WorldWideScience

Sample records for adaptive immune systems

  1. CRISPR adaptive immune systems of Archaea

    Vestergaard, Gisle; Garrett, Roger A.; Shah, Shiraz A.

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein seq...

  2. Aging of the Immune System: How Much Can the Adaptive Immune System Adapt?

    Weng, Nan-ping

    2006-01-01

    The competency of the adaptive immune function decreases with age, primarily because of the decline in production of naïve lymphocytes in the bone marrow and thymus as well as the expansion of incompetent memory lymphocytes. Here I discuss the recent progress on age-associated changes in lymphocytes and their effect on the adaptive immune system.

  3. Chronic infection and the origin of adaptive immune system

    Usharauli, David

    2010-01-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario ...

  4. CRISPR-Based Adaptive Immune Systems

    Terns, Michael P.; Terns, Rebecca M.

    2011-01-01

    CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediate...

  5. The aging of the adaptive immune system

    Grubeck-Loebenstein, B.; Weinberger, B.; Herndler-Brandstetter, D.; Weiskopf, D.; Pfister, G.

    2011-01-01

    Adaptive immune responses are severely affected by the aging process as reflected by an increased morbidity and mortality from infectious diseases and a low efficacy of vaccination in elderly persons. Age-related changes within the bone marrow and thymus lead to an impaired generation of new T and B cells severely compromising the maintenance of a diverse and balanced T and B cell repertoire in old age. The maintenance of a balanced T cell repertoire is further challenged by latent persistent...

  6. Scale-free dynamics of somatic adaptability in immune system

    Saito, Shiro

    2009-01-01

    The long-time dynamics of somatic adaptability in immune system is simulated by a simple physical model. The immune system described by the model exhibits a scale free behavior as is observed in living systems. The balance between the positive and negative feedbacks of the model leads to a robust immune system where the positive one corresponds to the formation of memory cells and the negative one to immunosuppression. Also the immunosenescence of the system is discussed based on the time-dependence of the epigenetic landscape of the adaptive immune cells in the shape space.

  7. The Adaptive Immune System of Haloferax volcanii

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  8. Quantifying adaptive evolution in the Drosophila immune system.

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  9. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  10. Multifaceted interactions between adaptive immunity and the central nervous system.

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  11. Activation of the reward system boosts innate and adaptive immunity.

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  12. Regulation of the adaptive immune system by innate lymphoid cells

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  13. Policing of gut microbiota by the adaptive immune system.

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery. PMID:26867587

  14. Brucella evasion of adaptive immunity.

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system. PMID:23374122

  15. Origins of adaptive immunity.

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  16. Senescence of the adaptive immune system in health and aging-associated autoimmune disease

    van der Geest, Kornelis Stephan Mario

    2015-01-01

    Aging of the immune system may contribute to the development of aging-associated autoimmune diseases, such as giant cell arteritis, polymyalgia rheumatica and rheumatoid arthritis. The aim of this thesis was to identify aging-dependent changes of the adaptive immune system that promote autoimmunity

  17. CRISPR-Cas adaptive immune systems of the sulfolobales

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne;

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  18. Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2013-01-01

    A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRI...

  19. Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2014-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time....

  20. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. PMID:25698354

  1. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  2. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  3. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  4. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy.

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    2014-01-01

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages. PMID:23531796

  5. Immune System

    ... Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  6. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  7. Immune system adaptations during competition period in female cross-country skiers

    Stenholm, Johanna

    2011-01-01

    Stenholm, Johanna. Immune system adaptations during competition period in female cross-country skiers. Master’s Thesis in Exercise Physiology, Department of Biology of Physical Activity. University of Jyväskylä. 95pp. Purpose. This study was undertaken to characterize the extent of immune and endocrine changes in competition period and related to two competition weekends in well trained athletes in different parts of the competition period. An additional purpose was to evaluate if the cha...

  8. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  9. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  10. Blurring Borders: Innate Immunity with Adaptive Features

    K. Kvell

    2007-01-01

    Full Text Available Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila, have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps.

  11. The diversity-generating benefits of a prokaryotic adaptive immune system.

    van Houte, Stineke; Ekroth, Alice K E; Broniewski, Jenny M; Chabas, Hélène; Ashby, Ben; Bondy-Denomy, Joseph; Gandon, Sylvain; Boots, Mike; Paterson, Steve; Buckling, Angus; Westra, Edze R

    2016-04-21

    Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms. PMID:27074511

  12. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  13. The origins of vertebrate adaptive immunity

    Litman, Gary W.; Rast, Jonathan P.; Fugmann, Sebastian D.

    2010-01-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been considered to occur by acquisition of novel molecular capabilities, a...

  14. Within-host co-evolution of chronic viruses and the adaptive immune system

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  15. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  16. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens

    Holtzman, Michael J.

    2012-01-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well a...

  17. Immune System

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  18. The origins of vertebrate adaptive immunity.

    Litman, Gary W; Rast, Jonathan P; Fugmann, Sebastian D

    2010-08-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  19. Alternative adaptive immunity in invertebrates

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticit...... and memory has long been a matter of debate. A recent study on Anopheles gambiae mosquitoes now establishes Down syndrome cell adhesion molecule (Dscam) as a key immune surveillance factor with characteristics analogous to antibodies....

  20. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens.

    Holtzman, Michael J

    2012-08-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease. PMID:22850884

  1. Genome complexity in the coelacanth is reflected in its adaptive immune system

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  2. Thymus involvement in immune system adaptive response to fractionated low-level γ-radiation

    In experiments with normal and thymoctomized rats it has been revealed that exposure of normal animals to 0.35 Gy of γ-radiation induces changes in blood cells subsets, depression of NK functional activity, decrease in polymorphonuclear leukocyte basal chemiluminescence level, supression of the delayed type of hypersensitivity reaction and stimulation of local IgE-synthesis in respiratory organs. At the same time irradiation of adult thymectomized animals did not resulted in significant fluctuations in cellular and humoral immunity indices as well as blood cells functional activity level. Some mechanisms of radiation-induced immune system disturbances mediate via thymus are discussed

  3. Artificial Immune Systems Tutorial

    Aickelin, Uwe

    2008-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  4. Artificial Immune Systems

    Aickelin, Uwe

    2009-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  5. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  6. Has the microbiota played a critical role in the evolution of the adaptive immune system?

    Lee, Yun Kyung; Mazmanian, Sarkis K.

    2010-01-01

    Although microbes have been classically viewed as pathogens, it is now well established that the majority of host-bacterial interactions are symbiotic. During development and into adulthood, gut bacteria shape the tissues, cells and molecular profile of our gastrointestinal immune system. This partnership, forged over many millennia of co-evolution, is based on a molecular exchange involving bacterial signals that are recognized by host receptors to mediate beneficial outcomes for both microb...

  7. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system?

    Del Mar Amador, Maria; Vandenberghe, Nadia; Berhoune, Nawel; Camdessanché, Jean-Philippe; Gronier, Sophie; Delmont, Emilien; Desnuelle, Claude; Cintas, Pascal; Pittion, Sophie; Louis, Sarah; Demeret, Sophie; Lenglet, Timothée; Meininger, Vincent; Salachas, François; Pradat, Pierre-François; Bruneteau, Gaëlle

    2016-06-01

    Myasthenia gravis is an autoimmune disorder affecting neuromuscular junctions that has been associated with a small increased risk of amyotrophic lateral sclerosis (ALS). Here, we describe a retrospective series of seven cases with a concomitant diagnosis of ALS and myasthenia gravis, collected among the 18 French reference centers for ALS in a twelve year period. After careful review, only six patients strictly met the diagnostic criteria for both ALS and myasthenia gravis. In these patients, limb onset of ALS was reported in five (83%) cases. Localization of myasthenia gravis initial symptoms was ocular in three (50%) cases, generalized in two (33%) and bulbar in one (17%). Median delay between onset of the two conditions was 19 months (6-319 months). Anti-acetylcholine receptor antibodies testing was positive in all cases. All patients were treated with riluzole and one had an associated immune-mediated disease. In the one last ALS case, the final diagnosis was false-positivity for anti-acetylcholine receptor antibodies. The co-occurrence of ALS and myasthenia gravis is rare and requires strict diagnostic criteria. Its demonstration needs thoughtful interpretation of electrophysiological results and exclusion of false positivity for myasthenia gravis antibody testing in some ALS cases. This association may be triggered by a dysfunction of adaptive immunity. PMID:27102004

  8. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System.

    Corcos, D

    2015-11-01

    Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity. PMID:26286030

  9. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    Roger A. Garrett

    2015-03-01

    Full Text Available The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.

  10. Comparative immune systems in animals.

    Yuan, Shaochun; Tao, Xin; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong

    2014-02-01

    Animal immune systems can be classified into those of innate immunity and those of adaptive immunity. It is generally thought that the former are universal for all animals and depend on germline-encoded receptors that recognize highly conserved pathogen-associated molecular patterns (PAMPs), whereas the latter are vertebrate specific and are mediated primarily by lymphocytes bearing a unique antigen receptor. However, novel adaptive or adaptive-like immunities have been found in invertebrates and jawless vertebrates, and extraordinarily complex innate immunities, created through huge expansions of many innate gene families, have recently been found in the cephalochordate amphioxus and the echinoderm sea urchin. These studies not only inspire immunologists to seek novel immune mechanisms in invertebrates but also raise questions about the origin and evolution of vertebrate immunities. PMID:25384142

  11. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can in...

  12. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  13. Immune System Involvement

    ... to find out more! Email * Zipcode The Immune System and Psoriatic Disease What is an autoimmune disease? ... and painful joints and tendons. Treating the immune system The immune system is not only the key ...

  14. Immune System Quiz

    ... Here's Help White House Lunch Recipes Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System Print A A A Text Size How much do you know about your immune system? Find out by taking this quiz! View Survey ...

  15. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45highCD11b+) and CD8+ T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8+ T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  16. Innate and adaptive immunity in inflammatory bowel disease

    Britta Siegmund; Martin Zeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  17. Innate and adaptive immunity in inflammatory bowel disease

    BrittaSiegmund; MartinZeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a crossregulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  18. Epigenetics and the Adaptive Immune Response

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathoge...

  19. The adaptive immune system in atopic dermatitis and implications on therapy.

    Roesner, Lennart M; Werfel, Thomas; Heratizadeh, Annice

    2016-07-01

    In atopic dermatitis (AD), the skin inflammation is believed to occur due to a misdirected immune reaction against harmless antigens on the one hand, and to a disturbed skin barrier on the other. In recent years, vast efforts have been made to investigate the relevance and details of the immune response to allergens. Clinically, it was demonstrated for the first time that aeroallergen exposure leads to worsening of AD symptoms. An overexpression of Th2 cytokines has been observed in acute and subacute lesions of AD. The clinical impact of the key Th2 cytokines IL-4 and IL-13 on atopic dermatitis has recently been shown in clinical studies with dupilumab, a monoclonal antibody which blocks the IL-4/IL-13 receptor. In vitro data indicate, however, that the T cell response is not solely Th2-polarized but may lead to heterogeneous cytokine production involving IFN-γ and IL-17 in an allergen-dependent manner. Classical thymus-derived Foxp3 T cells have interestingly been detected in elevated numbers in the circulation of AD patients. Therapeutic approaches with allergen specific immunotherapy aim to induce regulatory T cells of the Tr1 type. The strikingly altered microbiome of AD skin with diminished diversity of bacteria on lesional skin but increases of S. aureus colonization and the sensitization against microbial allergens and homologue self-proteins deserve special attention. For the treatment of itch symptoms, which still represent a challenge in daily practice, promising data have been published on the relevance of the H(histamine)4-receptor and on mediators such as IL-31, TSLP. PMID:26967382

  20. Our Immune System

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note from ... are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  1. INNATE, ADAPTIVE AND INTRINSIC IMMUNITY IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

    Suneth S. Perera

    2012-01-01

    Full Text Available The first line of defence of the innate immune system functions by recognizing highly conserved sets of molecular structures specific to the microbes, termed pathogen-associated molecular patterns, or PAMPs via the germ line-encoded receptors Pattern-Recognition Receptors (PRRs. In addition to the innate immune system, the vertebrates have also evolved a second line of defence termed adaptive immune system, which uses a diverse set of somatically rearranged receptors T-Cell Receptors (TCRs and B Cell Receptors (BCRs, which have the inherent ability to effectively recognise diverse antigens. The innate and adaptive immune systems are functionally tied in with the intrinsic immunity, which comprises of endogenous antiviral factors. Thus, this effective response to diverse microbial infections, including HIV, requires a coordinated interaction at several functional levels between innate, adaptive and intrinsic immune systems. This review provides a snapshot of roles played by the innate, adaptive and the intrinsic immune systems during HIV-infection, along with discussing recent developments highlighting the genomic basis of these responses and their regulation by micro-RNA (miRNAs.

  2. Dynamics of immune system vulnerabilities

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  3. Diversity of immune strategies explained by adaptation to pathogen statistics.

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  4. Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism

    HE Hong; QIAN Feng

    2007-01-01

    Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIFA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.

  5. Immune System: Can Your Immune System Still Defend You As You Age?

    ... of Aging Heath and Aging Biology of Aging IMMUNE SYSTEM: Can Your Immune System Still Defend You As You Age? Elementary schools ... immune protection in older individuals. Organs of the Immune System Adapted from www.niaid.nih.gov The Future ...

  6. Immune System and Disorders

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It helps ... to find and destroy them. If your immune system cannot do its job, the results can be ...

  7. Pneumonia - weakened immune system

    ... gov/ency/article/000093.htm Pneumonia - weakened immune system To use the sharing features on this page, ... off infection because of problems with the immune system. This type of disease is called "pneumonia in ...

  8. Immune System and Disorders

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  9. The Immune System Game

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  10. Crosstalk between innate and adaptive immunity inhepatitis B virus infection

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic toinfected hepatocytes; the clinical outcome of infectionresults from complicated interactions between the virusand the host immune system. In acute HBV infection,initiation of a broad, vigorous immune response is responsiblefor viral clearance and self-limited inflammatoryliver disease. Effective and coordinated innate andadaptive immune responses are critical for viral clearanceand the development of long-lasting immunity. Chronichepatitis B patients fail to mount efficient innate andadaptive immune responses to the virus. In particular,HBV-specific cytotoxic T cells, which are crucial for HBVclearance, are hyporesponsiveness to HBV infection.Accumulating experimental evidence obtained fromthe development of animal and cell line models hashighlighted the importance of innate immunity in theearly control of HBV spread. The virus has evolvedimmune escape strategies, with higher HBV loads andHBV protein concentrations associated with increasingimpairment of immune function. Therefore, treatmentof HBV infection requires inhibition of HBV replicationand protein expression to restore the suppressedhost immunity. Complicated interactions exist notonly between innate and adaptive responses, but alsoamong innate immune cells and different components ofadaptive responses. Improved insight into these complexinteractions are important in designing new therapeuticstrategies for the treatment HBV infection. In thisreview, we summarize the current knowledge regardingthe cross-talk between the innate and adaptive immuneresponses and among different immunocytes in HBVinfection.

  11. Use of genetically modified bacteria to modulate adaptive immunity.

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  12. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  13. Proteasome function shapes innate and adaptive immune responses.

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  14. Artificial Immune Systems (2010)

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the m...

  15. Genetic adaptation of the antibacterial human innate immunity network

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  16. Immune System (For Parents)

    ... lock onto them. T cells are like the soldiers, destroying the invaders that the intelligence system has ... can't be prevented, you can help your child's immune system stay stronger and fight illnesses by ...

  17. Powering the Immune System: Mitochondria in Immune Function and Deficiency

    Melissa A. Walker

    2014-01-01

    Full Text Available Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings.

  18. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model.

    Martin Köberle

    2009-08-01

    Full Text Available Yersinia enterocolitica (Ye evades the immune system of the host by injection of Yersinia outer proteins (Yops via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-beta-lactamase hybrid protein and a fluorescent staining sensitive to beta-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-beta1A, and HeLa cells demonstrated that beta1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80(+, 11% of CD11c(+, 7% of CD49b(+, 5% of Gr1(+ cells, 2.3% of CD19(+, and 2.6% of CD3(+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19(+CD21(+CD23(+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-gammaR (receptor- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-beta-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.

  19. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico Adaptative mechanisms of the immune system in response to physical training

    Carol Góis Leandro

    2007-10-01

    Full Text Available O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.Moderate physical training enhances the defense mechanisms, while intense physical training induces to immune suppression. The underlying mechanisms are associated with the link between nervous, endocrine, and immune systems. It suggests autonomic patterns and modulation of immune response. Immune cells, when exposed to regular bouts of stress, develop a mechanism of tolerance. In many tissues, it has been demonstrated that the response to aggressive conditions is attenuated by moderate physical training. Thus, training can induce tolerance to aggressive/stressful situations. In this review, studies suggesting the adaptation mechanisms of the immune system in response to physical training will be reported.

  20. Artificial Immune System Approaches for Aerospace Applications

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  1. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    Ariel D Weinberger; Wolf, Yuri I.; Lobkovsky, Alexander E; Gilmore, Michael S.; Eugene V Koonin

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunologi...

  2. Was the evolutionary road towards adaptive immunity paved with endothelium?

    van Niekerk, Gustav; Davis, Tanja; Engelbrecht, Anna-Mart

    2015-01-01

    Background The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However,...

  3. The sea urchin immune system

    LC Smith

    2006-05-01

    Full Text Available Metchnikoff’s use of sea star larvae to observe encapsulation and phagocytosis, which was followedmuch later by allograft rejection kinetics, revealed that echinoderms had an innate immune system thatwas lacking of adaptive attributes. Larval sea urchins mount defenses in response to contact withmicrobes, which are mediated by phagocytic blastocoelar cells and pigment cells. In the adult, thecoelomocytes mediate immune responses through phagocytosis and encapsulation of foreign particles inaddition to degranulation of antimicrobial molecules. Molecular analysis of immune functions in the seaurchin has demonstrated a complement system that appears to have multiple alternative pathways andseveral activators of the lectin pathway, but may be missing the terminal pathway. Other genes andproteins involved in the sea urchin immunity include expanded sets of lectins, proteins with scavengerreceptor cysteine-rich repeats, Toll-like receptors and associated signalling proteins. A vast array ofproteins belonging to the 185/333 family are expressed in coelomocytes in response to lipopolysaccharideand show a surprising level of diversity. The sea urchin innate immune system has a number of largegene families with unexpected complexities and elevated levels of diversification.

  4. The Microbiome, Systemic Immune Function, and Allotransplantation.

    Nellore, Anoma; Fishman, Jay A

    2016-01-01

    Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future. PMID:26656674

  5. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  6. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    Hedi Harizi

    2004-01-01

    Full Text Available 5-lipoxygenase (5-LO pathway is the major source of potent proinflammatory leukotrienes (LTs issued from the metabolism of arachidonic acid (AA, and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity.

  7. Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity

    Lucille Rankin

    2011-01-01

    Full Text Available The helix-loop-helix (HLH transcription factor inhibitor of DNA binding 2 (Id2 has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK cells, lymphoid tissue-inducer (LTi cells, and the recently identified interleukin (IL-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.

  8. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  9. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L-1) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  10. Immune system simulation online

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno......-specific scoring matrices based on information from known HLA epitopes prediction tools, and TCR binding to HLA–peptide complex calculated as the averaged sum of a residue–residue contact potential. These steps are executed for all lymphocytes agents encountering the antigen in a wide-reaching Monte Carlo......-informatics methods to allow the simulation of the cardinal events of the antigenic recognition, going from single peptides to whole proteomes. The recognition process accounts for B cell-epitopes prediction through Parker-scale affinity estimation, class I and II HLA peptide prediction and binding through position...

  11. Adaptive immune responses of legumin nanoparticles.

    Mirshahi, T; Irache, J M; Nicolas, C; Mirshahi, M; Faure, J P; Gueguen, J; Hecquet, C; Orecchioni, A M

    2002-12-01

    Legumin is one of the main storage proteins in the pea seeds (Pisum sativum L.) and the molecules of this protein have the capacity of binding together to form nanoparticles after aggregation and chemical cross-linkage with glutaraldehyde. The aim of this work was to study the adaptive immune response of legumin nanoparticles in rats. Following intradermal immunisation with the native protein legumin and legumin nanoparticles of about 250 nm, the humoral and cell-mediated immune responses were analysed in rats. The humoral responses against legumin and legumin nanoparticles were examined by western blot and ELISA analysis. Both techniques clearly showed that sera from rats immunised with legumin strongly expressed antibodies against this protein. On the contrary, serum samples from rats inoculated with legumin nanoparticles did not contain detectable amounts of antibodies. These results may be explained by a reduction on the antigenic epitopes of the protein induced by the glutaraldehyde used during the cross-linking step. Concerning the cell-mediated response, neither legumin nor legumin nanoparticles stimulated an immunogenic response. This absence of response of spleen lymphocytes for legumin and legumin nanoparticles may be explained by a cytostatic effect of legumin which was corroborated by the evaluation of the middle phase of cell apoptose. In fact, both legumin and legumin nanoparticles are potent inductors of a cytostatic phenomenon and showed a significant increase of the chromatin condensation (p < 0.05) as compared with control. PMID:12683667

  12. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  13. A pox on thee! Manipulation of the host immune system by myxoma virus and implications for viral-host co-adaptation.

    Zúñiga, Martha C

    2002-09-01

    The poxviruses have evolved a diverse array of proteins which serve to subvert innate and adaptive host responses that abort or at least limit viral infections. Myxoma virus and its rabbit host are considered to represent an ideal poxvirus-host system in which to study the effects of these immunomodulatory proteins. Studies of laboratory rabbits (Oryctolagus cuniculus) infected with gene knockout variants of myxoma virus have provided compelling evidence that several myxoma virus gene products contribute to the pathogenic condition known as myxomatosis. However, myxomatosis, which is characterized by skin lesions, systemic immunosuppression, and a high mortality rate, does not occur in the virus' natural South American host, Sylvilogus brasiliensis. Moreover, in Australia where myxoma virus was willfully introduced to control populations of O. cuniculus, myxomatosis-resistant rabbits emerged within a year of myxoma virus introduction into the field. In this review I discuss the characterized immunomodulatory proteins of myxoma virus, their biochemical properties, their pathogenic effects in laboratory rabbits, the role of the host immune system in the susceptibility or resistance to myxomatosis, and the evidence that immunomodulatory genes may have been attenuated during the co-adaptation of myxoma virus and O. cuniculus in Australia. PMID:12297325

  14. Systemic Transcriptional Alterations of Innate and Adaptive Immune Signaling Pathways in Atherosclerosis, Ischemia Stroke, and Myocardial Infarction

    Barr, Taura L.; VanGilder, Reynal L.; Seiberg, Ryan; Petrone, Ashely; Chantler, Paul D.; Huang, Chiang-Ching

    2015-01-01

    Background Transcriptional profiles are available for a variety of cardiovascular-related diseases. The goal of this study was to compare blood transcriptional profiles of the Toll-like receptor (TLR), T-cell receptor (TCR), and B-cell receptor (BCR) signaling pathways in asymptomatic atherosclerosis, acute ischemic stroke, and myocardial infarction patients to identify common mechanisms of immune regulation and their association with epigenetic regulation. Methods and results Peripheral bloo...

