WorldWideScience

Sample records for acute metabolic responses

  1. Cerebrovascular response to acute metabolic acidosis in humans.

    Ven, M.T.P. van de; Colier, W.N.J.M.; Kersten, B.T.P.; Oeseburg, B.; Folgering, H.T.M.

    2003-01-01

    OBJECTIVES: Evaluation of the cerebrovascular response (delta CBV/delta PaCO2) during baseline metabolic conditions and acute metabolic acidosis. METHODS: 15 healthy subjects, 5 m, 10 f, 56 +/- 10 yrs were investigated. For acidification, NH4Cl was given orally. CBV was measured using Near Infrared

  2. Acute metabolic response to fasted and postprandial exercise

    Lima FD

    2015-08-01

    Full Text Available Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Brasília (UniCEUB, Brasília, DF, BrazilAbstract: The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial, with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%, 9.97 g of protein (12.90%, 8.01 g of lipids (10.37%, with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase

  3. Acute responses of muscle protein metabolism to reduced blood flow reflect metabolic priorities for homeostasis.

    Zhang, Xiao-Jun; Irtun, Oivind; Chinkes, David L; Wolfe, Robert R

    2008-03-01

    The present experiment was designed to measure the synthetic and breakdown rates of muscle protein in the hindlimb of rabbits with or without clamping the femoral artery. l-[ring-(13)C(6)]phenylalanine was infused as a tracer for measurement of muscle protein kinetics by means of an arteriovenous model, tracer incorporation, and tracee release methods. The ultrasonic flowmeter, dye dilution, and microsphere methods were used to determine the flow rates in the femoral artery, in the leg, and in muscle capillary, respectively. The femoral artery flow accounted for 65% of leg flow. A 50% reduction in the femoral artery flow reduced leg flow by 28% and nutritive flow by 26%, which did not change protein synthetic or breakdown rate in leg muscle. Full clamp of the femoral artery reduced leg flow by 42% and nutritive flow by 59%, which decreased (P < 0.05) both the fractional synthetic rate from 0.19 +/- 0.05 to 0.14 +/- 0.03%/day and fractional breakdown rate from 0.28 +/- 0.07 to 0.23 +/- 0.09%/day of muscle protein. Neither the partial nor full clamp reduced (P = 0.27-0.39) the intracellular phenylalanine concentration or net protein balance in leg muscle. We conclude that the flow threshold to cause a fall of protein turnover rate in leg muscle was a reduction of 30-40% of the leg flow. The acute responses of muscle protein kinetics to the reductions in blood flow reflected the metabolic priorities to maintain muscle homeostasis. These findings cannot be extrapolated to more chronic conditions without experimental validation. PMID:18089763

  4. Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet

    Botezelli José D; Ghezzi Ana C; de Araujo Gustavo G; Cambri Lucieli T; Mello Maria AR

    2011-01-01

    Abstract Background Malnutrition in utero can "program" the fetal tissues, making them more vulnerable to metabolic disturbances. Also there is association between excessive consumption of fructose and the development of metabolic syndrome. However, there is little information regarding the acute effect of physical exercise on subjects recovered from malnutrition and/or fed with a fructose-rich diet. The objective of this study was to evaluate the metabolic aspects and the response to acute p...

  5. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  6. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Shannahan, Jonathan H. [Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Alzate, Oscar [Systems Proteomics Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Winnik, Witold M.; Andrews, Debora [Proteomics Core, Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schladweiler, Mette C. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ghio, Andrew J. [Clinical Research Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599 (United States); Gavett, Stephen H. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Kodavanti, Urmila P., E-mail: Kodavanti.Urmila@epa.gov [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  7. Cardiovascular and metabolic responses to acute and chronic exercise in swine

    Yucatan and Hampshire swine were subjects for studies of metabolic and cardiovascular adaptations to acute and chronic exercise. Chronic instrumentation included aortic, left atrial and pulmonary arterial catheters, aortic flow transducers and ultrasonic dimension gauges. Noninvasive measurements of exercise responses were obtained with a respiratory mask and surface electrocardiogram. Microsphere techniques were used to study regional blood flow. Trained animals were running one hr per day, 3 to 5 days per wk by the end of 9 to 12 wk of training. Swine were capable of achieving maximal oxygen consumption during progressive treadmill exercise. Maximal oxygen consumptions in untrained pigs (55.7 +/- 5.0 cc/kg/min) were comparable to human values. Exercise training produced increases in end diastolic dimensions both at rest (+1.2 mm, 4%) and during maximal exercise (+2.1 mm, 7%). Organ blood flow was directed away from splanchnic circulation to active muscle during progressive exercise. Maximal muscle blood flow was 30% greater in trained than untrained swine. Thus, similarities in adaptive responses between humans and swine recommend the pig as a useful model for studies of dynamic exercise

  8. High-fat diet did not change metabolic response to acute stress in rats

    Farrokhi, Babak; Ghalami, Jamileh; Hedayati, Mehdi; Rostamkhani, Fatemeh; Zardooz, Homeira

    2011-01-01

    This study investigated the effects of high-fat diet on metabolic factors in the presence of acute foot-shock and psychological stresses in male Wistar rats. The animals were divided into high-fat (45 % cow intra-abdominal fat) and normal (standard pellets) diet groups; then, each group was allocated into stressed and control groups. Stress was induced by a communication box. Blood samples were collected by retro-orbital-puncture method under isoflurane anesthesia. Plasma levels of gluc...

  9. Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet

    Botezelli José D

    2011-09-01

    Full Text Available Abstract Background Malnutrition in utero can "program" the fetal tissues, making them more vulnerable to metabolic disturbances. Also there is association between excessive consumption of fructose and the development of metabolic syndrome. However, there is little information regarding the acute effect of physical exercise on subjects recovered from malnutrition and/or fed with a fructose-rich diet. The objective of this study was to evaluate the metabolic aspects and the response to acute physical exercise in rats recovered from fetal protein malnutrition with a fructose-rich diet. Methods Pregnant Wistar rats were fed with a balanced (B diet or a low-protein (L diet. After birth and until 60 days of age, the offspring were distributed into four groups according to the diet received: B: B diet during the whole experiment; balanced/fructose (BF: B diet until birth and fructose-rich (F diet afterwards; low protein/balanced (LB: L diet until birth and B diet afterwards; low protein/fructose (LF: L diet until birth and F diet afterwards. Results The excess fructose intake reduced the body weight gain, especially in the BF group. Furthermore, the serum total cholesterol and the LDL cholesterol were elevated in this group. In the LF group, the serum total cholesterol and the muscle glycogen increased. Acute physical exercise increased the serum concentrations of glucose, triglycerides, HDL cholesterol and liver lipids and reduced the concentrations of muscle glycogen in all groups. Conclusion An excess fructose intake induced some signs of metabolic syndrome. However, protein malnutrition appeared to protect against the short term effects of fructose. In other hand, most responses to acute physical exercise were not influenced by early malnutrition and/or by the fructose overload.

  10. Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study

    Mendel Ron W

    2007-09-01

    Full Text Available Abstract Background The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate. Methods After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsius™ and, on a separate day, 12 ounces of Diet Coke®. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry and substrate oxidation (via respiratory exchange ratio were measured at baseline (pre-ingestion and at the end of each hour for 3 hours post-ingestion. Results Two-way ANOVA revealed a significant interaction (p ® ingestion. No differences in respiratory exchange ratio were noted between trials. Conclusion These preliminary findings indicate Celsius™ has thermogenic properties when ingested acutely. The effects of repeated, chronic ingestion of Celsius™ on body composition are unknown at this time.

  11. Does Amifostine Reduce Metabolic Rate? Effect of the Drug on Gas Exchange and Acute Ventilatory Hypoxic Response in Humans

    Jaideep J. Pandit

    2015-04-01

    Full Text Available Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113. However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045. In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.

  12. Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans.

    Pandit, Jaideep J; Allen, Caroline; Little, Evelyn; Formenti, Federico; Harris, Adrian L; Robbins, Peter A

    2015-01-01

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain. PMID:25894815

  13. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress.

    Picard, Martin; McManus, Meagan J; Gray, Jason D; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K; Seifert, Erin L; McEwen, Bruce S; Wallace, Douglas C

    2015-12-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  14. Chronic intermittent hypoxia alters ventilatory and metabolic responses to acute hypoxia in rats.

    Morgan, Barbara J; Adrian, Russell; Wang, Zun-Yi; Bates, Melissa L; Dopp, John M

    2016-05-15

    We determined the effects of chronic exposure to intermittent hypoxia (CIH) on chemoreflex control of ventilation in conscious animals. Adult male Sprague-Dawley rats were exposed to CIH [nadir oxygen saturation (SpO2), 75%; 15 events/h; 10 h/day] or normoxia (NORM) for 21 days. We assessed the following responses to acute, graded hypoxia before and after exposures: ventilation (V̇e, via barometric plethysmography), V̇o2 and V̇co2 (analysis of expired air), heart rate (HR), and SpO2 (pulse oximetry via neck collar). We quantified hypoxia-induced chemoreceptor sensitivity by calculating the stimulus-response relationship between SpO2 and the ventilatory equivalent for V̇co2 (linear regression). An additional aim was to determine whether CIH causes proliferation of carotid body glomus cells (using bromodeoxyuridine). CIH exposure increased the slope of the V̇e/V̇co2/SpO2 relationship and caused hyperventilation in normoxia. Bromodeoxyuridine staining was comparable in CIH and NORM. Thus our CIH paradigm augmented hypoxic chemosensitivity without causing glomus cell proliferation. PMID:26917692

  15. Effect of acute induced metabolic alkalosis on the acid/base responses to sprint exercise of six racing greyhounds.

    Holloway, S A; Sundstrom, D; Senior, D F

    1996-11-01

    To investigate the effect of acute induced metabolic alkalosis on the haematological, biochemical and metabolic responses to sprint exercise, six greyhound dogs with previously placed carotid arterial catheters were raced four times over a distance of 400 metres. Each dog was raced twice after receiving oral sodium bicarbonate solution (NaHCO3) (400 mg kg-1) or lactated Ringer's solution (LRS). Before, and for intervals of up to one hour after, the exercise arterial blood samples were collected for the measurement of blood gases, packed cell volume, total protein, serum biochemistry and plasma lactate. The time to complete the 400 metre sprint ranged from 32.7 seconds to 36.9 seconds. There was no significant difference in racing times between the dogs treated with NaHCO3 and LRS, and there was no significant difference between the plasma lactate measurements after the treatments with NaHCO3 or LRS. Serum chloride concentrations were significantly lower after NaHCO3 than after LRS, and there was a trend towards a lower serum potassium concentration after NaHCO3 treatment. Plasma lactate concentrations showed a similar increase and time course of disappearance after both LRS and NaHCO3 treatments. There were significant changes in all the parameters measured after the exercise, but there were large variations between individual dogs and between races when the dogs were receiving the same treatment. PMID:8938856

  16. Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study

    Mendel Ron W; Hofheins Jennifer E

    2007-01-01

    Abstract Background The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate. Methods After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsius™ and, on a separate day, 12 ounces of Diet Coke®. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry) and substrate oxidation (v...

  17. The acute phase response induced by Escherichia coli lipopolysaccharide modifies the pharmacokinetics and metabolism of florfenicol in rabbits.

    Pérez, R; Palma, C; Burgos, R; Jeldres, J A; Espinoza, A; Peñailillo, A K

    2016-04-01

    The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)-induced acute phase response (APR) on the pharmaco-kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol-amine (FFC-a) were extracted from the plasma, and their concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t-test. The mean values of AUC0-∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (P CLT ) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS-treated rabbits. A significant increase (P CLT of the drug. As a consequence of the APR induced by LPS, there was a reduction in the metabolic conversion of FFC to their metabolite FFC-a in the liver, suggesting that the mediators released during the APR induced significant inhibitory effects on the hepatic drug-metabolizing enzymes. PMID:26010096

  18. Acute fatal metabolic complications in alkaptonuria.

    Davison, A S; Milan, A M; Gallagher, J A; Ranganath, L R

    2016-03-01

    Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy. PMID:26596578

  19. Does Amifostine Reduce Metabolic Rate? Effect of the Drug on Gas Exchange and Acute Ventilatory Hypoxic Response in Humans

    Jaideep J. Pandit; Caroline Allen; Evelyn Little; Federico Formenti; Harris, Adrian L.; Robbins, Peter A.

    2015-01-01

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. ...

  20. The metabolic responses induced by acute dexamethasone predict glucose tolerance and insulin secretion over 10 years in relatives of type 2 diabetic subjects

    Durck, Tina Trier; Henriksen, Jan Erik; Egede, Mette Brogaard;

    2013-01-01

    This study aimed to compare the metabolic and insulin secretory responses to dexamethasone with the metabolic responses observed at 10 years in normoglycaemic relatives of type 2 diabetic and healthy control subjects.......This study aimed to compare the metabolic and insulin secretory responses to dexamethasone with the metabolic responses observed at 10 years in normoglycaemic relatives of type 2 diabetic and healthy control subjects....

  1. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia.

    Pamenter, Matthew E; Dzal, Yvonne A; Milsom, William K

    2015-02-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O₂ for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O₂ min(-1) kg(-1), and 1412 ± 244 to 417 ± 62 ml min(-1) kg(-1), respectively; p tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR. PMID:25520355

  2. Effects of Acute Endurance Exercise Performed in the Morning and Evening on Inflammatory Cytokine and Metabolic Hormone Responses.

    Hyeon-Ki Kim

    Full Text Available To compare the effects of endurance exercise performed in the morning and evening on inflammatory cytokine responses in young men.Fourteen healthy male participants aged 24.3 ± 0.8 years (mean ± standard error performed endurance exercise in the morning (0900-1000 h on one day and then in the evening (1700-1800 h on another day with an interval of at least 1 week between each trial. In both the morning and evening trials, the participants walked for 60 minutes at approximately 60% of the maximal oxygen uptake (VO2max on a treadmill. Blood samples were collected to determine hormones and inflammatory cytokines at pre-exercise, immediately post exercise, and 2 h post exercise.Plasma interleukin (IL-6 and adrenaline concentrations were significantly higher immediately after exercise in the evening trial than in the morning trial (P < 0.01, both. Serum free fatty acids concentrations were significantly higher in the evening trial than in the morning trial at 2 h after exercise (P < 0.05. Furthermore, a significant correlation was observed between the levels of IL-6 immediately post-exercise and free fatty acids 2 h post-exercise in the evening (r = 0.68, P < 0.01.These findings suggest that the effect of acute endurance exercise in the evening enhances the plasma IL-6 and adrenaline concentrations compared to that in the morning. In addition, IL-6 was involved in increasing free fatty acids, suggesting that the evening is more effective for exercise-induced lipolysis compared with the morning.

  3. Reduced cortisol and metabolic responses of thin ewes to an acute cold challenge in mid-pregnancy: implications for animal physiology and welfare.

    Else Verbeek

    Full Text Available BACKGROUND: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. METHODS: Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1, medium (MBC: BCS3.2±0.2 or high BCS (HBC: BCS3.6±0.2. Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. RESULTS: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively. During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05 and HBC ewes (P<0.05, and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively. Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01. Glucose concentrations and internal body temperature (T(core increased in all treatments, although peak T(core tended to be higher in HBC ewes (P<0.1. During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05. CONCLUSION: Even though all ewes were able to increase T(core and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced.

  4. Metabolic syndrome in acute coronary syndrome

    Objective: To determine the frequency of metabolic syndrome in male patients presenting with acute coronary syndrome Study design: A Descriptive study Place and duration of study: Armed Forces Institute of Cardiology and National Institute of Heart Diseases, Rawalpindi, from October 2007 to September 2008 Patients and Methods: Male patients with acute coronary syndrome (ACS) were included. Patients having angioplasty (PCI), coronary artery bypass surgery in the past and other co-morbid diseases were excluded. All patients were assessed for the presence of five components of metabolic syndrome including hypertension, HDL-Cholesterol and triglycerides, glucose intolerance and abdominal obesity. Systolic, diastolic blood pressures, waist circumference (WC) and body mass index (BMI) were measured. ECG, cardiac enzymes, fasting glucose and lipid profile were also done. Results: A total of 135 male patients of ACS were studied with a mean age of 54.26 +- 11 years. Metabolic syndrome (MS) was present in 55 (40.7%) patients. MS with all five components was documented in 4 (7.27%) while MS with four and three components was seen in 23 (41.81%) and 28 (50.90%) patients respectively. Only 24 (43.63%) patients with MS had diabetes mellitus, remaining 31(56.36%) were non diabetic. Frequencies of diabetes, hypertension and family history of CAD were significantly higher (p<0.05) in patients with metabolic syndrome as compared to patients with normal metabolic status. Conclusion: Metabolic syndrome is fairly common and important risk factor in patients of IHD. Other risk factors like smoking, dyslipidemia, hypertension and diabetes were also frequently found. Public awareness to control the risk factors can reduce the prevalence of CAD in our country. (author)

  5. Glucagon: acute actions on hepatic metabolism.

    Miller, Russell A; Birnbaum, Morris J

    2016-07-01

    Type 2 diabetes mellitus is the result of impaired systemic control of glucose homeostasis, in part through the dysregulation of the hormone glucagon. Glucagon acts on the liver to increase glucose production through alterations in hepatic metabolism, and reducing the elevated glucagon signalling in diabetic patients is an attractive strategy for the treatment of hyperglycaemia. Here we review the actions of the hormone in the liver, focusing on the acute alterations of metabolic pathways. This review summarises a presentation given at the 'Novel data on glucagon' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Mona Abraham and Tony Lam, DOI: 10.1007/s00125-016-3950-3 , and by Young Lee and colleagues, DOI: 10.1007/s00125-016-3965-9 ) and an overview by the Session Chair, Isabel Valverde (DOI: 10.1007/s00125-016-3946-z ). PMID:27115415

  6. INFLAMMATION AND ACUTE PHASE RESPONSE

    Farah Aziz Khan

    2010-10-01

    Full Text Available Inflammation caused by infection takes place by the cooperative cascade of cytokines and leukocytes. Tumor necrosis factor, interlukin-1, and interlukin-6 play important roles as proinflammatory cytokines to mediate local inflammation and activate other inflammatory cells e.g. neutrophils, monocytes, and macrophages. At least 15 different low molecular weight cytokine are secreted by activated leukocytes and are responsible for triggering acute phase response in the form of fever, leukocytosis, increased secretion of adreno corticotropic hormones, and production of acute phase proteins. Acute phase proteins are produced in liver under the influence of cytokines, which through blood stream passes to the site of inflammation and kill the pathogens by opsonization and activating complement pathways. The changes in the concentrations of positive acute-phase proteins and negative acute-phase proteins are due to the changes in their production by liver. Three of the best known acute phase proteins are C-reactive protein, serum anyloid A, and haptoglobin. Some disease states are casually related to acute phase proteins. C-reactive protein mediated compliment activation has a key role in some forms of tissue alteration such as cardiac infarction. Elevated S amyloid A levels are seen in chronic arthritis and tuberculosis. Other acute phase proteins show more moderate rise, usually less than fivefold.

  7. Hepatic transcriptomic and metabolic responses of hybrid striped bass (Morone saxatilis×Morone chrysops) to acute and chronic hypoxic insult.

    Beck, Benjamin H; Fuller, S Adam; Li, Chao; Green, Bartholomew W; Zhao, Honggang; Rawles, Steven D; Webster, Carl D; Peatman, Eric

    2016-06-01

    Striped bass (Morone saxatilis), white bass (Morone chrysops), and their hybrid are an important group of fish prized for recreational angling in the United States, and there and abroad as a high-value farmed fish. Regardless of habitat, it is not uncommon for fish of the genus Morone to encounter and cope with conditions of scarce oxygen availability. Previously, we determined that hybrid striped bass reared under conditions of chronic hypoxia exhibited reduced feed intake, lower lipid and nutrient retention, and poor growth. To better understand the molecular mechanisms governing these phenotypes, in the present study, we examined the transcriptomic profiles of hepatic tissue in hybrid striped bass exposed to chronic hypoxia (90days at 25% oxygen saturation) and acute hypoxia (6h at 25% oxygen saturation). Using high-throughput RNA-seq, we found that over 1400 genes were differentially expressed under disparate oxygen conditions, with the vast majority of transcriptional changes occurring in the acute hypoxia treatment. Gene pathway and bioenergetics analyses revealed hypoxia-mediated perturbation of genes and gene networks related to lipid metabolism, cell death, and changes in hepatic mitochondrial content and cellular respiration. This study offers a more comprehensive view of the temporal and tissue-specific transcriptional changes that occur during hypoxia, and reveals new and shared mechanisms of hypoxia tolerance in teleosts. PMID:26851735

  8. INFLAMMATION AND ACUTE PHASE RESPONSE

    Farah Aziz Khan; Mohd Fareed Khan

    2010-01-01

    Inflammation caused by infection takes place by the cooperative cascade of cytokines and leukocytes. Tumor necrosis factor, interlukin-1, and interlukin-6 play important roles as proinflammatory cytokines to mediate local inflammation and activate other inflammatory cells e.g. neutrophils, monocytes, and macrophages. At least 15 different low molecular weight cytokine are secreted by activated leukocytes and are responsible for triggering acute phase response in the form of fever, leukocytosi...

