WorldWideScience

Sample records for adaptive traffic flow

  1. Traffic flow on realistic road networks with adaptive traffic lights

    de Gier, Jan; Rojas, Omar

    2010-01-01

    We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adative vs adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links, and one which is informed by upstream links only. We find that, in general, the total travel time is smallest when using the joint upstream-downstream control strategy.

  2. TRAFFIC FLOW MODEL BASED ON CELLULAR AUTOMATION WITH ADAPTIVE DECELERATION

    Shinkarev, A. A.

    2016-01-01

    This paper describes continuation of the authors’ work in the field of traffic flow mathematical models based on the cellular automata theory. The refactored representation of the multifactorial traffic flow model based on the cellular automata theory is used for a representation of an adaptive deceleration step implementation. The adaptive deceleration step in the case of a leader deceleration allows slowing down smoothly but not instantly. Concepts of the number of time steps without confli...

  3. Adaptive algorithms for identifying large flows in IP traffic

    Chabchoub, Yousra; Guillemin, Fabrice; Robert, Philippe

    2009-01-01

    We develop in this paper an adaptive algorithm based on Bloom filters in order to identify large flows. While most algorithms proposed so far in the technical literature rely on a periodic erasure of the Bloom filter, we propose in this paper to progressively decrement the various counters of the filter according to some overload criteria. When tested against real traffic traces, the proposed algorithm performs well in the sense that a high percentage of large flows in traffic are detected by the algorithm. In order to improve the accuracy of the algorithm, we introduce a shadow Bloom filter, which is less frequently decremented so that elephants have more chance of being identified. Since elephant detection issue is very close to flood attack detection, we adapt the proposed algorithm in order to detect SYN and volume flood attack in Internet traffic. The attack detection algorithm is tested against traffic traces from France Telecom collect and transit networks. Some performance issues are finally discussed...

  4. Traffic-adaptive, flow-specific medium access for wireless networks

    Walker, T. Owens; Tummala, Murali; McEachen, John

    2009-01-01

    In this report, we formally introduce the novel concept of traffic-adaptive, flow-specific medium access control and show that it outperforms contention, non-contention and hybrid medium access schemes. A traffic-adaptive, flow-specific mechanism is proposed that utilizes flow-specific queue size statistics to select between medium access modes. A general model for traffic adaptive, flow-specific medium access control is developed and it is shown that hybrid medium access as well as traditio...

  5. Optimizing Traffic Flow

    Huberman, Bernardo A.; Helbing, Dirk

    1998-01-01

    We present an economics-based method for deciding the optimal rates at which vehicles are allowed to enter a highway. The method exploits the naturally occuring fluctuations of traffic flow and is flexible enough to adapt in real time to the transient flow characteristics of road traffic. Simulations based on realistic parameter values show that this strategy is feasible for naturally occuring traffic, and that even far from optimality, injection policies can improve traffic flow. Our results...

  6. Traffic flow impacts of adaptive cruise control deactivation and (Re)activation with cooperative driver behavior

    Klunder, G.; Li, M.; Minderhoud, M.

    2009-01-01

    In 2006 in the Netherlands, a field operational test was carried out to study the effect of adaptive cruise control (ACC) and lane departure warning on driver behavior and traffic flow in real traffic. To estimate the effect for larger penetration rates, simulations were needed. For a reliable impac

  7. The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics

    Arem, van, Bart; Driel, van, J.; Visser, Ruben

    2006-01-01

    Cooperative adaptive cruise control (CACC) is an extension of ACC. In addition to measuring the distance to a predecessor, a vehicle can also exchange information with a predecessor by wireless communication. This enables a vehicle to follow its predecessor at a closer distance under tighter control. This paper focuses on the impact of CACC on traffic-flow characteristics. It uses the traffic-flow simulation model MIXIC that was specially designed to study the impact of intelligent vehicles o...

  8. Nature inspired artificial intelligence based adaptive traffic flow distribution in computer network

    Singh, Manoj Kumar

    2010-01-01

    Because of the stochastic nature of traffic requirement matrix, it is very difficult to get the optimal traffic distribution to minimize the delay even with adaptive routing protocol in a fixed connection network where capacity already defined for each link. Hence there is a requirement to define such a method, which could generate the optimal solution very quickly and efficiently. This paper presenting a new concept to provide the adaptive optimal traffic distribution for dynamic condition of traffic matrix using nature based intelligence methods. With the defined load and fixed capacity of links, average delay for packet has minimized with various variations of evolutionary programming and particle swarm optimization. Comparative study has given over their performance in terms of converging speed. Universal approximation capability, the key feature of feed forward neural network has applied to predict the flow distribution on each link to minimize the average delay for a total load available at present on t...

  9. A Flow-Level Performance Model for Mobile Networks Carrying Adaptive Streaming Traffic

    Bonald, Thomas; Elayoubi, Salah-Eddine; Lin, Yu-Ting

    2015-01-01

    International audience This paper proposes a performance model for mobile networks carrying adaptive streaming traffic. The proposed model takes into account the flow dynamics in addition to the main parameters influencing the performance of adaptive streaming, such as the playout buffer and the video bit rates. We show how to compute several performance metrics like the average video bit rate, the deficit rate, defined as the probability of having an instantaneous throughput lower than th...

  10. TRANSIMS traffic flow characteristics

    Nagel, Kai; Stretz, Paula; Pieck, Martin; Donnelly, Rick; Barrett, Christopher L.

    1997-01-01

    Knowledge of fundamental traffic flow characteristics of traffic simulation models is an essential requirement when using these models for the planning, design, and operation of transportation systems. In this paper we discuss the following: a description of how features relevant to traffic flow are currently under implementation in the TRANSIMS microsimulation, a proposition for standardized traffic flow tests for traffic simulation models, and the results of these tests for two different ve...

  11. Traffic-Adaptive Routing

    Kammenhuber, Nils

    2011-01-01

    Despite the bursty and highly volatile traffic, routing in the Internet today is optimised only on coarse time scales, as load-adaptive routing is known to induce performance deterioration by causing massive oscillations. We describe ReplEx, an universally applicable distributed algorithm for dynamic routing/traffic engineering, which is based on game theory. We show through extensive realistic simulations that ReplEx does not oscillate, and that it achieves performance gains comparable to tr...

  12. Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp

    Davis, L. C.

    2007-06-01

    Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6 km in distance traveled in 600 s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.

  13. Traffic Flow Estimates.

    Hart, Vincent G.

    1981-01-01

    Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)

  14. Traffic Flow Theory

    Maerivoet, Sven; De Moor, Bart

    2005-01-01

    The scientific field of traffic engineering encompasses a rich set of mathematical techniques, as well as researchers with entirely different backgrounds. This paper provides an overview of what is currently the state-of-the-art with respect to traffic flow theory. Starting with a brief history, we introduce the microscopic and macroscopic characteristics of vehicular traffic flows. Moving on, we review some performance indicators that allow us to assess the quality of traffic operations. A f...

  15. Traffic-flow simulation

    OMAHEN, ANDRAŽ

    2015-01-01

    This diploma thesis presents the behavior of program, which uses the traffic light enhanced transport network to simulate the traffic flow of vehicles that behave according to the IDM model. We upgraded the program to allow, for the given network, to optimize the traffic flow. Because of the overwhelming problem of road closures or their rearrangement, we added a graphical user interface with which a user can create or modify the road network to observe changes in traffic. The objective of...

  16. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    Davis, L C

    2015-01-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested stat...

  17. Traffic Flow Management System

    Department of Transportation — TFMS is a set NAS operational tools that predict demand, identify constraints, and facilitates collaboration among NAS users to support efficient traffic flow while...

  18. A Marine Traffic Flow Model

    Tsz Leung Yip

    2013-01-01

    A model is developed for studying marine traffic flow through classical traffic flow theories, which can provide us with a better understanding of the phenomenon of traffic flow of ships. On one hand, marine traffic has its special features and is fundamentally different from highway, air and pedestrian traffic. The existing traffic models cannot be simply extended to marine traffic without addressing marine traffic features. On the other hand, existing literature on marine traffic focuses on...

  19. Online traffic flow model applying dynamic flow-density relation

    Kim, Y

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic fl...

  20. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    Davis, L. C.

    2016-06-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.

  1. Traffic flow modeling: a Genealogy

    Van Wageningen-Kessels, F.L.M.; Hoogendoorn, S.P.; Vuik, C.; Lint, van J. W. C.

    2014-01-01

    80 years ago, Bruce Greenshields presented the first traffic flow model at the Annual Meeting of the Highway Research Board. Since then, many models and simulation tools have been developed. We show a model tree with four families of traffic flow models, all descending from Greenshields' model. The tree shows the historical development of traffic flow modeling and the relations between models. Based on the tree we discuss the main trends and future developments in traffic flow modeling and si...

  2. Physics of Traffic Flow

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  3. Online traffic flow model applying dynamic flow-density relation

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  4. Simulation of traffic flow at a signalised intersection

    Foulaadvand, M. Ebrahim; Belbaasi, Sommayeh

    2008-01-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing of vehicular traffic flow at a single intersection. A set of traffic lights operating either in fixed-time or traffic adaptive scheme controls the traffic flow. Closed boundary condition is applied to the streets each of which conduct a uni-directional flow. Extensive Monte Carlo simulations are carried out to find the model characteristics. In particular, we investigate the dependence of the flows on the signalisa...

  5. Simulation of traffic flow at a signalised intersection

    Foulaadvand, M Ebrahim

    2008-01-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing of vehicular traffic flow at a single intersection. A set of traffic lights operating either in fixed-time or traffic adaptive scheme controls the traffic flow. Closed boundary condition is applied to the streets each of which conduct a uni-directional flow. Extensive Monte Carlo simulations are carried out to find the model characteristics. In particular, we investigate the dependence of the flows on the signalisation parameters.

  6. Traffic flow modeling: a Genealogy

    Van Wageningen-Kessels, F.L.M.; Hoogendoorn, S.P.; Vuik, C.; Van Lint, J.W.C.

    2014-01-01

    80 years ago, Bruce Greenshields presented the first traffic flow model at the Annual Meeting of the Highway Research Board. Since then, many models and simulation tools have been developed. We show a model tree with four families of traffic flow models, all descending from Greenshields' model. The

  7. Probabilistic description of traffic flow

    A stochastic description of traffic flow, called probabilistic traffic flow theory, is developed. The general master equation is applied to relatively simple models to describe the formation and dissolution of traffic congestions. Our approach is mainly based on spatially homogeneous systems like periodically closed circular rings without on- and off-ramps. We consider a stochastic one-step process of growth or shrinkage of a car cluster (jam). As generalization we discuss the coexistence of several car clusters of different sizes. The basic problem is to find a physically motivated ansatz for the transition rates of the attachment and detachment of individual cars to a car cluster consistent with the empirical observations in real traffic. The emphasis is put on the analogy with first-order phase transitions and nucleation phenomena in physical systems like supersaturated vapour. The results are summarized in the flux-density relation, the so-called fundamental diagram of traffic flow, and compared with empirical data. Different regimes of traffic flow are discussed: free flow, congested mode as stop-and-go regime, and heavy viscous traffic. The traffic breakdown is studied based on the master equation as well as the Fokker-Planck approximation to calculate mean first passage times or escape rates. Generalizations are developed to allow for on-ramp effects. The calculated flux-density relation and characteristic breakdown times coincide with empirical data measured on highways. Finally, a brief summary of the stochastic cellular automata approach is given

  8. Two dimensional mixed traffic flow considering the transit traffic

    Lingjiang Kong; Junhui Hu; Li Yang

    2012-01-01

    Based on the two-dimension cellular automaton traffic flow model (BML model), a mixed traffic flow model for urban traffic considering the transit traffic is established in this paper by using the Don't block the box rules. We have investigated the influences of the transit traffic ratio, and found that, in most cases, the urban traffic flow exhibited jam phase. Moreover, focusing on the traffic lights cycle, it is found that the average flow has the periodic fluctuation phenomenon, and we ha...

  9. Linearized Theory of Traffic Flow

    Cohan, Tal

    2014-01-01

    The equation of motion of a general class of macroscopic traffic flow models is linearized around a steady uniform flow. A closed-form solution of a boundary-initial value problem is obtained, and it is used to describe several phenomena. Specifically, the scenarios examined involve a smooth velocity field in stop-and-go traffic, a discontinuous velocity field with shock waves in a traffic light problem, and discontinuous displacement fields in a problem where a single platoon of vehicles splits into two, and later merges back into one.

  10. Two dimensional mixed traffic flow considering the transit traffic

    Lingjiang Kong

    2012-12-01

    Full Text Available Based on the two-dimension cellular automaton traffic flow model (BML model, a mixed traffic flow model for urban traffic considering the transit traffic is established in this paper by using the Don't block the box rules. We have investigated the influences of the transit traffic ratio, and found that, in most cases, the urban traffic flow exhibited jam phase. Moreover, focusing on the traffic lights cycle, it is found that the average flow has the periodic fluctuation phenomenon, and we have explained this periodical oscillation change under different boundary conditions. The comparison to practical measured data shows that our stimulation results are accordant with the changes of real traffic flow, which confirms the accuracy and rationality of our model.

  11. Web application for traffic flow forecasting

    Dubravac, Dragan

    2015-01-01

    Disturbances in traffic on highways usually lead to an increase in traffic flow density or even traffic jams. The main goal of the diploma thesis is to produce an application that will predict traffic flow and traffic jams on any given date and time based on traffic flow in the past. By using an estimated desired speed the traffic information gained from flow counters we can forecast the evolution of traffic jams. The application presents a graph that represents the number of vehicles on a...

  12. Traffic Flow Management and Optimization

    Rios, Joseph Lucio

    2014-01-01

    This talk will present an overview of Traffic Flow Management (TFM) research at NASA Ames Research Center. Dr. Rios will focus on his work developing a large-scale, parallel approach to solving traffic flow management problems in the national airspace. In support of this talk, Dr. Rios will provide some background on operational aspects of TFM as well a discussion of some of the tools needed to perform such work including a high-fidelity airspace simulator. Current, on-going research related to TFM data services in the national airspace system and general aviation will also be presented.

  13. Traffic Data and Their Implications for Consistent Traffic Flow Modeling

    Helbing, Dirk

    1998-01-01

    The paper analyzes traffic data of the Dutch freeway A9 with respect to certain aspects which are relevant for traffic flow modeling as well as the calibration of model parameters and functions. Apart from the dynamic velocity distribution, the density-dependence and the temporal evolution of various, partly lane-specific quantities is investigated. The results are well compatible with recent macroscopic traffic flow models which have been derived from the dynamics of driver-vehicle units. Th...

  14. Deep Learning Predictors for Traffic Flows

    Polson, Nicholas; Sokolov, Vadim

    2016-01-01

    We develop a deep learning predictor for modeling traffic flows. The challenge arises as traffic flows have sharp nonlinearities resulting from transitions from free flow to breakdown and then to congested flow. Our methodology uses a deep learning architecture to capture nonlinear spatio-temporal flow effects. We show how traffic flow data, from road sensors, can be predicted using deep learning. For comparison, we use a benchmark sparse $\\ell_1$ trend filter and we illustrate our methodolog...

  15. Empirical Phase Diagram of Congested Traffic Flow

    Lee, H. Y.; Lee, H. -W.; Kim, D.

    1999-01-01

    We present an empirical phase diagram of the congested traffic flow measured on a highway section with one effective on-ramp. Through the analysis of local density-flow relations and global spatial structure of the congested region, four distinct congested traffic states are identified. These states appear at different levels of the upstream flux and the on-ramp flux, thereby generating a phase digram of the congested traffic flow. Observed traffic states are discussed in connection with rece...

  16. Empirical analysis of heterogeneous traffic flow

    Ambarwati, L.; Pel, A.J.; Verhaeghe, R.J.; Van Arem, B.

    2013-01-01

    Traffic flow in many developing countries is strongly mixed comprising vehicle types, such as motorcycles, cars, (mini) buses, and trucks; furthermore, traffic flow typically exhibits free inter-lane exchanges. This phenomenon causes a complex vehicle interaction, rendering most existing traffic flo

  17. Traffic Flow Models and Their Numerical Solutions

    Jin, Wenlong

    2004-01-01

    In this thesis, Riemann problems and Godunov methods are developed for higher order traffic flow models. A rigorous analysis of the first order traffic flow model of inhomogeneous road is presented. A two-level simulation framework of network vehicular traffic is proposed as a Godunov-type finite difference system with the supply-demand method as an alternative of Riemann solver.

  18. IMPROVING VEHICLE FLOW WITH TRAFFIC LIGHTS

    J. POLI; L. H. A. Monteiro

    2005-01-01

    A probabilistic cellular automata is used for investigating how a traffic light placed on a street intersection influences vehicle velocities. Numerical simulations reveal that above a critical density of cars, the traffic light improves the flow in both directions.

  19. Particle hopping models and traffic flow theory

    Nagel, Kai

    1995-01-01

    This paper shows how particle hopping models fit into the context of traffic flow theory. Connections between fluid-dynamical traffic flow models, which derive from the Navier-Stokes-equations, and particle hopping models are shown. In some cases, these connections are exact and have long been established, but have never been viewed in the context of traffic theory. In other cases, critical behavior of traffic jam clusters can be compared to instabilities in the partial differential equations...

  20. Traffic flow optimization on roundabouts

    Delle Monache, Maria Laura; Obsu, Legesse Lemecha; Goatin, Paola; Kassa, Semu Mitiku

    2013-01-01

    The aim of this paper is to optimize the traffic flow on roundabouts using a macroscopic approach. The roundabout is modeled as a sequence of 2x2 junctions: with one mainline and secondary incoming and outgoing roads. We consider two cost functionals: the total travel time and the total waiting time, which give an estimate of the time spent by drivers on the network section. These cost functionals are minimized analytically for each junction with respect to the right of way parameter of the i...

  1. Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Hosseini, Seyed Hadi; Moshiri, Behzad; Rahimi-Kian, Ashkan; Nadjar Araabi, Babak

    2014-01-01

    Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI) technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was test...

  2. Predicting Information Flows in Network Traffic.

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  3. Robust Traffic Flow Management: Coevolutionary Approach Project

    National Aeronautics and Space Administration — We will develop a Coevolutionary Decision Support Tool (CDST) that explicitly incorporates weather uncertainty (non-probabilistically) into strategic Traffic Flow...

  4. Temporal Characteristics of Large IP Traffic Flows

    Abrahamsson, Henrik; Ahlgren, Bengt

    2003-01-01

    Several studies of Internet traffic have shown that it is a small percentage of the flows that dominate the traffic. This is often referred to as the mice and elephants phenomenon. It has been proposed that this might be one of very few invariants of Internet traffic and that this property could somehow be used for traffic engineering purposes. The idea being that one in a scalable way could control a major part of the traffic by only keeping track of a small number of flows. But for this the...

  5. Traffic flow wide-area surveillance system definition

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  6. Traffic Flow Management Wrap-Up

    Grabbe, Shon

    2011-01-01

    Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.

  7. Traffic and Granular Flow ’07

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.

  8. Adaptive Traffic Signalization Model using Neuro-Fuzzy Controllers

    Devesh Batra; Pragya Verma

    2014-01-01

    Current traffic lights are pre-programmed and use daily signal timing schedules, which contribute to traffic congestion and delay. Thus, with the increase in the number of vehicles on road, need for adaptive signal technology arises which has the potential to adjust the timing of red, yellow and green lights in order to accommodate changing traffic patterns and ease traffic congestion. In this paper, we present a model for adaptive traffic signalization, which uses fuzzy neura...

  9. Fastlane: Traffic flow modeling and multi-class dynamic traffic management

    Schreiter, T.; Van Wageningen-Kessels, F.L.M.; Yuan, Y; Lint, van J. W. C.; Hoogendoorn, S.P.

    2012-01-01

    Dynamic Traffic Management (DTM) aims to improve traffic conditions. DTM usually consists of two steps: first the current traffic is estimated, then appropriate control actions are determined based on that estimate. In order to estimate and control the traffic, a suitable traffic flow model that reproduces the properties of traffic well must be used. One of the most important properties is that traffic is composed of multiple vehicle classes. While many traffic flow models have been proposed ...

  10. Traffic and Granular Flow ’03

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  11. Real-Time Corrected Traffic Correlation Model for Traffic Flow Forecasting

    Lu, Hua-pu; Sun, Zhi-yuan; Qu, Wen-cong; Wang, Ling

    2015-01-01

    This paper focuses on the problems of short-term traffic flow forecasting. The main goal is to put forward traffic correlation model and real-time correction algorithm for traffic flow forecasting. Traffic correlation model is established based on the temporal-spatial-historical correlation characteristic of traffic big data. In order to simplify the traffic correlation model, this paper presents correction coefficients optimization algorithm. Considering multistate characteristic of traffic ...

  12. Spatiotemporal traffic-flow dependency and short-term traffic forecasting

    Yang Yue; Anthony Gar-On Yeh

    2008-01-01

    Short-term traffic forecasting is playing an increasing role in modern transport management. Although many short-term traffic forecasting methods have been explored, the spatiotemporal dependency of traffic flow, an important characteristic of traffic dynamics that can benefit the forecasting of traffic changes, is often neglected in short-term traffic forecasting. This paper first investigates the spatiotemporal dependency of traffic flow using cross-correlation analysis and then discusses i...

  13. Traffic flow dynamics data, models and simulation

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  14. International Workshop on Traffic and Granular Flow

    Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics

    2000-01-01

    "Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.

  15. Traffic and Granular Flow '11

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  16. The Effects of Taxi on Traffic Flow

    Tang, Tie-Qiao; Li, Yan; Huang, Hai-Jun

    Taxi will come to one complete halt during the boarding/alighting period and might produce stop-and-go without passengers, so it often produces traffic interruption on the single-lane system. Tang et al. pointed out that the traffic flow model [Chin. Phys. 18, 975 (2009)] can be used to directly describe various micro phenomena resulted by traffic interruption on the single-lane system, if we properly define the traffic interruption probability, so in this paper we adopt this model to study the micro phenomena resulted by taxi on the single-lane system. The numerical results show that this model can describe the effects that taxi has on the trails of each vehicle's motion and the evolutions of the flow and the density on the single-lane system, but that these effects are relevant to the initial conditions of the whole system.

  17. Fastlane: Traffic flow modeling and multi-class dynamic traffic management

    Schreiter, T.; Van Wageningen-Kessels, F.L.M.; Yuan, Y.; Van Lint, J.W.C.; Hoogendoorn, S.P.

    2012-01-01

    Dynamic Traffic Management (DTM) aims to improve traffic conditions. DTM usually consists of two steps: first the current traffic is estimated, then appropriate control actions are determined based on that estimate. In order to estimate and control the traffic, a suitable traffic flow model that rep

  18. Maximizing Quality and Performance of Network Through Adaptive Traffic Engineering

    Sameera Pallavi; Ch.Sandeep; P.Pramod Kumar

    2013-01-01

    Network management systems are to handle traffic dynamics in order to ensure congestion free network with highest throughput. IP environments are able to provide simple facilities for forwarding and routing packets. However, in presence of dynamic traffic conditions efficient management of resources is yet to be achieved. Recently Ning Wang et al. proposed a traffic engineering system which can ynamically adapt to traffic conditions with the help of virtual routing topologies. It has two majo...

  19. A superstatistical model of vehicular traffic flow

    Kosun, Caglar; Ozdemir, Serhan

    2016-02-01

    In the analysis of vehicular traffic flow, a myriad of techniques have been implemented. In this study, superstatistics is used in modeling the traffic flow on a highway segment. Traffic variables such as vehicular speeds, volume, and headway were collected for three days. For the superstatistical approach, at least two distinct time scales must exist, so that a superposition of nonequilibrium systems assumption could hold. When the slow dynamics of the vehicle speeds exhibit a Gaussian distribution in between the fluctuations of the system at large, one speaks of a relaxation to a local equilibrium. These Gaussian distributions are found with corresponding standard deviations 1 /√{ β }. This translates into a series of fluctuating beta values, hence the statistics of statistics, superstatistics. The traffic flow model has generated an inverse temperature parameter (beta) distribution as well as the speed distribution. This beta distribution has shown that the fluctuations in beta are distributed with respect to a chi-square distribution. It must be mentioned that two distinct Tsallis q values are specified: one is time-dependent and the other is independent. A ramification of these q values is that the highway segment and the traffic flow generate separate characteristics. This highway segment in question is not only nonadditive in nature, but a nonequilibrium driven system, with frequent relaxations to a Gaussian.

  20. A new dynamics model for traffic flow

    2001-01-01

    As a study method of traffic flow, dynamics models were developedand applied in the last few decades. However, there exist some flaws in most existing models. In this note, a new dynamics model is proposed by using car-following theory and the usual connection method of micro-macro variables, which can overcome some ubiquitous problems in the existing models. Numerical results show that the new model can very well simulate traffic flow conditions, such as congestion, evacuation of congestion, stop-and-go phenomena and phantom jam.

  1. Adaptive Traffic Signalization Model using Neuro-Fuzzy Controllers

    Devesh Batra*

    2014-07-01

    Full Text Available Current traffic lights are pre-programmed and use daily signal timing schedules, which contribute to traffic congestion and delay. Thus, with the increase in the number of vehicles on road, need for adaptive signal technology arises which has the potential to adjust the timing of red, yellow and green lights in order to accommodate changing traffic patterns and ease traffic congestion. In this paper, we present a model for adaptive traffic signalization, which uses fuzzy neural network for designing traffic signal controller. The controllers use vehicle detectors in order to detect the number of incoming vehicles. Based on the number of approaching vehicles, the current signal phase is either extended or terminated. The traffic volume at one particular region in an intersection is compared with that in the competing regions of the same intersection. The decision made is thus robust and results in less congestion and delays.

  2. Traffic Flow Wide-Area Surveillance system

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  3. Modeling and Simulation of a Traffic Flow Model Considering the Influence of Traffic Interruption

    Yang, Shu-hong; Li, Chui-Gui; Xia, Dong-Xue; Wang, Meng; Wang, Xiao-Rong

    2013-01-01

    In this paper, we present a new lattice model of traffic flow by considering the effects of traffic interruption probability. The stability condition of the proposed model is obtained by employing the linear stability theory. The results show that the stability of traffic flow is improved by considering the influence of traffic interruption. Applying the method of nonlinear analysis, the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical p...

  4. Traffic Flow Control In Automated Highway Systems

    Alvarez, Luis; Horowitz, Roberto

    1997-01-01

    This report studies the problem of traffic control in the Automated Highway System (AHS) hierarchical architecture of the California PATH program. A link layer controller for the PATH AHS architecture is presented. It is shown that the proposed control laws stabilize the vehicular density and flow around predetermined profiles.

  5. An ontology for traffic flow management

    Putten, Bart-Jan van; Wolfe, S.R.; Dignum, M.V.

    2008-01-01

    The Next Generation Air Transportation System (NGATS) project is a multi-faceted research effort to address issues with the National Airspace System. One such facet is the area of Collaborative Traffic Flow Management (CTFM), which intends to increase both the efficiency of the National Airspace System and the satisfaction level of the airlines.

  6. Dynamic Adaptation of the Traffic Management System CarDemo

    Cordier, A.; Domingues, Rémi; Labaere, Anthony; Noel, Nicolas; Thiery, Adrien; Cerqueus, Thomas; Perry, Philip; Ventresque, Anthony; et al.

    2014-01-01

    This paper demonstrates how we applied a constraint-based dynamic adaptation approach on CarDemo, a traffic management system. The approach allows domain experts to describe the adaptation goals as declarative constraints, and automatically plan the adaptation decisions to satisfy these constraints. We demonstrate how to utilise this approach to realise the dynamic switch of routing services of the traffic management system, according to the change of global system states and user requests.

  7. Forecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and other traffic variables

    Anacleto Junior, Osvaldo; Queen, Catriona; Albers, Casper

    2013-01-01

    Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for forecasting flows, accommodating multivariate flow time series, while being a computationally simple model to use. While statistical flow forecasting models usually base their forecasts on flow da...

  8. Flow Detection Based on Traffic Video Image Processing

    Peng Shen

    2013-10-01

    Full Text Available Because in the traffic video image processing, the background image gotten from background modeling by traditional k-means clustering algorithm shows a lot of noises, thus the improvement of k-means clustering algorithm is proposed, and has been applied to the vehicle flow detection of traffic video image. By analyzing the vehicle detection method and comparing the flow detection algorithm, the improved k-means clustering algorithm is experimentally tested at last, and carries out software implementation. The experiment shows that the improved algorithm after background modeling is superior to the traditional one in time complexity, it has better adaptivity and robustness, which has increased the effect of vehicle flow detection.

  9. Characteristics of ant-inspired traffic flow: Applying the social insect metaphor to traffic models

    John, Alexander; Schadschneider, Andreas; Chowdhury, Debashish; Nishinari, Katsuhiro

    2009-01-01

    We investigate the organization of traffic flow on preexisting uni- and bidirectional ant trails. Our investigations comprise a theoretical as well as an empirical part. We propose minimal models of uni- and bi-directional traffic flow implemented as cellular automata. Using these models, the spatio-temporal organization of ants on the trail is studied. Based on this, some unusual flow characteristics which differ from those known from other traffic systems, like vehicular traffic or pedestri...

  10. Multi Model Criteria for the Estimation of Road Traffic Congestion from Traffic Flow Information Based on Fuzzy Logic

    K.Ram Mohan Rao; P. L. N. Raju; Hari Shankar

    2012-01-01

    In this study, the road traffic congestion of Dehradun city is evaluated from traffic flow information using fuzzy techniques. Three different approaches namely Sugeno, Mamdani models which are manually tuned techniques, and an Adaptive Neuo-Fuzzy Inference System (ANFIS) which an automated model decides the ranges and parameters of the membership functions using grid partition technique, based on fuzzy logic. The systems are designed to human’s feelings on inputs and output levels. There are...

  11. From Traffic Flow to Economic System

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  12. Analysis of vehicular traffic flow using a macroscopic model

    Pérez-Sánchez, Fernando Luis; Bautista, Alejandro; Salazar, Martin; Macias, Antonio

    2014-01-01

    Today the most cities in the world face different problems caused by vehicular traffic due to the increasing number of vehicles on road, such as traffic congestion, environmental pollution, excessive noise, increased accidents on the road, etc. Therefore it is important to represent the phenomenon by applying models so as to find better traffic flow patterns in a given city. In this work we introduce a simple macroscopic model to describe traffic flow in traffic congestion and we obtain the e...

  13. Adaptive Traffic Control Systems in a medium-sized Scandinavian city

    Agerholm, Niels; Olesen, Anne Vingaard

    2016-01-01

    Adaptive Traffic Control Systems (ATCS) are aimed at reducing congestion. ATCS adapt to approaching traffic to continuously optimise the traffic flows in question. ATCS have been implemented in many locations, including the Scandinavian countries, with various effects. Due to congestion problems......, ATCS were installed in the eight signalised intersections of a 1.7 km stretch of the ring road in the medium-sized Danish city of Aalborg. To measure the effect of ATCS a with/without study was carried out. GPS data from a car following the traffic, recorded transportation times for buses in service...... morning peak and midday off-peak. The effect on crossing and turning traffic was slight, and while reduced transportation time was found in one part of the ring road in another part transportation time was seen to increase. The benefit to the ring road was partly gained at the cost of slightly increased...

  14. Adaptive Queue Management with Restraint on Non-Responsive Flows

    Lan Li

    2003-12-01

    Full Text Available This paper proposes an adaptive queue management scheme (adaptive RED to improve Random Early Detection (RED on restraining non-responsive flows. Due to a lack of flow control mechanism, non-responsive flows can starve responsive flows for buffer and bandwidth at the gateway. In order to solve the disproportionate resource problem, RED framework is modified in this way: on detecting when the non-responsive flows starve the queue, packet-drop intensity (Max_p in RED can be adaptively adjusted to curb non-responsive flows for resource fair-sharing, such as buffer and bandwidth fair-sharing. Based on detection of traffic behaviors, intentionally restraining nonresponsive flows is to increase the throughput and decrease the drop rate of responsive flows. Our experimental results based on adaptive RED shows that the enhancement of responsive traffic and the better sharing of buffer and bandwidth can be achieved under a variety of traffic scenarios.

  15. Noise-Induced Phase Transition in Traffic Flow

    LIKe-Ping; GAOZi-You

    2004-01-01

    One of the dynamic phases of the traffic flow is the traffic jam. It appears in traffic flow when the vehicle density is larger than the critical value. In this paper, a new method is presented to investigate the traffic jam when the vehicle density is smaller than the critical value. In our method, we introduce noise into the traffic system after sufficient transient time. Under the effect of noise, the traffic jam appears, and the phase transition from free to synchronized flow occurs in traffic flow. Our method is tested for the deterministic NaSch traffic model. The simulation results demonstrate that there exist a broad range of lower densities at which the noise effect leading to traffic jam can be observed.

  16. Dynamics of bimodality in vehicular traffic flows

    Mullick, Arjun; Ray, Arnab K.

    2012-01-01

    A model equation has been proposed to describe bimodal features in vehicular traffic flows. The dynamics of the bimodal distribution reveals the existence of a fixed point that is connected to itself by a homoclinic trajectory. The mathematical conditions associated with bimodality have been established. The critical factors necessary for both a breaking of symmetry and a transition from bimodal to unimodal behaviour, in the manner of a bifurcation, have been analysed.

  17. Methods and systems of monitoring traffic flow

    Billington, Peter E.; Barnes, Christopher M.; Wakefield, Jonathan P.

    2001-01-01

    A method of monitoring traffic flow comprises reading registration plates of the vehicles of a multiplicity of series of vehicles passing respective locations on a road network, if necessary selecting samples of readings from the readings relating to the vehicles of the series, and determining whether readings of the samples are deemed to contain matching readings. The samples are used as probes or targets to measure average journey times which are compared with reference journey times. The s...

  18. Timing of traffic lights and phase separation in two-dimensional traffic flow

    Sun, Duo; Jiang, Rui; Wang, Bing-Hong

    2010-02-01

    In this paper, we study the effects of traffic light period in two-dimensional Biham-Middleton-Levine (BML) traffic flow model. It is found that a phase separation phenomenon, in which the system separates into coexistence of free flow and jam, could be observed in intermediate vehicle density range when traffic light period T⩾4. We have explained the reason of occurrence of phase separation and investigated its behavior in different traffic light period.

  19. Integrated Traffic Flow Management Decision Making

    Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit

    2009-01-01

    A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.

  20. Self-control of traffic lights and vehicle flows in urban road networks

    Lämmer, Stefan; Helbing, Dirk

    2008-04-01

    Based on fluid-dynamic and many-particle (car-following) simulations of traffic flows in (urban) networks, we study the problem of coordinating incompatible traffic flows at intersections. Inspired by the observation of self-organized oscillations of pedestrian flows at bottlenecks, we propose a self-organization approach to traffic light control. The problem can be treated as a multi-agent problem with interactions between vehicles and traffic lights. Specifically, our approach assumes a priority-based control of traffic lights by the vehicle flows themselves, taking into account short-sighted anticipation of vehicle flows and platoons. The considered local interactions lead to emergent coordination patterns such as 'green waves' and achieve an efficient, decentralized traffic light control. While the proposed self-control adapts flexibly to local flow conditions and often leads to non-cyclical switching patterns with changing service sequences of different traffic flows, an almost periodic service may evolve under certain conditions and suggests the existence of a spontaneous synchronization of traffic lights despite the varying delays due to variable vehicle queues and travel times. The self-organized traffic light control is based on an optimization and a stabilization rule, each of which performs poorly at high utilizations of the road network, while their proper combination reaches a superior performance. The result is a considerable reduction not only in the average travel times, but also of their variation. Similar control approaches could be applied to the coordination of logistic and production processes.

  1. A Multiagent Simulation for Traffic Flow Management with Evolutionary Optimization

    Filipiak, Patryk

    2011-01-01

    A traffic flow is one of the main transportation issues in nowadays industrialized agglomerations. Configuration of traffic lights is among the key aspects in traffic flow management. This paper proposes an evolutionary optimization tool that utilizes multiagent simulator in order to obtain accurate model. Even though more detailed studies are still necessary, a preliminary research gives an expectation for promising results.

