated by 15N recovery method. By fitting 15N recovery in the function, the fertilizer N required for a specific yield target of cotton was estimated. The estimated N requirement by 15N recovery method was lesser than ANR method when available soil N relatively increased. The approach also fine-tuned the N contributing efficiency of soil, farmyard manure and Azospirillum under Integrated Nutrient Management (INM). For achieving 25 q of seed cotton yield in a soil having 220 kg of available N ha-1, the predicted N requirement was 159 kg ha-1 under ANR method, whereas in 15N recovery method fertilizer N to be applied was 138 kg ha-1 with urea alone and 79 kg ha-1 with urea + FYM + Azospirillum. (author)

  3. Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon

    Carolyn F Weber

    2013-04-01

    Full Text Available Increasing levels of atmospheric carbon dioxide (CO2 and rates of nitrogen (N-deposition to forest ecosystems are predicted to alter the structure and function of soil fungal communities, but the spatially heterogeneous distribution of soil fungi has hampered investigations aimed at understanding such impacts. We hypothesized that soil physical and chemical properties and fungal community composition would be differentially impacted by elevated atmospheric CO2 (eCO2 and N-fertilization in spatially separated field samples, in the forest floor, 0-2 cm, 2-5 cm and 5-10 cm depth intervals in a loblolly pine Free-Air-Carbon Dioxide Enrichment (FACE experiment. In all soils, quantitative PCR-based estimates of fungal biomass were highest in the forest floor. Fungal richness, based on pyrosequencing of the fungal ribosomal large subunit gene, increased in response to N-fertilization in 0-2 cm and forest floor intervals. Composition shifted in forest floor, 0-2 cm and 2-5 cm intervals in response to N-fertilization, but the shift was most distinct in the 0-2 cm interval, in which the largest number of statistically significant changes in soil chemical parameters (i.e phosphorus, organic matter, calcium, pH was also observed. In the 0-2 cm interval, increased recovery of sequences from the Thelephoraceae, Tricholomataceae, Hypocreaceae, Clavicipitaceae, and Herpotrichiellaceae families and decreased recovery of sequences from the Amanitaceae correlated with N-fertilization. In this same depth interval, Amanitaceae, Tricholomataceae and Herpotriciellaceae sequences were recovered less frequently from soils exposed to eCO2 relative to ambient conditions. These results demonstrated that vertical stratification should be taken into consideration in future efforts to elucidate environmental impacts on fungal communities and their feedbacks on ecosystem processes.

  4. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter.

    Matthew J Harke

    Full Text Available Whole transcriptome shotgun sequencing (RNA-seq was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N, low levels of dissolved inorganic phosphorus (low P, and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM. Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE, and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC, and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5-22% of genes differentially expressed, transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.

  5. The Effect of Nitrogen Sources and Its Additional Strategies on L-valine Fermentation by Brevibacterium flavum XV0505%氮源及其补加策略对L-缬氨酸发酵的影响

    冯宁; 白亚磊; 徐庆阳; 谢希贤; 陈宁

    2011-01-01

    通过分析黄色短杆菌xv0505发酵生产L-缬氨酸的过程,得知在菌体生长期和快速产酸期氮源对L-缬氨酸发酵的影响不同.以黄色短杆菌XV0505为供试菌株,研究了不同氮源种类及不同氮源浓度对L-缬氨酸发酵过程的影响,选定了以豆饼水解液和硫酸铵为氮源,并确定了合适的初始氮源浓度.在初始氮源浓度相同的情况下,考察了间歇流加补氮策略、恒氮源浓度补氮策略和幂函数流加补氮策略对L-缬氨酸发酵的影响,研究发现,幂指数补氮策略可减少频繁的取样及铵浓度检测,在缺乏在线监测系统和反馈自控系统的情况下,将发酵体系中氮源浓度维持在合适值,既可适度促进菌体生长,又可使L-缬氨酸的产量得到进一步提高.在最优的氮源添加策略下,在30 L发酵罐发酵60 h,发酵液中L-缬氨酸可达63.17 g/L,糖酸转化率24.69%.%By analyzing the L-valine fermentation process by Brevibacterium flavum XV0505, one of important factors influenced on the bacterial productivity and L-valine yield is nitrogen source and its additional strategies. The effect of nitrogen sources on the fermentation of L-valine was studied by adding different nitrogen sources with different concentrations. Therefore, soybean hydrolysates and ammonium sulfate were selected as the appropriate nitrogen source, and the best L-valine yield was obtained with the medium supplemented low initial concentration of 225 mmol/L. In the case of the same initial nitrogen concentration, the effects of three nitrogen feeding strategies (intermittent nitrogen feeding,constant concentration feeding and power function feeding) on biomass, yield of L-valine,concentration of byproduct and conversion rate were studied in the 30L fermentor. The result showed that the concentration and the feed rate of nitrogen source were effectively and timely manipulated by power function feeding, while lacking of online monitoring and feedback

  6. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses

    Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, 60Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock

  7. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection. PMID:23298196

  8. Effects of liquid aluminum chloride additions to poultry litter on broiler performance, ammonia emissions, soluble phosphorus, total volatile fatty acids, and nitrogen contents of litter

    Recent studies have shown that the use of aluminum sulfate (Al2(SO4)3.14H2O) and aluminum chloride (AlCl3) additions to animal manures are more effective than other chemicals in reducing ammonia (NH3) emissions and phosphorus (P) solubility. Although the use of alum has been intensively used in the ...

  9. The influence of water chemistry and biocide additions on the response of an on-line biofilm monitor

    Microbiologically influenced corrosion (MIC) is a significant cause of degradation of piping and heat transfer surfaces in cooling water systems. The interaction between the metabolic processes of microorganisms attached to metallic surfaces and corrosion processes can lead to localized corrosion and rapid penetration of piping and heat exchanger tubes. On-line Monitoring of biofilm formation on Metallic Surfaces is a key both for automatic control equipment and for system operators so that mitigation activities can be initiated well before the structural integrity of piping or components is jeopardized. In addition, tracking of biofilm activity on line provides feedback useful for evaluating the effectiveness of biocide additions and optimizing the concentrations and addition schedules of biocides and other control chemicals. A probe has been developed to provide a method for determining the onset of biofilm formation on metal surfaces and tracking biofilm activity on line in a power plant or industrial environment; in fresh water and seawater environments. Experience with the system in a variety of water chemistries, and system responses to biofilm growth and subsequent destruction by biocide additions are described

  10. Dry matter production and nitrogen use efficiency of giant missionary grass in response to pig slurry application

    Mario Miranda; Simone Meredith Scheffer-Basso; Pedro Alexandre Varella Escosteguy; Cristiano Reschke Lajús; Eloi Erhard Scherer; Rosiane Berenice Nicoloso Denardin

    2012-01-01

    This study assessed the effect of successive applications of pig slurry on the dry matter (DM) production and the nitrogen use efficiency of giant missionary grass along two years. A total of 55, 110, 165, 220 and 275 m³ of pig slurry/ha/year were applied in order to supply 100, 200, 300, 400 and 500 kg of total N/ha/year, respectively. These treatments were compared with the ammonium nitrate (200 kg of N/ha/year) source of N and with a control (no nitrogen application). Annually, nitrogen wa...

  11. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures - Can sterically hindered pyridines prevent dye degradation?