  15. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  16. The ontogeny of the porcine immune system

    Šinkora, Marek; Butler, J. E.

    2009-01-01

    Roč. 33, č. 3 (2009), s. 273-283. ISSN 0145-305X R&D Projects: GA ČR GA524/07/0087; GA ČR GA523/07/0088 Institutional research plan: CEZ:AV0Z50200510 Keywords : ontogeny of the porcine immune system * swine adaptive immunity * development of alpha beta and gamma delta T cells Subject RIV: EC - Immunology Impact factor: 3.290, year: 2009

  17. Diversity in the Immune System

    Borghans, J.A.M.; Boer, R.J. de

    2000-01-01

    Diversity is one of the key characteristics of the vertebrate immune system. Lymphocyte repertoires of at least 3x10⁷ different clonotypes protect humans against infections, while avoiding unwanted immune responses against self-peptides and innocuous antigens. It is this lymphocyte diversity that forms the main difference between the immune systems of invertebrate and vertebrate species.

  18. Immune adaptive Gaussian mixture par ticle filter for state estimation

    Wenlong Huang; Xiaodan Wang; Yi Wang; Guohong Li

    2015-01-01

    The particle filter (PF) is a flexible and powerful sequen-tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im-poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser-vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im-prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.

  19. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  20. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  1. The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages

    Cady, Kyle C.; Bondy-Denomy, Joe; Heussler, Gary E; Davidson, Alan R.; O'Toole, George A.

    2012-01-01

    Here we report the isolation of 6 temperate bacteriophages (phages) that are prevented from replicating within the laboratory strain Pseudomonas aeruginosa PA14 by the endogenous CRISPR/Cas system of this microbe. These phages are only the second identified group of naturally occurring phages demonstrated to be blocked for replication by a nonengineered CRISPR/Cas system, and our results provide the first evidence that the P. aeruginosa type I-F CRISPR/Cas system can function in phage resista...

  2. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  3. Testicular defense systems: immune privilege and innate immunity

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune...

  4. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  5. Regional specialization within the intestinal immune system

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the...... intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the......The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...

  6. Phylogeny, longevity and evolution of adaptive immunity

    Vinkler, Michal; Albrecht, Tomáš

    2011-01-01

    Roč. 60, č. 3 (2011), s. 277-282. ISSN 0139-7893 R&D Projects: GA ČR GA206/08/0640; GA ČR GA206/08/1281; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : acquired immunity * evolutionary immunology * immunological priming * innate immunity * invertebrates Subject RIV: EG - Zoology Impact factor: 0.554, year: 2011

  7. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    Gabriela Mora-Bau

    2015-07-01

    Full Text Available Urinary tract infection (UTI is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  8. Adaptive shared control system

    Sanders, David

    2009-01-01

    A control system to aid mobility is presented that is intended to assist living independently and that provides physical guidance. The system has two levels: a human machine interface and an adaptive shared controller.

  9. Modelling Immune System: Principles, Models,Analysis and Perspectives

    Xiang-hua Li; Zheng-xuan Wang; Tian-yang Lu; Xiang-jiu Che

    2009-01-01

    The biological immune system is a complex adaptive system. There are lots of benefits for building the model of the immune system. For biological researchers, they can test some hypotheses about the infection process or simulate the responses of some drugs. For computer researchers, they can build distributed, robust and fault tolerant networks inspired by the functions of the immune system. This paper provides a comprehensive survey of the literatures on modelling the immune system. From the methodology perspective, the paper compares and analyzes the existing approaches and models, and also demonstrates the focusing research effort on the future immune models in the next few years.

  10. Adaptation to High Grain Diets Proceeds Through Minimal Immune System Stimulation and Differences in Extracellular Matrix Protein Expression in A Model of Subacute Ruminal Acidosis in Non-lactating Dairy Cows

    L. Dionissopoulos

    2012-01-01

    Full Text Available Problem statement: Subacute Ruminal Acidosis (SARA is a metabolic disorder affecting approximately 20% of all dairy cattle in North America. Although the presence of SARA has been described for some time, the etiology of the disorder remains uncertain. For example, many animals diagnosed with SARA seem to remodel and adapt their epithelium to accommodate the stresses imposed by SARA, but not before exacting a significant health and economic toll. Specifically, a search is on in which a desire to identify the system and associated pathways that are causative agents in the progression and development of SARA is evident. We hypothesize that adaptation to SARA is facilitated by the immune system. Approach: In order to answer of this question, 4 mature, non-lactating dairy cattle were transitioned from a High Fiber (HF; 0% grain diet to High Grain (HG; 65% grain diet. Having fed the HG diet for three weeks, the cattle were then transitioned back to the HF diet for an additional three weeks to facilitate adaptation. SARA was diagnosed by pH data only during the first week and not during the remaining weeks, indicating that adaptation to the HG diet took place within one week. Results: In this study, significant (pConclusion: These results indicate that the immune system is involved in the adaptation of the rumen epithelium to a HG diet, but to a lesser extent than was previously thought. This is the first time an attempt has been made to link the immune system and wound healing in the adaptation of the bovine rumen to a HG diet."""

  11. The Immune System and Developmental Programming of Brain and Behavior

    Bilbo, Staci D; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease i...

  12. A Distributed Computer Immune System

    2003-01-01

    A Distributed Computer Immune System (Summary) January 2003 Computer Immunology is about the detection and reaction to changes in the state of the computer system. The goal is to maintain system integrity by detecting and protecting against attacks and failures. Its methods and models are inspired from the biological immune system of living organisms. In this project, the aim is to approach such a system by combining two existing immunological approaches: pH a kernel patch for the GNU/...

  13. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge ...

  14. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou; Kjær, Torben Egil; Vesely, Thomas

    Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several...... studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune...

  15. Testicular defense systems: immune privilege and innate immunity.

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-09-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  16. Adaptive social immunity in leaf-cutting ants

    Walker, Tom N.; Hughes, William O. H.

    2009-01-01

    Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them t...

  17. The Immunobiology of Prostanoid Receptor Signaling in Connecting Innate and Adaptive Immunity

    Hedi Harizi

    2013-01-01

    Full Text Available Prostanoids, including prostaglandins (PGs, thromboxanes (TXs, and prostacyclins, are synthesized from arachidonic acid (AA by the action of Cyclooxygenase (COX enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC-natural killer (NK reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.

  18. SISTEMAS INMUNES ALTERNATIVOS Alternative Immune Systems

    LUIS F. CADAVID

    Full Text Available El sistema inmune en animales es una red compleja de moléculas, células y tejidos que de manera conjunta mantienen la integridad fisiológica y genética de los organismos. Convencionalmente se ha considerado la existencia de dos clases de inmunidad, la innata y la adaptativa. La primera es ancestral, con variabilidad limitada y baja discriminación, mientras que la segunda es altamente variable, específica y restringida a vertebra-dos mandibulados. La inmunidad adaptativa se basa en receptores de antígeno que se rearreglan somáticamente para generar una diversidad casi ilimitada de moléculas. Este mecanismo de recombinación somática muy probablemente emergió como consecuencia de un evento de transferencia horizontal de transposones y transposasas bacterianas en el ancestro de los vertebrados mandibulados. El reciente descubrimiento en vertebrados no mandibulados e invertebrados de mecanismos alternativos de inmunidad adaptativa, sugiere que en el transcurso de la evolución distintos grupos animales han encontrado soluciones alternativas al problema del reconocimiento inmunológico.The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless vertebrates and invertebrates of alternative adaptive immune mechanisms, suggests that during

  19. The CRISPR-Cas immune system : Biology, mechanisms and applications

    Rath, Devashish; Amlinger, Lina; Rath, Archana; Lundgren, Magnus

    2015-01-01

    Viruses are a common threat to cellular life, not the least to bacteria and archaea who constitute the majority of life on Earth. Consequently, a variety of mechanisms to resist virus infection has evolved. A recent discovery is the adaptive immune system in prokaryotes, a type of system previously thought to be present only in vertebrates. The system, called CRISPR-Cas, provide sequence-specific adaptive immunity and fundamentally affect our understanding of virus host interaction. CRISPR-ba...

  20. Autonomic Nervous System and Immune System Interactions

    Kenney, MJ; Ganta, CK

    2014-01-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsiv...

  1. Overview of fish immune system and infectious diseases

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  2. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  3. Kicking off adaptive immunity: the discovery of dendritic cells

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  4. Adaptable Embedded Systems

    Lisbôa, Carlos; Carro, Luigi

    2013-01-01

    As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together.  This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability.  The discussion also includes how to employ specialized software to improve this new adaptive system, and...

  5. Adaptive immunity to rhinoviruses: sex and age matter

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  6. Monocyte-derived dendritic cells in innate and adaptive immunity.

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  7. Portable Immune-Assessment System

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  8. Melatonin: Buffering the Immune System

    Juan M. Guerrero

    2013-04-01

    Full Text Available Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.

  9. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    Kieslich, Chris A.; Dimitrios Morikis

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor compl...

  10. STUDYING COMPLEX ADAPTIVE SYSTEMS

    John H. Holland

    2006-01-01

    Complex adaptive systems (cas) - systems that involve many components that adapt or learn as they interact - are at the heart of important contemporary problems. The study of cas poses unique challenges: Some of our most powerful mathematical tools, particularly methods involving fixed points, attractors, and the like, are of limited help in understanding the development of cas. This paper suggests ways to modify research methods and tools, with an emphasis on the role of computer-based models, to increase our understanding of cas.

  11. NEEDS - Information Adaptive System

    Kelly, W. L.; Benz, H. F.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  12. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    Arnold Isabelle C

    2011-11-01

    Full Text Available Abstract Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.

  13. Adaptive Inflow Control System

    Volkov, Vasily Y; Zhuravlev, Oleg N; Nukhaev, Marat T; Shchelushkin, Roman V

    2014-01-01

    This article presents the idea and realization for the unique Adaptive Inflow Control System being a part of well completion, able to adjust to the changing in time production conditions. This system allows to limit the flow rate from each interval at a certain level, which solves the problem of water and gas breakthroughs. We present the results of laboratory tests and numerical calculations obtaining the characteristics of the experimental setup with dual-in-position valves as parts of adaptive inflow control system, depending on the operating conditions. The flow distribution in the system was also studied with the help of three-dimensional computer model. The control ranges dependences are determined, an influence of the individual elements on the entire system is revealed.

  14. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  15. Control of the adaptive immune response by tumor vasculature

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  16. Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities

    LU Lu; YU Fei; DU Lan-ying; XU Wei; JIANG Shi-bo

    2013-01-01

    Objective To review the mechanisms by which HIV evades different components of the host immune system.Data sources This review is based on data obtained from published articles from 1991 to 2012.To perform the PubMed literature search,the following key words were input:HIV and immune evasion.Study selection Articles containing information related to HIV immune evasion were selected.Results Although HIV is able to induce vigorous antiviral immune responses,viral replication cannot be fully controlled,and neither pre-existing infected cells nor latent HIV infection can be completely eradicated.Like many other enveloped viruses,HIV can escape recognition by the innate and adaptive immune systems.Recent findings have demonstrated that HIV can also successfully evade host restriction factors,the components of intrinsic immune system,such as APOBEC3G (apolipoprotein B mRNA-editing enzyme,catalytic polypeptide-like 3G),TRIM5α (tripartite motif 5-α),tetherin,and SAMHD1 (SAM-domain HD-domain containing protein).Conclusions HIV immune evasion plays an important role in HIV pathcgenesis.Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.

  17. The Immune System in Hypertension

    Trott, Daniel W.; Harrison, David G.

    2014-01-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely…

  18. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma.

    Wills-Karp, Marsha

    2007-07-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, is no exception. The emerging paradigm is that C3a production at the airway surface serves as a common pathway for the induction of Th2-mediated inflammatory responses to a variety of environmental triggers of asthma (i.e., allergens, pollutants, viral infections, cigarette smoke). In contrast, C5a plays a dual immunoregulatory role by protecting against the initial development of a Th2-polarized adaptive immune response via its ability to induce tolerogenic dendritic cell subsets. On the other hand, C5a drives type 2-mediated inflammatory responses once inflammation ensues. Thus, alterations in the balance of generation of the various components of the complement pathway either due to environmental exposure changes or genetic alterations in genes of the complement cascade may underlie the recent rise in asthma prevalence in westernized countries. PMID:17607007

  19. Immune System as a Sensory System

    Dozmorov, Igor M.; Dresser, D.

    2010-01-01

    As suggested by the well-known gestalt concept the immune system can be regarded as an integrated complex system, the functioning of which cannot be fully characterized by the behavior of its constituent elements. Similar approaches to the immune system in particular and sensory systems in general allows one to discern similarities and differences in the process of distinguishing informative patterns in an otherwise random background, thus initiating an appropriate and adequate response. This...

  20. Adaptive Noise Reduction System

    Ivana Ropuš

    2013-01-01

    Full Text Available Noise is an all-present environment pollutant, considered to be one of the greatest contemporary pollutants. World-wide, co-ordinated actions are conducted in order to develop systems which minimise the noise influence onto society.In this article we argue that novel approach to suppression of influence of noise is useful. Furthermore, we argue that the efficient approach is formulation of the efficient, broadly applicable, ubiquituous, adaptive noise-protection system. The approach combines the natural noise-protection form based on plants with the artificially formed coatings.Elements of the system are discussed, its formation and maintenance analysed and perspectives conjectured.

  1. Glatiramer Acetate in Treatment of Multiple Sclerosis: A Toolbox of Random Co-Polymers for Targeting Inflammatory Mechanisms of both the Innate and Adaptive Immune System?

    Thomas Vorup-Jensen

    2012-11-01

    Full Text Available Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin αMβ2 (also called Mac-1, complement receptor 3, or CD11b/CD18 and perspectives on the GA co-polymers as an influence on the function of the innate immune system.

  2. Dynamics of adaptive immunity against phage in bacterial populations

    Bradde, Serena; Tesileanu, Tiberiu; Balasubramanian, Vijay

    2015-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer ...

  3. The effects of cocoa on the immune system

    Pérez-Cano, Francisco J.; Massot-Cladera, Malen; Franch, Àngels; Castellote, Cristina; Castell, Margarida

    2013-01-01

    Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched di...

  4. [Obesity and the immune system].

    Muñoz, M; Mazure, R A; Culebras, J M

    2004-01-01

    With an increased prevalence of obesity in developed countries, associated chronic diseases rise in a parallel way. Morbidity secondary to overweight and obesity include type 2 diabetes, dislipemia, hypertension, heart disease, cerebrovascular disease, cholelithiasis, osteoarthritis, heart insufficiency, sleep apnoea, menstrual changes, sterility and psychological alterations. There is also a greater susceptibility to suffer some types of cancer, infections, greater risk of bacteremia and a prolonged time of wound healing after surgical operations. All these factors indicate that obesity exerts negative effects upon the immune system. Immune changes found in obesity and their possible interrelations are described in this article. Changes produced during obesity affect both humoral and cellular immunity. It is known that adipose tissue, together with its role as energy reserve in form of triglycerides, has important endocrine functions, producing several hormones and other signal molecules. Immune response can be deeply affected by obesity, playing leptin an important role. Properties of leptin, alterations of leptin levels in different situations and its changes with different medical and surgical therapies for obesity are described in this article. PMID:15672646

  5. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  6. Weakened Immune System and Adult Vaccination

    ... click "GO" or visit Healthmap Vaccine Finder . Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... people with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...

  7. Biological Immune System Applications on Mobile Robot for Disabled People

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  8. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  9. Multiple Limit Cycles in an Immune System

    Xun-cheng Huang; Le-min Zhu; Minaya Villasana

    2008-01-01

    The nonlinear oscillatory phenomenon has been observed in the system of immune response, which corresponds to the limit cycles in the mathematical models. We prove that the system simulating an immune response studied by Huang has at least three limit cycles in the system. The conditions for the multiple limit cycles are useful in analyzing the nonlinear oscillation in immune response.

  10. Immune System Toxicity and Immunotoxicity Hazard Identification

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  11. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia.

    Hsu, Peter; Nanan, Ralph Kay Heinrich

    2014-01-01

    Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface - the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3(+) regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4(+)HLA-G(+) suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy. PMID:24734032

  12. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    Charpentier, Emmanuelle; Richter, Hagen; van der Oost, John; White, Malcolm F

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-as...

  13. The microbiota in adaptive immune homeostasis and disease.

    Honda, Kenya; Littman, Dan R

    2016-07-01

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy. PMID:27383982

  14. Shades of grey-the blurring view of innate and adaptive immunity

    Lanier, LL

    2013-01-01

    This special issue of Nature Reviews Immunology focuses on the types of lymphocyte that blur the traditional boundaries between the innate and adaptive immune systems. The development and functional properties of 'innate-like' B and T cells and natural killer (NK) cells are reviewed and the emerging understanding of newly discovered innate lymphoid cells (ILCs) is considered. © 2013 Macmillan Publishers Limited. All rights reserved.

  15. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  16. A Recommender System based on the Immune Network

    Steve, Cayzer

    2008-01-01

    The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.

  17. A Recommender System based on Idiotypic Artificial Immune Networks

    Cayzer, Steve

    2008-01-01

    The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.

  18. Integrating Innate and Adaptive Immunity for Intrusion Detection

    Tedesco, Gianni; Aickelin, Uwe

    2010-01-01

    Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

  19. Occupational exposure alters innate and adaptive immune responses

    Sahlander, Karin

    2010-01-01

    The farming environment is contaminated with high levels of organic dust. Especially pig barn facilities are highly polluted with airborne inhalable organic dust containing high amounts of molecular patterns from bacteria and fungi known to activate cells of the innate immunity through pattern recognition receptors (PRRs). Some hours of exposure in pig barn environment leads to an intensive upper and lower airway inflammation with systemic influences in previously unexposed ...

  20. Dynamics of adaptive immunity against phage in bacterial populations

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  1. Immune system modifications and feto-maternal immune tolerance

    Song Dan; Shi Yichao

    2014-01-01

    Objective This review aimed at understanding pregnancy-induced changes in the maternal immune response and mechanisms for the establishment of feto-maternal tolerance.Data sources Articles cited in this review were obtained from PubMed in English from 2000 to 2014,and the search string included keywords such as feto-maternal tolerance,dendritic cells,macrophage,T regulatory cells,natural killer cells,cytokines and hormone.Study selection Articles regarding altered maternal immune response,including the proliferation and differentiation of the altered cells,and the production of cytokines and regulation of hormones in the feto-maternal interface were retrieved,reviewed and analyzed.Results The changes in immune cells and cytokines in the local uterine microenvironment and peripheral blood are correlated with the establishment of feto-maternal tolerance.The endocrine system regulates the maternal immune system,promoting modifications during pregnancy.In these regulatory networks,every factor is indispensible for others.Conclusions The integration and balance of these immune factors during pregnancy give rise to an environment that enables the fetus to escape rejection by the maternal immune system.This progress is complicated,and needs more comprehensive exploration and explanation.

  2. The aging of the immune system

    Grubeck-Loebenstein, B.; Weinberger, B.; Weiskopf, D.

    2009-01-01

    An age-related decline in immune functions, referred to as immunosenescence, is partially responsible for the increased prevalence and severity of infectious diseases, and the low efficacy of vaccination in elderly persons. Immunosenescence is characterized by a decrease in cell-mediated immune function as well as by reduced humoral immune responses. Age-dependent defects in T- and B-cell function coexist with age-related changes within the innate immune system. In this review, we discuss the...

  3. Diversity of CRISPR-Cas immune systems and molecular machines

    Barrangou, Rodolphe

    2015-01-01

    Bacterial adaptive immunity hinges on CRISPR-Cas systems that provide DNA-encoded, RNA-mediated targeting of exogenous nucleic acids. A plethora of CRISPR molecular machines occur broadly in prokaryotic genomes, with a diversity of Cas nucleases that can be repurposed for various applications.

  4. The immune system and the impact of zinc during aging

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  5. Immune System Inspired Strategies for Distributed Systems

    Banerjee, Soumya

    2010-01-01

    Many components of the IS are constructed as modular units which do not need to communicate with each other such that the number of components increases but the size remains constant. However, a sub-modular IS architecture in which lymph node number and size both increase sublinearly with body size is shown to efficiently balance the requirements of communication and migration, consistent with experimental data. We hypothesize that the IS architecture optimizes the tradeoff between local search for pathogens and global response using antibodies. Similar to natural immune systems, physical space and resource are also important constraints on Artificial Immune Systems (AIS), especially distributed systems applications used to connect low-powered sensors using short-range wireless communication. AIS problems like distributed robot control will also require a sub-modular architecture to efficiently balance the tradeoff between local search for a solution and global response or proliferation of the solution betwee...

  6. Inside the mucosal immune system.

    Jerry R McGhee

    Full Text Available An intricate network of innate and immune cells and their derived mediators function in unison to protect us from toxic elements and infectious microbial diseases that are encountered in our environment. This vast network operates efficiently by use of a single cell epithelium in, for example, the gastrointestinal (GI and upper respiratory (UR tracts, fortified by adjoining cells and lymphoid tissues that protect its integrity. Perturbations certainly occur, sometimes resulting in inflammatory diseases or infections that can be debilitating and life threatening. For example, allergies in the eyes, skin, nose, and the UR or digestive tracts are common. Likewise, genetic background and environmental microbial encounters can lead to inflammatory bowel diseases (IBDs. This mucosal immune system (MIS in both health and disease is currently under intense investigation worldwide by scientists with diverse expertise and interests. Despite this activity, there are numerous questions remaining that will require detailed answers in order to use the MIS to our advantage. In this issue of PLOS Biology, a research article describes a multi-scale in vivo systems approach to determine precisely how the gut epithelium responds to an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α, given by the intravenous route. This article reveals a previously unknown pathway in which several cell types and their secreted mediators work in unison to prevent epithelial cell death in the mouse small intestine. The results of this interesting study illustrate how in vivo systems biology approaches can be used to unravel the complex mechanisms used to protect the host from its environment.

