WorldWideScience

Sample records for acute radiation effects

  1. Effects of Ozonated Olive Oil on Acute Radiation Proctitis in Rats

    Gültekin, Fatma Ayça; BAKKAL, Bekir Hakan; Sümer, Demet; Köktürk, Füruzan; Bektaş, Sibel

    2013-01-01

    Background: Acute radiation proctitis is a common complication of pelvic radiation and management of acute radiation proctitis is under evaluation. The beneficial effects of ozonated olive oil (OzOO) have already been shown in the treatment of chronic wounds. Thus, this study was designed to evaluate the therapeutic effects of topical OzOO on acute radiation proctitis. Aims: To evaluate the therapeutic effects of topical OzOO on acute radiation proctitis. Study Design: An...

  2. Protective effects of gelsolin on acute radiation symptom

    This paper is to study the protective effect of gelsolin on acute radiation symptoms after total body irradiation. The concentration of plasma gelsolin was determined by a commercial ELISA Kit before and post-irradiation at different times by 137Cs γ rays with 4 Gy and 8 Gy. Levels of prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB) were detected by an STAGO blood coagulation instrument at different times post-irradiation with 6 Gy γ ray. Otherwise the contents of the plasma malonaldehyde (MDA), superoxide dismutase (SOD) and whole blood glutathione (GSH) were examined at 2 d and 7 a respectively after radiation. We found that the plasma levels of gelsolin were rising at 24 h post-radiation and a persistent degression tendency of gelsolin concentration was found from 24 h to 72 h post-irradiation with 4 Gy and 8 Gy. This decreasing degree had a positive correlation with the exposure dose. On the day from 4 d to 7 d after radiation treatment, the gelsolin treatment group had significantly higher PT and APTT, but low FIB than those of irradiated control group. Within 14 d to 18 d post-radiation, APTT, PT and FIB in gelsolin treatment group were lower than those in irradiated control group, but only APTT and PT differences were prominent. Levels of GSH and SOD in gelsolin treatment group were conspicuously higher than those in irradiated control group; whereas MDA levels were significantly lower than the irradiated control group. Gelsolin may have some certain protective effects on acute radiation disease in improving radiation hemorrhagic injury and eliminating free radicals. (authors)

  3. Acute radiation syndrome and delayed effects of radiation exposure

    The results of the overall irradiation of the body with large doses are described. Effects of irradiation are presented separately for central nervous, cardiovascular and gastrointestinal systems. Damages of cellular level and late effects in the whole body scale are shown. 7 refs, 2 figs

  4. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  5. Clinical effect of rhEGF on acute radiation stomatitis

    Objective: To evaluate the clinical effect of recombinant human epidermal growth factor (rhEGF) on acute radiation stomatitis (ARS). Methods: A total of 90 patients with head and neck malignant tumor going to receive radiotherapy were randomized into 3 groups: prophylactic application group (group A); therapeutic application group (group B) and the control group(group C). The irradiated mucous membrane was sprayed with rhEGF at the beginning of radiotherapy in group A and sprayed after grade I radiation stomatitis had appeared in group B. Comparison was made with control patients (group C) who received routine oral care with Dobell's solution. The rate of ARS and the clinical effect of rhEGF were evaluated. Results: The ARS appeared in 73% (22/30) of the patients after irradiated at a dose more than 10 Gy in group A, and appeared in 83% (25/30) of the patients irradiated at a dose less than 10 Gy in group C. In groups A and B, the rates of grades III and IV ARS were obviously lower than those in group C. The average curative time of the rhEGF treatment groups (group A or B) was less than 7 days whereas, that of the control group (group C) was more than 10 days. The total effective rate of the rhEGF treatment groups was significantly higher than that of the control group (P<0.01). Conclusion: Prophylactic application of rhEGF can postpone the development of ARS. rhEGF can reduce the incidence of grades III and IV of ARS and shorten the curative time of ARS by either prophylactic or therapeutic application. Therefore, it should be highly recommended and popularized. (authors)

  6. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  7. The effects of acute radiation exposure on the serum components

    The blood samples were collected from the experimental animals 24 hrs after irradiation of gamma doses upto 80 Gy. Native PAGE showed a decreasing trend in gamma globulin fraction of serum from the irradiated group compared to control, while SDS PAGE indicated an enhanced tendency in protein of molecular weight 30,000 to 40,000. Serum albumin slightly decreased with radiation doses as a result of decrease in total protein amount. Radiation exposure had little or no effects on such lipid related components as phospholipid, triglyceride, and cholesterol, respectively. Among others, glutamic pyryvic transaminase (GPT) showed a drastic decrease in its amount 24 hrs after radiation exposure, which can be applied to the health care program for radiation workers. (Author)

  8. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  9. Side effect of cranial radiation in childhood acute leukemia, 1

    We examined the somnolence syndrome, which is one of the side effects of cranial irradiation. Out of 53 patients in acute leukemia who had received cranial irradiation, nine patients (17%) developed the somnolence syndrome. Patients with the somnolence syndrome showed slow waves on EEG. Some patients had ventricular dilatation and widening of sulci before cranial irradiation on CT findings, but these findings improved after cranial irradiation. Out of nine cases with the somnolence syndrome, 6 patients survived and did not experience difficulties in school. But one patient showed calcification on CT brain scan. It is considered that the cause of the somnolence syndrome is a trasient inhibition of myelin synthesis and most patients improved without serious sequelae. It is necessary to follow up many cases of somnolence syndrome. (author)

  10. Modelling the effects of ionizing radiation on survival of animal population: acute versus chronic exposure.

    Kryshev, A I; Sazykina, T G

    2015-03-01

    The objective of the present paper was application of a model, which was originally developed to simulate chronic ionizing radiation effects in a generic isolated population, to the case of acute exposure, and comparison of the dynamic features of radiation effects on the population survival in cases of acute and chronic exposure. Two modes of exposure were considered: acute exposure (2-35 Gy) and chronic lifetime exposure with the same integrated dose. Calculations were made for a generic mice population; however, the model can be applied for other animals with proper selection of parameter values. In case of acute exposure, in the range 2-11 Gy, the population response was in two phases. During a first phase, there was a depletion in population survival; the second phase was a recovery period due to reparation of damage and biosynthesis of new biomass. Model predictions indicate that a generic mice population, living in ideal conditions, has the potential for recovery (within a mouse lifetime period) from acute exposure with dose up to 10-11 Gy, i.e., the population may recover from doses above an LD50 (6.2 Gy). Following acute doses above 14 Gy, however, the mice population went to extinction without recovery. In contrast, under chronic lifetime exposures (500 days), radiation had little effect on population survival up to integrated doses of 14-15 Gy, so the survival of a population subjected to chronic exposure was much better compared with that after an acute exposure with the same dose. Due to the effect of "wasted radiation", the integrated dose of chronic exposure could be about two times higher than acute dose, producing the same effect on survival. It is concluded that the developed generic population model including the repair of radiation damage can be applied both to acute and chronic modes of exposure; results of calculations for generic mice population are in qualitative agreement with published data on radiation effects in mice. PMID

  11. Acute radiation disease

    Features of clinical trends in acute period of radiation disease at personnel who suffered from Chernobyl accident are considered. The main attention is paid to the results of 10 year observation of organs, systems and metabolic processes in patients. Used therapeutic, rehabilitation and preventive actions in stationary, ambulatory and sanatorium - health resort stages are described

  12. Protective effects of parmelia tinctorum preparations on acute radiation-injured mice

    Objective: To investigate the radiation protection effect of Parmelia tinctorum preparations in dosage, drug administration time, administration methods and different preparation methods on acute radiation-injured mice, and find out the best therapeutic project. Methods: Kunming mice were injected (ip) with 10 mg/kg, 20 mg/kg, 40 mg/kg, 80 mg/kg of Parmelia tinctorum preparations before irradiation respectively, then irradiated by 9 Gy 60Co γ-ray. The 30-day survival rates and the protection factors were observed. By the same method, another group of mice were injected (ip) with Parmelia tinctorum preparations at 15 min, 30 min, 1 h, 2 h, 4 h before irradiation respectively, the 30-day survival rates and the protection factors were observed. The protective effect of Parmelia tinctorum preparations from intramuscular and oral routes were compared with the same method. The protective effect of Parmelia tinctorum water extract preparations and alcohol extract preparations were compared. Results: A certain dosage (20-80 mg/kg) of Parmelia tinctorum preparations could greatly improve the 30-day survival rates and the protection factors of radiation-injured mice. Parmelia tinctorum preparations had significant therapeutic effect on 60Co γ-ray radiation-injured mice at 15 min-1 h before irradiation. Administration of Parmelia tinctorum preparations by intramuscular injection showed a little lower efficacy than by intraperitoneal injection, but administration the same dose orally had no significant radiation protective effect. Parmelia tinctorum preparations extracted by water injected (ip) before irradiation had the same radiation protective effect with those extracted by 50% alcohol. Conclusion: Parmelia tinctorum preparations have a certain protective effect on acute radiation-injured mice. The best therapeutic project is injected (ip) with 40 mg/kg of Parmelia tinctorum preparations at 30 min before irradiation. (authors)

  13. Effect Of Oligomeric Enteral Nutrition On Symptoms Of Acute Radiation Enteritis

    Radiotherapy of abdominal and pelvic tumours is frequently associated with acute radiation enteritis. Predominant symptoms include diarrhea, watery stools, abdominal pain, nausea and vomiting. There are very few effective interventions available for this condition. Enteral oligomeric nutrition has been used in bowel diseases with functional failure similar to radiation enteritis. The aim of presented work was to observe occurrence of symptoms of radiation enteritis in patients undergoing abdominal or pelvic radiotherapy. Apart from diet and pharmacological therapy, oral oligomeric enteral nutrition (Peptisorb Powder Nutricia) at the dose of 1000 - 2000 ml per day was administered for minimum of 4 days. Planned period of administration was 14 days and longer. Symptoms of radiation enteritis were evaluated at the beginning and in the end of administration. Prevalence of all evaluated symptoms of radiation enteritis was decreased and difference was statistically significant for diarrhea, watery stools, abdominal pain, nausea and vomiting. The use of evaluated oligomeric nutritional support might, in conjunction with pharmacotherapy and diet, alleviate symptoms of acute radiation enteritis and maintain nutritional status of patients. (author)

  14. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m3 for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m3 (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs

  15. Acute Radiation Syndrome (ARS) and its harmful effects on human health

    After radiation exposure a series of many clinical syndromes appear that is called as Acute Radiation Syndrome (ARS). ARS also known as radiation toxicology or radiation sickness. Both low and higher doses radiation exposure on human body cause different types of radiation syndromes. These radiations may be ionizing radiations. X-rays and gamma rays etc. some times neutrons or radionuclides may also be deposited in human body and their effective doses cause major injuries or abnormalities even sometimes death also. ARS consist of a sequence of phased symptoms. These symptoms appear after the radiation exposure for several days to several months or sometimes for a long period or years. ARS depends on the quantity of absorbed radiation dose (rad0). ARS is characterized by an initial prodromal stage of malaise, nausea, vomiting, and diarrhea. Critical effects of ARS are Hematologic, that results infections to low white blood cells (WBC), bleeding due to low platelets and anemia due to low red blood cells (RBC), Gastrointestinal results nausea, vomiting, loss of appetite and abdominal pain (exposure doses of 600-1000 rad) and Neurovascular depending on the exposure dose. Neurovascular syndrome typically occurs at exposure doses greater than 1000 rad. It presents with neurological symptoms such as dizziness, headache, or decreased level of consciousness with an absence of vomiting. The clinical course of radiation sickness following a single intensive exposure to whole body radiation is characterized by three successive phases; a prodromal phase, which develops within minutes or hours after exposure, an ensuring latent period, which is relatively asymptomatic; and the main phase of the illness. Complete Blood Count (CBC) are helpful for the diagnosis for ARS. ARS may cause skin damage or loss of epidermis. Person suffering from nausea, vomiting, diarrhea should be admitted to well equipped hospitals or clinics. High exposured persons should be analysed CBC. Their

  16. Clinical study on the effect of Yangyinjiandu decoction on acute radiation esophagitis

    Objective: To investigate the effect of Yangyinjiandu decoction for acute radiation esophagitis. Methods: Lung cancer and mediastinal tumor treated by radiotherapy(portals including oesophagus to a radical tumoricidal dose≥40 Gy, with≥10 cm oesophagus include in radiotherapy). Patients were randomly divided according to the time of acceptance into the treatment group and the control group. All parameters of the two groups were basically similar and comparable. The treatment group was given Yangyinjiandu decoction (one dose daily, water decoction, 200 ml, twice a day) taken in the morning and in the evening before the end of radiotherapy. The control group was given oral vitamin C tablet 100 mg once a day before the end of radiotherapy. Five days after radio-therapy, the control group took oral prednisone 5 mg three times a day and amoxicillin 5g three times a day. All the above medicines were continued for 7 days. Results: The commencement of complication was 14.86 ± 0.34 days in the treatment group and 13.55 ± 0.26 days in the control group (P<0.01). The degree of complication was significant]y less mild in the treated group than the control group. Complication of acute group II and III radiation esophagitis rates were 5 and 0 in the treatment group and 16 and 6 in the control group (P<0.05). The overall effective rate were 95.2% and marked effective rate 12.0% of the treated group but were statistically higher than those of the control group. Conclusions: Yangyinjiandu decoction is effective and better reliable in treating acute radiation esophagitis. (authors)

  17. Cytogenetic effects of acute gamma radiation on leaf and apical meristem of scotch pine

    Tikhomirov, F.A.; Fedotov, I.S.; Prister, B.S.; Remezova, M.M.

    1977-01-01

    A study was made of the effect of acute ..gamma..-radiation on incidence of chromosomal aberrations in apical and leaf meristem of the pine in the first and second postradiation vegetation periods. It was found that the radiosensitivity of these tissues is the same. In the second postradiation vegetation period, after exposure to a dosage of 1500-2500 rad, there is normalization of the parameters studied. Restitution of tissues can occur both as a result of recovery of involved meristem cells and by means of differentiation of subapical meristem cells.

  18. Protective effect of vitamin A on acute radiation injury in the small intestine

    The objective of this study was to examine the influence of vitamin A on the development of early radiation-induced reactions in the rat small intestine. The early effects of intraoperative gamma-radiation on the small bowel utilizing the terminal ileum of Sprague-Dawley rats and the protective effect of supplemental vitamin A on acute radiation injury were investigated. Three groups were included in the study: group I (10 rats) was the surgical control group; group II (13 rats) underwent only intraoperative irradiation; and group III (10 rats) was the vitamin A plus irradiation group. Exteriorized terminal ileal segments of groups II and III were exposed to a single fraction of 20 Gy of intraoperative gamma-irradiation. On the seventh postoperative day, terminal ileal segments of all rats were resected and histopathologically evaluated for ulceration, enteritis cystica profunda, atypical epithelial regeneration, fibrosis, vascular sclerosis, and inflammatory process. Although none of the above findings were present in the surgical control group, group III rats experienced less severe effects than group II rats. The results suggest the early side effects of radiation may be prevented by vitamin A supplementation. (author)

  19. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  20. Assessment of acute and late effects to high-LET radiation

    We have begun to reassess late tissue effects available from the Charged Particle Cancer Radiotherapy program at Berkeley. Our quantitative approach is limited in the analysis of these Phase I/II studies by not having equivalent patient numbers for each of the particle beams studied, by not having completely comparable follow-up times, by variations in the sizes of the fields compared, by variations in the skin scoring photographic documentation available from the patient charts, and by variations in the fractionation sizes, numbers and schedules. Despite these limitations, preliminary evidence demonstrates acute skin reactions with a shift to increasing lower dose per fraction per field for the maximum skin reactions of helium, carbon and neon ions compared to electrons. Comparisons with skin reactions from low-energy neutrons indicate that Bragg peak carbon ions (initial energy 308 MeV/nucleon) are slightly less effective than 7.5 MeV neutrons. Bragg peak neon ions (initial energy 670 MeV/nucleon) corrected for differences in reference radiation are slightly more effective than 7.5 MeV neutrons. Bragg peak silicon (initial energy 670 MeV/nucleon) result in an enhanced acute skin reaction, and a premature appearance of late effects that may indicate a significantly different mechanism of damage and/or repair

  1. Therapeutic effect of TPO and G-CSF on acute radiation sickness of monkeys

    Objective: The author describes the therapeutic effects of recombinant human thrombopoietin (rhTPO) and recombinant human granulocyte colony-stimulating factor (rhG-CSF) on acute radiation sickness in monkeys. Methods: rhTPO(10μg·kg-1·d-1, sc, on days 1-21 after TBI) or/and rhG-CSF (5μg·kg-1·d-1, sc, on days 1-21 after TBI) were administered to rhesus monkeys with 5.0 Gy X-irradiation. Results: rhTPO promoted platelet and reticulocyte recovery, resulting in less profound nadirs and a rapid recovery to normal levels. Platelet transfusion were not required in contrast to controls, while hemoglobin levels stabilized rapidly. TPO treatment did not influence neutrophil counts, rhG-CSF stimulated neutrophil regeneration and had no effect on platelet levels. Simultaneous administration of rhTPO and rhG-GSF were as effective as rhTPO alone in preventing thrombopenia, although the platelet level did not rise to the supranormal level seen with TPO alone. The neutrophils were greatly augmented in number, compared to G-CSF treatment alone, resulting in a less profound nadir and much earlier recovery, which was similarly observed for monocytes, CD11b+, CD16+ and CD56+ cell reconstitution. Conclusion: These data show that rhTPO and rhG-GSF are potent stimulators of hematopoiesis in monkeys with radiation sickness

  2. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  3. Exposed persons at the Chernobyl Atomic Power Station accident: acute radiation effects

    Observation made over 115 patients with acute radiation sickness due to exposure external γ- and β-rays confirmed high efficiency of the earlier proposed principles of prognostication of the degree of severity by clinical manifestations of the primary disease response and those of separate syndromes, using the methods of hematological and cytogenetic analyses. Out of 115 victims, 56 persons had radiation burns (RB), 17 intestinal syndrome (IS), 80 - oropharengeal syndrome (ORS), 7 - interstitial radiation pneumonitis (IRP). In thanatogenesis, of prime importance were: RB (more than 40% of the body surface) - 19 persons and IRP - 7 persons. A severe course of intestinal and oropharengeal syndromes was combined with other fatal manifestations of radiation injury. Early isolation of patients (2-4 stages), selective decontamination of the intestine, prescription of a wide spectrum antibiotics, antimycotic and antiviral drugs, as well as γ-globulin could practically remove the risk of the development of fatal infectious complications during a medullary andtransitory forms of radiation sickness

  4. Radiobiology of the acute radiation syndrome

    Acute radiation syndrome or acute radiation sickness is classically subdivided into three sub syndromes: the hematopoietic, gastrointestinal and neurovascular syndrome but many other tissues can be damaged. The time course and severity of clinical signs and symptoms are a function of the overall body volume irradiated, the inhomogeneity of dose exposure, the particle type, the absorbed dose and the dose rate. Classical pathophysiology explain the failure of each of these organs and the timing of appearance of their signs and symptoms due to radiation-induced cytocidal effects of a great number of parenchymal cells of hierarchically organized tissues. Contemporaneously, many other radiation-induced effects has been described and all of them may lead to tissue injury with their corresponding signs and symptoms that can be expressed after short or long period of time. Radiation-induced multi-organ involvement is thought to be due to radiation-induced systemic inflammatory response mediated by released pro-inflammatory cytokines. (authors)

  5. Acute radiation syndrome in human

    The combination of the different types of irradiation dramatically changes the clinical course of acute radiation syndrome (ARS) in the case of short term exposure. The recent experience has been compared mostly with the data on the atomic bomb victims in Hiroshima and Nagasaki. The comparison of the injuries from different radiation exposures resulted in the possibility to receive summarized data and the actual basis of the observed difference. The situation with total relatively uniform irradiation is observed when human position is at long distance from powerful radiation sources or when he changes his position, as seen in atomic bomb survivors, the results of nuclear weapon tests and the patients in the Chernobyl accident. This is connected with the ARS of bone, marrow and intestine. The situation characterized by the clinical signs of the large area of skin and mucosa injuries was observed in nuclear weapon tests and the Chernobyl accident. In the case of the more localized and less severe beta injuries of skin and mucosa, the long term effects may be important. The majority of accidents in peaceful period are related to the uneven exposure from near sources, and the situation of the combination of external and internal irradiation is related to uneven irradiation and the predominance of internal exposure. (K.I.)

  6. The acute radiation syndrome

    Symptoms and signs from medical aspects resulting from whole body exposure, or in the main part, to ionizing radiation are described. The dose-response relationship is studied and the exposure is divided in three parts: central nervous system syndrome, gastrointestinal syndrome and hematopoietic syndrome. Brief comments about the treatment are reported. (M.A.C.)

  7. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  8. Evaluation and management of acute radiation dermatitis

    Acute radiation dermatitis remains one of the most commonly observed side effect during radiation therapy leading to complication such as superinfection or treatment disruption. Its management is characterized by a great heterogeneity. Few strategies have demonstrated a benefit in preventing radiation dermatitis, which relies mostly on decreasing dose delivered to the skin and skin care practices. Simple emollients and use of topical steroids can be useful in early stages. The singularity of the skin toxicity seen with cetuximab and radiotherapy warrants a specific grading system and distinctive clinical treatment with use of antibiotics. (authors)

  9. Radiation-induced acute brain injury and the protective effect of traditional Chinese medicine-salvia miltiorrhiza

    Objective: To understand the expression of acute brain injury induced by radiation and the protective effect of traditional Chinese Medicine in BALB/C mouse. Methods: The whole brain of BALB/C mouse was irradiated to a dose of 25 Gy using a 6 MV X linear accelerator. Ten hours later, the brain tissue and blood sample were taken. Thiobarbituric acid reaction was used to detect the malonaldehyde substitute for the lipid peroxide. Immunohistochemical method was used to detect the expression of ICAM-1 on D1, 2, 3, and 10 after having received radiation. One-Way ANOVA was used to evaluate the differences in the values of LPO in the brain tissue and plasma between the groups. The difference of expression of ICAM-1 between the groups was compared by χ2 method. Results: Two hundred and twelve female BALB/C mice were divided into five groups: Control group, Radiation alone group (R), R + dexamethasone group, R + 654-2 group and R + Salvia Miltiorrhiza group. The contents of LPO in the mouse brain tissue 10 hours after 25 Gy of whole brain irradiation were as follows (mean ± standard error): Control group (1975.5±94.2) nmol/g, Radiation alone group (R) (3417.3±109.7) nmol/g, R + dexamethasone group (3113.6±178.1) nmol/g, R + 654-2 group (3406.4±159.1) nmol/g, R + Salvia Miltiorrhiza group (2981.5±140.1) nmol/g. Salvia Miltiorrhiza significantly reduced the LPO increase induced by irradiation (P<0.05). There were no significant differences between the other groups in the change of LPO in the plasma 10 hours after whole brain irradiation. The expression of ICAM-1 after whole brain irradiation was time-dependent . There was an increase of expression of ICAM-1 24 hours after irradiation, reaching the peak at 48 hours. Salvia Miltiorrhiza and dexamethasone strongly inhibited the expression of ICAM-1 when compared with radiation only, with the difference significant (P<0.01). Conclusions: The change of LPO content in the BALB/C mouse brain tissue and the increase in

  10. Biological effects of radiation

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  11. Chromosomal radiosensitivity and acute radiation side effects after radiotherapy in tumour patients - a follow-up study

    Radiotherapists are highly interested in optimizing doses especially for patients who tend to suffer from side effects of radiotherapy (RT). It seems to be helpful to identify radiosensitive individuals before RT. Thus we examined aberrations in FISH painted chromosomes in in vitro irradiated blood samples of a group of patients suffering from breast cancer. In parallel, a follow-up of side effects in these patients was registered and compared to detected chromosome aberrations. Blood samples (taken before radiotherapy) were irradiated in vitro with 3 Gy X-rays and analysed by FISH-painting to obtain aberration frequencies of first cycle metaphases for each patient. Aberration frequencies were analysed statistically to identify individuals with an elevated or reduced radiation response. Clinical data of patients have been recorded in parallel to gain knowledge on acute side effects of radiotherapy. Eight patients with a significantly elevated or reduced aberration yield were identified by use of a t-test criterion. A comparison with clinical side effects revealed that among patients with elevated aberration yields one exhibited a higher degree of acute toxicity and two patients a premature onset of skin reaction already after a cumulative dose of only 10 Gy. A significant relationship existed between translocations in vitro and the time dependent occurrence of side effects of the skin during the therapy period. The results suggest that translocations can be used as a test to identify individuals with a potentially elevated radiosensitivity