    Tuyet Nguyen, Phuong; Lund, Torben [Department of Science, Systems and Models, Roskilde University, 4000 Roskilde (Denmark); Rand Andersen, Anders [University of Southern Denmark, Institute of Sensors, Signals and Electrotechnics (SENSE), Niels Bohrs Alle 1, 5230 Odense M (Denmark); Danish Technological Institute, Plastics Technology, Gregersensvej 2630 Taastrup (Denmark); Morten Skou, Eivind [University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2010-10-15

    The homogeneous kinetics of the nucleophilic substitution reactions between the ruthenium dye N719 and eight pyridines and 1-methylbenzimidazole have been investigated in 3-methoxypropionitrile at 100 C. The half lives of N719 with the additives 4-tert-butylpyridine (0.5 M) and 1-methylbenzimidazole (0.5 M) were 57 and 160 h, respectively. Sterically hindered pyridines like 2,6-lutidine did not react with N719. The efficiencies of dye-sensitized solar cells (DSC, area=8.0 cm{sup 2}) prepared with 1-methylbenzimidazole (MBI), 4-tert-butylpyridine (4-TBP), 2,6-lutidine and without any additive were 7.1%, 6.2%, 6.0% and 4.8%, respectively. The cells were stored in dark at 85 C and their I-V curves and impedance spectra were measured at regular time intervals. The N719 dye degradation in the cells were monitored by a new dye extraction protocol combined with analysis of the dye extract by HPLC coupled to mass spectrometry. After 300 h storage in dark at 85 C 40% of the initial amount of N719 dye was degraded in DSC cells prepared with MBI and the efficiency was decreased to 40% of its initial value. DSC cells prepared with 2,6-lutidine or no additives showed smaller thermal dye and efficiency stability at elevated temperatures than DSC cells prepared with the none sterically hindered additives MBI and 4-TBP. In the cells prepared with 2,6-lutidine or no additive higher contents of the iodo products [RuL{sub 2}(NCS)(iodide)]{sup +} and [RuL{sub 2}(3-MPN)(iodide)]{sup +} were found than in cells prepared with 4-TBP and MBI. It is suggested that sterically hindered pyridines have smaller complexation constants with I{sub 3}{sup -} than unsterically hindered additives. This may explain the observed faster nucleophilic substitution rates of uncomplexed I{sub 3}{sup -} with N719 in DSC cells prepared with sterically hindered pyridines. The EIS analysis showed that the lifetime of the injected electrons in the TiO{sub 2}{tau}{sub eff} is reduced by a thermally induced change

  12. Protein Nutrition of Southern Plains Small Mammals: Immune Response to Variation in Maternal and Offspring Dietary Nitrogen

    Maternal nutrition during pregnancy and postnatal offspring nutrition may influence offspring traits. We investigated the effects of maternal and postweaning offspring dietary nitrogen on immune function and hematology in two species of rodent: the hispid cotton rat (Sigmodon his...

  13. Assessing the potential additionality of certification by the Round table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil

    Garrett, Rachael D.; Carlson, Kimberly M.; Rueda, Ximena; Noojipady, Praveen

    2016-04-01

    Multi-stakeholder roundtables offering certification programs are promising voluntary governance mechanisms to address sustainability issues associated with international agricultural supply chains. Yet, little is known about whether roundtable certifications confer additionality, the benefits of certification beyond what would be expected from policies and practices currently in place. Here, we examine the potential additionality of the Round table on Responsible Soybeans (RTRS) and the Roundtable on Sustainable Palm Oil (RSPO) in mitigating conversion of native vegetation to cropland. We develop a metric of additionality based on business as usual land cover change dynamics and roundtable standard stringency relative to existing policies. We apply this metric to all countries with RTRS (n = 8) and RSPO (n = 12) certified production in 2013–2014, as well as countries that have no certified production but are among the top ten global producers in terms of soy (n = 2) and oil palm (n = 2). We find RSPO and RTRS both have substantially higher levels of stringency than existing national policies except in Brazil and Uruguay. In regions where these certification standards are adopted, the mean estimated rate of tree cover conversion to the target crop is similar for both standards. RTRS has higher mean relative stringency than the RSPO, yet RSPO countries have slightly higher enforcement levels. Therefore, mean potential additionality of RTRS and RSPO is similar across regions. Notably, countries with the highest levels of additionality have some adoption. However, with extremely low adoption rates (0.41% of 2014 global harvested area), RTRS likely has lower impact than RSPO (14%). Like most certification programs, neither roundtable is effectively targeting smallholder producers. To improve natural ecosystem protection, roundtables could target adoption to regions with low levels of environmental governance and high rates of forest-to-cropland conversion.

  14. Nitrogen utilization efficiencies and yield responses of drip-irrigated tomatoes and peppers as influenced by soil application and fertigation

    These greenhouse studies conducted on a Mediterranean Terra Rose soil in an plastic greenhouse, were designed to investigate the response of drip-irrigated tomatoes (Lycopersicon esculentum Mill.)grown as a spring production and peppers (Capsicum annuum) heated for anti frost to four nitrogen levels continually applied with the irrigation stream. Water containing 0,50,100 or 150 mgN/l for tomatoes, 0,70,140 or 210 mgN/l for peppers as NH4S2O4, and uniformly supplied with 60 and 180 mg/l of P and K respectively were applied two times a week. Three adjacent plants in each plot were fertigated with N labeled NH4S2O4 (2% a.e. enrichment). These treatments were compared with banded application of NH4S2O4 at the rate of 320 kgN/ha for tomatoe sand 350 kgN/ha for peppers that were equivalent to the 100 mgN/l and 140 mgN/l treatments. The total amount of water applied was 345 mm for tomatoes and 260 mm for peppers. The results obtained showed that the highest yield was achieved in 100 mgN/l for tomatoes and in 140 mgN/l for peppers. The percentage fertilizer N utilization and yield increase by tomatoes and peppers were significantly increased with applying the N fertilizer by the irrigation water, fertigation, relative to the soil application of N at the same level fertilization. Evidently, the nutrient uptake efficiency as indicated by the highest yield is higher with fertigation which is extend means more environmental friendly approach. These experiments demonstrated that the amount of N fertilizer by applying in the irrigation water is to be recommended 100 mgN/l for tomatoes and 140 mgN/l for peppers to obtain high yield

  15. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  16. Deciphering the transcriptomic response of Fusarium verticillioides in relation to nitrogen availability and the development of sugarcane pokkah boeng disease.

    Lin, Zhenyue; Wang, Jihua; Bao, Yixue; Guo, Qiang; Powell, Charles A; Xu, Shiqiang; Chen, Baoshan; Zhang, Muqing

    2016-01-01

    Pokkah boeng, caused by Fusarium verticillioides, is a serious disease in sugarcane industry. The disease severity is related to the sugarcane genotype as well as environmental considerations, such as nitrogen application. The impact of the nitrogen source (ammonium sulfate, urea, or sodium nitrate) on sugarcane pokkah boeng disease and its pathogen was investigated in planta and fungal growth and sporulation production was measured in vitro. The results showed that ammonium and nitrate were beneficial to fungal mycelium growth, cell densities, and sporulation, which enhanced the disease symptoms of sugarcane pokkah boeng compared to urea fertilization. A total of 1,779 transcripts out of 13,999 annotated genes identified from global transcriptomic analysis were differentially expressed in F. verticillioides CNO-1 grown in the different sources of nitrogen. These were found to be involved in nitrogen metabolism, transport, and assimilation. Many of these genes were also associated with pathogenicity based on the PHI-base database. Several transcription factors were found to be associated with specific biological processes related to nitrogen utilization. Our results further demonstrated that nitrogen availability might play an important role in disease development by increasing fungal cell growth as well as influencing the expression of genes required for successful pathogenesis. PMID:27434999

  17. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition

    Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10 years with 35-140 kg N ha-2 y-1 as NH4NO3. Historic data suggests both grasslands have acidified over the past 50 years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes. - Nitrogen deposition causes base cation depletion, acidification and eutrophication of semi-natural grassland soils

  18. Interleukin-1 Receptor and Caspase-1 Are Required for the Th17 Response in Nitrogen Dioxide–Promoted Allergic Airway Disease

    Martin, Rebecca A.; Ather, Jennifer L.; Lundblad, Lennart K. A.; Suratt, Benjamin T.; Boyson, Jonathan E.; Budd, Ralph C.; Alcorn, John F.; Flavell, Richard A; Eisenbarth, Stephanie C.; Poynter, Matthew E.

    2013-01-01

    Nitrogen dioxide (NO2) is an environmental pollutant and endogenously generated oxidant associated with the development, severity, and exacerbation of asthma. NO2 exposure is capable of allergically sensitizing mice to the innocuous inhaled antigen ovalbumin (OVA), promoting neutrophil and eosinophil recruitment, and a mixed Th2/Th17 response upon antigen challenge that is reminiscent of severe asthma. However, the identity of IL-17A–producing cells and the mechanisms governing their ontogeny...