  2. Simulation of Urban Traffic Flow Using Personal Experience of Drivers

    Mohammad-Reza Feizi-Derakhshi

    2011-08-01

    Full Text Available In recent years, with increasing population and number of private and public transport vehicles, traffic flow and its control, become a major and popular challenge. Working on control and simulation of traffic flow takes back to 20th century. In order to study and simulate traffic flow, we need to understand this issue and factors that cause congestion in the network and its problems. In recent years, researchers introduced novel methods to work with traffic flow. Those methods were intelligent models. Intelligent models inspired from nature and have some specific useful properties for controlling traffic rate. This paper introduced a new model that named Personal Experience of Driver (PED. Our method is an intelligent model for simulating traffic flow. This method modelsnatural behavior of drivers. Results show that this model properly simulates urban traffic flow based on personal experience of drivers.

  3. Traffic Flow Detection Based on Wireless Sensor Network

    Bao-juan Liang

    2013-01-01

    Detecting traffic flow by in-road inductive loop is the most common methods, but inductive loop is physically large, it is hard to install and maintain, also the classification rate is low. The inductive loops cannot communicate with each other, so they cannot share traffic data with each other. The wireless sensor network has these features: real-time, fault tolerance, scalability and coordination. Applying wireless sensor network into traffic area for traffic flow detection is easier to ins...

  4. Real-Time Corrected Traffic Correlation Model for Traffic Flow Forecasting

    Hua-pu Lu

    2015-01-01

    Full Text Available This paper focuses on the problems of short-term traffic flow forecasting. The main goal is to put forward traffic correlation model and real-time correction algorithm for traffic flow forecasting. Traffic correlation model is established based on the temporal-spatial-historical correlation characteristic of traffic big data. In order to simplify the traffic correlation model, this paper presents correction coefficients optimization algorithm. Considering multistate characteristic of traffic big data, a dynamic part is added to traffic correlation model. Real-time correction algorithm based on Fuzzy Neural Network is presented to overcome the nonlinear mapping problems. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling methods.

  5. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  6. Stability analysis of traffic flow with extended CACC control models

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  7. Traffic Flow Control - Optimization on Horizon

    Homolová, Jitka

    Praha: ÚTIA AV ČR, 2006 - (Přikryl, J.; Šmídl, V.). s. 43-44 [International PhD Workshop on Interplay of Societal and Technical Decision - Making , Young Generation Viewpoint /7./. 25.09.2006-30.09.2006, Hrubá Skála] Grant ostatní: MD ČR(CZ) 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear programming * traffic flow control * control on horizon Subject RIV: BC - Control Systems Theory

  8. Decentralized and Tactical Air Traffic Flow Management

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  9. Traffic Flow Detection Based on Wireless Sensor Network

    Bao-juan Liang

    2013-08-01

    Full Text Available Detecting traffic flow by in-road inductive loop is the most common methods, but inductive loop is physically large, it is hard to install and maintain, also the classification rate is low. The inductive loops cannot communicate with each other, so they cannot share traffic data with each other. The wireless sensor network has these features: real-time, fault tolerance, scalability and coordination. Applying wireless sensor network into traffic area for traffic flow detection is easier to install, and provide real-time traffic flow for coordinate traffic control, also it can improve the classification rate. A lot of researchers applied the wireless sensor network for traffic flow detection, but no one referred to the coordinate traffic flow detection method. In this paper, we provided a coordinate traffic flow detection framework. Based on this framework, we set up a simple traffic flow detection platform by wireless sensor nodes produced by cross box company to verify this method. We selected four periods, for each period, we got a more than 90% classification rate.

  10. Abnormal traffic flow data detection based on wavelet analysis

    Xiao Qian

    2016-01-01

    Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.

  11. Characteristics of Vehicular Traffic Flow at a Roundabout

    Fouladvand, M. Ebrahim; Sadjadi, Zeinab; Shaebani, M. Reza

    2003-01-01

    We construct a stochastic cellular automata model for the description of vehicular traffic at a roundabout designed at the intersection of two perpendicular streets. The vehicular traffic is controlled by a self-organized scheme in which traffic lights are absent. This controlling method incorporates a yield-at-entry strategy for the approaching vehicles to the circulating traffic flow in the roundabout. Vehicular dynamics is simulated within the framework of the probabilistic cellular automa...

  12. Traffic Signals Control with Adaptive Fuzzy Controller in Urban Road Network

    LI Yan; FAN Xiao-ping

    2008-01-01

    An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network.The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level.The control level decides the signal tunings in an intersection with a fuzzy logic controller.The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one.Consequently the system performances are improved.A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections.So the AFC combined with the WCC can be applied in a road network for signal timings.Simulations of the AFC on a real traffic scenario have been conducted.Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.

  13. EXPLAINING TRAFFIC FLOW PATTERNS USING CENTRALITY MEASURES

    Amila Jayasinghe

    2015-06-01

    Full Text Available This study examines the capability of centrality parameters of the road network to explain and predict traffic flow by types of vehicles. The case study was conducted in Colombo Metropolitan Area, Sri Lanka. Study used four centrality parameters i.e. connectivity, global integration, local integration and choice; and three analysis methods i.e. topological, metric and angular which introduced by space syntax analysis method to compute network centrality of the road network. Findings of this study stress that, (1 human beings perceive the space mostly from geometrical distance (topological and angular distance in comparison to metric distance. Further to this, it was found that angular distance is more powerful in global level whereas topological distance is more powerful in local level; (2 it is more appropriate to consider the multiple influences from multiple centrality parameters rather being confined to a single best parameter and influence of each parameter varies based on type of vehicles.

  14. Complementarity of Traffic Flow Intersecting Method with Intersection Capacity Analysis

    Lanović, Zdenko

    2009-01-01

    The paper studies the complementarity of the methods from the field of traffic flow theory: methods of traffic flow intersecting intensity and the method for the at-grade intersection capacity analysis. Apart from checking mutual implications of these methods, the proportionality of mutual influences is assessed. Harmonized application of these methods acts efficiently on the entire traffic network, and not only on the intersections that are usually incorrectly represented as the only network...

  15. A delayed flow intersection model for dynamic traffic assignment

    DURLIN, T; HENN, V

    2005-01-01

    Day-to-Day and Within-Day dynamics are classically observed in dynamic traffic assignment, but smaller ones due to traffic lights phases also occur. These micro variations induce flow fluctuations defined at a cycle time scale. Their precise knowledge is irrelevant in a dynamic traffic assignment context. We propose to integrate these micro dynamics into a new intersection model without stages in which their average effects must be taken into account, especially delay and flow restriction ge...

  16. Characteristics of vehicular traffic flow at a roundabout

    Ebrahim Fouladvand, M.; Sadjadi, Zeinab; Reza Shaebani, M.

    2004-10-01

    We construct a stochastic cellular automata model for the description of vehicular traffic at a roundabout designed at the intersection of two perpendicular streets. The vehicular traffic is controlled by a self-organized scheme in which traffic lights are absent. This controlling method incorporates a yield-at-entry strategy for the approaching vehicles to the circulating traffic flow in the roundabout. Vehicular dynamics is simulated and the delay experienced by the traffic at each individual street is evaluated. We discuss the impact of the geometrical properties of the roundabout on the total delay. We compare our results with traffic-light signalization schemes, and obtain the critical traffic volume over which the intersection is optimally controlled through traffic-light signalization schemes.

  17. Capacity of Multi-vehicle-types Mixed Traffic Flow

    LI Wen-quan; WANG Wei; DENG Wei

    2001-01-01

    Based on the gap acceptance theory, the mixed traffic flow composed of r representative typesflows on the unsignalized intersection is set up. It is an extension of capacity model for one type vehicletraffic flow, and it is very fitter to the Chinese highway traffic condition than the other models.

  18. A Realistic Cellular Automaton Model for Synchronized Traffic Flow

    ZHAO Bo-Han; HU Mao-Bin; JIANG Rui; WU Qing-Song

    2009-01-01

    A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phaee traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.

  19. Effect of violating the traffic light rule in the Biham-Middleton-Levine traffic flow model

    Ding, Zhong-Jun; Jiang, Rui; Li, Ming; Li, Qi-Lang; Wang, Bing-Hong

    2012-09-01

    This paper studies the effect of violating the traffic light rule in the Biham-Middleton-Levine (BML) traffic flow model. It is assumed that there are two kinds of drivers: normal drivers obey the traffic light rule and violators disobey it. Simulation results show that although the existence of violators increases the average velocity in the free-flowing phase, it decreases the threshold from free-flowing phase to jam. With the presence of violators, a new kind of configuration with stripe slopes -2 and -1/2 has been found in the free-flowing phase. We have developed an analytical investigation which successfully predicts the average velocity in the free-flowing phase. A phase separation phenomenon, where jams and freely flowing traffic coexist, has been found in the intermediate car density range. The mechanism of the phase separation has been illustrated.

  20. Impact of Road Bends on Traffic Flow in a Single-Lane Traffic System

    Zeng Junwei

    2014-01-01

    Full Text Available Taking the characteristics of road bends as a research object, this work proposes the cellular model (CA with road bends based on the NaSch model, with which the traffic flow is examined under different conditions, such as bend radius, bend arc length, and road friction coefficiency. The simulation results show that, with the increase of the bend radius, the peak flow will be continuously increased, and the fundamental diagram will become more similar to that of the classic NaSch model; the smaller the bend radius is, the easier it is for the occurrence of blockage; for different bend lengths, all the corresponding traffic flows show that the phenomenon of go-and-stop and the bends exert slight inhibitory effect on traffic flow; under the same bend radius, the inhibition effect of the bends on the traffic flow will be weakened with the increase of the friction coefficiency.

  1. Effects of Car Accidents on Three-Lane Traffic Flow

    Jianzhong Chen

    2014-01-01

    Full Text Available A three-lane traffic flow model is proposed to investigate the effect of car accidents on the traffic flow. The model is an extension of the full velocity difference (FVD model by taking into account the lane changing. The extended lane-changing rules are presented to model the lane-changing behaviour. The cases that the car accidents occupy the exterior or interior lane, the medium lane, and two lanes are studied by numerical simulations. The time-space diagrams and the current diagrams are presented, and the traffic jams are investigated. The results show that the car accident has a different effect on the traffic flow when it occupies different lanes. The car accidents have a more serious effect on the whole road when they occupy two lanes. The larger the density is, the greater the influence on the traffic flow becomes.

  2. Road traffic flow and impact on environment in Hyderabad city

    In Hyderabad city due to dramatic increase in traffic intensity on the roads, traffic flow have been much beyond the comfortable limits. High values of traffic flow density have been recorded on Court Road (34.05%), Tilak Road (19.87%), Risala Road (22.91%) and Cafe George (23.14%) of Hyderabad city. Above 80% people are found to be annoyed due to traffic congestion, noise and smoke resulting in health ailments. Slow Moving Vehicles (SMVs) comprising of animal and hand drawn vehicles (rehras) cause serious disruption in the traffic stream on city roads, which are ultimately causing traffic-jam condition resulting a serious impact on environment. No definite parking places exist for public vehicles because of encroachment on roads. Proper foot paths are not available for pedestrian, which results in increase in accidents. (author)

  3. Intervention and causality: forecasting traffic flows using a dynamic Bayesian network

    Queen, Catriona; Albers, Casper

    2009-01-01

    Real-time traffic flow data across entire networks can be used in a traffic management system to monitor current traffic flows so that traffic can be directed and managed efficiently. Reliable short-term forecasting models of traffic flows are crucial for the success of any traffic management system. The model proposed in this paper for forecasting traffic flows is a multivariate Bayesian dynamic model called the multiregression dynamic model (MDM). This model is an example of a dynamic ...

  4. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Zhang Mingheng; Zhen Yaobao; Hui Ganglong; Chen Gang

    2013-01-01

    Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM) are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the mul...

  5. Microscopic modeling of multi-lane highway traffic flow

    Hodas, N O

    2003-01-01

    In heavy traffic with congested roadway the maximum traffic flow also depends on length of cars. This is deduced in a simple derivation suited for classroom demonstration as well as homework. The resulting equation demonstrates a new relation to an apparently unrelated area of physics, the maximum ship velocity (hull speed) and explains why traffic is sometimes faster on the slow lane on a congested multi-lane road.

  6. Various scales for traffic flow representation : Some reflections

    LESORT, JB; BOURREL, E; HENN, V

    2005-01-01

    This paper is an analysis of the various scales at which traffic flow can be represented, from vehicular to continuum flow models, with various time and space resolutions. The paper first investigates the question of scales and scale separation in traffic flow, both in modelling and measurement, using analogy with other disciplines. It then evaluates the representation of vehicles heterogeneities at various scales. It concludes on the interest of developing multiscale modeling. Keywords: tra...

  7. Traffic Flow. USMES Teacher's Resource Book, Preliminary Edition.

    Education Development Center, Inc., Newton, MA.

    This USMES unit challenges students to recommend and try to have a new road design or a system for rerouting traffic accepted so that cars and trucks can move safely at a reasonable speed through a busy intersection near the school. The teacher resource book for the Traffic Flow unit contains five sections. The first section describes the USMES…

  8. On short-term traffic flow forecasting and its reliability

    Abouaissa, Hassane; Fliess, Michel; Join, Cédric

    2016-01-01

    International audience Recent advances in time series, where deterministic and stochastic modelings as well as the storage and analysis of big data are useless, permit a new approach to short-term traffic flow forecasting and to its reliability, i.e., to the traffic volatility. Several convincing computer simulations, which utilize concrete data, are presented and discussed.

  9. The fundamental diagram : a macroscopic traffic flow model.

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  10. Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

    Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di

    2016-02-01

    A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

  11. Controlling Disorder in Traffic Flow by Perturbation

    LI Ke-Ping; GAO Zi-You; CHEN Tian-Lun

    2004-01-01

    We propose a new technique for controlling disorder in traffic system. A kind of control signal which can be considered as a perturbation has been designated at a given site (perturbation point) of the single-lane highway. When a vehicle passes the perturbation point at a time, the velocity of the vehicle will be changed at the next time by the perturbation. This technique is tested for the deterministic NaSch traffic model. The simulation results indicate that the traffic system can be transited from the disorder states to the order states, such as fixed-point, periodic motion, etc.

  12. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Zhang Mingheng

    2013-01-01

    Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.

  13. Agent-Based Collaborative Traffic Flow Management Project

    National Aeronautics and Space Administration — We propose agent-based game-theoretic approaches for simulation of strategies involved in multi-objective collaborative traffic flow management (CTFM). Intelligent...

  14. An extended signal control strategy for urban network traffic flow

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  15. Vehicular Traffic Flow Controlled by Traffic Light on a Street with Open Boundaries

    Mhirech, Abdelaziz; Ismaili, Assia Alaoui

    2013-08-01

    The Nagel-Schreckenberg (NS) cellular automata (CA) model for describing the vehicular traffic flow in a street with open boundaries is studied. To control the traffic flow, a traffic signalization light operating for a fixed-time scheme is placed in the middle of the street. Extensive Monte Carlo simulations are carried out to calculate various model characteristics. Essentially, we investigate the formation of the cars queue behind traffic light dependence on the duration of green light Tg, injecting and extracting probabilities α and β, respectively. Two phases of average training queues were found. Besides, the dependence of car accident probability per site and per time step on Tg, α and β is computed.

  16. Modelling Widely Scattered States in `Synchronized' Traffic Flow and Possible Relevance for Stock Market Dynamics

    Helbing, Dirk; Batic, Davide; Schoenhof, Martin; Treiber, Martin

    2001-01-01

    Traffic flow at low densities (free traffic) is characterized by a quasi-one-dimensional relation between traffic flow and vehicle density, while no such fundamental diagram exists for `synchronized' congested traffic flow. Instead, a two-dimensional area of widely scattered flow-density data is observed as a consequence of a complex traffic dynamics. For an explanation of this phenomenon and transitions between the different traffic phases, we propose a new class of molecular-dynamics-like, ...

  17. Traffic Flow States in a Freeway with Bottleneck

    PENG Zi-Hui; SUN Gang; ZHU Jing-Yi

    2009-01-01

    The system of mixture of single lane and double lane is studied by a cellular automata model, which is developed by us based on the Nagel and Schreckenberg's models. We justify that the model can reach a stable states quickly. The density distributions of the stable state is presented for several cases, which illustrate the manner of the congestion. The relationship between the outflow rate and the total number of vehicles and that between the outflow rate and the density just before the bottleneck are both given. Comparing with the relationship that occurring in the granular flow, we conclude that the transition from the free traffic flow to the congested traffic flow can also be attributed to the abrupt variation through unstable flow state, which can naturally explain the discontinuities and the complex time variation behavior observed in the traffic flow experiments.

  18. Nonequilibrium phase separation in traffic flows

    Hayakawa, H; Nakanishi, K.

    1997-01-01

    Traffic jam in an optimal velocity model with the backward reference function is analyzed. An analytic scaling solution is presented near the critical point of the phase separation. The validity of the solution has been confirmed from the comparison with the simulation of the model.

  19. Particle hopping vs. fluid-dynamical models for traffic flow

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  20. Adaptive multibeam concepts for traffic management satellite systems.

    Bisaga, J. J.; Blank, H. A.; Klein, S. A.

    1973-01-01

    The analysis of the performance of the various implementations of the simultaneous system in the Atlantic and Pacific Oceans has demonstrated that the use of adaptive system concepts in satellite traffic management systems can greatly improve the performance capabilities of these systems as compared to the corresponding performance capabilities of conventional nonadaptive satellite communications systems. It is considered that the techniques developed and analyzed represent a significant technological advance, and that the performance improvement achieved will generally outweigh the increased cost and implementation factors.

  1. Effect of Ad-Hoc Vehicular Network on Traffic Flow: Simulations in the Context of Three-Phase Traffic Theory

    Kerner, B. S.; Klenov, S. L.; Brakemeier, A.

    2009-01-01

    Effects of vehicle-to-vehicle (or/and vehicle-to-infrastructure communication, called also V2X communication)on traffic flow, which are relevant for ITS, are numerically studied. To make the study adequate with real measured traffic data, a testbed for wireless vehicle communication based on a microscopic model in the framework of three-phase traffic theory is developed and discussed. In this testbed, vehicle motion in traffic flow and analyses of a vehicle communication channel access based ...

  2. Two-phase bounded acceleration traffic flow model: Analytical solutions and applications

    LEBACQUE, JP

    2003-01-01

    The present paper describes a two phase traffic flow model. One phase is traffic equilibrium: flow and speed are functions of density, and traffic acceleration is low. The second phase is characterized by constant acceleration. This model extends first order traffic flow models and recaptures the fact that traffic acceleration is bounded. The paper show how to calculate analytical solutions of the two-phase model for dynamic traffic situations, provides a set of calculation rules, and analyze...

  3. Dynamical functional prediction and classification, with application to traffic flow prediction

    Chiou, Jeng-Min

    2013-01-01

    Motivated by the need for accurate traffic flow prediction in transportation management, we propose a functional data method to analyze traffic flow patterns and predict future traffic flow. In this study we approach the problem by sampling traffic flow trajectories from a mixture of stochastic processes. The proposed functional mixture prediction approach combines functional prediction with probabilistic functional classification to take distinct traffic flow patterns into account. The proba...

  4. Routing strategies in traffic network and phase transition in network traffic flow

    Bing-Hong Wang; Wen-Xu Wang

    2008-08-01

    The dynamics of information traffic over scale-free networks has been investigated systematically. A series of routing strategies of data packets have been proposed, including the local routing strategy, the next-nearest-neighbour routing strategy, and the mixed routing strategy based on local static and dynamic information. The capacity of the network can be quantified by the phase transition from free flow state to congestion state. The optimal parameter values of each model leading to the highest efficiency of scale-free networked traffic systems have been found. Moreover, we have found hysteretic loop in networked traffic systems with finite packets delivering ability. Such hysteretic loop indicates the existence of the bi-stable state in the traffic dynamics over scale-free networks.

  5. A Car-Following Theory for Multiphase Vehicular Traffic Flow

    Zhang, H. M.; Kim, T.(Yonsei University, Seoul, South Korea)

    2003-01-01

    We present in this paper a new car-following theory that can produce both the so-called capacity drop and traffic hysteresis, two prominent features of multiphase vehicular traffic flow. This is achieved through the introduction of a single variable, driver response time, that depends on both vehicle spacing and traffic phase. By specifying different functional forms of response time, one can obtain not only brand new theories but also some of the well-known old car-following theories, which ...

  6. Understanding and Modeling Driver Behavior in Dense Traffic Flow

    Zhang, H. Michael; Kim, T.

    2002-01-01

    We present in this report a new car-following theory that can reproduce both the so-called capacity drop and traffic hysteresis, two prominent features of multi-phase vehicular traffic flow. This is achieved through the introduction of a single variable, driver response time, that depends on both vehicle spacing and traffic motion. By specifying different functional forms of response time, one can obtain not only brand new theories but also some of the well-known old car-following theories, w...

  7. Influence of Darkness on Motorway Traffic Flow Characteristics

    Johnnie Ben-Edigbe

    2014-06-01

    Full Text Available The study is aimed at estimating the influence of darkness on motorways during dry weather. In a ‘with-and-without’ impact studies, motorway traffic flow characteristics at two different locations in Malaysia were investigated. Travel speed, traffic flow and headway data were obtained continuously for six weeks at selected sites and supplemented with darkness and daylight data culled from Malaysian Metrological Department website. Start of pitch darkness time was given as 19.45 pm. The study used 22:00 pm as start of pitch darkness. Results show that maximum flow rate, optimum travel speed, critical density and optimum headway did not differ significantly. The study concluded that motorway traffic flow characteristics are not influenced by darkness significantly.

  8. Effect of multi-velocity-difference in traffic flow

    Mo Ye-Liu; He Hong-Di; Xue Yu; Shi Wei; Lu Wei-Zhen

    2008-01-01

    Based on the optimal velocity models, an extended model is proposed, in which multi-velocity-difference ahead is taken into consideration. The damping effect of the multi-velocity-difference ahead has been investigated by means of analytical and numerical methods. Results indicate that the multi-velocity-difference leads to the enhancement of stability of traffic flow, suppression of the emergence of traffic jamming, and reduction of the energy consumption.

  9. Comparative evaluations on dynamic simulation of foot traffic flows

    The evaluation and optimization of emergency route systems can be accomplished with different engineering methods. These methods are based on two different principles: the macroscopic and the microscopic approach. Both allow forecasting of evacuation times for various settings. In the work presented simple settings are investigated, consisting of rooms, corridor and stairs with regard to evacuation times and foot traffic flows. These calculations use current computer simulation programs, based on microscopic models, and the macroscopic method of Predtechenskii and Milinskii. For the computer simulation we use ASERI 3.4c, buildingEXODUS V4.0 Level 2, PedGo Version 2.1.1 and Simulex 11.1.3. The comparison of the results shows that even for the simplest systems the evacuation times and foot traffic flows vary considerably with different simulation programs and deviate from experimental results. Furthermore we investigate the effects of the boundary conditions on the foot traffic flow. (orig.)

  10. Social dilemma structures hidden behind traffic flow with lane changes

    Aiming to merge traffic flow analysis with evolutionary game theory, we investigated the question of whether such structures can be formed from frequent lane changes in usual traffic flow without any explicit bottlenecks. In our model system, two classes of driver-agents coexist: C-agents (cooperative strategy) always remain in the lane they are initially assigned, whereas D-agents (defective strategy) try to change lanes to move ahead. In relatively high-density flows, such as the metastable and high-density phases, we found structures that correspond to either n-person prisoner dilemma (n-PD) games or quasi-PD games. In these situations, lane changes by D-agents create heavy traffic jams that reduce social efficiency. (paper)

  11. The effect of ACC vehicles to mixed traffic flow consisting of manual and ACC vehicles

    Xie Dong-Fan; Gao Zi-You; Zhao Xiao-Mei

    2008-01-01

    This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity difference (MHVD) model is used to depict the motion of ACC vehicles, and the simulation results are compared with the optimal velocity (OV) model which is used to depict the motion of manual vehicles.Compared the cases between the manual and the ACC vehicle flow, the fundamental diagram can be classified into four regions: I, II, III, IV. In low and high density the flux of the two models is the same; in region Ⅱ the free flow region of the MHVD model is enlarged, and the flux of the MHVD model is larger than that of the OV model; in region Ⅲ serious jams occur in the OV model while the ACC system suppresses the jams in the MHVD model and the traffic flow is in order, but the flux of the OV model is larger than that of the MHVD model. Similar phenomena also appeared in mixed traffic flow which consists of manual and ACC vehicles. The results indicate that ACC vehicles have significant effect on traffic flow. The improvement induced by ACC vehicles decreases with the increasing proportion of ACC vehicles.

  12. Estimation of the traffic noise level’s effect on the transit traffic flow in Krivoy Rog city

    Великодний, Денис; Звягінцев, Микола; Дьяченко, Вікторія

    2015-01-01

    It has been considered the influence of traffic noise taking into consideration the traffic flow, that should provide the impact of future noise sources and develop specific recommendations for further use in integrated schemes of organizing the transit traffic on urban highways.

  13. Macroscopic effects of reaction time on traffic flow characteristics

    Reaction time is defined as a physiological parameter reflecting the period of time between perceiving a stimulus and performing a relevant action. In the traffic flow theory literature, the effects of reaction time on string stability have been described using the microscopic modeling approach. This paper presents a distinct approach to investigate how reaction time influences traffic flow stability using a macroscopic model. In the paper, the distinction between string stability and flow stability is defined. The flow stability conditions are derived based on the macroscopic model, which is developed from a gas-kinetic principle. From linear analysis, we find that at macroscopic scale the reaction time influences how instabilities propagate but does not contribute to whether those (linear) instabilities occur. Nevertheless, nonlinear analysis might give a different view on the impact of reaction time on traffic flow stability, but the effect is nonlinear. We argue that the findings provide a better understanding of the effects of reaction time on traffic flow characteristics.

  14. Dynamic evaluation of traffic flows on city roads

    Quan Yongshen; Guo Jifu; Wen Huimin; Sun Jianping

    2012-01-01

    This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and process- ing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.

  15. OPTIMIZATION OF URBAN MULTI-INTERSECTION TRAFFIC FLOW VIA Q-LEARNING

    Yit Kwong Chin; Heng Jin Tham; N.S.V. Kameswara Rao; Nurmin Bolong; Kenneth Tze Kin Teo

    2013-01-01

    Congestions of the traffic flow within the urban traffic network have been a challenging task for all the urban developers. Many approaches have been introduced into the current system to solve the traffic congestion problems. Reconfiguration of the traffic signal timing plan has been carried out through implementation of different techniques. However, dynamic characteristics of the traffic flow increase the difficulties towards the ultimate solutions. Thus, traffic congestions still remain a...

  16. Flow-aggregation Accelerating Strategy for TCP Traffic

    Xiaoguo Zhang

    2014-06-01

    Full Text Available A great number of researches on network flow characteristics show a large proportion of the network flows are single-packet flows. However, almost all existing flow termination strategies have no optimization for single-packet flows, so the efficiency of flow-aggregation is lower. Based on in-depth study of flow characteristics and TCP protocol specifications, we find the packet status, packet arrival interval and SYN packet size can identify single-packet flows accurately, and then propose a flow-aggregation accelerating strategy for TCP traffic that aims to quickly identify single-packet flows. We build efficiency model and accuracy model to compare our strategy performance with others and make a lot of experiments on the traces collected from a main channel in the CERNET during the latest five years. The results prove our strategy can greatly improve the efficiency of flow-aggregation at the cost of very little loss of accuracy

  17. OPTIMIZATION OF URBAN MULTI-INTERSECTION TRAFFIC FLOW VIA Q-LEARNING

    Yit Kwong Chin

    2013-01-01

    Full Text Available Congestions of the traffic flow within the urban traffic network have been a challenging task for all the urban developers. Many approaches have been introduced into the current system to solve the traffic congestion problems. Reconfiguration of the traffic signal timing plan has been carried out through implementation of different techniques. However, dynamic characteristics of the traffic flow increase the difficulties towards the ultimate solutions. Thus, traffic congestions still remain as unsolvable problems to the current traffic control system. In this study, artificial intelligence method has been introduced in the traffic light system to alter the traffic signal timing plan to optimize the traffic flows. Q-learning algorithm in this study has enhanced the traffic light system with learning ability. The learning mechanism of Q-learning enables traffic light intersections to release itself from traffic congestions situation. Adjacent traffic light intersections will work independently and yet cooperate with each others to a common goal of ensuring the fluency of the traffic flows within the traffic network. The simulated results show that the Q-Learning algorithm is able to learn from the dynamic traffic flow and optimize the traffic flow accordingly.

  18. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  19. Short-Term Traffic Flow Local Prediction Based on Combined Kernel Function Relevance Vector Machine Model

    Qichun Bing

    2015-01-01

    Full Text Available Short-term traffic flow prediction is one of the most important issues in the field of adaptive traffic control system and dynamic traffic guidance system. In order to improve the accuracy of short-term traffic flow prediction, a short-term traffic flow local prediction method based on combined kernel function relevance vector machine (CKF-RVM model is put forward. The C-C method is used to calculate delay time and embedding dimension. The number of neighboring points is determined by use of Hannan-Quinn criteria, and the CKF-RVM model is built based on genetic algorithm. Finally, case validation is carried out using inductive loop data measured from the north–south viaduct in Shanghai. The experimental results demonstrate that the CKF-RVM model is 31.1% and 52.7% higher than GKF-RVM model and GKF-SVM model in the aspect of MAPE. Moreover, it is also superior to the other two models in the aspect of EC.

  20. Three-phase theory of city traffic: Moving synchronized flow patterns in under-saturated city traffic at signals

    Kerner, Boris S.

    2014-03-01

    Three-phase traffic flow theory of city traffic has been developed. Based on simulations of a stochastic microscopic traffic flow model, features of moving synchronized flow patterns (MSP) have been studied, which are responsible for a random time-delayed breakdown of a green-wave (GW) organized in a city. A possibility of GW control leading to the prevention of GW breakdown has been demonstrated. A diagram of traffic breakdown in under-saturated traffic (transition from under- to over-saturated city traffic) at the signal has been found; the diagram presents regions of the average arrival flow rate, within which traffic breakdown can occur, in dependence of parameters of the time-function of the arrival flow rate or/and signal parameters. Physical reasons for a crucial difference between results of classical theory of city traffic and three-phase theory are explained. In particular, we have found that under-saturated traffic at the signal can exist during a long time interval, when the average arrival flow rate is larger than the capacity of the classical theory; the classical capacity is equal to a minimum capacity in three-phase theory. Within a range of the average arrival flow rate between the minimum and maximum signal capacities, under-saturated traffic is in a metastable state with respect to traffic breakdown. We have distinguished the following possible causes for the metastability of under-saturated traffic: (i) The arrival flow rate during the green phase is larger than the saturation flow rate. (ii) The length of the upstream front of a queue at the signal is a finite value. (iii) The outflow rate from a MSP (the rate of MSP discharge) is larger than the saturation flow rate.

  1. Adaptive network traffic management for multi user virtual environments

    Oliver, Iain Angus

    2011-01-01

    Multi User Virtual Environments (MUVE) are a new class of Internet application with a significant user base. This thesis adds to our understanding of how MUVE network traffic fits into the mix of Internet traffic, and how this relates to the application's needs. MUVEs differ from established Internet traffic types in their requirements from the network. They differ from traditional data traffic in that they have soft real-time constraints, from game traffic in that their bandwidth requi...

  2. Analysis of the stability and density waves for traffic flow

    薛郁

    2002-01-01

    In this paper, the optimal velocity model of traffic is extended to take into account the relative velocity. Thestability and density waves for traffic flow are investigated analytically with the perturbation method. The stabilitycriterion is derived by the linear stability analysis. It is shown that the triangular shock wave, soliton wave and kinkwave appear respectively in our model for density waves in the three regions: stable, metastable and unstable regions.These correspond to the solutions of the Burgers equation, Kortewegg-de Vries equation and modified Korteweg-de Vriesequation.The analytical results are confirmed to be in good agreement with those of numerical simulation. All theresults indicate that the interaction of a car with relative velocity can affect the stability of the traffic flow and raisecritical density.

  3. Traffic Flow Analysis Model based Routing Protocol For Multi-Protocol Label Switching Network

    E. R. Naganathan

    2011-01-01

    Full Text Available Problem statement: Multi-Protocol Label Switching (MPLS is a mechanism which is used in high-performance telecommunications networks that directs and carries data from one network node to the next with the help of labels. Traffic management is still an issue in MPLS network as it involves high speed internet. Approach: This study proposed a traffic flow analysis of the real time MPLS traffic and segregates the MPLS traffic as three major class based on the outcome of traffic flow analysis. Using the traffic class. This study proposed a reliable transmission methodology which provides traffic free routing in the MPLS networks. Results: The proposed traffic flow analysis based reliable routing model overcomes the network traffic and provides effective routing by offering traffic free path. Conclusion: The proposed traffic flow analysis model outperforms existing routing protocol and offers comparatively negligible packet loss.

  4. Towards reducing traffic congestion using cooperative adaptive cruise control on a freeway with a ramp

    Georges Arnaout

    2011-12-01

    Full Text Available Purpose: In this paper, the impact of Cooperative Adaptive Cruise Control (CACC systems on traffic performance is examined using microscopic agent-based simulation. Using a developed traffic simulation model of a freeway with an on-ramp - created to induce perturbations and to trigger stop-and-go traffic, the CACC system’s effect on the traffic performance is studied. The previously proposed traffic simulation model is extended and validated. By embedding CACC vehicles in different penetration levels, the results show significance and indicate the potential of CACC systems to improve traffic characteristics and therefore can be used to reduce traffic congestion. The study shows that the impact of CACC is positive but is highly dependent on the CACC market penetration. The flow rate of the traffic using CACC is proportional to the market penetration rate of CACC equipped vehicles and the density of the traffic.Design/methodology/approach: This paper uses microscopic simulation experiments followed by a quantitative statistical analysis. Simulation enables researchers manipulating the system variables to straightforwardly predict the outcome on the overall system, giving researchers the unique opportunity to interfere and make improvements to performance. Thus with simulation, changes to variables that might require excessive time, or be unfeasible to carry on real systems, are often completed within seconds.Findings: The findings of this paper are summarized as follow:•\tProvide and validate a platform (agent-based microscopic traffic simulator in which any CACC algorithm (current or future may be evaluated.•\tProvide detailed analysis associated with implementation of CACC vehicles on freeways.•\tInvestigate whether embedding CACC vehicles on freeways has a significant positive impact or not.Research limitations/implications: The main limitation of this research is that it has been conducted solely in a computer laboratory. Laboratory

  5. Traffic

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO2, SO2, NOx, HC, CO, N2O, NH3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  6. Dynamic stochastic optimization models for air traffic flow management

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  7. Traffic Management as a Service: The Traffic Flow Pattern Classification Problem

    Carlos T. Calafate

    2015-01-01

    Full Text Available Intelligent Transportation System (ITS technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the day, for every day in a year, is a complex task. Modeling such a tremendous amount of data can be time-consuming and, additionally, centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of time-dependent traffic congestion modeling. In particular, we propose grouping streets by taking into account real traces describing the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of time-dependent modeling requirements.

  8. The Development of the Multi-Center Traffic Management Advisor (MCTMA): Traffic Flow Management Research in a Multi-Facility Environment

    Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.

    2001-01-01

    The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.