  9. Cytokines and the hepatic acute phase response

    Moshage, H

    1997-01-01

    The acute phase response is an orchestrated response to tissue injury, infection or inflammation. A prominent feature of this response is the induction of acute phase proteins, which are involved in the restoration of homeostasis. Cytokines are important mediators of the acute phase response. Uncont

  10. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  11. Acute Isoniazid Intoxication: Convulsion, Rhabdomyolysis and Metabolic Acidosis

    OKUTUR, Sadi Kerem

    2006-01-01

    Isoniazid is one of the most commonly used antituberculous drugs. Acute intoxication is characterized by repetitious convulsions, high anion gap metabolic acidosis and coma. The basis of therapy consists of parenteral pyridoxine administration in a dose equivalent to that of isoniazid ingested. Here we present a case of acute isoniazid intoxication presenting with convulsions and metabolic acidosis with consequent rhabdomyolysis and discuss the clinical signs and pathophysiology of isoniazid ...

  12. Metabolic fingerprinting to understand therapeutic effects and mechanisms of silybin on acute liver damage in rat

    Qun Liang

    2015-01-01

    Full Text Available Background: Metabolic fingerprinting is a rapid and noninvasive analysis, representing a powerful approach for the characterization of phenotypes and the distinction of specific metabolic states due to environmental alterations. It has become a valuable analytical approach for the characterization of phenotypes and is the rapidly evolving field of the comprehensive measurement of ideally all endogenous metabolites in bio-samples. Silybin has displayed bright prospects in the prevention and therapy of liver injury, and we had conducted a preliminary exploration on the molecular mechanism of the hepatoprotective effects of silybin. Because the knowledge on the metabolic responses of an acute liver damage rat to the silybin is still scarce, metabolic fi ngerprinting can provide relevant information on the intrinsic metabolic adjustments. Materials and Methods: Here, the physiological and metabolic changes in the acute liver damage rat were investigated by performing a metabolic analysis. The phenotypic response was assessed by liquid chromatography/mass spectrometry (LC/MS combined with pattern recognition approaches such as principal components analysis and partial least squares projection to supervised latent structures and discriminant analysis. Multivariate analysis of the data showed trends in scores plots that were related to the concentration of the silybin. Results: Results indicate 10 ions (7 upregulated and 3 downregulated as differentiating metabolites. Key observations include perturbations of metabolic pathways linked to glutathione metabolism, tryptophan metabolism, cysteine and methionine metabolism, etc., Overall, this investigation illustrates the power of the LC/MS combined with the pattern recognition methods that can engender new insights into silybin affecting on metabolism pathways of an acute liver damage rat. Conclusion: The present study demonstrates that the combination of metabolic fi ngerprinting with appropriate

  13. Acute Phase Response in Animals: A Review

    Cray, Carolyn; Zaias, Julia; Altman, Norman H

    2009-01-01

    The acute phase response is a complex systemic early-defense system activated by trauma, infection, stress, neoplasia, and inflammation. Although nonspecific, it serves as a core of the innate immune response involving physical and molecular barriers and responses that serve to prevent infection, clear potential pathogens, initiate inflammatory processes, and contribute to resolution and the healing process. Acute phase proteins, an integral part of the acute phase response, have been a focus...

  14. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

    Peter J. McGuire

    2014-02-01

    Full Text Available The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA. A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza using spf-ash mice, a model of OTC deficiency. Both wild-type (WT and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other

  15. Metabolic responses to hypoglycemia in juvenile diabetics

    Hilsted, J; Madsbad, S; Krarup, T;

    1980-01-01

    Glucagon and metabolic responses to insulin-induced hypoglycemia were studied in seven juvenile diabetics, age 31 +/- 2 years (mean and S.E.M.), duration of diabetes 17 +/- 3 years, with diabetic autonomic neuropathy (decreased beat-to-beat variation in heart rate during hyperventilation and...... both patient groups. Metabolic responses to hypoglycemia were also similar in the two patient groups. In conclusion, diabetic autonomic neuropathy has no effect on glucagon and metabolic responses to hypoglycemia in juvenile, insulin-treated diabetics....

  16. Acute hypoxia increases the cerebral metabolic rate

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob;

    2016-01-01

    imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N......-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.......058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration...

  17. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. PMID:26924539

  18. Acute Metabolic Changes Associated With Analgesic Drugs

    Hansen, Tine Maria; Olesen, Anne Estrup; Simonsen, Carsten Wiberg;

    2016-01-01

    BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) is used to measure brain metabolites. Limited data exist on the analgesic-induced spectroscopy response. This was an explorative study with the aims to investigate the central effects of two analgesic drugs, an opioid and a selective...

  19. Acute phase protein response during acute ruminal acidosis in cattle

    Danscher, A. M.; Thoefner, M. B.; Heegaard, Peter M. H.;

    2011-01-01

    The aim of the study was to describe the acute phase protein and leukocyte responses in dairy heifers during acute, oligofructose-induced ruminal acidosis. The study included 2 trials involving oral oligofructose overload (17g/kg BW) to nonpregnant Danish Holstein heifers. Trial 1 included 12...... performed.Heifers receiving oligofructose developed a profound ruminal and systemic acidosis (in Trial 1 and 2 lowest ruminal pH was 4.3±0.2 and 3.8±0.02, respectively, and minimum SBE was −9.3±4.1 and −8.9±2.8, respectively). In Trial 1, SAA concentrations were higher than baseline concentrations on all...... than control heifers at 18 and 24h after overload (max. 13.7±4.3 billions/L). Feeding had no effect on plasma fibrinogen concentrations or WBC in Trial 1.Acute ruminal and systemic acidosis caused by oligofructose overload resulted in distinct acute phase protein and leukocyte responses in dairy...

  20. Fetal and maternal metabolic responses to exercise during pregnancy.

    Mottola, Michelle F; Artal, Raul

    2016-03-01

    Pregnancy is characterized by physiological, endocrine and metabolic adaptations creating a pseudo-diabetogenic state of progressive insulin resistance. These adaptations occur to sustain continuous fetal requirements for nutrients and oxygen. Insulin resistance develops at the level of the skeletal muscle, and maternal exercise, especially activity involving large muscle groups improve glucose tolerance and insulin sensitivity. We discuss the maternal hormonal and metabolic changes associated with a normal pregnancy, the metabolic dysregulation that may occur leading to gestational diabetes mellitus (GDM), and the consequences to mother and fetus. We will then examine the acute and chronic (training) responses to exercise in the non-pregnant state and relate these alterations to maternal exercise in a low-risk pregnancy, how exercise can be used to regulate glucose tolerance in women at risk for or diagnosed with GDM. Lastly, we present key exercise guidelines to help maintain maternal glucose regulation and suggest future research directions. PMID:26803360

  1. [Metabolic response to trauma and stress].

    Omerbegović, Meldijana; Durić, Amira; Muratović, Nusreta; Mulalić, Lejla; Hamzanija, Emina

    2003-01-01

    Trauma, surgery, burns and infection are accompanied with catabolic response which is characterized by enhanced protelysis, enhanced excretion of nitrogen, neoglucogenesis and resistance of peripheral tissues to insulin. This catabolic response is mediated through neural pathways and neuroendocrine axis. The purpose of this response is restoration of adequate perfusion and oxygenation and releasing of energy and substrates for the tissues, organs and systems which functions are essential for the survival. Metabolic response to injury and severe infection leads to decomposition of skeletal muscle proteins to amino acids, intensive liver gluconcogenesis from lactate, glycerol and alanin with enhanced oxidation of aminoacids. These substrates are necessary for synthesis of various mediators of protein or lipid nature, which are important for the defense and tissue regeneration. The changes result in negative balance of nitrogen, loss of body weight, and lower plasma concentration of all aminoacids. Patients who were unable to develop this hypercatabolic response have poor prognosis, and the patients with hypercatabolic response rapidly lose their body cell mass and without metabolic and nutritive support have more complications and higher mortality. Although neoglucogenesis, proteolysis and lipolysis are resistant to exogenous nutrients, metabolic support in critical illness improves the chances for survival until the healing of the disease. Casual therapy in such conditions is elimination of "stressors" which maintain abnormal endocrine and metabolic response. Adequate oxygenation, hemostasis, infection control and control of extracellular compartment expansion and low flows, are essential for the efficacy of nutritive support and that is the only way to convalescence and wound healing. PMID:15017867

  2. Acute neuromuscular responses to car racing

    Backman, Jani

    2005-01-01

    Purpose: The primary purpose of this study was to determine racing car drivers’ acute neuromuscular responses to race driving. The secondary purpose was to compare the cardiovascular loading of driving to that of maximal rowing action. Methods: The subjects of the present cross-sectional study (n = 9) were international level karting drivers. The study was performed in two parts; the laboratory tests and driving test. All subjects took part to the laboratory tests and five of the subjects per...

  3. Systemic inflammatory response following acute myocardial infarction

    Lu FANG; Xiao-Lei Moore; Anthony M Dart; Le-Min WANG

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial in-farction, and heart failure) in patients with AMI.

  4. Fluid therapy for severe acute pancreatitis in acute response stage

    MAO En-qiang; TANG Yao-qing; FEI Jian; QIN Shuai; WU Jun; LI Lei; MIN Dong; ZHANG Sheng-dao

    2009-01-01

    Background Fluid therapy for severe acute pancreatitis (SAP) should not only resolve deficiency of blood volume, but also prevent fluid sequestration in acute response stage. Up to date, there has not a strategy for fluid therapy dedicated to SAP. So, this study was aimed to investigate the effects of fluid therapy treatment on prognosis of SAP. Methods Seventy-six patients were admitted prospectively according to the criteria within 72 hours of SAP onset. They were randomly assigned to a rapid fluid expansion group (Group I, n=36) and a controlled fluid expansion group (Group Ⅱ, n=40). Hemodynamic disorders were either quickly (fluid infusion rate was 10-15 ml·kg-1·h-1, Group Ⅰ) or gradually improved (fluid infusion rate was 5-10 ml·kg-1·h-1, Group Ⅱ) through controlling the rate of fluid infusion. Parameters of fluid expansion, blood lactate concentration were obtained when meeting the criteria for fluid expansion. And APACHE Ⅱ scores were obtained serially for 72 hours. Rate of mechanical ventilation, incidence of abdominal compartment syndrome (ACS), sepsis, and survival rate were obtained. Results The two groups had statistically different (P 0.05). Total amount of fluid sequestration within 4 days was higher in Group Ⅰ ((5378±2751)ml) than in Group Ⅱ ((4215±1998)ml, P<0.05). APACHE Ⅱ scores were higher in Group Ⅰ on days 1,2, and 3 (P<0.05). Rate of mechanical ventilation was higher in group Ⅰ (94.4%) than in group Ⅱ (65%, P<0.05). The incidences of abdominal compartment syndrome (ACS) and sepsis were significantly lower in Group Ⅱ (P <0.05). Survival rate was remarkably lower in Group Ⅰ (69.4%) than in Group Ⅱ (90%, P <0.05). Conclusions Controlled fluid resuscitation offers better prognosis in patients with severe volume deficit within 72 hours of SAP onset.

  5. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas; Mattijssen, Frits; Evers-van Gogh, Inkie; Schaart, Gert; Jeppesen, Jacob; Kneppers, Anita; Mensink, Marco; Voshol, Peter J.; Olivecrona, Gunilla; Tan, Nguan Soon; Hesselink, Matthijs K. C.; Berbée, Jimmy F.; Rensen, Patrick C N

    2014-01-01

    Physical exercise causes profound changes in energy metabolism in humans. In this study we show that resting skeletal muscle has a crucial role in the metabolic response to acute exercise. During endurance exercise, selective induction of the protein angiopoietin-like 4 (ANGPTL4) in nonexercising muscle reduces local fatty acid uptake, presumably to prevent fat overload, while directing fatty acids to the active skeletal muscle as fuel. Our data thus suggest that nonexercising muscle has a ke...

  6. Renal response to acute acid loading--an organ physiological approach

    Osther, P J; Engel, K; Kildeberg, P

    2004-01-01

    OBJECTIVE: In previous studies of the renal response to acute NH4Cl acidosis no correlation was found between systemic acid-base status and the traditionally used quantity, renal net acid excretion (NAE). If NAE is to be considered a physiologically meaningful quantity then this is surprising, as......-base metabolism during acid loading than previously described methods....

  7. Acute leptin deficiency, leptin resistance, and the physiologic response to leptin withdrawal

    Montez, Jason M.; Soukas, Alex; Asilmaz, Esra; Fayzikhodjaeva, Gulnorakhon; Fantuzzi, Giamila; Friedman, Jeffrey M.

    2005-01-01

    Food restriction and weight loss result in reduced plasma leptin, which is associated with a pleiotropic biologic response. However, because weight loss itself is also associated with changes in numerous other humoral and metabolic signals, it can be difficult to determine the precise features of the biologic response to acute leptin deficiency. To study this response in the absence of changes in nutritional state, we have developed a protocol that allows such analysis in normal, non-food-res...

  8. [Markers of metabolic syndrome and peptides regulating metabolism in survivors of childhood acute lymphoblastic leukemia].

    Skoczeń, Szymon; Tomasik, Przemysław; Balwierz, Walentyna; Surmiak, Marcin; Sztefko, Krystyna; Galicka-Latała, Danuta

    2011-01-01

    Along with the growing epidemic of overweight the risk of atherosclerosis, cardiovascular disease morbidity and mortality are increasing markedly. Metabolic syndrome (MS) is a condition clustering together several risk factors of those complications such as visceral obesity, glucose intolerance, arterial hypertension and dislipidemia. The risk of obesity in acute lymphoblastic leukemia (ALL) survivors is higher than in general population. We aimed to assess (1) the relationships between chosen adipokines and neuropeptides, chemotherapy, CRT, and body fatness and (2) evaluate adipokines and neuropeptides concentrations as a new markers of MS in children. We conducted cross-sectional evaluation of 82 ALL survivors (median age: 13.2 years; range: 4,8-26,2; median time from treatment: 3.2 years), including fasting laboratory testing: peptides (leptin, GLP-1, orexin, PYY, apelin), total cholesterol and its fractions, triglycerides; anthropometric measurements (weight, height), systolic and diastolic blood pressure. We estimated percentiles of body mass index and percentiles of blood pressure. Between 82 survivors overweight and diastolic hypertension was diagnosed in 31% of patients (35% in CRT group) and 15% respectively. At least one abnormality in lipids concentrations was found in 43%. Girls were more affected than boys. Statistically significant increased in leptin and apelin concentrations and decreased in soluble leptin receptor concentrations in the overweight group were observed compared to the non overweight subjects. Significant increase in orexin levels in females who had received CRT compared to those who had not received CRT was found. CRT is the main risk factor of elevated of body mass among survivors of childhood leukemia. Dyslipidemia and hypertension, along with increased adiposity indicate higher risk of MS development. Girls are more affected than boys. Leptin, orexin and apelin seem to be good markers of increased adiposity especially after CRT

  9. Acute toxicity and effect of some petroleum hydrocarbon on the metabolic index in Etroplus suratensis

    Ansari, Z.A.; Farshchi, P.

    Acute toxicity (LC sub(50)) and effect of some petroleum hydrocarbons (Toluene, Quinoline, Pyridine and Naphthalene) on the metabolic index (oxygen consumption rate) of an estuarine fish. Etroplus suratensis is reported. The LC sub(50) values were...

  10. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects are Diminished in Adrenalectomized Rats#

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats ...

  11. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects are Diminished in Adrenalectomized Rats

    Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wis...

  12. Metabolic Responses of Bacterial Cells to Immobilization.

    Żur, Joanna; Wojcieszyńska, Danuta; Guzik, Urszula

    2016-01-01

    In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability. PMID:27455220

  13. Metabolic Responses of Bacterial Cells to Immobilization

    Joanna Żur

    2016-07-01

    Full Text Available In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability.

  14. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both P<0·05) and 3-d energy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose-lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health. PMID:26819200

  15. Does acute caffeine ingestion alter brain metabolism in young adults?

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (pextraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  16. Comparison of the effects of acute and chronic psychological stress on metabolic features in rats

    Fatemeh ROSTAMKHANI; Homeira ZARDOOZ; Saleh ZAHEDIASL; Babak FARROKHI

    2012-01-01

    This study was aimed to compare the effects of acute and chronic psychological stress on metabolic factors.Forty-two male Wistar rats were divided into control and stressed groups.Stress was applied by a communication box acutely (1 d) and chronically (15 and 30 d).Blood sampling was carried out by retro-orbital-puncture method.The plasma levels of glucose,cholesterol,triglyceride,insulin,and corticosterone were measured.In addition,feed and water intake,latency to eat and drink,adrenal and body weights were determined.Acute and chronic psychological stress did not significantly change basal plasma corticosterone levels.However,immediately (1 min) after acute exposure to stress,plasma corticosterone level increased compared to that before stress exposure.Acute stress increased plasma insulin levels significantly.Fifteen days of stress exposure resulted in plasma glucose increase.Chronic stress significantly increased feed intake,latency to eat,and adrenal weight compared to acute stress.The body weights of both control and stressed groups increased markedly during the experiment.Homeostasis model assessment of insulin resistance (HOMA-IR) index did not change significantly in the stressed group.In conclusion,application of acute and chronic psychological stress leads to different metabolic and/or behavioral changes but the metabolic changes resulting from acute exposure to stress seem to be more pronounced.

  17. Effect of acute acid loading on acid-base and calcium metabolism

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  18. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis

    Sørensen, Nanna Skall; Tegtmeier, C.; Andresen, Lars Ole;

    2006-01-01

    The pig acute phase protein (APP) response to experimental Streptococcus suis (S. suis) infection was mapped by the measurement of the positive APPs C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin (Hp) and major acute phase protein (pig-MAP) and the negative APPs albumin and apolipop......The pig acute phase protein (APP) response to experimental Streptococcus suis (S. suis) infection was mapped by the measurement of the positive APPs C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin (Hp) and major acute phase protein (pig-MAP) and the negative APPs albumin and...

  19. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E;

    2009-01-01

    OBJECTIVES: We studied the influence of abnormal glucose metabolism on left ventricular (LV) function and prognosis in 203 patients with acute myocardial infarction. BACKGROUND: Abnormal glucose metabolism is associated with increased mortality after acute myocardial infarction. This appears to be...... particularly attributable to an increased incidence of post-infarction congestive heart failure. A relationship between glucose metabolism and LV function could potentially explain this excess mortality. METHODS: In patients without known diabetes, glucose metabolism was determined using an oral glucose...... atrial volume index) and by measuring plasma N-terminal pro-B-type natriuretic peptide levels. RESULTS: After adjustment for age and gender, a linear relationship between the degree of abnormal glucose metabolism was observed for each marker of LV dysfunction (p(trend) < 0.05) with the exception of left...

  20. Acute Modulation of Sugar Transport in Brain Capillary Endothelial Cell Cultures during Activation of the Metabolic Stress Pathway*

    Cura, Anthony J.; Carruthers, Anthony

    2010-01-01

    GLUT1-catalyzed equilibrative sugar transport across the mammalian blood-brain barrier is stimulated during acute and chronic metabolic stress; however, the mechanism of acute transport regulation is unknown. We have examined acute sugar transport regulation in the murine brain microvasculature endothelial cell line bEnd.3. Acute cellular metabolic stress was induced by glucose depletion, by potassium cyanide, or by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which reduce or deplete i...