  7. Learning and Memory... and the Immune System

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  8. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    Pierre Olivier Lang

    2015-03-01

    Full Text Available Vitamin D (VitD, which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.

  9. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More.

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications. PMID:26605642

  10. Clinical evaluation of systemic and local immune responses in cancer: time for integration

    Gutkin, Dmitriy W.; Shurin, Michael R.

    2013-01-01

    The immune system has a dual role in cancer development and progression. On the one hand, it can eradicate emerging malignant cells, but on the other hand, it can actively promote growth of malignant cells, their invasive capacities and their ability to metastasize. Immune cells with predominantly anti-tumor functionality include cells of the innate immune system, such as natural killer cells, and cells of adaptive immunity, such as conventional dendritic cells and cytotoxic T lymphocytes. Im...

  11. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  12. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  13. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.).

    Rodenas, M C; Cabas, I; Abellán, E; Meseguer, J; Mulero, V; García-Ayala, A

    2015-12-01

    There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity. PMID:26234710

  14. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  15. Theory of an immune system retrovirus.

    Cooper, L N

    1986-01-01

    Human immunodeficiency virus (HIV; formerly known as human T-cell lymphotropic virus type III/lymphadenopathy-associated virus, HTLV-III/LAV), the retrovirus that infects T4-positive (helper) T cells of the immune system, has been implicated as the agent responsible for the acquired immune deficiency syndrome. In this paper, I contrast the growth of a "normal" virus with what I call an immune system retrovirus: a retrovirus that attacks the T4-positive T cells of the immune system. I show tha...

  16. Adaptive protection algorithm and system

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  17. Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm

    People have paid more attention to enhancing voltage stability margin since voltage collapses happened in some power systems recently. This paper proposes an optimal reactive power flow (ORPF) incorporating static voltage stability based on a multi-objective adaptive immune algorithm (MOAIA). The main idea of the proposed algorithm is to add two parts to an existing immune algorithm. The first part defines both partial affinity and global affinity to evaluate the antibody affinity to the multi-objective functions. The second part uses adaptive crossover, mutation and clone rates for antibodies to maintain the antibodies diversity. Hence, the proposed algorithm can achieve a dynamic balance between individual diversity and population convergence. The paper describes ORPF's multi-objective functional mathematical model and the constraint conditions. The problems associated with the antibody are also discussed in detail. The proposed method has been tested in the IEEE-30 system and compared with IGA (immune genetic algorithm). The results show that the proposed algorithm has improved performance over the IGA

  18. Nutritional support for the infant's immune system

    Niers, L.; Stasse-Wolthuis, M.; Rombouts, F.M.; Rijkers, G.T.

    2007-01-01

    Newborn babies possess a functional but immature immune system as a defense against a world teeming with microorganisms. Breast milk contains a number of biological, active compounds that support the infant's immune system. These include secretory immunoglobulin A (IgA), which confers specific prote

  19. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  20. Feeding Our Immune System: Impact on Metabolism

    Isabelle Wolowczuk

    2008-01-01

    Full Text Available Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy.

  1. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows.

    Silva, P R B; Machado, K S; Da Silva, D N Lobão; Moraes, J G N; Keisler, D H; Chebel, R C

    2015-07-01

    The aim of this experiment was to determine effects of treating peripartum dairy cows with body condition score ≥3.75 with recombinant bovine somatotropin (rbST) on immune, inflammatory, and metabolic responses. Holstein cows (253±1d of gestation) were assigned randomly to 1 of 3 treatments: untreated control (n=53), rbST87.5 (n=56; 87.5mg of rbST), and rbST125 (n=57; 125mg of rbST). Cows in the rbST87.5 and rbST125 treatments received rbST weekly from -21 to 28d relative to calving. Growth hormone, insulin-like growth factor 1, haptoglobin, tumor necrosis factor α, nonesterified fatty acids, β-hydroxybutyrate, glucose, and cortisol concentrations were determined weekly from -21 to 21d relative to calving. Blood sampled weekly from -14 to 21d relative to calving was used for hemogram and polymorphonuclear leukocyte (PMNL) expression of adhesion molecules, phagocytosis, and oxidative burst. Cows were vaccinated with ovalbumin at -21, -7, and 7d relative to calving, and blood was collected weekly from -21 to 21d relative to calving to determine IgG anti-ovalbumin concentrations. A subsample of cows had liver biopsied -21, -7, and 7d relative to calving to determine total lipids, triglycerides, and glycogen content. Growth hormone concentrations prepartum (control=11.0±1.2, rbST87.5=14.1±1.2, rbST125=15.1±1.3ng/mL) and postpartum (control=14.4±1.1, rbST87.5=17.8±1.2, rbST125=21.8±1.1ng/mL) were highest for rbST125 cows. Cows treated with rbST had higher insulin-like growth factor 1 concentrations than control cows (control=110.5±4.5, rbST87.5=126.2±4.5, rbST125=127.2±4.5ng/mL) only prepartum. Intensity of L-selectin expression was higher for rbST125 than for control and rbST87.5 cows [control=3,590±270, rbST87.5=3,279±271, rbST125=4,371±279 geometric mean fluorescence intensity (GMFI)] in the prepartum period. The PMNL intensities of phagocytosis (control=3,131±130, rbST87.5=3,391±133, rbST125=3,673±137 GMFI) and oxidative burst (control=9,588±746

  2. Adaptive security systems -- Combining expert systems with adaptive technologies

    The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting

  3. [Olive oil, immune system and infection].

    Puertollano, M A; Puertollano, E; Alvarez de Cienfuegos, G; de Pablo Martínez, Manuel Antonio

    2010-01-01

    Polyunsaturated fatty acids contribute to the suppression of immune system functions. For this reason, n-3 polyunsaturated fatty acids have been applied in the resolution of inflammatory disorders. Although the inhibition of several immune functions promotes beneficial effects on the human health, this state may lead to a significant reduction of immune protection against infectious microorganisms (viruses, bacteria, fungi and parasites). Nevertheless, less attention has been paid to the action of olive oil in immunonutrition. Olive oil, a main constituent of the Mediterranean diet, is capable of modulating several immune functions, but it does not reduce host immune resistance to infectious microorganisms. Based on these criteria, we corroborate that olive oil administration may exert beneficial effects on the human health and especially on immune system, because it contributes to the reduction of typical inflammatory activity observed in patients suffering from autoimmune disorders, but without exacerbating the susceptibility to pathogen agents. The administration of olive oil in lipid emulsions may exert beneficial effects on the health and particularly on the immune system of immunocompromised patients. Therefore, this fact acquires a crucial importance in clinical nutrition. This review contributes to clarify the interaction between the administration of diets containing olive oil and immune system, as well as to determine the effect promoted by this essential component of Mediterranean diet in the immunomodulation against an infectious agent. PMID:20204249

  4. The Molecules of the Immune System.

    Tonegawa, Susumu

    1985-01-01

    The immune system includes the most diverse proteins known because they are encoded by hundreds of scattered gene fragments which can be combined in millions or billions of ways. Events of immune response, binding of antigens, antibody structure, T-cell receptors, and other immunologically-oriented topics are discussed. (DH)

  5. Mannose-binding lectin: The Dr. Jekyll and Mr. Hyde of the innate immune system

    Bouwman, Lee Hans

    2006-01-01

    The scope of the current thesis is to obtain insight in immunological aspects of transplantation and diabetes. This thesis underscores the current concept of collaboration between the innate and adaptive immune system by showing close interactions between both immune systems. Mannose binding lectin as a major recognition molecule of the lectin pathway and as a key protein of the immune system was studied in relation to its functional characteristics. Appreciating the Jekyll-and-Hyde character...

  6. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  7. STSV2 as a Model Crenarchaeal Virus for Studying Virus-Host Interactions and CRISPR-Cas Adaptive Immunity

    León Sobrino, Carlos

    archaea harbour their own viruses, which constitute an extraordinarily diverse group with exotic morphologies and unique features. Prokaryotes possess a variety of defence mechanisms. The CRISPR-Cas adaptive immune system is of great importance for archaea –84% of them possess it, compared to 45% for...... generate immune memory by inserting in its own genome short invader-derived DNA fragments forming a database –the CRISPR locus. Little was known about this system until recent years, and the generation of immune memory has been the most elusive step. In this work, the interactions of the spindle......-shaped monocaudavirus STSV2 and its host Sulfolobus islandicus REY15A were studied. This interaction produced, after several days, de novo CRISPR adaptation – that is, without any previous memory that can act as a trigger. We employed transcriptome sequencing to characterise the long-term progression of this...

  8. Security framework for networked storage system based on artificial immune system

    Huang, Jianzhong; Xie, Changsheng; Zhang, Chengfeng; Zhan, Ling

    2007-11-01

    This paper proposed a theoretical framework for the networked storage system addressing the storage security. The immune system is an adaptive learning system, which can recognize, classify and eliminate 'non-self' such as foreign pathogens. Thus, we introduced the artificial immune technique to the storage security research, and proposed a full theoretical framework for storage security system. Under this framework, it is possible to carry out the quantitative evaluation for the storage security system using modeling language of artificial immune system (AIS), and the evaluation can offer security consideration for the deployment of networked storage system. Meanwhile, it is potential to obtain the active defense technique suitable for networked storage system via exploring the principle of AIS and achieve a highly secure storage system with immune characteristic.

  9. Viral subversion of the immune system

    Full text: The continuous interactions between hosts and viruses during their coevolution have not only shaped the immune system but also the counter measures used by viruses. Studies of the last decade have described the diverse array of pathways and molecular targets used by viruses to elude immune detection and destruction. These include targeting of pathways for major histocompatibility complex restricted antigen presentation; natural killer cell recognition, apoptosis, cytokine signalling, humoral immune responses and complement activation. In this presentation, an overview of the immune-evasion mechanisms described for viruses to date, emphasizing on the importance in understanding the interaction between viruses and the immune system to improve our ability to manipulate and exploit viruses will be given. (author)

  10. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E.; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-...

  11. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  12. Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses.

    Rajani, Karishma; Parrish, Christopher; Kottke, Timothy; Thompson, Jill; Zaidi, Shane; Ilett, Liz; Shim, Kevin G; Diaz, Rosa-Maria; Pandha, Hardev; Harrington, Kevin; Coffey, Matt; Melcher, Alan; Vile, Richard

    2016-02-01

    Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy. PMID:26310630

  13. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli

    Sapranauskas, Rimantas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-01-01

    The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elem...

  14. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  15. Host adaptive immunity deficiency in severe pandemic influenza

    Bermejo-Martin, Jesus F; Martin-Loeches, Ignacio; Rello, Jordi; Antón, Andres; Almansa, Raquel; Xu, Luoling; Lopez-Campos, Guillermo; Pumarola, Tomás; Ran, Longsi; Ramirez, Paula; Banner, David; Cheuk Ng, Derek; Socias, Lorenzo; Loza, Ana; Andaluz, David

    2010-01-01

    Introduction Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. Methods We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analy...

  16. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  17. Immune System and Its Link to Rheumatic Diseases

    ... Disease The Immune System & Its Link to Rheumatic Disease The Immune System and Its Link to Rheumatic Disease Fast ... cells. This leads to illnesses called autoimmune (self-immune) diseases such as rheumatoid arthritis (inflammation of the joints), ...

  18. Innate Immune System and Preeclampsia

    Perez-Sepulveda, Alejandra; Torres, Maria Jose; Khoury, Maroun; Illanes, Sebastian E

    2014-01-01

    Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. Preeclampsia (PE) has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1/Th2/Th17 and regulatory T-cells paradigm and where dendritic cells co...

  19. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses.

    Lian, Jeffrey; Luster, Andrew D

    2015-10-01

    The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN. PMID:26067148

  20. Obesity leptin and the immune system

    Padiotis. K.

    2011-04-01

    Full Text Available The increasing prevalence of obesity in developed and developing countries raises a major health concern due to the fact that obesity and nutrition are associated with impaired immune responses. Overconsumption of nutrients alters several functions of the immune defence mechanisms leading to severe infection and chronic diseases. The hormone leptin, known to regulate energy balance has been proved to activate several components of signalling pathways having thus immunoregulatory activity. The aim of this paper is to present the connections between obesity, immune system mechanisms and the role of the adipocyte hormone leptin

  1. The immune system in space and microgravity

    Sonnenfeld, Gerald

    2002-01-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  2. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  3. Viral subversion of the immune system

    The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines. (author)

  4. Adaptive, dynamic, and resilient systems

    Suri, Niranjan

    2015-01-01

    As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r

  5. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  6. Immune regulation in gut and cord : opportunities for directing the immune system

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the

  7. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria

    Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2012-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system in...

  8. The immune system vs. Pseudomonas aeruginosa biofilms

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    Ilya Metchnikoff and Paul Ehrlich were awarded the Nobel price in 1908. Since then, numerous studies have unraveled a multitude of mechanistically different immune responses to intruding microorganisms. However, in the vast majority of these studies, the underlying infectious agents have appeared....... Although the present review on the immune system vs. biofilm bacteria is focused on Pseudomonas aeruginosa (mainly because this is the most thoroughly studied), many of the same mechanisms are also seen with biofilm infections generated by other microorganisms....

  9. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  10. Immunogenomics: towards a digital immune system.

    Beck, Stephan

    2003-01-01

    One of the major differences that set apart vertebrates from non-vertebrates is the presence of a complex immune system. Over the past 400-500 million years, many novel immune genes and gene families have emerged and their products form sophisticated pathways providing protection against most pathogens. The Human Genome Project has laid the foundation to study these genes and pathways in unprecedented detail. Members of the immunoglobulin (Ig) superfamily alone were found to make up over 2% of human genes possibly constituting the largest gene family in the human genome. A subgroup of these human immune genes, those (among others) involved in antigen processing and presentation, are encoded in a single region, the major histocompatibility complex (MHC) on the short arm of chromosome 6. My laboratory has a long-standing interest in understanding the molecular organization and evolution of the MHC. To this end, we have been generating a range of MHC genomic resources that we make available in the form of maps and databases. Much of the complex data of the immune system can be reduced to binary (on/off) information that can easily be made available and analysed by bioinformatics approaches, thus contributing to better understand immune function via a 'digital immune system'. PMID:14712940

  11. SANA - Security Analysis in Internet Traffic through Artificial Immune Systems

    Hilker, Michael

    2008-01-01

    The Attacks done by Viruses, Worms, Hackers, etc. are a Network Security-Problem in many Organisations. Current Intrusion Detection Systems have significant Disadvantages, e.g. the need of plenty of Computational Power or the Local Installation. Therefore, we introduce a novel Framework for Network Security which is called SANA. SANA contains an artificial Immune System with artificial Cells which perform certain Tasks in order to to support existing systems to better secure the Network against Intrusions. The Advantages of SANA are that it is efficient, adaptive, autonomous, and massively-distributed. In this Article, we describe the Architecture of the artificial Immune System and the Functionality of the Components. We explain briefly the Implementation and discuss Results.

  12. A simplified adaptive optics system

    Ivanescu, Liviu; Racine, René; Nadeau, Daniel

    2003-02-01

    Affordable adaptive optics on small telescopes allow to introduce the technology to a large community and provide opportunities to train new specialists in the field. We have developed a low order, low cost adaptive optics system for the 1.6m telescope of the Mont Megantic Observatory. The system corrects tip-tilt, focus, astigmatisms and one trefoil term. It explores a number of new approaches. The sensor receives a single out-of-focus image of the reference star. The central obstruction of the telescope can free the focus detection from the effect of seeing and allows a very small defocus. The deformable mirror is profiled so as to preserve a parabolic shape under pressure from actuators located at its edge. A separate piezoelectric platform drives the tilt mirror.

  13. Three sided complex adaptative systems

    D'Hulst, R

    1999-01-01

    We introduce two three sided adaptative systems as toy models to mimic the exchange of commodities between buyers and sellers. These models are simple extensions of the minority game, exhibiting similar behaviour as well as some new features. The main difference between our two models is that in the first the three sides are equivalent while in the second, one choice appears as a compromise between the two other sides. Both models are investigated numerically and compared with the original minority game.

  14. Computerized adaptive testing item selection in computerized adaptive learning systems

    Eggen, T.J.H.M.; Veldkamp, B.P.

    2012-01-01

    Item selection methods traditionally developed for computerized adaptive testing (CAT) are explored for their usefulness in item-based computerized adaptive learning (CAL) systems. While in CAT Fisher information-based selection is optimal, for recovering learning populations in CAL systems item selection based on Kullback-Leibner information is an alternative

  15. Stromal cell contributions to the homeostasis and functionality of the immune system

    Mueller, Scott N.; Germain, Ronald N.

    2009-01-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance, and effective development of adaptive immunity take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in multiple aspects of immune cell migration, activation and survival. In ...

  16. Immune system alterations in amyotrophic lateral sclerosis

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple...... cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other and...... contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might...

  17. Neural Control of the Immune System

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  18. Oxazolone-induced contact hypersensitivity reduces lymphatic drainage but enhances the induction of adaptive immunity.

    David Aebischer

    Full Text Available Contact hypersensitivity (CHS induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC migration to draining lymph nodes (dLNs. On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40 and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function.

  19. Artificial immune system applications in computer security

    Tan, Ying

    2016-01-01

    This book provides state-of-the-art information on the use, design, and development of the Artificial Immune System (AIS) and AIS-based solutions to computer security issues. Artificial Immune System: Applications in Computer Security focuses on the technologies and applications of AIS in malware detection proposed in recent years by the Computational Intelligence Laboratory of Peking University (CIL@PKU). It offers a theoretical perspective as well as practical solutions for readers interested in AIS, machine learning, pattern recognition and computer security. The book begins by introducing the basic concepts, typical algorithms, important features, and some applications of AIS. The second chapter introduces malware and its detection methods, especially for immune-based malware detection approaches. Successive chapters present a variety of advanced detection approaches for malware, including Virus Detection System, K-Nearest Neighbour (KNN), RBF networ s, and Support Vector Machines (SVM), Danger theory, ...

  20. Effects of microgravity on the immune system

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  1. Certification Considerations for Adaptive Systems

    Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric

    2015-01-01

    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.

  2. Chronic Schistosome Infection Leads to Modulation of Granuloma Formation and Systemic Immune Suppression

    Steven K. Lundy

    2013-02-01

    Full Text Available Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.

  3. Evidence of the adaptive evolution of immune genes in chicken

    Cormican Paul; Downing Tim; O'Farrelly Cliona; Bradley Daniel G; Lloyd Andrew T

    2009-01-01

    Abstract The basis for understanding the characteristics of gene functional categories in chicken has been enhanced by the ongoing sequencing of the zebra finch genome, the second bird species to be extensively sequenced. This sequence provides an avian context for examining how variation in chicken has evolved since its divergence from its common ancestor with zebra finch as well as well as a calibrating point for studying intraspecific diversity within chicken. Immune genes have been subjec...

  4. Adaptive Intrusion Data System (AIDS)

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  5. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster.

    Brian P Lazzaro

    2008-03-01

    Full Text Available Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history "balance" between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations.

  6. Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.

    Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L

    2016-07-01

    Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. PMID:27143751

  7. Safety of Probiotic Escherichia coli Strain Nissle 1917 Depends on Intestinal Microbiota and Adaptive Immunity of the Host▿

    Gronbach, Kerstin; Eberle, Ute; Müller, Martina; Ölschläger, Tobias A.; Dobrindt, Ulrich; Leithäuser, Frank; Niess, Jan Hendrik; Döring, Gerd; Reimann, Jörg; Autenrieth, Ingo B.; Frick, Julia-Stefanie

    2010-01-01

    Probiotics are viable microorganisms that are increasingly used for treatment of a variety of diseases. Occasionally, however, probiotics may have adverse clinical effects, including septicemia. Here we examined the role of the intestinal microbiota and the adaptive immune system in preventing translocation of probiotics (e.g., Escherichia coli Nissle). We challenged C57BL/6J mice raised under germfree conditions (GF-raised C57BL/6J mice) and Rag1−/− mice raised under germfree conditions (GF-...

  8. Adaptive Spam Detection Inspired by a Cross-Regulation Model of Immune Dynamics: A Study of Concept Drift

    Abi-Haidar, Alaa; Rocha, Luis M

    2008-01-01

    This paper proposes a novel solution to spam detection inspired by a model of the adaptive immune system known as the crossregulation model. We report on the testing of a preliminary algorithm on six e-mail corpora. We also compare our results statically and dynamically with those obtained by the Naive Bayes classifier and another binary classification method we developed previously for biomedical text-mining applications. We show that the cross-regulation model is competitive against those a...

  9. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis—a Fairy Tale No More

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that l...

  10. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  11. Innate lymphoid cell function in the context of adaptive immunity.

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  12. GATA-3 Function in Innate and Adaptive Immunity.

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P.; Hendriks, Rudi W

    2014-01-01

    : The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells,...

  13. Adaptive immune-genetic algorithm for global optimization to multivariable function

    2007-01-01

    An adaptive immune-genetic algorithm(AIGA)is proposed to avoid premature convergence and guarantee the diversity of the population.Rapid immune response (secondary response),adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability,greatly increase the converging speed,and decrease locating the local maxima due to the premature convergence.The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly,guarantees the diversity,stability and good searching ability.

  14. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Full Text Available AM-based signaling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond...16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z..., Mocsai A. Immunol Lett. 2006 Apr 15;104(1-2):29-37. Epub 2005 Nov 28. (.png) (.svg) (.html) (.csml) Show IT...e (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  15. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  16. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  17. Towards Adaptive Spoken Dialog Systems

    Schmitt, Alexander

    2013-01-01

    In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and  accurate use.  Beginning with the foundations of machine learning and pattern recognition, this monograph examines how frequently users show negative emotions in spoken dialog systems and develop novel approaches to speech-based emotion recognition using hybrid approach to model emotions. The authors make use of statistical methods based on acoustic, linguistic and contextual features to examine the relationship between the interaction flow and the occurrence of emotions using non-acted  recordings several thousand real users from commercial and non-commercial SDS. Additionally, the authors present novel statistical methods that spot problems within a dialog based on interaction patterns. The approaches enable future SDS to offer m...