  12. Effects of acute gamma radiation on the reproductive ability of the earthworm Eisenia fetida

    Earthworms are the most suitable biological indicators of radioactive pollution because they are the parts of nutritional webs, and are present in relatively high numbers. Four months old Eisenia fetida were exposed to different doses of gamma radiation, namely 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 Gy to study the effects of radiation on different reproductive parameters. The number of cocoons laid and the hatchlings emerged were recorded for all the selected doses. There was no reduction in cocoon production, however; decreasing size and weight of the cocoons was observed from the samples exposed to 20 Gy and above doses. Significant reductions in the hatchlings were recorded in earthworms exposed to 10 Gy and above doses. The dose response curves for a percentage reduction in hatchlings were constructed. Exposure to radiation dose of 1 and 2 Gy did not show any reduction, however, there was ≈10%, ≈50% and ≈90% decrease in the hatchlings in samples exposed to 3, 15 and 45, 50, 55 and 60 Gy doses respectively. Delayed hatchability was also reported at al exposure level. Histology of irradiated earthworms revealed that the structural damage in the seminal vesicles was prominent at the exposed dose of 3 Gy onwards with complete degeneration on exposure to 60 Gy of gamma radiation. - Highlights: • Eisenia fetida exposed to several doses of gamma-radiation to study the impact on reproduction. • There was no reduction in the cocoon production however. • There was reduction in size, weight and change in shape of the cocoons observed. • Reduction in number of hatchlings and degradation of seminal vesicles was pragmatic

  13. Oral hygiene care of patients with oral cancer during postoperative irradiation. An alleviating effect on acute radiation mucositis

    To evaluate the effect of oral hygiene care of patients with oral cancer on alleviating acute radiation mucositis. Eighteen patients receiving postoperative radiotherapy for tongue and oral floor cancer were evaluated. Radiotherapy was given in 2 Gy per fraction, 5 times a week for a total dose of 50 Gy in most patients. Radiation field included the tongue and oral floor. During radiotherapy, 8 patients were treated by dento-maxillofacial radiologists with special concern on oral hygiene (oral hygiene group) and the remaining 10 patients were treated with routine dental care (standard medication group). Mucositis were evaluated using JCOG grade and EORTC/RTOG score by radiotherapists or dento-maxillofacial radiologists at 10 Gy intervals. Oral hygiene plans comprised motivation to maintain oral hygiene and establishing the habits of oral self care 4 times per day. Once a week, oral hygiene and oral cleaning of patients were checked by dento-maxillofacial radiologists. Oral self care included mechanical tooth brushing and a chemical mouthwash. No patients with grade 3 and score 4 mucositis were noted in the oral hygiene group. Severe mucositis occurred less frequently in the oral hygiene group than in the standard medication group. Interruption of radiotherapy due to severe mucositis did not occur in the oral hygiene group. On the other hand, interruption of radiotherapy occurred in four patients in the standard medication group, and in three it was due to severe oral pain. Our results suggested that our method of oral hygiene was more effective for alleviating acute radiation mucositis than other methods so far reported. In addition, our method is considered to be useful in preventing rampant dental caries and severe periodontitis due to the xerostomia induced by radiotherapy. (author)

  14. Oral hygiene care of patients with oral cancer during postoperative irradiation. An alleviating effect on acute radiation mucositis

    Katsura, Kouji; Masuko, Noriko; Hayashi, Takafumi [Niigata Univ. (Japan). School of Dentistry; Sugita, Tadashi; Sakai, Kunio; Tsuchida, Emiko; Matsumoto, Yasuo; Sasamoto, Ryuta

    2000-09-01

    To evaluate the effect of oral hygiene care of patients with oral cancer on alleviating acute radiation mucositis. Eighteen patients receiving postoperative radiotherapy for tongue and oral floor cancer were evaluated. Radiotherapy was given in 2 Gy per fraction, 5 times a week for a total dose of 50 Gy in most patients. Radiation field included the tongue and oral floor. During radiotherapy, 8 patients were treated by dento-maxillofacial radiologists with special concern on oral hygiene (oral hygiene group) and the remaining 10 patients were treated with routine dental care (standard medication group). Mucositis were evaluated using JCOG grade and EORTC/RTOG score by radiotherapists or dento-maxillofacial radiologists at 10 Gy intervals. Oral hygiene plans comprised motivation to maintain oral hygiene and establishing the habits of oral self care 4 times per day. Once a week, oral hygiene and oral cleaning of patients were checked by dento-maxillofacial radiologists. Oral self care included mechanical tooth brushing and a chemical mouthwash. No patients with grade 3 and score 4 mucositis were noted in the oral hygiene group. Severe mucositis occurred less frequently in the oral hygiene group than in the standard medication group. Interruption of radiotherapy due to severe mucositis did not occur in the oral hygiene group. On the other hand, interruption of radiotherapy occurred in four patients in the standard medication group, and in three it was due to severe oral pain. Our results suggested that our method of oral hygiene was more effective for alleviating acute radiation mucositis than other methods so far reported. In addition, our method is considered to be useful in preventing rampant dental caries and severe periodontitis due to the xerostomia induced by radiotherapy. (author)

  15. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy

    Bray, Fleta N.; Simmons, Brian J.; Aaron H. Wolfson; Nouri, Keyvan

    2016-01-01

    Ionizing radiation is an important treatment modality for a variety of malignant conditions. However, development of radiation-induced skin changes is a significant adverse effect of radiation therapy (RT). Cutaneous repercussions of RT vary considerably in severity, course, and prognosis. When they do occur, cutaneous changes to RT are commonly graded as acute, consequential-late, or chronic. Acute reactions can have severe sequelae that impact quality of life as well as cancer treatment. Th...

  16. Acute adverse effects of radiation therapy on HIV-positive patients in Japan. Study of 31 cases at Tokyo Metropolitan Komagome Hospital

    Recently, the number of human immunodeficiency virus (HIV)-positive patients has increased in Japan. HIV-positive patients are at a higher risk of cancer than the general population. This paper retrospectively reports the acute adverse effects of radiation therapy on HIV-positive patients who were treated at Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital (TMCICK). Thirty-one cases involving 24 HIV-positive cancer patients who were treated at TMCICK from January 1997 to March 2009 were included in this study. All acute adverse effects of radiation therapy were examined during, and one month after, the last radiation therapy session. Acute adverse effects were classified according to the site of radiation therapy treatment and analyzed using the Common Terminology Criteria for Adverse Events (CTCAE) version 3.0. Grade 3 acute adverse effects were seen in 17% of cases, and Grade 2 toxicities were found in 23% of patients. Damage to the skin and mucosa, including stomatitis or diarrhea, tended to occur after low-dose radiation therapy; however, no severe acute adverse effects were seen in other organs, such as the brain, lung, and bone. Acute adverse effects tended to occur earlier in HIV-positive patients and became severe more frequently than in the general population. In particular, disorders of the mucosa, such as those of the oral cavity, pharynx, and intestine, tended to occur rapidly. It was shown that radiation therapy is safe when treatment is performed carefully and that it is a very useful treatment for cancer in HIV-positive patients. (author)

  17. Involvement of Toll-like receptors in acute radiation syndrome and radiation therapy for cancer

    Toll-like receptors (TLR) are one of pattern recognition receptors that are indispensable for antibacterial and antiviral immunity. After TLRs sense pathogen-derived components, they activate intracellular signaling pathways, which results in the induction of proinflammatory cytokines. Although it is well known that radiation therapy is one of effective cancer therapies, radiation affects immune system. Recent evidences show the involvement of TLR in acute radiation syndrome and radiation therapy for cancer. I summarize to date knowledge on the involvement of Toll-like receptors in acute radiation syndromes and radiation therapy for cancer, and discuss the effects of ionizing radiation on TLR of innate immune cells. (author)

  18. Assessment of the effect of local application of amifostine on acute radiation-induced oral mucositis in guinea pigs.

    Li, Chang Jiang; Wang, Sheng Zi; Wang, Shu Yi; Zhang, Yan Ping

    2014-09-01

    The aim of present study was to assess the radioprotective effects of the local application of amifostine to treat acute buccal mucositis in guinea pigs. A total of 32 guinea pigs were randomized into four groups: (Group A) topically administered 50 mg of amifostine plus radiotherapy (RT); (Group B) 100 mg amifostine plus RT; (Group C) normal saline plus RT; and (Group D) normal saline plus sham RT. The opportunity for administration was 15 min before irradiation. When administered, the cotton pieces that had been soaked with 0.5 ml amifostine solution or saline were applied gently on the buccal mucosa of each guinea pig for 30 min. The animals in Groups A, B and C were irradiated individually with a single dose of 30 Gy to the bilateral buccal mucosa. Eight days after irradiation, the animals were scored macroscopically; they were then euthanized, and the buccal mucosal tissues were processed for hematoxylin-eosin staining and ICAM-1 immunohistochemical analysis. In Groups A and B, the mean macroscopic scores were 2.9 ± 0.6 and 2.4 ± 1.1, respectively. There was no significant difference between the two groups (P > 0.05). However, when they were separately compared with Group C (4.4 ± 0.7), a noticeable difference was obtained (P amifostine-treated groups were better than in Group C. The results demonstrated that topical administration of amifostine to the oral mucosa is effective treatment of acute radiation-induced mucositis. PMID:24706999

  19. Electronical recording and evaluation of acute radiation morbidity

    Background: Relatively uniform documentation systems are used for recording of acute side effects in oncology. Object of this work is to illustrate the applicability of electronic data bases for registration and evaluation of acute side effects in radiation therapy. Methods: Based on topographic documentation sheets, an electronic data base was developed for each major topographic site. Besides general patient related parameters (TNM, previous chemotherapy, surgical interventions, intercurrent diseases and more), the kind and the degree of acute radiation related side effects are documented for each week of radiation and for day 90 (RTOG) as the joint day between acute and subacute tissue reactions. Results: The temporal expenditure for the recording of the general patient related parameters of a patient is less than a minute. The weekly documentation can be performed during the daily routine work and needs approximately 5 minutes per week. The structure of the data base enables later analyses of acute radiation related morbidity. Conclusions: Electronic data bases enable a fast and systematic recording and evaluation of acute radiation related side effects. The development of particular registration entities for recording of acute side effects may be a possible application and demonstrates the needs of professional developments. (orig.)

  20. Effect of acute nutritional deprivation on immune function in mice. II. Response to sublethal radiation

    Previous studies from this laboratory indicated that mice starved for 48 or 72 hr were resistant to the intracellular pathogen, Listeria monocytogenes. In the present experiments, we investigated the possibility that rapidly proliferating monocytes were responsible for the early protective effect observed in these mice. Confirming previous studies, the numbers of L. monocytogenes in livers and spleens of starved mice were 2-3 logs lower than those of fed mice 72 hr after inoculation of bacteria. The early protective effect of starvation could be eliminated completely by nonlethal doses of radiation (200-900 rads). Organ bacterial counts in starved-irradiated mice were similar to those of fed mice. Correlative histopathologic studies were carried out on all three groups of mice. Seventy-two hours after challenge with L. monocytogenes, the livers of fed mice had multiple microabscesses with cental necrosis and a poor mononuclear response. In contrast, livers of starved mice had fewer infectious foci, less necrosis, and a more prominent monocyte/macrophage inflammatory response. Similar to fed mice, the livers of starved-irradiated mice had marked necrosis and few monocytes/macrophages. In addition, the number of peripheral blood monocytes in starved mice was increased 72 hr after inoculation compared to fed and starved-irradiated mice. The data from these experiments suggest that a proliferating population of monocytes is responsible for resistance of starved mice against L. monocytogenes

  1. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna.

    Sarapultseva, Elena I; Dubrova, Yuri E

    2016-10-01

    The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000mGy of acute γ-rays. Exposure to 1000 and 10,000mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F0 and F1Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F0Daphnia exposed to 1000 and 10,000mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F2 total fertility was compromised only among progeny of parents that received the highest dose of 10,000mGy. We propose that the decreased fertility observed among the F2 progeny of parents exposed to 10,000mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F2 progeny of irradiated F0Daphnia exposed to the lower doses of acute γ-rays. PMID:27288911

  2. Health Impacts from Acute Radiation Exposure

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  3. Biological radiation effects

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed

  4. Radiation proctitis. Clinical and pathological manifestations, therapy and prophylaxis of acute and late injurious effects of radiation on the rectal mucosa

    Zimmermann, F.B.; Feldmann, H.J. [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Technische Universitaet Muenchen (Germany)

    1998-11-01

    Background: Often the rectum is the dose-limiting organ in curative radiation therapy of pelvic malignancies. It reacts with serous, mucoid, or more rarely bloody diarrhea. Methods: A research for reports on prophylactic and supportive therapies of radiation-induced proctitis was performed (Medline, Cancerlit, and others). Results: No proven effective prophylactic local or systemic therapies of radiation proctitis exist. Also, no reasonable causal medication is known. In the treatment of late radiation sequelae no clincally tested certain effective therapy exists, too. Antiinflammatory, steroidal or non-steroidal therapeutics as well as sucralfate can be used as topical measures. They will be successful in some patients. Side effects are rare and the therapy is cost-effective. Treatment failures can be treated by hyperbaric oxygen. This will achieve good clinical results in about 50% of the cases. Single or few mucosal telangiectasias with rectal bleeding can be treated sufficienctly by endoscopic cautherization. Conclusion: Besides clinical studies acute proctitis should be treated just symptomatically. Radical surgery should be performed only when all conventional treatments have been uneffective, although no certain effective therapies of radiation-induced late proctitis exist. (orig.) [Deutsch] Hintergrund: Oft ist der Enddarm das dosislimitierende Organ bei der kurativen Radiotherapie boesartiger Tumoren des Beckens. Er reagiert mit seroesen, mukoesen oder sehr selten blutig tingierten Durchfaellen. Methode: Es wurde eine Literaturrecherche nach prophylaktischen und supportiven Therapien der radiogenen Proktitis durchgefuehrt (Medline, Cancerlit und andere). Ergebnisse: Es existieren keine gesicherten effektiven prophylaktischen Therapie der radiogen Proktitis, weder lokal noch systemisch. Es sind auch keine sinnvollen kausalen Behandlungen bekannt. Auch in der Behandlung spaeter Strahlenfolgen existieren keine klinisch getesteten, sicher wirksamen

  5. Assessment of the effect of local application of amifostine on acute radiation-induced oral mucositis in guinea pigs

    The aim of present study was to assess the radioprotective effects of the local application of amifostine to treat acute buccal mucositis in guinea pigs. A total of 32 guinea pigs were randomized into four groups: (Group A) topically administered 50 mg of amifostine plus radiotherapy (RT); (Group B) 100 mg amifostine plus RT; (Group C) normal saline plus RT; and (Group D) normal saline plus sham RT. The opportunity for administration was 15 min before irradiation. When administered, the cotton pieces that had been soaked with 0.5 ml amifostine solution or saline were applied gently on the buccal mucosa of each guinea pig for 30 min. The animals in Groups A, B and C were irradiated individually with a single dose of 30 Gy to the bilateral buccal mucosa. Eight days after irradiation, the animals were scored macroscopically; they were then euthanized, and the buccal mucosal tissues were processed for hematoxylin-eosin staining and ICAM-1 immunohistochemical analysis. In Groups A and B, the mean macroscopic scores were 2.9 ± 0.6 and 2.4 ± 1.1, respectively. There was no significant difference between the two groups (P > 0.05). However, when they were separately compared with Group C (4.4 ± 0.7), a noticeable difference was obtained (P < 0.05). No mucositis was observed in Group D. Comparisons of the expression of ICAM-1 were in agreement with the macroscopic data. Histologically, superficial erosion, exudate and ulcer formation were all observed in the RT groups; only the severity and extent were different. The microscopic observations in the amifostine-treated groups were better than in Group C. The results demonstrated that topical administration of amifostine to the oral mucosa is effective treatment of acute radiation-induced mucositis. (author)

  6. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Dörr Harald; Meineke Viktor

    2011-01-01

    Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the ab...

  7. Study on the therapeutic effect of cytokine on acute radiation syndrome induced by 60Co γ ray exposure

    Objective: To examine the therapeutic effect of combined administration of rhIL-11 and rhG-CSF on acute radiation syndrome induced by 60Coγ ray exposure in beagles. Methods: Sixteen beagles were randomly divided into the control (n=5), symptomatic treatment group (n=5) and cytokine treatment group (n=6). All the beagles in the three groups were exposed to the whole-body irradiation of 60Co γ ray at a dose of 4.5 Gy. The animals in the second group accepted active symptomatic treatment. The animals in the cytokine treatment group were sub-cutaneously administered rhIL -11 and rhG -CSF besides active symptomatic treatment. Hemogram of peripheral blood, pristine apoptosis and necrosis ratio of nucleated cells, the content of IL-2 and IFN-γ in plasma and formation of bone marrow were used to evaluate the therapeutic effect. Results: In the cytokine treatment group, the animal' survival rate 45 days after exposure was increased and hemogram of peripheral blood was improved significantly. The rate of pristine apoptosis and necrosis of nucleated cell declined obviously. Early, the content of both IL-2 and IFN-γ in plasma was up significantly, then the content of IL-2 rapidly descended, but that of IFN-γ was relatively stable. Conclusion: The combined administration of rhIL-11 and rhG-CSF significantly improved the recovery of hematopoietic and immunological function. (authors)

  8. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year

  9. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-11-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year.

  10. Effect of Pseudomonas contamination or antibiotic decontamination of the GI tract on acute radiation lethality after neutron or gamma irradiation

    The influence of antibiotic decontamination of Pseudomonas contamination of the GI tract prior to whole-body neutron or gamma irradiation was studied. It was observed that for fission neutron doses greater than 5.5 Gy, cyclotron-produced neutron doses greater than 6.7 Gy, and 137Cs gamma-ray doses greater than 14.4 Gy, the median survival time of untreated rats was relatively constant at 4.2 to 4.5 days, indicating death was due to intestinal injury. Within the dose range of 3.5 to 5.5 Gy of fission neutrons, 4.9 to 6.7 Gy of cyclotron-produced neutrons, and 9.6 to 14.4 Gy of gamma rays, median survival time of these animals was inversely related to dose and varied from 12 to 4.6 days. This change in survival time with dose reflects a transition in the mechanisms of acute radiation death from pure hematopoietic, to a combination of intestinal and hematopoietic, to pure intestinal death. Decontamination of the GI tract with antibiotics prior to irradiation increased median survival time 1 to 5 days in this transitional dose range. Contamination of the intestinal flora with Pseudomonas aeruginosa prior to irradiation reduced median survival time 1 to 5 days in the same radiation dose range. Pseudomonas-contaminated animals irradiated within this transitional dose range had maximum concentrations of total bacteria and Pseudomonas in their livers at the time of death. However, liver bacteria concentration was usually higher in gamma-irradiated animals, due to a smaller contribution of hematopoietic injury in neutron-irradiated animals. The effects of both decontamination of the GI tract and Pseudomonas contamination of the GI tract were negligible in the range of doses in which median survival time was dose independent, i.e., in the pure intestinal death dose range

  11. The effects of acute joint exposure to radiation and certain pesticides on the peripheric blood in rats

    The effect of joint external γ-radiation and some pesticides on the peripheric blood is studied. Lindane, trichlorfon and tetramethylthiuram disulfide are used as toxic chemicals. It is shown that the combined effect has caused, like radiation, stable leukopenia, but less expressed than the effect of gamma radiation. It is especially obvious in the case of combining ionizing radiation and TMTD when the number of leukocytes averaged by 25% more than in the case of injury by radiation alone. Lymphocytes are most sensitive blood cell elements earily responsing to radiation and chemical organism injuries, both qualitatively and quantitatively. The results of analyzing the dynamics of the most qualitative and quantitative paramaters of leukocytes permit to state the summation of mutual effects of factors of radiation and chemical nature

  12. Effects of radiation dose reduction in Volume Perfusion CT imaging of acute ischemic stroke

    To examine the influence of radiation dose reduction on image quality and sensitivity of Volume Perfusion CT (VPCT) maps regarding the detection of ischemic brain lesions. VPCT data of 20 patients with suspected ischemic stroke acquired at 80 kV and 180 mAs were included. Using realistic reduced-dose simulation, low-dose VPCT datasets with 144 mAs, 108 mAs, 72 mAs and 36 mAs (80 %, 60 %, 40 % and 20 % of the original levels) were generated, resulting in a total of 100 datasets. Perfusion maps were created and signal-to-noise-ratio (SNR) measurements were performed. Qualitative analyses were conducted by two blinded readers, who also assessed the presence/absence of ischemic lesions and scored CBV and CBF maps using a modified ASPECTS-score. SNR of all low-dose datasets were significantly lower than those of the original datasets (p <.05). All datasets down to 72 mAs (40 %) yielded sufficient image quality and high sensitivity with excellent inter-observer-agreements, whereas 36 mAs datasets (20 %) yielded poor image quality in 15 % of the cases with lower sensitivity and inter-observer-agreements. Low-dose VPCT using decreased tube currents down to 72 mAs (40 % of original radiation dose) produces sufficient perfusion maps for the detection of ischemic brain lesions. (orig.)

  13. Effects of radiation dose reduction in Volume Perfusion CT imaging of acute ischemic stroke

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Brockmann, Carolin; Afat, Saif; Pjontek, Rastislav; Nikobashman, Omid; Brockmann, Marc A.; Wiesmann, Martin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Yang, Zepa; Kim, Changwon [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Jong Hyo [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon (Korea, Republic of)

    2015-12-15

    To examine the influence of radiation dose reduction on image quality and sensitivity of Volume Perfusion CT (VPCT) maps regarding the detection of ischemic brain lesions. VPCT data of 20 patients with suspected ischemic stroke acquired at 80 kV and 180 mAs were included. Using realistic reduced-dose simulation, low-dose VPCT datasets with 144 mAs, 108 mAs, 72 mAs and 36 mAs (80 %, 60 %, 40 % and 20 % of the original levels) were generated, resulting in a total of 100 datasets. Perfusion maps were created and signal-to-noise-ratio (SNR) measurements were performed. Qualitative analyses were conducted by two blinded readers, who also assessed the presence/absence of ischemic lesions and scored CBV and CBF maps using a modified ASPECTS-score. SNR of all low-dose datasets were significantly lower than those of the original datasets (p <.05). All datasets down to 72 mAs (40 %) yielded sufficient image quality and high sensitivity with excellent inter-observer-agreements, whereas 36 mAs datasets (20 %) yielded poor image quality in 15 % of the cases with lower sensitivity and inter-observer-agreements. Low-dose VPCT using decreased tube currents down to 72 mAs (40 % of original radiation dose) produces sufficient perfusion maps for the detection of ischemic brain lesions. (orig.)

  14. Genetic effects of radiation

    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates

  15. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Dörr Harald

    2011-11-01

    Full Text Available Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  16. Psychophysiological adaptation of the patient with the remote effect of the III degree acute radiation syndrome

    Metlyaeva N.A.

    2013-12-01

    putation of both shins at level in top / 3, late beam buttock, right hip ulcers, a beam cataract of the III degree of both eyes, stabilized. The assessment of the efficiency of psychophysiological adaptation in dynamics with 2009 indicates emergence of prevalence of hypochondriac tendencies over a demonstration with accession of high uneasiness and autistic lines at preservation of the leading role of an hypochondriac somatization of alarm with considerable decrease in an emotionality, an integration, a freedom of behavior. The changes revealed in dynamics correspond to the specific increase weight of violations of mental adaptation, characteristic for the period of adaptation exhaustion. The high intelligence, good figurative and logical thinking, well-mannered forms of behavior, high control over the emotional sphere, restraint of emotions, independence, self-sufficiency, organization, behavior taking into account environment requirements provided the patient M. firmness before a heavy illness, promoted good adaptation to an environment with confidence in myself, high social adaptability, opportunity successfully to carry out duties, hold the work account (worked 39 years after accident. Comparative assessment of operator ability of the patient M. showed good average time of common and difficult sensorimotor reactions with 2 mistakes, high time of reaction for moving object, however decrease in accuracy of reaction from 10-13% to 2% testifies to manifestation in dynamics of insufficiency of real functional reserves of nervous system. Conclusions. Efficiency of psychophysiological adaptation depends not only on a dose of radiation and weight of the transferred disease, but, mostly, on premorbid properties of the identity of the victim and his social and labor installation.