  1. Action of Antiproteases on the Inflammatory Response in Acute Pancreatitis

    Chun-Chia Chen

    2007-07-01

    Full Text Available The spectrum of acute pancreatitis ranges from mild edematous disease to a severe necrotizing process which is usually accompanied by local or systemic complications and even mortality. Early deaths (within the first week due to severe acute pancreatitis are generally caused by massive inflammatory responses which result in multiple organ failure. Although the exact mechanisms which trigger the inflammatory and necrotizing processes are not completely understood, it is generally accepted that autodigestion and activated leukocytes play important roles in the pathogenesis of acute pancreatitis. Proinflammatory cytokines are associated with systemic inflammatory response syndrome and multiple organ failure syndrome in acute pancreatitis. A compensatory anti-inflammatory response occurs in parallel with systemic inflammatory response syndrome. Trypsin secreted by the pancreatic acinar cells activates proteaseactivated receptor-2 which can result in the production of cytokines. Protease inhibitors such as aprotinin, gabexate mesilate, nafamostat mesilate, ulinastatin, etc. can inhibit the various enzymes and inflammatory response in experimental and clinical studies. Thus, protease inhibitors have been considered as a potential treatment to inhibit the pancreatic inflammation in acute pancreatitis. The beneficial effects of antiproteases on experimental severe acute pancreatitis may be, in part, due to the modulation of inflammatory cytokine responses. The effect of protease inhibitors on the inflammatory response in human acute pancreatitis deserves further study.

  2. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats.

    Miller, Desinia B; Snow, Samantha J; Schladweiler, Mette C; Richards, Judy E; Ghio, Andrew J; Ledbetter, Allen D; Kodavanti, Urmila P

    2016-04-01

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway. PMID:26732886

  3. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis

    Sørensen, Nanna Skall; Tegtmeier, C.; Andresen, Lars Ole; Pineiro, M.; Toussaint, M.J.M.; Campbell, F.M.; Lampreave, F.; Heegaard, Peter M. H.

    The pig acute phase protein (APP) response to experimental Streptococcus suis (S. suis) infection was mapped by the measurement of the positive APPs C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin (Hp) and major acute phase protein (pig-MAP) and the negative APPs albumin and apolipop...

  4. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-01-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® softwar...

  5. Single and combined effects of acute and chronic non-thermal stressors on rat interscapular brown adipose tissue metabolic activity

    Cvijić Gordana

    2013-01-01

    Full Text Available The aim of this study was to examine whether the thermogenic potential of rat interscapular brown adipose tissue (IBAT changes in response to acute and/or chronic exposure to non-thermal stressors (immobilization and isolation, by measuring the uncoupling protein 1 (UCP-1 content, MAO-A, SOD and CAT activities, as well as the number of IBAT sympathetic noradrenaline-containing nerve fibers. Both acute immobilization (2 h and chronic isolation (21 days, as well as their combined effects, significantly increased the IBAT UCP-1 content in comparison to non-stressed animals. When applied individually, stressors increased the number of sympathetic fibers in comparison to controls, whereas in combination they decreased it. The activity of IBAT monoamine oxidase-A (MAO-A decreased under the influence of each stressor independent of its type or duration. SOD activity coincided with MAO-A decrement, whereas CAT activity had an opposite pattern of changes. We conclude that acute and chronic exposure to non-thermal stressors, immobilization and isolation, respectively, affect the metabolic potential of rat IBAT, judging by the increase in UCP-1 content and sympathetic outflow. However, when acute immobilization was applied as a novel stressor to previously chronically isolated animals, an increase in the UCP-1 content was accompanied by a lower IBAT sympathetic outflow, suggesting that IBAT metabolic function under various stress condition is not solely dependent on SNS activity. [Projekat Ministarstva nauke Republike Srbije, br. 173023

  6. Cardiovascular and metabolic responses to tap water ingestion in young humans: does the water temperature matter?

    Girona, M.; Grasser, Erik Konrad; Abdul G Dulloo; Montani, Jean-Pierre

    2014-01-01

    Aim: Drinking water induces short-term cardiovascular and metabolic changes. These effects are considered to be triggered by gastric distension and osmotic factors, but little is known about the influence of water temperature.Methods: We determined, in a randomized crossover study, the acute cardiovascular and metabolic responses to 500 mL of tap water at 3 °C (cold), 22 °C (room) and 37 °C (body) in 12 young humans to ascertain an effect of water temperature. We measured continuous beat-to-b...

  7. [{sup 18}F]FDG-PET Standard Uptake Value as a Metabolic Predictor of Bone Marrow Response to Radiation: Impact on Acute and Late Hematological Toxicity in Cervical Cancer Patients Treated With Chemoradiation Therapy

    Elicin, Olgun [Department of Radiation Oncology, Lausanne University Hospital, Lausanne (Switzerland); Callaway, Sharon [Velocity Medical Solutions, Atlanta, Georgia (United States); Prior, John O. [Department of Nuclear Medicine, Lausanne University Hospital, Lausanne (Switzerland); Bourhis, Jean [Department of Radiation Oncology, Lausanne University Hospital, Lausanne (Switzerland); Ozsahin, Mahmut, E-mail: mahmut.ozsahin@chuv.ch [Department of Radiation Oncology, Lausanne University Hospital, Lausanne (Switzerland); Herrera, Fernanda G., E-mail: fernanda.herrera@chuv.ch [Department of Radiation Oncology, Lausanne University Hospital, Lausanne (Switzerland)

    2014-12-01

    Purpose: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using {sup 18}F-labeled fluorodeoxyglucose positron emission tomography [{sup 18}F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). Methods and Materials: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [{sup 18}F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BM{sub TOT}). Active bone marrow (BM{sub ACT}) was contoured based on SUV greater than the mean SUV of BM{sub TOT}. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40}, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. Results: Mean relative pre-post-therapy SUV reductions in BM{sub TOT} and BM{sub ACT} were 27% and 38%, respectively. BM{sub ACT} volume was significantly reduced after treatment (from 651.5 to 231.6 cm{sup 3}, respectively; P<.0001). BM{sub ACT} V{sub 30} was significantly correlated with a reduction in BM{sub ACT} SUV (R{sup 2}, 0.14; P<.001). The reduction in BM{sub ACT} SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R{sup 2}, 0.27; P=.04) and at last follow-up (R{sup 2}, 0.25; P=.04). Different dosimetric parameters of BM{sub TOT} and BM{sub ACT} correlated with long-term hematological outcome. Conclusions: The volumes of BM

  8. [18F]FDG-PET Standard Uptake Value as a Metabolic Predictor of Bone Marrow Response to Radiation: Impact on Acute and Late Hematological Toxicity in Cervical Cancer Patients Treated With Chemoradiation Therapy

    Purpose: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using 18F-labeled fluorodeoxyglucose positron emission tomography [18F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). Methods and Materials: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [18F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BMTOT). Active bone marrow (BMACT) was contoured based on SUV greater than the mean SUV of BMTOT. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V10, V20, V30, and V40, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. Results: Mean relative pre-post-therapy SUV reductions in BMTOT and BMACT were 27% and 38%, respectively. BMACT volume was significantly reduced after treatment (from 651.5 to 231.6 cm3, respectively; P<.0001). BMACT V30 was significantly correlated with a reduction in BMACT SUV (R2, 0.14; P<.001). The reduction in BMACT SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R2, 0.27; P=.04) and at last follow-up (R2, 0.25; P=.04). Different dosimetric parameters of BMTOT and BMACT correlated with long-term hematological outcome. Conclusions: The volumes of BMTOT and BMACT that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in

  9. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    SONG, KUI; Li, Min; Xu, Xiaojun; Xuan, Li; HUANG, GUINIAN; Liu, Qifa

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose tra...

  10. Acute Brain Metabolic Effects of Cocaine in Rhesus Monkeys with a History of Cocaine Use

    Henry, Porche’Kirkland; Murnane, Kevin; Votaw, John R.; Howell, Leonard L.

    2010-01-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N=6) were given increasing access to cocaine under a fixed-ratio schedule of i.v. drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute i.m. cocaine-induced changes in brain metabol...

  11. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation

    Jan, Wajanat; Wang, Zhiyue J. [Department of Radiology, University of Pennsylvania School of Medicine, Children' s Hospital of Philadelphia, Pennsylvania (United States); Zimmerman, Robert A. [Department of Radiology, University of Pennsylvania School of Medicine, Children' s Hospital of Philadelphia, Pennsylvania (United States); Department of Radiology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States); Berry, Gerard T.; Kaplan, Paige B.; Kaye, Edward M. [Department of Pediatrics, University of Pennsylvania School of Medicine, The Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States)

    2003-06-01

    Maple syrup urine disease (MSUD) is an inborn error of amino acid metabolism, which affects the brain tissue resulting in impairment or death if untreated. Imaging studies have shown reversible brain edema during acute metabolic decompensation. The purpose of this paper is to describe the diffusion-weighted imaging (DWI) and spectroscopy findings during metabolic decompensation and to assess the value of these findings in the prediction of patient outcome. Six patients with the diagnosis of MSUD underwent conventional MR imaging with DWI during acute presentation with metabolic decompensation. Spectroscopy with long TE was performed in four of the six patients. Follow-up examinations were performed after clinical and metabolic recovery. DWI demonstrated marked restriction of proton diffusion compatible with cytotoxic or intramyelinic sheath edema in the brainstem, basal ganglia, thalami, cerebellar and periventricular white matter and the cerebral cortex. This was accompanied by the presence of an abnormal branched-chain amino acids (BCAA) and branched-chain alpha-keto acids (BCKA) peak at 0.9 ppm as well as elevated lactate on proton spectroscopy in all four patients. The changes in all six patients were reversed with treatment without evidence of volume loss or persistent tissue damage. The presence of cytotoxic or intramyelinic edema as evidenced by restricted water diffusion on DWI, with the presence of lactate on spectroscopy, could imply imminent cell death. However, in the context of metabolic decompensation in MSUD, it appears that changes in cell osmolarity and metabolism can reverse completely after metabolic correction. (orig.)

  12. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation

    Maple syrup urine disease (MSUD) is an inborn error of amino acid metabolism, which affects the brain tissue resulting in impairment or death if untreated. Imaging studies have shown reversible brain edema during acute metabolic decompensation. The purpose of this paper is to describe the diffusion-weighted imaging (DWI) and spectroscopy findings during metabolic decompensation and to assess the value of these findings in the prediction of patient outcome. Six patients with the diagnosis of MSUD underwent conventional MR imaging with DWI during acute presentation with metabolic decompensation. Spectroscopy with long TE was performed in four of the six patients. Follow-up examinations were performed after clinical and metabolic recovery. DWI demonstrated marked restriction of proton diffusion compatible with cytotoxic or intramyelinic sheath edema in the brainstem, basal ganglia, thalami, cerebellar and periventricular white matter and the cerebral cortex. This was accompanied by the presence of an abnormal branched-chain amino acids (BCAA) and branched-chain alpha-keto acids (BCKA) peak at 0.9 ppm as well as elevated lactate on proton spectroscopy in all four patients. The changes in all six patients were reversed with treatment without evidence of volume loss or persistent tissue damage. The presence of cytotoxic or intramyelinic edema as evidenced by restricted water diffusion on DWI, with the presence of lactate on spectroscopy, could imply imminent cell death. However, in the context of metabolic decompensation in MSUD, it appears that changes in cell osmolarity and metabolism can reverse completely after metabolic correction. (orig.)

  13. Acute phase response in Wistar rats after controlled hemorrhage

    Stepanović Predrag; Maličević Ž.; Andrić N.; Nikolovski-Stefanović Zorica

    2011-01-01

    After injury the acute-phase response of the organism activates mechanisms which imply the release of cytokines, stress hormones, and mediators of pain and inflammation. The main function of the acutephase response is to hinder further damage of the injured tissue by activating reparative processes. The increase in the concentration of acute phase proteins and the concurrent decrease in albumins and prealbumins indicate that there is a strong link between t...

  14. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat

    Linde, Rasmus; Hasselbalch, Steen G.; Topp, Simon; Paulson, Olaf B.; Madsen, Peter L.

    2006-01-01

    is not known. Alterations in several parameters may possibly explain the increase in CBF and the resetting of the relation between CBF and cerebral metabolism. To study this phenomenon further, we measured global CBF and global cerebral metabolism with the Kety-Schmidt technique in the wakeful rat...... before and during infusion of ketone bodies. During acute hyperketonemia (average concentration of beta-hydroxybutyrate: 6 mmol/L), global CBF increased 65% from 108 to 178 mL/100 g min and the cerebral metabolic rates for both oxygen and glucose remained constant. This resetting of the relation between...

  15. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis

    Oliveira, Marina C.; Tavares, Luciana P.; Vago, Juliana P.; Batista, Nathália V.; Queiroz-Junior, Celso M.; Vieira, Angelica T.; Menezes, Gustavo B.; Sousa, Lirlândia P.; van de Loo, Fons A. J.; Teixeira, Mauro M.; Amaral, Flávio A.; Ferreira, Adaliene V. M.

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  16. Acute Glucose Response Properties Beyond Feeding.

    Burnett, C Joseph; Krashes, Michael J

    2016-05-01

    Hypothalamic AgRP neurons potently coordinate feeding behavior to ensure an organism's viability. However, their acute role in glucose-regulatory function remains to be addressed. Steculorum et al. now report that activation of a specific set of AgRP neurons results in an impairment of insulin-stimulated glucose uptake in brown fat through a myogenic signature program. PMID:27052261

  17. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia

    den Hoed, M. A. H.; Lopez-Lopez, E.; te Winkel, M. L.; Tissing, W.; de Rooij, J. D. E.; Gutierrez-Camino, A.; Garcia-Orad, A.; den Boer, E.; Pieters, R.; Pluijm, S. M. F.; de Jonge, R.; van den Heuvel-Eibrink, M. M.

    2015-01-01

    Methotrexate (MTX) is an effective and toxic chemotherapeutic drug in the treatment of pediatric acute lymphoblastic leukemia (ALL). In this prospective study, we aimed to identify metabolic and genetic determinants of MTX toxicity. One hundred and thirty-four Dutch pediatric ALL patients were treat

  18. Clopidogrel metabolism related gene polymorphisms in Chinese patients with acute coronary syndrome

    冯广迅

    2013-01-01

    Objective To detect the single nucleotide polymorphisms of clopidogrel metabolism related genes(CYP2C19,ABCB1 and PON1) in Chinese patients with acute coronary syndrome(ACS) by genotype analysis. Methods Genetic analysis was performed in patients admitted to

  19. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation.

    Tanimura, Yuko; Aoi, Wataru; Takanami, Yoshikazu; Kawai, Yukari; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu

    2016-06-01

    Fibroblast growth factor 21, a metabolic regulator, plays roles in lipolysis and glucose uptake in adipose tissues and skeletal muscles. Its expression in skeletal muscle is upregulated upon activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is induced by exercise and muscle contraction. We examined the increase of fibroblast growth factor 21 after acute exercise in metabolic organs, especially skeletal muscles and circulation. Participants exercised on bicycle ergometers for 60 min at 75% of their V˙O2max. Venous blood samples were taken before exercise and immediately after exercise. In an animal study, male ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed treadmill exercises at 30 m min(-1) for 60 min. Shortly thereafter, blood, liver, and skeletal muscle samples were taken from mice. Acute exercise induced the increase of serum fibroblast growth factor 21 in both humans and mice, and increased fibroblast growth factor 21 expression in the skeletal muscles and the liver of mice. Acute exercise activated Akt in mice skeletal muscle. Acute exercise increases fibroblast growth factor 21 concentrations in both serum and metabolic organs. Moreover, results show that acute exercise increased the expression of fibroblast growth factor 21 in skeletal muscle, accompanied by the phosphorylation of Akt in mice. PMID:27335433

  20. VENTROMEDIAL HYPOTHALAMIC REGULATION OF HORMONAL AND METABOLIC RESPONSES TO EXERCISE

    Vissing, John; Wallace, Jo L.; Scheurink, Anton J.W.; Galbo, Henrik; Steffens, Anton B.

    1989-01-01

    Recent studies have indicated a neural regulation of hormonal and metabolic responses to exercise. Studies on the ventromedial hypothalamus (VMH) suggest that the VMH might be involved in neural control of exercise metabolism. We therefore studied 25 rats with or without Marcain-anesthetized VMH (Ma

  1. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  2. Metabolic response to malnutrition: its relevance to enteral feeding.

    Love, A H

    1986-01-01

    Malnutrition results in a wide variety of metabolic responses, depending on circumstances, from reactions to pure deprivation of nutrients to include the added stress of injury and sepsis. Important differences of response exist between adults and children. Weight loss with changes in carbohydrate, fat, and protein metabolism are well documented. Disturbances of fluid and electrolyte balance are newer areas of interest as are changes in requirements for micronutrients such as trace metals. Ma...

  3. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases. PMID:26234931

  4. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters

    Kristensen, Lena; Buhl, Rikke; Nostell, Katarina; Bak, Lars; Petersen, Ellen; Lindholm, Maria; Jacobsen, Stine

    2014-01-01

    The purpose of the study was to investigate whether acute strenuous exercise (1600- to 2500-m race) would elicit an acute phase response (APR) in Standardbred trotters. Blood levels of several inflammatory markers [serum amyloid A (SAA), haptoglobin, fibrinogen, white blood cell count (WBC), and iron], muscle enzymes [creatinine kinase (CK) and aspartate transaminase (AST)], and hemoglobin were assessed in 58 Standardbred trotters before and after racing. Hemoglobin levels increased and iron ...

  5. Action of Antiproteases on the Inflammatory Response in Acute Pancreatitis

    Chun-Chia Chen; Sun-Sang Wang; Fa-Yauh Lee

    2007-01-01

    The spectrum of acute pancreatitis ranges from mild edematous disease to a severe necrotizing process which is usually accompanied by local or systemic complications and even mortality. Early deaths (within the first week) due to severe acute pancreatitis are generally caused by massive inflammatory responses which result in multiple organ failure. Although the exact mechanisms which trigger the inflammatory and necrotizing processes are not completely understood, it is generally accepted tha...

  6. Acute effects of ghrelin administration on glucose and lipid metabolism

    Vestergaard, Esben Thyssen; Djurhuus, Christian Born; Gjedsted, Jakob;

    2007-01-01

    CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single-blind, p......CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single......-blind, placebo-controlled two-period crossover study. SETTING: The study was performed in a university clinical research laboratory. PARTICIPANTS: Eight healthy men aged 27.2 +/- 0.9 yr with a body mass index of 23.4 +/- 0.5 kg/m(2) were included in the study. INTERVENTION: Subjects received infusion of ghrelin...... the final 2 h of each infusion. RESULTS: Basal and insulin-stimulated glucose disposal decreased with ghrelin [basal: 1.9 +/- 0.1 (ghrelin) vs. 2.3 +/- 0.1 mg x kg(-1) x min(-1), P = 0.03; clamp: 3.9 +/- 0.6 (ghrelin) vs. 6.1 +/- 0.5 mg x kg(-1) x min(-1), P = 0.02], whereas endogenous glucose...

  7. Protein metabolism in malnourished children with acute lower respiratory infection

    We studied 19 subjects and 15 controls from November 1994 to February 1995. HIV infection is common among this population and HIV testing was done by ELISA of most subjects and controls in the course of their routine clinical care. To determine how HIV infection effects protein metabolism all HIV infected subjects and controls were grouped into a third category and compared to the subjects and controls. After the HIV subgrouping we were left with 13 subjects, 13 controls, and 8 HIV positive patients. KIC enrichments were used to calculate protein synthesis and breakdown, as KIC is believed to reflect intracellular leucine concentrations. Of note in Table 2 is the KIC/Leucine ratio is consistently greater than 1, averaging 1.3 over 16 samples. This is an unexpected finding as the KIC/Leucine ratio has been shown to be constant with a value of about 0.75 over a wide range of conditions. Samples for these eight patients have been evaluated under six different GCMS conditions to verify this unexpected observation. This ratio > 1.0 has been consistently found under all of these conditions. We are not certain what biological phenomenon can explain this, but it calls into question the validity of the four compartment model upon which these calculations are based. It is not unreasonable to expect that children with kwashiorkor metabolize ketoacids differently, and this difference could account for the increased KIC/Leucine ratio. 19 refs, 4 tabs

  8. Effect of an acute necrotic bacterial gill infection and feed deprivation on the metabolic rate of Atlantic salmon Salmo salar.