  18. The immune system of Cyprinid fish

    Rijkers, G.T.

    1980-01-01

    This study deals with several aspects of the immune system of cyprinid fish.Some observations on the development of cellular and humoral responsiveness in rosy barb (Barbus conchonius) are described in appendix I. A humoral anti-sheep red blood cell (SRBC) response was demonstrated in 3-4 months old

  19. Early development of immune system in pigs

    Šinkora, Jiří; Řeháková, Zuzana; Šinkora, Marek; Cukrowska, Božena; Tlaskalová, Helena

    Uppsala: International Union of Immunological Societies, 2001, s. 42. [International Veterinary Immunology Symposium /6./. Uppsala (SE), 15.07.2001-20.07.2001] R&D Projects: GA ČR GA524/00/1280; GA MŠk ME 339 Keywords : immune system Subject RIV: EC - Immunology

  20. Prion Disease and the Innate Immune System

    Barry M. Bradford

    2012-11-01

    Full Text Available Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis.

  1. A New Method for Fastening the Convergence of Immune Algorithms Using an Adaptive Mutation Approach

    Ahmad F. Al-Ajlouni; Nabil Sabor; Sabah M. Ahmed; Mohammed Abo-Zahhad

    2012-01-01

    This paper presents a new adaptive mutation approach for fastening the convergence of immune algorithms (IAs). This method is adopted to realize the twin goals of maintaining diversity in the population and sustaining the convergence capacity of the IA. In this method, the mutation rate (pm) is adaptively varied depending on the fitness values of the solutions. Solutions of high fitness are protected, while solutions with sub-average fitness are total...

  2. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  3. Role of SHIP-1 in the adaptive immune responses to aeroallergen in the airway.

    Sukit Roongapinun

    Full Text Available BACKGROUND: Th2-dominated inflammatory response in the airway is an integral component in the pathogenesis of allergic asthma. Accumulating evidence supports the notion that the phosphoinositide 3-kinase (PI3K pathway is involved in the process. We previously reported that SHIP-1, a negative regulator of the PI3K pathway, is essential in maintaining lung immunohomeostasis, potentially through regulation of innate immune cells. However, the function of SHIP-1 in adaptive immune response in the lung has not been defined. We sought to determine the role of SHIP-1 in adaptive immunity in response to aeroallergen stimulation in the airway. METHODOLOGY/PRINCIPAL FINDINGS: SHIP-1 knockout (SHIP-1-/- mice on BALB/c background were immunized with ovalbumin (OVA plus aluminum hydroxide, a strong Th2-inducing immunization, and challenged with OVA. Airway and lung inflammation, immunoglobulin response, Th2 cytokine production and lymphocyte response were analyzed and compared with wild type mice. Even though there was mild spontaneous inflammation in the lung at baseline, SHIP-1-/- mice showed altered responses, including less cell infiltration around the airways but more in the parenchyma, less mucus production, decreased Th2 cytokine production, and diminished serum OVA-specific IgE, IgG1, but not IgG2a. Naïve and OVA sensitized SHIP-1-/- T cells produced a lower amount of IL-4. In vitro differentiated SHIP-1-/- Th2 cells produced less IL-4 compared to wild type Th2 cells upon T cell receptor stimulation. CONCLUSIONS/SIGNIFICANCE: These findings indicate that, in contrast to its role as a negative regulator in the innate immune cells, SHIP-1 acts as a positive regulator in Th2 cells in the adaptive immune response to aeroallergen. Thus any potential manipulation of SHIP-1 activity should be adjusted according to the specific immune response.

  4. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis.

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G; Muenzer, Jared T; Ferguson, Thomas A; Chang, Katherine; Osborne, Dale F; Clark, Andrew T; Coopersmith, Craig M; McDunn, Jonathan E; Hotchkiss, Richard S

    2010-02-01

    IL-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2 x 2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-gamma, as well as the percentage of NK cells that produced IFN-gamma. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  5. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    Jami L. Dixon

    2014-02-01

    Full Text Available Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1 similar trends in farming system evolution have had differential impacts on the diversity of farming systems; (2 trends have contributed to the erosion of informal social and cultural institutions and an increasing dependence on formal institutions; and (3 trade-offs between components of adaptive capacity are made at the farm-scale, thus influencing farming system adaptive capacity. To identify the actual impacts of future climate change and variability, it is important to recognize the dynamic nature of adaptation. In practice, areas identified for further adaptation support include: shift away from one-size-fits-all approach the identification and integration of appropriate modern farming method; a greater focus on building inclusive formal and informal institutions; and a more nuanced understanding regarding the roles and decision-making processes of influential, but external, actors. More research is needed to understand farm-scale trade-offs and the resulting impacts across spatial and temporal scales.

  6. Inflammation and Immune System Alterations in Frailty

    Yao, Xu; Li, Huifen; Leng, Sean X.

    2011-01-01

    Frailty is an important geriatric syndrome characterized by multi-system dysregulation. Substantial evidence suggests heightened inflammatory state and significant immune system alterations in frailty. A heightened inflammatory state is marked by increases in levels of inflammatory molecules (IL-6 and CRP) and counts of white blood cell and its subpopulations, which may play an important role in the pathogenesis of frailty, directly or through its detrimental influence to other physiologic sy...

  7. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activ...

  8. Surname Inherited Algorithm Research Based on Artificial Immune System

    Jing Xie

    2013-06-01

    Full Text Available To keep the diversity of antibodies in artificial immune system evolution process, this paper puts forward a kind of increase simulation surname inheritance algorithm based on the clonal selection algorithm, and identification and forecast the Vibration Data about CA6140 horizontal  lathe machining slender shaft workpiece prone . The results show that the algorithm has the characteristics of flexible application, strong adaptability, an effective approach to improve efficiency of the algorithm, a good performance of global searching and broad application prospect.

  9. Sympathetic neural modulation of the immune system

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125iododeoxyuridine (125IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  10. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko; Gilfillan, Alasdair M

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differe...

  11. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  12. Dysregulation of adaptive immune responses in complement C3-deficient patients

    Pekkarinen, Pirkka T.; Heikkila, Nelli; Kisand, Kai; Peterson, Paert; Botto, Marina; Daha, Mohamed R.; Drouet, Christian; Isaac, Lourdes; Helminen, Merja; Haahtela, Tari; Meri, Seppo; Jarva, Hanna; Arstila, T. Petteri

    2015-01-01

    In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humora

  13. Query Adaptive Image Retrieval System

    Amruta Dubewar

    2014-03-01

    Full Text Available Images play a crucial role in various fields such as art gallery, medical, journalism and entertainment. Increasing use of image acquisition and data storage technologies have enabled the creation of large database. So, it is necessary to develop appropriate information management system to efficiently manage these collections and needed a system to retrieve required images from these collections. This paper proposed query adaptive image retrieval system (QAIRS to retrieve images similar to the query image specified by user from database. The goal of this system is to support image retrieval based on content properties such as colour and texture, usually encoded into feature vectors. In this system, colour feature extracted by various techniques such as colour moment, colour histogram and autocorrelogram and texture feature extracted by using gabor wavelet. Hashing technique is used to embed high dimensional image features into hamming space, where search can be performed by hamming distance of compact hash codes. Depending upon minimum hamming distance it returns the similar image to query image.

  14. Immune regulation in gut and cord : opportunities for directing the immune system

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the microbiota has been a challenge for scientist and clinicians for several decades. Especially atopic disorders like asthma and eczema have been subject to prophylactic trials with probiotics, with ...

  15. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  16. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  17. Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System

    Akira Inoue; Ming-Cong Deng

    2006-01-01

    This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.

  18. Archaeal CRISPR-based immune systems

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage of...... foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence for...... CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  19. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    Cooper, EL; Overstreet, N

    2014-01-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among ...

  20. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  1. Resolvins as Regulators of the Immune System

    Hiroyuki Seki; Takaharu Sasaki; Tomomi Ueda; Makoto Arita

    2010-01-01

    Inflammation is the first response of the immune system to infection or injury, but excessive or inappropriate inflammatory responses contribute to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of ω-3 polyunsaturated fatty acids (i.e., eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) indicate that they have beneficial impact on these diseases, although the mechanisms are poorly understood at the molecular level. In this decade, it has b...

  2. Molecular evolution of the vertebrate immune system

    Bartl, S; Baltimore, D; Weissman, I L

    1994-01-01

    An understanding of the evolution of vertebrate immunity is slowly emerging from studies of chordates that share distant ancestors with mammals. In higher vertebrates, such as birds and mammals, we know that two receptor systems are operative. B cells use immunoglobulins to bind foreign agents (the functionally defined antigens). T cells use T-cell receptors (TCRs) to respond to antigen in the form of processed peptides bound to cell surface proteins encoded in the major histocompatibility...

  3. Central Nervous System Immune Reconstitution Inflammatory Syndrome

    Bahr, Nathan; Boulware, David R; Marais, Suzaan; Scriven, James; Wilkinson, Robert J.; Meintjes, Graeme

    2013-01-01

    Central nervous system immune reconstitution inflammatory syndrome (CNS-IRIS) develops in 9 %–47 % of persons with HIV infection and a CNS opportunistic infection who start antiretroviral therapy and is associated with a mortality rate of 13 %–75 %. These rates vary according to the causative pathogen. Common CNS-IRIS events occur in relation to Cryptococcus, tuberculosis (TB), and JC virus, but several other mycobacteria, fungi, and viruses have been associated with IRIS. IRIS symptoms often...

  4. The Immune System in Irritable Bowel Syndrome

    Barbara, Giovanni; Cremon, Cesare; Carini, Giovanni; Bellacosa, Lara; Zecchi, Lisa; De Giorgio, Roberto; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2011-01-01

    The potential relevance of systemic and gastrointestinal immune activation in the pathophysiology and symptom generation in the irritable bowel syndrome (IBS) is supported by a number of observations. Infectious gastroenteritis is the strongest risk factor for the development of IBS and increased rates of IBS-like symptoms have been detected in patients with inflammatory bowel disease in remission or in celiac disease patients on a gluten free diet. The number of T cells and mast cells in the...

  5. The Effect of Sound on the Immune System

    Mojgan Shaygan

    1999-01-01

    The immune system protects body against disturbing factors such as pathogens and tumor cells by means of its special cell and biological structures. It has been divided based on its components and soluble factors into two groups of specific and non-specific immune system. Since sound is considered as a stressor it can affect dramatically on the immune system. Stress caused by noise can reduce the immune system response to chemical stimulators have decreased. In Stead, deep relaxation has cons...

  6. ADAPTIVE CAPACITY OF STUDENTS’ CARDIOVASCULAR SYSTEM

    Arabadzhi Liliya Ivanivna

    2012-01-01

    Data about adaptive capacity of cardiovascular system of 106 students were analyzed. Using the method of R.M. Bayevskiy, current adaptive capacity of students’ organisms was estimated. The number of students with stress adaptation mechanisms significantly increased with their age (from 17 to 23 years). In our opinion, this could be explained by negative impact of urbanization, significant learning overload and lack of physical activity among the students. Dependence of the adaptive capacity...

  7. FEATURES OF LOGISTIC SYSTEM ADAPTIVE MANAGEMENT

    Natalya VOZNENKO; Teodora ROMAN

    2015-01-01

    The study presents literature survey on enterprise logistic system adaptive management place and structure in the general enterprise management system. The theoretical basics of logistic system functioning, levels of its management and its effectiveness had been investigated. The role of adaptive management and its types had been scrutinized. The necessity of creating company’s adaptive regulator such as its economic mechanism had been proved.

  8. Resolvins as Regulators of the Immune System

    Hiroyuki Seki

    2010-01-01

    Full Text Available Inflammation is the first response of the immune system to infection or injury, but excessive or inappropriate inflammatory responses contribute to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of ω-3 polyunsaturated fatty acids (i.e., eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA] indicate that they have beneficial impact on these diseases, although the mechanisms are poorly understood at the molecular level. In this decade, it has been revealed that EPA and DHA are enzymatically converted to bioactive metabolites in the course of acute inflammation and resolution. These metabolites were shown to regulate immune cell functions and to display potent anti-inflammatory actions both in vitro and in vivo. Because of their ability to resolve an acute inflammatory response, they are referred to as proresolving mediators, or resolvins. In this review, we provide an overview of the formation and actions of these lipid mediators.

  9. Adaptive feedback linearization of nonlinear SISO systems

    Gonzales, R. I.; Duarte-Mermoud, M. A.; Zagalak, Petr

    New Haven : Yale University, 2003, s. 160-169. [Workshop on Adaptive and Learning Systems /12./. Yale (US), 28.05.2003-30.05.2003] R&D Projects: GA ČR GA102/02/0204 Institutional research plan: CEZ:AV0Z1075907 Keywords : adaptive linearization * nonlinear systems * feedback linearization Subject RIV: BC - Control Systems Theory

  10. Systems immune monitoring in cancer therapy.

    Greenplate, Allison R; Johnson, Douglas B; Ferrell, P Brent; Irish, Jonathan M

    2016-07-01

    Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to

  11. Pregnancy Associated with Systemic Lupus Erythematosus: Immune Tolerance in Pregnancy and Its Deficiency in Systemic Lupus Erythematosus—An Immunological Dilemma

    Cristina Gluhovschi

    2015-01-01

    Full Text Available Pregnancy is a physiological condition that requires immune tolerance to the product of conception. Systemic lupus erythematosus (SLE is a disease with well-represented immune mechanisms that disturb immune tolerance. The association of pregnancy with systemic lupus erythematosus creates a particular immune environment in which the immune tolerance specific of pregnancy is required to coexist with alterations of the immune system caused by SLE. The main role is played by T regulatory (Treg cells, which attempt to regulate and adapt the immune system of the mother to the new conditions of pregnancy. Other components of the immune system also participate to maintain maternal-fetal immune tolerance. If the immune system of pregnant women with SLE is not able to maintain maternal immune tolerance to the fetus, pregnancy complications (miscarriage, fetal hypotrophy, and preterm birth or maternal complications (preeclampsia or activation of SLE, especially in conditions of lupus nephritis may occur. In certain situations this can be responsible for neonatal lupus. At the same time, it must be noted that during pregnancy, the immune system is able to achieve immune tolerance while maintaining the anti-infectious immune capacity of the mother. Immunological monitoring of pregnancy during SLE, as well as of the mother’s disease, is required. It is important to understand immune tolerance to grafts in transplant pathology.

  12. Prenatal Alcohol Exposure and the Developing Immune System

    Gauthier, Theresa W.

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensiv...

  13. Immune system as a target organ for toxicity.

    Bick, P H

    1982-01-01

    Recently, interest has centered on the immune system as a target organ for toxic effects. This seems a reasonable choice, since it can be argued that alterations induced in this system as a result of a toxic insult could lead to impaired immunity. Such an alteration may be manifest in altered disease susceptibility. Documenting toxic effects upon the immune system is a difficult task due to the multifaceted network of specialized cells that carry out immune functions. Because of this complexi...

  14. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  15. The Roles of Orphan Nuclear Receptors in the Development and Function of the Immune System

    Ivan Dzhagalov; Nu Zhang; You-Wen He

    2004-01-01

    Hormones and their receptors regulate cell growth, differentiation and apoptosis and also play important roles in immune function. Recent studies on the subfamily of the orphan nuclear receptors known as retinoid-acid related orphan receptors (ROR) have shed important insights on the roles of this group of nuclear proteins in the development and function of the immune system. RORα regulates inflammatory cytokine production in both innate and adaptive immune system while RORγ regulates the normal development of T lymphocyte repertoire and secondary lymphoid organs. Cellular & Molecular Immunology. 2004;1(6):401-407.

  16. The Roles of Orphan Nuclear Receptors in the Development and Function of the Immune System

    IvanDzhagalov; NuZhang; You-WenHe

    2004-01-01

    Hormones and their receptors regulate cell growth, differentiation and apoptosis and also play important roles in immune function. Recent studies on the subfamily of the orphan nuclear receptors known as retinoid-acid related orphan receptors (ROR) have shed important insights on the roles of this group of nuclear proteins in the development and function of the immune system. RORα regulates inflammatory cytokine production in both innate and adaptive immune system while RORγ, regulates the normal development of T lymphocyte repertoire and secondary lymphoid organs. Cellular & Molecular Immunology. 2004;1(6):401-407.

  17. The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice.

    Kai D Michel

    Full Text Available Hedgehog (Hh signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.

  18. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  19. Adaptive systems research in the NASA

    Montgomery, R.

    1973-01-01

    The past contributions of NASA to adaptive control technology are reviewed. The review places emphasis on aircraft applications although spacecraft and launch vehicle control applications are included. Particular emphasis is given to the adaptive control system used in the X-15 research aircraft. Problem areas that limited the realizable performance of this adaptive system are discussed. Current technological capabilities are used to extrapolate the present-day potential for adaptive flight control. Specifically, the potential created by use of the modern high-speed digital computer in flight control is discussed. Present plans for research in digital adaptive control systems for the NASA F8-C digital fly-by-wire program are presented. These plans are currently envisioned to include research in at least two types of adaptive controls, the system identification/on-line design type, and the model reference type.

  20. 'Movie Recommendation Systems Using An Artificial Immune System'

    Chen, Qi; Aickelin, Uwe

    2004-01-01

    We apply the Artificial Immune System (AIS) technology to the Collaborative Filtering (CF) technology when we build the movie recommendation system. Two different affinity measure algorithms of AIS, Kendall tau and Weighted Kappa, are used to calculate the correlation coefficients for this movie recommendation system. From the testing we think that Weighted Kappa is more suitable than Kendall tau for movie problems.

  1. Modeling Power Systems as Complex Adaptive Systems

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  2. Artificial Immune System for Recognizing Patterns

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  3. Hypo-gravity and immune system effects

    Carter, Paul D.; Barnes, Frank

    1990-01-01

    Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.

  4. Adaptive passive equivalence of uncertain Lü system

    Qi Dong-Lian

    2006-01-01

    An adaptive passive strategy for controlling uncertain Lü system is proposed. Since the uncertain Lü system is minimum phase and the uncertain parameters are from a bounded compact set, the essential conditions are studied by which uncertain Lü system could be equivalent to a passive system, and the adaptive control law is given. Using passive theory, the uncertain Lü system could be globally asymptotically stabilized at different equilibria by the smooth state feedback.

  5. Adaptive Spam Detection Inspired by a Cross-Regulation Model of Immune Dynamics: A Study of Concept Drift

    Abi-Haidar, Alaa; 10.1007/978-3-540-85072-4_4

    2008-01-01

    This paper proposes a novel solution to spam detection inspired by a model of the adaptive immune system known as the crossregulation model. We report on the testing of a preliminary algorithm on six e-mail corpora. We also compare our results statically and dynamically with those obtained by the Naive Bayes classifier and another binary classification method we developed previously for biomedical text-mining applications. We show that the cross-regulation model is competitive against those and thus promising as a bio-inspired algorithm for spam detection in particular, and binary classification in general.

  6. An Artificial Immune System Model for Multi-Agents Resource Sharing in Distributed Environments

    Chingtham, Tejbanta Singh; Ghose, M K

    2011-01-01

    Natural Immune system plays a vital role in the survival of the all living being. It provides a mechanism to defend itself from external predates making it consistent systems, capable of adapting itself for survival incase of changes. The human immune system has motivated scientists and engineers for finding powerful information processing algorithms that has solved complex engineering tasks. This paper explores one of the various possibilities for solving problem in a Multiagent scenario wherein multiple robots are deployed to achieve a goal collectively. The final goal is dependent on the performance of individual robot and its survival without having to lose its energy beyond a predetermined threshold value by deploying an evolutionary computational technique otherwise called the artificial immune system that imitates the biological immune system.

  7. Intelligent Multimodal Signal Adaptation System Project

    National Aeronautics and Space Administration — Micro Analysis and Design (MA&D) is pleased to submit this proposal to design an Intelligent Multimodal Signal Adaptation System. This system will dynamically...

  8. An Adaptive Multimodal Biometrics System using PSO

    Ola M. Aly; Tarek A. Mahmoud; Gouda I. Salama; Hoda M. Onsi

    2013-01-01

    Multimodal biometric systems which fuse information from a number of biometrics, are gaining more attentions lately because they are able to overcome limitations in unimodal biometric systems. These systems are suited for high security applications. Most of the proposed multibiometric systems offer one level of security. In this paper a new approach for adaptive combination of multiple biometrics has been proposed to ensure multiple levels of security. The score level fusion rule is adapted u...

  9. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry

    Segerstrom, Suzanne C.; Miller, Gregory E.

    2004-01-01

    The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of…

  10. The Serum Complement System: A Simplified Laboratory Exercise to Measure the Activity of an Important Component of the Immune System

    Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.

    2008-01-01

    The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…

  11. Web-Based Adaptive Testing System

    2006-01-01

    Due to the maturing of Internet technology, the adaptive testing can be utilized in the web-based environment and the examinee can take the test anywhere and any time. The purpose of the research is to apply item response theory (IRT), adaptive testing theory and web-service technique to construct an XML format itembank and a system of web-based adaptive testing (WAT) by the framework of three-tiered client server distance testing.

  12. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus

    Erdmann, Susanne; Le Moine Bauer, Sven; Garrett, Roger A.

    2014-01-01

    Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR-mediated adaptation and DNA interference. Ex...

  13. The effects of cocoa on the immune system

    MargaridaCastell

    2013-06-01

    Full Text Available Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.

  14. Cold stress and immunity: Do chickens adapt to cold by trading-off immunity for thermoregulation?

    Hangalapura, B.N.

    2006-01-01

    Future animal husbandry aims at enhanced animal welfare, with minimal use of preventive medical treatments. These husbandry conditions will resemble more natural or ecological conditions. Under such farming systems, animals will experience various kinds of stressors such as environmental (e.g. cold,

  15. Prions and the blood and immune systems.

    Mabbott, Neil; Turner, Marc

    2005-04-01

    Prion diseases take a number of forms in animals and humans. They are caused by conformational change in widely expressed prion protein leading to the formation of intracellular aggregates. Although the main focus of disease is the central nervous system, it is known that involvement of the immune system occurs in peripherally transmitted disease in particular. Animal experiments suggest that in some prion diseases follicular dendritic cells in the germinal centers are a major site of initial accumulation, and that abnormal prion protein and infectivity are detectable in peripheral lymphoid tissue from the earliest phase of disease. This raises the possibility that in a human peripherally transmitted prion disease like variant Creutzfeldt-Jakob disease, further transmission could occur through blood or tissue products or contamination of surgical instrumentation. Indeed two recent reports confirm that this disease has been transmitted by blood, raising significant public health concerns. PMID:15820951

  16. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  17. ADAPTIVE REGULATION OF HIGH ORDER NONHOLONOMIC SYSTEMS

    2006-01-01

    The problem of adaptive regulation of a class of high-order parametric nonholonomic systems in chained-form was discussed. Using adding a power integrator technique and state scaling with discontinuous projection technique, a discontinuous adaptive dynamic controller was constructed. The controller guarantees the estimated value of unknown parameter is in the prescribed extent.