  17. Effects of Pseudomonas contamination or antibiotic decontamination of the GI tract on acute radiation lethality

    The influence of antibiotic decontamination or Psuedomonas contamination of the GI tract prior to whole-body neutron or gamma irradiation was studied. For neutron doses greater than 6.7 Gy and gamma ray doses greater than 14.4 Gy, the median survival time of SPF rats was relatively constant at 4.4 days, indicating death was due to intestinal injury. Within the dose range of 4.9 to 6.7 Gy of neutrons or 9.6 to 14.4 Gy of photons, median survival time was inversely related to dose and varied from 12 to 4.6 days. Decontamination or Pseudomonas contamination of the GI tract increased or decreased, respectively, median survival time 1 to 5 days in this survival dose dependent range. The effects of these treatments, however, were negligible in the range of doses in which median survival time was dose independent. These treatments had little effect on the ultimate survival after irradiation as measured by either the LD50/5 day or LD50/30 day endpoints

  18. Acute radiation effects on saliva composition in rats with different vitamin a levels in serum

    Irradiation of the head and neck often causes loss of salivary gland function which may lead to severe oral discomfort. The effects of a single dose of 25 Gy given to rats with different serum levels of vitamin A were studied. The salivary secretion rate as well as concentrations of protein, hexosamine, amylase and electrolytes, and the activities of two antibacterial glycoproteins were measured. At an adequates of two antibacterial glycoproteins were measured. At an adequate level of vitamin A in the diet, irradiation significantly reduced whole saliva secretion rate, and decreased the concentration of salivary sodium, calcium and hexosamine as well as the activity of a glycoprotein agglutinating a serotype c strain of S. mutans. Peroxidase, amylase and potassium were not significantly affected. The reductions seen at an adequate level of vitamin A were not reduced by supplementation of excess dietary retinol. The damage caused by irradiation was enhanced by vitamin A deficiency as seen in the reduced protein and hexosamine concentrations. (orig.)

  19. Pharmacological management of acute radiation morbidity

    Zimmermann, J.S.; Kimmig, B. [Klinik fuer Strahlentherapie (Radioonkologie), Christian-Albrecht-Universitaet Kiel (Germany)

    1998-11-01

    Background: The acute radiation morbidity may be a serious problem for the patient and may be decreased by pharmacological approaches. Material and methods: A database research (Medline, Cancerlit, DIMDI, etc.) was performed in order to obtain pharmacological approaches to decrease the acute radiation morbidity. The evaluation was focused on therapeutic principles but not on special drugs. Results: Different approaches may be chosen to protect healthy tissues from the effects of ionizing radiation: 1. Administration of cyto- or radioprotective agents prior to irradiation, 2. administration of agents to avoid additional secondary toxicity by inflammation or superinfection during the treatment cycle (supportive care) and 3. administration of rescue agents, such as bone marrow CSFs or hyperbaric oxygen (HBO), after therapy. For radioprotection, there are reports on cellular protection by vitamine E, vitamine C, beta carotene, ribose-cysteine, glutamine, Mgcl2/adenosine triphosphate and WR-2721 (amifostine). In general, preclinical studies show that the combination of pretreatment with amifostine, irradiation, and G-CSF after radiation enhances hematologic recovery. Assessment of these combined effects, including local supportive therapies, merits further clinical investigation. There are data from prospective studies as well as from empirical clinical experience, that radioprotection and clinical supportive care may reduce the treatment related morbidity by 10 to 30% either. Conclusions: A further improvement of the therapeutic ratio is to be expected by systemically combined application of radioprotectors, supportive care and rescue agents. (orig.) [Deutsch] Hintergrund: Die strahlentherapeutische Fruehmorbiditaet kann auf das Ergebnis einer Strahlenbehandlung Einfluss nehmen und kann durch medikamentoese Verfahren gelindert werden. Material und Methoden: Eine Datenbankrecherche (Medline, Cancerlit, DIMDI u.a.) wurde durchgefuehrt, um einen Ueberblick ueber

  20. Clinico-morphological characteristics of reparation of acute radiation ulcer

    The mechanism of reparative processes under the effect of various drugs was studied in experimental acute radiation ulcer of rats. It was established that at the stage of marked exudative-necrotic processes the use of antiinflammatory and antiexudative substances (bariz, dimethylsulfoxyde) led to normalization of the microcirculation that reduced the time of radiation ulcer healing. The use of anabolic steroids (retabolil) intensified metabolism that also produced a favourable effect on the reparative processes

  1. Effect of MgSO4 on NMDA receptor in brain tissue and serum NSE in rats with radiation-induced acute brain injury

    Objective: To explore the protection of magnesium sulfate (MgSO4) on radiation-induced acute brain injury. Methods Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: the blank control group, experimental control group and experimental therapy group. The whole brain of SD rats in the experimental control group and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats in the experimental therapy group before and after irradiation for seven times. The blood and the brain tissue were taken on the 1st, 3rd and 14th day after irradiation. ELISA was used to measure the level of serum NSE. Western blot technique was used to detect the expression of NR1 and NR2B subunit protein in brain tissue. Results: Compared with the blank control group, the level of serum NSE in the experimental control group increased significantly (P4 used in early stage can inhibit the level of serum NSE and the expression of NR1 and NR2B after radiation-induced acute brain injury. It shows a protective effect on radiation-induced acute brain injury. (authors)

  2. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy.

    Bray, Fleta N; Simmons, Brian J; Wolfson, Aaron H; Nouri, Keyvan

    2016-06-01

    Ionizing radiation is an important treatment modality for a variety of malignant conditions. However, development of radiation-induced skin changes is a significant adverse effect of radiation therapy (RT). Cutaneous repercussions of RT vary considerably in severity, course, and prognosis. When they do occur, cutaneous changes to RT are commonly graded as acute, consequential-late, or chronic. Acute reactions can have severe sequelae that impact quality of life as well as cancer treatment. Thus, dermatologists should be informed about these adverse reactions, know how to assess their severity and be able to determine course of management. The majority of measures currently available to prevent these acute reactions are proper skin hygiene and topical steroids, which limit the severity and decrease symptoms. Once acute cutaneous reactions develop, they are treated according to their severity. Treatments are similar to those used in prevention, but incorporate wound care management that maintains a moist environment to hasten recovery. Chronic changes are a unique subset of adverse reactions to RT that may develop months to years following treatment. Chronic radiation dermatitis is often permanent, progressive, and potentially irreversible with substantial impact on quality of life. Here, we also review the etiology, clinical manifestations, pathogenesis, prevention, and management of late-stage cutaneous reactions to radiotherapy, including chronic radiation dermatitis and radiation-induced fibrosis. PMID:27250839

  3. Assessment of the effect of local application of amifostine on acute radiation-induced oral mucositis in guinea pigs

    Li, Chang Jiang; Wang, Sheng Zi; Wang, Shu Yi; Zhang, Yan Ping

    2014-01-01

    The aim of present study was to assess the radioprotective effects of the local application of amifostine to treat acute buccal mucositis in guinea pigs. A total of 32 guinea pigs were randomized into four groups: (Group A) topically administered 50 mg of amifostine plus radiotherapy (RT); (Group B) 100 mg amifostine plus RT; (Group C) normal saline plus RT; and (Group D) normal saline plus sham RT. The opportunity for administration was 15 min before irradiation. When administered, the cotto...

  4. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  5. Diagnosis of moderate acute radiation sickness

    Forty patients with malignant lymphoma were given 60Co TLI. 21 cases received 6 Gy and 19 received 8 Gy. It was estimated that a single TLI of 6 and 8 Gy would correspond to TBI of 3.55 Gy and 4.25 Gy (average values) by analysing peripheral blood cell chromosome aberrations and 1.85-2.37 Gy by measuring red bone marrow stem cells clinically. Moderate acute radiation sickness with digestive tract reaction and hemopoietic and immunologic depression was observed. WBC and platelets decreased rapidly. Lymphocytes showed quantitative and qualitative changes even at early stage. All these indexes are significant for diagnosis. Besides, the degree of labial stimulation response, levels of C-reactive protein, corticoid, and urinal nucleoside and alkaloid base presented great changes both pre-and post-irradiation. Early diagnosis of moderate acute radiation sickness could be made in cancer patients subjected to 6-8 Gy TLI

  6. Inhibitory effect of indomethacin combined with radiation on proliferation of human acute myeloid leukemia HL-60 cells

    Objective: To investigate the inhibitory effect of indomethacin combined with radiation on proliferation of HL-60 cells and to provide basis for study on antitumor therapy. Methods: The HL-60 cells were exposed to indomethacin at 0, 20, 40, 60, 80, and 100 μmol·L-1 together with 3 Gy X-rays radiation and cultivated for 24 h. MTT and Trypan blue exclusion experiments were used to detect the inhibitory rate of cell proliferation and viability respectively. Real-time PCR was used to detect the changes of cell proliferation and apoptosis-related gene PCNA and Caspase-3 mRNA expressions. Results: Compared with control group, the inhibitory rates of proliferation of HL-60 cells in different doses of indomethacin groups were increased significantly (P<0.01), especially in 80 μmol·L-1 indomethacin group. Compared with control, indomethacin (80 μmol·L'-1) and 3 Gy X-rays radiation group, the inhibitory rate of cell viability of HL-60 cells in 80 μmol·L-1 indomethacin combined with radiation group was increased significantly (P<0.01). Compared with control, indomethacin (80 μmol·L-1) and 3 Gy X-rays radiation groups, the expression of PCNA mRNA in 80 μmol·L-1 indomethacin combined with radiation group was decreased and the expression of Caspase-3 mRNA was increased significantly (P<0.01). Conclusion: Indomethacin can enhance the inhibitory effect of radiation on proliferation of HL-60 cells. (authors)

  7. Effects of ionizing radiation

    A sound evaluation of the consequences of releases of radioactivity into the environment, especially of those large amounts, and of the effectiveness of different protective measures, requires thorough concern of the various aspects of the radiological effects. The effects of ionizing radiation were reviewed according to the following characterization: Affected subject (somatic, genetic and psychological effects); Duration of irradiation (acute and chronic irradiation); Latent period (early and late effects); Dose-effect relationship (stochastic and non-stochastic effects); Population affected (e.g. children, pregnant women). In addition to the lethal effects which are generally considered extensively in all the evaluations of the consequences of radioactivity releases, such effects as early symptoms and morbidity are emphasized in this review. The dependence of the effects on dose rates, repair mechanism and medical treatment is discussed, and the uncertainties involved with their evaluation is highlighted. The differences between QF (quality factor) and RBE (relative biological effectiveness) of different radiation sources are interpreted. Synergystic effects and the effectiveness of various means of medication are discussed. It is suggested that all radiological effects, including those resulting from relatively low radiation doses, e.g. foetus deformations, fertility impairment, prodomal - leading to psychological effects, should be considered within the evaluation of the consequences of radioactivity releases and of the effectiveness of protective measures. Limits of the repair factors to be considered within the evaluation of the effects of chronic exposures are proposed

  8. Acute radiation syndrome, c.aused by single whole-body external irradiation

    The general characteristic of conceptions of the material substrate of various forms and types of radiation injuries from the moment of a wide use of radiation energy and radioactive substances up to the present time, the dependence of structural changes on the type of ionizing radiation, dose and forms of its effect, are presented. The pathological anatomy of particular manifestations of acute radiation disease in various systems of the organism is described. The attention is paid to the variant of radiation disease taking place during non-uniform general irradiation. Local and general morphological changes which develop in skin, hyperdermic fat and skeleton muscles simultaneously in the zone of massive local effect against the background of the general radiation injury, are described for the first time. Delayed alterations in blood vessels and interstitial tissue after the acute radiation disease are described as well as the pathomorphology and histochemistry of trophic disorders in the acute and delayed periods of acute radiation disease

  9. Effects of acute sublethal gamma radiation exposure on aggressive behavior in male mice: A dose-response study

    The resident-intruder paradigm was used to assess the effects of gamma radiation (0, 3, 5, 7 Gray [Gy] cobalt-60) on aggressive offensive behavior in resident male mice over a 3-month period. The defensive behavior of nonirradiated intruder mice was also monitored. A dose of 3 Gy had no effect on either the residents' offensive behavior or the defensive behavior of the intruders paired with them. Doses of 5 and 7 Gy produced decreases in offensive behavior of irradiated residents during the second week postirradiation. The nonirradiated intruders paired with these animals displayed decreases in defensive behavior during this time period, indicating a sensitivity to changes in the residents' behavior. After the third week postirradiation, offensive and defensive behavior did not differ significantly between irradiated mice and sham-irradiated controls. This study suggests that sublethal doses of radiation can temporarily suppress aggressive behavior but have no apparent permanent effect on that behavior

  10. The role of radiation therapy in childhood acute leukemia. A review from the viewpoint of basic and clinical radiation oncology

    Radiation therapy has been playing important roles in the treatment of childhood acute leukemia since the 1970s. The first is the preventive cranial irradiation for central nervous system therapy in acute lymphoblastic leukemia. The second is the total body irradiation as conditioning before bone marrow transplantation for children with acute myeloid leukemia in first remission and with acute lymphoblastic leukemia in second remission. Although some late effects have been reported, a part of them could be overcome by technical improvement in radiation and salvage therapy. Radiation therapy for children might have a successful outcome on a delicate balance between efficiencies and potential late toxicities. The role of radiation therapy for childhood acute leukemia was reviewed from the standpoint of basic and clinical radiation oncology in this paper. (author)

  11. Stimulation effects of recombinant human interleukin-11 on haematopoiesis and the application in the treatment of acute radiation injury

    In the present experiment, recombinant human interleukin-11 (rhIL-11) significantly improved the proliferation activity of hematopoietic cells in the human bone marrow cell culture and increased the number of colonies of multilineage progenitor cells. Meylosuppressed mice or rhesus monkeys by chemo-or radiotherapy had higher platelet counts than those of controls after rhIL-11 treatment. rhIL-11 is safe and effective in reducing chemo-and/or radiotherapy associated thrombocytopenia and the need for platelet transfusions in patients who undergo intensive chemotherapy. rhIL-11 is likely to become an effective agent in correcting meylosuppression induced by radiation or chemotherapy

  12. Effects of radiation upon gastrointestinal motility

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  13. Acute Radiation Syndrome. Consequences and outcomes

    The consequences and outcomes of an Acute Radiation Syndrome (ARS), induced by external gamma radiation for 59 persons (49 men and 10 women) have been estimated. All incidents have taken place more than 40 years ago in the yearly years of adjustment of an atomic industry (1950-1953-38 persons, 1954-1958-21 persons). According to the degree of severity ARS 5 groups are selected: the severest degree - 7 individuals (average dose in group 43.8±12.8 Sv), severe - 4 individuals (9.3±1.5 Sv), medium - 14 individuals (2.2±0.8 Sv), a light degree - 15 individuals (0.93±0.13 Sv), ''erased'' from - 19 individuals (0.85±0.07 Sv). In all cases, except for lethal (the severest degree), the characteristics of morphological composition of the peripheral blood were restored in the first year after ARS and now correspond to physiological standard. In 2 cases the moderate hypoplasia of granulocytopoiesis was diagnosed. A marker of the acute exposure was the chromosome aberrations in lymphocytes of the peripheral blood. The frequency of chromosome aberrations correlates with severity degree of ARS (from 3-7 up to 35-50 stable aberrations per 100 cells). In cases of ARS with severe degree the early development of a cerebral atherosclerosis is detected. The radiation cataract was diagnosed in 5 patients (an exposure doses 4.0-9.8 Sv, a period of development 2-5 years). During the first years after ARS in 80% of cases the complete labour rehabilitation is reached. Of 53 patients with known vital status by 45 year of monitoring 19 persons (35.8%) have died, of these in 2 cases the causes of death are not determined. In remaining cases the causes of death were ARS of severest degree (7 persons), Ischemic Heart Disease (5 persons), malignant tumors (4 persons), accidents and traumas (2 persons). (author)

  14. Acute Radiation Syndrome. Consequences and outcomes

    Okladnikova, N.D.; Pesternikova, V.S.; Sumina, M.V.; Azizova, T.V.; Yurkov, N.N. [Branch No 1 State Research Center of Russia, Ozyorsk (Russian Federation). Inst. of Biophysics

    2000-05-01

    The consequences and outcomes of an Acute Radiation Syndrome (ARS), induced by external gamma radiation for 59 persons (49 men and 10 women) have been estimated. All incidents have taken place more than 40 years ago in the yearly years of adjustment of an atomic industry (1950-1953-38 persons, 1954-1958-21 persons). According to the degree of severity ARS 5 groups are selected: the severest degree - 7 individuals (average dose in group 43.8{+-}12.8 Sv), severe - 4 individuals (9.3{+-}1.5 Sv), medium - 14 individuals (2.2{+-}0.8 Sv), a light degree - 15 individuals (0.93{+-}0.13 Sv), ''erased'' from - 19 individuals (0.85{+-}0.07 Sv). In all cases, except for lethal (the severest degree), the characteristics of morphological composition of the peripheral blood were restored in the first year after ARS and now correspond to physiological standard. In 2 cases the moderate hypoplasia of granulocytopoiesis was diagnosed. A marker of the acute exposure was the chromosome aberrations in lymphocytes of the peripheral blood. The frequency of chromosome aberrations correlates with severity degree of ARS (from 3-7 up to 35-50 stable aberrations per 100 cells). In cases of ARS with severe degree the early development of a cerebral atherosclerosis is detected. The radiation cataract was diagnosed in 5 patients (an exposure doses 4.0-9.8 Sv, a period of development 2-5 years). During the first years after ARS in 80% of cases the complete labour rehabilitation is reached. Of 53 patients with known vital status by 45 year of monitoring 19 persons (35.8%) have died, of these in 2 cases the causes of death are not determined. In remaining cases the causes of death were ARS of severest degree (7 persons), Ischemic Heart Disease (5 persons), malignant tumors (4 persons), accidents and traumas (2 persons). (author)

  15. Lung pathology in case of acute radiation injury

    Results of pathomorphological studies of 27 patients exposed to total external γ- and β-radiation resulted from the Chernobyl accident and lost due to the acute radiation disease in the first weeks following radiation exposure are discussed. Dose range is 3.7-13.7 Gy. Two groups of pathological changes in lungs are revealed, those are: infection (bacterial, viral and fungous) ones caused by acute radiation disease and signs of respiratory distress-syndrome in adults

  16. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  17. Acute Radiation Disease : Cutaneous Syndrome and Toxic properties of Radiomimetics -Radiation Neurotoxins and Hematotoxins.

    Popov, Dmitri; Maliev, Slava

    Cutaneous injury is an important complication of a general or local acute irradiation. A type of a skin and tissues lesions depends on a type, intensity, and period of irradiation. Also, the clinical picture, signs, and manifestations of the cutaneous syndrome depend on a type of the radiation toxins circulated in lymph and blood of irradiated mammals. Radiation Toxins were isolated from lymph of the mammals that were irradiated and developed different forms of the Acute Radiation Syndromes (ARS) -Cerebrovascular, Cardiovascular, Gastrointestinal, and Hematopoietic. Radiation Toxins can be divided into the two important types of toxins (Neu-rotoxins and Hematotoxins) or four groups. The effects of Radiation Neurotoxins include severe damages and cell death of brain, heart, gastrointestinal tissues and endothelial cells of blood and lymphatic vessels. The hematotoxicity of Hematotoxic Radiation Toxins includes lym-phopenia, leukopenia, thrombocytopenia, and anemia in the blood circulation and transitory lymphocytosis and leukocytosis in the Central Lymphatic System. In all cases, administration of the Radiomimetics (Radiation Toxins) intramuscularly or intravenously to healthy, radiation naive mammals had induced and developed the typical clinical manifestations of the ARS. In all cases, administration of Radiomimetics by subtoxic doses had demonstrated development of typical clinical signs of the cutaneous syndrome such as hair loss, erythema, swelling, desqua-mation, blistering and skin necrosis. In animal-toxic models, we have activated development of the local skin and tissue injury after injection of Radiation Toxins with cytoxic properties.

  18. MRI assessment of local acute radiation syndrome

    Weber-Donat, G.; Potet, J.; Baccialone, J.; Teriitehau, C. [Military Hospital Percy, Radiology Department, Clamart (France); Amabile, J.C.; Laroche, P. [Military Hospital Percy, Army Institute of Radioprotection, Clamart (France); Lahutte-Auboin, M. [Military Hospital Val-de-Grace, Radiology Department, Paris (France); Bey, E. [Military Hospital Percy, Plastic and Reconstructive Surgery Department, Clamart (France)

    2012-12-15

    To describe local acute radiation syndrome and its radiological imaging characteristics. We performed a retrospective study of patients who had suffered skin and deeper radiation damage who were investigated by magnetic resonance imaging (MRI). We compared the clinical findings, C-reactive protein (CRP) levels and MRI results. A total of 22 MRI examinations were performed between 2005 and 2010 in 7 patients; 6 patients had increased CRP levels and MRI abnormalities. They were treated by surgery and local cellular therapy. One patient had no CRP or MRI abnormalities, and had a spontaneous good outcome. Eighteen abnormal MR examinations demonstrated high STIR signal and/or abnormal enhancement in the dermis and muscle tissues. Three MRI examinations demonstrated skeletal abnormalities, consistent with radionecrosis. The four normal MRI examinations were associated only with minor clinical manifestations such as pain and pigmentation disorders. MRI seems to be a useful and promising imaging investigation in radiation burns management i.e. initial lesion evaluation, treatment evaluation and complication diagnosis. MRI findings correlated perfectly with clinical stage and no false negative examinations were obtained. In particular, the association between normal MRI and low CRP level seems to be related to good outcome without specific treatment. (orig.)

  19. MRI assessment of local acute radiation syndrome

    To describe local acute radiation syndrome and its radiological imaging characteristics. We performed a retrospective study of patients who had suffered skin and deeper radiation damage who were investigated by magnetic resonance imaging (MRI). We compared the clinical findings, C-reactive protein (CRP) levels and MRI results. A total of 22 MRI examinations were performed between 2005 and 2010 in 7 patients; 6 patients had increased CRP levels and MRI abnormalities. They were treated by surgery and local cellular therapy. One patient had no CRP or MRI abnormalities, and had a spontaneous good outcome. Eighteen abnormal MR examinations demonstrated high STIR signal and/or abnormal enhancement in the dermis and muscle tissues. Three MRI examinations demonstrated skeletal abnormalities, consistent with radionecrosis. The four normal MRI examinations were associated only with minor clinical manifestations such as pain and pigmentation disorders. MRI seems to be a useful and promising imaging investigation in radiation burns management i.e. initial lesion evaluation, treatment evaluation and complication diagnosis. MRI findings correlated perfectly with clinical stage and no false negative examinations were obtained. In particular, the association between normal MRI and low CRP level seems to be related to good outcome without specific treatment. (orig.)

  20. Hematological parameters after acute radiation injury

    According to clinical experiences of radiation accidents during the past two decades, utilization of measured hematologic changes as a direcrt indicator of the severity of radiation injury provides important information for diagnosis and prognostic evaluation in individual cases. Hematologic changes can be described in terms of prognostic categories based on the possible outcome of the acute radiation syndrome. The five categories suggested by Wald according to the grade of severity. By the actual application of this category to our experience of the 1971 Chiba accident of exposure to irridium 192, it was proved that the estimated dose was well correlated to the value by cytogenetic analysis and physical estimation used of thermo-luminescence phenomena. In hematological parameters, a decrease of lymphocytes occurs whithin 24 hours after the exposure. The level of this early lymphopenia is regarded as one of the best indicators of severity of radiation injury. For the decision of therapeutic procedures, however, the total granulocyte count and platelet count are more valuable to exclude severe infection and bleeding symptoms occurred one month after the exposure. The limitation of the approach by hematologic data must exist in the case exposed in a non-uniform fashion. To overwhelm this difficulty, the application of rapid marrow scanning by short-lived RI such as 52Fe is expected and the bone marrow imaging by magnetic resonance studies is more exciting. For more sensitive and technically easy-drived methods detecting hematologic injury, our new method of detecting micro-nucleus in polychromatic erythroblasts from cultured erythroid colonies from peripheral blood is now developing. Preliminary data have shown the sensitivity of this method is comparable to the cytogenetic study of pheripheral lymphocytes. (author)

  1. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells.