  19. Patterns of cross-sensitivity in the responses of clonal subpopulations isolated from the RIF-1 mouse sarcoma to selected nitrosoureas and nitrogen mustards.

    Reeve, J. G.; Wright, K. A.; Workman, P

    1984-01-01

    The response of clonal subpopulations isolated from the RIF-1 mouse sarcoma to melphalan treatment is independent of cell ploidy, whereas a clear relationship exists between ploidy and cell sensitivity to CCNU treatment. In the present study RIF-1 clones have been exposed to nitrogen mustard, aniline mustard and chlorambucil, and to nitrosoureas BCNU, MeCCNU and chlorozotocin, in order to evaluate whether or not the different physiochemical and biological activities of these agents would affe...

  20. Effects of liquid aluminum chloride additions to poultry litter on broiler performance, ammonia emissions, soluble phosphorus, total volatile Fatty acids, and nitrogen contents of litter.

    Choi, I H; Moore, P A

    2008-10-01

    Recent studies have shown that the use of aluminum sulfate [alum, Al2(SO4)3.14H2O] and aluminum chloride (AlCl3) additions to animal manures are more effective than other chemicals in reducing ammonia (NH3) emissions and P solubility. Although the use of Al2(SO4)3.14H2O has been intensively used in the poultry industry for many years, no research has been conducted to evaluate the effect of liquid AlCl3 on these parameters. The objectives of this study were to determine the effects of applying liquid AlCl3 to poultry litter on 1) broiler performance, 2) NH3 fluxes, and 3) litter chemical characteristics, including soluble reactive P, total volatile fatty acids, and N content. Eight hundred broiler chicks were placed into 16 floor pens (50 birds/pen) in a single house for 6 wk. Liquid AlCl3 treatments were sprayed on the litter surface at rates of 100, 200, and 300 g of liquid AlCl3/kg of litter; un-treated litter served as controls. At the 2 lower rates, liquid AlCl3 treatments tended to improve weight gain and feed intake but had no effect on feed conversion or mortality, whereas the higher rate (300 g/kg of litter) had a negative effect on intake. Application of 100, 200, and 300 g of liquid AlCl3 reduced NH3 fluxes by 63, 76, and 76% during the 6-wk period, respectively, compared with the controls. Liquid AlCl3 additions reduced litter soluble reactive P contents by 24, 30, and 36%, respectively, at the low, medium, and high rates. Total volatile fatty acid contents (odor precursors) in litter were reduced by 20, 50, and 51%, respectively, with 100, 200, and 300 g of liquid AlCl3/kg of litter. Liquid AlCl3 additions increased total N, inorganic N, and plant available N contents in litter. These results indicate that liquid AlCl3 additions at the lower rates can provide significant positive environmental benefits to broiler operations. PMID:18809856

  1. A computational framework for evaluating the efficiency of Arabidopsis accessions in response to nitrogen stress reveals important metabolic mechanisms

    Sabrina eKleessen

    2012-09-01

    Full Text Available High-throughput phenotyping technologies in combination with genetic variability for the plant model species Arabidopsis thaliana (Arabidopsis offer an excellent experimental platform to reveal the effects of different gene combinations on phenotypes. These developments have been coupled with computational approaches to extract information not only from the multidimensional data, capturing various levels of biochemical organization, but also from various morphological and growth-related traits. Nevertheless, the existing methods usually focus on data aggregation which may neglect accession-specific effects. Here we argue that revealing the molecular mechanisms governing a desired set of output traits can be performed by ranking of accessions based on their efficiencies relative to all other analyzed accessions. To this end, we propose a framework for evaluating accessions via their relative efficiencies which relate multidimensional system's inputs and outputs from different environmental conditions. The framework combines data envelopment analysis (DEA with a novel valency index characterizing the difference in congruence between the efficiency rankings of accessions under various conditions. We illustrate the advantages of the proposed approach for analyzing genetic variability on a publicly available data set comprising quantitative data on metabolic and morphological traits for 23 Arabidopsis accessions under three conditions of nitrogen availability. In addition, we extend the proposed framework to identify the set of traits displaying the highest influence on ranking based on the relative efficiencies of the considered accessions. As an outlook, we discuss how the proposed framework can be combined with well-established statistical techniques to further dissect the relationship between natural variability and metabolism.

  2. Short term responses of nitrogen trace gas emissions to nitrogen fertilization in tropical sugar cane: Variations due to soils and management practices

    Matson, P. A.; Billow, C.; Hall, S.; Zachariassen, J.

    1994-01-01

    Nitrogen (N) fertilization of agricultural systems is thought to be a major source of the increase in atmospheric N2O; NO emissions from soils have also been shown to increase due to N fertilization. While N fertilizer use is increasing rapidly in the developing world and in the tropics, nearly all of our information on gas emissions is derived from studies of temperate zone agriculture. Using chambers, we measured fluxes of N2O and NO following urea fertilization in tropical sugar cane systems growing on a variety of soil types in the Hawaiian Islands, USA. On the island of Maui, where urea is applied in irrigation lines and soils are mollisols and inceptisols, N2O fluxes were elevated for a week or less following fertilization; maximum average fluxes were typically less than 30 ng cm(exp -2)/ h. NO fluxes were often an order of magnitude less than N2O. Together, N2O and NO represented from 0.01 - 0.5% of the applied N. In fields on the island of Hawaii, where urea is broadcast on the surface and soils are andisols, N2O fluxes were similar in magnitude to Maui but remained elevated for much longer periods after fertilization. NO emissions were 2-5 times higher than N2O through most of the sampling periods. Together the gases loss represented approximately 1. 1 - 3% of the applied N. Laboratory studies indicate that denitrification is a critical source of N2O in Maui, but that nitrification is more important in Hawaii. Experimental studies suggest that differences in the pattern of N2O/NO and the processes producing them are a result of both carbon availability and placement of fertilizer, and that the more information-intensive fertilizer management practice results in lower emissions.

  3. Reduced Carbon Availability to Bacteroids and Elevated Ureides in Nodules, But Not in Shoots, Are Involved in the Nitrogen Fixation Response to Early Drought in Soybean1[OA

    Ladrera, Rubén; Marino, Daniel; Larrainzar, Estíbaliz; González, Esther M.; Arrese-Igor, Cesar

    2007-01-01

    Nitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying. This sensitivity has been related to an accumulation of nitrogen compounds, either in shoots or in nodules, and a nodular carbon flux shortage under drought. To assess the relative importance of carbon and nitrogen status on NF regulation, the responses to the early stages of drought were monitored with two soybean cultivars with known contrasting tolerance to drought. In the sensitive cultivar (‘Biloxi’), NF inhibition occurred earlier and was more dramatic than in the tolerant cultivar (‘Jackson’). The carbon flux to bacteroids was also more affected in ‘Biloxi’ than in ‘Jackson’, due to an earlier inhibition of sucrose synthase activity and a larger decrease of malate concentration in the former. Drought provoked ureide accumulation in nodules of both cultivars, but this accumulation was higher and occurred earlier in ‘Biloxi’. However, at this early stage of drought, there was no accumulation of ureides in the leaves of either cultivar. These results indicate that a combination of both reduced carbon flux and nitrogen accumulation in nodules, but not in shoots, is involved in the inhibition of NF in soybean under early drought. PMID:17720761

  4. Response of fodder legumes berseem (trifolium alexandrinum, L) shaftal (trifolium resupinatum L) and lucerne (medicago sative, L) to sulphur fertilization for nodulatin, forage yield and nitrogen fixation