  18. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions

    Wiedenheft, Blake; van Duijn, Esther; Bultema, Jelle; Waghmare, Sakharam; Zhou, Kaihong; Barendregt, Arjan; Westphal, Wiebke; Heck, Albert; Boekema, Egbert; Dickman, Mark; Doudna, Jennifer A.

    2011-01-01

    Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequenc

  19. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    Thomas R. Laws; Tinatin Kuchuloria; Nazibriola Chitadze; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K; Salome Saginadze; Nikoloz Tsertsvadze; Mariam Chubinidze; Robert G Rivard; Shota Tsanava; Dyson, Edward H.; Andrew J H Simpson; Hepburn, Matthew J; Nino Trapaidze

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthr...

  20. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections.

    Bishu, Shrinivas; Hernández-Santos, Nydiaris; Simpson-Abelson, Michelle R; Huppler, Anna R; Conti, Heather R; Ghilardi, Nico; Mamo, Anna J; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate "type 17" cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9(-/-) mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9(-/-) mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses. PMID:24379290

  1. Immunizing digital systems against electromagnetic interference

    Ewing, P. D.; Korsah, K.; Antonescu, C.

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

  2. Immunizing digital systems against electromagnetic interference

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  3. The Effect of Sound on the Immune System

    Mojgan Shaygan

    1999-03-01

    Full Text Available The immune system protects body against disturbing factors such as pathogens and tumor cells by means of its special cell and biological structures. It has been divided based on its components and soluble factors into two groups of specific and non-specific immune system. Since sound is considered as a stressor it can affect dramatically on the immune system. Stress caused by noise can reduce the immune system response to chemical stimulators have decreased. In Stead, deep relaxation has consistently been proven to be very effective at increasing T-Cells and strengthening the immune system. In the current article, we want to have a look on the adverse effects of sound on the immune system.

  4. Trauma-induced heterotopic bone formation and the role of the immune system: A review.

    Kraft, Casey T; Agarwal, Shailesh; Ranganathan, Kavitha; Wong, Victor W; Loder, Shawn; Li, John; Delano, Matthew J; Levi, Benjamin

    2016-01-01

    Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation. PMID:26491794

  5. Stability analysis of simple models for immune cells interacting with normal pathogens and immune system retroviruses.

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Werner-Felmayer, G; Dierich, M P; Wachter, H

    1989-01-01

    A mathematical analysis is presented for several simple dynamical systems that might be considered as crude descriptions for the situation when an immune system retrovirus, immune cells, and normal autonomously replicating pathogens interact. By stability analysis of the steady-state solutions, the destabilizing effect of the immune system retrovirus is described. The qualitative behavior of the solutions depending on the system parameters is analyzed in terms of trajectories moving in a phase space in which the axes are defined by the population numbers of the interacting biological entities. PMID:2522657

  6. The Immune System as a Regulator of Thyroid Hormone Activity

    Klein, John R.

    2006-01-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid stimulating hormone (TSH) can be produced by many types of extra-pituitary cell...

  7. How (and why) the immune system makes us sleep

    Imeri, Luca; Opp, Mark R.

    2009-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified d...

  8. Neuroendocrine and Immune System Responses with Spaceflights

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  9. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  10. Managing software complexity of adaptive systems

    Roo, de Auke Jan

    2012-01-01

    To survive under competitive pressure, embedded system companies build systems that can deal with changing customer needs and operating conditions, and deterioration of the hardware over the lifetime of the embedded system. Engineers face the challenge to design such adaptive systems, while keeping

  11. Identification of SPAM messages using an approach inspired on the immune system.

    Guzella, T S; Mota-Santos, T A; Uchôa, J Q; Caminhas, W M

    2008-06-01

    In this paper, an immune-inspired model, named innate and adaptive artificial immune system (IA-AIS) is proposed and applied to the problem of identification of unsolicited bulk e-mail messages (SPAM). It integrates entities analogous to macrophages, B and T lymphocytes, modeling both the innate and the adaptive immune systems. An implementation of the algorithm was capable of identifying more than 99% of legitimate or SPAM messages in particular parameter configurations. It was compared to an optimized version of the naive Bayes classifier, which has been attained extremely high correct classification rates. It has been concluded that IA-AIS has a greater ability to identify SPAM messages, although the identification of legitimate messages is not as high as that of the implemented naive Bayes classifier. PMID:18395967

  12. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    Kieslich, Chris A.; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  13. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  14. Trained immunity: A program of innate immune memory in health and disease.

    Netea, Mihai G; Joosten, Leo A B; Latz, Eicke; Mills, Kingston H G; Natoli, Gioacchino; Stunnenberg, Hendrik G; O'Neill, Luke A J; Xavier, Ramnik J

    2016-04-22

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  15. Fuzzy adaptive synchronization of uncertain chaotic systems

    This Letter presents an adaptive approach for synchronization of Takagi-Sugeno (T-S) fuzzy chaotic systems. Since the parameters of chaotic system are assumed unknown, the adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. The control law to be designed consists of two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach

  16. Regulation of intestinal immune system by dendritic cells.

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  17. ADAPTIVE GENERALIZED PREDICTIVE CONTROL OF SWITCHED SYSTEMS

    WANG Yi-jing; WANG Long

    2005-01-01

    The problem of adaptive generalized predictive control which consists of output prediction errors for a class of switched systems is studied. The switching law is determined by the output predictive errors of a finite number of subsystems. For the single subsystem and multiple subsystems cases, it is proved that the given direct algorithm of generalized predictive control guarantees the global convergence of the system. This algorithm overcomes the inherent drawbacks of the slow convergence and large transient errors for the conventional adaptive control.

  18. The effects of environment and physiological cyclicity on the immune system of Viperinae.

    Kobolkuti, Lorand; Cadar, Daniel; Czirjak, Gabor; Niculae, Mihaela; Kiss, Timea; Sandru, Carmen; Spinu, Marina

    2012-01-01

    One of the important aspects of species' survival is connected with global climate changes, which also conditions the epidemiology of infectious diseases. Poikilotherms are exposed, as other species, to climatic influence, especially due to their physiological peculiarities such as important stages of their life cycle: hibernation, shedding, and active phase. The immune system serves as an accurate indicator of the health status and stress levels in these species. This study aimed to monitor the changes of innate (leukocyte subpopulations and total immune globulins) and adaptive immunity (in vitro leukocyte blast transformation) of two viper species, V. berus berus and V. ammodytes ammodytes, endemic in Europe and spread in different regions of Romania during their three major life cycles, hibernation, shedding, and active phase. The results indicated that seasonal variance and cycle rather than species and regional distribution influence the functionality of the immune system. PMID:22547989

  19. The Effects of Environment and Physiological Cyclicity on the Immune System of Viperinae

    Lorand Kobolkuti

    2012-01-01

    Full Text Available One of the important aspects of species’ survival is connected with global climate changes, which also conditions the epidemiology of infectious diseases. Poikilotherms are exposed, as other species, to climatic influence, especially due to their physiological peculiarities such as important stages of their life cycle: hibernation, shedding, and active phase. The immune system serves as an accurate indicator of the health status and stress levels in these species. This study aimed to monitor the changes of innate (leukocyte subpopulations and total immune globulins and adaptive immunity (in vitro leukocyte blast transformation of two viper species, V. berus berus and V. ammodytes ammodytes, endemic in Europe and spread in different regions of Romania during their three major life cycles, hibernation, shedding, and active phase. The results indicated that seasonal variance and cycle rather than species and regional distribution influence the functionality of the immune system.

  20. Nutritionally Mediated Programming of the Developing Immune System12

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” e...

  1. Effect of fatty acids and programming on the immune system

    Fear, Alison Lindsay

    2010-01-01

    Research to date has suggested that fatty acids (FAs) may affect the immune system, through their (and those of their metabolites) effects on membranes, mediators, and gene expression. However, despite the research carried out, there still exist gaps of knowledge where further research is required. In addition, programming by diet in pregnancy may affect the immune system, due to stress and/or structural and functional changes to immune cells, but whether this effect is long-lasting is uncert...

  2. Lymphatic System: An Active Pathway for Immune Protection

    Liao, Shan; von der Weid, Pierre-Yves

    2014-01-01

    Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which include guiding antigen/den...

  3. Trauma: the role of the innate immune system

    Rijkers GT; Koenderman L; Hietbrink F; Leenen LPH

    2006-01-01

    Abstract Immune dysfunction can provoke (multiple) organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis). The pathophysiological model outlined in this review encompasses et...

  4. The Microbiota, the Immune System and the Allograft

    Alegre, Maria-Luisa; Mannon, Roslyn B.; Mannon, Peter J.

    2014-01-01

    The microbiota represents the complex collections of microbial communities that colonize a host. In health, the microbiota is essential for metabolism, protection against pathogens and maturation of the immune system. In return, the immune system determines the composition of the microbiota. Altered microbial composition (dysbiosis) has been correlated with a number of diseases in humans. The tight reciprocal immune/microbial interactions complicate determining whether dysbiosis is a cause an...

  5. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development.

    Clifford Liongue

    Full Text Available BACKGROUND: Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK-Signal transducer and activator of transcription (STAT pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP, Protein inhibitors against Stats (PIAS, and Suppressor of cytokine signaling (SOCS proteins across a diverse range of organisms. RESULTS: Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION: Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

  6. Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation

    Kanczkowski, Waldemar; Alexaki, Vasileia-Ismini; Tran, Nguyen; Großklaus, Sylvia; Zacharowski, Kai; Martinez, Antoine; Popovics, Petra; Norman L Block; Chavakis, Triantafyllos; Schally, Andrew V.; Stefan R Bornstein

    2013-01-01

    In several critically ill patients the homeostatic regulation of adrenocortical hormone secretion is impaired. Toll-like receptors (TLR) play a substantial role in HPA axis activation in the course of systemic inflammation. Here, using mice with conditional deletion of a crucial TLR adapter protein, MyD88, we investigated the role of systemic and local adrenal TLR signaling in the activation of adrenal glucocorticoid responses to stress and regulation of immune-adrenal crosstalk during system...

  7. Adaptive Dialogue Systems for Assistive Living Environments

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  8. Endocrine and Local IGF-I in the Bony Fish Immune System

    Anne-Constance Franz

    2016-01-01

    Full Text Available A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived, which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  9. Complex and adaptive dynamical systems a primer

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  10. Complex and Adaptive Dynamical Systems A Primer

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  11. Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Robert Charles,

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  12. The immune system: a new look at pain

    ZHANG Jun-hua; HUANG Yu-guang

    2006-01-01

    Objective To review the relationship between the immune system and the mechanism of pain.Data sources Related researches published in the period of 1987-2005 were systematically reviewed.Study selection Articles about the immune system and pain were selected.Data extraction Data were mainly extracted from 74 articles which are listed in the reference section of this review.Results Pain was classically viewed as being mediated solely by neurons. However, growing evidence has showed the possible relationships between the immune system and the central nervous system. In this article, we reviewed the role of the immune system in the development of pain, together with the importance of the glia in this process. These findings suggest a novel approach to pain control in the future.Conclusions The immune system plays a potential but important role in the development of pain.

  13. Adaptation in the auditory system: an overview

    David ePérez-González; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the s...

  14. StreamingBandit: Developing Adaptive Persuasive Systems

    Kaptein, Maurits; Kruijswijk, Jules

    2016-01-01

    This paper introduces StreamingBandit, a (back-end) solution for developing adaptive and personalized persuasive systems. Creating successful persuasive applications requires a combination of design, social science, and technology. StreamingBandit contributes to the required technology by providing a platform that can be used to adapt persuasive technologies in real-time and at large scales. We first introduce the design philosophy of StreamingBandit using a running example and highlight how ...

  15. How to Make a Non-Antigenic Protein (Auto) Antigenic: Molecular Complementarity Alters Antigen Processing and Activates Adaptive-Innate Immunity Synergy.

    Root-Bernstein, Robert

    2015-01-01

    Evidence is reviewed that complementary proteins and peptides form complexes with increased antigenicity and/or autoimmunogenicity. Five case studies are highlighted: 1) diphtheria toxin-antitoxin (antibody), which induces immunity to the normally non-antigenic toxin, and autoimmune neuritis; 2) tryptophan peptide of myelin basic protein and muramyl dipeptide ("adjuvant peptide"), which form a complex that induces experimental allergic encephalomyelitis; 3) an insulin and glucagon complex that is far more antigenic than either component individually; 4) various causes of experimental autoimmune myocarditis such as C protein in combination with its antibody, or coxsackie B virus in combination with the coxsackie and adenovirus receptor; 5) influenza A virus haemagglutinin with the outer membrane protein of the Haemophilus influenzae, which increases antigenicity. Several mechanisms cooperate to alter immunogenicity. Complexation alters antigen processing, protecting the components against proteolysis, altering fragmentation and presenting novel antigens to the immune system. Complementary antigens induce complementary adaptive immune responses (complementary antibodies and/or T cell receptors) that produce circulating immune complexes (CIC). CIC stimulate innate immunity. Concurrently, complementary antigens stimulate multiple Toll-like receptors that synergize to over-produce cytokines, which further stimulate adaptive immunity. Thus innate and adaptive immunity form a positive feedback loop. If components of the complex mimic a host protein, then autoimmunity may result. Enhanced antigenicity for production of improved vaccines and/or therapeutic autoimmunity (e.g., against cancer cells) might be achieved by using information from antibody or TCR recognition sites to complement an antigen; by panning for complements in randomized peptide libraries; or using antisense peptide strategies to design complements. PMID:26179268

  16. The University Immune System: Overcoming Resistance to Change

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  17. The reaction of the immune system of fish to vaccination

    Lamers, C.H.J.

    1985-01-01

    The studies presented in this thesis deal with the effect of bacterial antigens of Yersinia ruckeri and Aeromonashydrophila on the immune system of carp. The antigens were administered by injection or by bath treatment. The effect on the immune system was studied by measuring the numbers of antibody

  18. Breakdown of the innate immune system by bacterial proteases

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main compone

  19. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  20. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  1. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  2. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  3. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    Falk eWeih

    2012-07-01

    Full Text Available Tertiary lymphoid organs (TLOs emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs and monocyte-derived DCs (mDCs; B cell follicles containing follicular dendritic cells (FDCs within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory cells (nTregs; iTregs as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses towards atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.

  4. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  5. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  6. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter; Joosten, Leo A B; de Jong, Dirk; van der Meer, Jos W M; Benn, Christine Stabell; van Crevel, Reinout; Netea, Mihai G

    2015-01-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in...... immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition...... receptors and histone methylation markers were assessed. The in vivo effects of γBCG vaccination were studied in a proof-of-principle trial in 15 healthy volunteers. γBCG induced trained immunity in vitro via the NOD2 receptor pathway and up-regulation of H3K4me3 histone methylation. However, these effects...

  7. Measuring the immune system of the three-spined stickleback - investigating natural variation by quantifying immune expression in the laboratory and the wild.

    Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C

    2016-05-01

    Current understanding of the immune system comes primarily from laboratory-based studies. There has been substantial interest in examining how it functions in the wild, but studies have been limited by a lack of appropriate assays and study species. The three-spined stickleback (Gasterosteus aculeatus L.) provides an ideal system in which to advance the study of wild immunology, but requires the development of suitable immune assays. We demonstrate that meaningful variation in the immune response of stickleback can be measured using real-time PCR to quantify the expression of eight genes, representing the innate response and Th1-, Th2- and Treg-type adaptive responses. Assays are validated by comparing the immune expression profiles of wild and laboratory-raised stickleback, and by examining variation across populations on North Uist, Scotland. We also compare the immune response potential of laboratory-raised individuals from two Icelandic populations by stimulating cells in culture. Immune profiles of wild fish differed from laboratory-raised fish from the same parental population, with immune expression patterns in the wild converging relative to those in the laboratory. Innate measures differed between wild populations, whilst the adaptive response was associated with variation in age, relative size of fish, reproductive status and S. solidus infection levels. Laboratory-raised individuals from different populations showed markedly different innate immune response potential. The ability to combine studies in the laboratory and in the wild underlines the potential of this toolkit to advance our understanding of the ecological and evolutionary relevance of immune system variation in a natural setting. PMID:26646722

  8. Cold-Adapted Pandemic 2009 H1N1 Influenza Virus Live Vaccine Elicits Cross-Reactive Immune Responses against Seasonal and H5 Influenza A Viruses

    Jang, Yo Han; Byun, Young Ho; Lee, Yoon Jae; Lee, Yun Ha; Lee, Kwang-Hee; Seong, Baik Lin

    2012-01-01

    The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broa...

  9. Towards a Conceptual Framework for Innate Immunity

    Twycross, Jamie

    2010-01-01

    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

  10. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26801961

  11. Preliminary images from an adaptive imaging system

    J.A. Griffiths; M.G. Metaxas; S. Pani; H. Schulerud; C. Esbrand; G.J. Royle; B. Price; T. Rokvic; R. Longo; A. Asimidis; E. Bletsas; D. Cavouras; A. Fant; P. Gasiorek; H. Georgiou; G. Hall; J. Jones; J. Leaver; G. Li; D. Machin; N. Manthos; J. Matheson; M. Noy; J.M. Østby; F. Psomadellis; P.F. van der Stelt; S. Theodoridis; F. Triantis; R. Turchetta; C. Venanzi; R.D. Speller

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephal

  12. MicroRNAs as regulatory elements in immune system logic.

    Mehta, Arnav; Baltimore, David

    2016-04-28

    MicroRNAs (miRNAs) are crucial post-transcriptional regulators of haematopoietic cell fate decisions. They act by negatively regulating the expression of key immune development genes, thus contributing important logic elements to the regulatory circuitry. Deletion studies have made it increasingly apparent that they confer robustness to immune cell development, especially under conditions of environmental stress such as infectious challenge and ageing. Aberrant expression of certain miRNAs can lead to pathological consequences, such as autoimmunity and haematological cancers. In this Review, we discuss the mechanisms by which several miRNAs influence immune development and buffer normal haematopoietic output, first at the level of haematopoietic stem cells, then in innate and adaptive immune cells. We then discuss the pathological consequences of dysregulation of these miRNAs. PMID:27121651

  13. Exposure - dependent effects of ethanol on the innate immune system

    Goral, Joanna; Karavitis, John; Kovacs, Elizabeth J.

    2008-01-01

    Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose-dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intrac...

  14. Regulation of the Immune System by the Resident Intestinal Bacteria

    Kamada, Nobuhiko; Núñez, Gabriel

    2014-01-01

    The microbiota is an important factor in the development of the immune response. The interaction between the gastrointestinal tract and resident microbiota is well-balanced in healthy individuals, but its breakdown can lead to intestinal and extra-intestinal disease. We review current knowledge about the mechanisms that regulate the interaction between the immune system and the microbiota, focusing on the role of resident intestinal bacteria in the development of immune responses. We also dis...

  15. Feeding Our Immune System: Impact on Metabolism

    Corinne Grangette; Myriam Delacre; Anne Delanoye; Odile Viltart; Claudie Verwaerde; Isabelle Wolowczuk; Bruno Pot

    2008-01-01

    Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factor...

  16. Adaptation in the auditory system: an overview

    David Pérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  17. Autopolyreactivity Confers a Holistic Role in the Immune System.

    Avrameas, S

    2016-04-01

    In this review, we summarize and discuss some key findings from the study of naturally occurring autoantibodies. The B-cell compartment of the immune system appears to recognize almost all endogenous and environmental antigens. This ability is accomplished principally through autopolyreactive humoral and cellular immune receptors. This extended autopolyreactivity (1) along immunoglobulin gene recombination contributes to the immune system's ability to recognize a very large number of self and non-self constituents; and (2) generates a vast immune network that creates communication channels between the organism's interior and exterior. Thus, the immune system continuously evolves depending on the internal and external stimuli it encounters. Furthermore, this far-reaching network's existence implies activities resembling those of classical biological factors or activities that modulate the function of other classical biological factors. A few such antibodies have already been found. Another important concept is that natural autoantibodies are highly dependent on the presence or absence of commensal microbes in the organism. These results are in line with past and recent findings showing the fundamental influence of the microbiota on proper immune system development, and necessitate the existence of a host-microbe homeostasis. This homeostasis requires that the participating humoral and cellular receptors are able to recognize self-antigens and commensal microbes without damaging them. Autopolyreactive immune receptors expressing low affinity for both types of antigens fulfil this role. The immune system appears to play a holistic role similar to that of the nervous system. PMID:26808310

  18. The ERIS Adaptive Optics System

    Riccardi, A; Agapito, G; Antichi, J; Biliotti, V; Blain, C; Briguglio, R; Busoni, L; Carbonaro, L; Di Rico, G; Giordano, C; Pinna, E; Puglisi, A; Spanò, P; Xompero, M; Baruffolo, A; Kasper, M; Egner, S; Valles, M Suàrez; Soenke, C; Downing, M; Reyes, J

    2016-01-01

    ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.

  19. Exercise induced modulation of immune system functional capacity .

    PANAGIOTIS BALTOPOULOS

    2009-01-01

    Full Text Available Exercise can have both positive and negative effects on the immune system. Regular moderate exercise seems to reduce the incidence of infection, while prolonged intense exercise causes a temporary suppression of many parameters of immune function, depending on the intensity and duration of exercise. The functional capacity of the immune system is necessary to be determined in order to get useful information about the immune system status of athletes and its impact on performance. In order to investigate the immunological status and depending on the purpose of each study, different laboratory techniques are used. This study aims to review the exercise-induced modulation of immune system functional capacity in terms of cytokines production and WBCs differentiation, as described in the literature.

  20. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice.

    Rebecca Banerjee

    Full Text Available BACKGROUND: Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS. However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1 transgenic (Tg mice and subsequently in ALS patients. METHODS AND FINDINGS: Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1 immunization to affect longevity. In addition, among CD4(+ T cells in ALS patients, levels of CD45RA(+ (naïve T cells were diminished, while CD45RO(+ (memory T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4(+CD25(+ T regulatory cells (Treg or CD4(+CD25(- T effector cells (Teff from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage. CONCLUSIONS: A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings

  1. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G.