    Jones, M A; Powell, M D; Becker, J A; Carter, C G

    2007-10-31

    In this study, experiments were conducted to examine the effect of an acute necrotic bacterial gill infection on the metabolic rate (M(O2)) of Atlantic salmon Salmo salar. Fed and unfed Atlantic salmon smolts were exposed to a high concentration (5 x 10(12) CFU ml(-1)) of the bacteria Tenacibaculum maritimum, their routine and maximum metabolic rates (M(O2rout) and M(O2max), respectively) were measured, and relative metabolic scope determined. A significant decrease in metabolic scope was found for both fed and unfed infected groups. Fed infected fish had a mean +/- standard error of the mean (SEM) decrease of 2.21 +/- 0.97 microM O2 g(-1) h(-1), whilst unfed fish a mean +/- SEM decrease of 3.16 +/- 1.29 microM O2 g(-1) h(-1). The decrease in metabolic scope was a result of significantly increased M(O2rout) of both fed and unfed infected salmon. Fed infected fish had a mean +/- SEM increase in M(O2rout) of 1.86 +/- 0.66 microM O2 g(-1) h(-1), whilst unfed infected fish had a mean +/- SEM increase of 2.16 +/- 0.72 microM O2 g(-1) h(-1). Interestingly, all groups maintained M(O2max) regardless of infection status. Increases in M(O2rout) corresponded to a significant increase in blood plasma osmolality. A decrease in metabolic scope has implications for how individuals allocate energy; fish with smaller metabolic scope will have less energy to allocate to functions such as growth, reproduction and immune response, which may adversely affect the efficiency of fish growth. PMID:18159670

  9. Metabolism of biogenic amines in acute cerebral ischemia: Influence of systemic hyperglycemia

    Milovanović Aleksandar

    2012-01-01

    Full Text Available Dopamine, norepinephrine and serotonin are biogenic amines which are transmitters of the central nervous system. The effects of ischemia on the brain parenchyma depends on many factors, such is the mechanism of blood flow interruption, velocity of the occurring blood flow interruption, duration of an ischemic episode, organization of anatomical structures of the brain blood vessels etc., which all influence the final outcome. During interruption of the brain circulation in experimental or clinical conditions, neurotransmitter metabolism, primarily of biogenic amines, is disturbed. Many researches with various experimental models of complete ischemia reported a decrease in the content of norepinephrine, dopamine and serotonin in the CNS tissue. It was proven that hyperglycemia can drastically increase cerebral injury followed by short-term cerebral ischemia. Considering the fact that biogenic amines (dopamine, norepinephrine and serotonin influence the size of neurologic damage, as well as the fact that in hyperglycemic conditions infarct size (from the morphological aspect is larger relative to normoglycemic status, the intention was to evaluate the role of biogenic amines in occurrence of damage in conditions of hyperglycemia, i.e. in the case of brain apoplexia in diabetics. Analysis of biogenic amines metabolism in states of acute hyperglycemia, as well as analysis of the effects of reversible and irreversible brain ischemia on metabolism of serotonin, dopamine and norepinephrine, showed that acute hyperglycemia slows down serotonin, dopamine and norepinephrine metabolism in the cerebral cortex and n. caudatus. Brain ischemia in normoglycemic animals by itself has no influence on biogenic amines metabolism, but the effect of ischemia becomes apparent during reperfusion. In recirculation, which corresponds to the occurrences in penumbra, release of biogenic amines is uncontrolled and increased. Brain ischemia in acute hyperglycemic animals

  10. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish.

    Rupia, Emmanuel J; Binning, Sandra A; Roche, Dominique G; Lu, Weiqun

    2016-07-01

    Survival depends on appropriate behavioural and physiological responses to danger. In addition to active 'fight-flight' defence responses, a passive 'freeze-hide' response is adaptive in some contexts. However, the physiological mechanisms determining which individuals choose a given defence response remain poorly understood. We examined the relationships among personality, metabolic performance and physiological stress responses across an environmental gradient in the olive flounder, Paralichthys olivaceus. We employed four behavioural assays to document the existence of two distinct behavioural types ('bold' and 'shy') in this species. We found consistent metabolic differences between individuals of a given behavioural type across an environmental gradient: shy individuals had overall lower aerobic scope, maximum metabolic rate and standard metabolic rate than bold individuals in both high (25 ppt) and low (3 ppt) salinity. These behavioural and metabolic differences translated into divergent physiological responses during acute stress: shy individuals adopted a passive 'freeze-hide' response by reducing their oxygen consumption rates (akin to shallow breathing) whereas bold individuals adopted an active 'fight-flight' response by increasing their rates of respiration. These distinct defence strategies were repeatable within individuals between salinity treatments. Although it has been suggested theoretically, this is the first empirical evidence that the metabolic response to stressful situations differs between bold and shy individuals. Our results emphasize the importance of incorporating physiological measures to understand the mechanisms driving persistent inter-individual differences in animals. PMID:27044558

  11. Metabolic and Endocrine Responses to Nocturnal Eating

    Holmbäck, Ulf

    2002-01-01

    An increasing amount of people have their work hours displaced to the night and there are indications that shift work and other irregular working schedules are associated with an increased risk of developing the metabolic syndrome and other pathological conditions. It is therefore important to address the consequences of eating at irregular hours, especially nighttime. Papers I-III refer to a study in which 7 males were given a high-carbohydrate diet (HC) or a high-fat diet (HF), using a cros...

  12. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study.

    Vestergaard, Mark B; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik Bw

    2016-06-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  13. Neuromuscular, hormonal, and metabolic responses to different plyometric training volumes in rugby players.

    Cadore, Eduardo L; Pinheiro, Eraldo; Izquierdo, Mikel; Correa, Cleiton S; Radaelli, Régis; Martins, Jocelito B; Lhullier, Francisco L R; Laitano, Orlando; Cardoso, Marcelo; Pinto, Ronei S

    2013-11-01

    The purpose of this study was to investigate the effect of different volumes of plyometric exercise (i.e., 100, 200, or 300 hurdle jumps) on acute strength and jump performance and on the acute hormonal and lactate responses in rugby players. Eleven young male elite rugby players (age, 23.5 ± 0.9 years; height, 173 ± 4.8 cm) volunteered for the study. Maximal isometric peak torque (PT), maximal rate of force development (RFD), squat jump (SJ), and drop jump (DJ) performance were assessed before and 5 minutes, 8 hours, and 24 hours after 100, 200, or 300 jumps. In addition, total testosterone (TT), cortisol (COR), and lactate were measured before and after the 3 different plyometric exercise volumes. There were significant decreases in the PT (p plyometric exercise volumes (100, 200, and 300 jumps) resulted in similar neuromuscular, metabolic, and hormonal responses. PMID:23442289

  14. Metabolic response to surgery in the cancer patient

    The metabolic response to uncomplicated surgery in the patient undergoing primary therapy for malignancy is no different than the response to surgery of similar magnitude for benign disease. Hemodynamic, nutritional-endocrine, and convalescent changes are similar. However, with current aggressive approaches to the management of cancer, the patient often comes to surgery with evidence of major debilitating side effects from his progressive malignancy or from aggressive multimodality therapy. The surgeon must be aware of the consequences of the use of combination therapies on the expected metabolic response to surgery. Awareness of such problems such as the nutritional deficit will allow preventive methods to supercede mtabolic salvage procedures

  15. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda;

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... to baseline ventilation, whereas CMR(glu) increased. CONCLUSION: In patients with acute bacterial meningitis, we found variable levels of CBF and cerebrovascular CO(2) reactivity, a low a-v DO(2), low cerebral metabolic rates of oxygen and glucose, and a cerebral lactate efflux. In these patients, a...... ventilation strategy guided by jugular bulb oximetry and/or repeated CBF measurements may be more optimal in terms of cerebral oxygenation than a strategy aiming at identical levels of P(a)CO(2) for all patients....

  16. Intersection of the unfolded protein response and hepatic lipid metabolism

    Lee, Ann-Hwee; Glimcher, Laurie H.

    2009-01-01

    The liver plays a central role in whole-body lipid metabolism by governing the synthesis, oxidization, transport and excretion of lipids. The unfolded protein response (UPR) was identified as a signal transduction system that is activated by ER stress. Recent studies revealed a critical role of the UPR in hepatic lipid metabolism. The IRE1/XBP1 branch of the UPR is activated by high dietary carbohydrates and controls the expression of genes involved in fatty acid and cholesterol biosynthesis....

  17. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes.

    Suzan Wopereis

    Full Text Available BACKGROUND: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. METHODOLOGY: To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. CONCLUSIONS: Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men.

  18. Specific responses of monoamine neurotransmitters to various acute stressors

    Rongrong He; Guanyu Lin; Yifang Li; Keiich Abe; Xinsheng Yao; Hiroshi Kurihara

    2011-01-01

    This study determined the composition of histamine, serotonin and dopamine using high performance liquid chromatography and electrochemical detection, and compared the changes in monoamine levels in plasma, the cortex and midbrain of mice exposed to acute stressors, such as blood-drawing stimulation or restraint. Results demonstrated that plasma histamine levels were markedly increased when mice were exposed to blood-drawing stimulation and restraint stress. However, serotonin levels decreased in plasma of mice treated with restraint stress, and dopamine levels in plasma had no significant response to the two acute stressors. The three monoamines (histamine, serotonin and dopamine) increased at different degrees in restraint mice, but not in brain regions of blood-drawing stressed mice. Results indicated that histaminergic, serotonergic or dopaminergic systems have their own specific response to different acute stressors.

  19. Haemodialysis is an effective treatment in acute metabolic decompensation of maple syrup urine disease

    P.S. Atwal

    2015-09-01

    Full Text Available Acute metabolic decompensation in maple syrup urine disease can occur during intercurrent illness and is a medical emergency. A handful of reports in the medical literature describe the use of peritoneal dialysis and haemodialysis as therapeutic inventions. We report the only patient from our centre to have haemodialysis performed in this setting. Combined with dietary BCAA restriction and calorific support, haemodialysis allows rapid reduction in plasma leucine concentrations considerably faster than conservative methods.

  20. Effects of acute paroxetine administration on tryptophan metabolism and disposition in the rat.

    Badawy, A. A.; Morgan, C. J.

    1991-01-01

    1 The effects of acute oral administration of paroxetine on tryptophan metabolism and disposition were examined in the rat. 2 Basal liver tryptophan pyrrolase activity was inhibited by paroxetine in vitro and after oral administration. Maximum inhibition was caused by a 1 mg kg-1 dose. 3 Paroxetine administration also inhibited pyrrolase activity that had previously been enhanced by hormonal induction by cortisol or cofactor activation by haematin. The cortisol induction of the enzyme was, ho...

  1. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise.

    Catoire, M.; Alex, S.; Paraskevopulos, N.; Mattijssen, F.; Evers-van Gogh, I.; Schaart, G.; Jeppesen, J.; Kneppers, A.; Mensink, M.; Voshol, P.J.; Olivecrona, G.; Tan, N.S.; Hesselink, M.K.; Berbee, J.F.; Rensen, P.C.; Kalkhoven, E.; Schrauwen, P.; Kersten, S.

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise e

  2. Changes in cerebral oxidative metabolism in patients with acute liver failure

    Bjerring, P N; Larsen, F S

    2013-01-01

    Acute liver failure patients with a persistence of hyperammonemia are at an increased risk of intracranial hypertension due to development of brain oedema. In vitro studies of brain tissue and cell cultures that indicates that exposure to ammonium inhibits enzymatic activity in the tricarboxylic...... acid cycle, induces substrate depletion through marked glutamate utilization for glutamine synthesis and leads to mitochondrial dysfunction. In patients with acute liver failure cerebral microdialysis studies show a linear correlation between the lactate to pyruvate ratio and the glutamine...... concentration, as well as to some of the adenosine triphosphate degradation products. However, clinical observations of cerebral exchange rates of oxygen, glucose, lactate and amino acids challenge the interpretation of these findings. In this review the conflicting data of cerebral metabolism during acute...

  3. Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests

    Débora Rebechi

    2014-09-01

    Full Text Available Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE, alpha (EST-α and beta (EST-β esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

  4. PREDICTORS OF INDIVIDUAL DIFFERENCES IN ACUTE RESPONSE TO OZONE EXPOSURE

    The purposes of this study were to identify personal characteristics which predict individual differences in acute response to ozone exposure and to develop a predictive model for decrements in FEV1 as a function of ozone concentration and individual predictors. esponse and predi...

  5. Acute khat use reduces response conflict in habitual users

    Lorenza S Colzato

    2013-06-01

    Full Text Available Khat consumption has become a worldwide phenomenon broadening from Eastern Africa and the south west of the Arabian Peninsula to ethnic communities in the rest of the world. So far, the cognitive effects of khat use are poorly understood and no studies have looked into the relation between acute khat use and cognitive control functions, the way we control our thoughts and goal directed behavior.We studied how acute khat use affects the emergence and the resolution of response conflict, a central cognitive control function. Khat users (n=11 and khat-free controls (n=18 were matched in terms of education, sex, alcohol and cannabis consumption. Groups were tested on response conflict, as measured by the Simon task. In one single session, participants worked through two task blocks: the khat group chewed exclusively khat whereas the khat-free group chewed solely a gum.Results showed that in the second block, which reflects the acute impact of khat, the khat group was better than controls in resolving stimulus-induced response conflict as indexed by a smaller Simon effect.These results suggest that the acute intake of khat may improve participants’ ability of handling response conflict.

  6. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis

    Windsor, A; Kanwar, S; Li, A.; Barnes, E.; Guthrie, J; Spark, J; Welsh, F.; Guillou, P; Reynolds, J

    1998-01-01

    Background—In patients with major trauma and burns, total enteral nutrition (TEN) significantly decreases the acute phase response and incidence of septic complications when compared with total parenteral nutrition (TPN). Poor outcome in acute pancreatitis is associated with a high incidence of systemic inflammatory response syndrome (SIRS) and sepsis. 
Aims—To determine whether TEN can attenuate the acute phase response and improve clinical disease severity in patients with ac...

  7. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. PMID:26541482

  8. Mitochondrial metabolic remodeling in response to genetic and environmental perturbations.

    Hollinshead, Kate E R; Tennant, Daniel A

    2016-07-01

    Mitochondria are metabolic hubs within mammalian cells and demonstrate significant metabolic plasticity. In oxygenated environments with ample carbohydrate, amino acid, and lipid sources, they are able to use the tricarboxylic acid cycle for the production of anabolic metabolites and ATP. However, in conditions where oxygen becomes limiting for oxidative phosphorylation, they can rapidly signal to increase cytosolic glycolytic ATP production, while awaiting hypoxia-induced changes in the proteome mediated by the activity of transcription factors such as hypoxia-inducible factor 1. Hypoxia is a well-described phenotype of most cancers, driving many aspects of malignancy. Improving our understanding of how mitochondria change their metabolism in response to this stimulus may therefore elicit the design of new selective therapies. Many of the recent advances in our understanding of mitochondrial metabolic plasticity have been acquired through investigations of cancer-associated mutations in metabolic enzymes, including succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. This review will describe how metabolic perturbations induced by hypoxia and mutations in these enzymes have informed our knowledge in the control of mitochondrial metabolism, and will examine what this may mean for the biology of the cancers in which these mutations are observed. WIREs Syst Biol Med 2016, 8:272-285. doi: 10.1002/wsbm.1334 For further resources related to this article, please visit the WIREs website. PMID:27196610

  9. Mitochondrial metabolic remodeling in response to genetic and environmental perturbations

    Hollinshead, Kate E.R.

    2016-01-01

    Mitochondria are metabolic hubs within mammalian cells and demonstrate significant metabolic plasticity. In oxygenated environments with ample carbohydrate, amino acid, and lipid sources, they are able to use the tricarboxylic acid cycle for the production of anabolic metabolites and ATP. However, in conditions where oxygen becomes limiting for oxidative phosphorylation, they can rapidly signal to increase cytosolic glycolytic ATP production, while awaiting hypoxia‐induced changes in the proteome mediated by the activity of transcription factors such as hypoxia‐inducible factor 1. Hypoxia is a well‐described phenotype of most cancers, driving many aspects of malignancy. Improving our understanding of how mitochondria change their metabolism in response to this stimulus may therefore elicit the design of new selective therapies. Many of the recent advances in our understanding of mitochondrial metabolic plasticity have been acquired through investigations of cancer‐associated mutations in metabolic enzymes, including succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. This review will describe how metabolic perturbations induced by hypoxia and mutations in these enzymes have informed our knowledge in the control of mitochondrial metabolism, and will examine what this may mean for the biology of the cancers in which these mutations are observed. WIREs Syst Biol Med 2016, 8:272–285. doi: 10.1002/wsbm.1334 For further resources related to this article, please visit the WIREs website. PMID:27196610

  10. Acute In Vivo Response to an Alternative Implant for Urogynecology

    Sabiniano Roman Regueros

    2014-01-01

    Full Text Available Purpose. To investigate in vivo the acute host response to an alternative implant designed for the treatment of stress urinary incontinence (SUI and pelvic organ prolapse (POP. Methods. A biodegradable scaffold was produced from poly-L-lactic acid (PLA using the electrospinning technique. Human and rat adipose-derived stem cells (ADSCs were isolated and characterized by fluorescence-activated cell sorting and differentiation assays. PLA scaffolds were seeded and cultured for 2 weeks with human or rat ADSCs. Scaffolds with and without human or rat ADSCs were implanted subcutaneously on the abdominal wall of rats. After 3 and 7 days, 6 animals from each group were sacrificed. Sections from each sample were analyzed by Haematoxylin and Eosin staining, Sirius red staining, and immunohistochemistry for CD68, PECAM-1, and collagen I and III. Results. Animals responded to the scaffolds with an acute macrophage response. After 7 days of implantation, there was extensive host cell penetration, new blood vessel formation, and new collagen deposition throughout the full thickness of the samples without obvious differences between cell-containing and cell-free scaffolds. Conclusions. The acute in vivo response to an alternative implant (both with and without cells for the treatment of SUI and POP showed good acute integration into the host tissues.

  11. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Lynch Gordon S

    2009-09-01

    Full Text Available Abstract Background Systemic administration of β-adrenoceptor (β-AR agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h and chronic administration (1-28 days of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc was observed following acute and chronic administration of formoterol. Acute (but not chronic administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol

  12. Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines.

    Stefano Tiziani

    Full Text Available Combined bezafibrate (BEZ and medroxyprogesterone acetate (MPA exert unexpected antileukaemic activities against acute myeloid leukaemia (AML and these activities are associated with the generation of reactive oxygen species (ROS within the tumor cells. Although the generation of ROS by these drugs is supported by preceding studies including our own, the interrelationship between the cellular effects of the drugs and ROS generation is not well understood. Here we report the use of NMR metabolomic profiling to further study the effect of BEZ and MPA on three AML cell lines and to shed light on the underlying mechanism of action. For this we focused on drug effects induced during the initial 24 hours of treatment prior to the onset of overt cellular responses and examined these in the context of basal differences in metabolic profiles between the cell lines. Despite their ultimately profound cellular effects, the early changes in metabolic profiles engendered by these drugs were less pronounced than the constitutive metabolic differences between cell types. Nonetheless, drug treatments engendered common metabolic changes, most markedly in the response to the combination of BEZ and MPA. These responses included changes to TCA cycle intermediates consistent with recently identified chemical actions of ROS. Notable amongst these was the conversion of alpha-ketoglutarate to succinate which was recapitulated by the treatment of cell extracts with exogenous hydrogen peroxide. These findings indicate that the actions of combined BEZ and MPA against AML cells are indeed mediated downstream of the generation of ROS rather than some hitherto unsuspected mechanism. Moreover, our findings demonstrate that metabolite profiles represent highly sensitive markers for genomic differences between cells and their responses to external stimuli. This opens new perspectives to use metabolic profiling as a tool to study the rational redeployment of drugs in new disease

  13. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  14. Metabolic changes in concussed American football players during the acute and chronic post-injury phases

    Ellemberg Dave

    2011-08-01

    Full Text Available Abstract Background Despite negative neuroimaging findings many athletes display neurophysiological alterations and post-concussion symptoms that may be attributable to neurometabolic alterations. Methods The present study investigated the effects of sports concussion on brain metabolism using 1H-MR Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the same age (mean: 22.5 years and education (mean: 16 years within both the acute and chronic post-injury phases. All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI. Results Concussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1 cortices in the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological increase of m-I:Cr levels in M1 that was only present in the chronic phase. Conclusions These results confirm cortical neurometabolic changes in the acute post-concussion phase as well as recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.