    Desai, Sejal; Kumar, Amit; Laskar, S; Pandey, B N

    2013-01-01

    Cytokines are known to play pivotal roles in cancer initiation, progression and pathogenesis. Accumulating evidences suggest differences in basal and stress-induced cytokine profiles of cancers with diverse origin. However, a comprehensive investigation characterising the cytokine profile of various tumor types after acute and fractionated doses of gamma-irradiation, and its effect on survival of bystander cells is not well known in literature. In the present study, we have evaluated the cytokine secretion profile of human tumor cell lines (HT1080, U373MG, HT29, A549 and MCF-7) either before (basal) or after acute (2, 6 Gy) and fractionated doses (3×2 Gy) of gamma-irradiation in culture medium obtained from these cells by multiplex bead array/ELISA. Moreover, clonogenic assays were performed to evaluate the effect of conditioned medium (CM) on the survival and growth of respective cells. Based on the screening of 28 analytes, our results showed that the basal profiles of these cell lines varied considerably in terms of the number and magnitude of secreted factors, which was minimum in MCF-7. Interestingly, TNF-α, IL-1β, PDGF-AA, TGF-β1, fractalkine, IL-8, VEGF and GCSF were found in CM of all the cell lines. However, secretion of certain cytokines was cell line-specific. Moreover, CM caused increase in clonogenic survival of respective tumor cells (in the order HT1080>U373MG>HT29>A549>MCF-7), which was correlated with the levels of IL-1β, IL-6, IL-8, GMCSF and VEGF in their CM. After irradiation, the levels of most of the cytokines increased markedly in a dose dependent manner. The fold change in cytokine levels was lower in irradiated conditioned medium (ICM) of tumor cells collected after fractionated than respective acute dose, except in MCF-7. Interestingly, amongst these cell lines, the radiation-induced fold increase in cytokine levels was maximum in ICM of A549 cells. Moreover, bystander A549 cells treated with respective ICM showed dose dependent

  2. Mesenchymal stem cell therapy for acute radiation syndrome.

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  3. Macrophage expression in acute radiation colitis in rats

    Although radiation therapy is important in the treatment of tumors in pelvic and abdominal region, it may cause radiation injury as a side effect. But there is no effective way of preventing or curing the damages. The mechanism of acute radiation colitis has not been elucidated yet. Our previous reports have revealed that X-ray irradiation induce apoptosis of epithelial stem cells in colon. Then a hypothesis of the radiation colitis can be put forward, DNA damage by irradiation, apoptosis of mucosal epithelial stem cells and degeneration of epithelial gland structure, macrophages phagocyte the debris, being activated and secreting various inflammatory cytokines, infiltration of inflammatory cells. Several recent reports show that macrophages may play an important role in the process of inflammatory bowel diseases such ulcerative colitis or Crohn's disease. We studied radiation colitis using rat animal models. Male Wister rats were irradiated by a single fraction dose of 22.5 Gy X-ray at laparotomy, shielding except for an approximately 2.5 cm length of rectum. Histological changes and macrophage accumulation in the rectum mucosa were evaluated by immunohistochemistry and western blot method with the specimens which were taken on the 1, 2, 3, 4, 5, 6, 7, 10, and 14th day after irradiation. Severe macrophage accumulation in the lamina propria of the rectum was observed on the 5th day. At the same time, severe destruction of mucosal structure and inflammatory cells infiltration were also observed. Based on the potent pro-inflammatory cytokine producing effects of macrophage in rat and the increased expression in inflammatory bowel disease patients, speculate that intervention in the macrophage-cytokine network could form a future target for the treatment of acute radiation colitis. (author)

  4. Effects of ionizing radiation on the hematopoietic niche and treatment of acute radiation syndrome by gene therapy in highly-irradiated monkeys

    The hematopoietic stem cell niche represents a complex radiosensitive compartment whose protection is required for recovery from radiation-induced myelosuppression. We initially studied RI effects on endothelial and mesenchymal progenitors by an evaluating radiosensitivity and cell death. Then, we have proposed a new gene therapy strategy based on local and short term secretion of Sonic hedgehog morphogen to favour vascular niche repair and to stimulate residual hematopoietic stem and progenitor cells. We investigated the hematopoietic response of 8-Gy gamma irradiated monkeys to a single intra-osseous injection of xenogeneic multipotent mesenchymal stem cells transduced with a Shh pIRES2 plasmid. Thrombocytopenia and neutropenia duration were significantly reduced in grafted animals and clonogenics normalized from day 42. Areas under the curve of PLTs and ANCs between day 0 and day 30 were significantly higher in treated animals than in controls. Grafting MatrigelTM colonized or not with ASC in immunocompromised mice demonstrated a notable pro-angiogenic activity for Shh-ASC. Long term follow up (180-300 days) confirmed a durable recovery in the four grafted monkeys. Globally this study suggests that grafting Shh-multipotent stem cells may represent a new strategy to cure radiation-induced niche damage. (author)

  5. Acute radiation nephritis. Its evolution on sequential bone imaging

    Acute radiation nephritis typically affects the kidneys 3-12 months after radiation exposure and may occur with doses as low as 2500 rads. After an initial latent period, the affected portions of the kidneys become swollen and edematous, and develop multiple petechiae. Necrotizing vasculitis and interstitial hemorrhage occur, and the end stage is that of scarring. Two patients are presented in whom localized acute radiation nephritis developed, and whose kidneys demonstrated the characteristic sequential changes of this entity on serial bone imaging

  6. The influence of the combined effects of acute gamma-radiation, sodium bromate and sodium nitrate on lettuce (Lactuca sativa) seedling root growth

    Pryakhin, E.; Osipov, D. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation)

    2014-07-01

    Among special industrial reservoirs used for the storage of liquid radioactive waste of Mayak PA, Russia, one of the most radioactively contaminated is the R-17 reservoir, so-called 'Staroye Boloto' (the total β-activity of water ranged in the observation period from 0.4 MBq/l to 4.5 MBq/l, the total a-activity ranged from 43 to 420 Bq/l). Also this reservoir is characterized by high level of chemical contamination, in particular, the concentration of nitrates in water is 2.5-4,4 g/l, sodium bromate - up to 35 mg/l. One of the interesting questions is interaction of radiation and chemical contamination in their effect on living organisms in this reservoir. In laboratory experiments seeds of Lactuca sativa were used; the effect of the studied factor on the length of the sprout's root was estimated. To assess the effect of chemical toxicants the solutions of each salt in 7 different concentrations were used, distilled water was used as a control. For evaluation of acute effects of external gamma irradiation the seeds after exposure for 24 hours in distilled water, were irradiated at 7 different doses using gamma-unit on the basis of Cs-137 with the dose rate of 0.62 Gy/min. To assess the combined effects of acute external gamma irradiation, of nitrates and bromates, seeds after 24 hour exposure at each test concentration of the salts solutions were irradiated using gamma-unit. To calculate the effective concentrations or doses was used drc package for R software. To calculate the dose rate to aquatic organisms in the R-17 was used ERICA Assessment Tool 2012. It was found out that the EC50 of sodium nitrate for lettuce was 2.69 g/l, which is comparable to the concentration of nitrates in the 'Staroye Boloto'. This indicates that nitrate can have significant toxic effect on aquatic higher plants of the reservoir. The EC50 of sodium bromate was 14.6 mg/l. This is less than the maximum concentration of the substance in the R-17, which suggests

  7. The influence of the combined effects of acute gamma-radiation, sodium bromate and sodium nitrate on lettuce (Lactuca sativa) seedling root growth

    Among special industrial reservoirs used for the storage of liquid radioactive waste of Mayak PA, Russia, one of the most radioactively contaminated is the R-17 reservoir, so-called 'Staroye Boloto' (the total β-activity of water ranged in the observation period from 0.4 MBq/l to 4.5 MBq/l, the total a-activity ranged from 43 to 420 Bq/l). Also this reservoir is characterized by high level of chemical contamination, in particular, the concentration of nitrates in water is 2.5-4,4 g/l, sodium bromate - up to 35 mg/l. One of the interesting questions is interaction of radiation and chemical contamination in their effect on living organisms in this reservoir. In laboratory experiments seeds of Lactuca sativa were used; the effect of the studied factor on the length of the sprout's root was estimated. To assess the effect of chemical toxicants the solutions of each salt in 7 different concentrations were used, distilled water was used as a control. For evaluation of acute effects of external gamma irradiation the seeds after exposure for 24 hours in distilled water, were irradiated at 7 different doses using gamma-unit on the basis of Cs-137 with the dose rate of 0.62 Gy/min. To assess the combined effects of acute external gamma irradiation, of nitrates and bromates, seeds after 24 hour exposure at each test concentration of the salts solutions were irradiated using gamma-unit. To calculate the effective concentrations or doses was used drc package for R software. To calculate the dose rate to aquatic organisms in the R-17 was used ERICA Assessment Tool 2012. It was found out that the EC50 of sodium nitrate for lettuce was 2.69 g/l, which is comparable to the concentration of nitrates in the 'Staroye Boloto'. This indicates that nitrate can have significant toxic effect on aquatic higher plants of the reservoir. The EC50 of sodium bromate was 14.6 mg/l. This is less than the maximum concentration of the substance in the R-17, which suggests that sodium bromate has a

  8. Explanation of nurse standard of external exposure acute radiation sickness

    National occupational health standard-Nurse Standard of External Exposure Acute Radiation Sickness has been approved and issued by the Ministry of Health. Based on the extensive research of literature, collection of the previous nuclear and radiation accidents excessive exposed personnel data and specific situations in China, this standard was enacted according to the current national laws, regulations, and the opinions of peer experts. It is mainly used for care of patients with acute radiation sickness, and also has directive significance for care of patients with iatrogenic acute radiation sickness which due to the hematopoietic stem cell transplantation pretreatment. To correctly carry out this standard and to reasonably implement nursing measures for patients with acute radiation sickness, the contents of this standard were interpreted in this article. (authors)

  9. Psychological Aspects of Acute Radiation Accidents

    This paper generally describes personality structure and needs and then relates these to the psychological aspects of radiation injury. Three levels in the personality structure are defined as child, adult, and parent. This is followed by a description of two major need systems the first of which, if not met, results in the death of the individual and the second, if not met, results in significant emotional disruption of the individual. This is followed by a discussion of coping phases and stress patterns of radiation injury, including the effects of the illusion of immunity characterized by the feeling that ''things can happen to others, but not to me'', and the ''nuclear mystique'' which is characterized by a magical quality attached to radiation due partly to the lack of sense organ response to radiation exposure. Following impact, treatment in the reactive.phase, which includes moderate and severe emotional reactions, involves a series of compensating emotions. These include the illusion of centrality, the feeling of abandonment, altruism, and amorality. The ''aftermath'' reaction is treated from the standpoint of the ''tormenting memory'', the ''amnesiac reaction'', the ''fear of recurrence'' and the individual’s need to cope with both his medical condition and reactions of others to his condition. The recovery phase is treated from the standpoint of unacceptable and acceptable disability. Finally, a recommended psychological treatment for the physician to use in radiation accident cases is made involving the individual's psychological needs, as well as the physician's psychological role which includes: authoritative support, acceptance, optimism, and avoidance of the appearance of an overly scientific approach. Effective organizing, planning or training for the care of radiation accident cases must consider the psychological factors developed. Recommendations for mental health programs which include employee screening and counselling programs are made

  10. Methods for assessing the extent of acute radiation injury

    Previous radiation accidents have shown that the medical management of exposed persons cannot be performed without the use of 'biological indicators' of effect and of repair. For the clinical management of a patient with the acute radiation syndrome, it is essential to obtain information on the subjective symptomatology as well as on laboratory parameters, especially during the first 3 to 6 days after exposure. The medical doctor responsible for the clinical care of patients has to rely on the use of what has been described as 'sequential diagnosis'. This approach consists essentially of the determination of a limited number of parameters as a function of time. From the analysis of the pattern of the determined and evaluated signs and symptoms in the first hours and days, one is able to characterize patients according to type and severity of symptomatology. This has been clearly demonstrated in the Moscow - Ulm Radiation Accident Database (MURAD) developed in a collaborative project between the Institute of Biophysics in Moscow and the Department of Clinical Physiology and Occupational Medicine of the University of Ulm. On the basis of the radiation accident clinical response pattern observed early after irradiation, one is able to develop a first approach for therapeutic strategies. It is the purpose of this contribution to outline the diagnostic and prognostic significance of blood cell changes and to discuss the following problem areas: significance and elements of a sequential diagnosis; significance of blood lymphocytes for radiation accident diagnosis; significance of blood granulocyte changes for the prognosis of the acute radiation syndrome; analysis of granulocyte changes by means of regulated system models; utilization of indicators of response and repair for planning therapeutic options

  11. Changes in blood sugar content of dogs exposed to chronic gamma radiation for 6 years. [Combined effects of physical stress, heat stress, and acute radiation stress

    Akhunov, A.A.

    1978-10-26

    There have not been many studies of blood sugar concentration in animals exposed to chronic gamma radiation, and the results thereof are contradictory. Therefore, data on blood sugar levels in dogs during a 6-year exposure to gamma radiation and after discontinuation thereof are reported.

  12. Influence of acute hypoxia and radiation quality on cell survival

    Tinganelli, Walter; Ma, Ning-Yi; von Neubeck, Cläre; Maier, Andreas; Schicker, Corinna; Kraft-Weyrather, Wilma; Durante, Marco

    2013-01-01

    To measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and RAT-1 rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy ...

  13. Sequence analysis of the ATM gene in 20 patients with RTOG grade 3 or 4 acute and/or late tissue radiation side effects

    Purpose: Patients with ataxia-telangiectasia (A-T) show greatly increased radiation sensitivity and cancer predisposition. Family studies imply that the otherwise clinically silent heterozygotes of this autosomal recessive disease run a 3.5 to 3.8 higher risk of developing cancer. In vitro studies suggest moderately increased cellular radiation sensitivity of A-T carriers. They may also show elevated clinical radiosensitivity. We retrospectively examined patients who presented with severe adverse reactions during or after standard radiation treatment for mutations in the gene responsible for A-T, ATM, considering a potential means of future identification of radiosensitive individuals prospectively to adjust dosage schedules. Material and Methods: We selected 20 cancer patients (breast, 11; rectum, 2; ENT, 2; bladder, 1; prostate, 1; anus, 1; astrocytoma, 1; Hodgkins lymphoma, 1) with Grade 3 to 4 (RTOG) acute and/or late tissue radiation side effects by reaction severity. DNA from the peripheral blood of patients was isolated. All 66 exons and adjacent intron regions of the ATM gene were PCR-amplified and examined for mutations by a combination of agarose gel electrophoresis, single-stranded conformational polymorphism (SSCP) analysis, and exon-scanning direct sequencing. Results: Only 2 of the patients revealed altogether four heteroallelic sequence variants. The latter included two single-base deletions in different introns, a single-base change causing an amino acid substitution in an exon, and a large insertion in another intron. Both the single-base deletions and the single-base change represent known polymorphisms. The large insertion was an Alu repeat, shown not to give rise to altered gene product. Conclusions: Despite high technical efforts, no unequivocal ATM mutation was detected. Nevertheless, extension of similar studies to larger and differently composed cohorts of patients suffering severe adverse effects of radiotherapy, and application of new

  14. Quantitative assessment of acute radiation injury of the lens

    An attempt is made to unify various approaches to the assessment of acute radiation injury of the organ of vision. The development of cataracts was studied on mice subjected to local irradiation of the head at doses: 7, 10, 12, 15, 20 and 25 Gy. A clinical picture of radiation injury of the eye at different X-ray doses at different stages was established during ophthalmological examination using a manual electroophthalmoscope (X5). A method of the quantitative assessment of radiation injury of the mouse eye at different radiation doses was proposed using the light transmission factor tau; its experimental value was obtained, values for different clinical stages of cataracts were established. The time course of the development of radiation cataracts in mice subjected to X-ray irradiation in a wide spectrum of doses, was observed; clinical features of the process were revealed. Dose fractionation under the above conditions did not make aprotective effect on the lens. Dependence of a degree of lens injury on irradiation dose obtained owing to the use of the light transmission factor tau, was described with the following equation: N=Nsub(0)esup(-D/Dsup(0))

  15. Radiation protection and health effects

    The use of ionizing radiation in nuclear medicine carries with it a responsibility to both patient and personnel to maximize the diagnostic and therapeutic benefit while minimizing the potential for any adverse health effects. Shortly after the discovery of the x-ray in 1895 the potential for acute health hazards of ionizing radiation became apparent. However, the risks of ionizing radiation were poorly understood and many early users did not believe that anyone could be hurt by something that could not be detected by any of the human senses. Many experiments on the biologic effects of ionizing radiation began in the early 1900s, and the first radiation protection standards were proposed by the British Roentgen Society in 1915. We now realize that these pioneers had a very limited knowledge of the potential hazards and radiation protection principles. Today more scientific data are available on the health effects of, detection of, and protection from ionizing radiation than any other physical agent or chemical known. In addition, use of many forms of ionizing radiation is heavily regulated at both national and state levels. This paper discusses how maternal contamination with radionuclides may cause irradiation of the fetus even if the radionuclide is not transferred across the placenta. This is mostly true for radionuclides that decay yielding relatively penetrating radiations

  16. Acute radiation proctitis. A clinical, histopathological and histochemical study

    Hovdenak, Nils

    2004-07-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed.

  17. Acute radiation proctitis. A clinical, histopathological and histochemical study

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed

  18. Radiation effects and radiation risks

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix

  19. Characteristics of long-term consequences of acute radiation sickness

    In persons who suffered from acute radiation sickness (ARS) as a result of the Chernobyl accident in course of time there are revealed the stochastic and non-stochastic effects of irradiation both in 'critical' and 'non-critical' organism systems. It is connected with maintenance of somatic mutation high level and steady changes in membranes subcellular structures, biomolecules as well as metabolic disturbances. Stable changes of hemopoietic and immune system indexes have to be considered as pre-pathological status with high hazard of stochastic effects development. Frequency rate of typical radiation cataracts (posterior subcapsular) is correlated with ARS severity degree; fundus oculi vessel pathology have essential weight in total eye pathology. Chronic radiation dermatitis is an important clinical problem being a long-term consequence of irradiation. It demands a constant attention in order to prevent trophic secondary skin lesions. Radiation damage of eye and skin as well as high frequency of chronic somatic diseases and neuropsychiatric disorders conditioned the high level of disablement in ARS-patients

  20. Thymus endocrine function in acute radiation sickness resulted from Chernobyl accident

    Data are presented on the role of inhibition of endocrine function of the thymus in the pathogenesis of acute radiation sickness resulted from the direct and indirect (via the increased glucocorticoid production) effects of ionizing radiation. The complex treatment, including nonspecific active immunotherapy, permitted to normalize the thymic hormone level and certain parameters of the immune system

  1. Psychological consequences of nuclear and radiological accidents: Delayed neuropsychiatric effects of the acute radiation sickness following Chernobyl. Chapter 2

    The neuropsychiatric consequences of accidental irradiation to ARS patients have been monitored to the present on the basis of one in-patient medical examination per year. All ARS patients are hospitalized in the Radiation Pathology Department of the Institute for Clinical Radiology, RCRM, Kiev. The data on the neuropsychiatric aftermath of ARS presented hereafter were based on two research designs: 1) prospective follow-up study (1987-2001), and 2) cross-sectional study with parallel groups (1996-1998). The principles of the treatment of neuropsychiatric disorders include complexity, stability and succession between stages (clinical, ambulatory-polyclinic, ambulatory and sanatorium treatment). Basic treatment includes pharmacotherapy and psychological therapy. Neuropharmacology includes vasoactive and nootropic drugs, neuroprotectors, antidepressants (predominantly, selective serotonin reuptake inhibitors - SSRIs) and atypical antipsychotic (if necessary). The correction of mental disorders is carried out at syndromological level. It is worth mentioning the importance of out-patient methods of treatment and rehabilitation [Nyagu A.I. et al., 1998, Nyagu A.I. et al., 1999

  2. Biological radiation effects

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man

  3. Effect of a prostaglandin - given rectally for prevention of radiation-induced acute proctitis - on late rectal toxicity. Results of phase III randomized, placebo-controlled, double-blind study

    Kertesz, Tereza; Herrmann, Markus K.A.; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F.; Hille, Andrea [Dept. of Radiotherapy and Radiooncology, Univ. of Goettingen (Germany); Zapf, Antonia [Dept. of Medical Statistics, Univ. of Goettingen (Germany); Pradier, Olivier [Dept. of Radiotherapy and Radiooncology, Univ. of Brest (France); Schmidberger, Heinz [Dept. of Radiotherapy and Radiooncology, Univ. of Mainz (Germany)

    2009-09-15

    Background and purpose: to assess the late effect of a prostaglandin, given rectally during irradiation, on late rectal toxicity. In the acute treatment setting no significant differences in reducing the incidence of acute proctitis symptoms in patients receiving misoprostol, however, significantly more rectal bleeding had been reported. Patients and methods: a total of 100 patients who had undergone radiotherapy for prostate cancer had been entered into this phase III randomized, placebo-controlled, double-blind study with misoprostol or placebo suppositories. The toxicity was evaluated yearly after cessation of irradiation by the RTOG/LENT-SOMA scale. Results: the median follow-up was 50 months. 20 patients suffered from grade 1, four patients from grade 2 as well, and three patients only from grade 2 toxicity. Frequency, bleeding and urgency were the most commonly reported symptoms. In keeping with other studies and clinical experience, the symptoms peaked within the first 2 years with a median for grade 1 of 13 months and for grade 2 of 15 months. The presence of acute toxicity grade 2 showed a correlation with the development of any late toxicity (p = 0.03). Any acute rectal bleeding was significant correlated with any late rectal bleeding (p = 0.017). Conclusion: misoprostol given as once-daily suppository for prevention of acute radiation-induced proctitis does neither influence the incidence and severity of radiation-induced acute nor late rectal toxicity. Misoprostol has no negative impact on the incidence and severity of late rectal bleeding, in contrast to acute rectal bleeding. The routine clinical use of misoprostol suppositories cannot be recommended. (orig.)

  4. Radiation-induced hypopituitarism in children with acute lymphoblastic leukemia

    Mehrdad Mirouliaei

    2013-01-01

    Full Text Available Background: Acute Lymphoblastic Leukemia (ALL is the most common malignancy among children for whom radiotherapy and chemotherapy are used for treatment. When hypothalamus-pituitary axis is exposed to radiotherapy, children′s hormone level and quality of life are influenced. The aim of this study is to determine late effects of radiotherapy on hormonal level in these patients. Materials and Methods: In this study 27 children with ALL, who have been referred to Shahid Ramezanzadeh Radiation Oncology Center in Yazd-Iran and received 18-24 Gy whole brain radiation with Cobalt 60 or 9 MV linear accelerator, were assessed. These patient′s basic weight, height and hormonal levels were measured before radiotherapy and also after different periods of time. Results: GHD (growth hormone deficiency after clonidine stimulation test was observed in 44% ( n=12 and that in 50% of them ( n=6, less than 1 year, had been passed from their radiation therapy. None of these patients demonstrated hormone deficiency in other axes. Conclusions: This study showed that even application of a 18-24 Gy radiation dose might influence growth hormone levels; therefore, we recommend reduction of radiotherapy dose in such patients whenever possible.

  5. Biological effects of ionizing radiation

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  6. Role of toll-like receptors in acute gastrointestinal radiation syndrome

    Ionizing radiation induces various disorders according to the radiation sensitivity of each organ. Acute gastrointestinal radiation syndrome is a serious illness that is caused by exposure of gastrointestinal tract to high amounts of ionizing radiation in radiation accidents or radiation therapy in cancer treatment. Although the pathological mechanism have been well studied in human and animals, no effective treatments have been developed to date. The Toll-like receptor (TLR) family is one of the best-characterized families of innate immune receptors, which induce innate immune response against pathogen infection. However, contrary to their protective function, recent studies have suggested that immune responses triggered by TLRs play deleterious roles by aggravating tissue inflammation in some inflammatory and autoimmune diseases. This review describes recent advancement of our understanding of acute gastrointestinal radiation syndrome and the contributions of TLR to its pathological mechanisms. (author)

  7. Effects of radiation on erythropoiesis

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD50/30 dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays

  8. Effect of Massive Blood Transfusion on the Therapeutic Efficiency of Homogenic Bone Marrow in Acute Radiation Illness

    Simultaneously with bone-marrow transplantation, the authors replaced the blood of the lethally irradiated recipient animals with blood from the bone-marrow donor. From experiments on dogs and rabbits it became clear that replacing 86% of the recipient's blood with blood from the bone-marrow donor considerably reduces the therapeutic effect of bone-marrow transplantation. The authors consider that the main cause of the animals' early death in experiments combining bone-marrow transplantation and massive donor blood transfusions is a secondary syndrome resulting from the graft-versus-host reaction. This does not exclude the inverse possibility - that the development of a host-versus-graft reaction is due to the presence of a massive number of antigens of the donor blood in the blood of the recipient. (author)

  9. Low level radiation: biological effects

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  10. Antiradiation Antitoxin IgG : Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    Popov, Dmitri; Maliev, Slava

    Introduction: High doses of radiation induce apoptotic necrosis of radio-sensitive cells. Mild doses of radiation induce apoptosis or controlled programmed death of radio-sensitive cells with-out development of inflammation and formation of Radiation Toxins. Cell apoptotic necrosis initiates Radiation Toxins (RT)formation. Radiation Toxins play an important role as a trig-ger mechanism for inflammation development and cell lysis. If an immunotherapy approach to treatment of the acute radiation syndromes (ARS) were to be developed, a consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants-SRD) by specific antiradiation antibodies. Therapeutic neutralization effects of the blocking anti-radiation antibodies on the circulated RT had been studied. Radiation Toxins were isolated from the central lymph of irradiated animals with Cerebrovascular(Cv ARS),Cardiovascular (Cr ARS),Gastrointestinal(Gi ARS) and Haemopoietic (Hp ARS) forms of ARS. To accomplish this objective, irradiated animals were injected with a preparation of anti-radiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-induced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic) characteristics as well as specific antigenic properties. Depending on direct physiochemical radiation damage, they can induce development of many of the pathological processes associated with ARS. We have tested several specific hyperimmune IgG preparations against these radiation toxins and ob-served that their toxic properties were neutralized by the specific antiradiation IgGs. Material and Methods: A scheme of experiments was following: 1.Isolation of radiation toxins (RT) from the central lymph of irradiated animals with different form of ARS. 2.Transformation of a toxic form of the RT to a toxoid form of the RT. 3.Immunization of radiation naive animals. Four groups of rabbits were inoculated with a toxoid form of SRD

  11. Molecular effects of radiation

    The basis of radiobiology based on the effects of radiation in cells and tissues. Though the primary constituents of tissues are DNA and chromosomes, thus we need to know the effects of radiation in its molecular level before going for its effect in tissue level. The most abundant molecule inside the body is water molecule, and any type of radiation effect to water molecule might affect the whole body functionality. Brief knowledge about the effect of radiation in molecular level on the basis of hydrolysis of water; and radiation damage to DNA and chromosome will be helpful to understand the basics of radiobiology. (author)

  12. Effects of radiation

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  13. Estimation of a contribution of internal exposure to early effects of acute radiation syndrome in victims of the accident at the Chernobyl Nuclear Power Plant

    Materials on internal irradiation of people with accute radiation syndrome, caused by the ChNPP accident are presented. It is shown, that internal exposure is more than important as related to clynical direct accute effects under investigation. Thyroid, lungs and whole body radiation doses are presented. Severity of broncholung and hypophysical-thyroidal system damage was evaluated

  14. Space radiation effects

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  15. Radiation effects in space

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  16. Radiation-induced cardiovascular effects

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  17. The modes of death in mammals exposed to whole body radiation (acute radiation syndromes)

    When an animal is exposed to a sufficient amount of radiation, there will be changes in many organs of the body, and as a result of either the effects in one particular organ or the interaction of effects in several organs, the animal as a whole will show characteristic syndromes. Some syndromes result inevitably in death. Others may or may not be lethal, depending on the extent of the tissue damage. The time of appearance of the syndromes, their duration, and the survival of the organism depend on many factors. Whole body acute doses of radiation produce the same spectrum of Central Nervous System (CNS), Gastrointestinal (GI) and Bone Marrow (BM) injury in man as was described for animals. Damage to the skin, ovary and testis are an integral and important part of the symptoms. (author)

  18. Salivary biochemical markers as potential acute toxicity parameters for acute radiation injury: A study on small experimental animals.