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor gr...

  2. An Immunity-Based Anomaly Detection System with Sensor Agents

    Yoshiteru Ishida

    2009-11-01

    Full Text Available This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user’s command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  3. On Capability-Related Adaptation in Networked Service Systems

    Finn Arve Aagesen; Patcharee Thongtra

    2012-01-01

    Adaptability is a property related to engineering as well as to the execution of networked service systems. This publication considers issues of adaptability both within a general and a scoped view. The generalview considers issues of adaptation at two levels: 1) System of entities, functions and adaptability types, and 2) Architectures supporting adaptability. Adaptability types defined are capability-related, functionality-related and context-related adaptation. The scoped view of the publi...

  4. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  5. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  6. Adaptive System Modeling for Spacecraft Simulation

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  7. Perspective is everything: An irreverent discussion of CNS–immune system interactions as viewed from different scientific traditions

    Carson, Monica J.; Lo, David D

    2007-01-01

    The immune system is a host defense system comprised of both innate mechanisms able to rapidly recognize and respond to conserved pathogen associated molecular patterns (PAMPs) as well as adaptive mechanisms able to respond to a wide variety of non-conserved and conserved pathogen associated molecules. In vitro and in vivo studies have demonstrated that the kinetics and type of immune response triggered by pathogenic insults is a function of both the nature of the insult and the subsequent cr...

  8. Adaptive control of solar energy collector systems

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  9. Evolving Systems and Adaptive Key Component Control

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  10. Environmentally-adapted local energy systems

    Moe, N.; Oefverholm, E. [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H. [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  11. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  12. An Adaptive Multimodal Biometrics System using PSO

    Ola M. Aly

    2013-08-01

    Full Text Available Multimodal biometric systems which fuse information from a number of biometrics, are gaining more attentions lately because they are able to overcome limitations in unimodal biometric systems. These systems are suited for high security applications. Most of the proposed multibiometric systems offer one level of security. In this paper a new approach for adaptive combination of multiple biometrics has been proposed to ensure multiple levels of security. The score level fusion rule is adapted using (PSO Particle Swarm Optimization to ensure the desired system performance corresponding to the desired level of security. The experimental results prove that the proposed multimodal biometric system is appropriate for applications that require different levels of security.

  13. MicroRNA in the immune system, microRNA as an immune system

    Lu, Li-Fan; Liston, Adrian

    2009-01-01

    The advent of microRNA has potentially uncovered a new level of complexity to be considered for every biological process. Through the modulation of transcription and translation, microRNA alter the basal state of cells and the outcome of stimulatory events. The exact effect of the microRNA network and individual microRNA on cellular processes is only just starting to be dissected. In the immune system, microRNA appear to have a key role in the early differentiation and effector differentiatio...

  14. Immune response induction in the central nervous system

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...... and/or demyelinating pathology. This article will review the molecular and cellular dynamics of immune responses in the CNS, with particular emphasis on autoimmune inflammation, as has been studied in the authors' laboratory....

  15. Immune System Dysregulation in First-Onset Postpartum Psychosis

    Bergink, Veerle; Burgerhout, Karin M.; Weigelt, Karin; Pop, Victor J.; de Wit, Harm; Drexhage, Roos C.; Kushner, Steven A.; Drexhage, Hemmo A.

    2013-01-01

    Background: Accumulating evidence suggests that dysregulation of the immune system represents an important vulnerability factor for mood disorders. Postpartum psychosis (PP) is a severe mood disorder occurring within 4 weeks after delivery, a period of heightened immune responsiveness and an altered

  16. Innate immune system targets asthma-linked fungus for destruction

    Whyte, Barry James

    2008-01-01

    A new study shows that the innate immune system of humans is capable of killing a fungus linked to airway inflammation, chronic rhinosinusitis, and bronchial asthma. Researchers at Mayo Clinic and the Virginia Bioinformatics Institute at Virginia Tech have revealed that eosinophils, a particular type of white blood cell, exert a strong immune response against the environmental fungus Alternaria alternata.

  17. SATZ An Adaptive Sentence Segmentation System

    Palmer, D D

    1995-01-01

    This paper provides a detailed description of the sentence segmentation system first introduced in cmp-lg/9411022. It provides results of systematic experiments involving sentence boundary determination, including context size, lexicon size, and single-case texts. Also included are the results of successfully adapting the system to German and French. The source code for the system is available as a compressed tar file at ftp://cs-tr.CS.Berkeley.EDU/pub/cstr/satz.tar.Z .

  18. Senescent remodeling of the immune system and its contribution to the predisposition of the elderly to infections

    DEWAN Sheilesh Kumar; ZHENG Song-bai; XIA Shi-jin; BILL Kalionis

    2012-01-01

    Objective To review the senescent remodeling of the immune system with aging and its relevance to the increased susceptibility of the elderly to infectious diseases,along with an outlook on emerging immunological biomarkers.Data sources The data selected were from PubMed with relevant published articles in English or French from 1995 to the present.Searches were made using the terms “immunosenescence” and “aging” paired with the following:“innate immunity”,“T-cell”,“B-cell”,“adaptive immunity” and “biomarkers“.Articles were reviewed for additional citations and some information was gathered from web searches.Study selection Articles on aging of both the innate and adaptive immunity were reviewed,with special attention to the remodeling effect on the ability of the immune system to fight infectious diseases.Articles related to biomarkers of immunosenescence were selected with the goal of identifying immunological biomarkers predisposing the elderly to infections.Results Innate immunity is generally thought to be relatively well preserved or enhanced during aging compared with adaptive immunity which manifests more profound alterations.However,evidence,particularly in the last decade,reveals that both limbs of the immune system undergo profound remodeling with aging.Reported data on adaptive immunity is consistent and changes are well established but conflicting results about innate immunity were reported between in vivo and in vitro studies,as well as between murine and human studies.Epidemiological data suggests increased predisposition of the elderly to infections,but no compelling scientific evidence has directly linked senescent immune remodeling to this increased susceptibility.Recently,growing interest in identifying immunological biomarkers and defining “immune risk phenotypes/profiles” (IRP) has been expressed.Identification of biomarkers is in its early days and few potential biomarkers have been identified,with the Swedish

  19. Final Report - Regulatory Considerations for Adaptive Systems

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  20. DESIGN PATTERNS FOR SELF ADAPTIVE SYSTEMS ENGINEERING

    Yousef Abuseta

    2015-07-01

    Full Text Available Self adaptation has been proposed to overcome the complexity of today's software systems which results from the uncertainty issue. Aspects of uncertainty include changing systems goals, changing resource availability and dynamic operating conditions. Feedback control loops have been recognized as vital elements for engineering self-adaptive systems. However, despite their importance, there is still a lack of systematic way of the design of the interactions between the different components comprising one particular feedback control loop as well as the interactions between components from different control loops . Most existing approaches are either domain specific or too abstract to be useful. In addition, the issue of multiple control loops is often neglected and consequently self adaptive systems are often designed around a single loop. In this paper we propose a set of design patterns for modeling and designing self adaptive software systems based on MAPE-K. Control loop of IBM architecture blueprint which takes into account the multiple control loops issue. A case study is presented to illustrate the applicability of the proposed design patterns.

  1. CNS Remyelination and the Innate Immune System

    McMurran, Christopher E.; Jones, Clare A.; Fitzgerald, Denise C.; Franklin, Robin J. M.

    2016-01-01

    A misguided inflammatory response is frequently implicated in myelin damage. Particularly prominent among myelin diseases, multiple sclerosis (MS) is an autoimmune condition, with immune–mediated damage central to its etiology. Nevertheless, a robust inflammatory response is also essential for the efficient regeneration of myelin sheaths after such injury. Here, we discuss the functions of inflammation that promote remyelination, and how these have been experimentally disentangled from the pathological facets of the immune response. We focus on the contributions that resident microglia and monocyte-derived macrophages make to remyelination and compare the roles of these two populations of innate immune cells. Finally, the current literature is framed in the context of developing therapies that manipulate the innate immune response to promote remyelination in clinical myelin disease. PMID:27200350

  2. Fatigue, workload and adaptive driver systems

    Hancock, P.A.; Verwey, W.B.

    1997-01-01

    This paper is directed to the further understanding of the problems of fatigue and workload and their role in diminishing driving capability. We present a specific strategy designed to defend against the adverse effects of fatigue and workload extremes through the use of adaptive driver systems. To

  3. The Elements Of Adaptive Neural Expert Systems

    Healy, Michael J.

    1989-03-01

    The generalization properties of a class of neural architectures can be modelled mathematically. The model is a parallel predicate calculus based on pattern recognition and self-organization of long-term memory in a neural network. It may provide the basis for adaptive expert systems capable of inductive learning and rapid processing in a highly complex and changing environment.

  4. Adaptive control system for gas producing wells

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation

  5. Children after Chernobyl: immune cells adaptive changes and stable alterations under low-dose irradiation

    Early changes of immune parameters in children evacuated from 30-km zone were characterized by E-rossette forming cells decrease and E-receptor non-stability in theophylline assay, surface Ig changes. Immunological follow-up of children inhabitants of territories contaminated with radionuclides after Chernobyl accident revealed TCR/CD3, CD4 and MHC CD3+, CD4+, CD57+ subsets, RIL-2, TrT expression and calcium channel activity. PMNC percentage with cortical thymocyte phenotype (CD1+, CD4+8+) was elevated during the first years after the accident and seemed to be of a compensatory origin. Combination of heterogenic activation and suppression subset reactions and changes in fine subset (Th1/Th2) organization were suggested. Adaptive and compensatory reactions were supposed and delayed hypersensitivity reactions increase as well. (author)

  6. T cells and the humoral immune system

    W.B. van Muiswinkel (Willem)

    1975-01-01

    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  7. Modeling evolution and immune system by cellular automata

    Bezzi, M. [Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Istituto Nazionale di Fisica della Materia, Florence (Italy)

    2001-07-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section.

  8. Modeling evolution and immune system by cellular automata

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section

  9. Adaptive P300 based control system

    Jin J; Allison B.Z.; Sellers E.W.; Brunner & C.; Horki P.; Wang X; Neuper C.

    2011-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasi...

  10. Processing and Linguistics Properties of Adaptable Systems

    Dumitru TODOROI

    2006-01-01

    Full Text Available Continuation and development of the research in Adaptable Programming Initialization [Tod-05.1,2,3] is presented. As continuation of [Tod-05.2,3] in this paper metalinguistic tools used in the process of introduction of new constructions (data, operations, instructions and controls are developed. The generalization schemes of evaluation of adaptable languages and systems are discussed. These results analogically with [Tod-05.2,3] are obtained by the team, composed from the researchers D. Todoroi [Tod-05.4], Z. Todoroi [ZTod-05], and D. Micusa [Mic-03]. Presented results will be included in the book [Tod-06].

  11. Effects of ultraviolet radiation on the immune system in humans

    In experimental animals, exposure to UV-B radiation produces selective alterations of immune function which are mainly in the form of suppression of normal immune responses. This immune suppression is important in the development of nonmelanoma skin cancer, may influence the development and course of infectious disease and possibly protects against autoimmune reactions. The evidence that this form of immune suppression occurs in humans is less compelling and very incomplete. The wavelengths of radiation most affected by a depletion of the stratospheric ozone layer are those known to be most immunosuppressive in animals and it is likely that such depletion will increase any suppressive effect of sunlight on immunity in humans. In addition to establishing whether or not UV-B radiation can cause suppression of immune function in humans, studies are required to determine if melanin can provide protection against such suppression, the role of this suppression in the pathogenesis of skin cancer, the development of infectious disease and vaccine effectiveness, and the capacity for humans to develop adaptive, protective mechanisms which may limit damage from continued exposure to UV-B radiation. (author)

  12. Adaptive intrusion data system (AIDS) software routines

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  13. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  14. An Artificial Immune Classification and Clustering Systems: A Survey

    Stephen Ajay Anurag Beri

    2014-01-01

    Full Text Available Artificial immune systems (AIS are a class of computationally intelligent systems which consider many properties of natural immune system .Several AIS are widely used in different application areas such as classification, clustering, web mining, virus detection, learning, image processing, robotics control, bio-informatics and anomaly detection. Among this classification and clustering are widely used areas. Most of the the artificial immune system used in the classification and clustering area make use some key features of AIS such as feature extraction, recognition and learning. This paper gives an effective survey aboutartificial immune systems which are used in the classification and clustering areasand also make use of the features such as feature selection, pattern recognition and machine learning.

  15. Influence of Phthalates on in vitro Innate and Adaptive Immune Responses

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentr...

  16. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease

    Rizzetto, Lisa; De Filippo, Carlotta; Cavalieri, Duccio

    2014-01-01

    Human holobiomes are networks of mutualistic interactions between human cells and complex communities of bacteria and fungi that colonize the human body. The immune system must tolerate colonization with commensal bacteria and fungi but defend against invasion by either organism. Molecular ecological surveys of the human prokaryotic microbiota performed to date have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information regarding the e...

  17. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM10) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM2.5) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  18. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  19. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    Yan-Hui Ma; Wei-Zhi Cheng; Fang Gong; An-Lun Ma; Qi-Wen Yu; Ji-Ying Zhang; Chao-Ying Hu; Xue-Hua Chen; Dong-Qing Zhang

    2008-01-01

    AIM:To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance.METHODS:In this study,an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5×105 cells) into BALB/c mice.The experimental treatment was orally administered with ACML-55 or PBS,followed by the inoculation of colon cancer cell line CT26.Intracellular cytokine staining was used to detect IFN-y production by tumor antigen specific CD8+ T cells.FACS analysis was employed to profile composition and activation of CD4+,CD8+,γδ T and NK cells.RESULTS:Our results showed,compared to PBS treated mice,ACML-55 treatment significantly delayed colon cancer development in colon cancer-bearing Balb/c mice in vivo.Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells,and increased the number of tumor Ag specific CD8+ T cells,it was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells.Interestingly,ACML-55 treatment also showed increased cell number of NK,and γδT cells,indicating the role of ACML-55 in activation of innate lymphooltes.CONCLUSION:Our results demonstrate that ACML-55therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses.

  20. Adaptable Transponder for Multiple Telemetry Systems

    Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)

    2014-01-01

    The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.

  1. Novel Link Adaptation Schemes for OFDM System

    LEI Ming; CAI Peng; XU Yue-shan; ZHANG Ping

    2003-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) is the most promising technique supporting the high data rate transmission. The combination of the link adaptation and OFDM can further increase the spectral efficiency. In this paper, we put forward two link adaptation schemes for OFDM system which have the advantages of both flexibility and practicability. Both of the two novel link adaptation schemes are based on the iterative mechanism to allocate the bit and power to subcarriers according to their channel gains and noisy levels which are assumed to be already known at the transmitter. The candidate modulation modes are determined freely before the link adaptation schemes are performed. The distinction between the two novel link adaptation schemes is that in the novel scheme A, the modulation mode is upgraded to the neighboring higher-order mode, while in the novel scheme B the modulation is upgraded to the genuine optimal mode. Therefore, the novel scheme A has the advantage of lower complexity and the novel scheme B has the advantage of higher spectral efficiency.

  2. Analytical tools for the study of cellular glycosylation in the immune system

    Yvette eVan Kooyk

    2013-12-01

    Full Text Available It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This Mini-Review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in Immunology.

  3. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  4. Optimizing Mining Association Rules for Artificial Immune System based Classification

    SAMEER DIXIT

    2011-08-01

    Full Text Available The primary function of a biological immune system is to protect the body from foreign molecules known as antigens. It has great pattern recognition capability that may be used to distinguish between foreigncells entering the body (non-self or antigen and the body cells (self. Immune systems have many characteristics such as uniqueness, autonomous, recognition of foreigners, distributed detection, and noise tolerance . Inspired by biological immune systems, Artificial Immune Systems have emerged during the last decade. They are incited by many researchers to design and build immune-based models for a variety of application domains. Artificial immune systems can be defined as a computational paradigm that is inspired by theoretical immunology, observed immune functions, principles and mechanisms. Association rule mining is one of the most important and well researched techniques of data mining. The goal of association rules is to extract interesting correlations, frequent patterns, associations or casual structures among sets of items in thetransaction databases or other data repositories. Association rules are widely used in various areas such as inventory control, telecommunication networks, intelligent decision making, market analysis and risk management etc. Apriori is the most widely used algorithm for mining the association rules. Other popular association rule mining algorithms are frequent pattern (FP growth, Eclat, dynamic itemset counting (DIC etc. Associative classification uses association rule mining in the rule discovery process to predict the class labels of the data. This technique has shown great promise over many other classification techniques. Associative classification also integrates the process of rule discovery and classification to build the classifier for the purpose of prediction. The main problem with the associative classification approach is the discovery of highquality association rules in a very large space of

  5. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    Bohui Zhu; Yongsheng Ding; Kuangrong Hao

    2013-01-01

    This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of ...

  6. Molecular Players Involved in the Interaction Between Beneficial Bacteria and the Immune System

    Hevia, Arancha; Delgado, Susana; Sánchez, Borja; Margolles, Abelardo

    2015-01-01

    The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis...

  7. Radiation damage and recovery of the immune system

    The objectives of the project are concentrated on the problems related to damage and recovery of the immune system after radiation exposure. Mouse populations were studied after whole-body exposure to acute x-ray doses ranging from 1 to 10 Gy. Untreated and treated survivors were studied to assess the number and activity of blood leukocytes and to evaluate the immune functions of spleen lymphocytes. Comparison of the effects of various treatments after different radiation doses should indicate the conditions for optimal intervention to accelerate recovery of the immune system and to prevent radiation death. (R.P.) 27 refs

  8. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper,the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu-lar constitutes in the skin immune system,involving both innate and adaptive immune responses;the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  9. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper, the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu- lar constitutes in the skin immune system, involving both innate and adaptive immune responses; the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  10. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  11. ADAPTING LINUX AS MOBILE OPERATING SYSTEM

    Kaushik Velusamy

    2013-01-01

    Full Text Available In this fast growing world, people are increasingly mobile; everything is fast, connected and highly secured. All these have put up the requirements on mobile devices and leads to several features being added in the mobile operating systems and its architecture. The development of the next generation software platform based on Linux for mobile phones provides enhanced user experience, power management, cloud support and openness in the design. In spite of many studies on Linux, the investigations on the challenges and benefits of reusing and adapting the Linux kernel to mobile platforms is very less. In this study, a study on architecture of the Linux, its adaptations for a mobile operating system, requirements and analysis for Linux mobile phones, comparison with android and solution technologies to satisfy the requirements for a Linux mobile operating system are analysed and discussed."

  12. Two Perspectives on Information System Adaptation

    Jensen, Tina Blegind; Kjærgaard, Annemette; Svejvig, Per

    Institutional theory has proven to be a central analytical perspective for investigating the role of larger social and historical structures of Information System (IS) adaptation. However, it does not explicitly account for how organizational actors make sense of and enact IS in their local context...... structures influenced the doctors' sensemaking of the EPR system. Additionally, it illustrates how the doctors made sense of the EPR system in practice. The paper outlines that: 1) institutional theory has its explanatory power at the organizational field and organizational/group level of analysis focusing....... We address this limitation by showing how sensemaking theory can be combined with institutional theory to understand IS adaptation in organizations. Based on a literature review, we present the main assumptions behind institutional and sensemaking theory when used as analytical lenses for...

  13. An Aspect-Oriented Approach to Adaptive Systems

    Hveding, John Christian

    2005-01-01

    Adaptive systems are systems that react to changes in their environment and adapt to these changes by changing their behavior. The FAMOUS project aims to build an adaptive system by creating a generic middleware platform. This project explores how adaptive systems in general and the FAMOUS project in particular can benefit from using aspect-oriented technology. We propose using run-time aspect weaving to perform adaptations. We create a prototype to demonstrate how one can model aspects for a...

  14. The Interplay between the Intestinal Microbiota and the Immune System

    Lei, Yuk Man Kevin; Nair, Lekha; Alegre, Maria-Luisa

    2014-01-01

    The relationship between commensal microbes and their hosts has been studied for many years. Commensal microorganisms are known to have a significant role in regulating the physiology of their hosts and preventing pathogenic infections while the hosts’ immune system is important in determining the composition of the microbiota. More recently, specific effects of the intestinal microbiota on the local and distal immune systems have been uncovered with important consequences for health and dise...

  15. Two-photon Imaging of the Immune System

    Dzhagalov, Ivan L; Melichar, Heather J.; Ross, Jenny O.; Herzmark, Paul; Robey, Ellen A.

    2012-01-01

    Two-photon microscopy is a powerful method for visualizing biological processes as they occur in their native environment in real time. The immune system uniquely benefits from this technology as most of its constituent cells are highly motile and interact extensively with each other and with the environment. Two-photon microscopy has provided many novel insights into the dynamics of the development and function of the immune system that could not have been deduced by other methods and has be...

  16. HIV and Malnutrition: Effects on Immune System

    Shalini Duggal; Tulsi Das Chugh; Ashish Kumar Duggal

    2012-01-01

    HIV or human immunodeficiency virus infection has assumed worldwide proportions and importance in just a span of 25 years. Continuous research is being done in many parts of the world regarding its treatment and vaccine development, and a lot of money has flown into this. However, fully understanding the mechanisms of immune depletion has still not been possible. The focus has also been on improving the quality of life of people living with HIV/AIDS through education, counselling, and nutriti...

  17. Advancing the application of systems thinking in health: understanding the growing complexity governing immunization services in Kerala, India

    Varghese, Joe; Kutty, V. Raman; Paina, Ligia; Adam, Taghreed

    2014-01-01

    Background Governing immunization services in a way that achieves and maintains desired population coverage levels is complex as it involves interactions of multiple actors and contexts. In one of the Indian states, Kerala, after routine immunization had reached high coverage in the late 1990s, it started to decline in some of the districts. This paper describes an application of complex adaptive systems theory and methods to understand and explain the phenomena underlying unexpected changes ...

  18. NEW EMBO MEMBER’S REVIEW: Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity

    Granucci, Francesca; Zanoni, Ivan; Feau, Sonia; Ricciardi-Castagnoli, Paola

    2003-01-01

    Dendritic cells are professional antigen-presenting cells able to initiate innate and adaptive immune responses against invading pathogens. In response to external stimuli dendritic cells undergo a complete genetic reprogramming that allows them to become, soon after activation, natural killer cell activators and subsequently T cell stimulators. The recent observation that dendritic cells produce interleukin 2 following microbial stimulation opens new possibilities for understanding the effic...