  9. Adaptive EWMA Method Based on Abnormal Network Traffic for LDoS Attacks

    Dan Tang

    2014-01-01

    Full Text Available The low-rate denial of service (LDoS attacks reduce network services capabilities by periodically sending high intensity pulse data flows. For their concealed performance, it is more difficult for traditional DoS detection methods to detect LDoS attacks; at the same time the accuracy of the current detection methods for LDoS attacks is relatively low. As the fact that LDoS attacks led to abnormal distribution of the ACK traffic, LDoS attacks can be detected by analyzing the distribution characteristics of ACK traffic. Then traditional EWMA algorithm which can smooth the accidental error while being the same as the exceptional mutation may cause some misjudgment; therefore a new LDoS detection method based on adaptive EWMA (AEWMA algorithm is proposed. The AEWMA algorithm which uses an adaptive weighting function instead of the constant weighting of EWMA algorithm can smooth the accidental error and retain the exceptional mutation. So AEWMA method is more beneficial than EWMA method for analyzing and measuring the abnormal distribution of ACK traffic. The NS2 simulations show that AEWMA method can detect LDoS attacks effectively and has a low false negative rate and a false positive rate. Based on DARPA99 datasets, experiment results show that AEWMA method is more efficient than EWMA method.

  10. Protection Over Asymmetric Channels, S-MATE: Secure Multipath Adaptive Traffic Engineering

    Aly, Salah A.; Ansari, Nirwan; Poor, H. Vincent; Walid, Anwar I.

    2010-01-01

    Several approaches have been proposed to the problem of provisioning traffic engineering between core network nodes in Internet Service Provider (ISP) networks. Such approaches aim to minimize network delay, increase capacity, and enhance security services between two core (relay) network nodes, an ingress node and an egress node. MATE (Multipath Adaptive Traffic Engineering) has been proposed for multipath adaptive traffic engineering between an ingress node (source) and an egress node (dest...

  11. S-MATE: Secure Coding-based Multipath Adaptive Traffic Engineering

    Aly, Salah A.; Ansari, Nirwan; Walid, Anwar I.; Poor, H. Vincent

    2010-01-01

    There have been several approaches to provisioning traffic between core network nodes in Internet Service Provider (ISP) networks. Such approaches aim to minimize network delay, increase network capacity, and enhance network security services. MATE (Multipath Adaptive Traffic Engineering) protocol has been proposed for multipath adaptive traffic engineering between an ingress node (source) and an egress node (destination). Its novel idea is to avoid network congestion and attacks that might e...

  12. Traffic Flow - USMES Teacher Resource Book. Fourth Edition. Trial Edition.

    Keskulla, Jean

    This Unified Sciences and Mathematics for Elementary Schools (USMES) unit challenges students to improve traffic flow at a problem location. The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school level (grades 1-8). The Teacher Resource Book…

  13. Continuum modelling of multi-lane heterogeneous traffic flow operations

    Hoogendoorn, S.P.; Bovy, P.H.L.

    1998-01-01

    This report represents the second report in regarding macroscopic traffic flow modelling. In this report we present a multiple lane generalisation of the aggregate-lane multiple user-class model. Key to its derivation is the lane-specific multiple user-class phase-space density (MUCPSD), generalisin

  14. Convergence of the Key Algorithm of Traffic-Flow Analysis

    Muka, László; Lencse, Gábor

    2006-01-01

    The traffic-flow analysis (TFA) [1] is a novel method for the performance estimation of communication systems. TFA contains an important algorithm called "correction for the finite capacity". The convergence of that algorithm is proven in this paper. The speed of convergence is also examined.

  15. Analytical studies on a new lattice hydrodynamic traffic flow model with consideration of traffic current cooperation among three consecutive sites

    Li, Zhipeng; Zhong, Chenjie; Chen, Lizhu; Xu, Shangzhi; Qian, Yeqing

    2016-09-01

    In this paper, the original lattice hydrodynamic model of traffic flow is extended to take into account the traffic current cooperation among three consecutive sites. The basic idea of the new consideration is that the cooperative traffic current of the considered site is determined by the traffic currents of the site itself, the immediately preceding site and the immediately following one. The stability criterion of the extended model is obtained by applying the linear stability analysis. The result reveals the traffic current cooperation of the immediately preceding site is positive correlation with the stability of traffic system, while negative correlation is found between the traffic stability and the traffic current cooperation of the nearest follow site. To describe the phase transition, the modified KdV equation near the critical point is derived by using the reductive perturbation method, with obtaining the dependence of the propagation kink solution for traffic jams on the traffic current cooperation among three consecutive sites. The direct numerical are conducted to verify the results of theoretical analysis, and explore the effects of the traffic current cooperation on the traffic flux of the vehicle flow system.

  16. Equivalent noise level response to number of vehicles: a comparison between a high traffic flow and low traffic flow highway in Klang Valley, Malaysia

    Halim, Herni; Abdullah, Ramdzani

    2014-01-01

    HIGHLIGHTS Highway traffic noise is a serious problem in Malaysia Heavy traffic flow highway recorded higher noise level compared to low traffic flow Noise level stabilized at certain number of vehicles on the road i.e above 500 vehicles. Although much research on road traffic noise has found that noise level increase are influenced by driver behavior and source-receiver distance, little attention has been paid to the relationship between noise level and total number of vehicles...

  17. Impact of Distracted Driving on Safety and Traffic Flow

    Stavrinos, Despina; Jones, Jennifer L.; Garner, Annie A.; Griffin, Russell; Franklin, Crystal A.; Ball, David; Welburn, Sharon C.; Ball, Karlene K.; Sisiopiku, Virginia P.; Philip R. Fine

    2013-01-01

    Studies have documented a link between distracted driving and diminished safety; however, an association between distracted driving and traffic congestion has not been investigated in depth. The present study examined the behavior of teens and young adults operating a driving simulator while engaged in various distractions (i.e., cell phone, texting, and undistracted) and driving conditions (i.e., free flow, stable flow, and oversaturation). Seventy five participants 16 to 25 years of age (sp...

  18. A Modified Cellular Automaton Model for Traffic Flow

    葛红霞; 董力耘; 雷丽; 戴世强

    2004-01-01

    A modified cellular automaton model for traffic flow was proposed. A novel concept about the changeable security gap was introduced and a parameter related to the variable security gap was determined. The fundamental diagram obtained by simulation shows that the maximum flow more approaches to the observed data than that of the NaSch model, indicating that the presented model is more reasonable and realistic.

  19. Cellular automata for traffic flow simulation with safety embedded notions

    Larraga, M. E.; Alvarez-Icaza, L.

    2007-01-01

    In this paper a cellular automata model for one-lane traffic flow is presented. A new set of rules is proposed to better capture driver reactions to traffic that are intended to preserve safety on the highway. As a result, drivers behavior is derived from an analysis that determines the most appropriate action for a vehicle based on the distance from the vehicle ahead of it and the velocities of the two neighbor vehicles. The model preserves simplicity of CA rules and at the same time makes t...

  20. An Adaptive Traffic Control System Using Raspberry PI

    S. Lokesh; , T.Prahlad Reddy

    2014-01-01

    By increasing of population the usage of vehicles have been increasing and controlling of traffic is one of the challenging works. The frequent traffic jams at major junctions call for an efficient traffic management system in place. The resulting wastage of time and increase in pollution levels can be eliminated on a city-wide scale by these systems. Previously the traffic control techniques used like magnetic loop detectors, induction loop detectors are buried on the road si...

  1. Automatic Incident Classification for Big Traffic Data by Adaptive Boosting SVM

    Wang, Li-li; Ngan, Henry Y. T.; Yung, Nelson H. C.

    2015-01-01

    Modern cities experience heavy traffic flows and congestions regularly across space and time. Monitoring traffic situations becomes an important challenge for the Traffic Control and Surveillance Systems (TCSS). In advanced TCSS, it is helpful to automatically detect and classify different traffic incidents such as severity of congestion, abnormal driving pattern, abrupt or illegal stop on road, etc. Although most TCSS are equipped with basic incident detection algorithms, they are however cr...

  2. Improved 2D Intelligent Driver Model simulating synchronized flow and evolution concavity in traffic flow

    Tian, Junfang; Li, Geng; Treiber, Martin; Zhu, Chenqiang; Jia, Bin

    2016-01-01

    This paper firstly show that 2 Dimensional Intelligent Driver Model (Jiang et al., PloS one, 9(4), e94351, 2014) is not able to replicate the synchronized traffic flow. Then we propose an improved model by considering the difference between the driving behaviors at high speeds and that at low speeds. Simulations show that the improved model can reproduce the phase transition from synchronized flow to wide moving jams, the spatiotemporal patterns of traffic flow induced by traffic bottleneck, and the evolution concavity of traffic oscillations (i.e. the standard deviation of the velocities of vehicles increases in a concave/linear way along the platoon). Validating results show that the empirical time series of traffic speed obtained from Floating Car Data can be well simulated as well.

  3. Cloud-based large-scale air traffic flow optimization

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  4. Speed limit and ramp meter control for traffic flow networks

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  5. Network Traffic Anomalies Detection and Identification with Flow Monitoring

    Nguyen, Huy; Kim, Dong Il; Choi, Deokjai

    2010-01-01

    Network management and security is currently one of the most vibrant research areas, among which, research on detecting and identifying anomalies has attracted a lot of interest. Researchers are still struggling to find an effective and lightweight method for anomaly detection purpose. In this paper, we propose a simple, robust method that detects network anomalous traffic data based on flow monitoring. Our method works based on monitoring the four predefined metrics that capture the flow statistics of the network. In order to prove the power of the new method, we did build an application that detects network anomalies using our method. And the result of the experiments proves that by using the four simple metrics from the flow data, we do not only effectively detect but can also identify the network traffic anomalies.

  6. An Intelligent Traffic Flow Control System Based on Radio Frequency Identification and Wireless Sensor Networks

    Kuei-Hsiang Chao; Pi-Yun Chen

    2014-01-01

    This study primarily focuses on the use of radio frequency identification (RFID) as a form of traffic flow detection, which transmits collected information related to traffic flow directly to a control system through an RS232 interface. At the same time, the sensor analyzes and judges the information using an extension algorithm designed to achieve the objective of controlling the flow of traffic. In addition, the traffic flow situation is also transmitted to a remote monitoring control syste...

  7. Concept definition of traffic flow wide-area surveillance

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.

    1994-07-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret large spatial projections of data originating from multiple sensor suites. The intent of the Wide-Area Surveillance (WAS) Project is to build upon this concept and define the operational specifications and characteristics of a Traffic Flow Wide-Area Surveillance (TFWAS) system in terms of traffic management and control. In doing so, the functional capabilities of a TFWAS will be mapped onto an operational profile that is consistent with the Federal Highway Administration`s Intelligent Vehicle Highway System. This document provides the underlying foundation of this work by offering a concept definition for the TFWAS system. It concentrates on answering the question: ``What is the system?`` In doing so, the report develops a hierarchy of specialized definitions.

  8. Bayesian analysis of traffic flow on interstate I-55: The LWR model

    Polson, Nicholas; Sokolov, Vadim

    2014-01-01

    Transportation departments take actions to manage traffic flow and reduce travel times based on estimated current and projected traffic conditions. Travel time estimates and forecasts require information on traffic density which are combined with a model to project traffic flow such as the Lighthill–Whitham–Richards (LWR) model. We develop a particle filtering and learning algorithm to estimate the current traffic density state and the LWR parameters. These inputs are related to the so-called...

  9. Optimization of congested traffic flow in systems with a localized periodic inhomogeneity

    Tomer, Elad; Safonov, Leonid; Madar, Nilly; Havlin, Shlomo

    2001-01-01

    We study traffic flow on roads with a localized periodic inhomogeneity such as traffic signals, using a stochastic car-following model. We find that in cases of congestion, traffic flow can be optimized by controlling the inhomogeneity's frequency. By studying the wavelength dependence of the flux in stop-and-go traffic states, and exploring their stability, we are able to explain the optimization process. A general conclusion drawn from this study is, that the fundamental diagram of traffic ...

  10. Speed-Flow Analysis for Interrupted Oversaturated Traffic Flow with Heterogeneous Structure for Urban Roads

    Hemant Kumar Sharma

    2012-06-01

    Full Text Available Speed–flow functions have been developed by several transportation experts to predict accurately the speed of urban road network. HCM Speed-Flow Curve, BPR Curve, MTC Speed-Flow Curve, Akçelik Speed-Flow Curve are some extraordinary efforts to define the shape of speed-flow curve. However, the complexity of driver’s behaviour, interactions among different type of vehicles, lateral clearance, co-relation of driver’s psychology with vehicular characteristics and interdependence of various variables of traffic has led to continuous development and refinement of speed-flow curves. The problem gets more tedious in case of urban roads with heterogeneous traffic, oversaturated flow and signalized network (which includes some unsignalized intersections as well. This paper presents speed-flow analysis for urban roads with interrupted flow comprising of heterogeneous traffic. Model has been developed for heterogeneous traffic under constraints of roadway geometry, vehicle characteristics, driving behaviour and traffic controls. The model developed in this paper shall predict speed, delay, average queue and maximum queue estimates for urban roads and quantify congestion for oversaturated condition. The investigation details oversaturated portion of flow in particular.

  11. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    G. R. LAI; A. CHE SOH; H. MD. SARKAN; R. Z. ABDUL RAHMAN; Hassan, M. K.

    2015-01-01

    Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS) concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala L...

  12. Impacts of different types of ramps on the traffic flow

    Nassab, K.; Schreckenberg, M.; Ouaskit, S.; Boulmakoul, A.

    2005-07-01

    The impact of the on- and off-ramps in a cellular automaton model for the traffic flow is studied. We include to the model the effect of spacing between the on- and the off-ramps on a same periodic road at a intersection (interchange) with another road. First, we use the Nagel-Schreckenberg (NaSch) model (J. Phys. I 2 (1992) 2221) without modifications to extract the basic phenomena of traffic flow, and in the following step we focus our investigation on the NaSch model with velocity-dependent randomization (VDR model) (Eur. Phys. J. B 5 (1998) 793) to examine the other system behaviors. Our results provide evidence that the metastable states and the phase separation can occur in the same way like in the models with local site defects.

  13. Splitting of Traffic Flows to Control Congestion in Special Events

    Ciro D'Apice; Rosanna Manzo; Luigi Rarità

    2011-01-01

    We deal with the optimization of traffic flows distribution at road junctions with an incoming road and two outgoing ones, in order to manage special events which determine congestion phenomena. Using a fluid-dynamic model for the description of the car densities evolution, the attention is focused on a decentralized approach. Two cost functionals, measuring the kinetic energy and the average travelling times, weighted with the number of cars moving on roads, are considered. The first one is ...

  14. Self-Adapting Routing Overlay Network for Frequently Changing Application Traffic in Content-Based Publish/Subscribe System

    Meng Chi; Shufen Liu; Changhong Hu

    2014-01-01

    In the large-scale distributed simulation area, the topology of the overlay network cannot always rapidly adapt to frequently changing application traffic to reduce the overall traffic cost. In this paper, we propose a self-adapting routing strategy for frequently changing application traffic in content-based publish/subscribe system. The strategy firstly trains the traffic information and then uses this training information to predict the application traffic in the future. Finally, the strat...

  15. An Adaptive Traffic Control System Using Raspberry PI

    S.Lokesh *

    2014-06-01

    Full Text Available By increasing of population the usage of vehicles have been increasing and controlling of traffic is one of the challenging works. The frequent traffic jams at major junctions call for an efficient traffic management system in place. The resulting wastage of time and increase in pollution levels can be eliminated on a city-wide scale by these systems. Previously the traffic control techniques used like magnetic loop detectors, induction loop detectors are buried on the road side provide the limited traffic information and require separate systems for traffic counting and for traffic surveillance. Here the project proposes to implement an artificial density traffic control system using image processing and Raspberrypi. The hardware here we are using is webcam, pc, Raspberry pi and the software used is OCCIDENTALIS and MATLAB. In this project the camera is get interfaced with a Raspberry pi. The image sequences from a camera are analyzed using thresholding method to find the density of vehicles. Subsequently, the number of vehicles at the intersection is evaluated and traffic is efficiently managed. In this project we implemented a real-time emergency vehicle detection system. In case an emergency vehicle is detected, the lane is given priority over all the others.

  16. Application of Chaos Theory in the Prediction of Motorised Traffic Flows on Urban Networks

    Aderemi Adewumi; Jimmy Kagamba; Alex Alochukwu

    2016-01-01

    In recent times, urban road networks are faced with severe congestion problems as a result of the accelerating demand for mobility. One of the ways to mitigate the congestion problems on urban traffic road network is by predicting the traffic flow pattern. Accurate prediction of the dynamics of a highly complex system such as traffic flow requires a robust methodology. An approach for predicting Motorised Traffic Flow on Urban Road Networks based on Chaos Theory is presented in this paper. No...

  17. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  18. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Lun-Hui Xu; Xin-Hai Xia; Qiang Luo

    2013-01-01

    Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-ad...

  19. Understanding Urban Traffic Flow Characteristics from the Network Centrality Perspective at Different Granularities

    Zhao, P. X.; Zhao, S. M.

    2016-06-01

    In this study, we analyze urban traffic flow using taxi trajectory data to understand the characteristics of traffic flow from the network centrality perspective at point (intersection), line (road), and area (community) granularities. The entire analysis process comprises three steps. The first step utilizes the taxi trajectory data to evaluate traffic flow at different granularities. Second, the centrality indices are calculated based on research units at different granularities. Third, correlation analysis between the centrality indices and corresponding urban traffic flow is performed. Experimental results indicate that urbaxperimental results indicate that urbaxperimental results indicate that urban traffic flow is relatively influenced by the road network structure. However, urban traffic flow also depends on the research unit size. Traditional centralities and traffic flow exhibit a low correlation at point granularity but exhibit a high correlation at line and area granularities. Furthermore, the conclusions of this study reflect the universality of the modifiable areal unit problem.

  20. Method for Traffic Flow Estimation using On-dashboard Camera Image

    Kohei Arai

    2014-02-01

    Full Text Available This paper presents the method to estimate the traffic flow on the urban roadway by using car’s on-dashboard camera image. The system described, shows something new which utilizes only road traffic photo images to get the information about urban roadway traffic flow automatically.

  1. Method for Traffic Flow Estimation using On-dashboard Camera Image

    Kohei Arai; Steven Ray Sentinuwo

    2014-01-01

    This paper presents the method to estimate the traffic flow on the urban roadway by using car’s on-dashboard camera image. The system described, shows something new which utilizes only road traffic photo images to get the information about urban roadway traffic flow automatically.

  2. Personalised adaptive task selection in air traffic control: Effects on training efficiency and transfer.

    Salden, Ron; Paas, Fred; Van Merriënboer, Jeroen

    2008-01-01

    Salden, R.J.C.M., Paas, F., & Van Merriënboer, J.J.G. (2006). Personalised adaptive task selection in air traffic control: Effects on training efficiency and transfer. Learning and Instruction, 16, 350-362

  3. Robust PCA-Based Abnormal Traffic Flow Pattern Isolation and Loop Detector Fault Detection

    JIN Xuexiang; ZHANG Yi; LI Li; HU Jianming

    2008-01-01

    One key function of intelligent transportation systems is to automatically detect abnormal traffic phenomena and to help further investigations of the cause of the abnormality. This paper describes a robust principal components analysis (RPCA)-based abnormal traffic flow pattern isolation and loop detector fault detection method. The results show that RPCA is a useful tool to distinguish regular traffic flow from abnor-mal traffic flow patterns caused by accidents and loop detector faults. This approach gives an effective traffic flow data pre-processing method to reduce the human effort in finding potential loop detector faults. The method can also be used to further investigate the causes of the abnormality.

  4. Self-sustained nonlinear waves in traffic flow.

    Flynn, M R; Kasimov, A R; Nave, J-C; Rosales, R R; Seibold, B

    2009-05-01

    In analogy to gas-dynamical detonation waves, which consist of a shock with an attached exothermic reaction zone, we consider herein nonlinear traveling wave solutions to the hyperbolic ("inviscid") continuum traffic equations. Generic existence criteria are examined in the context of the Lax entropy conditions. Our analysis naturally precludes traveling wave solutions for which the shocks travel downstream more rapidly than individual vehicles. Consistent with recent experimental observations from a periodic roadway [Y. Sugiyama, N. J. Phys. 10, 033001 (2008)], our numerical calculations show that nonlinear traveling waves are attracting solutions, with the time evolution of the system converging toward a wave-dominated configuration. Theoretical principles are elucidated by considering examples of traffic flow on open and closed roadways. PMID:19518527

  5. The Research of Traffic Flow Assignment Model based on the Network Calculus of Computer Network

    Jiayao Liu

    2012-01-01

    Full Text Available The existing dynamic traffic assignment researches mostly based on ideal hypothesis conditions which can analyze the affection of all kinds of traffic parameters on traffic flow and find out characteristics of various types of traffic distribution, but there is rarely have accurate calculation of flow distribution model. The study will first apply the network equilibrium theory into dynamic traffic flow assignment. Using Leaky Bucket Controller and Network Calculus, complicated traffic elements will incorporate into unified mathematical model called T-S Constrained Model, we can deduce flow assignment rate which is in a delay-limited constraints. The simulation results manifest that the model can not only solves congestion, but also reduce average delay of every path, it can extremely improve the traffic capacity of road network. The accurate assignment solutions will have significant impact on traffic engineering implementation.

  6. A Queuing Model-Based System for Triggering Traffic Flow Management Algorithms Project

    National Aeronautics and Space Administration — Next generation air traffic management systems are expected use multiple software tools and quantitative methods for managing traffic flow in the National Airspace....

  7. Implementation of Neural Network with a variant of Turing Machine for Traffic Flow Control

    Rashmi Sehrawat

    2013-05-01

    Full Text Available The conventional method of operation of a typical traffic light is to distribute the time equally for all the directions.This method causes congestion when throughput of the signal increases and is alsoineffective in managing traffic flow. In this paper, we have proposed a new model for managing traffic intelligently.The model is based on Turing machine with the application of neural network. The modelconsiders current traffic status of its own signal along with the status of its adjacent signals to determine the ratio of time slot for each signal therefore, reducing traffic congestion to a greater extent and ensuring steady flow of traffic in a wide region.

  8. Validity of Spontaneous Braking and Lane Changing with Scope of Awareness by Using Measured Traffic Flow

    Kohei Arai; Steven Ray Sentinuwo

    2013-01-01

    This paper presents the validation method and its evaluation of the spontaneous braking and lane changing with scope awareness parameter. By using the real traffic flow data, the traffic cellular automaton model that accommodate these two driver behaviors, e.g., spontaneous braking and driver scope awareness has been compared and evaluated. The real traffic flow data have been observed via video-recording captured from real traffic situation. The validation results shown that by accommodate s...

  9. Models, methods and software tools for building complex adaptive traffic systems

    The paper studies the modern methods and tools to simulate the behavior of complex adaptive systems (CAS), the existing systems of traffic modeling in simulators and their characteristics; proposes requirements for assessing the suitability of the system to simulate the CAS behavior in simulators. The author has developed a model of adaptive agent representation and its functioning environment to meet certain requirements set above, and has presented methods of agents' interactions and methods of conflict resolution in simulated traffic situations. A simulation system realizing computer modeling for simulating the behavior of CAS in traffic situations has been created

  10. Throughput Enhancement Using Adaptive Delay Barrier Function over HSDPA System in Mixed Traffic Scenarios

    Kim, Yong-Seok

    In this paper, we consider a method to enhance the throughput of HSDPA systems in the mixed traffic scenario. A channel-dependent adaptive delay barrier (DB) function is proposed to maximize throughput of best-effort (BE) traffic while satisfying the delay latency of voice over internet protocol (VoIP) service. Simulations show that the proposed channel-adaptive DB function raises the throughput of BE traffic service by 30% compared to the conventional scheme, without degrading the capacity of VoIP service over HSDPA system.

  11. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Honghai Zhang

    2014-01-01

    Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.

  12. Modeling, Identification, Estimation, and Simulation of Urban Traffic Flow in Jakarta and Bandung

    Herman Y. Sutarto

    2015-06-01

    Full Text Available This paper presents an overview of urban traffic flow from the perspective of system theory and stochastic control. The topics of modeling, identification, estimation and simulation techniques are evaluated and validated using actual traffic flow data from the city of Jakarta and Bandung, Indonesia, and synthetic data generated from traffic micro-simulator VISSIM. The results on particle filter (PF based state estimation and Expectation-Maximization (EM based parameter estimation (identification confirm the proposed model gives satisfactory results that capture the variation of urban traffic flow. The combination of the technique and the simulator platform assembles possibility to develop a real-time traffic light controller.  

  13. Monitoring individual traffic flows within the ATLAS TDAQ network

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  14. Monitoring individual traffic flows within the ATLAS TDAQ network

    Sjoen, R; Ciobotaru, M; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities a...

  15. Monitoring individual traffic flows within the ATLAS TDAQ network

    Sjoen, R; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A [CERN, 1211 Geneva 23 (Switzerland); Stancu, S; Ciobotaru, M, E-mail: rune.velle.sjoen@cern.c [' Politehnica' University of Bucharest (Romania)

    2010-04-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  16. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  17. A stochastic approach to the flow-concentration curve in traffic flow theory

    Qian, Wei-Liang; Lin, Kai; Siqueira, Adriano F

    2016-01-01

    An alternative stochastic model for the fundamental diagram of traffic flow with minimal number of parameters is proposed. The key features of the model lie in its "catastrophic" potential function as well as in its stochastic nature, which makes it possible to describe the main features of the flow-concentration relation. In particular, the inverse-$\\lambda$ shape as well as the wide scattering of congested traffic data are both reproduced. In our model, the scattering of the data is attributed to the noise terms introduced in the stochastic differential equations. The inverse-$\\lambda$ shape and the associated sudden jump of physical quantities arise, on the other hand, due to the existence of two simultaneous stable traffic flow states and/or to the effect of stochastic noises on the stability of the system. The model parameters are calibrated and compared qualitatively with the data.

  18. A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling

    Xiaonian Shan

    2015-01-01

    Full Text Available Several previous studies have used the Cellular Automaton (CA for the modeling of bicycle traffic flow. However, previous CA models have several limitations, resulting in differences between the simulated and the observed traffic flow features. The primary objective of this study is to propose a modified CA model for simulating the characteristics of mixed bicycle traffic flow. Field data were collected on physically separated bicycle path in Shanghai, China, and were used to calibrate the CA model using the genetic algorithm. Traffic flow features between simulations of several CA models and field observations were compared. The results showed that our modified CA model produced more accurate simulation for the fundamental diagram and the passing events in mixed bicycle traffic flow. Based on our model, the bicycle traffic flow features, including the fundamental diagram, the number of passing events, and the number of lane changes, were analyzed. We also analyzed the traffic flow features with different traffic densities, traffic components on different travel lanes. Results of the study can provide important information for understanding and simulating the operations of mixed bicycle traffic flow.

  19. A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling

    Xiaonian Shan; Zhibin Li; Xiaohong Chen; Jianhong Ye

    2015-01-01

    Several previous studies have used the Cellular Automaton (CA) for the modeling of bicycle traffic flow. However, previous CA models have several limitations, resulting in differences between the simulated and the observed traffic flow features. The primary objective of this study is to propose a modified CA model for simulating the characteristics of mixed bicycle traffic flow. Field data were collected on physically separated bicycle path in Shanghai, China, and were used to calibrate the C...

  20. Understanding urban traffic-flow characteristics: a rethinking of betweenness centrality

    Song Gao; Yaoli Wang; Yong Gao; Yu Liu

    2013-01-01

    In this study we estimate urban traffic flow using GPS-enabled taxi trajectory data in Qingdao, China, and examine the capability of the betweenness centrality of the street network to predict traffic flow. The results show that betweenness centrality is not a good predictor variable for urban traffic flow, which has, theoretically, been pointed out in existing literature. With a critique of the betweenness centrality as a predictor, we further analyze the characteristics of betweenness centr...

  1. TO THE QUESTION OF SOLVING OF THE PROBLEM OF OPTIMIZING PARAMETERS OF TRAFFIC FLOW COORDINATED CONTROL

    L. Abramova; Chernobaev, N.

    2007-01-01

    A short review of main methods of traffic flow control is represented, great attention is paid to methods of coordinated control and quality characteristics of traffic control. The problem of parameter optimization of traffic coordinated control on the basis of vehicle delay minimizing at highway intersections has been defined.

  2. Real-time Capturing and Measurement of Traffic Flow Based on WinPcap

    HU Wen-jing; LI Ming; QIU Run-he; LIU Jin-gao

    2006-01-01

    In order to understand how a network is being used or whether it is being abused, an administrator needs to inspect the flow of the traffic and "infers" the intent of the users and applications. So the network traffic measurement and analysis are crucial to network monitoring, reliable DDoS detecting and attack source locating as well[1-4]. In this paper, we discuss the principle of real-time network traffic measurement and analysis through embedding a traffic measurement and analysis engine into IP packet-decoding module, and emphasize the implementation of visualizing the real-time network traffic, which are helpful to network monitoring and network traffic modeling.

  3. An Adaptive Service Platform for Traffic Management and Surveillance

    Sapkota, Brahmananda; Sinderen, van Marten

    2011-01-01

    The increasing number of road vehicles has given rise to increasingly adverse consequences in the society. Some of the major concerns that arise due to such an increase in road vehicles are: safety of the people using the road, cost and efficiency of the traffic management and the environmental foot

  4. Stabilization of traffic flow in optimal velocity model via delayed-feedback control

    Jin, Yanfei; Hu, Haiyan

    2013-04-01

    Traffic jams may occur due to various reasons, such as traffic accidents, lane reductions and on-ramps. In order to suppress the traffic congestion in an optimal velocity traffic model without any driver's delay taken into account, a delayed-feedback control of both displacement and velocity differences is proposed in this study. By using the delay-independent stability criteria and the H∞-norm, the delayed-feedback control can be determined to stabilize the unstable traffic flow and suppress the traffic jam. The numerical case studies are given to demonstrate and verify the new control method. Furthermore, a comparison is made between the new control method and the method proposed by Konishi et al. [K. Konishi, M. Hirai, H. Kokame, Decentralized delayed-feedback control of an optimal velocity traffic model, Eur. Phys. J. B 15 (2000) 715-722]. The results show that the new control method makes the traffic flow more stable and improves the control performance.

  5. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving

    Kerner, Boris S.

    2016-05-01

    In a mini-review Kerner (2013) it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown - a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters of automatic driving vehicles can either decrease or increase the probability of the breakdown. The increase in the probability of traffic breakdown, i.e., the deterioration of the performance of the traffic system can occur already at a small percentage (about 5%) of automatic driving vehicles. The increase in the probability of traffic breakdown through automatic driving vehicles can be realized, even if any platoon of automatic driving vehicles satisfies condition for string stability.

  6. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  7. Traffic Flow Analysis Model based Routing Protocol For Multi-Protocol Label Switching Network

    E.R. Naganathan; Rajagopalan, S.; P. H. Raj

    2011-01-01

    Problem statement: Multi-Protocol Label Switching (MPLS) is a mechanism which is used in high-performance telecommunications networks that directs and carries data from one network node to the next with the help of labels. Traffic management is still an issue in MPLS network as it involves high speed internet. Approach: This study proposed a traffic flow analysis of the real time MPLS traffic and segregates the MPLS traffic as three major class based on the outcome of traffic flow analysis. U...

  8. Relationship between crash rate and hourly traffic flow on interurban motorways

    Martin, JL

    2002-01-01

    This paper describes the relationship between crash incidence rates and hourly traffic volume and discusses the influence of traffic on crash severity, based on observations made on 2000 km of french interurban motorways over 2 years. Incidence rates involving property damage-only crashes and injury-crashes are highest when traffic is lightest (under 400 vehicles/h). These incidence rates are at their lowest when traffic flows at a rate of 1000-1500 vehicles/h. For heavier traffic flows, cras...

  9. Portable Telematic System as an Effective Traffic Flow Management in Workzones

    Ščerba Marek; Apeltauer Tomáš; Apeltauer Jiří

    2015-01-01

    Traffic infrastructure localities with temporal restrictions for example due to reconstructions, or modernization, are important aspects influencing the traffic safety and traffic flow. On the basis of our research, we can identify main factors, which generate travel time loses, and which often cause traffic accidents in bottlenecks. First of all, it is improper late merge, speeding, tailgating, lower tolerance and consideration to other road users. Nervousness and ignorance of drivers also p...

  10. Implementation of Neural Network with a variant of Turing Machine for Traffic Flow Control

    Rashmi Sehrawat; Honey Malviya; Vanditaa Kaul

    2013-01-01

    The conventional method of operation of a typical traffic light is to distribute the time equally for all the directions.This method causes congestion when throughput of the signal increases and is alsoineffective in managing traffic flow. In this paper, we have proposed a new model for managing traffic intelligently.The model is based on Turing machine with the application of neural network. The modelconsiders current traffic status of its own signal along with the status of its adjacent sig...

  11. Perturbation analysis and sample-path optimization: stochastic flow models of urban traffic networks case

    Sutarto, Herman; Boel, René

    2009-01-01

    Coordination of traffic streams in an urban network, controllable by switching traffic lights, requires a global macroscopic model of the evolution of the flows of vehicle. We propose the use fluid petri nets as modeling tools. For the design of on-line controllers for traffic lights we study the network-wide effects of different local perturbations of the traffic light switching times via fast simulation. The infinitesimal perturbation analysis can under certain conditions lead to optimal cl...

  12. Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps

    Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2006-07-01

    We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck and in a closed ring road. Single-vehicle data and one-minute aggregated data generated by several virtual detectors show a semiquantitative agreement with microscopic and flow-density data from the Dutch freeway A9. This includes the observed distributions of the net time headways for free and congested traffic, the velocity variance as a function of density, and the fundamental diagram. The modal value of the time headway distribution is shifted by a factor of about 2 under congested conditions. Macroscopically, this corresponds to the capacity drop at the transition from free to congested traffic. The simulated fundamental diagram shows free, synchronized, and jammed traffic, and a wide scattering in the congested traffic regime. We explain this by a self-organized variance-driven process that leads to the spontaneous formation and decay of long-lived platoons even for a deterministic dynamics on a single lane.

  13. Acceleration of aircraft-level Traffic Flow Management

    Rios, Joseph Lucio

    This dissertation describes novel approaches to solving large-scale, high fidelity, aircraft-level Traffic Flow Management scheduling problems. Depending on the methods employed, solving these problems to optimality can take longer than the length of the planning horizon in question. Research in this domain typically focuses on the quality of the modeling used to describe the problem and the benefits achieved from the optimized solution, often treating computational aspects as secondary or tertiary. The work presented here takes the complementary view and considers the computational aspect as the primary concern. To this end, a previously published model for solving this Traffic Flow Management scheduling problem is used as starting point for this study. The model proposed by Bertsimas and Stock-Patterson is a binary integer program taking into account all major resource capacities and the trajectories of each flight to decide which flights should be held in which resource for what amount of time in order to satisfy all capacity requirements. For large instances, the solve time using state-of-the-art solvers is prohibitive for use within a potential decision support tool. With this dissertation, however, it will be shown that solving can be achieved in reasonable time for instances of real-world size. Five other techniques developed and tested for this dissertation will be described in detail. These are heuristic methods that provide good results. Performance is measured in terms of runtime and "optimality gap." We then describe the most successful method presented in this dissertation: Dantzig-Wolfe Decomposition. Results indicate that a parallel implementation of Dantzig-Wolfe Decomposition optimally solves the original problem in much reduced time and with better integrality and smaller optimality gap than any of the heuristic methods or state-of-the-art, commercial solvers. The solution quality improves in every measureable way as the number of subproblems

  14. Formation of density waves in traffic flow through intersecting roads.

    Ray, B; Bhattacharyya, S N

    2006-03-01

    The formation of density waves in two intersecting roads, with a traffic circle at the intersection, is studied. It is found that, depending on the traffic densities in the two roads, density waves can form in the traffic circle and in one or both of the roads. Depending on the expression chosen for the optimal velocity, either the congestion moves entirely to the traffic circle or the congestion becomes confined to the traffic circle and a part of the road approaching the traffic circle. PMID:16605592

  15. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  16. Incorporating User Preferences Within an Optimal Traffic Flow Management Framework

    Rios, Joseph Lucio; Sheth, Kapil S.; Guiterrez-Nolasco, Sebastian Armardo

    2010-01-01

    The effectiveness of future decision support tools for Traffic Flow Management in the National Airspace System will depend on two major factors: computational burden and collaboration. Previous research has focused separately on these two aspects without consideration of their interaction. In this paper, their explicit combination is examined. It is shown that when user preferences are incorporated with an optimal approach to scheduling, runtime is not adversely affected. A benefit-cost ratio is used to measure the influence of user preferences on an optimal solution. This metric shows user preferences can be accommodated without inordinately, negatively affecting the overall system delay. Specifically, incorporating user preferences will increase delays proportionally to increased user satisfaction.