    Soni, S; Agrawal, P; Kumar, N; Mittal, G; Nishad, D K; Chaudhury, N K; Bhatnagar, A; Basu, M; Chhillar, N

    2016-03-01

    Researchers have been evaluating several biodosimetric/screening approaches to assess acute radiation injury, related to mass causality. Keeping in mind this background, we hypothesized that effect of whole-body irradiation in single fraction in graded doses can affect the secretion of various salivary components that could be used as acute radiation injury/toxicity marker, which can be used in screening of large population at the time of nuclear accidents/disaster. Thirty Sprague Dawley rats treated with whole-body cobalt-60 gamma irradiation of dose 1-5 Gy (dose rate: 0.95 Gy/min) were included in this study. Whole mixed saliva was collected from all animals before and after radiation up to 72 h postradiation. Saliva was analyzed for electrolytes, total protein, urea, and amylase. Intragroup comparison of salivary parameters at different radiation doses showed significant differences. Potassium was significantly increased as the dose increased from 1 Gy to 5 Gy (p 0.5). Sodium was significantly altered after 3-5 Gy (p 0.5), except 1 and 2 Gy, whereas changes in sodium level were nonsignificant (p > 0.5). Urea, total protein, and amylase levels were also significantly increased as the radiation dose increased (p 0.5). This study suggests that salivary parameters were sensitive toward radiation even at low radiation dose which can be used as a predictor of radiation injury. PMID:25813962

  19. RADIATION AND EFFECTS ON HUMAN HEALTH

    Hakan YAREN

    2005-08-01

    Full Text Available In modern world, living without radiation is impossible. Radiation is defined as ?energy transmitted through space as waves or particles? and also determined as ?particles or waves emitted from the nucleus of unstable radioactive atoms to become stable? Mainly two types of radiation are exist; ionising radiation and non-ionising radiation. Ionising radiation is consist of alpha, beta particules, neutrons, x rays and gamma rays. Ionising radiation which can be measured by ion chambers, geiger-Mueller detectors, Scintillation Counters, fluorescent counters etc. Has harmfull effects on human health in levels of molecular, cellular, tissue, organs and organ systems. These harmfull effects can also be named somatic and genetic. One of the most encountered problem is ?Acute Radiation Syndrom? which has three sub syndroms called haematopoetic syndrom, gastrointestinal syndrom and neurovascular syndrom. Exposure time, distance and armorisation are the key elements of protection from radiation. [TAF Prev Med Bull 2005; 4(4.000: 199-208

  20. Future radiation effects

    A review is given of the units used in radiation protection. The radiation hazards incurred by human populations can be divided into early and late somatic radiation effects and genetic radiation effects. Examples and motivations of risk analysis estimates are given. For genetic radiation effects, the siginificance dose and the doubling dose are defined. The minimum permissible dose for different human populations are compared with the doses received from natural radioactivity with medical applications. The risk caused by nuclear reactors and fall-out and its consequences are given for the year 1972 and estimated for the year 2000

  1. Stem cell-based therapies for acute radiation syndrome

    Exposure to high doses of ionizing radiation in the event of accidental or intentional incident such as nuclear/radiological terrorism can lead to debilitating injuries to multiple organs resulting in death within days depending on the amount of radiation dose and the quality of radiation. Unfortunately, there is not a single FDA-licensed drug approved against acute radiation injury. The RadStem Center for Medical Countermeasures against Radiation (RadStem CMGR) program at Einstein is developing stem cell-based therapies to treat acute radiation syndrome (ARS). We have demonstrated that intravenous transplantation of bone marrow-derived and adipose-derived stromal cells, consisting of a mixture of mesenchymal, endothelial and myeloid progenitors can mitigate mice exposed to whole body irradiation of 12 Gy or whole abdominal irradiation of up to 20 Gy. We identified a variety of growth and differentiation factors that individually is unable to improve survival of animals exposed to lethal irradiation, but when administered sequentially mitigates radiation injury and improves survival. We termed this phenomenon as synthetic survival and describe a new paradigm whereby the 'synthetic survival' of irradiated tissues can be promoted by systemic administration of growth factors to amplify residual stem cell clonogens post-radiation exposure, followed by a differentiation factor that favors tissue stem cell differentiation. Synthetic survival can be applied to mitigate lethal radiation injury in multiple organs following radiation-induced hematopoeitic, gastrointestinal and pulmonary syndromes. (author)

  2. Radiation effects in semiconductors

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  3. Cytogenetic effects in children born to participants in the cleanup of the Chernobyl accident consequences - Acute radiation syndrome survivors and children evacuated from Pripyat

    The cytogenetic study of 87 children was held. Age of involved kids ranged from 5 to 14 years old. The I-st study group was presented with 17 kids born in 1987-1988 from the Chernobyl accident consequences cleaning up participants (CACCP) who survived the Acute radiation syndrome (ARS) of I-II severity degree in 1986. The II-nd study group was consisted from the 45 children born in 1983-1985 resident in town Pripyat with thyroid exposure doses from 65 to 616 sZv and total irradiation doses from 0.2 to 13.2 sZv. The 25 children born in 1983-1988 and resident in radiation situation - favourable region of Ukraine constituted the Control (III-rd) group. The aberrant cells number and chromosomal aberrations amount mainly due to chromatide type ones confidential increase compared to that in control was revealed among the children born from CACCP - ARS survivors. In children exposed to ionizing radiation during infant and early childhood age the aberrant cells number and chromosomal aberrations quantity was elevated also but due to both chromosomal (dicentrics and rings) and chromatide types. (author)

  4. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    Protecting crew from ionizing radiation is a key life sciences problem for long-duration space missions. The three major sources/types of radiation are found in space: galactic cosmic rays, trapped Van Allen belt radiation, and solar particle events. All present varying degrees of hazard to crews; however, exposure to high doses of any of these types of radiation ultimately induce both acute and long-term biological effects. High doses of space radiation can lead to the development of toxicity associated with the acute radiation syndrome (ARS) which could have significant mission impact, and even render the crew incapable of performing flight duties. The creation of efficient radiation protection technologies is considered an important target in space radiobiology, immunology, biochemistry and pharmacology. Two major mechanisms of cellular, organelle, and molecular destruction as a result of radiation exposure have been identified: 1) damage induced directly by incident radiation on the macromolecules they encounter and 2) radiolysis of water and generation of secondary free radicals and reactive oxygen species (ROS), which induce chemical bond breakage, molecular substitutions, and damage to biological molecules and membranes. Free-radical scavengers and antioxidants, which neutralize the damaging activities of ROS, are effective in reducing the impact of small to moderate doses of radiation. In the case of high doses of radiation, antioxidants alone may be inadequate as a radioprotective therapy. However, it remains a valuable component of a more holistic strategy of prophylaxis and therapy. High doses of radiation directly damage biological molecules and modify chemical bond, resulting in the main pathological processes that drive the development of acute radiation syndromes (ARS). Which of two types of radiation-induced cellular lethality that ultimately develops, apoptosis or necrosis, depends on the spectrum of incident radiation, dose, dose rate, and

  5. Bile loss in the acute intestinal radiation syndrome in rats

    The effects of bile duct ligation (BDL), choledochostomy, bile acid sequestering within the intestinal lumen by cholestyramine, and fluid and electrolyte replacement on survival time and development of diarrhea after whole-body exposure to doses of ionizing radiation that result in death from acute intestinal injury were studied. BDL significantly prolonged survival and delayed the onset of diarrhea after exposure to 137Cs gamma rays, fission neutrons, or cyclotron-produced neutrons in the range of doses that produce intestinal death or death from a combination of intestinal and hematopoietic injuries. Cannulation of the bile duct with exteriorized bile flow (choledochostomy) to protect the irradiated intestine from the mucolytic action of bile salts did not duplicate the effect of BDL in increasing survival time. Choledochostomy without fluid replacement eliminated the occurrence of diarrhea in 15.4 Gy irradiated rats. Diarrhea did occur in irradiated animals with choledochostomy if they received duodenal injections of fluid and electrolytes to replace the fluid lost as a result of bile drainage. Duodenal injection of fluid and electrolytes had no significant effect on survival time in irradiated rats. Injection of fluid and electrolytes into the peritoneal cavity of irradiated rats resulted in an increase in survival time that was comparable to that observed after BDL. Addition of antibiotics to the peritoneally injected fluid and electrolytes further increased survival time (up to 9 days). This survival time approached that seen in animals receiving the same radiation dose but which had the intestine exteriorized and shielded to minimize radiation injury to the intestine. Postmortem histological examinations of the irradiated small intestine showed mucosal regeneration in these long-term survivors receiving fluid and antibiotic therapy

  6. Acute radiation syndrones and their management

    Radiation syndromes produced by large doses of ionizing radiation are divided into three general groups depending on dose of radiation and time after exposure. The CNS syndrome requires many thousands of rad, appears in minutes to hours, and kills within hours to days. The GIS appears after doses of a few hundred to 2000 rad. It is characterized by nausea, vomiting, diarrhea, and disturbances of water and electrolyte metabolism. It has a high mortality in the first week after exposure. Survivors will then experience the HS as a result of marrow aplasia. Depending on dose, survival is possible with antibiotic and transfusion therapy. The relationship of granulocyte depression to mortality in dogs and human beings is illustrated. The role of depth dose pattern of mortality of radiation exposure is described and used as an indication of why air exposure doses may be misleading. The therapy of radiation injury is described based on antibiotics, transfusion therapy, and use of molecular regulators. The limited role of matched allogenic bone marrow transplants is discussed. 52 refs., 13 figs

  7. Acute radiation syndrones and their management

    Cronkite, E.P.

    1988-01-01

    Radiation syndromes produced by large doses of ionizing radiation are divided into three general groups depending on dose of radiation and time after exposure. The CNS syndrome requires many thousands of rad, appears in minutes to hours, and kills within hours to days. The GIS appears after doses of a few hundred to 2000 rad. It is characterized by nausea, vomiting, diarrhea, and disturbances of water and electrolyte metabolism. It has a high mortality in the first week after exposure. Survivors will then experience the HS as a result of marrow aplasia. Depending on dose, survival is possible with antibiotic and transfusion therapy. The relationship of granulocyte depression to mortality in dogs and human beings is illustrated. The role of depth dose pattern of mortality of radiation exposure is described and used as an indication of why air exposure doses may be misleading. The therapy of radiation injury is described based on antibiotics, transfusion therapy, and use of molecular regulators. The limited role of matched allogenic bone marrow transplants is discussed. 52 refs., 13 figs.

  8. Factors Influencing the Efficacy of Radiation Protection of the Thyroid Gland in Chernobyl Patients with Acute Radiation Disease

    Full text: Just after the Chernobyl accident there were three groups of factors which could influence on the incorporation of radioactive iodine into the victims at the Chernobyl nuclear power plant. The first group was related with the amount of radioactive iodine in the air, the second with radiation protection measures and the third with clinical condition of the victims. The purpose of this investigation was to study relationships among them. The subject of the research was 108 case histories of the victims after short-term external gamma-exposure from 0.5 to 12.7 Gy. 92 of them fell ill with acute radiation disease. Their thyroid glands were exposed to radiation iodine within 0.01-12 Gy. A multifactor analysis was used for studying the relationships among the radioactive iodine intake, development of prodromal radiation syndrome and taking in 0.125 g of potassium iodine to protect the thyroid gland. The investigation shows that the highest level of iodine incorporation was determined in the men stayed at the nuclear power plant for the first hour after the beginning of the accident. A protective effect of potassium iodine depended on the time of taking in. The vomiting was a reason for decreasing the effect due to the loss of some potassium iodine with vomiting materials during the prodromal period of acute radiation disease. The level of the radionuclide incorporation had no influence on the development of the acute radiation syndrome. (author)

  9. Developing diagnostic guidelines for the acute radiation syndrome

    Diagnostic guidelines seem to be promising for improving medical care. One aspect of a diagnostic guideline for the acute radiation syndrome has been tested against an extensive case history database. Subsequently, the guideline has been optimized for a small set of case histories. The improved performance has been proven by a test against the rest of the case history database

  10. Glucose Effect in the Acute Porphyrias

    ... You are here Home Diet and Nutrition The glucose effect in acute porphyrias The disorders Acute Intermittent ... are treated initially with the administration of carbohydrate/glucose. This therapy has its basis in the ability ...

  11. Radiation effects in space

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  12. Opiate antinociception is altered by immunemodification: the effect of interferon, cyclosporine and radiation-induced immune suppression upon acute and long-term morphine activity

    It has recently been demonstrated that various forms of immune modification result in a profound attenuation of the opiate withdrawal syndrome. Herein we investigate the extent to which some of the immune modifiers active in withdrawal attenuation affect other opiate related behaviors, namely antinociception and the development of tolerance to this effect. The observations demonstrate that immune modification by cyclosporine and irradiation exposure result in an alteration of the acute antinociceptive effect of morphine; while none of these treatments modify the development of tolerance to this property of morphine. (Auth.)

  13. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease

    The histopathologic changes of radiation dermatitis have been classified either as early effects (necrotic keratinocytes, fibrin thrombi, and hemorrhage) or as late effects (vacuolar changes at the dermal-epidermal junction, atypical radiation fibroblasts, and fibrosis). Two patients, one exposed to radiation therapeutically and one accidentally, are described. Skin biopsy specimens showed an interface dermatitis characterized by numerous dyskeratotic epidermal cells with lymphocytes in close apposition (satellite cell necrosis); that is, the epidermal changes were similar to those in acute graft-versus-host disease. Because recipients of bone marrow transplants frequently receive total body irradiation as part of their preparatory regimen, the ability of radiation to cause persistent epidermal changes similar to those in acute graft-versus-host disease could complicate the interpretation of posttransplant skin biopsy specimens

  14. Radiation effects and radioprotectors

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  15. Radiation-induced acute myeloid leukaemia in mice

    Ample epidemiological studies of human populations implicate ionizing radiation as a carcinogen and these quantitative studies provide the foundation for the core estimates of radiation cancer risk. The majority of the epidemiological data originate from situations of radiation exposure at high dose and high dose rate. The relevance of risk estimates based on such exposures to the more commonly encountered low dose and dose rate situation has been questioned frequently. Thus, there is a need to investigate and quantitate low dose and dose rate effects. A number of approaches may be considered, for example, very large scale epidemiology, very large scale animal experimentation; however, both of these present problems of a practical and/or ethical nature. A further possible approach is that of mechanistic modelling. This requires a fairly detailed understanding of neoplastic disease and how it develops post-irradiation. Many factors and variables have to be taken into consideration in mechanistic modelling approaches. Testing of mechanistic modelling schemes is best carried out using animal model systems. Acute myeloid leukaemia (AML) is a radiogenic cancer of significance in man and several good mouse models of the disease are available. Here, recent studies conducted at NRPB with the aim of elucidating the post-irradiation development of AML will be discussed. In particular three areas critical for developing a sound mechanistic model will be covered, definition of the initiating event; study of disease progression, this addresses the question of the frequency of conversion of initiated cells into the neoplastic state and the influence of genetic background on leukaemogenesis. (author)

  16. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome. PMID:27356057

  17. Effects of ionizing radiation

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on

  18. Effects of radiation; Effets des radiations

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  19. Biophysical radiation effects

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.)

  20. Effects of ionizing radiations

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs

  1. Effect of acute gamma radiation and protective action of different concentration of extracts of safora japonica and hypericum perforatum on the life of aboriginal earthworms of Absheron

    Full text : As atomic power is increasingly recognized as a potential energy source to sustain future human development, radiological protection of the environment will become an even more important environmental safety concern. Thus, an understanding of the effects of ionizing radiation on non-human biota is required by the International Commission on Radiological Protection for the radiological protection of the environment. Soil processes are vital to sustainable terrestrial ecosystems, and soil invertebrates play an important role in nutrient cycling by feeding on microbiota. Because of their ecological importance, soil invertebrates are used for ecological impact assessments of terrestrial ecosystem pollutants. For chemical substances, single-species laboratory tests are used to understand toxicity. Standard tests using earthworms and spring tails have been developed by the Organization for Economic Co-operation and Development (OECD) and the International Organization for Standardization (ISO). Laboratory toxicity tests are also applicable in field contamination monitoring to determine if test organisms have been exposed to field-corrected soils. In such assays, gene expression as a biomarker has been receiving increased attention as it may produce fast, sensitive and diagnostic assays. A similar use of laboratory tests can be applied to assess the environmental impact of ionizing radiation. An understanding of the dose-effect relations of ionising radiation for non-human biota establishes important baselines for radiobiological protection of ecosystems. We used standard laboratory tests to examine dose-effect relationships of gamma radiation on the survival, biomass changing, feeding activity, coprolite excretion of aboriginal earthworms

  2. Influence of acute hypoxia and radiation quality on cell survival

    The purpose of this study was to measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and R-3327-AT1 (RAT-1) rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy transfer (LET) values ranging from 100-160 keV/μm. The oxygen enhancement ratio (OER) and relative biological effectiveness (RBE) values have been calculated from the measured clonogenic survival curves. For both cell lines, the X-ray OER depended on the survival level. For particle irradiation, OER was not dependent on the survival level but decreased with increasing LET. The RBE of CHO cells under oxic conditions reached a plateau for LET values above 100 keV/μm, while it was still increasing under anoxia. In conclusion, the results demonstrated that our chamber could be used to measure radiosensitivity under intermediate hypoxia. Measurements suggest that ions heavier than carbon could be of additional advantage in the irradiation, especially of radioresistant hypoxic tumor regions. (author)

  3. Diagnosis of acute radiation disease by Enzyme Immune-Assay (EIA)

    Diagnosis of the acute radiation disease by the method of immune enzyme assay is a simple and efficient tool of evaluating and biological dosimetry and forecasting of development of the acute radiation defeats as at group of population so at individuals locating in the zone polluted by the radiation. We use as biological markers the group of essential radiotoxins - high molecular mass glycoprotein ( molecular mass - 200 - 250 kDa ) - radiation antigens (S.D.R. - specific radiation determinant ) accumulated in the lymphoid system, with epitopes specific to each form of radiation syndrome, after animals have been irradiated in doses inducing the development of the cerebral (1), toxic ( 2), gastrointestinal ( 3 ) and typical ( 4 ) forms of acute radiation sickness. These two phenomena allowed us to develop a technologies for diagnosis, prophylaxis and therapy of radiation disease - enzyme immune assay ( EIA ), anti radiation vaccine, anti radiation serum, method of immune - lymph - plasma-sorption. The important first step in effectiveness of therapy is an accurate assessment of severity of disease in early period after irradiation. The ideal markers for early and accurate assessment is high weight glycoprotein with specifics radiation induced features (S.D.R.) mentioned above. This biology active substance isolated from lymph can induct the symptoms of radiation syndrome without previously radiation when it is administrated intra-muscularly or intravenously to healthy animals. Enzyme immune assay (EIA) allowed researchers to indicate the significant levels of different forms of S.D.R. in peripheral blood of animals in first 24 hours after radiation. Indication of high level of S.D.R. -1 allowed to forecast a fast development of cerebral form of acute radiation disease. Determination of high levels of S.D.R.-2, S.D.R.-3 and S.D.R.-4 in peripheral blood allowed to recognize early periods of toxic, gastrointestinal and typical forms of acute radiation sickness

  4. Radiation therapy treatment of acute refractory renal allograft rejection

    radiation treatment (median 4, range 1-22), number of transplants (one transplant in 77 %), and concomitant immunosuppressive therapy. Independent factors by the Cox regression model were: Sex (P=0.005), Creatinine levels (P=0.000), HLA-DR (P=0.05), PRA-Max > 70% (P=0.014). Each factor was scored using the integral coefficients to generate four different groups. The overall actuarial graft survival from the initiation of RT was 83% at 1 month, 60% at 1 year and 36% at 5 years. The Kaplan-Meier survival analyzed by groups seems to produce an interpretable separation of the risk factors for graft loss. The number of rejections of pre-RT range from 1-6 (median 2) and post-RT range from 0-3 (median 0). Conclusions: Our experience indicates that radiation therapy provides effective treatment for acute refractory renal allograft rejection. The response to radiation therapy in patients treated with acute refractory renal graft rejection can be predicted by a new scoring system

  5. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing

    Acute radiation injury leads to thymic involution, adrenal enlargement, leukopenia, thrombocytopenia, gastrointestinal ulceration, and impaired wound healing. The authors hypothesized that supplemental vitamin A would mitigate these adverse effects in rats exposed to acute whole-body radiation. To test their hypothesis, dorsal skin incisions and subcutaneous implantation of polyvinyl alcohol sponges were performed in anesthetized Sprague-Dawley rats at varying times following sham radiation or varying doses of whole-body radiation (175-850 rad). In each experiment, the control diet [which contains about 18,000 IU vit. A/kg chow (3 X the NRC RDA for normal rats)] was supplemented with 150,000 IU vit. A/kg diet beginning at, before, or after sham radiation and wounding or radiation and wounding. The supplemental vitamin A prevented the impaired wound healing and lessened the weight loss, leukopenia, thrombocytopenia, thymic involution, adrenal enlargement, decrease in splenic weight, and gastric ulceration of the radiated (750-850 rad) wounded rats. This was true whether the supplemental vitamin A was begun before (2 or 4 days) or after (1-2 hours to 4 days) radiation and wounding; the supplemental vitamin A was more effective when started before or up to 2 days after radiation and wounding. The authors believe that prevention of the impaired wound healing following radiation by supplemental vitamin A is due to its enhancing the early inflammatory reaction to wounding, including increasing the number of monocytes and macrophages at the wound site; possible effect on modulating collagenase activity; effect on epithelial cell (and possible mesenchymal cell) differentiation; stimulation of immune responsiveness; and lessening of the adverse effects of radiation

  6. Vascularization of bone regeneration products in acute radiation sickness

    In 119 rabbits with acute radiation sickness the vascularization process in bone regeneration products was studied by microangiography. The formation of arteries and of bone structures was retarded in irradiated animals. The deficient formation of veins and capillaries did not cause conditions for venous blood circulation and resulted in a slow resorption of newly formed bone structures and gristle. That is one of the reasons for an extended healing process of fractures and for formation of false articulations in irradiated animals. (author)