  19. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components of...... archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  20. A Holistic and Immune System inspired Security Framework

    Mwakalinga, G Jeffy; Yngström, Louise; Kowalski, Stewart

    2009-01-01

    This paper presents a Framework for adaptive information security systems for securing information systems. Information systems today are vulnerable and not adaptive to the dynamic environments because initial development of these systems focused on computer technology and communications protocol only. Most research in information security does not consider culture of users, system environments and does not pay enough attention to the enemies of information systems. As a result, users serve t...

  1. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni

    Heckel David G

    2007-12-01

    Full Text Available Abstract Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus. Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni

  2. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection.

    Justin M Richner

    2015-07-01

    Full Text Available Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV, an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN. Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.

  3. Viral Evasion and Subversion Mechanisms of the Host Immune System

    Mehran Ghaemi-Bafghi

    2013-10-01

    Full Text Available Viruses are the most abundant and versatile pathogens which challenge the immune system and cause major threats to human health. Viruses employ differ¬ent mechanisms to evade host immune responses that we describe them under the following headings: Inhibition of humoral responses, Interference with interferons, Inhibition and modulation of cytokines and chemokines, Inhibitors of apoptosis, Evading CTLs and NKs, and modulating MHC function.Viruses inhibit humoral immunity in different ways which contains change of viral antigens, production of regulatory proteins of complement system and receptors of the Fc part of antibodies. Viruses block interferon production and function via interruption of cell signaling JAK/STAT pathway, Inhibition of eIF-2α phosphorylation and translational arrest and 2'5'OS/RNAse L system. Also, Poxviruses produce soluble versions of receptors for interferons. One of the most important ways of viral evasion is inhibition and manipulation of cytokines; for example, Herpsviruses and Poxviruses produce viral cytokines (virokines and cytokine receptors (viroceptors. In addition, viruses change maturation and expression of MHC I and MHC II molecules to interrupt viral antigens presentation and hide them from immune system recognition. Also, they inhibit NK cell functions.In this review, we provide an overview of the viral evasion mechanisms of immune system. Since most viruses have developed strategies for evasion of immune system, if we know these mechanisms in detail we can fight them more successfully.

  4. Inhomogeneous DNA replication kinetics is associated with immune system response

    Bechhoefer, John; Gauthier, Michel G.; Norio, Paolo

    2013-03-01

    In eukaryotic organisms, DNA replication is initiated at ``origins,'' launching ``forks'' that spread bidirectionally to replicate the genome. The distribution and firing rate of these origins and the fork progression velocity form the ``replication program.'' Previous models of DNA replication in eukaryotes have assumed firing rates and replication fork velocities to be homogeneous across the genome. But large variations in origin activity and fork velocity do occur. Here, we generalize our replication model to allow for arbitrary spatial variation of initiation rates and fork velocities in a given region of the genome. We derive and solve rate equations for the forks and replication probability, to obtain the mean-field replication program. After testing the model on simulations, we analyze the changes in replication program that occur during B cell development in the mouse. B cells play a major role in the adaptive immune system by producing the antibodies. We show that the process of cell differentiation is associated with a change in replication program, where the zones of high origin initiation rates located in the immunoglobulin heavy-chain locus shift their position as the locus prepares to undergo the recombination events responsible for generating antibody specificity. This work was funded by HSFP and NSERC-Canada (MGG and JB) and by NIH-NIGMS grant R01GM080606 (PN).

  5. An Architecture for Alert Correlation Inspired By a Comprehensive Model of Human Immune System

    Mehdi Bateni

    2014-11-01

    Full Text Available Alert correlation is the process of analyzing, relating and fusing the alerts generated by one or more Intrusion Detection Systems (IDS in order to provide a high-level and comprehensive view of the security situation of the system or network. Different approaches, such as rule-based, prerequisites consequences-based, learning-based and similarity-based approach are used in correlation process. In this paper, a new AIS-inspired architecture is presented for alert correlation. Different aspects of human immune system (HIS are considered to design iCorrelator. Its three-level structure is inspired by three types of responses in human immune system: the innate immune system's response, the adaptive immune system's primary response, and the adaptive immune system's secondary response. iCorrelator also uses the concepts of Danger theory to decrease the computational complexity of the correlation process without considerable accuracy degradation. By considering the importance of signals in Danger theory, a new alert selection policy is introduced. It is named Enhanced Random Directed Time Window (ERDTW and is used to classify time slots to Relevant (Dangerous and Irrelevant (Safe slots based on the context information gathered during previous correlations. iCorrelator is evaluated using the DARPA 2000 dataset and a netForensics honeynet data. Completeness, soundness, false correlation rate and the execution time are investigated. Results show that iCorrelator generates attack graph with an acceptable accuracy that is comparable to the best known solutions. Moreover, inspiring by the Danger theory and using context information, the computational complexity of the correlation process is decreased considerably and makes it more applicable to online correlation.

  6. Adaptive embedded digital system for plasma diagnostics

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  7. Intelligent Adaptation Process for Case Based Systems

    Case Based Reasoning (CBR) Systems is one of the important decision making systems applied in many fields all over the world. The effectiveness of any CBR system based on the quality of the storage cases in the case library. Similar cases can be retrieved and adapted to produce the solution for the new problem. One of the main issues faced the CBR systems is the difficulties of achieving the useful cases. The proposed system introduces a new approach that uses the genetic algorithm (GA) technique to automate constructing the cases into the case library. Also, it can optimize the best one to be stored in the library for the future uses. However, the proposed system can avoid the problems of the uncertain and noisy cases. Besides, it can simply the retrieving and adaptation processes. So, it can improve the performance of the CBR system. The suggested system can be applied for many real-time problems. It has been applied for diagnosis the faults of the wireless network, diagnosis of the cancer diseases, diagnosis of the debugging of a software as cases of study. The proposed system has proved its performance in this field

  8. Understanding Complex Adaptive Systems by Playing Games

    Igor MAYER

    2010-04-01

    Full Text Available While educators teach their students about decision making in complex environments, managers have to deal with the complexity of large projects on a daily basis. To make better decisions it is assumed, that the latter would benefit from better understanding of complex phenomena, as do students as the professionals of the future. The goal of this article is to evaluate the relevance of the use of simulation games for learning about the complexity of large-scale socio-technical projects. Relevant concepts from complex adaptive systems will be introduced or described. The conjecture is that complex adaptive systems can be simulated by games, in which players are able to experience the system workings, and retrieve more insight in their complex behaviour as a result. The multiplayer computer game SimPort-MV2 illustrates this by simulating the decision making process revolving around Maasvlakte 2 (MV2, an extension of the Port of Rotterdam into the North Sea. The game has been played by hundreds of students of higher education. Based on this study, we present preliminary indications of learning and conclusions on how simulation games can provide insights in a complex adaptive system and be used to educate both students and professionals.

  9. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  10. Trauma: the role of the innate immune system

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  11. Semantic models for adaptive interactive systems

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  12. Adaptive energy flow management in hybrid systems

    Drozdz, P.; Fitzpatrick, N.; Zettel, A.; Bouchon, N.; Inglis, A.; Strange, M. [Azure Dynamics Inc., Vancouver, BC (Canada)

    2000-07-01

    The use of adaptive energy management strategies for hybrid electric-powered vehicles was discussed with reference to the emission standards that must be met at the 100,000 mile point. The approach offers efficiency improvement and a cost reduction for simple series systems for medium duty vehicles. It also provides for improved battery management for parallel systems. The overall efficiency, durability and battery life in both series and parallel hybrid propulsion systems are strongly affected by the energy flow pattern between the primary energy source, battery and traction motor. The adaptive approach to energy management system aims for the dynamic optimisation of the system based on measured vehicle operating data. The approach uses computer tools to analyse driving patterns and to determine the most efficient control approach. It has a built-in learning ability to monitor the condition of the components and update the control strategy depending on the system's parameters. The system makes it possible to maintain maximum efficiency under any operating conditions while reducing the component load. The system was tested in a delivery vehicle and can successfully project fuel consumption. It was suggested that the method can be used to project greenhouse gas reduction figures for future fleets. refs., tabs., figs.

  13. Next generation intelligent environments ambient adaptive systems

    Nothdurft, Florian; Heinroth, Tobias; Minker, Wolfgang

    2016-01-01

    This book covers key topics in the field of intelligent ambient adaptive systems. It focuses on the results worked out within the framework of the ATRACO (Adaptive and TRusted Ambient eCOlogies) project. The theoretical background, the developed prototypes, and the evaluated results form a fertile ground useful for the broad intelligent environments scientific community as well as for industrial interest groups. The new edition provides: Chapter authors comment on their work on ATRACO with final remarks as viewed in retrospective Each chapter has been updated with follow-up work emerging from ATRACO An extensive introduction to state-of-the-art statistical dialog management for intelligent environments Approaches are introduced on how Trust is reflected during the dialog with the system.

  14. Effects of ionizing radiation on the immune system

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor

  15. Quality of experience aware adaptive hypermedia system

    Muntean, Cristina Hava

    2005-01-01

    The research reported in this thesis proposes, designs and tests a novel Quality of Experience Layer (QoE-layer) for the classic Adaptive Hypermedia Systems (AHS) architecture. Its goal is to improve the end-user perceived Quality of Service in different operational environments suitable for residential users. While the AHS’ main role of delivering personalised content is not altered, its functionality and performance is improved and thus the user satisfaction with the service provided. T...

  16. Fatigue, workload and adaptive driver systems

    Hancock, P.A.; Verwey, W.B.

    1997-01-01

    This paper is directed to the further understanding of the problems of fatigue and workload and their role in diminishing driving capability. We present a specific strategy designed to defend against the adverse effects of fatigue and workload extremes through the use of adaptive driver systems. To begin, the work presents a brief critique of Muscio's constraints on developing a test of fatigue. In criticizing these constraints, we point to the commonalities between all energetic reflections ...

  17. Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system.

    Norouzitallab, Parisa; Baruah, Kartik; Biswas, Priyanka; Vanrompay, Daisy; Bossier, Peter

    2016-01-01

    The invertebrate's innate immune system was reported to show some form of adaptive features, termed trained immunity. However, the memory characteristics of innate immune system and the mechanisms behind such phenomena remain unclear. Using the invertebrate model Artemia, we verified the possibility or impossibility of trained immunity, examining the presence or absence of enduring memory against homologous and heterologous antigens (Vibrio spp.) during a transgenerational study. We also determined the mechanisms behind such phenomenon. Our results showed the occurrence of memory and partial discrimination in Artemia's immune system, as manifested by increased resistance, for three successive generations, of the progenies of Vibrio-exposed ancestors towards a homologous bacterial strain, rather than to a heterologous strain. This increased resistance phenotype was associated with elevated levels of hsp70 and hmgb1 signaling molecules and alteration in the expression of key innate immunity-related genes. Our results also showed stochastic pattern in the acetylation and methylation levels of H4 and H3K4me3 histones, respectively, in the progenies whose ancestors were challenged. Overall results suggest that innate immune responses in invertebrates have the capacity to be trained, and epigenetic reprogramming of (selected) innate immune effectors is likely to have central place in the mechanisms leading to trained immunity. PMID:26876951

  18. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  19. Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis.

    Parakkal Jovvian George

    Full Text Available Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB. However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity in TB is not known.We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB with co-incidental Strongyloides stercoralis (Ss infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB with or without Ss infection.Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection.Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.

  20. Direct adaptive control for nonlinear uncertain dynamical systems

    Hayakawa, Tomohisa

    In light of the complex and highly uncertain nature of dynamical systems requiring controls, it is not surprising that reliable system models for many high performance engineering and life science applications are unavailable. In the face of such high levels of system uncertainty, robust controllers may unnecessarily sacrifice system performance whereas adaptive controllers are clearly appropriate since they can tolerate far greater system uncertainty levels to improve system performance. In this dissertation, we develop a Lyapunov-based direct adaptive and neural adaptive control framework that addresses parametric uncertainty, unstructured uncertainty, disturbance rejection, amplitude and rate saturation constraints, and digital implementation issues. Specifically, we consider the following research topics; direct adaptive control for nonlinear uncertain systems with exogenous disturbances; robust adaptive control for nonlinear uncertain systems; adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints; adaptive reduced-order dynamic compensation for nonlinear uncertain systems; direct adaptive control for nonlinear matrix second-order dynamical systems with state-dependent uncertainty; adaptive control for nonnegative and compartmental dynamical systems with applications to general anesthesia; direct adaptive control of nonnegative and compartmental dynamical systems with time delay; adaptive control for nonlinear nonnegative and compartmental dynamical systems with applications to clinical pharmacology; neural network adaptive control for nonlinear nonnegative dynamical systems; passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems; neural network adaptive dynamic output feedback control for nonlinear nonnegative systems using tapped delay memory units; Lyapunov-based adaptive control framework for discrete-time nonlinear systems with exogenous disturbances

  1. Small and long regulatory RNAs in the immune system and immune diseases

    Stachurska, Anna; Zorro, Maria M.; van der Sijde, Marijke R.; Withoff, Sebo

    2014-01-01

    Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation

  2. Toward a molecular understanding of adaptive immunity:A chronology, Part II

    Kendall A Smith

    2012-11-01

    Full Text Available By 1980 it was obvious that to more fully understand adaptive immunity, one needed to somehow reduce the tremendous complexity of antigen recognition by T cell populations. Thus, there were two developments that resulted in a paradigm shift in immunology, one being the generation of monoclonal antibodies, and the other the development of monoclonal functional antigen-specific T cell lines. For the first time, the cellular reagents became available to ask new questions as to how individual cells comprising the complex cell populations recognize and respond to changes in their molecular environments. The first successful generation of monoclonal T cells depended upon the understanding that antigen renders cells responsive to the antigen non-specific T cell growth factor that came to be termed interleukin-2 (IL-2, which could then be used in propagating large numbers of the progeny of single cells, which in turn could then be used for molecular analyses. Monoclonal functional human T cells were used to immunize mice to generate clone-specific (clonotypic monoclonal antibodies, which then permitted the first biochemical characterizations of the antigen recognition elements of the T cell antigen receptor complex. Moreover, the use of monoclonal cytolytic and helper/inducer human T cell clones essentially proved that the T cell-specific molecules T4 and T8 functioned as accessory molecules in antigen recognition by defining MHC class II or class I restriction respectively. As well, the expression of the T3 molecules, found to be common to all T cells, were shown further to be obligatory for functional antigen-specific T cell signaling. The monoclonal IL-2-dependent T cells were also instrumental in the isolation and purification of the IL-2 molecule to homogeneity, the first interleukin molecule to be identified and characterized. These advances then led to the generation of pure radiolabeled IL-2 molecules that were used to identify the first

  3. Genetic immunization in the lung induces potent local and systemic immune responses.

    Song, Kaimei; Bolton, Diane L; Wei, Chih-Jen; Wilson, Robert L; Camp, Jeremy V; Bao, Saran; Mattapallil, Joseph J; Herzenberg, Leonore A; Herzenberg, Leonard A; Andrews, Charla A; Sadoff, Jerald C; Goudsmit, Jaap; Pau, Maria Grazia; Seder, Robert A; Kozlowski, Pamela A; Nabel, Gary J; Roederer, Mario; Rao, Srinivas S

    2010-12-21

    Successful vaccination against respiratory infections requires elicitation of high levels of potent and durable humoral and cellular responses in the lower airways. To accomplish this goal, we used a fine aerosol that targets the entire lung surface through normal respiration to deliver replication-incompetent recombinant adenoviral vectors expressing gene products from several infectious pathogens. We show that this regimen induced remarkably high and stable lung T-cell responses in nonhuman primates and that it also generated systemic and respiratory tract humoral responses of both IgA and IgG isotypes. Moreover, strong immunogenicity was achieved even in animals with preexisting antiadenoviral immunity, overcoming a critical hurdle to the use of these vectors in humans, who commonly are immune to adenoviruses. The immunogenicity profile elicited with this regimen, which is distinct from either intramuscular or intranasal delivery, has highly desirable properties for protection against respiratory pathogens. We show that it can be used repeatedly to generate mucosal humoral, CD4, and CD8 T-cell responses and as such may be applicable to other mucosally transmitted pathogens such as HIV. Indeed, in a lethal challenge model, we show that aerosolized recombinant adenoviral immunization completely protects ferrets against H5N1 highly pathogenic avian influenza virus. Thus, genetic immunization in the lung offers a powerful platform approach to generating protective immune responses against respiratory pathogens. PMID:21135247

  4. Theoretical implications of cellular immune reactions against helper lymphocytes infected by an immune system retrovirus.

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Dierich, M P; Wachter, H

    1987-01-01

    The breakdown of the immune system induced by the human immunodeficiency virus might be due to the active immune destruction of human immunodeficiency virus-infected helper T lymphocytes expressing viral antigens. By numerical simulation, we have studied possible consequences that a hypothetical immunodeficiency virus (IDV) may have on the cellular immune response by using a mathematical model. In this model, IDV infects CD4+ (helper) T cells and is actively synthesized by the immunologically activated helper T cells. Infected helper T cells synthesizing IDV express antigenic determinants specific for IDV and trigger a cellular immune response against themselves that is mediated by cytotoxic T cells and cytotoxic macrophages. The dynamic evolution of the model in the case of mixed-type infections with IDV and with another pathogen that evokes a cell-mediated immune response shows strong interactions between both simultaneous infections. The model might be of value to elucidate the dynamics leading to opportunistic infections. Furthermore, a pivotal role for immunological stimulation in the progressive exacerbation of the disease can be demonstrated. PMID:2959958

  5. Changes within the immune system from Birth to Old Age

    Grubeck-Loebenstein, Beatrix; Herndler-Brandstetter, Dietmar

    2008-01-01

    A wide range of age-related alterations in immune system function have been described which contribute to the high prevalence, the more severe disease course and the poorer prognosis of certain infectious diseases in the elderly population and the low efficacy of vaccinations. Moreover, the development and progression of other agerelated diseases, such as certain cancers, atherosclerosis, dementia, osteoporosis and rheumatoid arthritis have been associated with altered immune function in old ...

  6. Fat:A matter of disturbance for the immune system

    Alessandro; Federico; Elena; D’Aiuto; Francesco; Borriello; Giusi; Barra; Antonietta; Gerarda; Gravina; Marco; Romano; Raffaele; De; Palma

    2010-01-01

    Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. There is compelling evidence that both overnutrition and undernutrition negatively interfere with the immune system. Overnutrition has been found to increase susceptibility to the development of inflammatory diseases, autoimmune diseases and cancer. In the regulation of immune and in? ammatory ...

  7. Evasion of the human innate immune system by dengue virus

    Pagni, Sarah; Fernandez-Sesma, Ana

    2012-01-01

    Dengue virus is a worldwide health problem, with billions of people at risk annually. Dengue virus causes a spectrum of diseases, namely dengue fever, dengue hemorrhagic fever and dengue shock syndrome with the latter two being linked to death. Understanding how dengue is able to evade the immune system and cause enhanced severity of disease is the main topics of interest in the Fernandez-Sesma laboratory at Mount Sinai School of Medicine. Using primary human immune cells, our group investiga...

  8. Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

    Jula, Horatiu; Tralamazza, Daniel; Zamfir, Cristian; Candea, George

    2008-01-01

    Deadlock immunity is a property by which programs, once afflicted by a given deadlock, develop resistance against future occurrences of that and similar deadlocks. We describe a technique that enables programs to automatically gain such immunity without assistance from programmers or users. We implemented the technique for both Java and POSIX threads and evaluated it with several real systems, including MySQL, JBoss, SQLite, Apache ActiveMQ, Limewire, and Java JDK. The results demonstrate eff...

  9. Role of innate immune system in systemic sclerosis.

    Fullard, Nicola; O'Reilly, Steven

    2015-09-01

    Recognition of microbial or viral compounds is crucial to elicit an immune response and pattern recognition receptors (PRRs) form the first line of defence. An important family of PRRs are the Toll-like receptors (TLRs) with numerous evidences indicating their crucial role in identifying microbial or viral compounds. However, the danger theory, where the innate immune system responds to danger signals such as proteins released during damage or necrosis rather than only non-self is gaining ground. Indeed, TLRs are able to recognise endogenous molecules and have been implicated as key players in numerous autoimmune diseases including systemic sclerosis (SSc). TLR2 is known to be upregulated in SSc and has been shown to respond to the endogenous ligand amyloid A resulting in increased IL-6 secretion. TLR4 is now known to respond to a variety of endogenous ligands including fibronectin, containing alternatively spliced exons encoding type III repeat extra domain (EDA). EDA is only expressed upon tissue damage, and elevated levels can be found in SSc patients, idiopathic pulmonary fibrosis and cardiac allograft fibrosis, while deletion of EDA or TLR4 in mice reduces their fibrotic response. Further, stimulation of TLR8 with single-stranded RNA leads to increased expression of TIMP-1. This has been shown to require both IRAK4 and NF-κB with evidence suggesting autoantibodies bind to RNA to stimulate TIMP-1 production in monocytes. Therefore, TLR-mediated signalling provides numerous potential therapeutic targets for development of therapies for the treatment of multi-systemic autoimmune diseases. PMID:26159672

  10. STRONG SELECTIVE SIGNAL AND HIGH GENETIC VARIABILITY AT AN IMMUNE SYSTEM LOCUS IN CONTAMINATED AND UNCONTAMINATED POPULATIONS OF AN ESTUARINE FISH

    The major histocompatibility complex (MHC) is a group of linked genes that mediates the adaptive immune response in vertebrates. Studies using mammals and birds have shown that environmental stressors can produce genetic changes at MHC loci that can affect immune system function....

  11. Optimal Feedback Systems with Analogue Adaptive Transmitters

    Platonov, Anatoliy

    2010-01-01

    The paper presents original approach to concurrent optimization of the transmitting and receiving parts of adaptive communication systems (CS) with feedback channels. The results of research show a possibility and the way of designing the systems transmitting the signals with a bit rate equal to the capacity of the forward channel under given bit-error rate (BER). The results of work can be used for design of different classes of high-efficient low energy/size/cost CS, as well as allow further development and extension.