    The effect of sulphur fertilization (10, 20 mg/kg soil) applied as ground elemental sulphur (98% S) on the forage yield and biological nitrogen fixation of three fodder legumes (Lucerne, Shaftal and Berseem) was studied under pot culture condition. Basal dozes of nitrogen (N), phosphorus (P/sub 2/O/sub 5) and potash (K/sub 2/O) at 10, 40, 20 mg /kg soil were applied to each pot. The result revealed that the application of sulphur did not cause any significant improvement in the nontidal response of Lucerne, Shaftal and berseem. Dry matter yield of forage in four cuts, however was improved significantly in the range of 16.0 to 57.0% for Lucerne, 9.0 to 53.0% for shaftal and 15.0 to 81.0% for berseem by sulphur fertilizations. Biological nitrogen fixation in shoots as revealed by shoot N yield difference exhibited a significant increase by 20.0 to 62.0% for Lucerne, 13.0 to 59.0% for shaftal and 25.0 to 89.0% for berseem in 4 cuts, while in roots biological nitrogen fixation exhibited a significant increase by 5.0 to 25.0% for Lucerne, 11.0 to 41.0 percent for shaftal and 21.0 to 38.0 percent for berseem as result of sulphur fertilization. (author)

  5. 不同DMPP添加水平对土壤有机氮素转化的影响%Influence of Different DMPP Addition Level on Organic Nitrogen Transformation in the Soil

    殷建祯; 俞巧钢; 符建荣; 马军伟; 叶静; 唐秋萍

    2012-01-01

    In order to improve the efficiency of nitrogen utilization and decrease the nitrogen loss,the influence of DMPP(3,4-dimethypyrazole phosphate) addition on soil nitrogen transformation under the organic fertilizers system were studied.Influence of DMPP addition on soil nitrogen transformation and ammonium oxidation inhibiting with different concentration of DMPP under the organic fertilizers system were studied by aerial soil incubation method.The results showed that,the process of nitration was obviously restrained with DMPP addition under the organic fertilizers system.The optimum efficiency of DMPP appeared on the 14th day.Compared to the treatment without DMPP addition,the NH+4-N content was increased by 2~3 times,meanwhile,the NO-3-N content was reduced by 2~3 times in those treatments with DMPP addition.Effects of nitrification inhibitor with DMPP addition showed a decreasing tendency after 14 days.Effects of DMPP on the nitrification inhibitor were enhanced with the increasing level of DMPP amount,but the inhibitory effect was no longer greatly enhanced when DMPP increased to a certain level above 2%.The optimize amount of DMPP was 1% to 2% in the organic fertilizers application in the agriculture production,concerning about the nitrification inhibitor effect and DMPP application level in the soil.%研究单施有机肥模式下,3,4-二甲基吡唑磷酸盐(DMPP)对土壤有机氮素转化的影响,为土壤氮素高效利用和减少损失提供科学依据。采用土壤恒温培养试验,研究单施有机肥条件下不同DMPP添加水平对土壤中有机氮素转化及硝化抑制效应的影响。结果表明,单施有机肥条件下,DMPP可明显抑制土壤硝化反应的进程。培养期间DMPP最佳硝化抑制效果出现在14d,与不添加DMPP的处理相比,添加DMPP的处理铵态氮含量增加2~3倍,硝态氮含量减少2~3倍。14d后DMPP硝化抑制效果逐渐减弱。DMPP对硝化反应的抑制效果及有效抑制时间随

  6. In situ sulfur isotopes (δ(34)S and δ(33)S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS.

    Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis

  7. Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis Seedling to changes of soil moisture and temperature

    XU Zhen-zhu; ZHOU Guang-sheng; LI Hui

    2004-01-01

    Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soilmoisture levels and 3 temperature levels was conducted in order to improve the understanding how leafphotosynthetic parameters will respond to climatic change. The results indicated that soil drought and hightemperature decreased the photochemical efficiency of photosystem (Fv/Fm ), the overall photochemical quantumyield of PSIl(yield), the coefficient of photochemical fluorescence quenching(qp), but increased the coefficient ofnon-photochemical fluorescence quenching(qN). Severe soil drought would decrease Fv/Fm and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.

  8. MAXIMUM LIKELIHOOD SOURCE SEPARATION FOR FINITE IMPULSE RESPONSE MULTIPLE INPUT-MULTIPLE OUTPUT CHANNELS IN THE PRESENCE OF ADDITIVE NOISE

    Kazi Takpaya; Wei Gang

    2003-01-01

    Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind identification via decorrelating sub-channels method could recover the input sources. The Blind Identification via Decorrelating Sub-channels(BIDS)algorithm first constructs a set of decorrelators, which decorrelate the output signals of subchannels, and then estimates the channel matrix using the transfer functions of the decorrelators and finally recovers the input signal using the estimated channel matrix. In this paper, a new approximation of the input source for FIR-MIMO channels based on the maximum likelihood source separation method is proposed. The proposed method outperforms BIDS in the presence of additive white Gaussian noise.

  9. Thermo-Responsive and Biocompatible Diblock Copolymers Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT Radical Polymerization

    Kenichi Fukuda

    2014-03-01

    Full Text Available Poly(2-(methacryloyloxyethyl phosphorylcholine-b-poly(N,N-diethyl acrylamide (PMPCm-PDEAn was synthesized via reversible addition-fragmentation chain transfer (RAFT controlled radical polymerization. Below, the critical aggregation temperature (CAT the diblock copolymer dissolved in water as a unimer with a hydrodynamic radius (Rh of ca. 5 nm. Above the CAT the diblock copolymers formed polymer micelles composed of a PDEA core and biocompatible PMPC shells, due to hydrophobic self-aggregation of the thermo-responsive PDEA block. A fluorescence probe study showed that small hydrophobic small guest molecules could be incorporated into the core of the polymer micelle above the CAT. The incorporated guest molecules were released from the core into the bulk aqueous phase when the temperature decreased to values below the CAT because of micelle dissociation.

  10. MAXIMUM LIKELIHOOD SOURCE SEPARATION FOR FINITE IMPULSE RESPONSE MULTIPLE INPUT—MULTIPLE OUTPUT CHANNELS IN THE PRESENCE OF ADDITIVE NOISE

    AaziTakpaya; WeiGang

    2003-01-01

    Blind identification-blind equalization for finite Impulse Response(FIR)Multiple Input-Multiple Output(MIMO)channels can be reformulated as the problem of blind sources separation.It has been shown that blind identification via decorrelating sub-channels method could recover the input sources.The Blind Identification via Decorrelating Sub-channels(BIDS)algorithm first constructs a set of decorrelators,which decorrelate the output signals of subchannels,and then estimates the channel matrix using the transfer functions of the decorrelators and finally recovers the input signal using the estimated channel matrix.In this paper,a new qpproximation of the input source for FIR-MIMO channels based on the maximum likelihood source separation method is proposed.The proposed method outperforms BIDS in the presence of additive white Garssian noise.

  11. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  12. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (Tg) of each material. Maximum optical anisotropy was obtained 15 °C below the Tg for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. (paper)

  13. Responses of plant diversity and primary productivity to nutrient addition in aStipa baicalensis grassland, China

    YU Li; SONG Xiao-long; ZHAO Jian-ning; WANG Hui; BAI Long; YANG Dian-lin

    2015-01-01

    Nutrient addition can affect the structure and diversity of grassland plant communities, thus alter the grassland productivity. Studies on grassland plant community composition, structure and diversity in response to nutrient addition have an import-ant theoretical and practical signiifcance for the scientiifc management of grassland, protection of plant diversity and the recovery of degraded grassland. A randomized block design experiment was conducted with six blocks of eight treatments each: control (no nutrient addition) and K, P, N, PK, NK, NP, and NPK addition. We evaluated plant composition, height, coverage, density, and aboveground biomass to estimate primary productivity and plant diversity. Results showed that al treatments increased primary productivity signiifcantly (P<0.05) with the exception of the K and the NPK treatments had the greatest effect, increasing aboveground biomass 2.46 times compared with the control (P<0.05). One-way ANOVA and factorial analysis were used for the species richness, Shannon-Wiener index, Pielou index and aboveground biomass, and the relationships between the diversity indices and aboveground biomass were determined through linear regression. We found that fertilization altered the community structure; N (but not P or K) addition increased the proportion of perennial rhizome grasses and signiifcantly reduced that of perennial forbs (P<0.05), thus it presented a trend of decrease in species richness, Shannon-Wiener and Pielou indexex, respectively. Only the main effects of N had signiifcant impacts on both the diversity indices and the aboveground biomass (P<0.05), and the interactions between N-P, N-K, P-K and N-P-K could be neglected. With fertilization, plant diversity (correlation coefifcient, –0.61), species richness (–0.49), and species even-ness (–0.51) were al negatively linearly correlated with primary productivity. The correlations were al signiifcant (P<0.01). Scientiifc nutrient management is an effective

  14. The photosynthetic and stomatal response of Medicago sativa cv. saranac to free-air CO{sub 2} enrichment (F.A.C.E.) and nitrogen

    Bridson, N.P.