  15. Metabolic response at repeat PET/CT predicts pathological response to neoadjuvant chemotherapy in oesophageal cancer

    Reports have suggested that a reduction in tumour 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) examination during or after neoadjuvant chemotherapy may predict pathological response in oesophageal cancer. Our aim was to determine whether metabolic response predicts pathological response to a standardised neoadjuvant chemotherapy regimen within a prospective clinical trial. Consecutive patients staged with potentially curable oesophageal cancer who underwent treatment within a non-randomised clinical trial were included. A standardised chemotherapy regimen (two cycles of oxaliplatin and 5-fluorouracil) was used. PET/CT was performed before chemotherapy and repeated 24-28 days after the start of cycle 2. Forty-eight subjects were included: mean age 65 years; 37 male. Using the median percentage reduction in SUVmax (42%) to define metabolic response, pathological response was seen in 71% of metabolic responders (17/24) compared with 33% of non-responders (8/24; P = 0.009, sensitivity 68%, specificity 70%). Pathological response was seen in 81% of subjects with a complete metabolic response (13/16) compared with 38% of those with a less than complete response (12/32; P = 0.0042, sensitivity 52%, specificity 87%). There was no significant histology-based effect. There was a significant association between metabolic response and pathological response; however, accuracy in predicting pathological response was relatively low. (orig.)

  16. Activation of platelet aggregation and arachidonate metabolism in early stage of acute radiation injury

    The paper describes the changes of platelet aggregation and arachidonate metabolism in platelets and endothelial cells after 8.0-8.5 Gy γ-ray whole-body irradiation in rats. It was found that with 8.0 Gy exposure platelet aggregation rate and speed, and plasma TxB2 level were increased at 4h and on the 1st day post irradiation, and that 6-keto-PGF1α level was enhanced at 4h, then reduced to the control level on the 1st day post irradiation. The result of biological assay showed the ability for rat platelets to convert exogenous arachidonate into TxA2 was significantly raised at 4h and on the 1st day after 8.5 Gy γ-ray irradiation. It is suggested that the activation of platelet arachidonate metabolism may be one of the important causes of acute radiation injury is suggested that the activation of platelet arachidonate metabolism may be one of the important causes of acute radiation injury

  17. CB1 cannabinoid receptor modulates MDMA acute responses and reinforcement

    Touri??o Raposo, Clara; Ledent, Catherine; Maldonado, Rafael; Valverde Granados, Olga

    2008-01-01

    Background: 3, 4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug widely abused by young people. The endocannabinoid system is involved in the addictive processes induced by different drugs of abuse. However, the role of this system in the pharmacological effects of MDMA has not been yet clarified. Methods: Locomotion, body temperature and anxiogenic-like responses were evaluated after acute MDMA administration in CB1 knockout mice. Additionally, MDMA rewarding propertie...

  18. Sympathetic neural responses to mental stress during acute simulated microgravity

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  19. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    Bogdan, Ryan; Pizzagalli, Diego

    2006-01-01

    Background: Stress, one of the strongest risk factors for depression, has been linked to "anbedonic" behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods: To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-...

  20. Investigation of the acute inflammatory response in Crohn's disease.

    MARKS, D. J. B.

    2006-01-01

    Most theories concerning the primary cause of Crohn's disease focus on over-activation of the immune response. Paradoxically, the defect may instead relate to diminished acute inflammation. Neutrophil accumulation to sites of dermal trauma has been shown to be reduced. Were the same phenomenon to occur in the gut, it might impair bacterial clearance thus provoking granuloma formation. In this thesis, a novel technique demonstrated attenuated neutrophil accumulation following trauma to the bow...

  1. Acute Pulmonary Response in Landscape Workers: Job Redesign

    Sexton, Pauline Lethea

    2003-01-01

    Substantial efforts have been made in the study of occupational induced airway diseases. A strong link has been found between worker exposure to organic dust and resulting acute pulmonary spasms. The supporting studies behind this link are primarily in the industries of cotton, animal and swine farming; however, some studies have been related to landscaping type tasks (i.e. mowing, leaf blowing). The relationship between organic dust and pulmonary response is associated with respiratory ir...

  2. Endocrine and metabolic aspects of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    Gorski, J.R.

    1988-01-01

    Toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were characterized in male Sprague-Dawley rats in order to elucidate the mechanism of acute toxicity of this potent halogenated hydrocarbon. Studies in TCDD-treated, pair-fed control and ad libitum-fed control rates, as well as in thyroidectomized, adrenalectomized and hypophysectomized, revealed differential hormonal, toxicologic and histophathologic responses suggesting that these manifestations of TCDD exposure are the results of an insult to intermediary metabolism. Tissue specific alterations in de novo fatty acid synthesis were directly related to differential changes observed in thyroid hormone homeostasis. The increased hepatic de novo fatty acid synthesis provided a likely mechanism for the documented fact that TCDD-treated rats lose more body weight than corresponding pair-fed controls because de novo fatty acid synthesis represents an energy inefficient metabolic process. Experiments in adrenalectomized and hypophysectomized rats led to the hypothesis that severe hypoglycemia due to inhibition of gluconeogenesis is the cause of TCDD-induced death. A subsequent characterization of gluconeogenesis in TCDD-treated rats confirmed this hypothesis.

  3. Acute metabolic response to fasted and postprandial exercise

    Lima FD; Correia AL; Teixeira DS; Silva Neto DV; Fernandes ÍS; Xavier Viana MB; Petitto M; Silva Sampaio RA; Chaves SN; Alves ST; Dantas RA; Mota

    2015-01-01

    Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Brasília (UniCEUB), Brasília, DF...

  4. Acute metabolic response to fasted and postprandial exercise

    de Lima, Filipe Dinato

    2015-01-01

    Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Bras&iacut...

  5. Optimal Biofilm Featues: metabolic and geometric response to multiple oxidants

    Kempes, C.; Okegbe, C.; Mears-Clarke, Z.; Follows, M. J.; Dietrich, L.

    2014-12-01

    An important challenge in understanding complex microbial mat communities is determining how groups of a single species balance metabolic requirements with the dynamics of resource supply. We have investigated this problem in the context of redox resources within a single-species bacterial biofilm. We developed a mathematical model of oxidant availability and metabolic response within biofilm features and we show that observed biofilm geometries maximize cellular reproduction and growth efficiency. Our model accurately predicts the measured distribution of two types of electron acceptors: oxygen, which is available from the environment, and phenazines, redox-active small molecules produced by the bacterium. Because our model is based on resource dynamics, we are also able to predict observed shifts in feature geometry based on changes in the availability of redox resources such as variations in the external availability of oxygen or the removal of phenazines. This analysis suggests various avenues for understanding microstructure and the evolution of spatial metabolism in microbial mats.

  6. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    Christian Bock; Sokolova, Inna M.; Silke Eilers; Pörtner, Hans O.; Gisela Lannig

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure ...

  7. The metabolic syndrome in survivors of childhood acute lymphoblastic leukemia in Isfahan, Iran

    Nahid Reisi

    2009-04-01

    Full Text Available

    • BACKGROUND: To determine the prevalence of metabolic syndrome in survivors of childhood leukemia in Isfahan, Iran.
    • METHODS: During a 4-year period (2003 to 2007, 55 children (33 male and 22 female diagnosed with ALL at Unit of Hematology/ Oncology, Department of Pediatrics, Isfahan University of Medical Science, were enrolled in this crosssectional study. Metabolic syndrome was defined using the modified version of Adult Treatment Panel (ATP III criteria. Insulin resistance was defined based on the homeostasis model assessment index (HOMA-IR.
    • RESULTS: The mean age of participates was 10.4 years (range 6-19 years and the mean interval since completion of chemotherapy was 35 months. Twenty percent (11/55 of survivors (10 male, 1 female met criteria for diagnosis of metabolic syndrome. Obesity was observed in one forth of patients and nearly 3/4 of obese patients had metabolic syndrome. High serum insulin levels were found in 16% of participants and in 63% of obese survivors. The mean insulin levels in survivors with metabolic syndrome was three-times more than those without (28.3 mu/l vs. 9.57 mu/l, p = 0.004. Insulin resistance was detected in 72.7% of survivors with metabolic syndrome and it was  ositively correlated with serum triglycerides (0.543, p < 0.001, systolic and diastolic BP (0.348, p = 0.01 and 0.368, p = 006 respectively, insulin levels (0.914, p < 0.001 and blood sugar (0.398, p = 003.
    • CONCLUSIONS: The prevalence of metabolic syndrome in survivors of childhood leukemia in Iran is higher than developed countries. Nearly all of the obese patients had metabolic syndrome. Weight control and regular physical exercise are recommended to the survivors.
    • KEYWORDS: Acute lymphoblastic leukemia, metabolic syndrome, obesity, children.

  8. Metabolic Context Regulates Distinct Hypothalamic Transcriptional Responses to Antiaging Interventions

    Alexis M. Stranahan

    2012-01-01

    Full Text Available The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db and nondiabetic wild-type (C57/Bl/6 animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds.

  9. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  10. Ubiquitin Metabolism Affects Cellular Response to Volatile Anesthetics in Yeast

    Wolfe, Darren; Reiner, Thomas; Keeley, Jessica L.; Pizzini, Mark; Keil, Ralph L.

    1999-01-01

    To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be invo...

  11. Metabolic and circulatory evaluation of acute cerebral ischaemic accidents in man by positron emission tomography

    Positron emission tomography and oxygen-15 were used to evaluate the effects of an almitrine-raubasine combination on cerebral blood flow and oxydative metabolism in patients with acute cerebral ischaemia. In 5 patients, aged between 58 and 74 years, with cerebral ischaemic accident in the territory of the middle cerebral artery, blood flow rate, oxygen consumption and brain oxygen extraction were measured before and after a 90-min intravenous infusion of almitrine bismesilate 15 mg and raubasine 5 mg. Only one patient presented with initial relative luxury perfusion, the intensity of which was reduced by the combined treatment. The other 4 patients had focal reduction of cerebral blood flow and oxygen consumption prior to treatment. Satistical analysis conducted on three cerebral areas (epicentre of the lesion, anterior and posterior juxtalesional areas and homologous heterolateral areas) showed a significant 3.6% increase of oxygen consumption in the epicentre, both hemispheres included, and a significant increase of cerebral blood flow in all three areas (3% on the healthy side, 13% on the diseased side). No significant change in oxygen extraction was demonstrated. The authors conclude that acute almitrine-raubasine treatment has beneficial effects on the brain immediately after a cerebral vascular accident, reflecting respect of the circulation-metabolism couple

  12. Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study

    Nielsen, Kirstine Lykke; Hartvigsen, Merete; Hedemann, Mette Skou;

    2014-01-01

    crossover design with 4 breads: white-wheat bread low in dietary fiber, rye bread with whole-rye kernels, and 2 whitewheat breads supplemented with either wheat arabinoxylan or oat b-glucan. Blood samples drawn 215, 30, and 120 min postprandially were analyzed by untargeted liquid chromatography......Background: In nutritional studies, pigs are often used as models for humans because of nutritional and physiologic similarities. However, evidence supporting similar metabolic responses to nutritional interventions is lacking. Objective: The objective was to establish whether pigs and humans...... respond similarly to a nutritional intervention. Using metabolomics, we compared the acute metabolic response to 4 test breads between conventional pigs (growing) and adult human subjects (with the metabolic syndrome). Design: Six catheterized pigs and 15 human subjects were tested in a randomized...

  13. Thermal sensation and thermophysiological responses to metabolic step-changes

    Goto, T.; Toftum, J.; de Dear, R.; Fanger, P. O.

    2006-05-01

    This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15 20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10 5 min 25% and during the prior 20 10 min 10%.

  14. AMPK regulates metabolism and survival in response to ionizing radiation

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  15. Computations of uncertainty mediate acute stress responses in humans.

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  16. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.

    Abdulla, Mohammed H; Sattar, Munavvar A; Johns, Edward J

    2016-02-01

    This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague-Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L(-1) in drinking water for 8 weeks or as an infusion (1.5 mg·kg(-1)·min(-1)) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%-65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%-75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats. PMID:26789093

  17. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  18. Angiotensin-converting enzyme inhibition increases glucose-induced insulin secretion in response to acute restraint.

    Schweizer, Júnia R O L; Miranda, Paulo A C; Fóscolo, Rodrigo B; Lemos, Joao P M; Paula, Luciano F; Silveira, Warley C; Santos, Robson A S; Pinheiro, Sérgio V B; Coimbra, Candido C; Ribeiro-Oliveira, Antônio

    2012-12-01

    There is increasing evidence suggesting involvement of the renin-angiotensin system (RAS) in carbohydrate metabolism and its response to stress. Thus, the aim of the present study was to evaluate the effects of chronic inhibition of the RAS on glucose and insulin levels during acute restraint stress. Male Holtzman rats were treated with 10 mg/kg per day enalapril solution or vehicle for 14 days. After 14 days, rats were divided into three experimental groups: enalapril + restraint (ER), vehicle + restraint (VR) and enalapril + saline (ES). Rats in the restraint groups were subjected to 30 min restraint stress, whereas rats in the ES groups were given saline infusion instead. Blood samples were collected at baseline and after 5, 10, 20 and 30 min restraint stress or saline infusion. After restraint, a hyperglycaemic response was observed in the ER and VR groups that peaked at 20 and 10 min, respectively (P inhibition with enalapril may increase glucose-induced insulin secretion in response to acute restraint. PMID:23734984

  19. Is leptin related to systemic inflammatory response in acute pancreatitis?

    Andrés Duarte-Rojo; Ana Lezama-Barreda; Mar(i)a Teresa Ram(i)rez-lglesias; Mario Peláez Luna; Guillermo Robles-Diaz

    2006-01-01

    AIM: To evaluate the relationship between leptin and systemic inflammation in acute pancreatitis.METHODS: Consecutive patients with acute pancreatitis were included. Body mass index and serum samples were obtained at admission. Leptin, TNF-α, IL-6, -8and -10 levels were determined by ELISA. Severity was defined according to Atlanta criteria.RESULTS: Fifty-two (29 females) patients were studied.Overall body mass index was similar between mild and severe cases, although women with severe pancreatitis had lower body mass index (P = 0.04) and men showed higher body mass index (P = 0.05). No difference was found in leptin levels regarding the severity of pancreatitis, but higher levels tended to appear in male patients with increased body mass index and severe pancreatitis (P = 0.1). A multivariate analysis showed no association between leptin levels and severity. The strongest cytokine associated with severity was IL-6.Correlations of leptin with another cytokines only showed a trend for IL-8 (P = 0.058).CONCLUSION: High body mass index was associated with severity only in males, which may be related to android fat distribution. Serum leptin seems not to play a role on the systemic inflammatory response in acute pancreatitis and its association with severe outcome in males might represent a marker of increased adiposity.

  20. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P; Balys, Marlene; Ashton, John M; Neering, Sarah J; Lagadinou, Eleni D; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L; O'Dwyer, Kristen M; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K; Munger, Joshua; Crooks, Peter A; Becker, Michael W; Jordan, Craig T

    2013-11-22

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  1. Severe metabolic alkalosis and recurrent acute on chronic kidney injury in a patient with Crohn's disease

    Schmid Axel

    2010-04-01

    Full Text Available Abstract Background Diarrhea is common in patients with Crohn's disease and may be accompanied by acid base disorders, most commonly metabolic acidosis due to intestinal loss of bicarbonate. Case Presentation Here, we present a case of severe metabolic alkalosis in a young patient suffering from M. Crohn. The patient had undergone multiple resections of the intestine and suffered from chronic kidney disease. He was now referred to our clinic for recurrent acute kidney injury, the nature of which was pre-renal due to profound volume depletion. Renal failure was associated with marked hypochloremic metabolic alkalosis which only responded to high volume repletion and high dose blockade of gastric hypersecretion. Intestinal failure with stomal fluid losses of up to 5.7 litres per day required port implantation to commence parenteral nutrition. Fluid and electrolyte replacement rapidly improved renal function and acid base homeostasis. Conclusions This case highlights the important role of gastrointestinal function to maintain acid base status in patients with Crohn's disease.

  2. An acute method to test leptin responsiveness in rats

    Desai, Bhavna N.; Ruth B.S. Harris

    2014-01-01

    Continuous subcutaneous administration of leptin normalizes blood glucose levels in rodent models of Type 1 and Type 2 diabetes independent of changes in food intake, body weight, and plasma insulin. We tested whether an acute intravenous leptin infusion changed blood glucose in normal and diet-induced leptin-resistant rats to determine whether this measure could be used as a marker of leptin sensitivity. Leptin-responsive chow-fed rats and diet-induced leptin-resistant male Sprague-Dawley ra...

  3. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate

    Abrahamsson, Jonas; Forestier, Erik; Heldrup, Jesper;

    2011-01-01

    To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course.......To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course....

  4. Effect of age on 6-mercaptopurine metabolic profile during the maintenance phase in children with acute lymphoblastic leukaemia

    DZHANGt; AGILBER; KYAKOUBEN; YMEDARD; EVILMER; EJACQZ-AIGRAIN

    2004-01-01

    INTRODUCTION: 6-Mercaptopurine (6-MP) is a thiopurine analogue administered for the treatment of acute lymphoblastic leukaemia (ALL). It is an inactive pro-drug that undergoes extensive metabolism resulting in the formation of active metabolites 6-thioguanine nucleotides (6-TGN) and inactive 6-mercaptopurine methylated metabolites (6-MMP) under the genetic control of the enzyme thiopurine methyltransferase (TPMT). 6-MP metabolic profile (6-MMP/6-TGN) was proposed as a tool to

  5. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    Chandra Prakash

    2015-12-01

    Full Text Available Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs, and transport proteins coordinate drug influx (phase 0 and drug/drug-metabolite efflux (phase III. Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs, i.e. PXR (pregnane X receptor and CAR (constitutive androstane receptor, and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR, due to transactivation of xenobiotic-response elements (XREs present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse

  6. Lung oxidative response after acute coal dust exposure

    Coal dust exposure can induce an acute alveolar and interstitial inflammation that can lead to chronic pulmonary diseases. The objective of this study was to describe the acute and later effects of acute coal dust exposure in lung parenchyma and the involvement of reactive oxygen species in coal dust effects. Forty-eight male Wistar rats (200-250 mg) were separated into four groups: 48 h, 7 days, 30 days, and 60 days after coal dust instillation. Gross mineral coal dust (3 mg/0.5 mL saline) was administered directly in the lungs of the treatment group by intratracheal instillation. Control animals received only saline solution (0.5 mL). Lipid peroxidation was determined by the quantity of thiobarbituric acid-reactive species (TBARS), oxidative damage to protein was obtained by the determination of carbonyl groups, the total radical-trapping antioxidant parameter (TRAP) was estimated by luminol chemoluminescence emission, catalase activity was measured by the rate of decrease in hydrogen peroxide, and superoxide dismutase activity was assayed by the inhibition of adrenaline autooxidation. Histological evaluation of coal dust-treated rats demonstrated an inflammatory infiltration after 48 h of the exposure. Initially, this was a cellular infiltration suggestive of lymphocyte infiltration with lymphoid hyperplasia that remained until 7 days after induction. This initial response was followed by a chronic inflammatory infiltration characterized by aggregates of macrophages 30 days after induction. This inflammatory response tended to resolve 60 days after induction, being similar to that of control animals. During both the acute and chronic phases of lung inflammation we observed a decrease in the TRAP in the lung of coal dust-exposed animals compared to that in control animals. We also observed an activation of superoxide dismutase 60 days after coal dust exposition. TBARS were increased 60 days after coal dust exposure and protein carbonyl groups increased at all

  7. Baroreflex Responses to Acute Changes in Blood Volume in Humans

    Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.

    1990-01-01

    To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro- reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationships of the cardiopulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venotis Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). Altered vascular volume had no effect on response relations of the carotid-cardiac baroreflex but did alter the gain of the cardiopulmonary baroreflex (-7.93 q 1.71, -4.36 q 1.38, and -2.56 q 1.59 peripheral resistance units/mmHg for hypovolemic, normovolemic, and hypervolemic, respectively) independent of shifts in baseline FVR and PVP. These results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulnionary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.

  8. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PMID:19123763

  9. Effect of radiographic contrast agents on leukocyte metabolic response

    Barium, at clinical dilutions, causes a significant increase of baseline ''resting state'' phagocytic activity, which in turn leads to significant blunting of subsequent response to phagocytic challenge and adversely affects the response to all bacteria tested. There is no baseline activation of leukocytes by the water-soluble media, although there was some inhibition (rather than activation) of leukocyte metabolic activity. The effect of the water-soluble media in bacteria was more complex (although inhibition is minor compared to barium). Our data demonstrate that barium is a significant activator of phagocytic cells, which results in deactivation of phagocytic response when challenged; these data serve to explain the enhanced adverse effect of barium in cased of fecal peritonitis. (orig.)