  12. Towards an Empathizing and Adaptive Storyteller System

    Bae, Byung Chull; Brunete, Alberto; Malik, Usman;

    2012-01-01

    This paper describes our ongoing effort to build an empathizing and adaptive storyteller system. The system under development aims to utilize emotional expressions generated from an avatar or a humanoid robot in addition to the listener’s responses which are monitored in real time, in order to...... deliver a story in an effective manner. We conducted a pilot study and the results were analyzed in two ways: first, through a survey questionnaire analysis based on the participant’s subjective ratings; second, through automated video analysis based on the participant’s emotional facial expression and...

  13. A self-adaptive energy harvesting system

    Hoffmann, D.; Willmann, A.; Hehn, T.; Folkmer, B.; Manoli, Y.

    2016-03-01

    This paper reports on a self-adaptive energy harvesting system, which is able to adapt its eigenfrequency to the operating conditions of power units. The power required for frequency tuning is delivered by the energy harvester itself. The tuning mechanism is based on a magnetic concept and incorporates a circular tuning magnet and a coupling magnet. In this manner, both coupling modes (attractive and repulsive) can be utilized for tuning the eigenfrequency of the energy harvester. The tuning range and its center frequency can be tailored to the application by careful design of the spring stiffness and the gap between tuning magnet and coupling magnet. Experimental results demonstrate that, in contrast to a conventional non-tunable vibration energy harvester, the net power can be significantly increased if a self-adaptive system is utilized, although additional power is required for regular adjustments of the eigenfrequency. The outcome confirms that active tuning is a real and practical option to extend the operational frequency range and to increase the net power of a conventional vibration energy harvester.

  14. Immune System Approaches to Intrusion Detection - A Review

    Kim, Jungwon; Aickelin, Uwe; Greensmith, Julie; Tedesco, Gianni; Twycross, Jamie

    2008-01-01

    The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

  15. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  16. Complex and adaptive dynamical systems a primer

    Gros, Claudius

    2013-01-01

    Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...

  17. Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings

    Montechiesi, L.; Cocconcelli, M.; Rubini, R.

    2016-08-01

    In recent years new diagnostics methodologies have emerged, with particular interest into machinery operating in non-stationary conditions. In fact continuous speed changes and variable loads make non-trivial the spectrum analysis. A variable speed means a variable characteristic fault frequency related to the damage that is no more recognizable in the spectrum. To overcome this problem the scientific community proposed different approaches listed in two main categories: model-based approaches and expert systems. In this context the paper aims to present a simple expert system derived from the mechanisms of the immune system called Euclidean Distance Minimization, and its application in a real case of bearing faults recognition. The proposed method is a simplification of the original process, adapted by the class of Artificial Immune Systems, which proved to be useful and promising in different application fields. Comparative results are provided, with a complete explanation of the algorithm and its functioning aspects.

  18. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  19. Space flight and the immune system

    Cogoli, A.

    1993-01-01

    Depression of lymphocyte response to mitogens in cosmonauts after space flight was reported for the first time in the early 1970s by Soviet immunologists. Today we know that depression of lymphocyte function affects at least 50% of space crew members. Investigations on the ground on subjects undergoing physical and psychological stress indicate that stress is a major factor in immune depression of astronauts. This is despite the fact that weightlessness per se has a strong inhibitory effect on lymphocyte activation in vitro. Although the changes observed never harmed the health of astronauts, immunological changes must be seriously investigated and understood in view of long-duration flight on space stations in an Earth orbit, to other planets such as Mars and to the Moon.

  20. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  1. ADAPTIVE SYSTEMS THEORY: SOME BASIC CONCEPTS, METHODS AND RESULTS

    GUO Lei

    2003-01-01

    The adaptive systems theory to be presented in this paper consists of two closely related parts: adaptive estimation (or filtering, prediction) and adaptive control of dynamical systems. Both adaptive estimation and control are nonlinear mappings of the on-line observed signals of dynamical systems, where the main features are the uncertainties in both the system's structure and external disturbances, and the non-stationarity and dependency of the system signals. Thus, a key difficulty in establishing a mathematical theory of adaptive systems lies in how to deal with complicated nonlinear stochastic dynamical systems which describe the adaptation processes. In this paper, we will illustrate some of the basic concepts, methods and results through some simple examples. The following fundamental questions will be discussed: How much information is needed for estimation? How to deal with uncertainty by adaptation? How to analyze an adaptive system? What are the convergence or tracking performances of adaptation? How to find the proper rate of adaptation in some sense? We will also explore the following more fundamental questions: How much uncertainty can be dealt with by adaptation ? What are the limitations of adaptation ? How does the performance of adaptation depend on the prior information ? We will partially answer these questions by finding some "critical values" and establishing some "Impossibility Theorems" for the capability of adaptation, for several basic classes of nonlinear dynamical control systems with either parametric or nonparametric uncertainties.

  2. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  3. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis.

    Hall, Jessica M F; Cruser, Desanges; Podawiltz, Alan; Mummert, Diana I; Jones, Harlan; Mummert, Mark E

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  4. Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions

    Gilboa-Geffen, Adi; Hartmann, Gunther; Soreq, Hermona

    2012-01-01

    Hematopoietic stem cells (HSCs) differentiate and generate all blood cell lineages while maintaining self-renewal ability throughout life. Systemic responses to stressful insults, either psychological or physical exert both stimulating and down-regulating effects on these dynamic members of the immune system. Stress-facilitated division and re-oriented differentiation of progenitor cells modifies hematopoietic cell type composition, while enhancing cytokine production and promoting inflammati...

  5. Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions

    Hermona Soreq; Adi Gilboa-Geffen

    2012-01-01

    Hematopoietic stem cells (HSC) differentiate and generate all blood cell lineages while maintaining self renewal ability throughout life. Systemic responses to stressful insults, either psychological or physical exert both stimulating and down-regulating effects on these dynamic members of the immune system. Stress-facilitated division and re-oriented differentiation of progenitor cells modifies hematopoietic cell type composition, while enhancing cytokine production and promoting inflammatio...

  6. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  7. "Health system approach" for improving immunization program performance.

    Lahariya, Chandrakant

    2015-01-01

    Immunization programs are one of the most well-recognized and successful public health programs across the world. The immunization programs have achieved significant successes in a number of countries; however, the coverage with available vaccines remains sub-optimal in many low- and middle-income countries (LMICs). This article, based upon extensive review of literature and using universal immunization program (UIP) in India as a case study, summarizes the latest developments and initiatives in the area of vaccination and immunization in the last few years. The article analyzes initiatives under UIP in India from the "health system approach" and argues that it is possible to increase coverage with available vaccines and overall program performance by focused attention on various functions of health systems. It also discusses the emerging evidence that health systems could be strengthened prior to the introduction of new interventions (vaccines included) and the introduction of new interventions (including vaccines) could be planned in a way to strengthen the health systems. It concludes that immunization programs could be one of the entry points for strengthening health systems in the countries and lessons from vaccine introduction could pave pathway for scaling up other health interventions and therefore, could contribute to advancing Universal Health Coverage (UHC). PMID:26985404

  8. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  9. DKIST Adaptive Optics System: Simulation Results

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  10. Complex and adaptive dynamical systems a primer

    Gros, Claudius

    2015-01-01

    This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...

  11. Adaptable data management for systems biology investigations

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  12. Strategies to discover regulatory circuits of the mammalian immune system

    Amit, Ido; Regev, Aviv; Hacohen, Nir

    2013-01-01

    Recent advances in technologies for genome- and proteome-scale measurements and perturbations promise to accelerate discovery in every aspect of biology and medicine. Although such rapid technological progress provides a tremendous opportunity, it also demands that we learn how to use these tools effectively. One application with great potential to enhance our understanding of biological systems is the unbiased reconstruction of genetic and molecular networks. Cells of the immune system provide a particularly useful model for developing and applying such approaches. Here, we review approaches for the reconstruction of signalling and transcriptional networks, with a focus on applications in the mammalian innate immune system. PMID:22094988

  13. Realistic Prediction of BER for Adaptive OFDM Systems

    Luo, Meiling; Villemaud, Guillaume; Gorce, Jean-Marie; Jie ZHANG

    2013-01-01

    Adaptive OFDM systems improve the spectral efficiency. In this paper, block adaptive modulation is implemented based on the realistic prediction of BER and fading parameters from the MR-FDPF model. The aggregate data rate from block adaptive modulation is compared to that from non-adaptive modulation, and at the end, the data rate gain is obtained.

  14. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2.

    Zhu, Eric F; Gai, Shuning A; Opel, Cary F; Kwan, Byron H; Surana, Rishi; Mihm, Martin C; Kauke, Monique J; Moynihan, Kelly D; Angelini, Alessandro; Williams, Robert T; Stephan, Matthias T; Kim, Jacob S; Yaffe, Michael B; Irvine, Darrell J; Weiner, Louis M; Dranoff, Glenn; Wittrup, K Dane

    2015-04-13

    Cancer immunotherapies under development have generally focused on either stimulating T cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8(+) T cells. This combination therapy induces an intratumoral "cytokine storm" and extensive lymphocyte infiltration. Adoptive transfer of anti-tumor T cells together with this combination therapy leads to robust cures of established tumors and development of immunological memory. PMID:25873172

  15. Immune system changes during simulated planetary exploration on Devon Island, high arctic

    Effenhauser Rainer

    2007-05-01

    following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions.

  16. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius)

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  17. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases.

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Walder, Ken; Maes, Michael

    2016-03-01

    Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways. PMID:25598355

  18. Effects of the space flight environment on the immune system

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  19. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells.

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F; Breuer, Johanna; Herold, Martin; Gross, Catharina C; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  20. Systems biology of neutrophil differentiation and immune response

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These...

  1. ImmunoScenarios: A Game for the Immune System.

    Taylor, Mark F.; Jackson, Sally W.

    1996-01-01

    Describes a board game, ImmunoScenarios, which was developed to reinforce the ideas about the immune system discussed in lecture classes. Emphasizes important characteristics of the body's specific defense system including specificity, cooperation among various cells, and memory. Includes directions for playing, student handouts, and scenarios.…

  2. The Role of CD103+ Dendritic Cells in the Intestinal Mucosal Immune System

    Ruane, Darren Thomas; Ed C Lavelle

    2011-01-01

    While dendritic cells (DC) are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune respo...

  3. Complex Adaptive Digital EcoSystems

    Briscoe, Gerard

    2011-01-01

    We investigate an abstract conceptualisation of DigitalEcosystems from a computer science perspective. We then provide a conceptual framework for the cross pollination of ideas, concepts and understanding between different classes of ecosystems through the universally applicable principles of Complex Adaptive Systems (CAS) modelling. A framework to assist the cross-disciplinary collaboration of research into Digital Ecosystems, including Digital BusinessEcosystems (DBEs) and Digital Knowledge Ecosystems (DKEs). So, we have defined the key steps towards a theoretical framework for Digital Ecosystems, that is compatible with the diverse theoretical views prevalent. Therefore, a theoretical edifice that can unify the diverse efforts within Digital Ecosystems research.

  4. Adaptive information filtering for dynamic recommender systems

    Jin, Ci-Hang; Zhang, Yi-Cheng; Zhou, Tao

    2009-01-01

    The dynamic environment in the real world calls for the adaptive techniques for information filtering, namely to provide real-time responses to the changes of system data. Where many incremental algorithms are designed for this purpose, they are usually challenged by the worse and worse performance resulted from the cumulative errors over time. In this Letter, we propose two incremental diffusion-based algorithms for the personalized recommendations, which integrate some pieces of local and fast updatings to achieve the approximate results. In addition to the fast responses, the errors of the proposed algorithms do not cumulate over time, that is to say, the global recomputing is unnecessary. This remarkable advantage is demonstrated by several metrics on algorithmic accuracy for two movie recommender systems and a social bookmarking system.

  5. Energy efficient security in MANETs: a comparison of cryptographic and artificial immune systems

    MANET is characterized by a set of mobile nodes in an inherently insecure environment, having limited battery capacities. Provisioning of energy efficient security in MANETs is, therefore, an open problem for which a number of solutions have been proposed. In this paper, we present an overview and comparison of the MANET security at routing layer by using the cryptographic and Artificial Immune System (AIS) approaches. The BeeAdHoc protocol, which is a Bio-inspired MANET routing protocol based on the foraging principles of honey bee colony, is taken as case study. We carry out an analysis of the three security frameworks that we have proposed earlier for securing BeeAdHoc protocol; one based on asymmetric key encryption, i.e BeeSec, and the other two using the AIS approach, i.e BeeAIS based on self non-self discrimination from adaptive immune system and BeeAIS-DC based on Dendritic Cell (DC) behavior from innate immune system. We extensively evaluate the performance of the three protocols through network simulations in ns-2 and compare with BeeAdHoc, the base protocol, as well as with state-of-the-art MANET routing protocols DSR and AODV. Our results clearly indicate that AIS based systems provide security at much lower cost to energy as compared with the cryptographic systems. Moreover, the use of dendritic cells and danger signals instead of the classical self non-self discrimination allows to detect the non-self antigens with greater accuracy. Based on the results of this investigation, we also propose a composite AIS model for BeeAdHoc security by combining the concepts from both the adaptive and the innate immune systems by modelling the attributes and behavior of the B-cells and DCs. (author)

  6. An overview of the lagomorph immune system and its genetic diversity.

    Pinheiro, Ana; Neves, Fabiana; Lemos de Matos, Ana; Abrantes, Joana; van der Loo, Wessel; Mage, Rose; Esteves, Pedro José

    2016-02-01

    Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution. PMID:26399242

  7. Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Mathematics, Yunyang Teachers' College, Hubei, Shiyan 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Jian' an, E-mail: jafang@dhu.edu.c [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen, E-mail: sunwen_2201@163.co [School of Mathematics and Information, Yangtze University, Hubei, Jingzhou 434023 (China)

    2010-07-26

    This Letter investigates the problem of adaptive lag synchronization and parameters adaptive lag identification of chaotic systems. In comparison with those of existing parameters identification schemes, the unknown parameters are identified by adaptive lag laws, and the delay time is also identified in this Letter. Numerical simulations are also given to show the effectiveness of the proposed method.

  8. Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems

    This Letter investigates the problem of adaptive lag synchronization and parameters adaptive lag identification of chaotic systems. In comparison with those of existing parameters identification schemes, the unknown parameters are identified by adaptive lag laws, and the delay time is also identified in this Letter. Numerical simulations are also given to show the effectiveness of the proposed method.

  9. Effect of simulated weightlessness on the immune system in rats

    Caren, L. D.; Mandel, A. D.; Nunes, J. A.

    1980-01-01

    Rats suspended in a model system designed to simulate many aspects of weightlessness were immunized with sheep red blood cells. Parameters measured on these and control rats included titers of anti-sheep red blood cell antibodies, serum immunoglobulin levels, spleen and thymus weights, hematocrits, and leukocyte differential counts on peripheral blood. No significant differences were found between test and weight-bearing, harnessed controls; however, the thymuses of animals in both these groups were significantly smaller than untreated cage controls. The lack of an effect of simulated weightlessness on the immune system is an interesting result, and its significance is discussed.

  10. Fuzzy Logic Based Multi User Adaptive Test System

    2014-01-01

    The present proliferation of e-learning has been actively underway for the last 10 years. Current research in Adaptive Testing System focuses on the development of psychometric models with items selection strategies applicable to adaptive testing processes. The key aspect of proposed Adaptive Testing System is to develop an increasingly sophisticated latent trait model which can assist users in developing and enhancing their skills. Computerized Adaptive Test (CAT) System requires a lot of in...

  11. Adaptable formations utilizing heterogeneous unmanned systems

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  12. Vitamin D Signaling in the Bovine Immune System: A Model for Understanding Human Vitamin D Requirements

    Corwin D. Nelson

    2012-03-01

    Full Text Available The endocrine physiology of vitamin D in cattle has been rigorously investigated and has yielded information on vitamin D requirements, endocrine function in health and disease, general metabolism, and maintenance of calcium homeostasis in cattle. These results are relevant to human vitamin D endocrinology. The current debate regarding vitamin D requirements is centered on the requirements for proper intracrine and paracrine vitamin D signaling. Studies in adult and young cattle can provide valuable insight for understanding vitamin D requirements as they relate to innate and adaptive immune responses during infectious disease. In cattle, toll-like receptor recognition activates intracrine and paracrine vitamin D signaling mechanism in the immune system that regulates innate and adaptive immune responses in the presence of adequate 25-hydroxyvitamin D. Furthermore, experiments with mastitis in dairy cattle have provided in vivo evidence for the intracrine vitamin D signaling mechanism in macrophages as well as vitamin D mediated suppression of infection. Epidemiological evidence indicates that circulating concentrations above 32 ng/mL of 25-hydroxyvitamin D are necessary for optimal vitamin D signaling in the immune system, but experimental evidence is lacking for that value. Experiments in cattle can provide that evidence as circulating 25-hydroxyvitamin D concentrations can be experimentally manipulated within ranges that are normal for humans and cattle. Additionally, young and adult cattle can be experimentally infected with bacteria and viruses associated with significant diseases in both cattle and humans. Utilizing the bovine model to further delineate the immunomodulatory role of vitamin D will provide potentially valuable insights into the vitamin D requirements of both humans and cattle, especially as they relate to immune response capacity and infectious disease resistance.

  13. Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation

    陶莉莉; 孔祥东; 钟伟民; 钱锋

    2012-01-01

    In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.

  14. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.

    Chylinski, Krzysztof; Le Rhun, Anaïs; Charpentier, Emmanuelle

    2013-01-01

    CRISPR-Cas is a rapidly evolving RNA-mediated adaptive immune system that protects bacteria and archaea against mobile genetic elements. The system relies on the activity of short mature CRISPR RNAs (crRNAs) that guide Cas protein(s) to silence invading nucleic acids. A set of CRISPR-Cas, type II, requires a trans-activating small RNA, tracrRNA, for maturation of precursor crRNA (pre-crRNA) and interference with invading sequences. Following co-processing of tracrRNA and pre-crRNA by RNase II...

  15. Investigating Immune System Aging: System Dynamics and Agent-Based Modeling

    Figueredo, Grazziela; Aickelin, Uwe

    2013-01-01

    System dynamics and agent based simulation models can both be used to model and understand interactions of entities within a population. Our modeling work presented here is concerned with understanding the suitability of the different types of simulation for the immune system aging problems and comparing their results. We are trying to answer questions such as: How fit is the immune system given a certain age? Would an immune boost be of therapeutic value, e.g. to improve the effectiveness...

  16. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response.

    Anja Kathrin Wege

    Full Text Available BACKGROUND: Leishmania (L. species are the causative agent of leishmaniasis. Due to the lack of efficient vaccine candidates, drug therapies are the only option to deal with cutaneous leishmaniasis. Unfortunately, chemotherapeutic interventions show high toxicity in addition to an increased risk of dissemination of drug-resistant parasites. An appropriate laboratory animal based model is still missing which allows testing of new drug strategies in the context of human immune cells in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Humanized mice were infected subcutaneously with stationary phase promastigote L. major into the footpad. The human immune response against the pathogen and the parasite host interactions were analyzed. In addition we proved the versatility of this new model to conduct drug research studies by the inclusion of orally given Miltefosine. We show that inflammatory human macrophages get infected with Leishmania parasites at the site of infection. Furthermore, a Leishmania-specific human-derived T cell response is initiated. However, the human immune system is not able to prevent systemic infection. Thus, we treated the mice with Miltefosine to reduce the parasitic load. Notably, this chemotherapy resulted in a reduction of the parasite load in distinct organs. Comparable to some Miltefosine treated patients, humanized mice developed severe side effects, which are not detectable in the classical murine model of experimental leishmaniasis. CONCLUSIONS/SIGNIFICANCE: This study describes for the first time L. major infection in humanized mice, characterizes the disease development, the induction of human adaptive and innate immune response including cytokine production and the efficiency of Miltefosine treatment in these animals. In summary, humanized mice might be beneficial for future preclinical chemotherapeutic studies in systemic (visceral leishmaniasis allowing the investigation of human immune response, side effects of the drug

  17. Human Immune System and Characteristics of Herpetic Infection Pathogenesis (Review

    Sobchak D.М.

    2014-09-01

    Full Text Available In recent years the significance of knowledge of immune mechanisms of various pathological conditions is growing, since it is related to the survival peculiarities of modern human. Acute diseases are frequently protracted, the number of chronic conditions increasing. The principal tasks of human immune system study is to determine an impaired component of immunity system, make the prognosis of a chronic character of the disease, and assess the provided treatment efficiency. Virus immunology is progressing rapidly. However, there are still many incomprehensible mechanisms of interaction between a human organism and viruses; some functions of many virus proteins enabling viruses to escape immune surveillance are understudied. Such studies will enable to comprehend significantly the pathogenesis of virus infections, and therefore develop new forms of treatment and prevention. The review presents current views on immune response formation in herpetic infection, the interaction mechanisms of a virus and a macroorganism, the main lines of research in a clinical picture, diagnosis and management of the pathology.

  18. Adaptation of the immune system as a response to pregnancy

    Milašinović Ljubomir; Bulatović Sanja; Ilić Đorđe; Ivanović Ljiljana; Županski Mirjana

    2002-01-01

    Introduction Pregnancy is an intriguing immunologic phenomenon. In spite of genetic differences, maternal and fetal cells are in close contact over the whole course of pregnancy with no evidence of either humoral and/or cellular immunologic response of mother to fetus as an allotransplant. The general opinion is that the fundamental protective mechanism must be located locally at the contact-plate, between the maternal and fetal tissues. Immunologic investigations proved the presence of speci...

  19. Special Operations Forces: A Global Immune System?

    Norman, Joseph

    2016-01-01

    The use of special operations forces (SOF) in war fighting and peace keeping efforts has increased dramatically in recent decades. A scientific understanding of the reason for this increase would provide guidance as to the contexts in which SOF can be used to their best effect. Ashby's law of requisite variety provides a scientific framework for understanding and analyzing a system's ability to survive and prosper in the face of environmental challenges. We have developed a generalization of this law to extend the analysis to systems that must respond to disturbances at multiple scales. This analysis identifies a necessary tradeoff between scale and complexity in a multiscale control system. As with Ashby's law, the framework applies to the characterization of successful biological and social systems in the context of complex environmental challenges. Here we apply this multiscale framework to provide a control theoretic understanding of the historical and increasing need for SOF, as well as conventional mili...

  20. Adaptive Control of the Chaotic System via Singular System Approach

    Yudong Li; Tianyu Zhang; Yujun Zhang

    2014-01-01

    This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.