  7. Radiation therapy in prostate cancer: evaluation of acute toxicity

    Goals: The present work documents the increasing demand of curative intent radiation therapy (CIRT) for localized prostate cancer and assesses acute reactions caused by ionizing radiation to intrapelvic organs. Patients and methods: From January 1995 to December 2001, 166 patients with prostatic cancer received radiation therapy, 70% of them (n=116) with curative intent. Treatment was completed as planned in 108 patients: 55 with pelvic irradiation and prostatic boost (PRT), 42 with three-dimensional conformal radiotherapy (3DCRT), 10 with a permanent 125 I implant (IPI) and 1 with combined radiotherapy. Patients were classified as at high- or low-risk according to tumor volume, Gleason score, regional lymph node status and pretreatment specific prostatic antigen level. High-risk patients were assigned to PRT and low-risk patients to local treatment only (either 3DCRT or IPI). Mean doses were 46 Gy for pelvis and 73 Gy for prostate with PRT; 75 Gy with 3DCRT and 127 Gy with IPI and combined radiation therapy. Acute rectal toxicity (ART) and acute urinary toxicity (AUT) were assessed according to the RTOG scale. Statistical analysis was performed with Fischer's exact test. Results: The proportion of patients receiving CIRT increased from 46% (n=28) in 1995-1998 to 84% (n=88) in 1999-2001; p < 0.0001. No patient developed ART or AUT beyond degree 2. ART was lower with 3DCRT (71% degree 0 or 1) than with PRT (45% degree 0 or 1); p= 0.0134. No significant difference was found in AUT. Conclusions: In recent years the demand for CIRT has almost doubled, with a concomitant decrease in palliative radiotherapy. In high-risk patients, pelvic irradiation increased mild and moderate ART, without compromising their life quality. None of the techniques employed was associated with severe acute toxicity. (author)

  8. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: A report from the Children Cancer Study Group

    Testicular function was evaluated in 60 long-term survivors of childhood acute lymphoblastic leukemia (ALL). All the patients were treated on two consecutive Children Cancer Study Group protocols and received identical chemotherapy and either 18 or 24 Gy radiation therapy (RT) to one of the following fields: craniospinal plus 12 Gy abdominal RT including the gonads (group 1); craniospinal (group 2); or cranial (group 3). The median age at the time of their last evaluation was 14.5 years (range, 10.5 to 25.7), which took place a median of 5.0 years (range, 1 to 10.3) after discontinuing therapy. The incidence of primary germ cell dysfunction as judged by raised levels of follicle-stimulating hormone (FSH) and/or reduced testicular volume was significantly associated with field of RT; 55% of group 1, 17% of group 2, and 0% of group 3 were abnormal (P = .002). Leydig cell function, as assessed by plasma concentrations of luteinizing hormone (LH) and testosterone, and pubertal development, was unaffected in the majority of subjects regardless of RT field. These data indicate that in boys undergoing therapy for ALL, germ cell dysfunction is common following testicular irradiation and can occur following exposure to scattered irradiation from craniospinal RT. In contrast, Leydig cell function appears resistant to direct irradiation with doses as high as 12 Gy

  9. Management of two patients with intestinal form of acute radiation sickness and extremely severe bone marrow form of acute radiation sickness complicated with disseminated fungous infection

    Objective: To present two patients diagnosed as intestinal form of acute radiation sickness (patient A) and extremely severe bone marrow form of acute radiation sickness(patient B) complicated with disseminated fungous infection in China. Methods: On October 21st, 2004, a nuclear accident occurred in Jining, Shandong Province, China. Two individuals were accidentally irradiated by a 60Co source. They were transferred to our hospital, and performed allogeneic stem cell transplantation and soon acquired hematopoiesis recovery; however, refractory disseminated fungous infection occurred in two patients. Results: High dosage of amphotericin B combined with itraconazole and concidas were used to kill fungi. The infection was once controlled, but the radiation injury and infection were still becoming worse even after many kinds of treatment. The patients finally died of multiple organ failure on day 33 and day 75, respectively after the accident. Conclusions: The combination of Ampghotec (amphotericin B) with Caspofungin (concidas) and Itraconazole in the treatment of disseminated fungous infection was effective and with no related toxicity. But during the continuous injury of radiation, we couldn't eradicate the fungous infection. The patients were finally died of multiple organs failure related with radiation and infection. (authors)

  10. Potential health effects of space radiation

    Yang, Chui-Hsu; Craise, Laurie M.

    1993-01-01

    Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

  11. Multifocal atherosclerosis in patient after acute first degree radiation sickness.

    Metlyaeva N.A.

    2014-12-01

    Full Text Available Purpose: assessment the heavy psychosomatic and all-somatic cardiovascular and cerebrovascular pathology of patient, transferred an acute I degree radiation sickness, from the general evenly gamma-beta radiation. Conclusions. The subdepressive and disturbing-depressive syndrome of patient, transferred an acute radiation sickness (ARS of I degree, from the general evenly gamma-beta radiation, was independent risk factor of development of multifocal atherosclerosis; Features of development of all-somatic and psychosomatic pathology of patient are based on a combination of genetic prerequisites, environment influences (the stress caused by accident on the ChNPP and social factors, influencing on him during a course of life, especially during early socialization. Thus at development of psychosomatic frustration the combination of feature of the mental reaction connected with the personal characteristic and special relationship between mental (stress and physiological (somatic by aspects of reaction which led to metabolism violation, to aging, decrease in adaptation opportunities of an organism and development age — dependent pathology took place.

  12. Biological radiation effects

    The book covers all aspects of biological radiation effects and provides the fundamental basis for understanding the necessity of radiation protection as well as applications in radiotherapy. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are thoroughly discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects). It can be used by graduate students as an introduction and as a source book for all who want to become acquainted with this important field. It is an extended version of the original German book containing updated information and new material. (orig.) With 273 figs

  13. Cranial radiation in childhood acute lymphocytic leukemia. Neuropsychologic sequelae

    A battery of neuropsychologic tests was administered ''blindly'' to 18 children with acute lymphocytic leukemia (ALL) who had been randomly assigned to treatment regimens with or without cranial radiation. These children were all in complete continuous remission for more than 3 1/2 years and were no longer receiving therapy. The results indicated no substantial differences between groups as a function of radiation therapy. However, decreased neuropsychologic performance was found when the entire sample was compared with population norms. These data do not support the hypothesis that cranial radiation therapy is responsible for the neuropsychologic sequelae seen in these survivors of ALL. Post hoc multiple regression analysis indicated that parental education levels accounted for more of the neuropsychologic variability seen in these children than other factors such as age at diagnosis, type of therapy, or sex of child

  14. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  15. Acute syndrome of radiation: injuries to the gastrointestinal tract

    Acute syndrome of radiation: injuries to the gastrointestinal tract. Exposure to ionising radiation at medium to high doses results in the manifestation of mixed pathologies. Following the analysis of several radiation accidents it is clear that intestinal injury influences patient survival. However the appearance of the classically defined gastrointestinal syndrome is not always evident. Nevertheless injury to the gastrointestinal tract, in particular loss of barrier function, seems to play an important role in the development of Multiple Organ Failure such as reported in the recent accident at Tokai Mura. Ionising radiation overexposure results in changes in intestinal motility and nutrient, fluid and electrolyte absorption and secretion all which may contribute to the genesis of diarrhea. In addition to modified cellular transport properties for nutrients or electrolytes, important loss of epithelial cells is also a major contributing factor. Intestinal functions are controlled by many factors such as neurotransmitters, locally released mediators from endocrine cells or immunocompetent cells in addition to luminal agents. To date, treatment of radiation-induced gastrointestinal injury is mainly symptomatic. However treatments such as growth factors, anti-inflammatory cytokines as well as cellular transplantation remain to be validated in the radiation accident situation. (author)

  16. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  17. Biological Effects of Ionizing Radiation

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  18. Acute neurocognitive impairment during cranial radiation therapy in patients with intracranial tumors

    The objective of the current study was to evaluate the acute effects of cranial radiation therapy (CNS-RT) using different radiation doses (0, 1.8, 2, 3, ≤ 20 Gy) on cognitive function with special emphasis on memory. We assessed patients with and without intracranial tumors to distinguish between direct and indirect radiation effects on brain tissue. Eighty-two patients were evaluated with neuropsychological testing before and acutely after radiotherapy (RT). Sixty-four patients received RT to the brain (55 with, 9 without intracranial tumor). Eighteen patients treated with RT to the breast served as controls. Patients with intracranial tumor demonstrated attention (19-38th percentile) and verbal memory scores (34-46th percentile) below the population average at baseline. The average Verbal Memory score was significantly different between patients with intracranial tumor and controls both at baseline (38th vs. 58th percentile) and after irradiation (27th vs. 52th percentile). Patients with preexisting peritumoral edema performed worse than patients without edema and controls. Radiation dose-related deficits were seen for working memory performance in patients with intracranial tumor. Our data indicate no measurable impairment of cognitive functioning acutely after prophylactic cranial irradiation. Patients with intracranial tumor show a deterioration of almost all memory functions with a dose-dependent impairment in working memory. Patients with preexisting peritumoral brain edema show the strongest deterioration. (orig.)

  19. Acute neurocognitive impairment during cranial radiation therapy in patients with intracranial tumors

    Welzel, Grit; Mai, Sabine K.; Hermann, Brigitte; Kraus-Tiefenbacher, Uta; Wenz, Frederik [University Medical Center Mannheim, Heidelberg Univ. (Germany). Dept. of Radiation Oncology; Fleckenstein, Katharina [University Medical Center Mannheim, Heidelberg Univ. (Germany). Dept. of Radiation Oncology]|[Duke University Medical Center Durham, NC (United States). Dept. of Radiation Oncology

    2008-12-15

    The objective of the current study was to evaluate the acute effects of cranial radiation therapy (CNS-RT) using different radiation doses (0, 1.8, 2, 3, {<=} 20 Gy) on cognitive function with special emphasis on memory. We assessed patients with and without intracranial tumors to distinguish between direct and indirect radiation effects on brain tissue. Eighty-two patients were evaluated with neuropsychological testing before and acutely after radiotherapy (RT). Sixty-four patients received RT to the brain (55 with, 9 without intracranial tumor). Eighteen patients treated with RT to the breast served as controls. Patients with intracranial tumor demonstrated attention (19-38th percentile) and verbal memory scores (34-46th percentile) below the population average at baseline. The average Verbal Memory score was significantly different between patients with intracranial tumor and controls both at baseline (38th vs. 58th percentile) and after irradiation (27th vs. 52th percentile). Patients with preexisting peritumoral edema performed worse than patients without edema and controls. Radiation dose-related deficits were seen for working memory performance in patients with intracranial tumor. Our data indicate no measurable impairment of cognitive functioning acutely after prophylactic cranial irradiation. Patients with intracranial tumor show a deterioration of almost all memory functions with a dose-dependent impairment in working memory. Patients with preexisting peritumoral brain edema show the strongest deterioration. (orig.)

  20. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    Rodgerson, Denis O.; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L.

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hir...

  1. Radiation damage effects

    The summarized data suggest that both glass and crystalline waste forms may sustain substantial doses of α-decay damage and still retain their durability. Radiation effects in glasses are less pronounced and less complicated than that in single or poly-phase ceramics; thus, the latter category requires careful research and consideration. Perhaps the most important conclusion is that short-term actinide doping experiments in crystalline phases provide a realistic simulation of long-term effects based on the comparison of observed radiation effects in Pu-doped zircon and naturally damaged zircon (there is a 107 difference in dose rate). Deviations from the similarity in effect (e.g., saturation dose) may be attributed to low-temperature, long-term annealing effects

  2. Therapy and prophylaxis of acute and late radiation-induced sequelae of the esophagus

    Background: Radiation-induced esophagitis is a frequent acute side effect in curative and palliative radiotherapy of thoracal and cervical tumors. Late reactions are rare but might be severe. Methods: A resarch for reports on prophylactic and supportive therapies of radiation-induced esophagitis was performed (Medline, Cancerlit, and others). Results: Nutrition must be ensured and symptomatic relief of sequelae is important, especially in the case of dysphagia. The latter can be improved by topic or systemic analgetics. If esophageal spasm occurs, calcium antagonists might help. In case of gastro-esophageal reflux proton pump inhibitors should be used. There is no effective prophylactic measure for radiation esophagitis. Late side effects with clinical relevance are rare in conventional radiotherapy. Chronic ulcera, fistula or stenosis may develop. Before any treatment, a tumor infiltration of the esophagus should be excluded by biopsy. This can lead more often to late complications than radiation therapy itself. Nutrition should be ensured by endoscopic dilation, stent-implantation, or endoscopic percutaneous gastrostomy. Local injection of steroids might be used to avoid an early restenosis. Conclusions: An intensive symptomatic therapy of acute esophagitis is reasonable. Effective prophylaxis do not exist. Late radiation induced sequelae is rare. Therefore, a tumor recurrence should be excluded in cases of dysphagia. Securing nutrition by PEG, stent, or port is well in the fore. (orig.)

  3. Radiation effects on living systems

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  4. Radiation treatment of testicular relapse in acute lymphoblastic leukemia

    Ten patients with testicular relapse among 128 cases of acute lymphoblastic leukemia are reported. At the time of the initial diagnosis of leukemia all patients with later testicular relapse showed one or more risk factors as predictive for leukemic infiltration of the testicles. All patients except one, who underwent orchiectomy and died 11 weeks after surgical intervention, received radiation therapy with doses ranging from 12 to 20 Gy and chemotherapy. The local control was excellent. Average survival time from testicular relapse to death was 68 weeks in 8 of 9 patients treated by irradiation and chemotherapy. One patient is still alive without signs of disease after 6 years. (orig.)

  5. Dissimilar genome response to acute and chronic low-dose radiation in male and female mice

    The long-term genetic consequences of chronic exposure to low-dose irradiation constitutes a major concern to the general public and research community, especially as chronic radiation has recently been proven to be much more mutagenic and carcinogenic than previously thought. Here we report the results of the first ever comparison of the effects of acute and chronic whole body low-dose radiation exposure on global gene expression. We found a substantial difference between males and females in the expression of genes involved in signaling, growth control, transcription and other pathways upon acute and chronic radiation exposure. Specifically, we found sex differences in the expression of genes coding for G protein-coupled receptors and nuclear receptors. We also found different induction of PKCδ, PKCβ and PKCμ, members of PKC signaling pathway as well as in TGF and WNT signaling in males and females. Very pronounced difference, that was confirmed on the level of protein, was observed in the expression of WNT5A that plays an important role in carcinogenesis and muscle regeneration. WNT5A expression was significantly elevated only in chronically exposed females. We also provide the first evidence of the effect of ionizing radiation on the estrogen receptor in females. Repetitive irradiation of muscle tissue has been linked to development of rhabdomyosarcoma (RMS), which, enigmatically, occurs more frequently in males. Our data may be used to study possible mechanisms of RMS development upon chronic radiation exposure. They may provide some clues about the molecular background of the sex differences of RMS occurrence and may in the future lead to the discovery of new biomarkers for RMS predisposition in the irradiated tissue. Overall, differences in male and female responses to acute and chronic low-dose radiation obtained by this study were more drastic than we could have predicted. If confirmed in other experimental systems, these findings could potentially lead

  6. Effect of single lithium doses on haemopoiesis regeneration after radiation exposure in mice

    The reported experiment failed to demonstrate any effect of single doses of lithium carbonate on haemopoiesis regeneration in experimental haematological syndrome of acute radiation sickness. The effects of gamma radiation on blood formation are shown. 3 figs., 6 refs. (author)

  7. Pathobiochemical, hematological and immunological findings in pigs with an acute radiation syndrome showing only a few clinical symptoms. 1

    The acute radiation syndrome showing only a few clinical symptoms was examined using biochemical tests. Store pigs received a whole-body irradiation of 2 Gy (200 rad). 11 biochemical tests were used for plasma and the whole blood. Activity changes were observed in the enzymes ALD, LDH, GOT and CPK after irradiation. The results show that despite of only a few clinical symptoms of the radiation syndrome considerable enzyme changes reveal individually differing radiation effects. (author)

  8. Anti-infection treatment of iatrogenic acute radiation sickness

    Objective: To occumulatle experience of anti-infection treatment in acute radiation sickness (ARS) induced by medical treatment in order to provide beneficial help for victims of accidental of acute radiation sickness. Methods: The changes of peripheral blood indices, body temperature and clinical symptoms of 17 cases who were clinically irradiated with 6.0-7.2 Gy X-rays were observed both before peripheral blood stem cell transplantation(PBSCT) and after anti-infection treatment. Results: WBC count began to decrease to below 1 x 109/L from the 8th to 10th days after irradiation and maintained at row level for 4 days or for 13.3 days if the patients had not received rhG-CSF treatment. In 29.4% of patients the body temperature was higher than 38.5 degree C. After comprehensive enviromental protection and anti-infection treatment, all patients could successfully tide over the period of bone marrow depression without appearance of the typical critical phase of ARS. Conclusion: PBSCT and rhG-CSF treatment can reduce the time span for reconstruction of bone marrow. Comprehensive enviromental protection and combined anti-infection treatment are key points fm successful treatment. (authors)

  9. Assessment of recovery of the intestine after acute radiation injury

    Baer, A.R.; Cheeseman, C.I.; Thomson, A.B.

    1987-02-01

    Several aspects of intestinal function and morphology are affected by acute radiation damage, including changes in the activity of proliferative cells in the crypts, immune cell populations, and the transport of various substrates. This study was designed to compare the time course of the recovery of intestinal proliferation, transport, and leukocyte population following radiation injury. Rats received a single dose of 6 Gy to the abdomen from a /sup 137/Cs source and were studied 3, 7, and 14 days later. No changes in the passive uptake of L-glucose or D-leucine were observed in the jejunum. Active transport of D-glucose and maximal water uptake were reduced at 3 days but had returned to normal by 7 days, whereas L-leucine uptake required more than 7 days to return to control levels. Mucosal permeability, assessed by an in vivo potential difference technique, remained increased 7 days after irradiation. Ornithine decarboxylase, an indicator of DNA synthetic activity, was elevated following radiation treatment and remained so even after 14 days. By comparison, myeloperoxidase activity, used as a quantitative monitor of granulocyte numbers, was still reduced after 7 days. These data indicate that while certain parameters of gut function may return to normal soon after radiation injury, the recovery of other factors is more prolonged. Thus the return of transport function to normal values post irradiation may be viewed as an adaptive change rather than simply the recovery of the tissue.

  10. Diminution of acute radiation reaction of mouse skin with low-intensity infrared laser/red diodes-emitted light

    Efficiency of the application of different regimes of laser treatment of radiation-induced skin reactions in mice feet is compared. Posterior limb feet of mice were exposed to acute X radiation at 30-36 Gy dose or fractionated radiation at 45 Gy dose. In the day of primary irradiation or different time later the feet were treated using magnetic infrared laser therapeutic MILTA-01 apparatus. Magnetic and light components of the MILTA-01 apparatus reduce the effect of radiation on mice skin corresponding two time decrease in X-radiation dose

  11. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected

  12. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    Hindley, Andrew, E-mail: andrew.hindley@lthtr.nhs.uk [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom); Zain, Zakiyah [College of Arts and Sciences, Universiti Utara Malaysia, Kedah (Malaysia); Wood, Lisa [Department of Social Sciences, Lancaster Medical School, Lancaster (United Kingdom); Whitehead, Anne [Medical and Pharmaceutical Statistics Research Unit, Lancaster University, Lancaster (United Kingdom); Sanneh, Alison; Barber, David; Hornsby, Ruth [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom)

    2014-11-15

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected.

  13. Expression of several growth factors and their receptors during the formation and development of acute radiation-induced skin ulcers and their effects on ulcer healing: an experimental study

    Objective: To study the expression of several growth factors and their receptors during the formation and development of acute radiation-induced skin ulcers, and their effects on ulcer healing. Methods: Female Wistar rats were used, and a model of simple skin wounds was made. Another rat model which was locally irradiated with 60Co γ-rays was used, and the pathological changes were observed for 55 days. Immunohistochemistry, in situ hybridization and image analysis were performed to examine EGF, bFGF, VEGF, PDGF-B, TGF-β1 and their receptors in the tissue of radiation skin ulcers. Results: Skin ulcers were found on day 14 after irradiation, and they enlarged and deepened gradually during the observation period. In the irradiated skin, especially in the epidermal cells, fibroblasts and vascular endothelial cells of the ulcer beds, the expression of EGF, bFGF, VEGF, PDGF-B, TGF-β1 and their receptors was higher than that in normal skin, but their expression was suppressed in the ulcer beds as compared with that in the surgical wound beds. The expression of TGF-β1 and TGF-βR1 was elevated in the irradiated skin and was not inhibited in the cells of radiation ulcer beds as compared with that in the simple wound beds. Conclusion: After irradiation, the decreased expression of some growth factors and their receptors in the local skin tissue may play an important role in the formation, development and non-healing mechanism of radiation skin ulcers

  14. Studies of the ionizing radiation effects on the effluents acute toxicity due to anionic surfactants; Estudos dos efeitos da radiacao ionizante na toxicidade de efluentes que apresentam surfactantes anionicos

    Moraes, Maria Cristina Franco de

    2004-07-01

    Several studies have shown the negative effects of surfactants, as detergents active substance, when discharged on biological sewage wastewater treatment plants. High toxicity may represent a lower efficiency for biological treatment. When surfactants are in aquatic environment they may induce a loss of grease revetment on birds (feather). Depending on the surfactant concentration, several damages to all biotic systems can happen. Looking for an alternative technology for wastewater treatment, efficient for surfactant removal, the present work applied ionizing radiation as an advanced oxidation process for affluents and effluents from Suzano Treatment Station. Such wastewater samples were submitted to radiation using an electron beam from a Dynamic Electron Beam Accelerator from Instituto de Pesquisas Energeticas e Nucleares. In order to assess this proposed treatment efficacy, it was performed acute toxicity evaluation with two test-organisms, the crustacean Daphnia similis and the luminescent bacteria Vibrio fischeri. The studied effluents were: one from a chemical industry (IND), three from sewage plant (affluents - GG, GM and Guaio) and the last biologically treated secondary effluent (EfF), discharged at Tiete river. The applied radiation doses varied from 3 kGy to 50 kGy, being 50 kGy enough for surfactant degradation contained at industrial effluent. For GG, GM and Guaio samples, doses of 6 kGy and 10 kGy were efficient for surfactant and toxicity reduction, representing an average removal that varied from 71.80% to 82.76% and toxicity from 30% to 91% for most the effluents. The final effluent was less toxic than the others and the radiation induced an average 11% removal for anionic surfactant. The industrial effluents were also submitted to an aeration process in order to quantify the contribution of surfactant to the whole sample toxicity, once it was partially removed as foam and several fractions were evaluated for toxicity. (author)

  15. Biological effects of ionizing radiation

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  16. Radiation Effects Research Foundation

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  17. Radiation effects in metals

    The current understanding of radiation damage in metals is reviewed, simplifying the actual complexity of the effects by considering some aspects separately. The production of point defects in metals, the primary damage state are first studied. The second part of the lecture is devoted to the evolution of this primary damage state as a function of temperature and dose: the steady state concentration of point defects, the nucleation of secondary defects and their growth are successively considered

  18. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model

    Sørensen, Brita Singers; Horsman, Michael Robert; Alsner, Jan;

    2015-01-01

    right hind limb were irradiated with single fractions of either photons, or 12 C ions using a 30-mm spread-out Bragg peak. The endpoint of the study was local control (no tumor recurrence within 90 days). For the acute skin reaction, non-tumor bearing CDF1 mice were irradiated with a comparable...