  17. Microsimulation study of vehicular interactions in heterogeneous traffic flow on intercity roads

    Arasan, V. Thamizh; Arkatkar, Shriniwas S.

    2011-01-01

    Study of the basic traffic flow characteristics and comprehensive understanding of vehicular interaction are the pre-requisites for highway capacity and level of service analyses and formulation of effective traffic regulation and control measures. This is better done by modeling the system, which will enable the study of the influencing factors over a wide range. Computer simulation has emerged as an effective technique for modeling traffic flow due to its capability to account f...

  18. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Honghai Zhang; Yan Xu; Lei Yang; Hao Liu

    2014-01-01

    We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential fa...

  19. Analysis of CO2 emission in traffic flow and numerical tests

    Zhu, Wen-Xing

    2013-10-01

    We investigated the carbon dioxide emission rate in traffic flow analytically and numerically. The emission model was derived based on Bando’s optimal velocity model with a consideration of slope. Simulations were conducted to examine the relationship between the CO2 emission rate of vehicles and slope of road, traffic density, and road length. Analysis of the results shows that some original laws of CO2 emission in traffic flow with congestion were exhibited.

  20. Heterogenous motorised traffic flow modelling using cellular automata

    Deo, Puspita

    2007-01-01

    Traffic congestion is a major problem in most major cities around the world with few signs that this is diminishing, despite management efforts. In planning traffic management and control strategies at urban and inter urban level, understanding the factors involved in vehicular progression is vital. Most work to date has, however, been restricted to single vehicle-type traffic. Study of heterogeneous traffic movements for urban single and multi-lane roads has been limited, even for developed ...

  1. Multi-class continuum traffic flow models: Analysis and simulation methods

    Van Wageningen-Kessels, F.L.M.

    2013-01-01

    How to model and simulate traffic flow including different vehicles such as cars and trucks? This dissertation answers this question by analyzing existing models and simulation methods and by developing new ones. The new model (Fastlane) describes traffic as a continuum flow while accounting for dif

  2. An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests

    This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The improvement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, the improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.

  3. Video-based measurement and data analysis of traffic flow on urban expressways

    Xian-Qing Zheng; Zheng Wu; Shi-Xiong Xu; Ming-Min Guo; Zhan-Xi Lin; Ying-Ying Zhang

    2011-01-01

    A new video-based measurement is proposed to collect and investigate traffic flow parameters.The output of the measurement is velocity-headway distance data pairs.Because density can be directly acquired by the reciprocal of headway distance, the data pairs have the advantage of better simultaneity than those from common detectors.By now,over 33 000 pairs of data have been collected from two road sections in the cities of Shanghai and Zhengzhou.Through analyzing the video files recording traffic movements on urban expressways, the following issues are studied: laws of vehicle velocity changing with headway distance, proportions of different driving behaviors in the traffic system, and characteristics of traffic flow in snowy days.The results show that the real road traffic is very complex, and factors such as location and climate need to be taken into consideration in the formation of traffic flow models.

  4. Maximum flow in road networks with speed-dependent capacities – application to Bangkok traffic

    Elvin J Moore

    2013-08-01

    Full Text Available A road network can be modeled as a graph with a set of nodes representing intersections and a set of weighted edgesrepresenting road segments between intersections. In this paper, a traffic flow problem is studied, where edge weightsrepresent road capacities (maximum vehicles per hour that are functions of the traffic speed (km/hr and traffic density(vehicles per kilometer. To estimate road capacities for a given speed, empirical data on safe vehicle separations for a givenspeed are used. A modified version of the Ford-Fulkerson algorithm is developed to solve maximum flow problems with speeddependent capacities, with both one-way and two-way flows allowed on edges and with multiple source and target nodes.The modified algorithm is used to estimate maximum traffic flow through a selected network of roads in Bangkok. It was foundthat the maximum safe traffic flow occurs at a speed of 30 km/hr.

  5. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  6. Analysis of ETMS Data Quality for Traffic Flow Management Decisions

    Chatterji, Gano B.; Sridhar, Banavar; Kim, Douglas

    2003-01-01

    The data needed for air traffic flow management decision support tools is provided by the Enhanced Traffic Management System (ETMS). This includes both the tools that are in current use and the ones being developed for future deployment. Since the quality of decision support provided by all these tools will be influenced by the quality of the input ETMS data, an assessment of ETMS data quality is needed. Motivated by this desire, ETMS data quality is examined in this paper in terms of the unavailability of flight plans, deviation from the filed flight plans, departure delays, altitude errors and track data drops. Although many of these data quality issues are not new, little is known about their extent. A goal of this paper is to document the magnitude of data quality issues supported by numerical analysis of ETMS data. Guided by this goal, ETMS data for a 24-hour period were processed to determine the number of aircraft with missing flight plan messages at any given instant of time. Results are presented for aircraft above 18,000 feet altitude and also at all altitudes. Since deviation from filed flight plan is also a major cause of trajectory-modeling errors, statistics of deviations are presented. Errors in proposed departure times and ETMS-generated vertical profiles are also shown. A method for conditioning the vertical profiles for improving demand prediction accuracy is described. Graphs of actual sector counts obtained using these vertical profiles are compared with those obtained using the Host data for sectors in the Fort Worth Center to demonstrate the benefit of preprocessing. Finally, results are presented to quantify the extent of data drops. A method for propagating track positions during ETMS data drops is also described.

  7. Dynamics of Motorized Vehicle Flow under Mixed Traffic Circumstance

    To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a car-following model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail. The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles. (interdisciplinary physics and related areas of science and technology)

  8. Dynamics of Motorized Vehicle Flow under Mixed Traffic Circumstance*

    GUO nong-Wei; GAO Zi-You; ZHAO Xiao-Mei; XIE Dong-Fan

    2011-01-01

    To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed.Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles.By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail.The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%.Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low.Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle densityincreases.The results also stress the necessity for separating motorized vehicles from non-motorized vehicles.

  9. CONCEPTION OF NEW ROAD-NODE JEŽICA IN LJUBLJANA DESIGNED CONSIDERING TRAFFIC-FLOWS

    Kralj, Gregor

    2011-01-01

    In this graduation thesis it will be shown how to design a new road-node Ježica in Ljubljana considering traffic-flows in this area. In the initial theoretical part the process of traffic planning will be presented, through a theory of four-stage models, which are the basis for traffic models, from which we get the corresponding traffic-flows. So-called interactive projecting it will also be introduced and explained. Then follows practical part, in which the analysis of existing transmitta...

  10. Detecting Anomaly in Traffic Flow from Road Similarity Analysis

    Liu, Xinran

    2016-06-02

    Taxies equipped with GPS devices are considered as 24-hour moving sensors widely distributed in urban road networks. Plenty of accurate and realtime trajectories of taxi are recorded by GPS devices and are commonly studied for understanding traffic dynamics. This paper focuses on anomaly detection in traffic volume, especially the non-recurrent traffic anomaly caused by unexpected or transient incidents, such as traffic accidents, celebrations and disasters. It is important to detect such sharp changes of traffic status for sensing abnormal events and planning their impact on the smooth volume of traffic. Unlike existing anomaly detection approaches that mainly monitor the derivation of current traffic status from history in the past, the proposed method in this paper evaluates the abnormal score of traffic on one road by comparing its current traffic volume with not only its historical data but also its neighbors. We define the neighbors as the roads that are close in sense of both geo-location and traffic patterns, which are extracted by matrix factorization. The evaluation results on trajectories data of 12,286 taxies over four weeks in Beijing show that our approach outperforms other baseline methods with higher precision and recall.

  11. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    G. R. LAI

    2015-08-01

    Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.

  12. Research on the Prediction of VNN Neural Network Traffic Flow Model Based on Chaotic Algorithm

    Yin Lisheng

    2013-06-01

    Full Text Available This paperresearches on the prediction of traffic flow chaotic time series based on VNNTF neural network. First, the traffic flow time series chaotic feature is extracted by chaos theory. Pretreatment for traffic flow time series and the VNNTP neural networks model was build by this. Second, principles of neural network learning algorithm VNNTF is described. Based on chaotic learning algorithm, the neural network traffic Volterra learning algorithm isdesigned for fast learning algorithm. Last, a single-step prediction of traffic flow chaotic time series is researched by VNNTF network model based on chaotic algorithm. The results showed that the VNNTF network model predictive performance is better than the Volterra prediction filter and the BP neural network   by the simulation results and root-mean-square value.

  13. Intelligent Controlling Simulation of Traffic Flow in a Small City Network

    Fouladvand, M E; Sadjadi, Z; Sadjadi, Zeinab

    2005-01-01

    We propose a two dimensional probabilistic cellular automata for the description of traffic flow in a small city network composed of two intersections. The traffic in the network is controlled by a set of traffic lights which can be operated both in fixed-time and a traffic responsive manner. Vehicular dynamics is simulated and the total delay experienced by the traffic is evaluated within specified time intervals. We investigate both decentralized and centralized traffic responsive schemes and in particular discuss the implementation of the {\\it green-wave} strategy. Our investigations prove that the network delay strongly depends on the signalisation strategy. We show that in some traffic conditions, the application of the green-wave scheme may destructively lead to the increment of the global delay.

  14. PRINCIPLES OF IMPROVEMENT OF AIR TRAFFIC FLOW AND CAPACITY MANAGEMENT IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Kharchenko, Volodymyr; National Aviation University, Kyiv, Ukraine; Ningbo University of Technology, Ningbo, Zhejiang, China; Chynchenko, Yuriy; National Aviation University, Kyiv

    2013-01-01

    The article deals with the analysis of the researches conducted in the field of the air traffic flow and capacity management in terminal control areas under uncertainty conditions. Traffic flows indicators, uncertainty factors and air traffic flow management in terminal control areas have been reviewed. Principles of improvement of air traffic flow and capacity management in terminal control areas have been analysed and conclusions regarding Ukrainian aeronautical system have been proposed

  15. Traffic Flow at Sags: Theory, Modeling and Control

    Goni-Ros, B.

    2016-01-01

    Sag vertical curves (sags) are roadway sections along which the gradient increases gradually in the direction of traffic. Empirical observations show that, on freeways, traffic congestion often occurs at sags; actually, in some countries (e.g., Japan), sags are one of the most common types of freeway bottleneck. This thesis is the outcome of a research project funded by Toyota whose objective was to develop new concepts for traffic management at freeway sags based on a thorough understanding ...

  16. Self-Adapting Routing Overlay Network for Frequently Changing Application Traffic in Content-Based Publish/Subscribe System

    Meng Chi

    2014-01-01

    Full Text Available In the large-scale distributed simulation area, the topology of the overlay network cannot always rapidly adapt to frequently changing application traffic to reduce the overall traffic cost. In this paper, we propose a self-adapting routing strategy for frequently changing application traffic in content-based publish/subscribe system. The strategy firstly trains the traffic information and then uses this training information to predict the application traffic in the future. Finally, the strategy reconfigures the topology of the overlay network based on this predicting information to reduce the overall traffic cost. A predicting path is also introduced in this paper to reduce the reconfiguration numbers in the process of the reconfigurations. Compared to other strategies, the experimental results show that the strategy proposed in this paper could reduce the overall traffic cost of the publish/subscribe system in less reconfigurations.

  17. Maximum flow in road networks with speed-dependent capacities – application to Bangkok traffic

    Elvin J Moore; Wisut Kichainukon; Utomporn Phalavonk

    2013-01-01

    A road network can be modeled as a graph with a set of nodes representing intersections and a set of weighted edgesrepresenting road segments between intersections. In this paper, a traffic flow problem is studied, where edge weightsrepresent road capacities (maximum vehicles per hour) that are functions of the traffic speed (km/hr) and traffic density(vehicles per kilometer). To estimate road capacities for a given speed, empirical data on safe vehicle separations for a givenspeed are used. ...

  18. A strongly coupled PDE-ODE system modeling moving density constraints in traffic flow

    Delle Monache, Maria Laura; Goatin, Paola

    2012-01-01

    International audience We prove the existence of solutions of a coupled PDE-ODE system modeling the interaction of a large slow moving vehicle with the surrounding traffic flow. The model consists in a scalar conservation law with moving density constraint describing traffic evolution coupled with an ODE for the slow vehicle trajectory. The constraint location moves due to the surrounding traffic conditions, which in turn are affected by the presence of the slower vehicle, thus resulting i...

  19. Traffic-Flow Analysis for Fast Performance Estimation of Communication Systems

    Lencse, Gábor

    2001-01-01

    The traffic-flow analysis (TFA) is a promising method for the performance estimation of communication systems. TFA produces approximate results with much less computation (that is, much faster) than discrete-event simulation of the system. In the first step, TFA distributes the traffic in units of properly chosen size using the actual routing algorithm of the network. In the second step, TFA adjusts the time distribution of the traffic according to the finite capacities of the network. It was...

  20. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving

    Kerner, Boris S

    2016-01-01

    In a mini-review [Physica A {\\bf 392} (2013) 5261--5282] it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown -- a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters o...

  1. Traffic management as a service: the traffic flow pattern classification problem

    Carlos T. Calafate; David Soler; Juan-Carlos Cano; Pietro Manzoni

    2015-01-01

    Intelligent Transportation System (ITS) technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city...

  2. MEASURES TO IMPROVE THE TRAFFIC MANAGEMENT

    Дульгер, В.; Пиндюрина, Е.; Муратова, А.

    2012-01-01

    Everybody knows the volume of traffic on today's roads is increasing, thereby, reducing the capacity of the road which causes delays and congestion. "Traffic Management" is the termed as "ways and measures of adjusting, accommodating or adapting the use of road space available without building new ones". The key objective of introducing traffic management measures is to achieve one of the following: improve the flow of traffic, or specific types of traffic (e.g. bus / cycle priority measures)...

  3. A SPATIOTEMPORAL APPROACH FOR HIGH RESOLUTION TRAFFIC FLOW IMPUTATION

    Han, Lee [University of Tennessee, Knoxville (UTK); Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL

    2016-01-01

    Along with the rapid development of Intelligent Transportation Systems (ITS), traffic data collection technologies have been evolving dramatically. The emergence of innovative data collection technologies such as Remote Traffic Microwave Sensor (RTMS), Bluetooth sensor, GPS-based Floating Car method, automated license plate recognition (ALPR) (1), etc., creates an explosion of traffic data, which brings transportation engineering into the new era of Big Data. However, despite the advance of technologies, the missing data issue is still inevitable and has posed great challenges for research such as traffic forecasting, real-time incident detection and management, dynamic route guidance, and massive evacuation optimization, because the degree of success of these endeavors depends on the timely availability of relatively complete and reasonably accurate traffic data. A thorough literature review suggests most current imputation models, if not all, focus largely on the temporal nature of the traffic data and fail to consider the fact that traffic stream characteristics at a certain location are closely related to those at neighboring locations and utilize these correlations for data imputation. To this end, this paper presents a Kriging based spatiotemporal data imputation approach that is able to fully utilize the spatiotemporal information underlying in traffic data. Imputation performance of the proposed approach was tested using simulated scenarios and achieved stable imputation accuracy. Moreover, the proposed Kriging imputation model is more flexible compared to current models.

  4. Effect of the Primary User Traffic on Cognitive Relaying with Adaptive Transmission

    Rao, Anlei

    2012-09-08

    In a cognitive-relay system, the secondary user is permitted to transmit data via a relay when the spectrum bands are detected to be free. The miss detection of spectrum sensing and the primary user traffic will affect the data transmission performance of the secondary user. In this paper, we investigate the impact of the status change of the primary user on the bit error rate (BER) of the adaptive transmission of the secondary user in a cognitive-relay system. Numerical results show that the primary user traffic can significantly degrade the BER of the secondary user transmission.

  5. Dynamic aggregation of traffic flows in SDN Applied to backhaul networks

    Kentis, Angelos Mimidis; Caba, Cosmin Marius; Soler, José

    2016-01-01

    or they can support a very limited number of OF rules. One way to cope with this limitation, is to perform the same logic but with fewer OF rules in the devices. As a demonstration of this operational strategy, the current paper proposes a service for traffic flow aggregation which reduces the number...... of OF rules needed in the network devices, without impacting the control plane logic. The proposed traffic flow aggregation service is tested on a set of topologies specific to the backhaul network, since they aggregate a large amount of traffic flows. The results illustrate significant reductions...

  6. Slow-to-start effect in two-dimensional traffic flow

    Sui, Qiao-Hong; Ding, Zhong-Jun; Jiang, Rui; Huang, Wei; Sun, Duo; Wang, Bing-Hong

    2012-03-01

    This paper studies slow-to-start effect in two-dimensional Biham-Middleton-Levine (BML) traffic flow model with traffic light periods T=2τ. In most cases, the model exhibits free flow, jam, and phase separation phenomenon. Nevertheless, when the slow-to-start parameter p=0, and traffic light parameter τ=3 or 5, it is found that phase separation phenomenon does not occur. We have explained this via the evolution process from a designed regular initial configuration. Moreover, it is also found that the free flow self-organizes into grid-like structure when τ is large and the slow-to-start parameter 0

  7. Empirical Features of Spontaneous and Induced Traffic Breakdowns in Free Flow at Highway Bottlenecks

    Kerner, Boris S; Klenov, Sergey L; Rehborn, Hubert; Leibel, Michael

    2015-01-01

    Based on an empirical study of real field traffic data measured in 1996--2014 through road detectors installed on German freeways, we reveal physical features of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks. It is shown that the source of a nucleus for traffic breakdown is the solely difference between empirical spontaneous and induced traffic breakdowns at a highway bottleneck. Microscopic traffic simulations with a stochastic traffic flow model in the framework of three-phase theory explain the empirical findings. It turns out that in the most cases, a nucleus for empirical spontaneous traffic breakdown occurs through an interaction of one of waves in free flow with an empirical permanent speed disturbance localized at a highway bottleneck. The wave is a localized structure in free flow, in which the total flow rate is larger and the speed averaged across the highway is smaller than outside the wave. The waves in free flow appear due to oscilations in the percentage...

  8. A study of a main-road cellular automata traffic flow model

    黄乒花; 孔令江; 刘慕仁

    2002-01-01

    A main-road cellular automata traffic flow model on two dimensions is presented based on the Biham-Middleton-Levine traffic model. Its evolution equations are given and the self-organization and organization cooperation phenomenain this model are also studied by using computer simulation.

  9. Transition from Disorder to Order in Traffic Flow

    LI Ke-Ping; GAO Zi-You

    2004-01-01

    We propose a new technique to investigate the dynamical transitions among the traffic phases. A type of the control signals has been designated at a given site (signal point) of the single-lane highway. Under the effect of the control signal, the velocity of the vehicle that passes the signal point will be changed periodically. Our method is tested for the deterministic NaSch traffic model. The simulation results demonstrate that the disorder states in the deterministic NaSch traffic model can be suppressed, and the different types of periodic states would occur.

  10. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393

  11. A New Macro Model for Traffic Flow on a Highway with Ramps and Numerical Tests

    In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning rush period and the evening rush period. Numerical tests show that, during the two rush periods, these effects are often different and related to the status of the main road traffic. If the main road traffic flow is uniform, then ramps always produce stop-and-go traffic when the main road density is between two critical values, and ramps have little effect on the main road traffic when the main road density is less than the smaller critical value or greater than the larger critical value. If a small perturbation appears on the main road, ramp may lead to stop-and-go traffic, or relieve or even eliminate the stop-and-go traffic, under different circumstances. These results are consistent with real traffic, which shows that the new model is reasonable.

  12. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  13. Jam Formation of Traffic Flow in Harbor Tunnel

    This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, flat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obtained from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results. (interdisciplinary physics and related areas of science and technology)

  14. Traffic flow in a Manhattan-like urban system

    Li, Ming; Jiang, Rui; Hu, Mao-Bin; Wang, Bing-Hong

    2011-01-01

    In this paper, a cellular automaton model of vehicular traffic in Manhattan-like urban system is proposed. In this model, the origin-destination trips and traffic lights have been considered. The system exhibits three different states, i.e., moving state, saturation state and global deadlock state. With a grid coarsening method, vehicle distribution in the moving state and the saturation state has been studied. Interesting structures (e.g., windmill-like one, T-shirt-like one, Y-like one) have been revealed. A metastability of the system is observed in the transition from saturation state to global deadlock state. The effect of advanced traveller information system (ATIS), the traffic light period, and the traffic light switch strategy have also been investigated.

  15. Traffic flow in a Manhattan-like urban system

    Li, Ming; Ding, Zhong-Jun; Jiang, Rui; Hu, Mao-Bin; Wang, Bing-Hong

    2011-12-01

    In this paper, a cellular automaton model of vehicular traffic in a Manhattan-like urban system is proposed. In this model, the origin-destination trips and traffic lights have been considered. The system exhibits three different states, i.e. moving state, saturation state and global deadlock state. With a grid coarsening method, vehicle distribution in the moving state and the saturation state has been studied. Interesting structures (e.g. windmill-like ones, T-shirt-like ones, Y-like ones) have been revealed. A metastability of the system is observed in the transition from the saturation state to the global deadlock state. The effect of an advanced traveller information system (ATIS), the traffic light period and the traffic light switch strategy have also been investigated.

  16. Traffic flow in a Manhattan-like urban system

    In this paper, a cellular automaton model of vehicular traffic in a Manhattan-like urban system is proposed. In this model, the origin–destination trips and traffic lights have been considered. The system exhibits three different states, i.e. moving state, saturation state and global deadlock state. With a grid coarsening method, vehicle distribution in the moving state and the saturation state has been studied. Interesting structures (e.g. windmill-like ones, T-shirt-like ones, Y-like ones) have been revealed. A metastability of the system is observed in the transition from the saturation state to the global deadlock state. The effect of an advanced traveller information system (ATIS), the traffic light period and the traffic light switch strategy have also been investigated

  17. Eulerian Air Traffic Flow Management Agent for the ACES Software Project

    National Aeronautics and Space Administration — The development of an Eulerian model based en route traffic flow management agent for the ACES software is proposed. The proposed research will use a...

  18. A modified NaSch model with density-dependent randomization for traffic flow

    Zhu, H. B.; Ge, H. X.; Dong, L. Y.; Dai, S. Q.

    2007-05-01

    Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, a modified cellular automaton (CA) traffic model with the density-dependent randomization (abbreviated as the DDR model) is proposed to simulate traffic flow. The fundamental diagram obtained by simulation shows the ability of this modified NaSch model to capture the essential features of traffic flow, e.g., synchronized flow, metastable state, hysteresis and phase separation at higher densities. Comparisons are made between this DDR model and the NaSch model, also between this DDR model and the VDR model. And the underlying mechanism is analyzed. All these results indicate that the presented model is reasonable and more realistic.

  19. Traffic flow collection wireless sensor network node for intersection light control

    Li, Xu; Li, Xue

    2011-10-01

    Wireless sensor network (WSN) is expected to be deployed in intersection to monitor the traffic flow continuously, and the monitoring datum can be used as the foundation of traffic light control. In this paper, a WSN based on ZigBee protocol for monitoring traffic flow is proposed. Structure, hardware and work flow of WSN nodes are designed. CC2431 from Texas Instrument is chosen as the main computational and transmission unit, and CC2591 as the amplification unit. The stability experiment and the actual environment experiment are carried out in the last of the paper. The results of experiments show that WSN has the ability to collect traffic flow information quickly and transmit the datum to the processing center in real time.

  20. Interaction of Airspace Partitions and Traffic Flow Management Delay

    Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae

    2010-01-01

    To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.

  1. Applying the maximum information principle to cell transmission model of tra-ffic flow

    刘喜敏; 卢守峰

    2013-01-01

    This paper integrates the maximum information principle with the Cell Transmission Model (CTM) to formulate the velo-city distribution evolution of vehicle traffic flow. The proposed discrete traffic kinetic model uses the cell transmission model to cal-culate the macroscopic variables of the vehicle transmission, and the maximum information principle to examine the velocity distri-bution in each cell. The velocity distribution based on maximum information principle is solved by the Lagrange multiplier method. The advantage of the proposed model is that it can simultaneously calculate the hydrodynamic variables and velocity distribution at the cell level. An example shows how the proposed model works. The proposed model is a hybrid traffic simulation model, which can be used to understand the self-organization phenomena in traffic flows and predict the traffic evolution.

  2. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow.

    Kerner, Boris S

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck. PMID:26764764

  3. Research on traffic flow forecasting model based on cusp catastrophe theory

    张亚平; 裴玉龙

    2004-01-01

    This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.

  4. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Cinsdikici, Muhammed G.; Memiş, Kemal

    2010-12-01

    Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  5. Adaptive muffler based on controlled flow valves.

    Šteblaj, Peter; Čudina, Mirko; Lipar, Primož; Prezelj, Jurij

    2015-06-01

    An adaptive muffler with a flexible internal structure is considered. Flexibility is achieved using controlled flow valves. The proposed adaptive muffler is able to adapt to changes in engine operating conditions. It consists of a Helmholtz resonator, expansion chamber, and quarter wavelength resonator. Different combinations of the control valves' states at different operating conditions define the main working principle. To control the valve's position, an active noise control approach was used. With the proposed muffler, the transmission loss can be increased by more than 10 dB in the selected frequency range. PMID:26093462

  6. Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior

    Sharma, Sapna

    2015-03-01

    In this paper, a new two-lane lattice hydrodynamic traffic flow model is proposed by considering the aggressive or timid characteristics of driver's behavior. The effect of driver's characteristic on the stability of traffic flow is examined through linear stability analysis. It is shown that for both the cases of lane changing or without lane changing the stability region significantly enlarges (reduces) as the proportion of aggressive (timid) drivers increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. The effect of anticipation parameter with more aggressive (timid) drivers is also investigated and found that it has a positive (negative) effect on the stability of two-lane traffic flow dynamics. Simulation results are found consistent with the theoretical findings which confirm that the driver's characteristics play a significant role in a two-lane traffic system.

  7. Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift

    Nagatani, Takashi; Tobita, Kazuhiro

    2012-10-01

    We study the dynamical behavior of counter traffic flow through a sequence of signals (traffic lights) controlled by a phase shift. There are two lanes for the counter traffic flow: the first lane is for east-bound vehicles and the second lane is for west-bound vehicles. The green-wave strategy is studied in the counter traffic flow where the phase shift of signals in the second lane has opposite sign to that in the first lane. A nonlinear dynamic model of the vehicular motion is presented by nonlinear maps at a low density. There is a distinct difference between the traffic flow in the first lane and that in the second lane. The counter traffic flow exhibits very complex behavior on varying the cycle time, the phase difference, and the split. Also, the fundamental diagram is derived by the use of the cellular automaton (CA) model. The dependence of east-bound and west-bound vehicles on cycle time, phase difference, and density is clarified.

  8. Analyzing the Influence of Mobile Phone Use of Drivers on Traffic Flow Based on an Improved Cellular Automaton Model

    Yao Xiao; Jing Shi

    2015-01-01

    This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that ...

  9. Development of Integrated Weigh-in-motion System and Analysis of Traffic Flow Characteristics considering Vehicle Weight

    AHMAD, SAIFIZUL ABDULLAH

    2011-01-01

    This study attempts to explore empirically how gross vehicle weight (GVW) will affect traffic flow characteristics in both free-flow and vehicle following situations. The success of the study is highly dependent on the empirical data provided by the traffic datacollection system. Currently, many kinds of systems or devices are available which measure or monitor or enforce traffic dedicatedly. The use of these dedicated or nonintegrated systems or devices in traffic data-coll...

  10. An adaptive preconditioner for steady incompressible flows

    Beaume, C

    2016-01-01

    This paper describes an adaptive preconditioner for numerical continuation of incompressible Navier--Stokes flows. The preconditioner maps the identity (no preconditioner) to the Stokes preconditioner (preconditioning by Laplacian) through a continuous parameter and is built on a first order Euler time-discretization scheme. The preconditioner is tested onto two fluid configurations: three-dimensional doubly diffusive convection and a reduced model of shear flows. In the former case, Stokes p...

  11. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  12. Vehicular traffic flow at an intersection with the possibility of turning

    Ebrahim Foulaadvand, M.; Belbasi, Somayyeh

    2011-03-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing a vehicular traffic flow at a single intersection. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. An open boundary condition is applied to the streets each of which conducts a unidirectional flow. Streets are single lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flow dependence on signalization parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exists a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.

  13. Vehicular traffic flow at an intersection with the possibility of turning

    Foulaadvand, M Ebrahim; 10.1088/1751-8113/44/10/105001

    2011-01-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing of vehicular traffic flow at a single intersection. A set of traffic lights operating in fixed-time scheme controls the traffic flow. Open boundary condition is applied to the streets each of which conduct a uni-directional flow. Streets are single-lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flows dependence on the signalisation parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exist a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.

  14. Microscopic Theory of Traffic Flow Instability Governing Traffic Breakdown at Highway Bottlenecks: Growing Wave of Increase in Speed in Synchronized Flow

    Kerner, Boris S

    2015-01-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability as an S$\\rightarrow$F instability. Whereas the S$\\rightarrow$F instability leads to a local {\\it increase in speed} (growing acceleration wave), in contrast, the classical traffic flow instability introduced in 50s--60s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local {\\it decrease in speed} (growing deceleration wave). We have found that the S$\\rightarrow$F instability can occur only, if there is a finite time delay in driver over-acceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S$\\rightarrow$F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that ...

  15. Cellular Automation Model of Traffic Flow Based on the Car-Following Model

    LI Ke-Ping; GAO Zi-You

    2004-01-01

    @@ We propose a new cellular automation (CA) traffic model that is based on the car-following model. A class of driving strategies is used in the car-following model instead of the acceleration in the NaSch traffic model. In our model, some realistic driver behaviour and detailed vehicle characteristics have been taken into account, such as distance-headway and safe distance, etc. The simulation results show that our model can exhibit some traffic flow states that have been observed in the real traffic, and both of the maximum flux and the critical density are very close to the real measurement. Moreover, it is easy to extend our method to multi-lane traffic.

  16. Intra-City Urban Network and Traffic Flow Analysis from GPS Mobility Trace

    Leung, Ian X Y; Hui, Pan; Lio', Pietro

    2011-01-01

    We analyse two large-scale intra-city urban networks and traffic flows therein measured by GPS traces of taxis in San Francisco and Shanghai. Our results coincide with previous findings that, based purely on topological means, it is often insufficient to characterise traffic flow. Traditional shortest-path betweenness analysis, where shortest paths are calculated from each pairs of nodes, carries an unrealistic implicit assumption that each node or junction in the urban network generates and attracts an equal amount of traffic. We also argue that weighting edges based only on euclidean distance is inadequate, as primary roads are commonly favoured over secondary roads due to the perceived and actual travel time required. We show that betweenness traffic analysis can be improved by a simple extended framework which incorporates both the notions of node weights and fastest-path betweenness. We demonstrate that the framework is superior to traditional methods based solely on simple topological perspectives.

  17. A Study on the Model of Traffic Flow and Vehicle Exhaust Emission

    Han Xue

    2013-01-01

    Full Text Available The increase of traffic flow in cities causes traffic congestion and accidents as well as air pollution. Traffic problems have attracted the interest of many researchers from the perspective of theory and engineering. In order to provide a simple and practical method for measuring the exhaust emission and assessing the effect of pollution control, a model is based on the relationship between traffic flow and vehicle exhaust emission under a certain level of road capacity constraints. In the proposed model, the hydrocarbons (HC, carbon monoxide (CO, and nitrogen oxides (NOx are considered as the indexes of total exhaust emission, and the speed is used as an intermediate variable. To verify the rationality and practicality of the model, a case study for Beijing, China, is provided in which the effects of taxi fare regulation and the specific vehicle emission reduction policy are analyzed.

  18. Integrated Proactive Admission Control Technique For both UDP And TCP Traffic Flows

    Lakshmanan Senthilkumar

    2007-02-01

    Full Text Available Real time traffic adopting UDP at the transport layer needs some quality of service. It is offered through an admission control scheme. This paper adopts one such scheme which is extended for elastic traffics adopting TCP at the transport layer. The proposed scheme operates on reserving network resources on a proactive manner. It is based on the principle of telephone networks Erlang-B model. The blocking probability measured is used as a flow admission decision parameter. The effectiveness of the proposed admission control algorithm is determined here through simulation. It offers a fair admission rate to both UDP and TCP traffic flows. It also results in a better bottleneck link utilization at a comparatively lower overhead traffic.

  19. Numerical Solutions of Traffic Flow on Networks : Using the LWR-Model and the Godunov Scheme

    Bergersen, Bjørnar Dolva

    2014-01-01

    This paper shows how to create a simulationtool for traffic flow in a network using the Lighthill--Witham--Richards model and the Godunov scheme. First some basic rules about conservation laws are described and how to solve them using the method characteristics. This leads to the notion of weak solutions which can be solved by shock- and rarefractions-solutions. This is then used to describe how traffic behaves on a single road by using the LWR-model. The behavior of traffic at junctions is d...

  20. The effect of traffic flows on urban soundscape dynamics and how to analyze it

    Botteldooren, Dick; De Coensel, Bert; Tom, De Muer

    2004-01-01

    Subjective evaluation of soundscapes considers without a doubt the change in amplitude and frequency of the acoustic signal over time. The urban environment can make these soundscape dynamics become rather complex and interesting. In this paper we investigate how traffic flows, quite often the main source of noise in urban an suburban environments, influence the dynamics of the soundscape at intervals of the order of a few seconds to minutes. A model for dynamical traffic noise prediction is ...

  1. Cluster-size dependent randomization traffic flow model

    Gao Kun; Wang Bing-Hong; Fu Chuan-Ji; Lu Yu-Feng

    2007-01-01

    In order to exhibit the meta-stable states, several slow-to-start rules have been investigated as modification to Nagel-Schreckenberg (NS) model. These models can reproduce some realistic phenomena which are absent in the original NS model. But in these models, the size of cluster is still not considered as a useful parameter. In real traffic,the slow-to-start motion of a standing vehicle often depends on the degree of congestion which can be measured by the clusters'size. According to this idea, we propose a cluster-size dependent slow-to-start model based on the speeddependent slow-to-start rule (VDR) model. It gives expected results through simulations. Comparing with the VDR model, our new model has a better traffic efficiency and shows richer complex characters.

  2. Cluster-size dependent randomization traffic flow model

    Gao, Kun; Wang, Bing-Hong; Fu, Chuan-Ji; Lu, Yu-Feng

    2007-11-01

    In order to exhibit the meta-stable states, several slow-to-start rules have been investigated as modification to Nagel-Schreckenberg (NS) model. These models can reproduce some realistic phenomena which are absent in the original NS model. But in these models, the size of cluster is still not considered as a useful parameter. In real traffic, the slow-to-start motion of a standing vehicle often depends on the degree of congestion which can be measured by the clusters' size. According to this idea, we propose a cluster-size dependent slow-to-start model based on the speed-dependent slow-to-start rule (VDR) model. It gives expected results through simulations. Comparing with the VDR model, our new model has a better traffic efficiency and shows richer complex characters.