    1996-08-01

    Plots of Medicago sativa cv. saranac were grown in the field at ambient (355 {mu}mol CO{sub 2} mol{sup -1} air) or elevated (600{mu}mol CO{sub 2} mol{sup -1} air) CO{sub 2} concentrations. High (200kg yr{sup -1}) or low (20kg yr{sup -1}) nitrogen levels were applied to two isogeneic lines, one able and one unable to use nitrogen fixing bacteria. Plants were in the second year of field growth. Exposure to elevated CO{sub 2} was via a Free-Air CO{sub 2} Enrichment System (FACE). Elevated CO{sub 2} increased diurnal assimilation by between 12% and 92%. Analysis of A/C{sub i} responses showed that effective nitrogen fertilisation was more important to rubisCO and RuBP activity than elevated CO{sub 2}. No acclimation was consistently observed. Leaves lower down the canopy were found to have lower Vc{sub max} and J{sub max} values, though age may be the cause of the latter effect. FACE conditions have only a small effect on these responses. There was some evidence found for the down-regulation of photosynthesis in the late afternoon. The FACE conditions had no affect on stomatal density but did increase epidermal cell density.

  15. Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels.

    Pérez, P.; Morcuende, R.; Martín del Molino, I.; Martínez-Carrasco, R.

    2005-01-01

    Growth at elevated CO2 and temperature often leads to decreased Rubisco activity. We investigated the effects of increased CO2, temperature and nitrogen on the diurnal changes in the control of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity in wheat (Triticum aestivum L.). Spring wheat was grown at ambient and 700 μmol mol-1 CO2, under ambient and 4 ºC warmer temperatures, and with two levels of nitrogen supply in field tunnels in a Mediterranean environment...

  16. Agronomic performance of wheat cultivars in response to nitrogen fertilization levels=Desempenho agronômico de cultivares de trigo em resposta a doses de adubação nitrogenada

    Cristiano Lemes da Silva

    2012-07-01

    Full Text Available The release of wheat cultivars with different nutritional demands and yield potential hinders generalized recommendations for nitrogen fertilization. This study was designed to evaluate the effects of different nitrogen fertilization levels (0, 60, 120 and 180 kg ha-1 of N on the agronomic performance of six wheat cultivars (Triticum aestivum L. in two harvests. A randomized block factorial design with three replications was used. The response to fertilization levels was evaluated through AMMI (Additive Main effects and Multiplicative Interaction and GGE (Genotype main effects and Genotype x Environment interaction biplot graphic methodologies and polynomial regression. There was genetic variability in response to nitrogen fertilization in the cultivars studied. The biggest increases in yield were observed under a more suitable water regime. The higher performance of yield components was associated with higher nitrogen fertilization levels.O lançamento de cultivares, com diferentes exigências nutricionais e potencial produtivo inviabilizam recomendações generalizadas de adubação nitrogenada para a cultura do trigo. O objetivo do presente trabalho foi de avaliar os efeitos de doses de adubação nitrogenada (ausência de fertilização, 60, 120 e 180 kg ha-1 de N sobre o desempenho agronômico de seis cultivares de trigo (Triticum aestivum L., em duas safras agrícolas. O delineamento experimental foi em blocos ao acaso em esquema fatorial, com três repetições. A resposta às doses empregadas foi avaliada através das metodologias em gráfico biplot AMMI (Additive Main effects and Multiplicative Interaction e GGE (Genotype main effects and Genotype x Environment interaction e regressão polinomial. Há variabilidade genética quanto à resposta a adubação nitrogenada, no conjunto de cultivares avaliados. Os maiores incrementos em produtividade ocorreram em condições mais adequadas de precipitação pluvial. O maior desempenho dos

  17. Photosynthetic acclimation and decreased chlorophyll (a & b) concentrations occur in nitrogen sufficient tobacco leaves in response to carbon dioxide enrichment

    The effects of CO2 enrichment on plant growth and on nitrogen partitioning were examined using fully-expanded tobacco leaves (Nicotiana tabacum L. cv. Samsun). Plants were grown from single seeds in matching controlled environment chambers with continuous ambient CO2 partial pressures of 38 to 40 P...

  18. Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streams

    KOHLER, ANDRE E; RUGENSKI, AMANDA; Taki, Doug

    2008-01-01

    Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of deliv...

  19. Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China

    Liu, Juxiu; Zhou, Guoyi; Duan, Honglang; Li, Yuelin; Zhang, Deqiang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong [Griffith Univ., Nathan, Brisbane (Australia). Centre for Forestry and Horticultural Research

    2011-10-15

    Up to date, most studies about the plant photosynthetic acclimation responses to elevated carbon dioxide (CO{sub 2}) concentration have been performed in temperate areas, which are often N limited under natural conditions and with low ambient N deposition. It is unclear whether photosynthetic downregulation is alleviated with increased N availability, for example, from increased N deposition due to fossil fuel combustion in the tropics and subtropics. Awareness of plant photosynthetic responses to elevated CO{sub 2} concentration will contribute to the better understanding and prediction of future forest productivity under global change. Four tree species, Schima superba Gardn. et Champ., Ormosia pinnata (Lour.) Merr, Castanopsis hystrix AC. DC., and Acmena acuminatissima (Blume) Merr. et Perry were exposed to a factorial combination of atmospheric CO{sub 2} concentration (ambient and elevated CO{sub 2} concentration at ca. 700 {mu}mol CO{sub 2} mol{sup -1}) and N deposition (ambient and ambient + 100 kg N ha{sup -1} year{sup -1}) in open-top chambers in southern China for 3 years since March 2005. Light-saturated net photosynthetic rate, leaf N concentration, and tree growth of all species were measured. The CO{sub 2} treatments did not affect light-saturated net photosynthetic rate of all species grown with the high N treatment. However, S. superba grown with the low N treatment (ambient) had 23% and 47% greater net photosynthesis in the ambient CO{sub 2} concentration than those in the elevated CO{sub 2} concentration for December 2006 and November 2007 (20 and 31 months after the treatments were applied), respectively, and A. acuminatissima grown with the low N treatment had 173%, 26%, and 121% greater net photosynthesis in trees grown in the ambient CO{sub 2} concentration than those in the elevated CO{sub 2} concentration for July 2006 (16 months after the treatments), December 2006 (20 months), and November 2007 (31 months), respectively, whereas

  20. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. PMID

  1. Aboveground and belowground responses to nutrient additions and herbivore exclusion in Arctic tundra ecosystems in northern Alaska

    Moore, J. C.; Gough, L.; Simpson, R.; Johnson, D. R.

    2011-12-01

    The Arctic has experienced significant increased regional warming over the past 30 years. Warming generally increases tundra soil nutrient availability by creating a more favorable environment for plant growth, decomposition and nutrient mineralization. Aboveground there has been a "greening" of the Arctic with increased net primary productivity (NPP), and an increase in woody vegetation. Concurrent with the changes aboveground has been an increase in root growth at lower depths and a loss of soil organic C (40 -100 g C m-2 yr-1). Given that arctic soils contain 14% of the global soil C pool, understanding the mechanisms behind shifts of this magnitude that are changing arctic soils from a net sink to a net source of atmospheric C is critical. We took an integrated multi-trophic level approach to examine how altering soil nutrients and mammalian herbivore activity affects vegetation, soil fauna, and microbial communities as well as soil physical characteristics in moist acidic (MAT) and dry heath (DH) tundra. Our work was conducted at the Arctic LTER site in northern Alaska. We sampled the nutrient (controls and annual N+P additions) and herbivore (controls and exclosures) manipulations established in 1996 after 10 years of treatment. Models that incorporated the biomass estimates from the field were used to characterize the trophic structure of the belowground food web and to estimate carbon flux among soil organisms and C-mineralization rates. Both MAT and DH exhibited significant increases in NPP and root growth and changes in vegetation structure with transitions from a mixed community to deciduous shrubs in MAT and from lichens to grasses and shrubs in DH, with nutrient additions and herbivore exclosures. Belowground responses to the treatments were dependent on ecosystem type, but exposed alterations in trophic structure that included changes in microbial biomass, the establishment of microbivorous enchytreaids, increases in root-feeding nematodes, and

  2. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  3. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems — LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 — PB2450, B-3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  4. Soil Microbial Nitrogen Cycling Responses to Wildfire in a High Elevation Forested Catchment in Jemez Mountains, NM

    Murphy, M. A.; Fairbanks, D.; Chorover, J.; Rich, V. I.; Gallery, R. E.; Boyer, J. C.