  10. Metabolic and transcriptomic responses of weaned pigs induced by different dietary amylose and amylopectin ratio.

    He Jun

    Full Text Available Starch is one of the major dietary energy sources for mammals. However, the nutritional value of starch largely depends on its amylose and amylopectin ratio. In this study, the overall metabolic and transcriptomic responses of weaned pigs fed with different dietary starches were assessed. Sixteen weaned pigs were randomly allotted to two experimental diets containing either of pure cassava starch (CS or maize starch (MS as the sole energy source (the amylose-amylopectin ratio were 0.25 and 0.43, respectively. Results indicated that the body weight gain was not affected by different dietary starches. However, a moderate fatty liver was observed in CS-fed group. Long-term ingestion of CS not only increased the total liver fat content, but significantly elevated the liver triglyceride and cholesterol content (P<0.05. In addition, the serum insulin and cholesterol concentrations were both elevated in CS-fed group (P<0.05. Microarray analysis led to the identification of 648 genes differentially expressed in liver (P<0.05, and a lot of them were involved in lipid and carbohydrate metabolism. Additionally, pathway analysis indicated that both the insulin and PPAR signaling pathways were acutely affected by dietary amylose-amylopectin ratio. Long-term ingestion of CS activated the transcription of lipogenic genes such as hmgr and fasn, but decreased the expression of lipolytic genes such as aox1, ppara and fbp. The microarray results correlated well with the measurements of several key enzymes involved in hepatic lipid metabolism. Our results suggested that both the metabolic and transcriptomic responses of weaned pigs were tightly regulated by dietary starch composition, and a high amylose ratio starch (i.e MS may be more healthful for mammals as the long-term energy source by down-regulation of hepatic lipogenesis and steroidogenesis.

  11. Acute psychological stress induces short-term variable immune response.

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  12. Baroreflex Responses to Acute Changes in Blood Volume in Humans

    Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.

    1990-01-01

    To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro-reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationship, of the cardio-pulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venous Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). The results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.

  13. Reduced natriuretic response to acute sodium loading in COMT Gene deleted mice

    Uhlén Staffan

    2002-08-01

    Full Text Available Abstract Background The intrarenal natriuretic hormone dopamine (DA is metabolised by catechol-O-methyltransferase (COMT and monoamine oxidase (MAO. Inhibition of COMT, as opposed to MAO, results in a potent natriuretic response in the rat. The present study in anaesthetized homozygous and heterozygous COMT gene deleted mice attempted to further elucidate the importance of COMT in renal DA and sodium handling. After acute intravenous isotonic sodium loading, renal function was followed. Results COMT activity in heterozygous mice was about half of that in wild type mice and was zero in the homozygous mice. MAO activity did not differ between the genotypes. Urinary sodium excretion increased 10-fold after sodium loading in wild type mice. In heterozygous and homozygous mice, the natriuretic effects of sodium loading were only 29 % and 39 %, respectively, of that in wild type mice. Arterial pressure and glomerular filtration rate did not differ between genotypes. Baseline norepinephrine and DA excretions in urine were elevated in the homozygous, but not in heterozygous, COMT gene deleted mice. Urinary DA excretion increased after isotonic sodium loading in the wild type mice but not in the COMT gene deleted mice. Conclusions Mice with reduced or absent COMT activity have altered metabolism of catecholamines and are unable to increase renal DA activity and produce normal natriuresis in response to acute sodium loading. The results support the hypothesis that COMT has an important role in the DA-mediated regulation of renal sodium excretion.

  14. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-01-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe’s test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii® can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii® in physical activity programs. PMID:26504308

  15. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-09-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs. PMID:26504308

  16. Cholinesterase inhibition and alterations of hepatic metabolism by oral acute and repeated chlorpyrifos administration to mice.

    Cometa, Maria Francesca; Buratti, Franca Maria; Fortuna, Stefano; Lorenzini, Paola; Volpe, Maria Teresa; Parisi, Laura; Testai, Emanuela; Meneguz, Annarita

    2007-05-01

    Chlorpyrifos (CPF) is a broad spectrum organophosphorus insecticide bioactivated in vivo to chlorpyrifos-oxon (CPFO), a very potent anticholinesterase. A great majority of available animal studies on CPF and CPFO toxicity are performed in rats. The use of mice in developmental neurobehavioural studies and the availability of transgenic mice warrant a better characterization of CPF-induced toxicity in this species. CD1 mice were exposed to a broad range of acute (12.5-100.0mg/kg) and subacute (1.56-25mg/kg/day from 5 to 30 days) CPF oral doses. Functional and biochemical parameters such as brain and serum cholinesterase (ChE) and liver xenobiotic metabolizing system, including the biotransformation of CPF itself, have been studied and the no observed effect levels (NOELs) identified. Mice seem to be more susceptible than rats at least to acute CPF treatment (oral LD(50) 4.5-fold lower). The species-related differences were not so evident after repeated exposures. In mice a good correlation was observed between brain ChE inhibition and classical cholinergic signs of toxicity. After CPF-repeated treatment, mice seemed to develop some tolerance to CPF-induced effects, which could not be attributed to an alteration of P450-mediated CPF hepatic metabolism. CPF-induced effects on hepatic microsomal carboxylesterase (CE) activity and reduced glutathione (GSH) levels observed at an early stage of treatment and then recovered after 30 days, suggest that the detoxifying mechanisms are actively involved in the protection of CPF-induced effects and possibly in the induction of tolerance in long term exposure. The mouse could be considered a suitable experimental model for future studies on the toxic action of organophosphorus pesticides focused on mechanisms, long term and age-related effects. PMID:17382447

  17. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.; Schrage, William G.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To acco...

  18. NMR-based Metabonomic Study on Rat's Urinary Metabolic Response to Dosage of Triptolide

    XIA,Shengan; LIU,Huilang; ZHU,Hang; ZHOU,Zhiming; ZHANG,xu; LIU,Maili

    2009-01-01

    An NMR-based metabonomic approach was used to examine rat's urinary response to dosage of triptolide (TP),a major component responsible for the immunosuppressive and anti-inflammatory effects of Tripterygium wilfordii Hook F (TWHF).The urine samples of Wistar rats were collected at various time intervals before and after dosage of TP (i.p.) and measured using conventional 1 H NMR spectroscopy.The data were statistically analyzed using a principle component analysis (PCA).The results showed that biochemical variation induced by TP was time-related,and the maximal alteration in the metabolites appeared at 16 h,and partially recovered 56 h later after dosage,Increment in relative concentrations of taurine,creatine,trimethylamine N-oxide and decrement in citrate,succinate,2-oxoglutarate and hippurate were observed in the urine after dosage of TP.In addition,2'-deoxycytidine appeared 0-16 h later after the dosage,which may be considered as another biomarker for the acute hepatotoxicity.It suggested that TP may disturb the metabolism of energy and gut microflora,and may cause acute liver lesion and a slight renal impair.These results were also supported by the conventional analysis of clinical plasma chemistry and histopathology.The information observed in this article may be useful for giving insight into mechanism of liver injury induced by TP.

  19. The metabolic responses to aerial diffusion of essential oils.

    Yani Wu

    Full Text Available Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine, amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose, nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils

  20. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  1. Metabolic Acidosis and Strong Ion Gap in Critically Ill Patients with Acute Kidney Injury

    Cai-Mei Zheng

    2014-01-01

    Full Text Available Purpose. To determine the influence of physicochemical parameters on survival in metabolic acidosis (MA and acute kidney injury (AKI patients. Materials and Methods. Seventy-eight MA patients were collected and assigned to AKI or non-AKI group. We analyzed the physiochemical parameters on survival at 24 h, 72 h, 1 week, 1 month, and 3 months after AKI. Results. Mortality rate was higher in the AKI group. AKI group had higher anion gap (AG, strong ion gap (SIG, and apparent strong ion difference (SIDa values than non-AKI group. SIG value was higher in the AKI survivors than nonsurvivors and this value was correlated serum creatinine, phosphate, albumin, and chloride levels. SIG and serum albumin are negatively correlated with Acute Physiology and Chronic Health Evaluation IV scores. AG was associated with mortality at 1 and 3 months post-AKI, whereas SIG value was associated with mortality at 24 h, 72 h, 1 week, 1 month, and 3 months post-AKI. Conclusions. Whether high or low SIG values correlate with mortality in MA patients with AKI depends on its correlation with serum creatinine, chloride, albumin, and phosphate (P levels. AG predicts short-term mortality and SIG value predicts both short- and long-term mortality among MA patients with AKI.

  2. Acute post cessation smoking. A strong predictive factor for metabolic syndrome among adult Saudis

    To determine the influence of tobacco exposure in the development of metabolic syndrome (MS) in the adult Saudi population. Six hundred and sixty-four adults (305 males and 359 females) aged 25-70 years were included in this cross-sectional study conducted at the King Abdul Aziz University Hospital, between June 2006 and May 2007. We classified the participants into non-smokers, smokers, and ex-smokers (defined as complete cessation for 1-2 years). All subjects were screened for the presence of MS using the modified American Heart Association/National Heart, Lung and Blood Institute (AHA/NHLBI), International Diabetes Federation (IDF) and World Health Organization (WHO) definitions. Metabolic syndrome was highest among ex-smokers regardless of definition used. Relative risk for ex-smokers (95% CI: 2.23, 1.06-4.73) was more than twice in harboring MS as compared to non-smokers (95% CI: 2.78, 1.57-4.92) (p=0.009). Acute post-cessation smoking is a strong predictor for MS among male and female Arabs. Smoking cessation programs should include a disciplined lifestyle and dietary intervention to counteract the MS-augmenting side-effect of smoking cessation. (author)

  3. Role of central nervous system in acute radiation syndrome functional metabolic encephalopathy

    In adult rabbit, the effect on the brain of a whole-body or encephalic gamma irradiation is a function of the absorbed dose and begins after 25 rads. Three phases are described in the mechanism of radiation effect. In the initial phase, irradiation acts as a direct stimulus of cerebral structures. The second phase is a response towards aggression which includes: the effect of stimulation of various cerebral structures; their response and the induced feed-back mechanism; the release of metabolites inducing a functional metabolic encephalopathy in which occur: modification of blood pressure; modification of pulmonary ventilation; modification of acido-basic blood equilibrium. The third phase consists of functional recovery

  4. Thermal sensation and thermophysiological responses with metabolic step-changes

    Goto, Tomonobu; Toftum, Jørn; deDear, Richard;

    2006-01-01

    This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects alternately were seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral...... at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation...... started to rise or decline immediately (within one minute) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15-20 min under constant activity subjective thermal responses approximated the steady...

  5. Acute Endocrine Responses to Different Strength Exercise Order in Men

    da Conceição Rodrigo Rodrigues

    2014-12-01

    Full Text Available This study compared the effects of order of muscle groups’ exercised (larger to smaller muscles vs. smaller to larger muscles on the acute levels of total testosterone, free testosterone and cortisol during resistance training (RT sessions. Healthy male participants (n=8; age: 28.8 ± 6.4 years; body mass: 87.0 ± 10.6 kg; body height: 181.0 ± 0.7 cm; BMI: 26.5 ± 4.1 were randomly separated into two experimental groups. The first group (LG-SM performed an RT session (3 sets of 10 repetitions and a 2 min rest period of the exercises in following order: bench press (BP, lat pulldown (LP, barbell shoulder press (BSP, triceps pushdown (TP and barbell cut (BC. The second group (SM-LG performed an RT session in following order: BC, TP, BSP, LA, BP. Blood was collected at the end of the last repetition of each session. Control samples of blood were taken after 30 min of rest. Significant differences were observed in the concentrations of total testosterone (p < 0.05, free testosterone (p < 0.0001 and cortisol (p < 0.0001 after both RT sessions in comparison to rest. However, when comparing LG-SM and SM-LG, no significant differences were found. The results suggest that, while RT sessions induce an acute change in the levels of testosterone and cortisol, this response is independent of the order of exercising muscle groups.

  6. Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline.

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L; Monleón, Santiago; Vinader-Caerols, Concepción; Parra, Andrés

    2008-05-01

    The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects. In this study, we evaluated the effects of inhibitory avoidance (IA) learning and acute administration of amitriptyline on brain oxidative metabolism. Brain oxidative metabolism was measured in several limbic regions using cytochrome oxidase (CO) quantitative histochemistry. Amitriptyline produced a clear impairment in the IA task. In animals exposed only to the apparatus, amitriptyline decreased CO activity in nine brain regions, without affecting the remaining regions. In animals that underwent the IA training phase, amitriptyline reduced CO activity in only three of these nine regions. In animals treated with saline, IA acquisition increased CO activity in the medial prefrontal cortex, the prelimbic cortex, and the medial mammillary body, and diminished it in the medial septum and the nucleus basalis of Meynert with respect to animals exposed only to the IA apparatus. In animals treated with amitriptyline, IA acquisition did not modify CO activity in any of these regions, but increased it in the anteromedial nucleus of the thalamus, the diagonal band of Broca, and the dentate gyrus. The results reveal a pattern of changes in brain oxidative metabolism induced by IA training in saline-treated animals that was clearly absent in animals submitted to the same behavioural training but treated with amitriptyline. PMID:18313125

  7. Non-invasive in vivo imaging of early metabolic tumor response to therapies targeting choline metabolism.

    Mignion, Lionel; Danhier, Pierre; Magat, Julie; Porporato, Paolo E; Masquelier, Julien; Gregoire, Vincent; Muccioli, Giulio G; Sonveaux, Pierre; Gallez, Bernard; Jordan, Bénédicte F

    2016-04-15

    The cholinic phenotype, characterized by elevated phosphocholine and a high production of total-choline (tCho)-containing metabolites, is a metabolic hallmark of cancer. It can be exploited for targeted therapy. Non-invasive imaging biomarkers are required to evaluate an individual's response to targeted anticancer agents that usually do not rapidly cause tumor shrinkage. Because metabolic changes can manifest at earlier stages of therapy than changes in tumor size, the aim of the current study was to evaluate (1) H-MRS and diffusion-weighted MRI (DW-MRI) as markers of tumor response to the modulation of the choline pathway in mammary tumor xenografts. Inhibition of choline kinase activity was achieved with the direct pharmacological inhibitor H-89, indirect inhibitor sorafenib and down-regulation of choline-kinase α (ChKA) expression using specific short-hairpin RNA (shRNA). While all three strategies significantly decreased tCho tumor content in vivo, only sorafenib and anti-ChKA shRNA significantly repressed tumor growth. The increase of apparent-diffusion-coefficient of water (ADCw) measured by DW-MRI, was predictive of the induced necrosis and inhibition of the tumor growth in sorafenib treated mice, while the absence of change in ADC values in H89 treated mice predicted the absence of effect in terms of tumor necrosis and tumor growth. In conclusion, (1) H-choline spectroscopy can be useful as a pharmacodynamic biomarker for choline targeted agents, while DW-MRI can be used as an early marker of effective tumor response to choline targeted therapies. DW-MRI combined to choline spectroscopy may provide a useful non-invasive marker for the early clinical assessment of tumor response to therapies targeting choline signaling. PMID:26595604

  8. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette;

    2009-01-01

    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other...... measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...... protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C...

  9. The association of the kynurenine pathway of tryptophan metabolism with acute brain dysfunction during critical illness*

    Adams Wilson, Jessica R.; Morandi, Alessandro; Girard, Timothy D.; Thompson, Jennifer L.; Boomershine, Chad S.; Shintani, Ayumi K.; Ely, E. Wesley; Pandharipande, Pratik P.

    2013-01-01

    Objectives Plasma tryptophan levels are associated with delirium in critically ill patients. Although tryptophan has been linked to the pathogenesis of other neurocognitive diseases through metabolism to neurotoxins via the kynurenine pathway, a role for kynurenine pathway activity in intensive care unit brain dysfunction (delirium and coma) remains unknown. This study examined the association between kynurenine pathway activity as determined by plasma kynurenine concentrations and kynurenine/tryptophan ratios and presence or absence of acute brain dysfunction (defined as delirium/coma-free days) in intensive care unit patients. Design, Setting, and Patients This was a prospective cohort study that utilized patient data and blood samples from the Maximizing Efficacy of Targeted Sedation and Reducing Neurologic Dysfunction trial, which compared sedation with dexmedetomidine vs. lorazepam in mechanically ventilated patients. Measurements and Main Results Baseline plasma kynurenine and tryptophan concentrations were measured using high-performance liquid chromatography with or without tandem mass spectrometry. Delirium was assessed daily using the Confusion Assessment Method for the Intensive Care Unit. Linear regression examined associations between kynurenine pathway activity and delirium/coma-free days after adjusting for sedative exposure, age, and severity of illness. Among 84 patients studied, median age was 60 yrs and Acute Physiology and Chronic Health Evaluation II score was 28.5. Elevated plasma kynurenine and kynurenine/tryptophan ratio were both independently associated with significantly fewer delirium/coma-free days (i.e., fewer days without acute brain dysfunction). Specifically, patients with plasma kynurenine or kynurenine/tryptophan ratios at the 75th percentile of our population had an average of 1.8 (95% confidence interval 0.6–3.1) and 2.1 (95% confidence interval 1.0–3.2) fewer delirium/coma-free days than those patients with values at the 25

  10. Acute Cardiovascular Response to Sign Chi Do Exercise

    Carol E. Rogers

    2015-08-01

    Full Text Available Safe and gentle exercise may be important for older adults overcoming a sedentary lifestyle. Sign Chi Do (SCD, a novel form of low impact exercise, has shown improved balance and endurance in healthy older adults, and there have been no SCD-related injuries reported. Sedentary older adults are known to have a greater cardiovascular (CV response to physical activity than those who regularly exercise. However their CV response to SCD is unknown. This study explored the acute CV response of older adults to SCD. Cross-sectional study of 34 sedentary and moderately active adults over age 55 with no previous experience practicing SCD. Participants completed a 10 min session of SCD. CV outcomes of heart rate, blood pressure, rate pressure product were recorded at 0, 5, 10 min of SCD performance, and after 10 min of rest. HR was recorded every minute. There was no difference in CV scores of sedentary and moderately active older adults after a session of SCD-related activity. All CV scores increased at 5 min, were maintained at 10 min, and returned to baseline within 10 min post SCD (p < 0.05. SCD may be a safe way to increase participation in regular exercise by sedentary older adults.

  11. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph;

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  12. Determinants to optimize response to clopidogrel in acute coronary syndrome

    Betti Giusti

    2010-04-01

    Full Text Available Betti Giusti, Anna Maria Gori, Rossella Marcucci, Claudia Saracini, Anna Vestrini, Rosanna AbbateDepartment of Medical and Surgical Critical Care, University of Florence, SOD Atherothrombotic Diseases, AOU Careggi, Florence, ItalyAbstract: The inhibition of platelet function by antiplatelet therapy determines the improvement of the survival of patients with clinically evident cardiovascular disease. Clopidogrel in combination with aspirin is the recommended standard of care for reducing the occurrence of cardiovascular events in patients with acute coronary syndromes undergoing percutaneous coronary intervention. However, major adverse cardiovascular events including stent thrombosis occur in patients taking clopidogrel and aspirin. A growing body of evidence demonstrates that high post-treatment platelet reactivity on antiplatelet treatment is associated with increased risk of adverse clinical events. Clopidogrel requires conversion to active metabolite by cytochrome P450 isoenzymes. The active metabolite inhibits ADP-stimulated platelet activation by irreversibly binding to P2Y12 receptors. Recently, the loss-of-function CYP2C19*2 allele has been associated with decreased metabolization of clopidogrel, poor antiaggregant effect, and increased cardiovascular events. In high risk vascular patients, the CYP2C19*2 polymorphism is a strong predictor of adverse cardiovascular events and particularly of stent thrombosis. Prospective studies evaluating if an antiplatelet treatment tailored on individual characteristics of patients, CYP2C19*2 genotypes, platelet phenotype, drug–drug interaction, as well as traditional and procedural risk factors, are now urgently needed for the identification of therapeutic strategies providing the best benefit for the single subject.Keywords: antiplatelet therapy, clopidogrel, cytochrome P450 2C19 loss-of-function polymorphism, major adverse cardiovascular events, percutaneous coronary interventions

  13. Effects of Hepatocyte Nuclear Factor-4α on the Regulation of the Hepatic Acute Phase Response

    Wang, Zhongyan; Burke, Peter A.