  3. The impact of traffic-flow patterns on air quality in urban street canyons.

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. PMID:26412198

  4. HFBP: Identifying P2P Traffic by Host Level and Flow Level Behavior Profiles

    Jinghua Yan

    2013-08-01

    Full Text Available Recently, Peer-to-peer (P2P networks have been widely applied in streaming media, instant messaging, file sharing and other fields, which have occupied more and more network bandwidth. Accurately identify P2P traffic is very important to management and control P2P traffic. In this paper, we introduce HFBP, a novel P2P identification scheme based on the host level and flow level behavior profiles of P2P traffic. HFBP consists of two stages. In the first stage, we calculate the probability that a host takes part in P2P application by matching its behavior with some host level behavior rules. In the second stage, we compute the probability that a flow belonging to P2P application by comparing the statistical features of each flow in the host with several flow feature profiles. We evaluate HFBP using real traffic traces. The identification accuracy achieves 93.1% and 95.1% in terms of flow and byte respectively. The experimental results prove that HFBP obtains satisfactory performance in identifying P2P traffic

  5. Car Delay Model near Bus Stops with Mixed Traffic Flow

    Yang Xiaobao

    2013-01-01

    Full Text Available This paper proposes a model for estimating car delays at bus stops under mixed traffic using probability theory and queuing theory. The roadway is divided to serve motorized and nonmotorized traffic streams. Bus stops are located on the nonmotorized lanes. When buses dwell at the stop, they block the bicycles. Thus, two conflict points between car stream and other traffic stream are identified. The first conflict point occurs as bicycles merge to the motorized lane to avoid waiting behind the stopping buses. The second occurs as buses merge back to the motorized lane. The average car delay is estimated as the sum of the average delay at these two conflict points and the delay resulting from following the slower bicycles that merged into the motorized lane. Data are collected to calibrate and validate the developed model from one site in Beijing. The sensitivity of car delay to various operation conditions is examined. The results show that both bus stream and bicycle stream have significant effects on car delay. At bus volumes above 200 vehicles per hour, the curbside stop design is not appropriate because of the long car delays. It can be replaced by the bus bay design.

  6. Analyzing the Influence of Mobile Phone Use of Drivers on Traffic Flow Based on an Improved Cellular Automaton Model

    Yao Xiao

    2015-01-01

    Full Text Available This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that traffic flow rate was significantly reduced if some drivers used a phone compared to no phone use. The flow rate and velocity decreased as the proportion of drivers using a phone increased. While, under low density, the risk of traffic decreased first and then increased as the distracted drivers increased, the distracted behavior of drivers, like using a phone, could reduce the flow rate by 5 percent according to the simulation.

  7. Failure of classical traffic and transportation theory: The maximization of the network throughput maintaining free flow conditions in network

    Kerner, Boris S

    2016-01-01

    We show that the minimization of travel times in a network as generally accepted in classical traffic and transportation theories deteriorates the traffic system through a considerable increase in the probability of traffic breakdown in the network. We introduce a network characteristic {\\it minimum network capacity} that shows that rather than the minimization of travel times in the network, the minimization of the probability of traffic breakdown in the network maximizes the network throughput at which free flow persists in the whole network.

  8. Staggered car-following induced by lateral separation effects in traffic flow

    This Letter develops a new staggered car-following model taking into consideration lateral separation effects. Time-to-collision, calculated using visual angle variables, is introduced to describe the lateral separation distance and improve the optimal velocity model. The analytical and numerical results show that the stability of traffic flow can gradually be enhanced with the increase of lateral separation effects. The asymmetry property of traffic flow is also investigated using the new model. The results imply that incorporating lateral separation effects into the car-following model leads to the suppression of traffic jams and greatly enhances the realism of the model. -- Highlights: ► We firstly proposed a staggered car-following model induced by lateral separation effects. ► Time-to-collision is firstly introduced to describe the lateral separation distance. ► The stability of traffic flow is enhanced with the increase of lateral separation effects. ► The asymmetry property of traffic flow is firstly investigated from the proposed model.

  9. Staggered car-following induced by lateral separation effects in traffic flow

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 (China); Wang, Dian-hai, E-mail: wangdianhai@sohu.com [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 (China); Xu, Cheng [Zhejiang Police College, Hangzhou, 310053 (China); Huang, Zhi-yi [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 (China)

    2012-01-02

    This Letter develops a new staggered car-following model taking into consideration lateral separation effects. Time-to-collision, calculated using visual angle variables, is introduced to describe the lateral separation distance and improve the optimal velocity model. The analytical and numerical results show that the stability of traffic flow can gradually be enhanced with the increase of lateral separation effects. The asymmetry property of traffic flow is also investigated using the new model. The results imply that incorporating lateral separation effects into the car-following model leads to the suppression of traffic jams and greatly enhances the realism of the model. -- Highlights: ► We firstly proposed a staggered car-following model induced by lateral separation effects. ► Time-to-collision is firstly introduced to describe the lateral separation distance. ► The stability of traffic flow is enhanced with the increase of lateral separation effects. ► The asymmetry property of traffic flow is firstly investigated from the proposed model.

  10. On the effect of stochastic transition in the fundamental diagram of traffic flow

    Siqueira, Adriano Francisco; Wu, Chen; Qian, Wei-Liang

    2014-01-01

    In this work, we propose an alternative stochastic model for the fundamental diagram of traffic flow with minimal number of parameters. Our approach is based on a mesoscopic viewpoint of the traffic system in terms of the dynamics of vehicle velocity transitions. A key feature of the present approach lies in its stochastic nature which makes it possible to describe not only the flow-concentration relation, the so-called fundamental diagram in traffic engineering, but also its variance -- an important ingredient in the observed data of traffic flow. It is shown that the model can be seen as a derivative of the Boltzmann equation when assuming a discrete velocity spectrum. The latter assumption significantly simplifies the mathematics and therefore, facilitates the study of its physical content through the analytic solutions. The model parameters are then adjusted to reproduce the observed traffic flow on the "23 de maio" highway in the Brazilian city of Sao Paulo, where both the fundamental diagram and its var...

  11. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  12. Impact of Primary User Traffic on Adaptive Transmission for Cognitive Radio with Partial Relay Selection

    Rao, Anlei

    2012-09-08

    In a cognitive relay system, the secondary user is permitted to transmit data via a relay when licensed frequency bands are detected to be free. Previous studies mainly focus on reducing or limiting the interference of the secondary transmission on the primary users. On the other hand, however, the primary user traffic will also affect the data transmission performance of the secondary users. In this paper, we investigate the impact of the primary user traffic on the bit error rate (BER) of the secondary transmission, when the secondary user adopts adaptive transmission with a relay partially selected. From the numerical results, we can see that the primary user traffic seriously degrades average BER. The worse-link partial selection can perform almost as well as the global selection when the channel conditions of the source-relay links and the relay-destination links differ a lot. In addition, although the relay selection improves the spectral efficiency of the secondary transmission, numerical results show that it only has slight impact on the overall average BER, so that the robustness of the system will not be affected by the relay selection.

  13. 3D Markov Process for Traffic Flow Prediction in Real-Time.

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-01

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025

  14. 3D Markov Process for Traffic Flow Prediction in Real-Time

    Eunjeong Ko

    2016-01-01

    Full Text Available Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1 a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2 the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further.

  15. The physics of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks

    Kerner, Boris S.; Koller, Micha; Klenov, Sergey L.; Rehborn, Hubert; Leibel, Michael

    2015-11-01

    Based on an empirical study of real field traffic data measured in 1996-2014 through road detectors installed on German freeways, we reveal physical features of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks. A microscopic stochastic three-phase traffic model of the nucleation of spontaneous traffic breakdown presented in the article explains the empirical findings. It turns out that in the most cases a nucleus for the breakdown occurs through an interaction of one of waves in free flow with an empirical permanent speed disturbance localized at a highway bottleneck. The wave is a localized structure in free flow, in which the total flow rate is larger and the speed averaged across the highway is smaller than outside the wave. The waves in free flow appear due to oscillations in the percentage of slow vehicles; these waves propagate with the average speed of slow vehicles in free flow. Any of the empirical waves exhibits a two-dimensional asymmetric spatiotemporal structure: Wave's characteristics are different in different highway lanes.

  16. Delay Estimates of Mixed Traffic Flow at Signalized Intersections in China

    SU Yuelong; WEI Zheng; CHENG Sihan; YAO Danya; ZHANG Yi; LI Li

    2009-01-01

    Two characteristics of Chinese mixed traffic invalidate the conventional queuing delay estimates for western countries. First, the driving characteristics of Chinese drivers lead to different delays even though the other conditions are the same. Second, urban traffic flow in China is often hindered by pedestrians at intersections, such that imported intelligent traffic control systems do not work appropriately. Typical delay estimates for Chinese conditions were obtained from data for over 500 vehicle queues in Beijing collected using charge coupled device (CCD) cameras. The results show that the delays mainly depend on the pro-portion and positions of heavy vehicles in the queue, as well as the start-up situations (with or without inter-ference). A simplified delay estimation model considers vehicle types and positions that compares well with the observed traffic delays.

  17. A mesoscopic approach on stability and phase transition between different traffic flow states

    Qian, Wei-Liang; Lin, Kai; Machado, Romuel F; Hama, Yogiro

    2015-01-01

    It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evoltuion of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examing closely the physical properties and mathematical constraints of the phase transitons therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connection to the instability and phase transitions. In addition to the one-dimensional configuration space, we generalize our discussion to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce main features of the observed fundamental diagram including the inverse-$\\lambda$ shape and the...

  18. Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.

    Deng, Ming-jun; Qu, Shi-ru

    2015-01-01

    Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258

  19. Properties of Phase Transition of Traffic Flow on Urban Expressway Systems with Ramps and Accessory Roads

    梅超群; 刘业进

    2011-01-01

    In this paper, we develop a cellular automaton model to describe the phase transition of traffic flow on urban expressway systems with on-off-ramps and accessory roads. The lane changing rules are given in detailed, the numerical results show that the main road and the accessory road both produce phase transitions. These phase transitions will omen be influenced by the number of lanes, lane changing, the ramp flow, the input flow rate, and the geometry structure.

  20. The CA model for traffic-flow at the grade roundabout crossing

    Chen Rui-Xiong; Bai Ke-Zhao; Liu Mu-Ren

    2006-01-01

    The cellular automaton model is suggested to describe the traffic-flow at the grade roundabout crossing. After the simulation with computer, the fundamental properties of this model have been revealed. Analysing this kind of road structure, this paper transforms the grade roundabout crossing with inner-roundabout-lane and outer-roundabout-lane into a configuration with many bottlenecks. Because of the self-organization, the traffic flow remains unblocked under a certain vehicle density. Some results of the simulation are close to the actual design parameter.

  1. The CA model for traffic-flow at the grade roundabout crossing

    Chen, Rui-Xiong; Bai, Ke-Zhao; Liu, Mu-Ren

    2006-07-01

    The cellular automaton model is suggested to describe the traffic-flow at the grade roundabout crossing. After the simulation with computer, the fundamental properties of this model have been revealed. Analysing this kind of road structure, this paper transforms the grade roundabout crossing with inner-roundabout-lane and outer-roundabout-lane into a configuration with many bottlenecks. Because of the self-organization, the traffic flow remains unblocked under a certain vehicle density. Some results of the simulation are close to the actual design parameter.

  2. Wave propagation of the traffic flow dynamic model based on wavefront expansion

    李莉; 施鹏飞

    2004-01-01

    This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.

  3. Solitary Density Waves for Improved Traffic Flow Model with Variable Brake Distances

    朱文兴; 丁瑞玲

    2012-01-01

    Traffic flow model is improved by introducing variable brake distances with varying slopes. Stability of the traffic flow on a gradient is analyzed and the neutral stability condition is obtained. The KdV (Korteweg-de Vries) equation is derived the use of nonlinear analysis and soliton solution is obtained in the meta-stable region. Solitary density waves are reproduced in the numerical simulations. It is found that as uniform headway is less than the safety distance solitary wave exhibits upward form, otherwise it exhibits downward form. In general the numerical results are in good agreement with the analytical results.

  4. K-Means Clustering Method to Classify Freeway Traffic Flow Patterns

    Mehmet Ali Silgu

    2014-06-01

    Full Text Available In this paper, performances of multivariate clustering methods in specifying flow pattern variations reconstructed by a macroscopic flow model are sought. In order to remove the noise in and the wide scatter of traffic data, raw flow measures are filtered prior to modeling process. Traffic flow is simulated by the cell transmission model adopting a two phase fundamental diagram. Flow dynamics specific to the selected freeway test stretch are used to determine prevailing traffic conditions. The classification of flow states over the fundamental diagram are sought utilizing the methods of partitional cluster analyses by considering the stretch density. The fundamental diagram of speed-density is plotted to specify the current corresponding flow state. Non-hierarchical or partitional clustering analysis returned promising results on state classification which in turn helps to capture sudden changes on test stretch flow states. The procedure followed by multivariate clustering methods is systematically dynamic that enables the partitions over the fundamental diagram match approximately with the flow patterns derived by the static partitioning method. The measure of determination coefficient calculated by using the K-means method is comparatively evaluated to statistically derive this conclusion.

  5. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  6. Heavy vehicle traffic is related to wheeze among schoolchildren: a population-based study in an area with low traffic flows

    Hedman Linnea

    2011-10-01

    Full Text Available Abstract Background An association between traffic air pollution and respiratory symptoms among children has been reported. However, the effects of traffic air pollution on asthma and wheeze have been very sparsely studied in areas with low traffic intensity in cold climate with poor dispersion. We evaluated the impact of vehicle traffic on childhood asthma and wheeze by objective exposure assessment. Methods As a part of the Obstructive Lung Disease in Northern Sweden (OLIN studies, a questionnaire was sent to the families of all children attending first or second grade in Luleå (72,000 inhabitants in Northern Sweden in 2006. The age of the children was 7-8 years and the participation rate was 98% (n = 1357. Skin prick tests were performed in 1224 (89% children. The home addresses were given geographical coordinates and traffic counts were obtained from the local traffic authorities. A proximity model of average daily traffic and average daily heavy vehicle traffic within 200 meters from each participant's home address was used. The associations between traffic exposure and asthma and wheeze, respectively, were analysed in an adjusted multiple logistic regression model. Results Exposure to high traffic flows was uncommon in the study area; only 15% of the children lived within 200 meters from a road with a traffic flow of ≥8000 vehicles per day. Living closer than 200 meters from a road with ≥500 heavy vehicles daily was associated with current wheeze, odds ratio 1.7 (confidence interval 1.0-2.7. A dose-response relation was indicated. An increased risk of asthma was also seen, however not significant, odds ratio 1.5 (confidence interval 0.8-2.9. Stratified analyses revealed that the effect of traffic exposure was restricted to the non-sensitized phenotype of asthma and wheeze. The agreement between self-reported traffic exposure and objective measurements of exposure was moderate. Conclusions This study showed that already at low levels

  7. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2003-01-01

    Current air transportation in the United States relies on a system born half a century ago. While demand for air travel has kept increasing over the years, technologies at the heart of the National Airspace System (NAS) have not been able to follow an adequate evolution. For instance, computers used to centralize flight data in airspace sectors run a software developed in 1972. Safety, as well as certification and portability issues arise as major obstacles for the improvement of the system. The NAS is a structure that has never been designed, but has rather evolved over time. This has many drawbacks, mainly due to a lack of integration and engineering leading to many inefficiencies and losses of performance. To improve the operations, understanding of this complex needs to be built up to a certain level. This work presents research done on Air Traffic Management (ATM) at the level of the en-route sector.

  8. States of Traffic Flow in Deep Lefortovo Tunnel (Moscow): Empirical Data

    Lubashevsky, I; Lifshits, B; Mahnke, R; Pechersky, M; Garnisov, Cyril; Lifshits, Boris; Lubashevsky, Ihor; Mahnke, Reinhard; Pechersky, Mikhail

    2005-01-01

    The paper presents a preliminary analysis of traffic flow data collected in the Lefortovo tunnel located on the 3-rd circular highway of Moscow. It is shown that the observed tunnel congested traffic in fact exhibits cooperative phenomena in vehicle motion, namely, there is a region of widely scatted states on the fundamental diagrams which is related typically to the appearance of synchronized traffic. Besides, the spatial autocorrelations in the occupancy, vehicle velocity, and flow rate measured by different detectors are found to be essential. Especially it concerns the correlations in the velocity and occupancy, their correlation length gets values about 1 km. The phase portrait of the vehicle ensemble dynamics on the occupancy-velocity plane is also studied. It is demonstrated that there are two substantially different region on it. One matches actually the cooperative vehicle motion and contains some kernel where the dynamics is pure chaotic. The other part of the phase plane corresponds to the irrever...

  9. Heterogeneous Traffic Flow Model for a Two-Lane Roundabout and Controlled Intersection

    Feng, Y.; Liu, Y.; Deo, P.; Ruskin, H. J.

    Modern urban traffic management depends heavily on the efficiency of road features, such as controlled intersections and multi-lane roundabouts. Vehicle throughput at any such configuration is modified by traffic mix, by rules governing manoeuvrability and by driver observance, as well as by traffic density. Here, we study heterogeneous traffic flow on two-lane roads through a cellular automata model for a binary mix of long and short vehicles. Throughput is investigated for a range of arrival rates and for fixed turning rate at an intersection: manoeuvres, while described in terms of left-lane driving, are completely generalisable. For a given heterogeneous distribution of vehicle type, there is a significant impact on queue length, delay times experienced and throughput at a fixed-cycle traffic light controlled two-way intersection and two-lane roundabout, when compared to the homogeneous case. As the proportion of long vehicles increases, average throughput for both configurations declines for increasing arrival rate, with average queue length and waiting time correspondingly increased. The effect is less-marked for the two-lane roundabout, due to absence of cross-traffic delays. Nevertheless, average waiting times and queue lengths remain uniformly high for arrival rates >0.25 vehicle per second (900 vph) on entry roads and for long vehicle proportion above 0.30-0.35.

  10. 基于交通噪声分析的交通流状态识别方法%Traffic Flow State Identification Based on Traffic Noise Signals

    罗向龙

    2012-01-01

    A vehicle acoustic signal is composed of engine noise, tire noise, air turbulence noise and exhaust noise. Traffic noise signals mixture of multiple vehicles' acoustic signals is determined by the traffic state. Based on the analysis of the existing traffic state identification methods and vehicle sound characteristics, an identification method of the traffic flow state was proposed by using traffic noise signals. In accordance with the vehicle speed, traffic flow states were divided into the free flow, saturation flow and traffic jams. The spectrums of vehicle acoustic signals were analyzed for different traffic states, the normalized peak frequencies were as features, and different traffic flow states were recognized using support vector machine. The test results show that different traffic flow states can be correctly recognized with traffic noise signals with a high recognition accuracy.%车辆行驶时的声音主要由发动机噪声、轮胎噪声、空气涡流噪声、排气噪声组成,多个车辆构成的交通噪声取决于道路的交通流状态.在分析现有交通状态识别方法和车辆声音特性的基础上提出了一种利用交通噪声的交通状态识别方法.按照车速将交通流分为自由流、饱和流和交通拥堵3种状态,对不同交通流状态下的交通噪声信号进行谱分析,以归一化的峰值频率作为特征,用支持向量机对不同的交通流状态进行识别.试验结果表明,通过交通噪声能够正确识别不同的交通流状态,具有较高的识别精度.

  11. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    Ganji, S.; Barari, Amin; Ibsen, Lars Bo;

    2012-01-01

    In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator. In...

  12. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo;

    2010-01-01

    In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator. In...

  13. Self-organized natural roads for predicting traffic flow: a sensitivity study

    In this paper, we extended road-based topological analysis to both nationwide and urban road networks, and concentrated on a sensitivity study with respect to the formation of self-organized natural roads based on the Gestalt principle of good continuity. Both annual average daily traffic (AADT) and global positioning system (GPS) data were used to correlate with a series of ranking metrics including five centrality-based metrics and two PageRank metrics. It was found that there exists a tipping point from segment-based to road-based network topology in terms of correlation between ranking metrics and their traffic. To our great surprise, (1) this correlation is significantly improved if a selfish rather than utopian strategy is adopted in forming the self-organized natural roads, and (2) point-based metrics assigned by summation into individual roads tend to have a much better correlation with traffic flow than line-based metrics. These counter-intuitive surprising findings constitute emergent properties of self-organized natural roads, which are intelligent enough for predicting traffic flow, thus shedding substantial light on the understanding of road networks and their traffic from the perspective of complex networks

  14. Environmental evaluation of introducing electric vehicles using a dynamic traffic-flow model

    A dynamic traffic-flow model (DTFM) is used in this study to evaluate the effectiveness of introducing electric vehicles (EVs) into the total traffic system as one of the alternative fuel vehicles. This model simulates congested and non-congested traffic flow caused by changes in the traffic demand. An environmental evaluation is carried out on the basis that all vehicles are substituted for EVs. Calculated results indicate that by introducing EVs, the NOx emissions and the CO2 emissions can be reduced by approximately 25.7 and 14.4% respectively. If battery performance of EVs is improved further, emissions can be furthered reduced by 39.6% (NOx) and 27.8% (CO2). Since emissions from heavy-duty vehicles are greater than other vehicles, the following measures have to be taken for these vehicles to significantly improve their impact upon the overall environment: (1) improvement in fuel efficiency and reductions of NOx in exhaust gas, (2) traffic demand management, such as modal shift. (Author)

  15. COMPUTATION OF RETURN FLOWS DUE TO NAVIGATION TRAFFICS IN RESTRICTED WATERWAYS

    B.S.MAZUMDER; S.K.DAS; S.N.DAS

    2006-01-01

    The paper deals with the development of an empirical model to compute the return flow due to the movement of navigation traffics in restricted waterway when the speed of the navigation traffic is under sub-critical range. The velocity profile of the return flow is modelled, where the functional dependence with respect to ambient flow, principal dimensions of the vessel, wetted cross-sectional area of the river, width and average depth of the river, and the lateral distance of the vessel from the bank are implicitly considered. This model has been validated with the observed data collected from the four specific sites, such as Kampsville, Apple River Island, Goose Island and Clarks Ferry of Illinois River during barge-tow movement. The present model shows significant improvement of return flow prediction in comparison to earlier empirical results. This model has also the ability to determine the locus of zero velocity point.

  16. Long-Term Correlations and Multifractality of Traffic Flow Measured by GIS for Congested and Free-Flow Roads

    di, Baofeng; Shi, Kai; Zhang, Kaishan; Svirchev, Laurence; Hu, Xiaoxi

    2016-02-01

    In this paper, a GIS-based method was developed to extract the real-time traffic information (RTTI) from the Google Maps system for city roads. The method can be used to quantify both congested and free-flow traffic conditions. The roadway length was defined as congested length (CL) and free-flow length (FFL). Chengdu, the capital of Sichuan Province in the southwest of China, was chosen as a case study site. The RTTI data were extracted from the Google real-time maps in May 12-17, 2013 and were used to derive the CL and FFL for the study areas. The Multifractal Detrended Fluctuation Analysis (MFDFA) was used to characterize the long-term correlations of CL and FFL time series and their corresponding multifractal properties. Analysis showed that CL and FFL had demonstrated time nonlinearity and long-term correlations and both characteristics differed significantly. A shuffling procedure and a phase randomization procedure were further integrated with multifractal detrending moving average (MFDMA) to identify the major sources of multifractality of these two time series. The results showed that a multifractal process analysis could be used to characterize complex traffic data. Traffic data collected and methods developed in this paper will help better understand the complex traffic systems.

  17. An adaptive preconditioner for steady incompressible flows

    Beaume, C

    2016-01-01

    This paper describes an adaptive preconditioner for numerical continuation of incompressible Navier--Stokes flows. The preconditioner maps the identity (no preconditioner) to the Stokes preconditioner (preconditioning by Laplacian) through a continuous parameter and is built on a first order Euler time-discretization scheme. The preconditioner is tested onto two fluid configurations: three-dimensional doubly diffusive convection and a reduced model of shear flows. In the former case, Stokes preconditioning works but a mixed preconditioner is preferred. In the latter case, the system of equation is split and solved simultaneously using two different preconditioners, one of which is parameter dependent. Due to the nature of these applications, this preconditioner is expected to help a wide range of studies.

  18. Runge-Kutta Discontinuous Galerkin Method for Traffic Flow Model on Networks

    Canic, Suncica; Piccoli, Benedetto; Qiu, Jing-Mei; Ren, Tan

    2014-01-01

    We propose a bound-preserving Runge-Kutta (RK) discontinuous Galerkin (DG) method as an efficient, effective and compact numerical approach for numerical simulation of traffic flow problems on networks, with arbitrary high order accuracy. Road networks are modeled by graphs, composed of a finite number of roads that meet at junctions. On each road, a scalar conservation law describes the dynamics, while coupling conditions are specified at junctions to define flow separation or convergence at...

  19. Cartesian anisotropic mesh adaptation for compressible flow

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  20. Understanding widely scattered traffic flows, the capacity drop, platoons, and times-to-collision as effects of variance-driven time gaps

    Treiber, M; Helbing, D; Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2005-01-01

    We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck. Single-vehicle data generated by several 'virtual detectors' show a semi-quantitative agreement with microscopic data from the Dutch freeway A9. This includes the observed distributions of the net time headways and times-to-collision for free and congested traffic. While the times-to-collision show a nearly universal distribution in free and congested traffic, the modal value of the time headway distribution is shifted by a factor of about two in congested conditions. Macroscopically, this corresponds to the 'capacity drop' at the transition from free to congested traffic. Finally, we explain the wide scattering of one-minute flow-density data by a self-organized variance-driven process that leads to t...

  1. Modelling of Traffic Flow with Bayesian Autoregressive Model with Variable Partial Forgetting

    Dedecius, Kamil; Nagy, Ivan; Hofman, Radek

    Praha : ČVUT v Praze, 2011, s. 1-11. [CTU Workshop 2011. Praha (CZ), 01.02.2011-01.02.2011] Grant ostatní: ČVUT v Praze(CZ) SGS 10/099/OHK3/1T/16 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian modelling * traffic modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/AS/dedecius-modelling of traffic flow with bayesian autoregressive model with variable partial forgetting.pdf

  2. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  3. Traffic-Adaptive Proactive Sp ectrum Handoff Strategy for Graded Secondary Users in Cognitive Radio Networks

    ZHANG Lei; SONG Tiecheng; WU Ming; BAO Xu; GUO Jie; HU Jing

    2015-01-01

    In order to meet diff erent delay require-ments of various communication services in Cognitive ra-dio (CR) networks, Secondary users (SUs) are divided into two classes according to the priority of accessing to spec-trum in this paper. Based on the proactive spectrum hand-off scheme, the Preemptive resume priority (PRP) M/G/1 queueing is used to characterize multiple spectrum hand-off s under two diff erent spectrum handoff strategies. The traffic-adaptive spectrum handoff strategy is proposed for graded SUs so as to minimize the average cumulative hand-off delay. Simulation results not only verify that our theo-retical analysis is valid, but also show that the strategy we proposed can reduce the average cumulative handoff delay evidently. The eff ect of service rate on the proposed spec-trum switching point and the admissible access region are provided.

  4. Characteristics of traffic flow at nonsignalized T-shaped intersection with U-turn movements.

    Fan, Hong-Qiang; Jia, Bin; Li, Xin-Gang; Tian, Jun-Fang; Yan, Xue-Dong

    2013-01-01

    Most nonsignalized T-shaped intersections permit U-turn movements, which make the traffic conditions of intersection complex. In this paper, a new cellular automaton (CA) model is proposed to characterize the traffic flow at the intersection of this type. In present CA model, new rules are designed to avoid the conflicts among different directional vehicles and eliminate the gridlock. Two kinds of performance measures (i.e., flux and average control delay) for intersection are compared. The impacts of U-turn movements are analyzed under different initial conditions. Simulation results demonstrate that (i) the average control delay is more practical than flux in measuring the performance of intersection, (ii) U-turn movements increase the range and degree of high congestion, and (iii) U-turn movements on the different direction of main road have asymmetrical influences on the traffic conditions of intersection. PMID:23710152

  5. A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour

    Ding Jian-Xun; Huang Hai-Jun; Tian Qiong

    2011-01-01

    It is known that the commonly used NaSch cellular automaton (CA) model and its modifications can help explain the internal causes of the macro phenomena of traffic flow. However, the randomization probability of vehicle velocity used in these models is assumed to be an exogenous constant or a conditional constant, which cannot reflect the learning and forgetting behaviour of drivers with historical experiences. This paper further modifies the NaSch model by enabling the randomization probability to be adjusted on the bases of drivers' memory. The Markov properties of this modified model are discussed. Analytical and simulation results show that the traffic fundamental diagrams can be indeed improved when considering drivers' intelligent behaviour. Some new features of traffic are revealed by differently combining the model parameters representing learning and forgetting behaviour.

  6. Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model

    Mazaré, Pierre Emmanuel

    2011-12-01

    In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.

  7. Possible Self-Organised Criticality and Dynamical Clustering of Traffic flow in Open Systems

    Larraga, M E; Mehta, A; Mehta, Anita

    1999-01-01

    We focus in this work on the study of traffic in open systems using a modified version of an existing cellular automaton model. We demonstrate that the open system is rather different from the closed system in its 'choice' of a unique steady-state density and velocity distribution, independently of the initial conditions, reminiscent of self-organised criticality. Quantities of interest such as average densities and velocities of cars, exhibit phase transitions between free flow and the jammed state, as a function of the braking probability R in a way that is very different from closed systems. Velocity correlation functions show that the concept of a dynamical cluster, introduced earlier in the context of granular flow is also relevant for traffic flow models.

  8. Evolutionary Marginal Cost Pricing Scheme Implementation Based on Stochastic Traffic Flow Information

    Wei Xu

    2015-01-01

    Full Text Available Traditionally, to implement the first-best marginal cost pricing scheme in a traffic network requires the information on the exact demand function or true origin-destination demand, which, however, is rarely available in practice. To overcome this dilemma, the trial-and-error method has been proposed to find the marginal cost toll through an iterative process using the observed traffic volumes. This method guarantees the convergence of tolls and flows to the system optimal state under the assumption of deterministic traffic conditions. However, in reality, the uncertainty of transportation network has been recognized well that induces the variability of link flow and travel time. Therefore, this paper proposes an evolutionary implementation method that iteratively finds the first-best marginal cost toll pattern according to the observed stochastic link flow information and the known travel time functions. The proof of the convergence of the iterative algorithm is presented. The paper also analyzes the effect of the sampling error of the link flow data on the convergence of the algorithm and shows that the biases from the flow observation will not affect the convergence. The numerical tests are provided for the illustration of the algorithm.

  9. A New Genetic Algorithm Based Lane-By-Pass Approach for Smooth Traffic Flow on Road Networks

    Shailendra Tahilyani; Manuj Darbari; Praveen Kumar Shukla

    2012-01-01

    Traffic congestion in urban areas is a very critical problem and increasing day-by-day due to increment in number of vehicles and un-expandable traffic infrastructure. Several intelligent control systems have been developed to deal with this issue. In this paper, a new lane bypass algorithm has been developed for route diversion resulting in smooth traffic flow on the urban road networks. Genetic algorithms are utilized for the parameter optimization in this approach. Finally, the results of ...

  10. Ant traffic rules.

    Fourcassié, Vincent; Dussutour, Audrey; Deneubourg, Jean-Louis

    2010-07-15

    Many animals take part in flow-like collective movements. In most species, however, the flow is unidirectional. Ants are one of the rare group of organisms in which flow-like movements are predominantly bidirectional. This adds to the difficulty of the task of maintaining a smooth, efficient movement. Yet, ants seem to fare well at this task. Do they really? And if so, how do such simple organisms succeed in maintaining a smooth traffic flow, when even humans experience trouble with this task? How does traffic in ants compare with that in human pedestrians or vehicles? The experimental study of ant traffic is only a few years old but it has already provided interesting insights into traffic organization and regulation in animals, showing in particular that an ant colony as a whole can be considered as a typical self-organized adaptive system. In this review we will show that the study of ant traffic can not only uncover basic principles of behavioral ecology and evolution in social insects but also provide new insights into the study of traffic systems in general. PMID:20581264

  11. An Improved Discrete-Time Model for Heterogeneous High-Speed Train Traffic Flow

    Xu, Yan; Jia, Bin; Li, Ming-Hua; Li, Xin-Gang

    2016-03-01

    This paper aims to present a simulation model for heterogeneous high-speed train traffic flow based on an improved discrete-time model (IDTM). In the proposed simulation model, four train control strategies, including departing strategy, traveling strategy, braking strategy, overtaking strategy, are well defined to optimize train movements. Based on the proposed simulation model, some characteristics of train traffic flow are investigated. Numerical results indicate that the departure time intervals, the station dwell time, the section length, and the ratio of fast trains have different influence on traffic capacity and train average velocity. The results can provide some theoretical support for the strategy making of railway departments. Supported by the National Basic Research Program of China under Grant No. 2012CB725400, the National Natural Science Foundation of China under Grant No. 71222101, the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2014ZT16, and the Fundamental Research Funds for the Central Universities No. 2015YJS088, Beijing Jiaotong University

  12. Extracting dynamic spatial data from airborne imaging sensors to support traffic flow estimation

    Toth, C. K.; Grejner-Brzezinska, D.

    The recent transition from analog to totally digital data acquisition and processing techniques in airborne surveying represents a major milestone in the evolution of spatial information science and practice. On one hand, the improved quality of the primary sensor data can provide the foundation for better automation of the information extraction processes. This phenomenon is also strongly supported by continuously expanding computer technology, which offers almost unlimited processing power. On the other hand, the variety of the data, including rich information content and better temporal characteristics, acquired by the new digital sensors and coupled with rapidly advancing processing techniques, is broadening the applications of airborne surveying. One of these new application areas is traffic flow extraction aimed at supporting better traffic monitoring and management. Transportation mapping has always represented a significant segment of civilian mapping and is mainly concerned with road corridor mapping for design and engineering purposes, infrastructure mapping and facility management, and more recently, environmental mapping. In all these cases, the objective of the mapping is to extract the static features of the object space, such as man-made and natural objects, typically along the road network. In contrast, the traffic moving in the transportation network represents a very dynamic environment, which complicates the spatial data extraction processes as the signals of moving vehicles should be identified and removed. Rather than removing and discarding the signals, however, they can be turned into traffic flow information. This paper reviews initial research efforts to extract traffic flow information from laserscanner and digital camera sensors installed in airborne platforms.

  13. Adaptive energy flow management in hybrid systems

    Drozdz, P.; Fitzpatrick, N.; Zettel, A.; Bouchon, N.; Inglis, A.; Strange, M. [Azure Dynamics Inc., Vancouver, BC (Canada)

    2000-07-01

    The use of adaptive energy management strategies for hybrid electric-powered vehicles was discussed with reference to the emission standards that must be met at the 100,000 mile point. The approach offers efficiency improvement and a cost reduction for simple series systems for medium duty vehicles. It also provides for improved battery management for parallel systems. The overall efficiency, durability and battery life in both series and parallel hybrid propulsion systems are strongly affected by the energy flow pattern between the primary energy source, battery and traction motor. The adaptive approach to energy management system aims for the dynamic optimisation of the system based on measured vehicle operating data. The approach uses computer tools to analyse driving patterns and to determine the most efficient control approach. It has a built-in learning ability to monitor the condition of the components and update the control strategy depending on the system's parameters. The system makes it possible to maintain maximum efficiency under any operating conditions while reducing the component load. The system was tested in a delivery vehicle and can successfully project fuel consumption. It was suggested that the method can be used to project greenhouse gas reduction figures for future fleets. refs., tabs., figs.

  14. Emission and energy consumption characteristics of interrupted over-saturated flow for urban roads with heterogeneous traffic

    Hemant Kumar SHARMA

    2012-01-01

    Full Text Available Road transport is a major source of air pollution particularly in towns and cities. In urban areas road traffic accounts for more than half of the emissions of nitrogen oxides, carbon mono-oxide and volatile organic compounds. This paper presents emission and energy consumption characteristics of urban roads with interrupted oversaturated flow comprising of heterogeneous traffic. Model has been developed for heterogeneous traffic under constraints of roadway geometry, vehicle characteristics, driving behaviour and traffic controls and has been calibrated and validated for interrupted oversaturated traffic conditions. Interrupted oversaturated flow conditions prevail in urban areas of most of the developing countries. The model developed shall predict carbon mono- oxide (CO, nitrogen oxides (NOx, volatile organic compounds (VOC, carbon dioxide (CO2 and fuel and energy consumption estimates for urban roads operating under oversaturated conditions of flow. Since model provides improved estimates of speed, delay and congestion it provides better estimates of emissions and energy consumption.