    2015-12-01

    Microbial communities mediate major ecosystem processes such as nutrient cycling, and their recovery after disturbances plays a substantial role in overall ecosystem recovery and resilience. Disturbances directly shift microbial communities and their related processes, and the severity of impact typically varies significantly with landscape position, depth, and hydrological conditions such that different conditions indicate that a specific process will be dominant. Wildfires in the southwest US are a major source of landscape-scale disturbance, and are predicted to continue increasing in size and intensity under climate change. This study investigates changing nitrogen cycling across a post-wildfire catchment within the Jemez River Basin Critical Zone Observatory. This site experienced a mixed (intermediate to high) burn severity wildfire in June 2013. Nitrogen cycling was investigated by profiling via qPCR the abundance of five key genes involved in microbial nitrogen cycling (nifH, amoA, nirS, nirK, nosZ), at points along and within the catchment. These results are being analyzed in the context of broader microbial community data (enzyme assays, microbial cell counts and biomass, and 16S rRNA gene amplicons surveys) and biogeochemical data (total organic carbon, total nitrogen, pH, graviametric water content, etc). W 22 sites along the sides of the basin (planar zones) and within the hollow (convergent zone) were sampled at 13 days, one, and two years post-fire, at six discrete depth increments from 0 to 40 cm from the surface. We attribute significance of variation in gene abundance in planar versus convergent zones, and among depths, to the strong correlation of nitrogen cycling processes (i.e., nitrification and denitrification) with specific C:N ratios, total organic carbon content, and other biogeochemical and soil edaphic parameters that vary with landscape position and wildfire. Data were also interrogated for evidence of multi-year patterns in nutrient

  5. Supra-Additive apoptotic response in predominantly quiescent prostate tumors when treated with androgen ablation and radiotherapy

    different times after castration revealed that the LI dropped from a pretreatment level of 9.8 ± 0.4% (±SE) to 1.6 ± 0.2% at 3 days. Measurements taken after 3 d post-castration were similar with LIs leveling off at 1-2%, indicating that a new cell kinetic equilibrium had been reached. Whereas the LI dropped significantly in response to androgen ablation, Ts changed minimally from 19.3 ± 0.6 hr to 22.6 ± 0.7 hr. The dramatic change in LI, and consequently Tpot, in response to androgen ablation occurred with minimal cell loss by apoptosis, which remained at ∼1% after castration. The drop in LI in the absence of a major change in Ts or apoptosis suggests that the principal effect of androgen ablation was to reduce the proportion of tumor cells in the cell cycle. In fact, the growth fraction under equilibrium conditions was 70 % in intact rats and <15% in castrates. These results suggest that irradiating the tumors at 3 d post-castration might be less effective because over 85% of the tumor cells are in a resting state at this point. To examine this further, we measured apoptosis levels after radiotherapy alone (7 Gy, single fraction, cobalt-60) compared to radiotherapy administered 3 d after castration. Peak apoptotic indices, seen at 6 hr following irradiation, were 2% with radiotherapy alone and 10% with the combination treatment. Hence the enhancement in apoptotic index was supra-additive when the combination was used. Conclusion: The loss of the apoptotic response to androgen ablation may be a fairly early occurrence in humans and this was reflected in the R3327-G tumor line. Although androgen ablation induced a tremendous shift of tumor cells into a quiescent state with very little apoptosis, the addition of radiation resulted in a 5-10 fold increase in apoptosis levels over radiation or androgen ablation alone. These findings document an enhancement in cell killing when androgen ablation and radiation treatments are combined in this prostate cancer model and

  6. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    Vurrakula, Swathi

    Carbon and nitrogen are the most abundant elements in plants, together making up around 40-50% and 2-6% of dry matter respectively. Elevated atmospheric CO2 levels are predicted to double by the end of this century, increasing carbon fixation by C3 plants like Arabidopsis and, hence, their carbon...... cues and adjusting it to the plant internal status. The two major types of GS include cytosolic GS1 (five isoforms in Arabidopsis, GLN1;1 to GLN1;5) and a single chloroplastic GS2. GS draws its substrates from carbon skeletons to synthesize amino acids. Thus, carbon and nitrogen metabolisms are closely...... nitrogen species (ammonium and nitrate) and availability. Arabidopsis gln1;2 knock-out and gln2 (reduced GS2 activity by 50%) mutants were studied in response to elevated CO2 (800 ppm) when provided with moderate and high levels of ammonium or nitrate alone, or in combination. Elevated CO2 promoted plant...

  7. Responses of CH4 uptake to the experimental N and P additions in an old-growth tropical forest, Southern China

    S. Dong

    2011-05-01

    Full Text Available It is well established that tropical forest ecosystems are often limited by phosphorus (P availability, and elevated atmospheric nitrogen (N deposition may further enhance such P limitation. However, it is uncertain whether P availability would affect soil fluxes of greenhouse gases, such as methane (CH4 uptake, and how P interacts with N deposition. We examine the effects of N and P additions on soil CH4 uptake in an N saturated old-growth tropical forest in Southern China to test the following hypotheses: (1 P addition would increase CH4 uptake; (2 N addition would decrease CH4 uptake; and (3 P addition would mitigate the inhibitive effect of N addition on soil CH4 uptake. Four treatments were conducted at the following levels from February 2007 to October 2009: control, N-addition (15 g N m−2 yr−1, P-addition (15 g P m−2 yr−1, and NP-addition (15 g N m−2 yr−1 plus 15 g P m−2 yr−1. Static chamber and gas chromatography techniques were used to quantify soil CH4 uptake every month throughout the study period. Average CH4 uptake rate was 31.2 ± 1.1 μg CH4-C m−2 h−1 in the control plots. The mean CH4 uptake rate in the N-addition plots was 23.6 ± 0.9 μg CH4-C m−2 h−1, significantly lower than that in the controls. P-addition however, significantly increased CH4 uptake by 24 % (38.8 ± 1.3 μg CH4-C m−2 h−1, whereas NP-addition (33.6 ± 1.0 μg CH4-C m−2 h−1 was not statistically different from the control. Our results suggest that increased P availability may enhance soil mathanotrophic activity and potentially mitigate the inhibitive effect of N deposition on CH4 uptake in tropical forests. Phosphorus and nitrogen treatments also significantly changed the fluxes of greenhouse gases N2O and CO2, altering the net global warming potential (GWP of this tropical forest located in a high-N deposition zone of Southern China.

  8. Dry matter production and nitrogen use efficiency of giant missionary grass in response to pig slurry application

    Mario Miranda

    2012-03-01

    Full Text Available This study assessed the effect of successive applications of pig slurry on the dry matter (DM production and the nitrogen use efficiency of giant missionary grass along two years. A total of 55, 110, 165, 220 and 275 m³ of pig slurry/ha/year were applied in order to supply 100, 200, 300, 400 and 500 kg of total N/ha/year, respectively. These treatments were compared with the ammonium nitrate (200 kg of N/ha/year source of N and with a control (no nitrogen application. Annually, nitrogen was applied in four divided doses, after the cutting of forage grasses, which takes place five times a year. The total DM yield did not differ between years and increased linearly as a function of pig slurry application, ranging from 2,698 kg of DM/ha/year (control to 11,371 kg of DM/ha/year (275 m³ of pig slurry/ha/year. There was an increment of 32.3 kg of DM/m³ of pig slurry/ha or 17.7 kg of DM/kg of N/ha. The highest average daily DM accumulation rate (66.8 kg of DM/ha/day was achieved with the highest pig slurry rate, from February/2007 to April/2008. Nitrogen use efficiency did not differ across pig slurry rates (19.0 kg of DM/kg of N, but it was lower than that obtained with ammonium nitrate (30.3 kg of DM/kg of N. The efficiency index of pig slurry ranged from 0.52 to 0.72.