  19. Topical Calendula and Betamethasone Valerate in the prevention of acute radiation dermatitis: a randomized prospective trial

    Fotouhi M

    2007-07-01

    Full Text Available Background: Acute radiation dermatitis is a very common side effect of radiation therapy for many cancers, including breast cancer. Despite the high prevalence of acute radiation dermatitis as well as wet desquamation, only a few trials studying the prophylaxis of this complication using topical treatment have been conducted. In spite of these studies, some controversy still exists about regarding treatments for acute radiation dermatitis, as does some concern about their long-term complications. For this reason, we conducted a clinical trial for a new treatment with the same effectiveness as corticosteroids, but fewer complications. Methods: This trial included 60 patients with pathologic diagnoses of breast cancer for whom radiotherapy had been planned. Patients were 30-73 years old. Patients with radical mastectomy received 5000 cGy over five weeks, and those with conservative surgery received 6000 cGy over six weeks divided in 200 cGy fractions. Patients were divided randomly into two groups: one group received a moderately-potent glucocorticoid steroid, 0.1% betamethasone ointment (30, and the other received the new treatment, 0.1% calendula ointment (30. All patients applied their respective drugs twice daily within the tangential field from the first day of radiation treatment until one month after treatment was completed. Starting one week after radiation therapy commenced, patients were monitored weekly for symptoms of dermatitis and the degree of severity as well as possible adverse drug effects, in addition to such monitoring on the days of their appointments. Four weeks after termination of therapy, patients were again examined, at which time they completed a questionnaire about dermatologic complications. Results: The mean time to develop dermatitis was 3.7 weeks for the betamethasone group and 3.87 weeks for the calendula group. Maximal dermatitis intensity during treatment in the betamethasone group was: 0, 6.7%; I, 73.3%; II, 16

  20. Potent corticosteroid cream (mometasone furoate) significantly reduces acute radiation dermatitis: results from a double-blind, randomized study

    Purpose: Radiation-induced dermatitis is a very common side effect of radiation therapy, and may necessitate interruption of the therapy. There is a substantial lack of evidence-based treatments for this condition. The aim of this study was to investigate the effect of mometasone furoate cream (MMF) on radiation dermatitis in a prospective, double-blind, randomized study. Material and methods: The study comprised 49 patients with node-negative breast cancer. They were operated on with sector resection and scheduled for postoperative radiotherapy using photons with identical radiation qualities and dosage to the breast parenchyma. The patients were randomized to receive either MMF or emollient cream. The cream was applied on the irradiated skin twice a week from the start of radiotherapy until the 12th fraction (24 Gy) and thereafter once daily until 3 weeks after completion of radiation. Both groups additionally received non-blinded emollient cream daily. The intensity of the acute radiation dermatitis was evaluated on a weekly basis regarding erythema and pigmentation, using a reflectance spectrophotometer together with visual scoring of the skin reactions. Results: MMF in combination with emollient cream treatment significantly decreased acute radiation dermatitis (P=0.0033) compared with emollient cream alone. There was no significant difference in pigmentation between the two groups. Conclusions: Adding MMF, a potent topical corticosteroid, to an emollient cream is statistically significantly more effective than emollient cream alone in reducing acute radiation dermatitis

  1. Stimulating effects of low doses of radiation

    Different ionizing radiations cause biochemical and biophysical changes in the cells of the genotypes according to the application of the doses applied to different organs of the plants, and the manner of their application (acute, chronic, or acute and chronic). The sensitivity of different genotypes, and their tissues, depends on the stage at which their tissues were irradiated as well as on the environmental conditions under which the irradiation was made. Relatively strong doses usually cause some genetic changes in the somatic and generative cells. Small doses can, in some genotypes, stimulate the growth of some tissues to some extent. The stimulating effect on the growth of seedlings of the M2 generation, developed from acute seed irradiation of some genotypes of wheat, barley, and inbred lines of maize and their hybrids is described here. 3 refs, 5 tabs

  2. Evidence Report: Risk of Acute Radiation Syndromes Due to Solar Particle Events

    Carnell, Lisa; Blattnig, Steve; Hu, Shaowen; Huff, Janice; Kim, Myung-Hee; Norman, Ryan; Patel, Zarana; Simonsen, Lisa; Wu, Honglu

    2016-01-01

    Crew health and performance may be impacted by a major solar particle event (SPE), multiple SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, the protection of the Earth's magnetosphere is no longer available, such that increased shielding and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts to mission success or crew survival. While operational monitoring and shielding are expected to minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury and depletion of the blood-forming organs (BFO), may occur. There is a reasonable concern that a compromised immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data available at present are derived from analyses of medical patients and persons accidentally exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data more specific to the space flight environment must be compiled to quantify the magnitude of increase of this risk and to develop appropriate protection strategies. In particular, information addressing the distinct differences between solar proton exposures and terrestrial exposure scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is required for accurate risk estimation.

  3. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author)

  4. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    Bouffler, S.D.; Breckon, G.; Cox, R. [National Radiological Protection Board, Chilton (United Kingdom)

    1996-04-01

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author).

  5. Cumulative radiation effect

    In five previous papers, the concept of Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Simple nomographic and tabular methods for the solution of practical problems in radiotherapy are now described. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature has been introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations have been derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluation of CREs for each schedule has resulted in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. (author)

  6. Psychoneurological character of persons who had acute radiation syndrome

    Survivors of the Chernobyl accident who had an acute radiation syndrome (ARS,110 persons) were observed for 8 years after Chernobyl accident. It has been found that the cerebrovascular pathology and vertebral osteochondrosis rate increase as well as abnormal psychoorganic changes in personality and endogenic-like psychoorganic process, their rate being in proportion to the ARS heaviness. The EEG and evoked potentials have confirmed the dyscirculatory and toxic-metabolic organic disorders of the central nervous system as a result of irradiation in the remote period of the ARS consequences. It is necessary for early and differential diagnostic of the psychoneurological disorders after ARS to carry out the neuro- and psychophysiological examination as well as computer tomography, nucleic magnetic resonance and positron emission tomography of the brain

  7. New scoring system identifies kidney outcome with radiation therapy in acute renal allograft rejection

    concomitant immunosuppressive therapy. Independent factors examined by Cox regression modeling were: gender (p 0.005), creatinine levels (p = 0.000), HLA-DR (p = 0.05), PRA-Maximum >70% (p = 0.014). Each factor was scored using integral coefficients to generate four different groups. The Kaplan-Meier survival analyzed by group produces an interpretable separation of the risk factors for graft loss. Conclusions: The outcome in patients treated with radiation therapy for acute renal graft rejection can be predicted by a novel scoring system. Patients with scores of three or less are able to achieve 100% renal graft salvage, while patients who have scores of 12 or higher are not able to be salvaged with the current radiation therapy regimen. Future studies should be directed toward identifying more effective treatment for patients who have a high score based on our criteria. The scoring system should be utilized to identify patients at risk who could benefit from radiation therapy. Further study with a randomized trial utilizing this scoring system is needed to confirm the validity of the scoring system in predicting graft survival and the efficacy of radiation in patients who receive radiation therapy for acute graft rejection

  8. Alleviation of acute radiation damages by post-irradiation treatments

    Radiation induced hematopoietic and gastro-intestinal damages in mice were tried to alleviate experimentally by post-treatment. Combined treatment of OK-432 and aztreonam clearly prevented the radiation induced sepsis and elevated the survival rate in mice; the survival was 80% in the OK-432 plus aztreonam group while it was 55% in the group treated with OK-432 alone and 0% with saline. Irsogladine maleate, an anti-ulcer drug, increased the survival rate of jejunal crypt stem cells with a clear dose-related trend. The D0 for irsogladine maleate was 2.8 Gy although it was 2.3 Gy for saline, These findings suggest that some conventional drugs are effective for radiation induced hematopoietic and gastro-intestinal damages and the possibility that they can be applied for people exposed to radiation accidentally. (author)

  9. The acute radiation syndrome in the miniature pig Troll

    8 animals at an average age of 230 days and an average body weight of 24.9 kg were whole-body gamma-irradiated from a cobalt-60 source with 3.0 Gy midline dose. 4 of the 8 pigs survived, the others died within day 14 and 17 after irradiation, mainly due to thrombopenia dependent hemorrhage. Hematologic examinations showed as well that the platelets decreased to a minimum on day 14 p.r. The granulocyte values and yet remarkable the lymphocyte values decreased at an earlier time. The absolute lymphocyte counts reached their lowest mark already on the first day after irradiation. The reticulocytes, which also decreased markedly on day 1 p.r., sank further on the following days, till after two weeks when they started to increase again. Furthermore 25 biochemical serum parameters have been investigated. The major pathological findings of the acute radiation sickness were the mostly heavy hemorrhages. Histological studies indicated primarily aplasia of bone marrow, intestinal mucosa damages and atrophy of lymphatic tissues. Signs for septicemia were rarely found. The investigations in Troll-pigs showed, their reactions to an irradiation of middle-lethal doses are similar to those of other pigs. Only the Vietnamese pot-bellied swine reacts differently: Profuse diarrheas already after low radiation-doses are reported. (orig./MG)

  10. A two-mutation model of radiation-induced acute myeloid leukemia using historical mouse data.

    Dekkers, Fieke; Bijwaard, Harmen; Bouffler, Simon; Ellender, Michele; Huiskamp, René; Kowalczuk, Christine; Meijne, Emmy; Sutmuller, Marjolein

    2011-03-01

    From studies of the atomic bomb survivors, it is well known that ionizing radiation causes several forms of leukemia. However, since the specific mechanism behind this process remains largely unknown, it is difficult to extrapolate carcinogenic effects at acute high-dose exposures to risk estimates for the chronic low-dose exposures that are important for radiation protection purposes. Recently, it has become clear that the induction of acute myeloid leukemia (AML) in CBA/H mice takes place through two key steps, both involving the Sfpi1 gene. A similar mechanism may play a role in human radiation-induced AML. In the present paper, a two-mutation carcinogenesis model is applied to model AML in several data sets of X-ray- and neutron-exposed CBA/H mice. The models obtained provide good fits to the data. A comparison between the predictions for neutron-induced and X-ray-induced AML yields an RBE for neutrons of approximately 3. The model used is considered to be a first step toward a model for human radiation-induced AML, which could be used to estimate risks of exposure to low doses. PMID:20842369

  11. Radiation effects and radiation risks. 2. ed.

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix

  12. Genomic alterations in radiation-induced murine acute myeloid leukemias

    High-dose radiation induces acute myeloid leukemia (AML) in C3H mice, most of which have a high frequent hemizygous deletion around the D2Mit15 marker on the interstitially deleted region of chromosome 2. This region involves PU.1 (Sfpi-1), which is a critical candidate gene for initiation of mouse leukemogenesis. To identify other genes contributing to leukemogenesis with PU.1, we analyzed chromosomal aberrations and changes of expression in 18 AML-related genes in 39 AMLs. Array CGH analysis revealed that 35 out of 39 AMLs had hemizygous deletions of chromosome 2, and recurrent aberrations on chromosomes 4, 6, 8, 10, 11, 12, 15, and 18. Expressions of 18 AML-related genes, within the altered chromosome regions detected by array CGH were analyzed by using RT-PCR and/or real-time PCR. Although Wnt5b, Wnt16, G-CSFR, M-CSFR, SCL/Tal-1 and GATA1 genes were down-regulated, the c-myc gene was, on the contrary, up-regulated. Expression levels of two genes, Rasgrp1 and Wt1, within the deleted region of chromosome 2 correlated with the loss of one of two alleles, although the expression of PU.1 showed an inverse correlation. In addition, the expression level of PU.1 appeared to be higher with a coincidental missense point mutation in DNA-binding domain of PU.1 in the remaining allele, suggesting a feedback transcription control on PU.1. Such an autoregulation might be relevant to the fact that PU.1 haploinsufficiency per se triggers radiation-induced AML. Together with the detection of chromosomal aberrations, these findings provide useful clues to identify cooperative genes that are responsible for molecular pathogenesis of AMLs induced by low-dose-rate radiation exposure. (author)

  13. Topical betamethasone for the prevention of acute radiation dermatitis in breast cancer patients

    Background: Acute radiation dermatitis is a very common side effect of radiation therapy in large numbers of cancers including breast cancer. Despite high prevalence rate of acute radiation dermatitis and also wet desquamation, a few trials on prophylaxis of this complication using topical treatment have been conducted. Despite effectiveness of topical corticosteroids in treatment of acute radiation dermatitis which are focused in the literature, yet there are some controversy about their usage in this regard. For this reason we attempted to investigate this subject via conducting a clinical trial. Materials and Methods: This trial included 76 patients with pathologic diagnosis of breast cancer for whom radiotherapy has been planned. Patients were 27-70 years old. Patients with radical mastectomy received 5000 cGy within 5 weeks, and those with conservative surgery received 6000 cGy within 6 weeks devided in 200 centigray fractions. Patients were divided randomly into two groups, betamethasone and placebo, 38 patients in each group. In placebo group, 3 patients did not attend for weekly assessment. Additional one patient did not refer during follow-up period. Thus, they were excluded from the study. One group was given betamethasone o.1% and other group was administered base of ointment as placebo. All patient consumed drug or placebo from the 1st day of treatment until one week after treatment completion as twice daily within tangential field. Patients were monitored for assessing dermatitis severity and its symptoms and also possible drug adverse effects one week after the therapy commenced and afterwards by one-week intervals as well as in an appointed day. Three weeks after termination of therapy, patients were also visited, and each examination provided information about dermatologic complications which were registered in the questionnaire. Results: Mean times development of dermatitis in both betamethasone and placebo groups were 3.2500 and 2.2571 (weeks

  14. Association of Acute Radiation Syndrome and Rain after the Bombings in Atomic Bomb Survivors.

    Ozasa, K; Sakata, R; Cullings, H M; Grant, E J

    2016-06-01

    Acute radiation-induced symptoms reported in survivors after the atomic bombings in Hiroshima and Nagasaki have been suspected to be associated with rain that fell after the explosions, but this association has not been evaluated in an epidemiological study that considers the effects of the direct dose from the atomic bombs and other factors. The aim of this study was to evaluate this association using information from a fixed cohort, comprised of 93,741 members of the Life Span Study who were in the city at the time of the bombing. Information on acute symptoms and exposure to rain was collected in surveys conducted by interviewers, primarily in the 1950s. The proportion of survivors developing severe epilation was around 60% at levels of direct radiation doses of 3 Gy or higher and less than 0.2% at levels <0.005 Gy regardless of reported rain exposure status. The low prevalence of acute symptoms at low direct doses indicates that the reported fallout rain was not homogeneously radioactive at a level sufficient to cause a substantial probability of acute symptoms. We observed that the proportion of reported acute symptoms was slightly higher among those who reported rain exposure in some subgroups, however, suggestions that rain was the cause of these reported symptoms are not supported by analyses specific to the known areas of radioactive fallout. Misclassification of exposure and outcome, including symptoms due to other causes and recall bias, appears to be a more plausible explanation. However, the insufficient and retrospective nature of the available data limited our ability to quantify the attribution to those possible causes. PMID:27223827

  15. Radiation effects on blood coagulation

    Haemorrhage is an important and ominous sign in acute radiation disease. While it is overwhelmingly evident that thrombocytopenia is the major cause of the haemorrhagic diathesis, detailed observations of all of the changes in the coagulation mechanism, fibrinolytic elements and platelet function are lacking. The current knowledge is reviewed in this chapter. In general, changes should be considered in relation to the course of the disease, that is early or late, and whether the observations were made in man or animals

  16. Radiation effects in wild terrestrial vertebrates - the EPIC collection

    The paper presents data on radiation effects in populations of wild vertebrate animals inhabiting contaminated terrestrial ecosystems. The data were extracted from the database 'Radiation effects on biota', compiled within the framework of the EC Project EPIC (2000-2003). The data collection, based on publications in Russian, demonstrates radiation effects in the areas characterized with high levels of radionuclides (Kyshtym radioactive trace; 'spots' of enhanced natural radioactivity in the Komi region of Russia; territories contaminated from the Chernobyl fallout). The data covers a wide range of exposures from acute accidental irradiation to lifetime exposures at relatively low dose rates. Radiation effects include mortality, changes in reproduction, decrease of health, ecological effects, cytogenetic effects, adaptation to radiation, and others. Peculiarities of radiation effects caused by different radionuclides are described, also the severity of effects as they appear in different organisms (e.g. mice, frogs, birds, etc.)

  17. Radiation effects in optoelectronic devices

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  18. Radiation effects on living systems

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  19. Poloxamer 188 and antioxidants prevent acute radiation necrosis of adult skeletal muscle cells

    Full text: To date there are no effective therapeutic agents widely available for acute radiation sickness. Acute cellular necrosis occurring minutes to hours after exposure to high doses of ionizing radiation (IR) results from rapid membrane lipid peroxidation, blebbing and membrane breakdown. Not only can repairing the membrane prevent acute necrosis, but it can also provide a critical time period to address other mechanisms of cell death, such as apoptosis or mitotic arrest, which manifest over a longer time frame. We have previously shown that certain polymer surfactants can restore structural integrity and transport barrier function of cell membranes following high-dose IR. We now present data showing that the amphiphillic surfactant Poloxamer 188 (P188), a tri-block copolymer composed of two hydrocephalic blocks separated by a hydrophobic central block, has efficacy in preventing acute necrosis of adult rat skeletal muscle cells after high-dose IR and that at doses in which P188 is effective, adding the antioxidant ascorbate or n-acetyl cysteine further increases cell survival. Explanted rat flexor digitoum brevis muscle cells received 10, 40 or 40 Gy IR from Co 60 in a 21% oxygen atmosphere and their viability was determined using fluorometric probes (Calcein-AM and Ethidium homodimer) at 4 and 18 hours after IR. Compared to unirradiated cells, 10 Gy did not cause acute necrosis. Significant acute necrosis was observed after 40 and 80 Gy in a dose-dependent manner. Post-IR treatment with P188 significantly enhanced the cells' viability. By comparison, treating with 10 kDa neutral Dextran, a purely hydrophilic polymer, was not found to be effective. Despite progressive cell death over 18 h after high-dose IR, cells treated with P188 showed greater survival than cells grown only in media or Dextran-treated cells. Cells treated with 40 Gy survived better than those treated with 80 Gy, indicating some limits to the efficacy of treatment with P188. Cells

  20. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I., E-mail: vanessagarcia@usp.br, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L{sup -1}, 2.34 mg.L{sup -1}, 2.35 mg.L{sup -1} and 1.80 mg.L{sup -1}, respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  1. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L-1, 2.34 mg.L-1, 2.35 mg.L-1 and 1.80 mg.L-1, respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  2. The role of MRI in the diagnosis of acute radiation reaction in breast cancer patient

    Startseva, Zh A.; Musabaeva, L. I.; Usova, AV; Frolova, I. G.; Simonov, K. A.; Velikaya, V. V.

    2016-02-01

    A clinical case with acute radiation reaction of the left breast after organ-preserving surgery with 10 Gy IORT (24.8 Gy) conventional radiation therapy has been presented. Comprehensive MRI examination showed signs of radiation- induced damage to skin, soft tissues and vessels of the residual breast.

  3. Effects of an acute dose of gamma radiation exposure on stem diameter growth, carbon gain, and biomass partitioning in Helianthus annuus

    Thiede, M.E.

    1988-05-25

    Nineteen-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) received a variable dose (0-40 Gy) from a cobalt-60 gamma source. A very sensitive stem monitoring device, developed at Battelle's Pacific Northwest Laboratories, Richland, Washington was used to measure real-time changes in stem diameter. Exposure of plants caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that nonreversible morphological growth changes could be induced by very low doses of radiation. Carbohydrate analysis of 40-Gy irradiated plants demonstrated significantly more starch content in leaves and significantly less starch content in stems 18 days after exposure than did control plants. In contrast, the carbohydrate content in roots of 40-Gy irradiated plants were not significantly different from unirradiated plants 18 days after exposure. These results indicate that radiation either decreased phloem transport or reduced the availability of sugar reducing enzymes in irradiated plants. 44 refs., 12 figs.

  4. Medical Management of Acute Radiation Syndromes : Comparison of Antiradiation Vaccine and Antioxidants radioprotection potency.

    Maliev, Slava; Popov, Dmitri; Lisenkov, Nikolai

    Introduction: This experimental study of biological effects of the Antiradiation Vaccine and Antioxidants which were used for prophylaxis and treatment of the Acute Radiation Syndromes caused by high doses of the low-LET radiation. An important role of Reactive Oxyden Species (Singlet oxygen, hydroxyl radicals, superoxide anions and bio-radicals)in development of the Acute Radiation Syndromes could be defined as a "central dogma" of radiobiology. Oxida-tion and damages of lipids, proteins, DNA, and RNA are playing active role in development of postradiation apoptosis. However, the therapeutic role of antioxidants in modification of a postradiation injury caused by high doses of radiation remains controversial.Previous stud-ies had revealed that antioxidants did not increase a survival rate of mammals with severe forms of the Acute Radiation Syndromes caused by High Doses of the low-LET radiation. The Antiradiation Vaccine(ARV) contains toxoid forms of the Radiation Toxins(RT) from the Specific Radiation Determinants Group (SRD). The RT SRD has toxic and antigenic prop-erties at the same time and stimulates a specific antibody elaboration and humoral response form activated acquired immune system. The blocking antiradiation antibodies induce an im-munologically specific effect and have inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity, and radiation induced cytol-ysis of selected groups of cells that are sensitive to radiation. Methods and materials: Scheme of experiments: 1. Irradiated animals with development of Cerebrovascular ARS (Cv-ARS), Cardiovascular ARS (Cr-ARS) Gastrointestinal ARS(GI-ARS), Hematopoietic ARS (H-ARS) -control -were treated with placebo administration. 2. Irradiated animals were treated with antioxidants prophylaxisis and treatment of Cv-ARS, Cr-SRS, GI-ARS, Hp-ARS forms of the ARS. 3. irradiated animals were treated with radioprotection by Antiradiation Vaccine

  5. Treatment for infections complications of experimental acute radiation sickness with sulacillin, a combined antibiotic

    The therapeutic efficiency of sulacillin (combination of ampicillin antibiotic with beta-lactamase sulbactam inhibitor) used for prevention and treatment of infections complications of the acute radiation disease (ARD) is considered. It is shown that sulacillin antiinfections effect essentially exceeds the activity of ampicillin by treatment of irradiated mice infected with a beta-lactamase-producing strain of Kl pneumoniae. Inclusion of the sulacillin as a principal antibiotic into the ARD therapeutic scheme provides for the 66.6 % survival of dogs at LD90/45

  6. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  7. Chanqes of osseous tissue following radiation therapy and in acute radiation trauma

    The studies on ionizing radiation effect with harmful doses on man skeleton are analyzed. Pathomorphological and rentgenological changes in bones of patients, who underwent radiotherapy course are studied; the pointed out changes were observed as radiation complications. It is noted that pathological process in the bone develops comparatively slowly following therapeutic fractionated irradiation

  8. Chemical effects of radiation

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  9. Health effects of ionizing radiation

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  10. The analysis of prognostic factors affecting post-radiation acute reaction after conformal radiotherapy for non-small cell lung cancer

    Spych, Michał; Gottwald, Leszek; Klonowicz, Małgorzata; Biegała, Michał; Bibik, Robert; Fijuth, Jacek

    2010-01-01

    Introduction The aim was to evaluate the risk of acute side effects in the lung after 3-dimensional conformal radiotherapy (3D-CRT) in patients treated for non-small cell lung cancer (NSCLC). An attempt was made to single out clinical factors and factors related to treatment technique which may induce acute post-radiation pneumonitis. Material and methods The analysis concerned 34 consecutive patients who underwent radical radiation therapy for NSCLC. Intensity of early toxicity was evaluated...

  11. Protective Effect of Melatonin on Acute Pancreatitis

    Jolanta Jaworek

    2012-01-01

    Full Text Available Melatonin, a product of the pineal gland, is released from the gut mucosa in response to food ingestion. Specific receptors for melatonin have been detected in many gastrointestinal tissues including the pancreas. Melatonin as well as its precursor, L-tryptophan, attenuates the severity of acute pancreatitis and protects the pancreatic tissue from the damage caused by acute inflammation. The beneficial effect of melatonin on acute pancreatitis, which has been reported in many experimental studies and supported by clinical observations, is related to: (1 enhancement of antioxidant defense of the pancreatic tissue, through direct scavenging of toxic radical oxygen (ROS and nitrogen (RNS species, (2 preservation of the activity of antioxidant enzymes; such as superoxide dismutase (SOD, catalase (CAT, or glutathione peroxidase (GPx, (3 the decline of pro-inflammatory cytokine tumor necrosis α (TNFα production, accompanied by stimulation of an anti-inflammatory IL-10, (4 improvement of pancreatic blood flow and decrease of neutrophil infiltration, (5 reduction of apoptosis and necrosis in the inflamed pancreatic tissue, (6 increased production of chaperon protein (HSP60, and (7 promotion of regenerative process in the pancreas. Conclusion. Endogenous melatonin produced from L-tryptophan could be one of the native mechanisms protecting the pancreas from acute damage and accelerating regeneration of this gland. The beneficial effects of melatonin shown in experimental studies suggest that melatonin ought to be employed in the clinical trials as a supportive therapy in acute pancreatitis and could be used in people at high risk for acute pancreatitis to prevent the development of pancreatic inflammation.

  12. The acute radiation syndrome in the 137Cs Brazilian accident, 1987

    Eight patients with the most severe degreed of bone marrow impairment are studied. Case descriptions are limited to manifestations and complications related to the 'Acute Radiation Syndrome' (ARS). Medical facilities, exams and therapeutic management are discussed. (MAC)

  13. Effect of ionizing radiation on human skeletal muscle precursor cells

    Marš, Tomaž; Čemažar, Maja; Jurdana, Mihaela; Pegan, Katarina

    2015-01-01

    Background. Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures.Materials and methods. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin - 6 (IL-6) release and stress response detected by the heat shoc...

  14. Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs.