  15. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations

  16. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr [TECHNOLOGICAL RESEARCH INSTITUTE SYSTEMX (France); Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr [UPE/IFSTTAR-COSYS-GRETTIA (France)

    2015-03-10

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations.

  17. 77 FR 3544 - Meeting and Webinar on the Active Traffic and Demand Management and Intelligent Network Flow...

    2012-01-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Meeting and Webinar on the Active Traffic and Demand Management and Intelligent Network Flow Optimization... obtain stakeholder input on the Active Traffic and Demand Management (ADTM) and Intelligent Network...

  18. A two-lane cellular automaton traffic flow model with the influence of driver, vehicle and road

    Zhao, Han-Tao; Nie, Cen; Li, Jing-Ru; Wei, Yu-Ao

    2016-07-01

    On the basis of one-lane comfortable driving model, this paper established a two-lane traffic cellular automata model, which improves the slow randomization effected by brake light. Considering the driver psychological characteristics and mixed traffic, we studied the lateral influence between vehicles on adjacent lanes. Through computer simulation, the space-time diagram and the fundamental figure under different conditions are obtained. The study found that aggressive driver makes a slight congestion in low-density traffic and improves the capacity of high-density traffic, when the density exceeds 20pcu/km the more aggressive drivers the greater the flow, when the density below 40pcu/km driver character makes an effect, the more cautious driver, the lower the flow. The ratio of big cars has the same effect as the ratio of aggressive drivers. Brake lights have the greatest impact on traffic flow and when the density exceeds 10pcu/km the traffic flow fluctuates. Under periodic boundary conditions, the disturbance of road length on traffic is minimal. The lateral influence only play a limited role in the medium-density conditions, and only affect the average speed of traffic at low density.

  19. ANALYSIS OF THE STRUCTURAL PROPERTIES OF THE SOLUTIONS TO SPEED GRADIENT TRAFFIC FLOW MODEL

    JIANG Rui; WU Qingsong

    2004-01-01

    In this paper, we carry out an analysis of the structural properties of the solutions to the speed gradient (SG) traffic flow model. Under the condition that the relaxation effect can be neglected, it is shown that a 1-shock or a 1-rarefaction is associated with the first characteristic, but on the other hand, a contact discontinuity rather than a 2-shock or a 2-rarefaction is associated with the second characteristic. Since the existence of a 2-shock or 2-rarefaction violates the physical mechanism of the traffic flow, the SG model is more reasonable. If the relaxation effect cannot be neglected, it is somewhat difficult to carry out the analytical analysis and the numerical simulation results should be obtained.

  20. Optimal proportion of studded tyres in traffic flow to prevent polishing of an icy road.

    Tuononen, Ari J; Sainio, Panu

    2014-04-01

    Studded tyres can significantly wear the road surface and increase particle emissions from the road surface, which has a negative impact on air quality in urban areas. However, road wear might have a positive aspect by roughening the road surface and thus preventing polishing. As a consequence, other vehicles than the ones using studded tyres might also benefit from the usage of studded tyres. The impact of the proportion of studded tyres in the traffic flow on the tyre-ice friction coefficient was studied with a fleet of real cars in a closed environment under strict procedural control. The results show that a proportion of 25-50% studded tyres in the traffic flow is enough to prevent ice from developing in a manner that is critically slippery for non-studded winter tyres. It was also observed that the visual appearance of the ice surface does not indicate if the ice has become more slippery or not. PMID:24445137

  1. An Adaptive Loss-Aware Flow Control Scheme for Delay-Sensitive Applications in OBS Networks

    Jeong, Hongkyu; Choi, Jungyul; Mo, Jeonghoon; Kang, Minho

    Optical Burst Switching (OBS) is one of the most promising switching technologies for next generation optical networks. As delay-sensitive applications such as Voice-over-IP (VoIP) have recently become popular, OBS networks should guarantee stringent Quality of Service (QoS) requirements for such applications. Thus, this paper proposes an Adaptive Loss-aware Flow Control (ALFC) scheme, which adaptively decides on the burst offset time based on loss-rate information delivered from core nodes for assigning a high priority to delay-sensitive application traffic. The proposed ALFC scheme also controls the upper-bounds of the factors inducing delay and jitter for guaranteeing the delay and jitter requirements of delay-sensitive application traffic. Moreover, a piggybacking method used in the proposed scheme accelerates the guarantee of the loss, delay, and jitter requirements because the response time for flow control can be extremely reduced up to a quarter of the Round Trip Time (RTT) on average while minimizing the signaling overhead. Simulation results show that our mechanism can guarantee a 10-3 loss-rate under any traffic load while offering satisfactory levels of delay and jitter for delay-sensitive applications.

  2. Speed-Flow Relations and Cost Functions for Congested Traffic: Theory and Empirical Analysis

    Verhoef, Erik T.

    2003-01-01

    A dynamic 'car-following' extension of the conventional economic model of traffic congestion is presented, which predicts the average cost function for trips in stationary states to be significantly different from the conventional average cost function derived from the speed-flow function. When applied to a homogeneous road, the model reproduces the same stationary state equilibria as the conventional model, including the hypercongested ones. However, stability analysis shows that the latter ...

  3. Analytic Solutions for a Functional Differential Equation Related to a Traffic Flow Model

    Houyu Zhao

    2012-01-01

    Full Text Available We study the existence of analytic solutions of a functional differential equation (z(s+α2z'(s=β(z(s+z(s-z(s which comes from traffic flow model. By reducing the equation with the Schröder transformation to an auxiliary equation, the author discusses not only that the constant λ at resonance, that is, at a root of the unity, but also those λ near resonance under the Brjuno condition.

  4. Fundamental Diagram of Traffic Flows on Urban Roads Local Versus Whole-Link Approaches

    Wagner, Peter; Brockfeld, Elmar; Gartner, Nathan; Sohr, Alexander

    2009-01-01

    Fundamental diagrams of traffic flow variables have been quite useful in determining freeway operations quality. However, they are usually not used for that purpose on urban roads. This work is an approach towards utilizing the fundamental diagram on urban roads, too. Based on a host of empirical as well as simulation work, the first steps towards a routine application of the fundamental diagram are sketched. In addition, two approaches are compared, one that uses a traditional fundamental di...

  5. Roads at risk: traffic detours from debris flows in southern Norway

    Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.

    2015-05-01

    Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.

  6. Roads at risk - traffic detours from debris flows in southern Norway

    Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.

    2014-10-01

    Globalization and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g., road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load expressed as vehicle kilometers because of debris-flow related road closures. We present two scenarios demonstrating the impact of debris flows on the road network, and quantify the associated path failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and northwestern part of the study area are associated with high link failure risk. Yet options for detours on major routes are manifold, and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying of speedy delivery of services and goods.

  7. Street Hierarchies: A Minority of Streets Account for a Majority of Traffic Flow

    Jiang, Bin

    2008-01-01

    Urban streets are hierarchically organized in the sense that a majority of streets are trivial, while a minority of streets is vital. This hierarchy can be simply, but elegantly, characterized by the 80/20 principle, i.e. 80 percent of streets are less connected (below the average), while 20 percent of streets are well connected (above the average); out of the 20 percent, there is 1 percent of streets that are extremely well connected. This paper, using a European city as an example, examined, at a much more detailed level, such street hierarchies from the perspective of geometric and topological properties. Based on an empirical study, we further proved a previous conjecture that a minority of streets accounts for a majority of traffic flow; more accurately, the 20 percent of top streets accommodate 80 percent of traffic flow (20/80), and the 1 percent of top streets account for more than 20 percent of traffic flow (1/20). Our study provides new evidence as to how a city is (self-)organized, contributing to ...

  8. Betweenness centrality and its applications from modeling traffic flows to network community detection

    Ren, Yihui

    As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the

  9. Continuous traffic flow modeling of driver support systems in multiclass traffic with inter-vehicle communication and drivers in the loop

    Tampere, C.M.J.; Hoogendoorn, S.P.; Arem, B. van

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of diff

  10. [Emission Characteristics of Vehicle Exhaust in Beijing Based on Actual Traffic Flow Information].

    Fan, Shou-bin; Tian, Ling-di; Zhang, Dong-xu; Qu, Song

    2015-08-01

    The basic data of traffic volume, vehicle type constitute and speed on road networks in Beijing was obtained fly modei simulation and field survey. Based on actual traffic flow information and. emission factors data with temporal and spatial distribution features, emission inventory of motor vehicle exhaust in Beijing was built on the ArcGIS platform, meanwhile, the actual road emission characteristics and spatial distribution of the pollutant emissions were analyzed. The results showed that the proportion of passenger car was higher than 89% on each type of road in the urban, and the proportion of passenger car was the highest in suburban roads as well while the pickup truck, medium truck, heavy truck, motorbus, tractor and motorcycle also occupied a certain proportion. There was a positive correlation between the pollutant emission intensity and traffic volume, and the emission intensity was generally higher in daytime than nighttime, but the diurnal variation trend of PM emission was not clear for suburban roads and the emission intensity was higher in nighttime than daytime for highway. The emission intensities in urban area, south, southeast and northeast areas near urban were higher than those in the western and northern mountainous areas with lower density of road network. The ring roads in urban and highways in suburban had higher emission intensity because of the heavy traffic volume. PMID:26592000

  11. Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent

    Yan Liu

    2016-01-01

    Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.

  12. Analytical studies on an extended car following model for mixed traffic flow with slow and fast vehicles

    Li, Zhipeng; Xu, Xun; Xu, Shangzhi; Qian, Yeqing; Xu, Juan

    2016-07-01

    The car-following model is extended to take into account the characteristics of mixed traffic flow containing fast and slow vehicles. We conduct the linear stability analysis to the extended model with finding that the traffic flow can be stabilized with the increase of the percentage of the slow vehicle. It also can be concluded that the stabilization of the traffic flow closely depends on not only the average value of two maximum velocities characterizing two vehicle types, but also the standard deviation of the maximum velocities among all vehicles, when the percentage of the slow vehicles is the same as that of the fast ones. With increase of the average maximum velocity, the traffic flow becomes more and more unstable, while the increase of the standard deviation takes negative effect in stabilizing the traffic system. The direct numerical results are in good agreement with those of theoretical analysis. Moreover, the relation between the flux and the traffic density is investigated to simulate the effects of the percentage of slow vehicles on traffic flux in the whole density regions.

  13. Interaction of Airspace Partitions and Traffic Flow Management Delay with Weather

    Lee, Hak-Tae; Chatterji, Gano B.; Palopo, Kee

    2011-01-01

    The interaction of partitioning the airspace and delaying flights in the presence of convective weather is explored to study how re-partitioning the airspace can help reduce congestion and delay. Three approaches with varying complexities are employed to compute the ground delays.In the first approach, an airspace partition of 335 high-altitude sectors that is based on clear weather day traffic is used. Routes are then created to avoid regions of convective weather. With traffic flow management, this approach establishes the baseline with per-flight delay of 8.4 minutes. In the second approach, traffic flow management is used to select routes and assign departure delays such that only the airport capacity constraints are met. This results in 6.7 minutes of average departure delay. The airspace is then partitioned with a specific capacity. It is shown that airspace-capacity-induced delay can be reduced to zero ata cost of 20percent more sectors for the examined scenario.

  14. A new and efficient adaptive scheduling packets for the uplink traffic in WiMAX networks

    Teixeira Marcio

    2011-01-01

    Full Text Available Abstract In this article, an adaptive scheduling packets algorithm for the uplink traffic in WiMAX networks is proposed. The proposed algorithm is designed to be completely dynamic, mainly in networks that use various modulation and coding schemes (MCSs. Using a cross-layer approach and the states of the uplink virtual queues in the base station, it was defined a new deadlines-based scheme, aiming at limiting the maximum delay to the real-time applications. Moreover, a method which interacts with the polling mechanisms of the base station was developed. This method controls the periodicity of sending unicast polling to the real-time and non-real-time service classes, in accordance with the quality of service requirements of the applications. The proposed algorithm was evaluated by means of modeling and simulation in environments where various MCSs were used and also in an environment where only one type of MCS was used. The simulations showed satisfactory results in both environments.

  15. AMPLE: An adaptive traffic engineering system based on virtual routing topologies

    Wang, N.; Ho, KH; Pavlou, G

    2012-01-01

    Handling traffic dynamics in order to avoid network congestion and subsequent service disruptions is one of the key tasks performed by contemporary network management systems. Given the simple but rigid routing and forwarding functionalities in IP base environments, efficient resource management and control solutions against dynamic traffic conditions is still yet to be obtained. In this article, we introduce AMPLE - an efficient traffic engineering and management system that performs adaptiv...

  16. Urban traffic simulated from the dual representation: Flow, crisis and congestion

    We propose a traffic simulation model for urban system based on the dual graph representation of a urban road network and with a random entering vehicle rate. To avoid the shortcoming of 'Space Syntax' of ignoring the road's metric distance, we consider both the motion of the vehicles along roads and the navigation of the vehicles in the network. Simulations have shown some basic properties of urban traffic system, such as flux fluctuation, crisis and dissipation, phase transition from a free flow to jams, overall capacity, the distribution of traveling time, and the fundamental diagram. The system's behavior greatly depends on the topology of the transportation network. A well-planned lattice grid can keep more vehicles travelling. The critical entering vehicle rate is much greater in lattice grid than in a self-organized network. The vehicles have to travel longer time in a self-organized urban system due to the navigation cost.

  17. Urban traffic simulated from the dual representation: Flow, crisis and congestion

    Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Wu, Qing-Song

    2009-05-01

    We propose a traffic simulation model for urban system based on the dual graph representation of a urban road network and with a random entering vehicle rate. To avoid the shortcoming of “Space Syntax” of ignoring the road's metric distance, we consider both the motion of the vehicles along roads and the navigation of the vehicles in the network. Simulations have shown some basic properties of urban traffic system, such as flux fluctuation, crisis and dissipation, phase transition from a free flow to jams, overall capacity, the distribution of traveling time, and the fundamental diagram. The system's behavior greatly depends on the topology of the transportation network. A well-planned lattice grid can keep more vehicles travelling. The critical entering vehicle rate is much greater in lattice grid than in a self-organized network. The vehicles have to travel longer time in a self-organized urban system due to the navigation cost.

  18. On the micro-to-macro limit for first-order traffic flow models on networks

    Cristiani, Emiliano

    2015-01-01

    Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traffic flow models are already well understood in the case of vehicles moving on a single road. Analogous connections in the case of road networks are instead lacking. This is probably due to the fact that macroscopic traffic models on networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in different ways near the junctions. In this paper we show that a natural extension of the first-order follow-the-leader model on networks corresponds, as the number of vehicles tends to infinity, to the LWR-based multi-path model introduced in [Bretti et al., Discrete Contin. Dyn. Syst. Ser. S, 7 (2014)] and [Briani and Cristiani, Netw. Heterog. Media, 9 (2014)].

  19. Study on effect of toll station on the traffic flow on three-line road

    Wang, Guang-yu; Li, Wen-bo; Feng, Yu-jie

    2013-03-01

    Based on the NaSch Model, a new three-line cellular automata model emphasizing toll station on the high ways is built to discuss the impact of different amount of toll stations on the traffic flow. The models are as follows: Firstly, the process of cars driving is simulated. Secondly, the process of pulling station is simulated. In this part, two Cellular Automata Models are built separately for two cases, three tollbooths in the toll station and four tollbooths. The result shows that when the density of cars is on medium level, comparing with the toll station with three tollbooths, the toll station with four tollbooths can remit the traffic congestion effectively, but when the density of cars is too high or too low, the toll station with three tollbooths can do better.

  20. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  1. Application of the Conditional Inverse Matrix Theory for Estimation of Origin-Destination Trip Matrices from Link Traffic Flows

    Chung-Yung Wang; Jia-Wun Zhang

    2014-01-01

    This study focuses on estimating O-D (origin-destination) trip demand from link traffic flows. Equality relationship among link traffic flow, path flow, and O-D trip matrices are used to establish a linear equation system. Solution characteristics are analyzed based on the relationship between the rank of the link/path incidence matrix and column variables. And under the solution framework of conditional inverse matrices, a column exchange method and a path flow proportion method have been developed. Network testing results verify that the proposed methods yield good results.

  2. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.

    Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal

    2012-09-01

    The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. PMID:22561008

  3. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated

  4. Self-organized Natural Roads for Predicting Traffic Flow: A Sensitivity Study

    Jiang, Bin; Yin, Junjun

    2008-01-01

    In this paper, we extended road-based topological analysis into both nationwide and urban road networks, and concentrated on a sensitivity study with respect to the formation of self-organized natural roads based on Gestalt principle of good continuity. Both Annual Average Daily Traffic (AADT) and Global Positioning System (GPS) data were used to correlate with a series of ranking metrics including five centrality-based metrics and two PageRank metrics. It was found that there exists a tipping point from segment- to road-based network topology in terms of correlation between ranking metrics and their traffic. To our big surprise, (1) this correlation is significantly improved if a selfish rather than utopian strategy is adopted in forming the self-organized natural roads, and (2) point-based metrics assigned by summation into individual roads tend to have a much better correlation with traffic flow than line-based metrics. These counter-intuitive surprising findings constitute emergent properties of self-orga...

  5. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: mdf2004@zju.edu.cn [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)

    2015-10-16

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.

  6. Modeling Mixed Bicycle Traffic Flow: A Comparative Study on the Cellular Automata Approach

    Dan Zhou

    2015-01-01

    Full Text Available Simulation, as a powerful tool for evaluating transportation systems, has been widely used in transportation planning, management, and operations. Most of the simulation models are focused on motorized vehicles, and the modeling of nonmotorized vehicles is ignored. The cellular automata (CA model is a very important simulation approach and is widely used for motorized vehicle traffic. The Nagel-Schreckenberg (NS CA model and the multivalue CA (M-CA model are two categories of CA model that have been used in previous studies on bicycle traffic flow. This paper improves on these two CA models and also compares their characteristics. It introduces a two-lane NS CA model and M-CA model for both regular bicycles (RBs and electric bicycles (EBs. In the research for this paper, many cases, featuring different values for the slowing down probability, lane-changing probability, and proportion of EBs, were simulated, while the fundamental diagrams and capacities of the proposed models were analyzed and compared between the two models. Field data were collected for the evaluation of the two models. The results show that the M-CA model exhibits more stable performance than the two-lane NS model and provides results that are closer to real bicycle traffic.

  7. Deriving average delay of traffic flow around intersections from vehicle trajectory data

    Minyue ZHAO; Xiang LI

    2013-01-01

    Advances of positioning and wireless communication technologies make it possible to collect a large number of trajectory data of moving vehicles in a fast and convenient fashion.The data can be applied to various fields such as traffic study.In this paper,we attempt to derive average delay of traffic flow around intersections and verify the results with changes of time.The intersection zone is delineated first.Positioning points geographically located within this zone are selected,and then outliers are removed.Turn trips are extracted from selected trajectory data.Each trip,physically consisting of time-series positioning points,is identified with entry road segment and turning direction,i.e.target road segment.Turn trips are grouped into different categories according to their time attributes.Then,delay of each trip during a turn is calculated with its recorded speed.Delays of all trips in the same period of time are plotted to observe the change pattern of traffic conditions.Compared to conventional approaches,the proposed method can be applied to those intersections without fixed data collection devices such as loop detectors since a large number of trajectory data can always provide a more complete spatio-temporal picture of a road network.With respect to data availability,taxi trajectory data and an intersection in Shanghai are employed to test the proposed methodology.Results demonstrate its applicability.

  8. Analysis of Phase Transition in Traffic Flow based on a New Model of Driving Decision

    Different driving decisions will cause different processes of phase transition in traffic flow. To reveal the inner mechanism, this paper built a new cellular automaton (CA) model, based on the driving decision (DD). In the DD model, a driver's decision is divided into three stages: decision-making, action, and result. The acceleration is taken as a decision variable and three core factors, i.e. distance between adjacent vehicles, their own velocity, and the preceding vehicle's velocity, are considered. Simulation results show that the DD model can simulate the synchronized flow effectively and describe the phase transition in traffic flow well. Further analyses illustrate that various density will cause the phase transition and the random probability will impact the process. Compared with the traditional NaSch model, the DD model considered the preceding vehicle's velocity, the deceleration limitation, and a safe distance, so it can depict closer to the driver preferences on pursuing safety, stability and fuel-saving and has strong theoretical innovation for future studies. (interdisciplinary physics and related areas of science and technology)

  9. Analysis of Phase Transition in Traffic Flow based on a New Model of Driving Decision

    Peng, Yu; Shang, Hua-Yan; Lu, Hua-Pu

    2011-07-01

    Different driving decisions will cause different processes of phase transition in traffic flow. To reveal the inner mechanism, this paper built a new cellular automaton (CA) model, based on the driving decision (DD). In the DD model, a driver's decision is divided into three stages: decision-making, action, and result. The acceleration is taken as a decision variable and three core factors, i.e. distance between adjacent vehicles, their own velocity, and the preceding vehicle's velocity, are considered. Simulation results show that the DD model can simulate the synchronized flow effectively and describe the phase transition in traffic flow well. Further analyses illustrate that various density will cause the phase transition and the random probability will impact the process. Compared with the traditional NaSch model, the DD model considered the preceding vehicle's velocity, the deceleration limitation, and a safe distance, so it can depict closer to the driver preferences on pursuing safety, stability and fuel-saving and has strong theoretical innovation for future studies.

  10. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

    Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin

    2016-06-01

    Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

  11. Analysis of the effect of older drivers’ driving behaviors on traffic flow based on a modified CA model

    Jian, Mei-Ying; Shi, Jing; Liu, Yang

    2016-09-01

    As the global population ages, there are more and more older drivers on the road. The decline in driving performance of older drivers may influence the properties of traffic flow and safety. The purpose of this paper is to investigate the effect of older drivers’ driving behaviors on traffic flow. A modified cellular automaton (CA) model which takes driving behaviors of older drivers into account is proposed. The simulation results indicate that older drivers’ driving behaviors induce a reduction in traffic flow especially when the density is higher than 15 vehicles per km per lane and an increase in Lane-changing frequency. The analysis of stability shows that a number of disturbances could frequently emerge, be propagated and eventually dissipate in this modified model. The results also reflect that with the increase of older drivers on the road, the probability of the occurrence of rear-end collisions increases greatly and obviously. Furthermore, the value of acceleration influences the traffic flow and safety significantly. These results provide the theoretical basis and reference for the traffic management departments to develop traffic management measure in the aging society.

  12. Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow

    Marschler, Christian; Sieber, Jan; Hjorth, Poul G.;

    2014-01-01

    Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level. This will...... facilitate a study of how the model behavior depends on parameter values including an understanding of transitions between different types of qualitative behavior. These methods are introduced and explained for traffic jam formation and emergence of oscillatory pedestrian counter flow in a corridor with a...

  13. Phase transitions in a new car-following traffic flow model

    Li Li; Shi Peng-Fei

    2005-01-01

    In this paper, we investigate the performance of the well-known optimal velocity car-following model(the OVM) with numerical simulation in describing the acceleration process that is induced by the motion of a ldading car with a pre-specifide speed profile. Results show that this model is to some extent deficient in performing this process. Modification of the OVM to overcome the deficiency is demonstrated. The linear stability for the modified model is analysed. If the linear stability condition can not be satisfied, phase transitions occur on varying the initial homogeneous headway of the traffic flow.

  14. Online Optimal Control of Connected Vehicles for Efficient Traffic Flow at Merging Roads

    Rios-Torres, Jackeline [ORNL; Malikopoulos, Andreas [ORNL; Pisu, Pierluigi [Clemson University

    2015-01-01

    This paper addresses the problem of coordinating online connected vehicles at merging roads to achieve a smooth traffic flow without stop-and-go driving. We present a framework and a closed-form solution that optimize the acceleration profile of each vehicle in terms of fuel economy while avoiding collision with other vehicles at the merging zone. The proposed solution is validated through simulation and it is shown that coordination of connected vehicles can reduce significantly fuel consumption and travel time at merging roads.

  15. L^1 stability of conservation laws for a traffic flow model

    Tong Li

    2001-02-01

    Full Text Available We establish the $L^1$ well-posedness theory for a system of nonlinear hyperbolic conservation laws with relaxation arising in traffic flows. In particular, we obtain the continuous dependence of the solution on its initial data in $L^1$ topology. We construct a functional for two solutions which is equivalent to the $L^1$ distance between the solutions. We prove that the functional decreases in time which yields the $L^1$ well-posedness of the Cauchy problem. We thus obtain the $L^1$-convergence to and the uniqueness of the zero relaxation limit.

  16. L^1 stability of conservation laws for a traffic flow model

    Tong Li

    2001-01-01

    We establish the $L^1$ well-posedness theory for a system of nonlinear hyperbolic conservation laws with relaxation arising in traffic flows. In particular, we obtain the continuous dependence of the solution on its initial data in $L^1$ topology. We construct a functional for two solutions which is equivalent to the $L^1$ distance between the solutions. We prove that the functional decreases in time which yields the $L^1$ well-posedness of the Cauchy problem. We thus obtain the $L^1$-converg...

  17. Linear programming approach to traffic flow control - optimization on a horizon

    Homolová, Jitka

    Hong Kong : Hong Kong Society for Transportation Studies, 2006 - (Wong, S.; Hau, T.; Wang, J.), s. 697-705 ISBN 978-988-98847-0-3; ISBN 988-98847-0-4. [International Conference of Hong Kong Society for Transportation Studies, Sustainable Transportation /11./. Hong Kong (HK), 09.12.2006-11.12.2006] R&D Projects: GA MDS 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear programming * traffic flow control * control on a horizon Subject RIV: BB - Applied Statistics, Operational Research

  18. 路口交通流不均衡饱和时的交通信号控制%Traffic Flow Equilibrium Saturation in Traffic Signal Control

    李雪佳

    2012-01-01

    Aiming at the existing intersection queue, and different directions of traffic flow is not balanced, queue length sum minimum sum of traffic flow model are built, and 2 kinds of optimization of signal timing control strategy are presented by using the optimal control theory and algorithms.%针对交叉路口存在排队车辆,且不同方向上的交通流不均衡,建立排队长度总和达到最小的交通流模型,利用最优控制理论和算法给出两种优化的信号配时控制策略。

  19. Open boundaries in a cellular automaton model for traffic flow with metastable states

    Barlovic, Robert; Huisinga, Torsten; Schadschneider, Andreas; Schreckenberg, Michael

    2002-10-01

    The effects of open boundaries in the velocity-dependent randomization (VDR) model, a modified version of the well-known Nagel-Schreckenberg (NaSch) cellular automaton model for traffic flow, are investigated. In contrast to the NaSch model, the VDR model exhibits metastable states and phase separation in a certain density regime. A proper insertion strategy allows us to investigate the whole spectrum of possible system states and the structure of the phase diagram by Monte Carlo simulations. We observe an interesting microscopic structure of the jammed phases, which is different from the one of the NaSch model. For finite systems, the existence of high flow states in a certain parameter regime leads to a special structure of the fundamental diagram measured in the open system. Apart from that, the results are in agreement with an extremal principle for the flow, which has been introduced for models with a unique flow-density relation. Finally, we discuss the application of our findings for a systematic flow optimization. Here some surprising results are obtained, e.g., a restriction of the inflow can lead to an improvement of the total flow through a bottleneck.

  20. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829

  1. Counting the corners of a random walk and its application to traffic flow

    We study a system with two types of interacting particles on a one-dimensional lattice. Particles of the first type, which we call ‘active’, are able to detect particles of the second type (called ‘passive’). By relating the problem to a discrete random walk in one dimension with a fixed number of steps we determine the fraction of active and detected particles for both open and periodic boundary conditions as well as for the case where passive particles interact with both or only one neighbors. In the random walk picture, where the two particles types stand for steps in opposite directions, passive particles are detected whenever the resulting path has a corner. For open boundary conditions, it turns out that a simple mean field approximation reproduces the exact result if the particles interact with one neighbor only. A practical application of this problem is heterogeneous traffic flow with communicating and non-communicating vehicles. In this context communicating vehicles can be thought of as active particles which can by front (and rear) sensors detect the vehicle ahead (and behind) although these vehicles do not actively share information. Therefore, we also present simulation results which show the validity of our analysis for real traffic flow. (paper)

  2. Multiple-vehicle collision induced by a sudden stop in traffic flow

    We study the dynamic process of the multiple-vehicle collision when a vehicle stops suddenly in a traffic flow. We apply the optimal-velocity model to the vehicular motion. If a vehicle does not decelerate successfully, it crashes into the vehicle ahead with a residual speed. The collision criterion is presented by vi(t)/Δxi(t)→∞ if Δxi(t)→0 where vi(t) and Δxi(t) are the speed and headway of vehicle i at time t. The number of crumpled vehicles depends on the initial velocity, the sensitivity, and the initial headway. We derive the region map (or phase diagram) for the multiple-vehicle collision. -- Highlights: ► We studied the dynamic process of the multiple-vehicle collision in traffic flow. ► We presented the collision criterion that a vehicle comes into collision with the vehicle in front. ► We clarified the dependence of the multiple-vehicle collision on the density and sensitivity.

  3. Adaptative Multigrid and Variable Parameterization for Optical-flow Estimation

    Memin, Etienne; Pérez, Patrick

    1997-01-01

    We investigate the use of adaptative multigrid minimization algorithms for the estimation of the apparent motion field. The proposed approach provides a coherent and efficient framework for estimating piecewise smooth flow fields for different parameterizations relative to adaptative partitions of the image. The performances of the resulting algorithms are demonstrated in the difficult context of a non convex global energy formulation.

  4. An improved adaptive ACO meta heuristic for scheduling multimedia traffic across the 802.11e EDCA

    Ditze, Michael; Becker, Markus

    2008-01-01

    This paper presents an adaptive near-optimal scheduler for multimedia traffic for the 802.11e Enhanced Distributed Channel Access (EDCA) medium access control scheme. The scheduler exploits the ant colony optimization (ACO) meta heuristic to tackle the challenge of packet scheduling. ACO is a biologically inspired algorithm that is known to find near-optimal solutions for combinatorial optimization problems. Thus, we expect that ACO scheduling produces more efficient schedules than comparable deterministic scheduling approaches at the expenses of a computational overhead it introduces. We compare ACO scheduling relevant deterministic scheduling approaches, and in particular the MLLF scheduler that is specifically designed for the needs of compressed multimedia applications. The purpose of the evaluation is twofold. It allows to draw conclusions on the feasibility of ACO scheduling for multimedia traffic while it serves as a benchmark to determine to what extent deterministic schedulers fall short of a near-optimal solution.

  5. Adaptability of the Logistics System in National Economic Mobilization Based on Blocking Flow Theory

    Xiangyuan Jing

    2014-01-01

    Full Text Available In the process of national economic mobilization, the logistics system usually suffers from negative impact and/or threats of such emergency events as wars and accidents, which implies that adaptability of the logistics system directly determines realization of economic mobilization. And where the real-time rescue operation is concerned, heavy traffic congestion is likely to cause a great loss of or damage to human beings and their properties. To deal with this situation, this article constructs a blocking-resistance optimum model and an optimum restructuring model based on blocking flow theories, of which both are illustrated by numerical cases and compared in characteristics and application. The design of these two models is expected to eliminate or alleviate the congestion situation occurring in the logistics system, thus effectively enhancing its adaptability in the national economic mobilization process.

  6. Cellular automaton model with dynamical 2D speed-gap relation reproduces empirical and experimental features of traffic flow

    Tian, Junfang; Ma, Shoufeng; Zhu, Chenqiang; Jiang, Rui; Ding, YaoXian

    2015-01-01

    This paper proposes an improved cellular automaton traffic flow model based on the brake light model, which takes into account that the desired time gap of vehicles is remarkably larger than one second. Although the hypothetical steady state of vehicles in the deterministic limit corresponds to a unique relationship between speeds and gaps in the proposed model, the traffic states of vehicles dynamically span a two-dimensional region in the plane of speed versus gap, due to the various randomizations. It is shown that the model is able to well reproduce (i) the free flow, synchronized flow, jam as well as the transitions among the three phases; (ii) the evolution features of disturbances and the spatiotemporal patterns in a car-following platoon; (iii) the empirical time series of traffic speed obtained from NGSIM data. Therefore, we argue that a model can potentially reproduce the empirical and experimental features of traffic flow, provided that the traffic states are able to dynamically span a 2D speed-gap...

  7. An adaptive finite element strategy for complex flow problems

    Oden, J. T.; Strouboulis, T.; Devloo, PH.; Spradley, L. W.; Price, J.

    1987-01-01

    Adaptive finite element methods for steady and unsteady flow problems in two-dimensional domains are described. Details of a data management scheme are given that provide for the rapid implementation of various CFD algorithms on changing unstructured meshes. The results of several numerical experiments on subsonic and supersonic flow problems are discussed.

  8. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun;

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...

  9. Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling

    Rios, Joseph Lucio; Ross, Kevin

    2009-01-01

    Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.

  10. Mixed traffic flow model considering illegal lane-changing behavior: Simulations in the framework of Kerner’s three-phase theory

    Hu, Xiaojian; Wang, Wei; Yang, Haifei

    2012-11-01

    This paper studies the mixed motorized vehicle (m-vehicle) and non-motorized vehicle (nm-vehicle) traffic flow in the m-vehicle lane. We study the formation mechanism of the nm-vehicle illegal lane-changing behavior (NILB) by considering the overtaking motivation and the traffic safety awareness. In the framework of Kerner’s three-phase theory, we propose a model for the mixed traffic flow by introducing a new set of rules. A series of simulations are carried out in order to reveal the formation, travel process and influence of the mixed traffic flow. The simulation results show that the proposed model can be used to study not only the travel characteristic of the mixed traffic flow, but also some complex traffic problems such as traffic breakdown, moving synchronized flow pattern (MSP) and moving jam. Moreover, the results illustrate that the proposed model reflects the phenomenon of the mixed flow and the influence of the MSP caused by the NILB, which is consistent with the actual traffic system, and thus this work is helpful for the management of the mixed traffic flow.

  11. The effect of stochastic acceleration and delay probability on the velocity and the gap between vehicles in traffic flow

    Sheng Peng; Zhao Shu-Long; Wang Jun-Feng; Tang Peng; Gao Lin

    2009-01-01

    This paper proposes a new combined cellular automaton (CA) model considering the driver behavior of stochastic acceleration and delay with the velocity of the preceding vehicle and the gap between the successive vehicles based on the WWH model and the noise-first NaSch model.It introduces the delay probability varying with the gap,adds the anticipation headway and increases the acceleration with a certain probability.Through these simulations,not only can the metastable state and start-stop wave be obtained but also the synchronized flow which the wide moving jam results in.Moreover,the effect of stochastic acceleration and delay on traffic flow is discussed by analyzing the correlation of traffic data.This indicates that synchronized flow easily emerges in the critical area between free flow and synchronized flow when acceleration and delay are synchronized or their probability is close to 0.5.

  12. Effect of Driver Behavior on Spatiotemporal Congested Traffic Patterns at Highway Bottlenecks in the Framework of Three-Phase Traffic Theory

    Kerner, Boris S.

    2010-01-01

    We present results of numerical simulations of the effect of driver behavior on spatiotemporal congested traffic patterns that result from traffic breakdown at an on-ramp bottleneck. The simulations are made with the Kerner-Klenov stochastic traffic flow model in the framework of three-phase traffic theory. Different diagrams of congested patterns at the bottleneck associated with different driver behavioral characteristics are found and compared each other. An adaptive cruise control (ACC) i...

  13. Random walk theory of jamming in a cellular automaton model for traffic flow

    Barlovic, Robert; Schadschneider, Andreas; Schreckenberg, Michael

    2001-05-01

    The jamming behavior of a single lane traffic model based on a cellular automaton approach is studied. Our investigations concentrate on the so-called VDR model which is a simple generalization of the well-known Nagel-Schreckenberg model. In the VDR model one finds a separation between a free flow phase and jammed vehicles. This phase separation allows to use random walk like arguments to predict the resolving probabilities and lifetimes of jam clusters or disturbances. These predictions are in good agreement with the results of computer simulations and even become exact for a special case of the model. Our findings allow a deeper insight into the dynamics of wide jams occuring in the model.