  9. Photosynthesis and Nitrogen Metabolism of Nepenthes alata in Response to Inorganic NO3- and Organic Prey N in the Greenhouse

    He, Jie; Zain, Ameerah

    2012-01-01

    This study investigates the relative importance of leaf carnivory on Nepenthes alata by studying the effect of different nitrogen (N) sources on its photosynthesis and N metabolism in the greenhouse. Plants were given either inorganic NO3-, organic N derived from meal worms, Tenebrio molitor, or both NO3- and organic N for a period of four weeks. Leaf lamina (defined as leaves) had significant higher photosynthetic pigments and light saturation for photosynthesis compared to that of modified ...

  10. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    C. van der Salm; Groenenberg, B.-J.; Boxman, A. W.

    1998-01-01

    In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N) and sulphur (S) deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent) spatial variability. Statistical analyse...

  11. Response of sunflower (Helianthus annuus L.) to phosphorus and nitrogen fertilization under rainfed conditions, Blue Nile state-Sudan

    Salih M.N.T.

    2013-01-01

    Two field experiments were conducted on a typic chromusterts, fine, smectitic, isohyperthermic soil series in the Damazin Research Station Farm during two seasons (2005/06 and 2006/07). The objective was to investigate the effect of phosphorus (P) and nitrogen (N) and their interactions on sunflower (Helianthus annuus L.) growth, seed and oil yield. A randomized complete block design with four replicates was used to execute the experiments. Plant height, dr...

  12. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    Humbert Sabrina; Subedi Sanjeena; Cohn Jonathan; Zeng Bin; Bi Yong-Mei; Chen Xi; Zhu Tong; McNicholas Paul D; Rothstein Steven J

    2013-01-01

    Abstract Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remai...

  13. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    Humbert, Sabrina; Subedi, Sanjeena; Cohn, Jonathan; Zeng, Bin; Bi, Yong-Mei; Chen, Xi; Zhu, Tong; McNicholas, Paul D; Rothstein, Steven J

    2013-01-01

    Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between...

  14. Comparison of base substitutions in response to nitrogen ion implantation and 60Co-gamma ray irradiation in Escherichia coli

    Xie Chuan-Xiao

    2004-01-01

    Full Text Available To identify the specificity of base substitutions, a novel experimental system was established based on rifampicin-resistant (Rif r mutant screening and sequencing of the defined region of the rpoB gene in E. coli. We focused on comparing mutational spectra of base substitutions induced by either low energy nitrogen ion beam implantation or 60Co-gamma rays. The most significant difference in the frequency of specific kinds of mutations induced by low energy nitrogen ion beam was that CG ®TA transitions were significantly increased from 32 to 46, AT ®TA transversions were doubled from 7 to 15 in 50 mutants, respectively. The preferential base substitutions induced by nitrogen ion beam implantation were CG ®TA transitions, AT ®GC transitions, AT ®TA transversions, which account for 92.13% (82/89 of the total. The mutations induced by 60Co-gamma rays were preferentially GC ®AT and AT ®GC transitions, which totaled 84.31% (43/51.

  15. Addition of proteic nitrogen during alcoholic fermentation for the production of cachaça Adição de nitrogênio protéico durante a fermentação alcoólica de caldo de cana para produção de cachaça

    Elisangela Marques Jeronimo; Evelyn de Souza Oliveira; Elson Luíz Rocha Souza; Marcelo de Almeida Silva; Gil Eduardo Serra

    2008-01-01

    Cachaça is the denomination of a typical and exclusive Brazilian spirit produced from the distillation of fermented sugarcane juice must. The objective of this study was to evaluate the effect of adding yeast extract to the sugarcane juice used for sugarcane liquor production, because for the artisanal process no studies are available on nitrogen addition nor beverage quality, involving nitrogen complementation. Results of previous studies in the laboratory scale showed that sugarcane juice c...

  16. Responses of CH(4), CO(2) and N(2)O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains.

    Li, Kaihui; Gong, Yanming; Song, Wei; He, Guixiang; Hu, Yukun; Tian, Changyan; Liu, Xuejun

    2012-06-01

    To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH(4), CO(2) and N(2)O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH(4) uptake, CO(2) and N(2)O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO(2) and N(2)O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO(2) and N(2)O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO(2) and N(2)O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers. PMID:22445955

  17. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

    Dieleman, Wouter I.J.; Vicca, Sara; Dijkstra, Feike A.;

    2012-01-01

    the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only...... understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined...... elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and...

  18. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

    Dieleman, Wouter I. J.; Vicca, Sara; Dijkstra, Feike A.;

    2012-01-01

    the [ CO2 ]‐only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]‐only...... understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined...... elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]‐only treatment than to those in the warming‐only treatment. In contrast to warming‐only experiments, both the combined and...

  19. Responses of nitrogen metabolism and seed nutrition to drought stress in soybean genotypes differing in slow-wilting phenotype

    Nacer eBellaloui

    2013-12-01

    Full Text Available Recent advances in soybean breeding have resulted in genotypes that express the slow-wilting phenotype (trait under drought stress conditions. The physiological mechanisms of this trait remain unknown due to the complexity of trait × environment interactions. The objective of this research was to investigate nitrogen metabolism and leaf and seed nutrients composition of the slow-wilting soybean genotypes under drought stress conditions. A repeated greenhouse experiment was conducted using check genotypes: NC-Roy (fast wilting, Boggs (intermediate in wilting; and NTCPR94-5157 and N04-9646 (slow-wilting, SLW genotypes. Plants were either well-watered or drought stressed. Results showed that under well-watered conditions, nitrogen fixation (NF, nitrogen assimilation (NA, and leaf and seed composition differed between genotypes. Under drought stress, NF and NA were higher in NTCPR94-5157 and N04-9646 than in NC-Roy and Boggs. Under severe water stress, however, NA was low in all genotypes. Leaf water potential was significantly lower in checks (-2.00 MPa than in the SLW genotypes (-1.68 MPa. Leaf and seed concentrations of K, P, Ca, Cu, Na, B were higher in SLW genotypes than in the checks under drought stress conditions. Seed protein, oleic acid, and sugars were higher in SLW genotypes, and oil, linoleic and linolenic acids were lower in SLW genotypes. This research demonstrated that K, P, Ca, Cu, Na, and B may be involved in SLW trait by maintaining homeostasis and osmotic regulation. Maintaining higher leaf water potential in NTCPR94-5157 and N04-9646 under drought stress could be a possible water conservation mechanism to maintain leaf turgor pressure. The increase in osmoregulators such as minerals, raffinose and stachyose, and oleic acid could be beneficial for soybean breeders in selecting for drought stress tolerance.