    2007-01-01

    Following injury, a large number of hepatic acute phase genes are rapidly modulated at the transcriptional level to restore metabolic homeostasis an limit tissue damage. Hepatocyte nuclear factor 4α (HNF-4α) is a liver-enriched transcription factor that controls embryonic liver development and regulates tissue specific gene expression in adult liver cells. Many genes encoding acute phase proteins contain HNF-4α binding sites in their promoter regions and are transcriptionally regulated by HNF...

  14. The acute hormonal response to the kettlebell swing exercise.

    Budnar, Ronald G; Duplanty, Anthony A; Hill, David W; McFarlin, Brian K; Vingren, Jakob L

    2014-10-01

    The purpose of this investigation was to examine the acute hormonal response to the kettlebell swing exercise. Ten recreationally resistance trained men (age, 24 ± 4 years; height, 175 ± 6 cm; body mass, 78.7 ± 9.9 kg) performed 12 rounds of 30 seconds of 16 kg kettlebell swings alternated with 30 seconds of rest. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes after exercise (P30) and analyzed for testosterone (T), immunoreactive growth hormone, cortisol (C), and lactate concentrations. Heart rate and rating of perceived exertion were measured at the end of each round. Testosterone was significantly higher (p ≤ 0.05) at IP than at PRE, P15, or P30 (PRE: 28 ± 3; IP: 32 ± 4; P15: 29 ± 3; P30: 27 ± 3 nmol·L). Growth hormone was higher at IP, P15, and P30 than at PRE (PRE: 0.1 ± 0.1; IP: 1.8 ± 1.2; P15: 2.1 ± 1.1; P30: 1.6 ± 1.3 μg·L). Cortisol was higher at IP and P15 than at PRE and P30 (PRE: 617 ± 266; IP: 894 ± 354; P15: 875 ± 243; P30: 645 ± 285 nmol·L). Lactate was higher at IP, P15, and P30 than at PRE (PRE: 1.1 ± 0.5; IP: 7.0 ± 3.0; P15: 4.0 ± 2.7; P30: 2.5 ± 1.8 mmol·L). Heart rate increased progressively from 57 ± 12 at PRE to 170 ± 10 at IP. The exercise protocol produced an acute increase in hormones involved in muscle adaptations. Thus, the kettlebell swing exercise might provide a good supplement to resistance training programs. PMID:24714543

  15. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. PMID:24378117

  16. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    Ashley P Pettit

    Full Text Available Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  17. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    SONG, KUI; LI, MIN; XU, XIAOJUN; XUAN, LI; HUANG, GUINIAN; LIU, QIFA

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML.

  18. The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension.

    Ogoh, Shigehiko; Hirasawa, Ai; Sugawara, Jun; Nakahara, Hidehiro; Ueda, Shinya; Shoemaker, J Kevin; Miyamoto, Tadayoshi

    2015-09-01

    The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulation during normocapnic and hypercapnic (5%) conditions, the change in middle cerebral artery mean blood flow velocity was analyzed during acute hypotension caused by two methods: 1) thigh-cuff occlusion release (without change in central blood volume); and 2) during the recovery phase immediately following release of lower body negative pressure (LBNP; -50 mmHg) that initiated an acute increase in central blood volume. In the thigh-cuff occlusion release protocol, as expected, hypercapnia decreased the rate of regulation, as an index of dynamic cerebral autoregulation (0.236 ± 0.018 and 0.167 ± 0.025 s(-1), P = 0.024). Compared with the cuff-occlusion release, the acute increase in central blood volume (relative to the LBNP condition) with LBNP release attenuated dynamic cerebral autoregulation (P = 0.009). Therefore, the hypercapnia-induced attenuation of dynamic cerebral autoregulation was not observed in the LBNP release protocol (P = 0.574). These findings suggest that an acute change in systemic blood distribution modifies dynamic cerebral autoregulation during acute hypotension. PMID:26159757

  19. Microbial nitrogen metabolism: response to warming and resource supply

    Buckeridge, K. M.; Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2013-12-01

    Ecosystem nitrogen (N) dynamics are dependent on microbial metabolic responses to a changing climate. Most studies that investigate soil microbial N dynamics in response to temperature employ measurements reflective of many interacting and confounding phenomena, as altering soil temperature can simultaneously alter moisture regime, substrate availability, and competitive dynamics between microbial populations. As a result, it is difficult to discern how temperature alone can alter patterns of microbial N metabolism using whole soils. Without that knowledge, it is impossible to parse temperature effects on soil N fluxes from other drivers. We address this issue by exploring the sensitivity of microbial partitioning of N between assimilation (growing biomass) and dissimilation (releasing N to the environment) in response to changes in temperature and quality (C:N ratio) of substrate, using a chemostat approach in which a microbial population is maintained at steady state. We perform our experiments using a Gram-negative bacterium (Pseudomonas fluorescens), ubiquitous in soils and dependent on organic compounds to satisfy its resource demand. Individual chemostat runs, all conducted at similar microbial growth rates, generate data describing microbial biomass N, solution N pools and microbial biomass and solution d15N. With these data we can calculate d15N enrichment (d15N microbial biomass - d15N nutrient solution) a proxy for microbial N partitioning. From a recently published model of microbial biomass d15N drivers, fractionation of N occurs with both uptake and excretion of NH3+ so that microbes with a net dissimilation become 15N enriched relative to their source. Because a related study has demonstrated increased microbial C demand with temperature, we predict that in a warming environment microorganisms will become relatively C limited. Accordingly, we hypothesize that warming will enhance microbial dissimilation, and that this N release will be exacerbated as

  20. Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli

    Holm, Anders Koefoed; Blank, L.M.; Oldiges, M.;

    2010-01-01

    Metabolic cofactors such as NADH and ATP play important roles in a large number of cellular reactions, and it is of great interest to dissect the role of these cofactors in different aspects of metabolism. Toward this goal, we overexpressed NADH oxidase and the soluble F1-ATPase in Escherichia coli...... general understanding of redox and energy metabolism and should help in developing metabolic engineering strategies in E. coli....

  1. Tail docking in pigs: acute physiological and behavioural responses.

    Sutherland, M A; Bryer, P J; Krebs, N; McGlone, J J

    2008-02-01

    Tail docking of piglets is a routine procedure on farms to control tail-biting behaviour; however, docking can cause an acute stress response. The objectives of this research were to determine the stress responses to tail docking in piglets and to compare two methods of tail docking; cautery iron (CAUT) and the more commonly used blunt trauma cutters (BT). At approximately 6 days of age, piglets were tail docked using CAUT (n = 20), BT (n = 20) or sham tail docked with their tails remaining intact (CON; n = 40). Blood samples were taken prior to tail docking and at 30, 60 and 90 min after tail docking to evaluate the effect of tail docking on white blood cell (WBC) measures and cortisol concentrations. The above experiment was repeated to observe behaviour without the periodic blood sampling, so as not to confound the effects of blood sampling on piglet behaviour. Piglet behaviour was recorded in the farrowing crate using 1 min scan-samples via live observations for 60 min prior to and 90 min after tail docking. Total WBC counts were reduced (P > 0.05) among BT and CAUT compared with CON piglets 30 min after tail docking. Cortisol concentrations were higher (P tail docking. Cautery and BT-docked piglets spent more (P tail docking. Piglets tail docked using CAUT and BT tended to spend more (P tail docking. Elevated blood cortisol can be reduced by the use of the CAUT rather than the BT method of tail docking. Although the tail docking-induced rise in cortisol was prevented by using CAUT, the behavioural response to BT and CAUT docking methods was similar. PMID:22445023

  2. Divergent mucosal and systemic responses in children in response to acute otitis media.

    Verhoeven, D; Pichichero, M E

    2014-10-01

    Acute otitis media (AOM), induced by respiratory bacteria, is a significant cause of children seeking medical attention worldwide. Some children are highly prone to AOMs, suffering three to four recurrent infections per year (prone). We previously determined that this population of children could have diminished anti-bacterial immune responses in peripheral blood that could fail to limit bacterial colonization in the nasopharynx (NP). Here, we examined local NP and middle ear (ME) responses and compared them to peripheral blood to examine whether the mucosa responses were similar to the peripheral blood responses. Moreover, we examined differences in effector cytokine responses between these two populations in the NP, ME and blood compartments at the onset of an AOM caused by either Streptococcus pneumoniae or non-typeable Haemophilus influenzae. We found that plasma effector cytokines patterned antigen-recall responses of CD4 T cells, with lower responses detected in prone children. ME cytokine levels did not mirror blood, but were more similar to the NP. Interferon (IFN)-γ and interleukin (IL)-17 in the NP were similar in prone and non-prone children, while IL-2 production was higher in prone children. The immune responses diverged in the mucosal and blood compartments at the onset of a bacterial ME infection, thus highlighting differences between local and systemic immune responses that could co-ordinate anti-bacterial immune responses in young children. PMID:24889648

  3. The innate immune response in ischemic acute kidney injury

    Jang, Hye Ryoun; Rabb, Hamid

    2008-01-01

    Kidney ischemia reperfusion injury is a major cause of morbidity in both allograft and native kidneys. Ischemia reperfusion-induced acute kidney injury is characterized by early, allo-antigen independent inflammation. Major components of the innate immune system are activated and participate in the pathogenesis of acute kidney injury, plus prime the allograft kidney for rejection. Soluble members of innate immunity implicated in acute kidney injury include the complement system, cytokines, an...

  4. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  5. Physiological responses to acute experimental hypoxia in the air-breathing Indian catfish, Clarias batrachus (Linnaeus, 1758)

    Ratnesh Kumar Tripathi; Vindhya Mohindra; Akanksha Singh; Rajesh Kumar; Rahasya Mani Mishra; Joy Krushna Jena

    2013-06-01

    With an aim to study the mechanism of adaptation to acute hypoxic periods by hypoxia-tolerant catfish, Clarias batrachus, the mass-specific metabolic rate (VO2) along with its hematological parameters, metabolic response and antioxidant enzyme activities were studied. During progressive hypoxia, C. batrachus was found to be an oxyconformer and showed a steady decline in its aquatic oxygen consumption rate. When C. batrachus was exposed for different periods at experimental hypoxia level (0.98±0.1 mg/L, DO), hemoglobin and hematocrit concentrations were increased, along with decrease in mean cellular hemoglobin concentration, which reflected a physiological adaptation to enhance oxygen transport capacity. Significant increase in serum glucose and lactate concentration as well as lactate dehydrogenase activity was observed. Antioxidant enzymes were found to operate independently of one another, while total glutathione concentration was unaffected in any of the tissues across treatments. These observations suggested that hypoxia resulted in the development of oxidative stress and C. batrachus was able to respond through increase in the oxygen carrying capacity, metabolic depression and efficient antioxidant defense system to survive periods of acute hypoxia.

  6. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  7. Acute effect of high-dose isoflavones from Pueraria lobata (Willd.) Ohwi on lipid and bone metabolism in ovariectomized mice.

    Cho, Hee Joon; Jun, Hee-jin; Lee, Ji Hae; Jia, Yaoyao; Hoang, Minh Hien; Shim, Jae-Hoon; Park, Kwan-Hwa; Lee, Sung-Joon

    2012-12-01

    We investigated the acute metabolic effects of isoflavones from Pueraria lobata (Willd.) Ohwi (IPL) in ovariectomized (OVX) mice. After 4 weeks of IPL feeding at 500 mg/day/kg body weight (OVX500), plasma 17β-estradiol concentrations were significantly higher (+25%, p menopausal symptoms in mice. Further studies will confirm the effects of IPL in humans. PMID:22422661

  8. Acute steatohepatitis, due to extreme metabolic dysregulation, as the first presentation of non-alcoholic fatty liver disease

    Georgios Kranidiotis; Angeliki Angelidi; Emmanouel Sevdalis; Thomas-Nikolaos Telios; Alexandra Gougoutsi; Andreas Melidonis

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a slowly progressive chronic disease, with a high prevalence among obese, dyslipidemic or diabetic people, commonly presented as an asymptomatic mild elevation of serum aminotransferases. We report a patient who experienced an acute form of non-alcoholic steatohepatitis, as the first manifestation of NAFLD, due to exacerbation of pre-existing metabolic disorders by an extremely unhealthy lifestyle. A 50-year old, obese, diabetic man presented with ...

  9. Effect of acute negative and positive energy balance on basal very-low density lipoprotein triglyceride metabolism in women.

    Elena Bellou

    Full Text Available BACKGROUND: Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. OBJECTIVE: The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. DESIGN: Ten healthy women (AGE: 22.0±2.9 years, BMI: 21.2±1.3 kg/m(2 underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i isocaloric feeding (control ii hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. RESULTS: Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037, owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023 and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016. Hypercaloric feeding increased plasma glucose concentration (P = 0.042 but had no effect on VLDL-TG concentration and kinetics compared to the control trial. CONCLUSION: Acute dietary energy deficit (∼3MJ leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.

  10. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg-1 sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences

  11. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy.

    Slone, William L; Moses, Blake S; Hare, Ian; Evans, Rebecca; Piktel, Debbie; Gibson, Laura F

    2016-04-26

    The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response. PMID:27015556

  12. Acute Pancreatitis and Pregnancy

    ... Acute Pancreatitis > Acute Pancreatitis and Pregnancy test Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is ... of acute pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for ...

  13. Anti-irritants I: Dose-response in acute irritation

    Andersen, Flemming; Hedegaard, Kathryn; Petersen, Thomas Kongstad;

    2006-01-01

    induced acute irritation in healthy volunteers. Each AI was used in 3 concentrations. Acute irritation was induced by occlusive tests with 1% sodium lauryl sulfate and 20% nonanoic acid in N-propanol. The irritant reactions were treated twice daily with AI-containing formulations from the time of removal...

  14. Acute toxicity, biochemical and histopathological responses of endosulfan in Chanos chanos.

    Kumar, Neeraj; Ambasankar, K; Krishnani, K K; Gupta, S K; Bhushan, Shashi; Minhas, P S

    2016-09-01

    This study investigated 96h median lethal concentration of endosulfan (99%, pure α: β ratio of 7:3) by conducting static non-renewable acute toxicity bio-assay in Chanos chanos juvenile with average weight (110±5.65g). Further, the effect of different definitive doses (18.5, 19.5, 20.5, 21.5 and 22.5µg/L) of endosulfan on metabolic, heamato-immunoligcal and histopathological response were probed. Anti-oxidative enzymes CAT, SOD and GST showed significant (p<0.01) increase of activity in the liver, gill and brain during exposure to endosulfan in a dose and time dependent manner. The brain AChE activity showed significant (p<0.01) inhibition from 18.5 to 22.5µg/L exposure of endosulfan than the control group. LDH and MDH activity gradually increased with consequent increasing dose of endosulfan exposure in the liver, gill and brain. Similarly, ALT, AST and G6PDH activities in both liver and gill increased with consequent increases in the dose of endosulfan exposure. Immunological profile such as blood glucose and serum cortisol level significantly enhanced while respiratory burst activity declined with consequent increasing doses of endosulfan exposure. Histopathological alteration in the gill demonstrated curling of secondary lamellae, thickening of primary epithelium, shorting of secondary lamellae, epithelial hyperplasia, fusion of secondary lamellae, aneurism, and collapsed secondary lamellae due to dose dependent exposure of endosulfan. Liver histology illustrated cloudy swelling and necrosis with pyknotic nuclei to the moderate dose of endosulfan, whereas higher dose of endosulfan (21.5µg/L) displayed severe necrosis of hepatic cells. Overall results clearly indicate that acute exposure of endosulfan led to pronounced deleterious alterations on biochemical, heamato-immunological, and histopathological responses of C. chanos juvenile. PMID:27213563

  15. Metabolic Alterations of the Zebrafish Brain after Acute Alcohol Treatment by 1H Nuclear Magnetic Resonance Spectroscopy

    Dong-Cheol Woo

    2013-01-01

    Full Text Available The purpose of this study is to investigate the metabolic alterations associated with acute alcohol treatment in zebrafish by 1H nuclear magnetic resonance spectroscopy (NMRS. The brain metabolism of zebrafish was investigated after acute alcohol treatment (one-hour long exposure of adult fish to 0.00%, 0.25%, 0.50%, or 1.00% ethyl alcohol with whole brain extraction. The results of this study showed that glutamate (Glu was significantly decreased, scyllo-inositol (sIns showed a small apparent increase only in the highest acute treatment dose group, and myoinositol (mIns showed a significant decrease. [Glu]/[tCr] and [mIns]/[tCr] levels were significantly reduced regardless of the alcohol dose, and [sIns]/[tCr] was increased in the highest alcohol treatment dose group. The present NMR study revealed that specific metabolites, such as Glu and mIns, were substantially decreased in case of acute alcohol exposed zebrafish brain.

  16. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    Wone, B W M; Madsen, Per; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, Daniel; Hayes, J P

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selecti...

  17. Acute electrophysiological responses of bradykinin-stimulated human fibroblasts.

    Estacion, M

    1991-05-01

    1. Acute responses to bradykinin in human dermal fibroblasts were studied at 20-24 degrees C using both the patch-clamp technique to monitor ion currents and Fura-2 fluorescence to monitor [Ca2+]i. 2. During subconfluent culture, human dermal fibroblasts can express a diversity of ion channels as described in the preceding paper. 3. When GTP (1 mM) was included in the pipette solution, two additional ion channel populations were transiently augmented in response to bradykinin stimulation. 4. The first is a component of outwardly rectifying current which reached maximal induction within 10-15 s after bradykinin addition (1 microM) and then decayed back to near baseline over 60 s. 5. Ion substitution experiments combined with tail current analysis indicate that the outward current is carried predominantly by K+. 6. Video imaging of single-cell Fura-2 fluorescence from both intact cells and patch-clamped cells showed temporal correlation of the K+ current modulation and the Ca2+ transients in response to bradykinin stimulation. 7. The calcium ionophore, ionomycin, caused both an increase in intracellular calcium and the augmentation of the outward K+ current. The amount of additional K+ current was correlated with [Ca2+]i levels and could be elicited even without the presence of GTP in the pipette. 8. Apamin, a blocker of Ca(2+)-activated K+ channels, inhibited (at 1 microM) the ionomycin-induced modulation of K+ current. 9. In addition, an inward current was transiently induced in response to bradykinin. This current was strictly dependent on the presence of GTP in the pipette solution. This current showed little voltage dependence, as evidenced by a linear current vs. voltage relation, and a reversal potential near but measurably more positive than 0 mV. 10. This current could be decoupled from the Ca2+ transient and be irreversibly induced by including GTP gamma S (100 microM) in the pipette solution. 11. Ion substitution experiments show that this is a non

  18. Inflammatory response in the early prediction of severity in human acute pancreatitis.

    Viedma, J A; M. Pérez-Mateo; Agulló, J.; Domínguez, J E; F. Carballo

    1994-01-01

    The role of the inflammatory response in acute pancreatitis and its relation with the clinical course was examined. This study examined if the serial measurement of polymorphonuclear granulocyte (PMN) elastase/A1PI complex, phospholipase A catalytic activity, C reactive protein, and other acute phase proteins, and the protease inhibitor alpha 2-macroglobulin, provides meaningful information for prognosis. Eighty non-consecutive patients with acute pancreatitis, classified according to their c...

  19. Discrete Cues Paired with Naloxone-Precipitated Withdrawal from Acute Morphine Dependence Elicit Conditioned Withdrawal Responses

    Amitai, Nurith; Liu, Jian; Schulteis, Gery

    2006-01-01

    Acute bolus doses of morphine induce a state of acute opioid dependence as measured by naloxone-precipitated withdrawal. Repeated morphine and precipitated withdrawal experience further enhances naloxone-induced withdrawal severity, in part due to direct neuroadaptation to repeated morphine, and in part due to conditioned associations of context and withdrawal experience. To determine whether a discrete tone/light conditioned stimulus (CS) could elicit conditioned withdrawal responses in acut...

  20. Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response

    Ahyi, Ayele-Nati N.; Quinton, Lee J.; Jones, Matthew R.; Ferrari, Joseph D.; Pepper-Cunningham, Zachary A.; Mella, Juan R.; Remick, Daniel G.; Mizgerd, Joseph P.

    2013-01-01

    The acute-phase response is characteristic of perhaps all infections, including bacterial pneumonia. In conjunction with the acute-phase response, additional biological pathways are induced in the liver and are dependent on the transcription factors STAT3 and NF-κB, but these responses are poorly understood. Here, we demonstrate that pneumococcal pneumonia and other severe infections increase expression of multiple components of the cellular secretory machinery in the mouse liver, including t...