    Xu, Wenda; Chen, Jiang; Liu, Xu; Li, Hongyu; Qi, Xingshun; Guo, Xiaozhong

    2016-05-01

    Radiation enteritis is one of the most common complications of cancer radiotherapy, and the development of new and effective measures for its prevention and treatment is of great importance. Adult bone marrow stromal stem cells (ABMSCs) are capable of self-renewal and exhibit low immunogenicity. In this study, we investigated ABMSC transplantation as a treatment for acute radiation enteritis. We developed a dog model of acute radiation enteritis using abdominal intensity-modulated radiation therapy in a single X-ray dose of 14 Gy. ABMSCs were cultured in vitro, identified via immunofluorescence and flow cytometry, and double labeled with CM-Dil and superparamagnetic iron oxide (SPIO) before transplantation, which took place 48 hours after abdominal irradiation in a single fraction. The dog model of acute radiation enteritis was transplanted with cultured ABMSCs labeled with CM-Dil and SPIO into the mesenteric artery through the femoral artery. Compared with untreated control groups, dogs treated with ABMSCs exhibited substantially longer survival time and improved relief of clinical symptoms. ABMSC transplantation induced the regeneration of the intestinal epithelium and the recovery of intestinal function. Furthermore, ABMSC transplantation resulted in elevated serum levels of the anti-inflammatory cytokine interleukin-11 (IL10) and intestinal radioprotective factors, such as keratinocyte growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-B while reducing the serum level of the inflammatory cytokine IL17. ABMSCs induced the regeneration of the intestinal epithelium and regulated the secretion of serum cytokines and the expression of radioprotective proteins and thus could be beneficial in the development of novel and effective mitigators of and protectors against acute radiation enteritis. PMID:26763584

  15. Acute Biphasic Effects of Ayahuasca.

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  16. Acute Biphasic Effects of Ayahuasca.

    Eduardo Ekman Schenberg

    Full Text Available Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT, harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  17. Radiation effects in optoelectronic devices

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  18. Computed tomographic findings of radiation-induced acute adrenal injury with associated radiation nephropathy: a case report

    Radiation nephropathy was first recognized in 1906. The kidney is a radiosensitive organ with a tolerance dose (5% complications in 5 years) of 20 Gray. The imaging findings of acute and chronic radiation induced renal injury are previously described. Radiation-induced adrenal injury, to our knowledge, has not been described in the literature. Unlike the kidneys and other upper abdominal organs, the adrenal glands are traditionally thought to be radio-resistant, protected from radiation-induced injury by proximity to adjacent organs and by the adrenal medulla which reportedly has increased radio-resistance. We present the computed tomographic imaging findings of a patient with acute radiation induced adrenal injury which resulted in adrenal insufficiency following radiotherapy of an adjacent thecal metastasis

  19. Phase II study assessing the effectiveness of Biafine cream as a prophylactic agent for radiation-induced acute skin toxicity to the breast in women undergoing radiotherapy with concomitant CMF chemotherapy

    Purpose: To assess the efficacy of Biafine cream in preventing Grade 2 acute radiation dermatitis, according to the National Cancer Institute of Canada skin radiation toxicity criteria in patients undergoing concomitant adjuvant chemotherapy and radiotherapy to the breast. Methods and Materials: Sixty patients participated in this study. Patients were treated with a lumpectomy followed by concomitant chemotherapy and radiotherapy to the breast. Biafine cream was applied daily, starting on the first day and ending 2 weeks post-radiotherapy. Patients underwent weekly skin assessments throughout radiotherapy and at 2 and 4 weeks after treatment. Outcome measures were assessed using a Skin Assessment Questionnaire that was scored according to the National Cancer Institute of Canada skin radiation toxicity criteria and a self-administered questionnaire that evaluated skin symptoms. Results: The maximum skin toxicity observed during the course of treatment was as follows: less than Grade 2 toxicity, 15% (9 patients); Grade 2, 83% (50 patients); Grade 3, 2% (1 patient); Grade 4, 0% (0 patients). The majority of the radiation dermatitis was observed after 3 weeks of radiotherapy. Conclusion: The majority of patients who underwent concomitant chemo- and radiotherapy for breast cancer developed Grade 2 radiation dermatitis with the use of Biafine cream. However, no treatment delays or interruptions were observed because of skin toxicity

  20. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  1. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation.

    Fabrikant, J. I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer inducti...

  2. Gamma radiation effects on nestling Tree Swallows

    The sensitivity of Tree Swallows (Tachycineta bicolor) to the stress of ionizing radiation was investigated with growth analysis. Freshly hatched nestlings were temporarily removed from nests, taken to the laboratory and acutely exposed to 0.9, 2.7, or 4.5 Gy gamma radiation. Some of the unirradiated control nestlings were also taken to the laboratory whereas others were left in the nests. Growth of all the nestlings was measured daily and analyzed by fitting growth models. There was no detectable radiation-induced mortality up to fledgling, approx. = 20 d after irradiation. Radiation exposure did not affect the basic growth pattern; the logistic growth model was most suitable for body mass and foot length, and the von Bertalanffy model for primary-feather length, irrespective of treatment. Parameter values from these models indicated pronounced growth depression in the 2.7-Gy and 4.5-Gy groups, particularly for body mass. Radiation also affected the timing of development. The growth depression of the 2.7-Gy group was similar to that caused by hatching asynchrony in unirradiated nestlings. The 4.5-Cy nestlings grew as well as unexposed nestlings that died from natural causes. Chronic irradiation at approx. = 1.0 Cy/d caused more severe growth effects than acute exposure to 4.5 Gy and may have caused permanent stunting. Growth analysis is a potent tool for assessing man-made environmental stresses. Observed body-mass statistics and model parameters seem to be most sensitive to environmental stresses, but coefficients of variation are not necessarily correlated with sensitivity. 34 references, 2 figures, 4 tables

  3. Genetic effects of radiation

    In this chapter, the BEIR Committee has reviewed and reevaluated the data that are pertinent to the estimation of genetic risks to humans from low levels of ionizing radiation. The present report summarizes the methods and conclusions of previous committees. In deriving new risk figures, it places rather more emphasis on the results of the studies of Japanese atomic-bomb survivors than have previous BEIR reports. However, the committee has also made use of the extensive radiation studies carried out with mice, which are briefly reviewed. 174 ref

  4. Radiation effects on Brassica seeds and seedlings

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  5. Diagnostic criterions of the postradiation encephalopathy in remote period of the acute radiation syndrome

    Development of post-radiation encephalopathy diagnostic criteria on the base of neuro psychic, neuro- and psychofisiological research in patients who suffered with acute radiation disease after Chernobyl catastrophe was the aim of this work. 110 persons of 20-75 years age were investigated. 55 refs., 6 tab., 6 figs

  6. Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-01-01

    Roč. 19, č. 4 (2014), s. 4770-4778. ISSN 1420-3049 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : granulocyte colony-stimulating factor * radiation accidents * acute radiation syndrome Subject RIV: BO - Biophysics Impact factor: 2.416, year: 2014

  7. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.

  8. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy

  9. Neurophysiological appropriateness of ionizing radiation effects

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  10. Acute radiation syndrome (ARS – treatment of the reduced host defense

    Heslet L

    2012-01-01

    Full Text Available Lars Heslet1, Christiane Bay2, Steen Nepper-Christensen31Serendex ApS, Gentofte; 2University of Copenhagen, Medical Faculty, Copenhagen; 3Department of Head and Neck Surgery, Otorhinolaryngology, Køge University Hospital, Køge, DenmarkBackground: The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS. The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF] in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes.Methods: Review of the current literature.Results: The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage’s important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS.Recommendation: Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least ~2 Gy by prompt dosing of 250–400 µg GM-CSF/m2 or 5 µg/kg G-CSF administered systemically and concomitant inhalation of

  11. Radiation effects on structural materials

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  12. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-α, and lymphotoxin-β) or fibrogenic cytokines (transforming growth factor [TGF]-β) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-α, and lymphotoxin-β) and the fibrogenic cytokine, TGF-β, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy

  13. Medical Management of Acute Radiation Syndromes : Comparison of Antiradiation Vaccine and Antioxidants radioprotection potency.

    Maliev, Slava; Popov, Dmitri; Lisenkov, Nikolai

    Introduction: This experimental study of biological effects of the Antiradiation Vaccine and Antioxidants which were used for prophylaxis and treatment of the Acute Radiation Syndromes caused by high doses of the low-LET radiation. An important role of Reactive Oxyden Species (Singlet oxygen, hydroxyl radicals, superoxide anions and bio-radicals)in development of the Acute Radiation Syndromes could be defined as a "central dogma" of radiobiology. Oxida-tion and damages of lipids, proteins, DNA, and RNA are playing active role in development of postradiation apoptosis. However, the therapeutic role of antioxidants in modification of a postradiation injury caused by high doses of radiation remains controversial.Previous stud-ies had revealed that antioxidants did not increase a survival rate of mammals with severe forms of the Acute Radiation Syndromes caused by High Doses of the low-LET radiation. The Antiradiation Vaccine(ARV) contains toxoid forms of the Radiation Toxins(RT) from the Specific Radiation Determinants Group (SRD). The RT SRD has toxic and antigenic prop-erties at the same time and stimulates a specific antibody elaboration and humoral response form activated acquired immune system. The blocking antiradiation antibodies induce an im-munologically specific effect and have inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity, and radiation induced cytol-ysis of selected groups of cells that are sensitive to radiation. Methods and materials: Scheme of experiments: 1. Irradiated animals with development of Cerebrovascular ARS (Cv-ARS), Cardiovascular ARS (Cr-ARS) Gastrointestinal ARS(GI-ARS), Hematopoietic ARS (H-ARS) -control -were treated with placebo administration. 2. Irradiated animals were treated with antioxidants prophylaxisis and treatment of Cv-ARS, Cr-SRS, GI-ARS, Hp-ARS forms of the ARS. 3. irradiated animals were treated with radioprotection by Antiradiation Vaccine

  14. Countermeasure development : Specific Immunoprophylaxis and Immunotherapy of Combined Acute Radiation Syndromes.

    Popov, Dmitri; Maliev, Slava

    Introduction: Combined Acute Radiation Syndromes (CARS) are extremely severe injuries. Combination of Radiation and Thermal factors induce development of the acute pathologi-cal processes in irradiated mammals: systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). Also, high doses of Radiation and Thermal injury induce for-mation of following Toxin groups: A. Specific Radiation Toxins; B. Specific Thermal Toxins; C. Nonspecific Histiogenic Pro-inflammatory and Inflammatory Toxins (NHIT). Specific Radi-ation Toxins (SRT) include four major group of Toxins: Cerebrovascular Radiation Toxins (Cv RT), Cardiovascular Radiation Toxins (Cr RT), Gastrointestinal Radiation Toxins (Gi RT), and Hematopoietic Radiation Toxins (Hp RT). CvRT, Cr RT, Gi RT groups of toxins are defined as Neurotoxins and Hp RT group is defined as Hematotoxins. Specific Thermal Toxins (STT) were isolated from the burned skin (Voul S., Colker I. 1972). The group of Nonspecific Histio-genic Inflammatory Toxins (NHIT) includes high amount of tissue toxins which are peptides with medium molecular weight. This group of polypeptides can be a significant factor as a part of developing of the general inflammation reaction. However, NHIT toxins can't induce many reactions and changes which are specific for radiation. Specific Radiation Toxins (SRT) can induce specific processes and reactions such as clonogenic cell death -programmed apoptotic necrosis. Although besides high doses of radiation, other forms of cell death such as Pyroptosis or Oncosis should be considered. We postulate that NHIT toxins are similar for high doses of radiation and thermal injury. Specific Radiation Toxins (SRT) are induced by high doses of radiation. Specific Thermal Toxins (STT) toxins which formation is induced by a Thermal Factor are different from SRT. Administration of STT toxins or NHIT toxins (IV or IM) to

  15. Comparison of conformal and intensity modulated radiation therapy techniques for treatment of pelvic tumors. Analysis of acute toxicity

    This retrospective analysis reports on the comparative outcome of acute gastrointestinal (GI) and genitourinary (GU) toxicities between conformal radiation therapy (CRT) and intensity modulated radiation therapy (IMRT) techniques in the treatment of patients with pelvic tumors. From January 2002 to December 2008, 69 patients with pelvic tumors underwent whole pelvic CRT and 65 underwent whole pelvic IMRT to treat pelvic lymph nodes and primary tumor regions. Total dose to the whole pelvis ranged from 50 to 50.4 Gy in 25 to 28 daily fractions. Chemotherapy (CT) regimen, when employed, was based upon primary tumor. Acute GI and GU toxicities were graded by RTOG/EORTC acute radiation morbidity criteria. Absence of GI symptoms during radiotherapy (grade 0) was more frequently observed in the IMRT group (43.1% versus 8.7; p < 0.001) and medication for diarrhea (Grade 2) was more frequently used in the CRT group (65.2% versus 38.5%; p = 0.002). Acute GI grade 1 and 3 side effects incidence was similar in both groups (18.5% versus 18.8%; p = 0.95 and 0% versus 7.2%; p = 0.058, respectively). Incidence of GU toxicity was similar in both groups (grade 0: 61.5% versus 66.6%, p = 0.54; grade 1: 20% versus 8.7%, p = 0.06; grade 2: 18.5% versus 23.5%, p = 0.50 and grade 3: 0% versus 1.5%, p > 0.99). This comparative case series shows less grade 2 acute GI toxicity in patients treated with whole pelvic IMRT in comparison with those treated with CRT. Incidence of acute GU toxicity was similar in both groups

  16. Predictors of Severe Acute and Late Toxicities in Patients With Localized Head-and-Neck Cancer Treated With Radiation Therapy

    Purpose: Radiation therapy (RT) causes acute and late toxicities that affect various organs and functions. In a large cohort of patients treated with RT for localized head and neck cancer (HNC), we prospectively assessed the occurrence of RT-induced acute and late toxicities and identified characteristics that predicted these toxicities. Methods and Materials: We conducted a randomized trial among 540 patients treated with RT for localized HNC to assess whether vitamin E supplementation could improve disease outcomes. Adverse effects of RT were assessed using the Radiation Therapy Oncology Group Acute Radiation Morbidity Criteria during RT and one month after RT, and the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme at six and 12 months after RT. The most severe adverse effect among the organs/tissues was selected as an overall measure of either acute or late toxicity. Grade 3 and 4 toxicities were considered as severe. Stepwise multivariate logistic regression models were used to identify all independent predictors (p < 0.05) of acute or late toxicity and to estimate odds ratios (OR) for severe toxicity with their 95% confidence intervals (CI). Results: Grade 3 or 4 toxicity was observed in 23% and 4% of patients, respectively, for acute and late toxicity. Four independent predictors of severe acute toxicity were identified: sex (female vs. male: OR = 1.72, 95% confidence interval [CI]: 1.06–2.80), Karnofsky Performance Status (OR = 0.67 for a 10-point increment, 95% CI: 0.52–0.88), body mass index (above 25 vs. below: OR = 1.88, 95% CI: 1.22–2.90), TNM stage (Stage II vs. I: OR = 1.91, 95% CI: 1.25–2.92). Two independent predictors were found for severe late toxicity: female sex (OR = 3.96, 95% CI: 1.41–11.08) and weight loss during RT (OR = 1.26 for a 1 kg increment, 95% CI: 1.12–1.41). Conclusions: Knowledge of these predictors easily collected in a clinical

  17. Predictors of Severe Acute and Late Toxicities in Patients With Localized Head-and-Neck Cancer Treated With Radiation Therapy

    Meyer, Francois, E-mail: francois.meyer@chuq.qc.ca [Laval University Cancer Research Center, Centre hospitalier universitaire de Quebec - L' Hotel-Dieu de Quebec, Quebec (Canada); Fortin, Andre; Wang, Chang Shu [Radiation Therapy Department, Centre hospitalier universitaire de Quebec - L' Hotel-Dieu de Quebec, Quebec (Canada); Liu, Geoffrey [Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto (Canada); Bairati, Isabelle [Laval University Cancer Research Center, Centre hospitalier universitaire de Quebec - L' Hotel-Dieu de Quebec, Quebec (Canada)

    2012-03-15

    Purpose: Radiation therapy (RT) causes acute and late toxicities that affect various organs and functions. In a large cohort of patients treated with RT for localized head and neck cancer (HNC), we prospectively assessed the occurrence of RT-induced acute and late toxicities and identified characteristics that predicted these toxicities. Methods and Materials: We conducted a randomized trial among 540 patients treated with RT for localized HNC to assess whether vitamin E supplementation could improve disease outcomes. Adverse effects of RT were assessed using the Radiation Therapy Oncology Group Acute Radiation Morbidity Criteria during RT and one month after RT, and the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme at six and 12 months after RT. The most severe adverse effect among the organs/tissues was selected as an overall measure of either acute or late toxicity. Grade 3 and 4 toxicities were considered as severe. Stepwise multivariate logistic regression models were used to identify all independent predictors (p < 0.05) of acute or late toxicity and to estimate odds ratios (OR) for severe toxicity with their 95% confidence intervals (CI). Results: Grade 3 or 4 toxicity was observed in 23% and 4% of patients, respectively, for acute and late toxicity. Four independent predictors of severe acute toxicity were identified: sex (female vs. male: OR = 1.72, 95% confidence interval [CI]: 1.06-2.80), Karnofsky Performance Status (OR = 0.67 for a 10-point increment, 95% CI: 0.52-0.88), body mass index (above 25 vs. below: OR = 1.88, 95% CI: 1.22-2.90), TNM stage (Stage II vs. I: OR = 1.91, 95% CI: 1.25-2.92). Two independent predictors were found for severe late toxicity: female sex (OR = 3.96, 95% CI: 1.41-11.08) and weight loss during RT (OR = 1.26 for a 1 kg increment, 95% CI: 1.12-1.41). Conclusions: Knowledge of these predictors easily collected in a clinical setting could help

  18. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status

    Vijay K. Singh

    2016-05-01

    Full Text Available The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF, filgrastim and Neulasta (PEGylated G-CSF, pegfilgrastim for the treatment of hematopoietic acute radiation syndrome (H-ARS following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family in the mouse model encouraged its further evaluation in the nonhuman primate (NHP model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.

  19. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status.

    Singh, Vijay K; Hauer-Jensen, Martin

    2016-01-01

    The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication. PMID:27153057

  20. Topical Day on Biological Effects of Radiation

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  1. Topical Day on Biological Effects of Radiation

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  2. The acute radiation syndrome: A study of ten cases and a review of the problem

    Hempelmann, L.H.; Lisco, H.

    1950-03-17

    In this report ten cases of acute radiation syndrome are described resulting from two accidents occurring at the Los Alamos Scientific Laboratory of unique nature involving fissionable material. These cases are described in considerable detail. The report comprises ten sections. This volume, part II of the report, is comprised of sections entitled: (1) the Biological Basis for the Clinical Response seen in the Acute radiation Syndrome, (2) Clinical Signs and Symptoms, (3) Discussion of Hematological Findings, (4) Chemistry of the Blood and Urine, (5) Discussion of Pathological Findings, and (6) Reconsiderations of the Calculated Radiation Doses in Terms of the Observed Biological Response of the Patients. This report was prepared primarily for the clinician who is interested in radiation injuries and therefore emphasis has been placed on the correlation of clinical and pathological changes with the type of cytogenetic change known to be produced by ionizing radiation.

  3. Hypoxyradiotherapy of uterine cervix cancer to decrease of acute side-effects and treatment complications

    The authors have reported on preliminary results of hypoxyradiotherapy in the course of external irradiation in patients with uterine cervix cancer from a view-point of the occurrence of acute reactions and treatment complications. A mixture of nitrogen and oxygen containing 8.0 to 8.5% of O2 was used to provoke acute hypoxia during irradiation. The applied dosis of external irradiation was simultaneously increased by 40%. On the basis of a randomized study with 120 patients, acute hypoxia was found to protect healthy tissues against post-radiation damage. When the dosis of 96 Gy in the paracervical space and that of 75 Gy in the pelvic wall were applied, acute side-effects decreases significantly if compared with a conventional radiotherapeutic procedure (p<0.01). Radiological preconditions for using acute hypoxia in radiotherapy are discussed. (orig.)

  4. Radiation Effects in Carbon Nanoelectronics

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  5. Radiation Effects in Carbon Nanoelectronics

    Cory D. Cress; McMorrow, Julian J.; Robinson, Jeremy T.; Landi, Brian J.; Seth M. Hubbard; Messenger, Scott R.

    2012-01-01

    We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  6. Overcoming tumour radiation resistance resulting from acute hypoxia

    Radioresistant hypoxic cells in tumours are believed to compromise the success of clinical radiotherapy. This brief article discusses three methods of overcoming acute hypoxia in tumours, all of which are applicable in clinical radiotherapy. Of these nicotinamide probably has the greatest clinical potential. (UK)

  7. Studies on the application of tryptophan metabolites as indicators of acute radiation damage and their modification

    It has been the aim of the investigations to continue earlier studies on the amplication of tryptophan metabolites as biochemical indicators after irradiation. These metabolites are of interest as they apparently indicate radiation effects in contrast to other metabolites like taurine and deoxycytidine in a dose range which leads to acute radiation sickness with the consequence of death. This assumption has been confirmed by the results of these studies. Measurements in the urine of rats demonstrate that the excretion of kynurenic acid and of xanthurenic acid as well as especially the ratio of kynurenic acid/anthranilic acid increases considerably in those animals which die some days later. The excretion of the surviving anilic acid increases considerably in those animals which die some days later. The excretion of the surviving animals is characteristical different. This abnormal excretion is induced by changes of specific, hepatic enzyme activities. The investigations have shown that the effects on the enzyme activities apppear not only after X-rays irradiation but also after neutrons. The studies, which have been performed with human material on the NAD-metabolism, demonstrate that with respect to the enzyme activities in the spleen as well as to the urinary excretion the same or similar effects, which have been found with animal experiments, can be expected. (orig.) 891 MG/orig. 892 CKA

  8. The inflammatory response plays a major role in the acute radiation syndrome induced by fission radiation

    Agay, D.; Chancerelle, Y.; Hirodin, F.; Mathieu, J.; Multon, E.; Van Uye, A.; Mestries, J.C. [Centre de Recherches du Service de Sante des Armees Emile Parde, Departement de Radiologie, 38 - La Tronche (France)

    1997-03-01

    At high dose rates, both gamma and neutron irradiation induce an acute inflammatory syndrome with huge intercellular communication disorders. This inflammatory syndrome evolves in two phases, separated by a latency phase. During the prodromal phase, the molecular and cellular lesions induced by free radicals trigger an initial response which associates cellular repair and multicellular interactions involving both humoral and nervous communications. A large part of perturbations constitute a non specific inflammatory syndrome and clinically silent coagulation disorders which are linked by common intercellular mediators. All these perturbations are rapidly reversible and there is no correlation between the radiation dose and the severity of the response. During the manifest-illness phase, both inflammatory and coagulation disorders resume, slightly preceding the clinical symptoms. Biochemical symptoms are moderate in the animals which will survive, but they escape regulatory mechanisms in those which will die, giving rise to a vicious circle. These biochemical disorders are largely responsible for the death. With lower dose rates, it cannot be excluded that great cellular communication disorders take place at the tissue level, with limited blood modifications. This aspect should be taken into account for the optimization of cytokine therapies. (authors)

  9. Radon, radiation effects and radiation protection

    Epidemiological studies among Rn-exposed miners revealed a significant increase in lung tumour occurrence with increased exposure to radon daughters. Radiation exposure of the lungs also is given through inhalation of Rn-decay products released from the building material of residential houses. The resulting lung cancer risk is one of the major issues of radiation protection of the population. Extensive data collections are available on Rn-concentrations in room air. Building planning and design should make better use of these data, particularly for selection of materials and design of the basement and foundation of buildings, as radon daughters are the major source of radiation exposure of the population. (DG)

  10. Biological effects of ionizing radiation

    The efficient dose of ionizing radiation (I.R.), expressed in sievert is a weighting of the deposited energy (absorbed dose in grays) by factors that take into account the radiation hazard and tissues radiosensitivity. it is useful in radiation protection because it allows to add exposures to ionizing radiation of different nature. for low doses, it has no probabilistic value. The determinist effects of ionizing radiation are observed from thresholds of several hundred of milli sievert. The seriousness grows with the dose. The whole-body doses exceeding 8 Sv are always lethal. The radio-induced cancers are observed only for doses exceeding 100 to 200 mSv for adults, delivered at a self important dose rate. Their seriousness does not depend on the dose. Their appear fortuity (stochastic effect) with a various individual susceptibility, genetically determined. The number of eventual radio-induced cancers coming from the exposure of a high number of persons to low dose of ionizing radiation (<100 mSv) cannot be evaluated with a linear without threshold model. these models, however usually used, do not take into account the biological reality of cell defense mechanisms, tissues or whole body defense mechanisms, these one being different against low or high doses of ionizing radiation. Against low doses, the preponderant mechanism is the elimination of potentially dangerous damaged cells. Against high doses, the repair of damaged cells is imperative to preserve the tissue functions. It can lead to DNA repair errors (radio-induced mutations) and canceration. The radio-induced congenital malformations are effects with threshold. The radio-induced carcinogenesis in utero is a stochastic effect. The radio-induced hereditary congenital malformations have never been highlighted for man. (N.C.)