  14. STUDY OF CAR TRAFFIC FLOW STRUCTURE ON ARRIVAL AND DEPARTURE AT THE MARSHALLING YARD X

    G. I. Nesterenko

    2016-02-01

    Full Text Available Purpose. The paper is aimed to analyse the existing car traffic organization at the marshalling yard aimed to reduce downtime of cars. Methodology. The methods of mathematical statistics allowed building the histogram of car traffic flow distribution at the marshalling yard and assessment of their parameters. The key quantitative and qualitative indicators of the station operation were analyzed. In order to analyze the effect of rehandling volume on the rehandled transit car downtime elements at the station we plotted the dependence graph of the car downtime elements on the rehandling volume. The curve variation on the graph clearly shows the effect of rehandling volume on two downtime elements: during formation and in expectation of operations. Findings. The question of reducing the average downtime of all car categories at the station should be solved by reducing unproductive downtime was proved. The correct determination of the average time spent by a rehandled transit car at the station is essential, especially in the conditions of new system of economic incentives. But still there is no separate methodology for determining the car downtime, which would allow to objectively consider the equipment and operation technology and exclude the possibility for subjective decisions. Originality. One of the main kinds of unproductive downtime during the carriage of goods by rail is a downtime on the marshalling yards in expectation of technological operations because of the system congestion. Reduction of this indicator is possible due to rational use of the marshalling yard capacity provided the rational distribution and car – and train flows between the major marshalling yards of Ukrzaliznytsia. Practical value. The analysis of changes in downtime elements, depending on the rehandling volume allows not only to identify the car downtime reduction methods, but also to make a correct assessment of station staff work, as well as to adjust the rate of

  15. An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network.

    Ullah, Sana; Kwak, Kyung Sup

    2012-06-01

    Wireless Body Area Network (WBAN) consists of low-power, miniaturized, and autonomous wireless sensor nodes that enable physicians to remotely monitor vital signs of patients and provide real-time feedback with medical diagnosis and consultations. It is the most reliable and cheaper way to take care of patients suffering from chronic diseases such as asthma, diabetes and cardiovascular diseases. Some of the most important attributes of WBAN is low-power consumption and delay. This can be achieved by introducing flexible duty cycling techniques on the energy constraint sensor nodes. Stated otherwise, low duty cycle nodes should not receive frequent synchronization and control packets if they have no data to send/receive. In this paper, we introduce a Traffic-adaptive MAC protocol (TaMAC) by taking into account the traffic information of the sensor nodes. The protocol dynamically adjusts the duty cycle of the sensor nodes according to their traffic-patterns, thus solving the idle listening and overhearing problems. The traffic-patterns of all sensor nodes are organized and maintained by the coordinator. The TaMAC protocol is supported by a wakeup radio that is used to accommodate emergency and on-demand events in a reliable manner. The wakeup radio uses a separate control channel along with the data channel and therefore it has considerably low power consumption requirements. Analytical expressions are derived to analyze and compare the performance of the TaMAC protocol with the well-known beacon-enabled IEEE 802.15.4 MAC, WiseMAC, and SMAC protocols. The analytical derivations are further validated by simulation results. It is shown that the TaMAC protocol outperforms all other protocols in terms of power consumption and delay. PMID:20703634

  16. Adaptive LES Methodology for Turbulent Flow Simulations

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic

  17. A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination

    Xiaoke Zhou

    2014-01-01

    Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  18. A Sarsa(λ)-based control model for real-time traffic light coordination.

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183

  19. Adaptive Traffic Route Control in QoS Provisioning for Cognitive Radio Technology with Heterogeneous Wireless Systems

    Yamamoto, Toshiaki; Ueda, Tetsuro; Obana, Sadao

    As one of the dynamic spectrum access technologies, “cognitive radio technology,” which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.

  20. Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method

    Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph

    2008-11-01

    This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.

  1. MOSAIIC : City-Level Agent-Based Traffic Simulation Adapted to Emergency Situations

    Czura, Guillaume; Taillandier, Patrick; Tranouez, Pierrick; Daudé, Éric

    2015-01-01

    International audience In this paper, we present MOSAIIC, an agent-based model to simulate the road traffic of a city in the context of a catastrophic event. Whether natural (cyclone, earthquake, flood) or human (industrial accident) in origin, catastrophic situations modify both infrastructures (buildings, road networks) and human behaviors, which can have a huge impact on human safety. Because the heterogeneities of human behaviors, of land- uses and of network topology have a great impa...

  2. Adaptive Finite Element Methods for Computing Nonstationary Incompressible Flows

    Schmich, Michael

    2009-01-01

    Subject of this work is the development of numerical methods for efficiently solving nonstationary incompressible flow problems. In contrast to stationary flow problems, here errors due to discretization in time and space occur. Furthermore, especially three-dimensional simulations lead to huge computational costs. Thus, adaptive discretization methods have to be used in order to reduce the computational costs while still maintaining a certain accuracy. The main focus of this thesis is the de...

  3. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  4. Efficient Foreground Extraction Based on Optical Flow and SMED for Road Traffic Analysis

    K SuganyaDevi

    2015-05-01

    Full Text Available Foreground detection is a key procedure in video analysis such as object detection and tracking. Several foreground detection techniques and edge detectors have been developed until now but the problem is, usually it is difficult to obtain an optimal foreground due to weather, light, shadow and clutter interference. Background subtract is a common method in foreground detection. In background subtract noise appears at fixed place, when it is used to deal with long image sequence there may be much accumulate error in the foreground. In OF (Optical Flow noise appears randomly and this covers long distance over long period of time. Optical flow cannot get rid of the light influences which result in background noises. To overcome this SMED (Separable Morphological Edge Detector is used. SMED has robustness to light changing and even slight movement in the video sequence. This paper proposes a new foreground detection approach called OF and SMED which is more accurate in foreground detection and elimination of noises is very high. This approach is useful for efficient crowd and traffic monitoring, user friendly, highly automatic intelligent, computationally efficient system.

  5. An Extended Cellular Automaton Model for Train Traffic Flow on the Dedicated Passenger Lines

    Wenbo Zhao

    2014-01-01

    Full Text Available As one of the key components for the railway transportation system, the Train Operation Diagram can be greatly influenced by many extrinsic and intrinsic factors. Therefore, the railway train flow has shown the strong nonlinear characteristics, which makes it quite difficult to take further relative studies. Fortunately, the cellular automaton model has its own advantages in solving nonlinear problems and traffic flow simulation. Considering the mixed features of multispeed running trains on the passenger dedicated lines, this paper presents a new train model under the moving block system with different types of trains running with the cellular automaton idea. By analyzing such key factors as the maintenance skylight, the proportion of the multispeed running trains, and the distance between adjacent stations and departure intervals, the corresponding running rules for the cellular automaton model are reestablished herewith. By means of this CA model, the program of train running system is designed to analyze the potential impact on railway carrying capacity by various factors; the model can also be implemented to simulate the actual train running process and to draw the train operation diagram by computers. Basically the theory can be applied to organize the train operation on the dedicated passenger lines.

  6. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  7. PULSE INTENSITY CENTERING FOR ADAPTIVE ADJUSTMENT OF PHASE SHIFTER COORDINATION

    V. Shuts

    2014-10-01

    Full Text Available The existing methods for traffic flow control at a main road have a number of disadvantages. Flow control optimization with the help of adaptive regulation presupposes setting-up of transport detectors. The paper proposes an adaptive method on the basis on a phase adjustment of traffic lights on main street.

  8. Simulation research of serf-adaptive traffic control system based on independent intersection%基于独立交叉口的自适应交通控制系统仿真研究

    刘童; 武天浩

    2012-01-01

    To achieve the optimal allocation of urban road resources,a simulation research of self-adaptive traffic control system based on independent intersections in the LabVIEW software platform has been carried out.This system controls run and stop of the vehicle by its traffic lights ,makes self-adaptive changes according to current traffic flow and saturation rate of various roads,adjusts the running cycle of traffic lights,and corrects green light ratios of all directions,improves the efficiency of the intersection in unit time.Test results show that,this simulation system runs stability,achieves the design requirement of the simulation research,can provide theoretical references to urban traffic monitoring and controlling and decision bases to urban transport organization and management.%为实现城市道路资源优化配置,在LabVIEW软件平台上对基于独立交叉口的自适应交通控制系统进行了仿真研究。该系统以交通信号灯对车辆的行与停进行管制,同时根据各路段实时车流量与道路饱和率进行自适应变化,调整交通信号灯的运行周期,并修正各交通方向上绿信比,以提高交叉口单位时间通车率。测试结果表明,该仿真系统运行稳定,满足仿真研究的设计需求,可以为城市交通监测控制提供理论参考和城市交通组织管理提供决策依据。

  9. Adaptive Multi-Lag for Synthetic Aperture Vector Flow Imaging

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    ulti- lag method, which is performed in synthetic aperture vector flow data. Measurements are made on laminar and pulsatile, transverse flow profiles. A 7 MHz linear array is connected to t he SARUS research, and acquisitions are made on a vessel phanto m with recirculating blood mimicking fluid driven...... by a softwar e controlled pump. A multi-lag velocity estimation is perfor med, and a lag is adaptively selected for every estimation point. Results from the constant flow compared to a true parabolic profile sho w an improvement in relative bias from 76.99% to 0.91% and standard deviation from 13...

  10. A simulation-based approach to assess impacts of urban logistics policies on traffic flow dynamics

    CHIABAUT, Nicolas; Faure, Lucile; BURLAT, Patrick

    2014-01-01

    In urban environments, there are now many challenging problems concerning freight transport.As cities around the world grow rapidly, there is an increase in pickup-delivery truck traffic inurban areas. It turns out that commercial traffic is now a major source of externalities in metroareas, including congestion, noise, air pollution (small particulates, NOx, greenhouse gasemissions), and traffic incidents [1].To overcome these issues, many interesting and innovative strategies have been deve...

  11. Comment on: Microscopic modeling of multi-lane highway traffic flow, Nathan O. Hodas and Arnand Jagota, Am. J. Phys. 71 (12) 2003, pp. 1247

    Risch, M.

    2006-01-01

    In heavy traffic with congested roadway the maximum traffic flow also depends on length of cars. This is deduced in a simple derivation suited for classroom demonstration as well as homework. The resulting equation demonstrates a new relation to an apparently unrelated area of physics, the maximum ship velocity (hull speed) and explains why traffic is sometimes faster on the slow lane on a congested multi-lane road.

  12. The First Component of the Adaptive Optics Facility Enters Operations: The Laser Traffic Control System on Paranal

    Amico, P.; Santos, P.; Summers, D.; Duhoux, Ph.; Arsenault, R.; Bierwirth, Th.; Kuntschner, H.; Madec, P.-Y.; Prümm, M.; Rejkuba, M.

    2015-12-01

    The Laser Traffic Control System (LTCS) entered routine operations on 1 October 2015 at the Paranal Observatory as the first component of the Adaptive Optics Facility (AOF). LTCS allows the night operators to plan and execute the observations without having to worry about possible collisions between the AOF's powerful laser beams and other telescopes with laser-sensitive instruments. LTCS provides observers with real-time information about ongoing collisions, predictive information for possible collisions and priority resolution between telescope pairs, where at least one telescope is operating a laser. LTCS is now deployed and embedded in the observatory's operational environment, supporting high configurability of telescopes and instruments, right-of-way priority rules and interfacing with ESO's observing tools for Service and Visitor Mode observations.

  13. Swarming of vehicles in order to enhance the quality of the traffic flow on manoeuvre level

    Lieburg, A. van; Koningsbruggen, P.H. van

    2005-01-01

    Too often traffic jams occur due to a sudden and momentary exceed of the road capacity by the traffic intensity. Moments that will occur more often with an ever growing number of vehicles on the roads. What if we can enhance the group behaviour on the road in order to prevent or postpone such crysta

  14. EVALUATION OF INCOMING TRAFFIC FLOWS STABILITY IN SIGNAL CONTROL INTELLECTUAL TECHNOLOGIES

    Yeresov, V.; Didkovskaya, L.

    2009-01-01

    A problem of using intellectual technologies for traffic regulation through estimation of incoming traffic parameters have been considered. The parameters include the level of cycle phases saturation (xi), the coefficient of intrahour irregularity (fs), the coefficient of variation (ІN), and the criterion of stability (αgop).

  15. Research on Public Traffic Vehicles Dispatch Based on Improved Adaptive Genetic Algorithm

    2010-01-01

    <正>Bus dispatching has been studied,and also the bus dispatching model is set up.Then,Genetic Algorithm is adaptively improved in order to avoid premature problem and the slow convergence,and then the keeping optimal strategy is used to the Genetic Algorithm,so formed the Improved Adaptive Genetic Algorithm,namely IAGA. Finally,the IAGA is used to optimizing the bus dispatching model,and the results of the simulation indicate IAGA has the higher efficiency than simple GA and is one effective way to optimizing the bus dispatching.

  16. Do We Really Need to Calibrate All the Parameters? Variance-Based Sensitivity Analysis to Simplify Microscopic Traffic Flow Models

    PUNZO VINCENZO; MONTANINO, Marcello; CIUFFO BIAGIO

    2014-01-01

    Automated calibration of microscopic traffic flow models is all but simple for a number of reasons, including the computational complexity of black-box optimization and the asymmetric importance of parameters in influencing model performances. The main objective of this paper is therefore to provide a robust methodology to simplify car-following models, that is, to reduce the number of parameters (to calibrate) without sensibly affecting the capability of reproducing reality. To this aim, var...

  17. DETERMINATION OF PASSENGER-TRAFFIC FLOWS IN REGIONAL TRANSPORT SYSTEM ON THE BASIS OF MODIFIED GRAVITY MODELS

    E. A. Nurminskiy

    2015-10-01

    Full Text Available The paper considers a transportation system of  one poorly developed region of the Eastern Siberia where it is planned to make investments for improvement of the corresponding infrastructure. The efficient investment disbursement presupposes study of the existing demand for transport services in the field of passenger traffic.  Results of the observations can be used for development planning of a road network and a bus service system.Due to lack of direct data on the existing demand efforts have been made to obtain its model description while using modified gravity models that make it possible to estimate  volumes of population transportation which is carried out between residential areas by public transport buses and private vehicles. The given models have permitted to make analysis of more than 5000 populated locality pairs for 86 residential areas where the population constitutes more than 80 % and its passenger flow formation component in equal to 60%. Traffic flows between these settlement pairs have been estimated with the help of gravity models with various attraction functions and Arrowsmith method for provision of transportation balances. The most adequate results have been obtained while using an exponential attraction function for individual vehicles and a power attraction function  for passenger route auto transport. Such approach is consistent with the preference of the route auto transport in case of long-distance transport service. A tree-like structure of the existing traffic system has given the possibility to avoid consideration of  alternative routes in case of passenger transportation and directly calculate transport flows for certain road sections. Comparative analysis of the transport flows using the proposed methodology and the existing partial data of the executed observations reveals  satisfactory coincidence of empirical data for the main part of the traffic system. The obtained results demonstrate an efficiency

  18. Heavy vehicle traffic is related to wheeze among schoolchildren: a population-based study in an area with low traffic flows

    Hedman Linnea; Forsberg Bertil; Modig Lars; Andersson Martin; Rönmark Eva

    2011-01-01

    Abstract Background An association between traffic air pollution and respiratory symptoms among children has been reported. However, the effects of traffic air pollution on asthma and wheeze have been very sparsely studied in areas with low traffic intensity in cold climate with poor dispersion. We evaluated the impact of vehicle traffic on childhood asthma and wheeze by objective exposure assessment. Methods As a part of the Obstructive Lung Disease in Northern Sweden (OLIN) studies, a quest...

  19. Robust vehicle detection even in poor visibility conditions using infrared thermal images and its application to road traffic flow monitoring

    We propose an algorithm for detecting vehicle positions and their movements by using thermal images obtained through an infrared thermography camera. The infrared thermography camera offers high contrast images even in poor visibility conditions like snow and thick fog. The proposed algorithm specifies the area of moving vehicles based on the standard deviations of pixel values along the time direction of spatio-temporal images. It also specifies vehicle positions by applying the pattern recognition algorithm which uses Haar-like features per frame of the images. Moreover, to increase the accuracy of vehicle detection, correction procedures for misrecognition of vehicles are employed. The results of our experiments at three different temperatures show that the information about both vehicle positions and their movements can be obtained by combining those two kinds of detection, and the vehicle detection accuracy is 96.2%. Moreover, the proposed algorithm detects the vehicles robustly in the 222 continuous frames taken in poor visibility conditions like snow and thick fog. As an application of the algorithm, we also propose a method for estimating traffic flow conditions based on the results obtained by the algorithm. By using the method for estimating traffic flow conditions, automatic traffic flow monitoring can be achieved

  20. Flexible parylene actuator for micro adaptive flow control

    Pornsin-Sirirak, T. N.; Tai, Y. C.; Nassef, H.; Ho, C M

    2001-01-01

    This paper describes the first flexible parylene electrostatic actuator valves intended for micro adaptive flow control for the future use on the wings of micro-air-vehicle (MAV). The actuator diaphragm is made of two layers of parylene membranes with offset vent holes. Without electrostatic actuation, air can move freely from one side of the skin to the other side through the vent holes. With actuation, these vent holes are sealed and the airflow is controlled. The membrane behaves as a comp...

  1. Adaptive computational methods for SSME internal flow analysis

    Oden, J. T.

    1986-01-01

    Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.

  2. Backpressure-Based Packet-By-Packet Adaptive Routing For Traffic Management in Communication Networks

    P. Swetha,

    2014-06-01

    Full Text Available Back pressure-based adaptive routing algorithms where each packet is routed along a possibly different pathhave been extensively studied in the literature. However, suchalgorithms typically result in poor delay performance and involvehigh implementation complexity. In this paper, we develop anew adaptive routing algorithm built upon the widely-studiedback-pressure algorithm. We decouple the routing and schedulingcomponents of the algorithm by designing a probabilistic routingtable which is used to route packets to per-destination queues.The scheduling decisions in the case of wireless networks aremade using counters called shadow queues. The results arealso extended to the case of networks which employ simpleforms of network coding. In that case, our algorithm provides alow-complexity solution to optimally exploit the routing-codingtrade-off.

  3. Traffic-Adaptive and Link-Quality-Aware Communication in Wireless Sensor Networks

    Hurni, Philipp

    2013-01-01

    This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized...

  4. GODUNOV discretization of a two-flow macroscopic model for mixed traffic with distinguished speeds and lengths

    CHANUT,S; Buisson, C.

    2003-01-01

    This paper introduces a new first-order traffic flow model which takes into account the fact that various vehicles use the roads simultaneously, particularly cars and trucks. The main improvement this model has to offer is that vehicles are differentiated not only by their lengths but also by their speeds in free-flow regime. In deed trucks in European roads are characterized by a lower speed than cars. A system of hyperbolic conservation equations is defined. In this system the flux function...

  5. Modeling Traffic Flow and Management at Un-signalized, Signalized and Roundabout Road Intersections

    R. Kakooza; L. S.  Laboobi; J. Y.T.  Mugisha

    2005-01-01

    Traffic congestion continues to hinder economic and social development and also has a negative impact on the environment. A simple mathematical model is used to analyze the different types of road intersections in terms of their Performance in relation to managing traffic congestion and to establish the condition for stability of the road intersections after sufficiently longer periods of time (steady-state). In the analysis, single and double lane un-signalized, signalized and roundabout int...

  6. Prediction feedback in intelligent traffic systems

    Chuan-Fei, Dong; Guan-Wen, Wang; Xiao-Yan, Sun; Bing-Hong, Wang

    2009-01-01

    The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this paper, we studied dynamics of traffic flow with real-time information provided and the influence of a feedback strategy named prediction feedback strategy is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  7. A State-of-the-Art Review of the Sensor Location, Flow Observability, Estimation, and Prediction Problems in Traffic Networks

    Enrique Castillo

    2015-01-01

    Full Text Available A state-of-the-art review of flow observability, estimation, and prediction problems in traffic networks is performed. Since mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of these problems and consider them as different optimization problems whose data, variables, constraints, and objective functions are the main elements that characterize the problems proposed by different authors. For example, counted, scanned or “a priori” data are the most common data sources; conservation laws, flow nonnegativity, link capacity, flow definition, observation, flow propagation, and specific model requirements form the most common constraints; and least squares, likelihood, possible relative error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. The high number of possible combinations of these elements justifies the existence of a wide collection of methods for analyzing static and dynamic situations.

  8. Modeling Traffic Flow and Management at Un-signalized, Signalized and Roundabout Road Intersections

    R. Kakooza

    2005-01-01

    Full Text Available Traffic congestion continues to hinder economic and social development and also has a negative impact on the environment. A simple mathematical model is used to analyze the different types of road intersections in terms of their Performance in relation to managing traffic congestion and to establish the condition for stability of the road intersections after sufficiently longer periods of time (steady-state. In the analysis, single and double lane un-signalized, signalized and roundabout intersections are evaluated on the basis of their performance (expected number of vehicles and waiting time. Experimental scenarios are carefully designed to analyze the performance of the different types of intersections. It is noted that under light traffic, roundabout intersections perform better than un-signalized and signalized in terms of easing congestion. However under heavy traffic, signalized intersection perform better in terms of easing traffic congestion compared to un-signalized and roundabout intersections. It is further noted that for stability of a road intersection, the proportion of the time a road link stopping at an intersection is delayed should not exceed the utilization factor (the ratio of the arrival rate of vehicles to the product of number of service channels and service rate.

  9. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  10. Adaptive Flow Management in Regulated Rivers: Successes and Challenges (Invited)

    Robinson, C. T.; Melis, T. S.; Kennedy, T.; Korman, J.; Ortlepp, J.

    2013-12-01

    Experimental high flows are becoming common management actions in rivers affected by large dams. When implemented under clear objectives and goals, experimental flows provide opportunities for long-term ecological successes but also impose various ecological challenges as systems shift under environmental change or from human-related actions. We present case studies from long-term adaptive flow management programs on the River Spöl, Switzerland and the Colorado River, USA, both of which are regulated by high dams and flow through National Parks. The management goals in each system differ thus reflecting the different high flow practices implemented over time. Regulated flows in the Spöl reflect a compromise between hydropower needs and ecology (native brown trout fishery), whereas Glen Canyon Dam flows have mainly been directed towards maintenance of river beaches in Grand Canyon National Park with co-management of both nonnative rainbow trout in the tailwater immediately below the dam and downstream endangered native fish of Grand Canyon also an objective. Some 24 experimental floods have occurred on the Spöl over the last 13 years, resulting in a positive effect on the trout fishery and a zoobenthic assemblage having a more typical alpine stream composition. The system has experienced various shifts in assemblage composition over time with the last shift occurring 7 years after the initial floods. A major challenge occurred in spring 2013 with an accidental release of fine sediments from the reservoir behind Punt dal Gall Dam, causing high fish mortality and smothering of the river bottom. Results showed that the effect was pronounced near the dam and gradually lessened downriver to the lower reservoir. Zoobenthic assemblages displayed relatively high resistance to the event and some fish found refugia in the lower reservoir and larger side tributaries, thus projecting a faster recovery than initially thought. Below Glen Canyon dam, benefits to sandbars have

  11. A control method applied to mixed traffic flow for the coupled-map car-following model

    In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems

  12. Distributed learning and multi-objectivity in traffic light control

    Brys, Tim; Pham, Tong T.; Taylor, Matthew E.

    2014-01-01

    Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create enormous economic losses each year. Delays at traffic lights alone account for roughly 10% of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning (RL) approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Distributed constraint optimisation approaches (DCOP) have also been shown to be successful, but are limited to cases where the traffic flows are known. The distributed coordination of exploration and exploitation (DCEE) framework was recently proposed to introduce learning in the DCOP framework. In this paper, we present a study of DCEE and RL techniques in a complex simulator, illustrating the particular advantages of each, comparing them against standard isolated traffic actuated signals. We analyse how learning and coordination behave under different traffic conditions, and discuss the multi-objective nature of the problem. Finally we evaluate several alternative reward signals in the best performing approach, some of these taking advantage of the correlation between the problem-inherent objectives to improve performance.

  13. Goal-oriented model adaptivity for viscous incompressible flows

    van Opstal, T. M.

    2015-04-04

    © 2015, Springer-Verlag Berlin Heidelberg. In van Opstal et al. (Comput Mech 50:779–788, 2012) airbag inflation simulations were performed where the flow was approximated by Stokes flow. Inside the intricately folded initial geometry the Stokes assumption is argued to hold. This linearity assumption leads to a boundary-integral representation, the key to bypassing mesh generation and remeshing. It therefore enables very large displacements with near-contact. However, such a coarse assumption cannot hold throughout the domain, where it breaks down one needs to revert to the original model. The present work formalizes this idea. A model adaptive approach is proposed, in which the coarse model (a Stokes boundary-integral equation) is locally replaced by the original high-fidelity model (Navier–Stokes) based on a-posteriori estimates of the error in a quantity of interest. This adaptive modeling framework aims at taking away the burden and heuristics of manually partitioning the domain while providing new insight into the physics. We elucidate how challenges pertaining to model disparity can be addressed. Essentially, the solution in the interior of the coarse model domain is reconstructed as a post-processing step. We furthermore present a two-dimensional numerical experiments to show that the error estimator is reliable.

  14. 基于SVM短时交通流量预测%Short-term Traffic Flow Prediction Based on SVM

    蒋晓峰; 许伦辉; 朱悦

    2012-01-01

    Traffic flow prediction is a very important area in intelligent transportation systems. Traditional prediction methods have a very wide range of applications in the traffic prediction. But traditional prediction methods does not work very well in short-term traffic flow prediction because of the complexity of the influencing factors. With the development of machine learning and data mining,traffic flow prediction with a combination of machine learning and data mining has become more and more important as a research area. In this paper,SVM (Support Vector Machine) is used to build a short-term traffic flow prediction model,and Genetic Algorithm (GA) is used to optimize the SVM penalty factor C and kernel parameter a as well. The results of different kernel functions of SVM are compared,including polynomial kernel and RBF kernel. RBF SVM plays better than polynomial SVM with less training time and higher accuracy and SVM is very suitable for short-term traffic flow prediction.%交通流量预测是智能交通系统中非常重要的研究领域,传统的预测方法在交通流量预测中有着非常广泛的应用.但是,在短时交通流量预测中,由于其影响因素错综复杂,传统的预测方法对于短时交通流量不能很好地进行预测.随着机器学习和数据挖掘各种理论的不断提出及完善,机器学习和数据挖掘与交通流量预测的结合是智能交通系统未来发展的一个重要方向.本文利用SVM (support vector machine)构建了短时交通流量预测模型,并利用遗传算法(genetic algorithm)对SVM的惩罚参数C和核参数σ进行优化,同时比较SVM中不同核函数,包括多项式核函数(polynomial kernel)和径向基核函数(RBF kernel)的预测效果.径向基SVM (RBF SVM)训练时间要比多项式SVM (polynomial SVM)短,预测准确率和精度也要比多项式SVM要好.从仿真结果上看,SVM非常适合应用于短时交通流量预测,能够取得很好的预测效果与精度.

  15. Turning Traffic Jams to Jelly

    LI LI

    2010-01-01

    @@ Beijing, known for having the worst traffic in China, is brewing up a traffic plan with the harshest ever measures to ensure smooth traffic flow as the capital's gridlock during rush hour and private car sales soar. On December 13, the Beijing Municipal Government started soliciting public opinions for a draft plan designed to relieve the city's traffic problems.

  16. Time, Speeds, Flows and Densities in Static Models of Road Traffic Congestion and Congestion Pricing

    Verhoef, Erik

    1997-01-01

    This paper studies some of the properties and fundamentals of static models of road traffic congestion that have triggered much debate in the literature. The first part of the paper focuses in particular on the difficulties arising with the backward-bending cost curve in the context of 'continuous congestion'. Therelevance of the backward-bending segment of the cost curve for the static analysis of congestion is questioned by demonstrating that 'equilibria' on this segment produce upwards shi...

  17. From car traffic to production flows: a guided tour through solvable stochastic transport processes

    Filliger, Roger; Hongler, Max-Olivier

    2007-01-01

    The purpose of this thesis is to show on explicit examples how various theoretical concepts, ranging from statistical mechanics to stochastic control and from traffic theory to queuing systems, can be transferred to transport processes, encountered in particular in manufacturing systems, with benefic implications for their dynamical understanding, optimization and control. The thesis collects several articles where such implications are exposed [38]-[43]. We start with the observation that ca...

  18. Self——adaptive Control Method for Traffic Signal at Single Intersection Based on Cloud Model Adaptive%基于云模型的单路口交通信号自适应控制方法研究

    刘罗仁; 罗金玲

    2011-01-01

    为了减少车辆通过路口的延误,提出了一种基于云模型的单路口交通信号自适应控制方法;使用云模型作为信号控制的基础模型,利用云模型中的正态云发生器和前件云发生器算法分别对道路交通信息进行处理并产生自适应的控制规则,以实现单路口交通信号的自适应控制;通过仿真实验,结果表明,使用云模型作为控制方法,比较传统控制方式更具智能化,更接近于人脑思维过程的控制方法,这也是将来交通信号控制的发展方向.%In order to reduce traffic delays through the intersection, this paper presents, a single intersection based on cloud model adaptive traffic signal control. Signal control using the cloud model as the basis model, the cloud model in the normal cloud generator and the former pieces of cloud generator algorithms are processed on road traffic information and generates adaptive control rules in order to achieve a single self-intersection traffic signal adaptive control. The simulation experiment results show that the control method using the cloud model as the more traditional control method is more intelligent, more close to the brain control the process of thinking, this is the future direction of development of traffic signal control.

  19. Adaptive discontinuous Galerkin methods for non-linear reactive flows

    Uzunca, Murat

    2016-01-01

    The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

  20. An Adaptive Fair-Distributed Scheduling Algorithm to Guarantee QoS for Both VBR and CBR Video Traffics on IEEE 802.11e WLANs

    Montazeri, Saeid; Fathy, Mahmood; Berangi, Reza

    2008-12-01

    Most of the centralized QoS mechanisms for WLAN MAC layer are only able to guarantee QoS parameters for CBR video traffic effectively. On the other hand, the existing distributed QoS mechanisms are only able to differentiate between various traffic streams without being able to guarantee QoS. This paper addresses these deficiencies by proposing a new distributed QoS scheme that guarantees QoS parameters such as delay and throughput for both CBR and VBR video traffics. The proposed scheme is also fair for all streams and it can adapt to the various conditions of the network. To achieve this, three fields are added to the RTS/CTS frames whose combination with the previously existing duration field of RTS/CTS frames guarantees the periodic fair adaptive access of a station to the channel. The performance of the proposed method has been evaluated with NS-2. The results showed that it outperforms IEEE 802.11e HCCA.

  1. An Adaptive Fair-Distributed Scheduling Algorithm to Guarantee QoS for Both VBR and CBR Video Traffics on IEEE 802.11e WLANs

    Reza Berangi

    2008-07-01

    Full Text Available Most of the centralized QoS mechanisms for WLAN MAC layer are only able to guarantee QoS parameters for CBR video traffic effectively. On the other hand, the existing distributed QoS mechanisms are only able to differentiate between various traffic streams without being able to guarantee QoS. This paper addresses these deficiencies by proposing a new distributed QoS scheme that guarantees QoS parameters such as delay and throughput for both CBR and VBR video traffics. The proposed scheme is also fair for all streams and it can adapt to the various conditions of the network. To achieve this, three fields are added to the RTS/CTS frames whose combination with the previously existing duration field of RTS/CTS frames guarantees the periodic fair adaptive access of a station to the channel. The performance of the proposed method has been evaluated with NS-2. The results showed that it outperforms IEEE 802.11e HCCA.

  2. Exploring dynamic property of traffic flow time series in multi-states based on complex networks: Phase space reconstruction versus visibility graph

    Tang, Jinjun; Liu, Fang; Zhang, Weibin; Zhang, Shen; Wang, Yinhai

    2016-05-01

    A new method based on complex network theory is proposed to analyze traffic flow time series in different states. We use the data collected from loop detectors on freeway to establish traffic flow model and classify the flow into three states based on K-means method. We then introduced two widely used methods to convert time series into networks: phase space reconstruction and visibility graph. Furthermore, in phase space reconstruction, we discuss how to determine delay time constant and embedding dimension and how to select optimal critical threshold in terms of cumulative degree distribution. In the visibility graph, we design a method to construct network from multi-variables time series based on logical OR. Finally, we study and compare the statistic features of the networks converted from original traffic time series in three states based on phase space and visibility by using the degree distribution, network structure, correlation of the cluster coefficient to betweenness and degree-degree correlation.

  3. Adapting a dynamic OD matrix estimation approach for private traffic based on bluetooth data to passenger OD matrices

    Montero Mercadé, Lídia; Barceló Bugeda, Jaime; Codina Sancho, Esteve

    2012-01-01

    The primary data input used in principal traffic models comes from Origin-Destination (OD) trip matrices, which describe the patterns of commuters across the network. In this way, OD matrices become a critical requirement in Advanced Transport Control and Management and/or Information Systems that are supported by Dynamic Traffic Assignment models (DTA models). Dynamic Transit Assignment models are a research topic, but once a dynamic transit assignment be available to practitioners, the prob...

  4. An adaptative finite element method for turbulent flow simulations

    After outlining the space and time discretization methods used in the N3S thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the peripheral version, the Adaptative Mesh, which comprises two separate parts: the error indicator computation and the development of a module subdividing elements usable by the solid dynamics code ASTER and the electromagnetism code TRIFOU also developed by R and DD. The error indicators implemented in N3S are described. They consist of a projection indicator quantifying the space error in laminar or turbulent flow calculations and a Navier-Stokes residue indicator calculated on each element. The method for subdivision of triangles into four sub-triangles and tetrahedra into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is illustrated by examples showing the efficiency of the module. The last concerns the 2 D case of flow behind a backward-facing step. (authors). 9 refs., 5 figs., 1 tab

  5. 考虑驾驶愤怒的元胞自动机交通流模型%Cellular Automaton Model for Urban Traffic Flow Considering Driving Anger

    郑华荣; 吴超仲; 马晓凤

    2013-01-01

    Driving behaviors of the angry drivers are quite different from those of the normal drivers.Because of these behavioral differences,driving speed,driving track etc.can be influenced,resulting in a different state of the road traffic flow.This paper re-defined the typical cellular automaton updating rules in mainly three aspects,i.e.,speed,lane change conditions as well as the safe distance and established the periodic boundary two-lane cellular automata traffic flow model considering the characteristics of angry driving behaviors based on NaSch cellular automaton traffic flow model.Both the model constructed and the classical NaSch traffic flow model were simulated in MATLAB and the comparison show that the variance in speed caused by driving anger had the most significant impact on traffic flow.The research can provide as the guidance on establishing models for cellular automaton traffic flow with consideration of driving anger and studying the influence of it to the urban traffic flow; the influence on traffic flow of other driver concerned factors,e.g.,driving fatigue,driving distraction need further research following this method.%驾驶员在愤怒时的驾驶行为表现与正常驾驶时存在较大的差异,这些行为差异会影响车辆的运行速度、运行轨迹等,进而对道路交通流产生影响.文中在NaSch元胞自动机交通流模型的基础上,考虑愤怒驾驶行为的特点,从运行速度、换道条件和安全距离3个方面重新确定元胞更新规则,构建考虑驾驶愤怒情绪的周期边界条件下双车道元胞自动机交通流模型.在MATLAB环境下,对所建模型与普通NaSch交通流模型进行对比仿真分析.结果表明,驾驶愤怒所引起的行驶速度变化对交通流影响明显.

  6. About new dynamical interpretations of entropic model of correspondence matrix calculation and Nash-Wardrop's equilibrium in Beckmann's traffic flow distribution model

    Nagapetyan, Tigran

    2011-01-01

    In this work we widespread statistical physics (chemical kinetic stochastic) approach to the investigation of macrosystems, arise in economic, sociology and traffic flow theory. The main line is a definition of equilibrium of macrosystem as most probable macrostate of invariant measure of Markov dynamic (corresponds to the macrosystem). We demonstrate new dynamical interpretations for the well known static model of correspondence matrix calculation. Based on this model we propose a best response dynamics for the Beckmann's traffic flow distribution model. We prove that this "natural" dynamic under quite general conditions converges to the Nash-Wardrop's equilibrium. After that we consider two interesting demonstration examples.