  20. A adição de superfosfato triplo e a percolação de nitrogênio no solo Addition of triple superphosphate anticipates nitrogen leaching in soil

    Analu Mantovani

    2007-10-01

    ção de Ca.Leaching of N added to soils as ammonium or as other forms that transform into it depends partially on nitrification because ammonium is retained by the soil negative charges, while nitrate remains completely in the soil solution. Since the decrease of the soil pH at fertilized sites can negatively affect nitrification, our study aimed to evaluate the effect of adding an acidifying phosphate together with nitrogen fertilizers on nitrogen leaching in an acid soil. The experiment was carried out in 2003, in an Alfisol with clay and organic matter contents of 760 and 40 g kg-1, respectively and pH (H2O of 4.8. Treatments consisted of three nitrogen sources (urea, ammonium sulfate and calcium nitrate at rates of 150 mg kg-1 of N plus one control treatment without N in factorial combination with triple superphosphate (TSP at a rate of 751 mg kg-1. Treated experimental soil units were packed into PVC leaching columns and percolated with 300 mL of distilled water every seven days, during 19 weeks, totalizing an amount equivalent to 720 mm of rain. TSP addition anticipated ammonium leaching due to displacement of ammonium from the soil negative charges by added calcium. Nitrate leaching from the soil treated with calcium nitrate occurred in the first percolations regardless of TSP addition. In soils treated with the other two N fertilizers, nitrate leaching was intensified only after the seventh percolation, but it was anticipated to the fifth percolation by TSP addition due to earlier nitrification caused by displacement of exchangeable ammonium to the soil solution. TSP addition doubled nitrate leaching in the urea treated soil, while leaching decreased by about 20 % when TSP was mixed with ammonium sulfate or calcium nitrate. In the absence of TSP, 70 % of the N added via urea remained in the soil after the end of the percolations, but in the presence of TSP all applied N was lost. Overall, TSP combined with ammonium or amide-containing nitrogen fertilizers

  1. Dynamic seasonal nitrogen cycling in response to anthropogenic N loading in a tropical catchment, Athi–Galana–Sabaki River, Kenya

    Marwick, T.R.; Tamooh, F.; Ogwoka, B.; Teodoru, C.; Borges, A. V.; Darchambeau, F.; BOUILLON, S

    2014-01-01

    As part of a broader study on the riverine biogeochemistry in the Athi–Galana–Sabaki (A-G-S) River catchment (Kenya), we present data constraining the sources, transit and transformation of multiple nitrogen (N) species as they flow through the A-G-S catchment (~47 000 km2). The data set was obtained in August–September 2011, November 2011, and April–May 2012, covering the dry season, short rain season and long rain season respectively. Release of (largely untreated) wastewa...

  2. Evaluation of BNF by groundnut and responses of cereal crops to different levels of nitrogen fertilizer in the coastal area of the Syrian Arab Republic

    A two course crop rotation experiment was conducted over a period of two years in order to evaluate the biological nitrogen fixation (BNF) by groundnut (Arachis hypogaea) and its contribution to the subsequent cereal crop in terms of its N-conserving effect. Also the response of the treatment crop (Zea mays L.) to different levels of N-fertilization (100 and 150 kg N ha-1) were evaluated. Moreover, the effect of a previous crop, N rate and timing on the test crop (Triticum aestivum) was assessed. Results showed that groundnut fixed as much as 52.9 and 23.4 kg N ha-1 at pod filling stage and 66.7 and 34.4 at physiological maturity stage for the 1992 and 1993 growing season, respectively. The test crop did not benefit from the residual N due to the high precipitation in the region leaching down most of the inorganic nitrogen beyond the root zone. In the 1992 growing season, the lower N rate for maize (100 kg N ha-1) was superior over the higher rate (150 kg N ha-1). But due to water stress in the 1993 growing season, a different trend with regard to the response of maize to fertilizer N was obtained. (author). 14 refs, 1 fig., 10 tabs

  3. Response of berseem (trifolium alexandrinum) shaftal (trifolium resupinatum) and lucerne (medicago sativa) to phosphorus application for yield, nodulation and nitrogen fixation

    In a pot culture experiment, increasing levels of phosphorus at 40, 60, 80, 100 Kg P/sub 2/O/sub 5/ ha/sup -1/ in the presence of uniform dressing of nitrogen and potash (K/sub 2/O) each applied at 10 and 40 kg ha-1 increased significantly the nodulation response number and weight of nodules plant/sup -1/, nitrogenase activity, n-uptake and dry mater yield of shoots and roots of berseem, shaflt and lucerne. The increase in shoots n-uptake was in the range of 117 to 233 percent for berseem, 52 to 224 percent for shaftal, 50 to 330 percent for lucerne: whereas the increase in the root n-uptake was in the range of 67 to 266 percent for berseem, 64 to 240 percent for shaftal and 23 to 114 percent for lucerne. The improvement in the n-uptake of shoots ad roots in obviously due to marked improvement in nodulation response number and weight of nodules plant-1) and nitrogen activity of the test crops as a result of all the applied doses of phosphorus. (author)

  4. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China.

    Chen, Qing; Hooper, David U; Lin, Shan

    2011-01-01

    Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha(-1) yr(-1)) addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown.Aboveground net primary production (ANPP) increased in response to nitrogen when precipitation was similar to or higher than the long-term average, but not when precipitation was below average. This shift in limitation was also reflected by water and nitrogen use efficiency. Belowground live biomass significantly increased with increasing water availability, but was not affected by nitrogen addition. Under natural precipitation (NP treatment), the inter-annual variation of ANPP was 3-fold greater than with stable water availability (CV(ANPP) = 61±6% and 17±3% for NP and SWP treatment, respectively) and nitrogen addition increased CV(ANPP) even more (89±14%). This occurred in part because fertilizer nitrogen left in the soil in dry years remained available for uptake during wet years and because of high production by unpalatable annual species in wet years in the NP treatment. In summary, plant growth by residual fertilizer nitrogen could lead to sufficient yields to offset lack of additional production in dry years. However, the utility of fertilization for restoration may be constrained by shifts in species composition and the lack of

  5. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China.

    Qing Chen

    Full Text Available Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation and nitrogen (0, 25 and 50 kg N ha(-1 yr(-1 addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown.Aboveground net primary production (ANPP increased in response to nitrogen when precipitation was similar to or higher than the long-term average, but not when precipitation was below average. This shift in limitation was also reflected by water and nitrogen use efficiency. Belowground live biomass significantly increased with increasing water availability, but was not affected by nitrogen addition. Under natural precipitation (NP treatment, the inter-annual variation of ANPP was 3-fold greater than with stable water availability (CV(ANPP = 61±6% and 17±3% for NP and SWP treatment, respectively and nitrogen addition increased CV(ANPP even more (89±14%. This occurred in part because fertilizer nitrogen left in the soil in dry years remained available for uptake during wet years and because of high production by unpalatable annual species in wet years in the NP treatment. In summary, plant growth by residual fertilizer nitrogen could lead to sufficient yields to offset lack of additional production in dry years. However, the utility of fertilization for restoration may be constrained by shifts in species composition and

  6. Water, Nitrogen and Plant Density Affect the Response of Leaf Appearance of Direct Seeded Rice to Thermal Time

    Maite MART(I)NEZ-EIXARCH; ZHU De-feng; Maria del Mar CATAL(A)-FORNER; Eva PLA-MAYOR; Nuria TOM(A)S-NAVARRO

    2013-01-01

    Field experiments were conducted in the Ebro Delta area (Spain),from 2007 to 2009 with two rice varieties:Gleva and Tebre.The experimental treatments included a series of seed rates,two different water management systems and two different nitrogen fertilization times.The number of leaves on the main stems and their emergence time were periodically tagged.The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles.Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems.Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems.Final leaf number on the main stems was negatively related to plant density.A relationship between leaf appearance and thermal time was established with a strong nonlinear function.In direct-seeded rice,the length of the phyllochron increases exponentially in line with the advance of plant development.A general model,derived from 2-year experimental data,was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf.An exponential model can be used to predict leaf emergence in direct-seeded rice.

  7. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.

    Wang, Huadun; Sun, Rui; Cao, Yue; Pei, Wenxia; Sun, Yafei; Zhou, Hongmin; Wu, Xueneng; Zhang, Fang; Luo, Le; Shen, Qirong; Xu, Guohua; Sun, Shubin

    2015-12-01

    SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice. PMID:26615033

  8. Understanding Nitrogen Fixation

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  9. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased wi...

  10. Temperature sensitivity of nitrogen productivity

    Ladanai, Svetlana; Ågren, Göran

    2002-01-01

    Environmental conditions control physiological processes in plants and thus their growth. The predicted global warming is expected to accelerate tree growth. However, the growth response is a complex function of several processes. To circumvent this problem we have used the nitrogen productivity (dry matter production per unit of nitrogen in the plant), which is an aggregate parameter. Data on needle dry matter, production, and nitrogen content in needles of Scots pine (Pinus sylvestris) from...

  11. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additi