  7. The theoretical analysis of the lattice hydrodynamic models for traffic flow theory

    Ge, H. X.; Cheng, R. J.; Lei, L.

    2010-07-01

    The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but also connected with the microscopic car following model closely. The modified Korteweg-de Vries (mKdV) equation related to the density wave in a congested traffic region has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail for the car following model. We devote ourselves to obtaining the KdV equation from the original lattice hydrodynamic models and the KdV soliton solution to describe the traffic jam. Especially, we obtain the general soliton solution of the KdV equation and the mKdV equation. We review several lattice hydrodynamic models, which were proposed recently. We compare the modified models and carry out some analysis. Numerical simulations are conducted to demonstrate the nonlinear analysis results.

  8. ACCIDENT PREDICTION METHODOLOGY USING CONFLICT ZONE METHOD FOR “TRANSIT TRANSPORT-PEDESTRIAN” CONFLICT SITUATION AND MODELS OF TRAFFIC FLOWS AT CONTROLLED INTERSECTION

    D. V. Kapsky

    2015-01-01

    Full Text Available Accidents are considered as the most significant cost of road traffic. Therefore any measures for road traffic management should be evaluated according to a minimization  criterion of accident losses. In order to develop a method for evaluation of the accident losses it is necessary to prepare a methodology for cost estimate of road accidents of various severity with due account of their consequences and prediction (economic assessment and severity level of their consequences (quantitative risk assessment. The research has been carried with the purpose to devise appropriate models for accident prediction at a decision-making stage while organizing road traffic in respect of  the “transport-pedestrian” conflict. An interaction of pedestrian and transit road traffic flows  is characterized by rather high risk level. In order to reduce number of road accidents  and  severity of their consequences in the observed conflict, it is necessary to evaluate  proposed solutions, in other words to predict accidents at the stage of object designing and  development of measures.The paper presents its observations on specificity of road traffic and pedestrian flow interactions and analysis of spatial conflict point formation and conflict zone creation in the studied conflict between transport facilities and pedestrians at controlled pedestrian crossings which are located in the area of intersections. Methodology has been developed for accident prediction in accordance with the conflict zone method for various traffic modes at intersections. Dependences of the represented road traffic accidents (according to consequence severity on potential danger of conflicts have been determined for various traffic modes and various conditions of conflict interaction.

  9. Characterizing and distinguishing free and jammed traffic flows from the distribution and correlation of experimental speed data

    Tadaki, Shin-ichi; Kikuchi, Macoto; Nakayama, Akihiro; Shibata, Akihiro; Sugiyama, Yuki; Yukawa, Satoshi

    2016-08-01

    From a physics point of view, the emergence of a traffic jam is considered to be a dynamical phase transition. To verify this, we performed a series of circuit experiments. In previous work, Tadaki et al (2013 New J. Phys 15 103034), we confirmed the occurrence of this phase transition and estimated the critical density between free and jammed flows by analyzing the fundamental diagram. In this paper, we characterize and distinguish free and jammed flows, beyond the analyses of fundamental diagrams, according to the distribution and correlation of experimental speed data. We find that the speed in free flow does not correlate and its distribution has a narrow single peak at the average. The distribution of speed in jammed flow has two peaks or a single broad peak. The two peaks indicate the car speeds inside and outside of jam clusters. The broad single peak appears as a result of the appearance and disappearance of jam clusters. We also find that the formation of jam clusters induces a long correlation in speed. We can identify the size of jam clusters and the relative distance between coexisting jam clusters from this speed correlation.

  10. Network traffic behaviour near phase transition point

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  11. Simulation of Genetic Algorithm: Traffic Light Efficiency

    Lienert, Eric

    2015-01-01

    Traffic is a problem in many urban areas worldwide. Traffic flow is dictated by certain devices such as traffic lights. The traffic lights signal when each lane is able to pass through the intersection. Often, static schedules interfere with ideal traffic flow. The purpose of this project was to find a way to make intersections controlled with traffic lights more efficient. This goal was accomplished through the creation of a genetic algorithm, which enhances an input algorithm through geneti...

  12. Deterministic approach to microscopic three-phase traffic theory

    Kerner, B S; Kerner, Boris S.; Klenov, Sergey L.

    2005-01-01

    A deterministic approach to three-phase traffic theory is presented. Two different deterministic microscopic traffic flow models are introduced. In an acceleration time delay model (ATD-model), different time delays in driver acceleration associated with driver behavior in various local driving situations are explicitly incorporated into the model. Vehicle acceleration depends on local traffic situation, i.e., whether a driver is within the free flow, or synchronized flow, or else wide moving jam traffic phase. In a speed adaptation model (SA-model), driver time delays are simulated as a model effect: Rather than driver acceleration, vehicle speed adaptation occurs with different time delays depending on one of the three traffic phases in which the vehicle is in. It is found that the ATD- and SA-models show spatiotemporal congested traffic patterns that are adequate with empirical results. It is shown that in accordance with empirical results in the ATD- and SA-models the onset of congestion in free flow at a...

  13. Trajectory Based Traffic Analysis

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin;

    2013-01-01

    We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point-and-click a......We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point......-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most of...

  14. 恶劣天气环境下的交通流数值模拟%Numerical Simulation of Traffic Flow in Inclement Weather Condition

    祝会兵

    2014-01-01

    Based on the NaSch model of traffic flow, a modified cellular automaton traffic model is proposed. The model is attempted to reflect the characteristics of discreetness found in vehicle drivers under rain or snow weather condition. In the modeling process, the special driving condition of wet, slippery road and poor visibility are taken into account. The fundamental diagrams of traffic flow are obtained based on the numerical simulation, in which different percentage of discreet drivers is sampled. It is found that the percentile value of discreet drivers has effect on the traffic flow. By presenting the spatial-temporal profiles, the nonlinear properties of traffic flow in the inclement weather condition are analyzed thoroughly. It can be noted that traffic jams occur more frequently in rainy or snowy weather. It is in agreement with the actual traffic characteristics, so the presented model can also partly describe the microscopic characteristics of traffic flow in the inclement environment. The results demonstrate that the driver behavior has significant effect on the occurrence of traffic congestion.%基于 NaSch 模型提出了一个改进的元胞自动机交通流模型,旨在反映雨雪天气时道路湿滑能见度差的情况下司机驾驶车辆更加谨慎的特点。考虑谨慎司机的不同比例,通过数值模拟得到了一组基本图,发现含有不同比例的谨慎司机对交通流产生不同程度的影响。并通过车辆的时空演化图,从微观的角度对恶劣天气时交通流的非线性特性进行了细致的分析,揭示了在雨雪等恶劣环境下更容易出现交通拥堵的机理,与实际交通特征相吻合。因此模型能够部分地反映恶劣天气时交通流的微观特性,同时也证明了司机的驾驶行为对交通拥堵的形成确实具有重要的影响。

  15. Internet Traffic Engineering

    Bonaventure, Olivier; Trimintzios, Panos; Pavlou, George; Quoitin, Bruno; Azcorra, Arturo; Bagnulo, Marcelo; Fegkas, Paris; García-Martínez, Alberto; Georgatsos, Panos; Georgiadis, Leonidas; Jacquenet, Christian; Swinnen, Louis; Tandel, Sebastien; Uhlig, Steve

    2004-01-01

    Traffic engineering encompasses a set of techniques that can be used to control the flow of traffic in data networks. We discuss several of those techniques that have been developed during the last few years. Some techniques are focused on pure IP networks while others have been designed with emerging technologies for scalable Quality of Service (QoS) such as Differentiated Services and MPLS in mind. We first discuss traffic engineering techniques inside a single domain. We show that by using...

  16. Safety-collision transition induced by lane changing in traffic flow

    We study the traffic behavior when a vehicle changes from the first lane to the second lane on a two-lane highway. We apply the optimal velocity model to the vehicular motion. If the incoming vehicle does not decelerate successfully, it crashes into the vehicle ahead. On the other hand, if the headway between the incoming vehicle and the vehicle behind on the second lane is not long sufficiently, the rear vehicle may come into collision with the incoming vehicle. The safety-collision transition occurs by changing the lane. The dynamical transition depends highly on the vehicular speed, the sensitivity, and the headway. We derive the phase diagram (or region map) for the safety-collision transition.

  17. Simulation evaluation of TIMER, a time-based, terminal air traffic, flow-management concept

    Credeur, Leonard; Capron, William R.

    1989-01-01

    A description of a time-based, extended terminal area ATC concept called Traffic Intelligence for the Management of Efficient Runway scheduling (TIMER) and the results of a fast-time evaluation are presented. The TIMER concept is intended to bridge the gap between today's ATC system and a future automated time-based ATC system. The TIMER concept integrates en route metering, fuel-efficient cruise and profile descents, terminal time-based sequencing and spacing together with computer-generated controller aids, to improve delivery precision for fuller use of runway capacity. Simulation results identify and show the effects and interactions of such key variables as horizon of control location, delivery time error at both the metering fix and runway threshold, aircraft separation requirements, delay discounting, wind, aircraft heading and speed errors, and knowledge of final approach speed.

  18. Flow of autonomous traffic on a single multi-lane street

    Polito, Federico

    2007-01-01

    We investigate the behaviour of an original traffic model. The model considers a single multi-lane street, populated by autonomous vehicles directed from either end to the other. Lanes have no intrinsic directionality, and the vehicles are inserted at random at either end and any lane. Collision avoidance is fully automatic and, to enhance the transport capacity of the street, vehicles form_trains_ in which they may travel at high speed quite close to the vehicle in front. We report on the transit times for vehicles under a wide variety of conditions: vehicle insertion probability & imbalance and their maximum speed distribution. We also outline an interesting feature of the model, that the complex interactions of many vehicles are considerably more powerful than a simple "keep left" directive which each vehicle should obey.

  19. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  20. Planning and managing rural recreational traffic flows: why the future can’t be more like the past

    Jaarsma, C.F.; Vries, de, P.M.; Beunen, R.

    2009-01-01

    The increasing popularity of rural tourism can cause traffic related problems at certain areas. Traffic congestion and parking problems are likely to occur as the infrastructure at these countryside destinations is seldom capable of dealing with the growing number of cars. Values which make the sites attractive to visitors can become under pressure and car traffic can also have negative effects on natural values. To prevent for such impacts, recreational traffic management is required. Recrea...

  1. Performance measurements of mixed data acquisition and LAN traffic on a credit-based flow-controlled ATM network

    The high speed network is a key component in networked data acquisition systems. An ATM switch is a candidate for the network system in DAQ (data acquisition system). The authors have studied the DAQ performance of the ATM network at RCNP (Research Center for Nuclear Physics), Osaka University. Data traffic on DAQ system has a very much different traffic pattern from the other network traffic. It may slow down the network performance. The authors have studied the network performance on several traffic patterns

  2. Effect of Driver Behavior on Spatiotemporal Congested Traffic Patterns at Highway Bottlenecks in the Framework of Three-Phase Traffic Theory

    Kerner, Boris S

    2010-01-01

    We present results of numerical simulations of the effect of driver behavior on spatiotemporal congested traffic patterns that result from traffic breakdown at an on-ramp bottleneck. The simulations are made with the Kerner-Klenov stochastic traffic flow model in the framework of three-phase traffic theory. Different diagrams of congested patterns at the bottleneck associated with different driver behavioral characteristics are found and compared each other. An adaptive cruise control (ACC) in the framework of three-phase traffic theory introduced by the author (called a "driver alike ACC" (DA-ACC)) is discussed. The effect of DA-ACC-vehicles on traffic flow, in which without the DA-ACC-vehicles traffic congestion occurs at the bottleneck, is numerically studied. We show that DA-ACC-vehicles improve traffic flow considerably without any reduction in driving comfort. It is found that there is a critical percentage of DA-ACC-vehicles in traffic flow: If the percentage of the DA-ACC-vehicle exceeds the critical ...

  3. The Traffic Light Challenge

    Roman, Harry T.

    2014-01-01

    Traffic lights are an important part of the transportation infrastructure, regulating traffic flow and maintaining safety when crossing busy streets. When they go awry or become nonfunctional, a great deal of havoc and danger can be present. During power outages, the street lights go out all over the affected area. It would be good to be able to…

  4. Simulation of High-Level Way Toll Systemunder the Condition of Mixed Traffic Flow

    2000-01-01

    Parking-toll on main-line is one of toll models on high-level ways in our country at present. This paper analyzes the flow' s distributing function, queuing model, and vehicle passing time. Through computer simulation, the negative index relationships between carrying capacity and serving time, and the index relationships between the queuing delay and flow are gained under the condition of different serving time and different vehicle type composition. When the flow density is low, the vehicle type composing has less influence on system serving level. Contrarily, also. Disposing toll station by roadway where flow density is high, we can save transection areas of toll station, reduce system queuing delay time, and enhance carrying capacity of toll station.

  5. 基于自相似业务流的 AOS 延时累积调度算法%Scheduling algorithm of delay accumulated adaptive polling based on AOS self-similar traffic

    赵运; 冯永新; 刘恒驰; 刘猛

    2015-01-01

    In order to solve performance degradation for advanced orbiting system (AOS)space data system scheduling caused by high burst and heavy tailed nature of self-similar traffic,the existing problems of the AOS virtual channel access (VCA)layer scheduling strategy and the short correlation model of the scheduling algo-rithm are analyzed.A novel scheduling algorithm based on AOS delay accumulated adaptive polling (SDAAP)is proposed.Based on Hurst parameters,urgency,flow rate deviation,and framing time factor,the novel schedu-ling algorithm adaptively change the delay threshold factor to realize multi-service by different operation meth-ods.The SDAAP algorithm optimizes the AOS virtual channel service quality and scheduling performance. With heavy tailed distribution of the ON/OFF traffic model,the experimental results show that,for the AOS self-similar traffic,the SDAAP algorithm executes more well in terms of the overflow rate and average delay than the AOS fixed threshold and the equal time scheduling algorithm.%针对自相似业务流量下的高突发性及重尾性所引起的空间数据系统调度性能下降问题,分析了高级在轨系统(advanced orbiting system,AOS)虚拟信道存取(virtual channel access,VCA)子层调度策略以及现有基于短相关模型调度算法的不足,引入 Hurst 参数、紧迫度、流量离差、成帧时间因子等权值参量,提出一种基于延时累积的自适应轮询调度(scheduling of delay accumulated adaptive polling,SDAAP)算法,通过自适应改变延时阀值因子实现多业务的差异化调度,从而优化 AOS 虚拟信道服务质量及调度性能。采用多信源重尾分布的 ON/OFF 流量分布模型进行仿真验证,实验结果表明,针对自相似业务流,SDAAP 算法在溢出率、平均延迟等方面优于 AOS 固定阀值和等时调度算法。

  6. Simulation study of satisfaction rate in the mixed traffic flow with open boundary conditions

    Bentaleb, Khalid; Lakouari, Noureddine; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2016-08-01

    In this paper, we propose a single-lane cellular automata (CA) traffic model which takes into account the disorder in the length and the maximal speed of the vehicles (i.e. slow and fast) to study the satisfaction rate of the fast vehicles (i.e. the number of vehicles that run with their desired speed) with open boundary conditions in the case of a chain of one entry; where α is the injecting rate of vehicles independent of their nature and β is the extracting rate. The slow vehicles are injected with the conditional probability αs, where 0≤αs=χα≤α and χ is the concentration of the slow vehicles. It is found that for the low value of the injecting rate α and for the high extraction rate β, the satisfaction rate takes higher values. It also depends on the concentration of the slow vehicles injected on the road. Furthermore, we have shown that, in the case when α=β, the satisfaction rate undergoes a transition from the maximal value to the minimal one and it takes a value near to zero in the case of α>β. We have also found that the satisfaction rate depends strongly on the probability of overtaking, also the phase diagrams (α,β) are established for the different values of the slow vehicles concentrations χ.

  7. Analysis of Multi-Flight Common Routes for Traffic Flow Management

    Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai

    2016-01-01

    This paper presents an approach for creating common weather avoidance reroutes for multiple flights and the associated benefits analysis, which is an extension of the single flight advisories generated using the Dynamic Weather Routes (DWR) concept. These multiple flight advisories are implemented in the National Airspace System (NAS) Constraint Evaluation and Notification Tool (NASCENT), a nation-wide simulation environment to generate time- and fuel-saving alternate routes for flights during severe weather events. These single flight advisories are clustered together in the same Center by considering parameters such as a common return capture fix. The clustering helps propose routes called, Multi-Flight Common Routes (MFCR), that avoid weather and other airspace constraints, and save time and fuel. It is expected that these routes would also provide lower workload for traffic managers and controllers since a common route is found for several flights, and presumably the route clearances would be easier and faster. This study was based on 30-days in 2014 and 2015 each, which had most delays attributed to convective weather. The results indicate that many opportunities exist where individual flight routes can be clustered to fly along a common route to save a significant amount of time and fuel, and potentially reducing the amount of coordination needed.

  8. Decentralized Traffic Management Strategies for Sensor-Enabled Cars

    Wang, Ziyuan; Ramamohanarao, Kotagiri

    2009-01-01

    Traffic Congestions and accidents are major concerns in today's transportation systems. This thesis investigates how to optimize traffic flow on highways, in particular for merging situations such as intersections where a ramp leads onto the highway. In our work, cars are equipped with sensors that can detect distance to neighboring cars, and communicate their velocity and acceleration readings with one another. Sensor-enabled cars can locally exchange sensed information about the traffic and adapt their behavior much earlier than regular cars. We propose proactive algorithms for merging different streams of sensor-enabled cars into a single stream. A proactive merging algorithm decouples the decision point from the actual merging point. Sensor-enabled cars allow us to decide where and when a car merges before it arrives at the actual merging point. This leads to a significant improvement in traffic flow as velocities can be adjusted appropriately. We compare proactive merging algorithms against the conventio...

  9. ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION

    Wiroj LIMTRAKARN; Pramote DECHAUMPHAI

    2004-01-01

    An adaptive finite element method for high-speed flow-structure interaction is presented. The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method. The finite element formulation and computational procedure are described. Interactions between the high-speed flow, structural heat transfer, and deformation are studied by two applications of Mach 10 flow over an inclined plate, and Mach 4 flow in a channel.

  10. Exact and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model with bounded acceleration for a class of fundamental diagrams

    Qiu, Shanwen

    2013-09-01

    In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental diagrams. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a constant acceleration otherwise. We first propose a mathematical definition of the solution as a minimization problem. We use this formulation to build a grid-free solution method for this model based on the minimization of component function. We then derive these component functions analytically for triangular fundamental diagrams, which are commonly used to model traffic flow. We also show that the proposed computational method can handle fixed or moving bottlenecks. A toolbox implementation of the resulting algorithm is briefly discussed, and posted at https://dl.dropbox.com/u/1318701/Toolbox.zip. © 2013 Elsevier Ltd.

  11. An Advanced Fuzzy Logic Based Traffic Controller

    Bilal Ahmed Khan; Nai Shyan Lai

    2014-01-01

    Traffic light plays an important role in the urban traffic management. Therefore, it is necessary to improve the traffic controller for effective traffic management and better traffic flow leading to greener environment. In this paper, an advanced and intelligent traffic light controller is proposed, utilising the fuzzy logic technology and image processing technique. A fuzzy logic control has been implemented to provide the attribute of intelligence to the system. For real-time image acquisi...

  12. Multivalued fundamental diagrams of traffic flow in the kinetic Fokker-Planck limit

    Visconti, Giuseppe; Puppo, Gabriella; Tosin, Andrea

    2016-01-01

    Starting from interaction rules based on two levels of stochasticity we study the influence of the microscopic dynamics on the macroscopic properties of vehicular flow. In particular, we study the qualitative structure of the resulting flux-density and speed-density diagrams for different choices of the desired speeds. We are able to recover multivalued diagrams as a result of the existence of a one-parameter family of stationary distributions, whose expression is analytically found by means of a Fokker-Planck approximation of the initial Boltzmann-type model.

  13. Formation and Propagation of Local Traffic Jam

    Hong-sheng Qi; Dian-hai Wang; Peng Chen

    2013-01-01

    Large scale traffic congestion often stems from local traffic jam in single road or intersection. In this paper, macroscopic method was used to explore the formation and propagation of local traffic jam. It is found that (1) the propagation of traffic jam can be seen as the propagation of traffic signal parameters, that is, virtual split and virtual green time; (2) for a road with endogenous flow, entrance location influences the jam propagation. With the same demand (upstream links flow and ...

  14. The Traffic Flow Considering Games between Vehicles%考虑车辆间博弈行为的交通流

    孙晓燕; 汪秉宏

    2012-01-01

    The influences of drivers' game behaviors on two and one dimensional cellular automaton traffic flow models were discussed. When introducing cooperators and defectors, the changing of traffic situation was summarized. Through considering games between drivers and studying the influence of drivers' behaviors on traffic flow, the rules to maximize the flux of traffic system were tried to achieve.%从二维城市道路元胞自动机交通流模型和一维道路元胞自动机模型两个方面介绍车辆间博弈行为对交通流的影响.总结了目前交通流研究中引入合作者和背叛者之后,道路交通状况的改变.通过考虑车辆之间的博弈行为,研究司机驾驶行为对道路上车流量的影响,希望找到能使交通系统车流量达到最大的驾驶行为准则.

  15. Temporal-Spatial Analysis of Traffic Congestion Based on Modified CTM

    Chenglong Chu

    2015-01-01

    Full Text Available A modified cell transmission model (CTM is proposed to depict the temporal-spatial evolution of traffic congestion on urban freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise linear regression models are proposed to describe the relationship of flow and density (occupancy. Several types of cellular connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of Queen Elizabeth, Ontario, Canada, we show that the new model provides a relatively higher accuracy of temporal-spatial evolution of traffic congestions.

  16. Anisotropic optical flow algorithm based on self-adaptive cellular neural network

    Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong

    2013-01-01

    An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.

  17. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  18. Analysis of network traffic flow dynamics based on gravitational field theory

    For further research on the gravity mechanism of the routing protocol in complex networks, we introduce the concept of routing awareness depth, which is represented by ρ. On this basis, we define the calculation formula of the gravity of the transmission route for the packet, and propose a routing strategy based on the gravitational field of the node and the routing awareness depth. In order to characterize the efficiency of the method, we introduce an order parameter, ζ, to measure the throughput of the network by the critical value of phase transition from free flow to congestion, and use the node betweenness centrality, B, to test the transmission efficiency of the network and congestion distribution. We simulate the network transmission performance under different values of the routing awareness depth, ρ. Simulation results show that if the value of the routing awareness depth ρ is too small, then the gravity of the route is composed of the attraction of very few nodes on the route, which cannot improve the capacity of the network effectively. If the value of the routing awareness depth ρ is greater than the network's average distance 〈l〉, then the capacity of the network may be improved greatly and no longer change with the sustainable increment of routing awareness depth ρ, and the routing strategy performance enters into a constant state. Moreover, whatever the value of the routing awareness depth ρ, our algorithm always effectively balances the distribution of the betweenness centrality and realizes equal distribution of the network load

  19. Data adaptive estimation of transversal blood flow velocities

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.; Jensen, Jørgen Arendt

    The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation...

  20. Traffic Signal Using Smart Agent System

    Cheonshik Kim; You S. Hong

    2008-01-01

    In this research, we propose an electro-sensitive traffic light using the smart agent algorithm to reduce traffic congestion and traffic accidents. The multi-agent system approach can provide a new and preferable solution. The proposed method adaptively controls the cycle of traffic signals even though the traffic volume varies. Consequently, we reduce the car waiting time and start-up delay time using fuzzy control of feedback data. In particular, we have designed and implemented a system to...

  1. Adaptive management of river flows in Europe: A transferable framework for implementation

    Summers, M. F.; Holman, I. P.; Grabowski, R. C.

    2015-12-01

    The evidence base for defining flow regimes to support healthy river ecosystems is weak, as there are few studies which quantify the ecological impact associated with different degrees of hydrological alteration. As a result, river flow standards used to manage water abstraction are largely based on expert judgement. Planned adaptive management studies on multiple rivers under the European Water Framework Directive represent an opportunity to learn about ecological flow requirements and improve the quantitative evidence base. However, identifying clear ecological responses to flow alteration can be a significant challenge, because of the complexity of river systems and the other factors which may confound the response. This paper describes the Adaptive River Management (ARM) framework, a flexible framework for implementing adaptive management of river flows that is transferable to other regions of the world. Application of the framework will ensure that the effectiveness of implemented management actions is appraised and that transferable quantitative data are collected that can be used in other geographical regions.

  2. Adaptive kernel methods to simulate quantum phase space flow

    H.López

    2006-01-01

    Full Text Available A technique for simulating quantum dynamics in phase space is discussed. It makes use of ensembles of classical trajectories to approximate the distribution functions and their derivatives by implementing Adaptive Kernel Density Estimation. It is found to improve the accuracy and stability of the simulations compared to more conventional particle methods. Formulation of the method in higher dimensions is straightforward.

  3. Exploiting Witness for Traffic Simulation

    Azhar Ismail

    2014-03-01

    Full Text Available Traffic congestion in urban cities is an increasing problem. Not only does it lead to an increase in pollution, but the time spent waiting in traffic queues wastes valuable time in addition to causing frustration. A system that can control and manage traffic efficiently is one way that this issue can be reduced. A specific road traffic intersection in South Manchester, UK, was selected for investigation as it experiences high levels of traffic flow through it during the evening peak time. This has led to large queues and long waiting times due to the fixed timings of the traffic lights. This paper explores strategies to better control the traffic flow through it. A model of the selected traffic junction has been built using Witness simulation software. Data for this junction has been obtained partially from observations and mostly from traffic surveys enabling a simulation of the traffic flow. Analysing the results allowed two alternative scenarios to be developed and simulated. Results from one of the scenarios showed noticeable reductions in the average queue waiting times at the traffic junction.

  4. Mixed Traffic Flow Capacity of More Major Lanes Unsignalized Intersection%主路多车道无信号交叉口混合交通流的通行能力

    田新现

    2008-01-01

    Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions,road conditions and so on.Highway construction and management is judged by capacity standard.The reasonable scale and time of highway construction,rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume.All over the world,highway capacity is studied to different extent in different country. Based on the gap acceptance theory,the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory.Capacity model of the minor mixed traffic flows crossing m major lanes,on which the traffic flows fix in with M3 distributed headway,on the unsignalized intersection is set up,and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.

  5. A New Traffic Flow Prediction Algorithm for Satellite Communication Network%一种新的卫星通信网流量预测算法*

    秦红祥; 杨飞

    2013-01-01

      在通信网络的设计中,使用基于流量预测的网络规划已成为LTE发展的必然趋势。与地面网络不同,卫星网络由于受资源受限和拓扑时变的不利影响,其流量预测算法必须能兼顾精度和效率,这令传统的地面网络预测方法已不再适用。为了解决以上问题,提出了一种新的基于小波回声状态网络的流量预测算法,该算法通过小波多尺度分解的信号处理方法屏蔽了网络流量的噪声,而后结合了无反馈的回声状态网络联合进行预测。仿真证明,新算法相比传统算法能大幅提升网络流量的预测精度和运行效率,为卫星网络的流量规划提供了强有力的决策支持。%In the design of a communication network,it has become an inevitable trend with LET development to use traffic flow prediction method for network planning. Due to suffer from the constrained resource and change-able topology,the traffic flow prediction algorithm of the satellite networks which is different from terrestrial net-works,should fully take into account the accuracy and efficiency,so the traditional prediction methods for ter-restrial networks are no longer fit for application. In order to resolve this problem,a new traffic flow prediction algorithm based on wavelet and echo state networks is proposed in this paper. The new algorithm uses the signal processing method based on multi-scale decomposition of wavelet to shield the noise of the network traffic,and it combines with the non-feedback echo state network to predict. The simulation results show that the new algorithm can greatly improve the prediction accuracy and running efficiency of network traffic compared with traditional al-gorithms,so it provides a more scientific decision support for satellite communication network traffic planning.

  6. Method and apparatus for adapting steady flow with cyclic thermodynamics

    Swift, Gregory W.; Reid, Robert S.; Ward, William C.

    2000-01-01

    Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.

  7. Adaptive Packet Buffering Algorithm Based on Priority and Traffic Throughput for Reducing Packet Loss in Fast Handover for Mobile IPv6

    Anesa Maolod Omar Al-Najeh

    2012-07-01

    Full Text Available The packet loss has become an important issue to the research community, which needs to be addressed. In FMIPv6, Packet losses are significantly related to the handover latency and buffer size used for packet buffering. In the case of increased handover latency or decreased buffer size, packet losses will be increased. To solve the problem, we propose an adaptive packet buffering (APT algorithm based on priority of packets and traffic throughput in layer 3 (L3 were the packets are buffered by the predefined rule in the new access point during handover. This algorithm is designed to reduce packet loss in FMIPv6 and high level of throughput and low delay can be achieved through the proposed technique. To achieve a fair comparison with Adaptive Buffer Limit Tuning (ALT algorithm, we have implemented the APT algorithm in Omnet++ along with the FMIPv6 to develop the model and the algorithm. The results of the simulation study show that the proposed algorithm can reduce the packet loss as well as the delay.

  8. Preceding Vehicle Detection and Tracking Adaptive to Illumination Variation in Night Traffic Scenes Based on Relevance Analysis

    Junbin Guo

    2014-08-01

    Full Text Available Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation.

  9. Solving Fluid Flow Problems on Moving and Adaptive Overlapping Grids

    Henshaw, W

    2005-07-28

    Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an effective approach for developing efficient and accurate approximations for complex, possibly moving geometry. Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive mesh refinement and preliminary parallel results will also be presented.

  10. Business scenarios for Virtual Traffic Lights

    Rathe, Eirik Auran

    2015-01-01

    Virtual Traffic Lights (VTL) is a novel technology which aims to provide ubiquitous traffic intersection control by removing physical traffic lights and placing them inside vehicles. It has already been proven, through simulation, that VTL is capable of significantly increasing traffic flow and reduce CO2-emissions and fuel consumption for individual vehicles. To ensure a streamlined transition from traditional physical traffic lights to VTL, several issues must be addressed. This thesis ...

  11. DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH

    DONG Genjin; LU Xiyun; ZHUANG Lixian

    2004-01-01

    A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number.In particular, a new testing variable, i.e., the disturbed kinetic energy E, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.

  12. Obtaining traffic information by urban air quality inspection

    Transportation and its environmental impacts are a major component of urban environmental management. At the same time, transportation and mobility are an important part of urban economics and quality of life. To analyze urban transportation and its environmental impacts, a comprehensive, interdisciplinary approach is needed. Unfortunately, theoretical works about traffic flow and pollutant dynamic have independently evolved, rarely meeting contact points. Our works aims to provide a contribution in linking traffic flow and pollutant dynamic by proponing a new traffic model, able to calculate the number of running vehicles, once the ground level of an arbitrary pollutant concentration is know. The validation and simulation of this model is made possible by the training of an adaptive.(Author)

  13. Automatic and efficient driving strategies while approaching a traffic light

    Treiber, Martin

    2014-01-01

    Vehicle-infrastructure communication opens up new ways to improve traffic flow efficiency at signalized intersections. In this study, we assume that equipped vehicles can obtain information about switching times of relevant traffic lights in advance. This information is used to improve traffic flow by the strategies 'early braking', 'anticipative start', and 'flying start'. The strategies can be implemented in driver-information mode, or in automatic mode by an Adaptive Cruise Controller (ACC). Quality criteria include cycle-averaged capacity, driving comfort, fuel consumption, travel time, and the number of stops. By means of simulation, we investigate the isolated strategies and the complex interactions between the strategies and between equipped and non-equipped vehicles. As universal approach to assess equipment level effects we propose relative performance indexes and found, at a maximum speed of 50 km/h, improvements of about 15% for the number of stops and about 4% for the other criteria. All figures d...

  14. Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient.

    Funk, W C; Murphy, M A; Hoke, K L; Muths, E; Amburgey, S M; Lemmon, E M; Lemmon, A R

    2016-02-01

    Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500-3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation - as would be expected if incipient speciation were occurring - and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open. PMID:26363130

  15. Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient

    Funk, W. C.; Murphy, M.A.; Hoke, K. L.; Muths, Erin L.; Amburgey, Staci M.; Lemmon, Emily M.; Lemmon, A. R.

    2016-01-01

    Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.

  16. Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

    Chueh, C.C.

    2010-10-01

    An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.

  17. Interdomain traffic engineering with BGP

    Quoitin, Bruno; Uhlig, Steve; Pelsser, Cristel; Swinnen, Louis; Bonaventure, Olivier

    2003-01-01

    Traffic engineering is performed by means of a set of techniques that can be used to better control the flow of packets inside an IP network We discuss the utilization of these techniques across interdomain boundaries in the global Internet. We first analyze the characteristics of interdomain traffic on the basis of measurements from three different Internet service providers and show that a small number of sources are responsible for a large fraction of the traffic. Across interdomain bounda...

  18. An adaptive mechanism to guarantee the bandwidth fairness of TCP flows

    张顺亮; 叶澄清

    2004-01-01

    End-to-end TCP (transmission control protocol) congestion control can cause unfairness among multiple TCP connections with different RTT (Round Trip Time). The throughput of TCP connection is inversely proportional to its RTT. To resolve this problem, researchers have proposed many methods. The existing proposals for RTT-aware conditioner work well when congestion level is low. However, they over-protect long RTT flows and starve short RTT flows when congestion level is high. Due to this reason, an improved method based on adaptive thought is proposed. According to the congestion level of networks, the mechanism can adaptively adjust the degree of the protection to long RTT flows. Extensive simulation experiments showed that the proposed mechanism can guarantee the bandwidth fairness of TCP flows effectively and outperforms the existing methods.

  19. An adaptive mechanism to guarantee the bandwidth fairness of TCP flows

    张顺亮; 叶澄清

    2004-01-01

    End-to-end TCP(transmission control protocol)congestion control can cause unfairness among multiple TCP connections with different RTT(Round Trip Time). The throughput of TCP connection is inversely proportional to its RTT.To resolve this problem,researchers have proposed many methods. The existing proposals for RTT-aware conditioner work well when congestion level is low. However,they over-protect long RTT flows and starve short RTT flows when congestion level is high. Due to this reason,an improved method based on adaptive thought is proposed. According to the congestion level of networks,the mechanism can adaptively adjust the degree of the protection to long RTT flows. Extensive simulation experiments showed that the proposed mechanism can guarantee the bandwidth fairness of TCP flows effectively and outperforms the existing methods.

  20. Network-wide BGP route prediction for traffic engineering

    Feamster, Nick; Rexford, Jennifer

    2002-07-01

    The Internet consists of about 13,000 Autonomous Systems (AS's) that exchange routing information using the Border Gateway Protocol (BGP). The operators of each AS must have control over the flow of traffic through their network and between neighboring AS's. However, BGP is a complicated, policy-based protocol that does not include any direct support for traffic engineering. In previous work, we have demonstrated that network operators can adapt the flow of traffic in an efficient and predictable fashion through careful adjustments to the BGP policies running on their edge routers. Nevertheless, many details of the BGP protocol and decision process make predicting the effects of these policy changes difficult. In this paper, we describe a tool that predicts traffic flow at network exit points based on the network topology, the import policy associated with each BGP session, and the routing advertisements received from neighboring AS's. We present a linear-time algorithm that computes a network-wide view of the best BGP routes for each destination prefix given a static snapshot of the network state, without simulating the complex details of BGP message passing. We describe how to construct this snapshot using the BGP routing tables and router configuration files available from operational routers. We verify the accuracy of our algorithm by applying our tool to routing and configuration data from AT&T's commercial IP network. Our route prediction techniques help support the operation of large IP backbone networks, where interdomain routing is an important aspect of traffic engineering.