  1. Multiple biomarkers responses in juvenile rainbow trout, Oncorhynchus mykiss, after acute exposure to a fungicide propiconazole.

    Li, Zhi-Hua; Zlabek, Vladimir; Velisek, Josef; Grabic, Roman; Machova, Jana; Kolarova, Jitka; Li, Ping; Randak, Tomas

    2013-03-01

    In this study, the toxic effects of propiconazole (PCZ), a triazole fungicide present in aquatic environment, were studied in juvenile rainbow trout, Oncorhynchus mykiss, by acute toxicity test with the concentration of 5.04 mg/L (96 h LC50). Morphological indices, hematological parameters, liver xenobiotic-metabolizing response, and tissue antioxidant status were evaluated. Compared with the control group, fish exposed to PCZ showed significantly higher Leuko, PCV, MCHC, and hepatic EROD, and significantly lower MCV. CF and HSI were not significantly different among groups. SOD, CAT, GPx, and GR activities increased significantly in liver of experimental groups, but decreased significantly in gill. In general, antioxidant enzyme activity in intestine was less evident than in liver. Oxidative stress indices (levels of LPO and CP) were significantly higher in gill. Additionally, through chemometrics of all parameters measured in this study, two groups with 67.29% of total accumulated variance were distinguished. In short, the physiological and biochemical responses in different tissues of fish indicated that PCZ-induced the stressful environmental conditions. But according to PCZ residual status in the natural environment, more long-term experiments at lower concentrations will be necessary in the future. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013. PMID:21384499

  2. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas;

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercis...... use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.......Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise......-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the...

  3. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    Chandra Prakash; Baltazar Zuniga; Chung Seog Song; Shoulei Jiang; Jodie Cropper; Sulgi Park; Bandana Chatterjee

    2015-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D recep...

  4. Acute lung injury induced by whole gastric fluid: hepatic acute phase response contributes to increase lung antiprotease protection

    Ayala, Pedro; Meneses, Manuel; Olmos, Pablo; Montalva, Rebeca; Droguett, Karla; Ríos, Mariana; Borzone, Gisella

    2016-01-01

    Background Gastric contents aspiration in humans is a risk factor for severe respiratory failure with elevated mortality. Although aspiration-induced local lung inflammation has been studied in animal models, little is known about extrapulmonary effects of aspiration. We investigated whether a single orotracheal instillation of whole gastric fluid elicits a liver acute phase response and if this response contributes to enrich the alveolar spaces with proteins having antiprotease activity. Met...

  5. Hormonal and metabolic responses of fetal lamb during cardiopulmonary bypass

    苏肇伉; 周成斌; 张海波; 祝忠群

    2003-01-01

    Objective To study the hormonal and metabolic responses of fetal lamb during cardiopulmonary bypass.Methods Six pregnant ewes underwent fetal cardiopulmonary bypasses with artificial oxygenators and roller pumps for 30 minutes, which maintained the blood gas value at the fetal physiological level. The fetal blood pressure, heart rate, pH value and blood lactate levels were monitored. The levels of catecholamine, cortisol and insulin were measured pre-bypass and then again 30 minutes later. The blood glucose and free fatty acid levels were monitored continuously during the bypass. Fetal hepatic PAS staining was also carried out.Results There were no changes before and during the bypass in fetal blood pressure, heart rate and blood gas. However, pH values decreased and blood lactate levels increased (P<0.05). The fetal catecholamine and cortisol levels increased significantly (P<0.01), while the levels of insulin did not change. The blood glucose and free fatty acid levels increased at the beginning of the bypass (P<0.01), and then gradually slowed down during the bypass. The fetal hepatic PAS staining showed that hepatic glycogen was consumed in large amounts. After 30 minutes of bypass, the fetal lamb would not survive more than 1 hour.Conclusion The fetal lamb has a strong negative reaction to cardiopulmonary bypass.

  6. Local and disseminated acute phase response during bacterial respiratory infection in pigs

    Skovgaard, Kerstin; Mortensen, Shila; Heegaard, Peter M. H.

    2010-01-01

    proteins (APP) outside the liver is increasingly recognized, still little is known of extra-hepatic production of APP in pigs. 14-18 h after experimental infection with Actinobacillus pleuropneumoniae, causing acute pleuropneumonia in pigs, we studied local APP gene expression changes in different......The acute phase response is playing an important role, aiming to restore the healthy state after tissue injury, inflammation and infection. The biological function of this response and its interplay with other parts of innate defense reactions remain somewhat elusive. Expression of acute phase...... differentially expressed between infected and control animals. We demonstrated that acute pleuropneumonia caused by A. pleuropneumoniae leads to a rapid disseminated local intra-lung APP response, also in apparently unaffected areas of the infected lung. Further extrahepatic expression of several acute-phase...

  7. Metabolic response to dietary fibre composition in horses.

    Brøkner, C; Austbø, D; Næsset, J A; Blache, D; Bach Knudsen, K E; Tauson, A H

    2016-07-01

    The hypothesis for this study was that a higher dietary proportion of soluble fibre would result in stable and constant plasma metabolite and regulatory hormone concentrations. The study was a 4×4 Latin Square design with a sequence of 17 days adaptation to the ration followed by 8 sampling days. The feed rations consisted of only timothy hay (H), hay plus molassed sugar beet pulp combined with either whole oats (OB) or barley (BB) and hay plus a loose chaff-based concentrate (M). Four horses were fitted with permanent caecal cannulas and liquid caecal content was withdrawn manually and blood was drawn from the jugular vein at 0, 3 and 9 h postprandial. The horses were exercised daily at medium level for about 1 h. Samples were analysed for short-chain fatty acids (SCFA) and metabolic traits. Caecal SCFA and propionic acid concentrations increased with increased dietary starch and soluble fibre. The diet highest in soluble fibre (M) resulted in the highest plasma glucose and insulin concentrations in the morning, which then remained stable and constant throughout the day. A strong interaction (P<0.01) between time and diet was measured for plasma urea, glucose, insulin and leptin. The greatest variations in plasma glycaemic and insulinaemic responses were associated with the cereal grain diets (OB and BB). There were indications of a negative energy balance, which was reflected in a significantly higher plasma β-hydroxybutyrate concentration and a numerically higher non-esterified fatty acid concentration. In conclusion, this study found that inclusion of soluble fibre resulted in increased total caecal SCFA and propionic acid concentrations. This consequently resulted in stable and constant plasma glycaemic and insulinaemic responses. Diets with a high content of soluble fibre provided enough energy for horses at medium work level. PMID:26755337

  8. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  9. Effects of chronic kidney disease on platelet response to antiplatelet therapy in acute myocardial infarction patients

    邓捷

    2012-01-01

    Objective To elucidate the effects of dual antiplatelet therapy on platelet response in acute myocardial infarction patients with chronic kidney disease. Methods From September 2011 to June 2012,a total of 195 acute myocardial infarction patients with drug eluting stent implanting were enrolled. Among them,133 cases had normal

  10. Acute hormonal, immunological and enzymatic responses to a basketball game

    Denis Foschini

    2008-12-01

    Full Text Available The objective of the present study was to analyze the acute hormonal, immunological and enzymatic responses of professional basketball players to a basketball game. The sample was composed of eight basketball athletes, with a minimum of 4 years’ experience in basketball. A real game was simulated with a total duration of 40 minutes, divided into two halves of 20 minutes each and an interval of 10 minutes between halves. Blood samples were collected before andimmediately after the game (20 ml, vacuum tube system. The variables analyzed were: testosterone and cortisol hormones, total leukocytes, neutrophils, lymphocytes, monocytes and the enzymes creatine kinase (CK and lactate dehydrogenase (LDH. Statistical analysis was with descriptive statistics and the Student’s t test for paired samples to p≤0.05. The pre (13.34 nmol/L and 301.97 nmol/L and post game (17.34 nmol/L and 395.91 nmol/L levels of testosterone and cortisol were statistically different, with higher levels after the game for both hormones. The immune cell counts exhibited significant differences for total leukocytes (6393.75 nmol/L and 9158.75 nmol/L and neutrophils (3532.5 nmol/L and 6392.62 nmol/L, with levels being higher after the game. No statistical differences were observed for the enzymatic variables. Therefore, based on the markers analyzed, testosterone and cortisol exhibited pronounced increases after the game and the samebehavior was observed for total leukocytes and neutrophils.

  11. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-α, interleukin-1β and macrophage inflammatory protein-2) was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose

  12. Presence of acute phase response in coal workers' pneumoconiosis.

    Fernandez Rego, G; Ocio Achaerandio, G; González Cuervo, V; Rodríquez Menéndez, C; Martínez Gonezález, C; Alvarez Alvarez, C

    1991-01-01

    To evaluate the role of personal factors in pneumoconiosis, several acute phase proteins were studied in 62 coal miners without acute illnesses and classified as having no pneumoconiosis (n = 19), simple pneumoconiosis (n = 23), or complicated pneumoconiosis with progressive massive fibrosis (n = 20). Groups were similar for age, years of work at high risk jobs, chronic bronchitis, and forced expiratory volume in one second (FEV1). C-reactive protein concentration was significantly higher in ...

  13. Metabolism

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  14. Metabolism

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  15. A combined clinical and biomarker approach to predict diuretic response in acute heart failure

    Ter Maaten, Jozine M; Valente, Mattia A E; Metra, Marco; Bruno, Noemi; O'Connor, Christopher M; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G; Givertz, Michael M; Bloomfield, Daniel M; Dittrich, Howard C; van Veldhuisen, Dirk J; Hillege, Hans L; Damman, Kevin; Voors, Adriaan A

    2015-01-01

    BACKGROUND: Poor diuretic response in acute heart failure is related to poor clinical outcome. The underlying mechanisms and pathophysiology behind diuretic resistance are incompletely understood. We evaluated a combined approach using clinical characteristics and biomarkers to predict diuretic resp

  16. Acute steatohepatitis, due to extreme metabolic dysregulation, as the first presentation of non-alcoholic fatty liver disease

    Georgios Kranidiotis

    2013-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a slowly progressive chronic disease, with a high prevalence among obese, dyslipidemic or diabetic people, commonly presented as an asymptomatic mild elevation of serum aminotransferases. We report a patient who experienced an acute form of non-alcoholic steatohepatitis, as the first manifestation of NAFLD, due to exacerbation of pre-existing metabolic disorders by an extremely unhealthy lifestyle. A 50-year old, obese, diabetic man presented with a one-week history of jaundice and malaise. Analysis revealed elevated liver enzymes, bilirubin, lipids, and glucose. Based on patient’s history, physical examination, laboratory results, and imaging findings, acute non-alcoholic steatohepatitis was established as a diagnosis of exclusion. The patient was started on a low-calorie diet free of carbohydrates and fats, in combination with insulin. A dramatic improvement of clinical and laboratory parameters was observed. In the context of extreme metabolic dysregulation, induced by unhealthy diet, NAFLD may present as an acute steatohepatitis.

  17. Acute responses of regional vascular conductance to oral ingestion of fructose in healthy young humans

    Endo, Masako Y; Fujihara, Chizuko; Yamazaki, Chinami; Kashima, Hideaki; Eguchi, Kouhei; Miura, Akira; Fukuoka, Yoshiyuki; Fukuba, Yoshiyuki

    2014-01-01

    Background Recently, it was reported in healthy young subjects that fructose containing drinks increased blood pressure acutely, without any apparent change in total vascular conductance (TVC). However, because it is well known that the splanchnic vasculature is dilated by oral fructose ingestion, it is assumed to be the concomitant vasoconstriction in other peripheral region(s) that is responsible for this finding. Thus, the purpose of this study was to determine the acute response of region...

  18. Manipulation of the metabolic response in clinical practice

    Kehlet, H

    2000-01-01

    Surgical injury is followed by profound changes in endocrine metabolic function and various host defense mechanisms leading to catabolism, immunosuppression, ileus, impaired pulmonary function, and hypoxemia. These physiologic changes are supposed to be involved in the pathogenesis of postoperati...

  19. Studies of cerebral blood flow, cerebral oxygen metabolism, cerebral glucose metabolism, and tissue pH in human acute cerebral infarction using positron emission tomography

    This preliminary PET study was designed to investigate physiological and biochemical changes in acute cerebral infarction by positron emission tomography (PET). PET studies were performed in six patients with acute cerebral infarction within 48 hours after onset of stroke using continuous inhalation of C15O2 for cerebral blood flow (CBF), 15O2 for cerebral metabolic rate for oxygen (CMRO2), 11CO for cerebral blood volume, the intravenous injection of 11C-dimethyloxazolidinedione for tissue pH and the intravenous injection of 18F-fluorodeoxyglucose for cerebral metabolic rate for glucose (CMRGlu). Metabolic coupling index (MCI) image was made from CBF image and CMRGlu image to investigate relation between CBF and CMRGlu. Aslo oxygen glucose index (OGI) image was made from CMRO2 image and CMRG lu image to investigate relation between CMRO2 and CMRGlu. Preliminary resul ts demonstrate that reduction of CBF, CMRO2, and CMRGlu in the affected co rtex except for reperfusion case. Increase of OER was recognized four of six cases. Patterns of MCI and OGI in the cortex which CMRO2 value is less than 65 μmol/100g/min were different from those in the cortex which CMRO2 value is more than 65. MCI of the affected cortex (CMRO22>=65). OGI of the affected cortex (CMRO22>=65). Two patients showed decrease of tissue pH and reperfusion case showed increase of tissue pH in infarcted area as compared to contralateral cortex. In addition it was suggested that threshold of CBF for tissue pH was approximately 14ml/100g/min. (J.P.N.)

  20. Distinct metabolic responses of an ovarian cancer stem cell line

    Kathleen A Vermeersch; Wang, Lijuan; McDonald, John F; Styczynski, Mark P.

    2014-01-01

    Background Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to b...

  1. Metabolic Response of Perfused Livers to Various Oxygenation Conditions

    Orman, Mehmet A.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.; Berthiaume, Francois

    2011-01-01

    Isolated liver perfusion systems have been used to characterize intrinsic metabolic changes in liver as a result of various perturbations, including systemic injury, hepatotoxin exposure, and warm ischemia. Most of these studies were done using hyperoxic conditions (95% O2) but without the use of oxygen carriers in the perfusate. Prior literature data do not clearly establish the impact of oxygenation, and in particular that of adding oxygen carriers to the perfusate, on the metabolic functio...

  2. Circulatory response to hyperthermia during acute normovolaemic haemodilution

    Talwar, Anita; Fahim, M.

    Cats anaesthetized with a mixture of chloralose and urethane were exposed to heat stress in two groups. In the first group (n=10) of control animals, the effect of heat stress on haemodynamic variables was recorded at control haematocrit (HCT) of 42.0+/-1.0%. In a second group, the effect of heat stress was studied after induction of acute normovolaemic haemodilution (HCT of 13.0+/-1.0%). Haemodilution was induced to a maximum of 60% replacement of blood with dextran (mol.wt. 150000). Heat stress was induced by surface heating and core body temperature was raised from 37° C to 42° C. The effect of heat stress and haemodilution on various haemodynamic variables, viz. left ventricular pressure (LVP), left ventricular contractility (LVdP/dtmax), heart rate (HR), cardiac output (CO), arterial blood pressure (ABP), right atrial pressure (RAP), and arterial blood PO2, PCO2 and pH was examined. Haemodilution produced significant (P0.05) changes in ABP, RAP, LVdP/dtmax and total peripherial resistance (TPR). Hyperthermia caused a significant fall (P<0.05) in TPR. However, the percentage fall in TPR was higher in the control group. On exposure to heat stress, there were significant (P<0.05I increases in HR and CO in both the groups; however, HR and CO values were significantly (P<0.05) higher in the haemodiluted group compared to the control. The latter findings could be due either to the higher basal values of these variables with the fall in HCT or to inefficient cardiovascular regulatory mechanisms. The lack of efficient regulatory control under such severe stress conditions makes the cardiovascular system of anaemic animals more vulnerable to heat stress. In conclusion, the results of the present study showed deleterious effects of heat stress in both the groups. The higher values of HR and CO in the haemodiluted group may be responsible for circulatory failure at low HCT values, indicating a higher risk in the haemodiluted group as compared to the control group.

  3. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    Castellano, J M; Bentsen, A H; Romero, M;

    2010-01-01

    the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food......Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function, was...... intake and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key...

  4. CAFFEINE ATTENUATES ACUTE GROWTH HORMONE RESPONSE TO A SINGLE BOUT OF RESISTANCE EXERCISE

    Bo-Hun Wu

    2010-06-01

    Full Text Available The purpose of this study was to investigate the effects of caffeine consume on substrate metabolism and acute hormonal responses to a single bout of resistance exercise (RE. Ten resistance-trained men participated in this study. All subjects performed one repetition maximum (1RM test and then performed two protocols: caffeine (CAF, 6 mg·kg-1 and control (CON in counter balanced order. Subjects performed RE (8 exercises, 3 sets of 10 repetitions at 75% of 1RM after caffeine or placebo ingestion one hour prior to RE. Blood samples collected prior to treatment ingestion (pre-60, immediately prior to RE (pre-exe, and 0, 15, 30 min post to RE (P0, P15, P30 for analysis of insulin, testosterone, cortisol, growth hormone, glucose, free fatty acid and lactic acid. Each experiment was separated by seven days. In this study, statistical analysis of a two-way analysis of variance (treatment by time with repeated measures was applied. After ingesting caffeine, the concentrations of free fatty acid (pre- exe, P0, P15, P30 in CAF were significantly higher than CON (p < 0.05. Additionally, the responses of GH (P0, P15, P30 in CAF were significantly lower than CON (p < 0.05, whereas the concentrations of insulin, testosterone and cortisol were not different between CAF and CON (p < 0.05 after RE. The results of this study indicated that caffeine ingestion prior to RE might attenuate the response of GH. This effect might be caused by the elevation in blood FFA concentration at the beginning of RE

  5. Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses

    Annette; Graham; Anne-Marie; Allen

    2015-01-01

    The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis.Macrophage generation of oxysterol activators of liver X receptors(LXRs),via sterol 27-hydroxylase,is regulated by the rate of flux of cholesterolto the inner mitochondrial membrane,via a complex of cholesterol trafficking proteins.Oxysterols are key signalling molecules,regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production,key features influencing the impact of these cells within atherosclerotic lesions.The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate,but may include steroidogenic acute regulatory protein and translocator protein.There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters(ABCA1,ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages.Thus,molecules which can sustain or improve mitochondrial structure,the function of the electron transport chain,or increase the activity of components of the protein complex involved in cholesterol transfer,may therefore have utility in limiting or regressing atheroma development,reducing the incidence of coronary heart disease and myocardial infarction.

  6. C677T gene polymorphism of MTHFR and metabolic syndrome: response to dietary intervention

    Di Renzo, Laura; Marsella, Luigi Tonino; Sarlo, Francesca; Soldati, Laura; Gratteri, Santo; Abenavoli, Ludovico; De Lorenzo, Antonino

    2014-01-01

    Background Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms were found associated with body mass index (BMI)-defined obesity and lean mass. The aim of our study was to examine the role of the C677T MTHFR gene polymorphism in the response to diet in the management of metabolic syndrome. We investigated the body composition and metabolic factor changes after an hysocaloric balanced diet (HBD), in Italian obese women affected by metabolic syndrome (MS). Methods Forty four obese wom...

  7. Molecular mechanisms governing contraction-induced metabolic responses and skeletal muscle reprogramming

    Glund, Stephan

    2007-01-01

    Physical exercise enhances skeletal muscle responsiveness to insulin and regulates metabolism by an insulin-independent mechanism. Elucidation of contraction-mediated molecular mechanisms is imperative for a better understanding of skeletal muscle metabolism and function, and may lead to the identification or validation of possible drug targets for the prevention or treatment of metabolic disorders. This thesis focuses on the role of AMPK and Interleukin (IL)-6 in skeletal m...

  8. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters

    Kristensen, Lena; Buhl, Rikke; Nostell, Katarina; Bak, Lars; Petersen, Ellen; Lindholm, Maria; Jacobsen, Stine

    2014-01-01

    have been caused by exercise-induced hemolysis, which indicates that horses might experience a condition similar to athlete’s anemia in humans. The pathogenesis and clinical implications of the hematological and blood-biochemical changes elicited by acute exercise in Standardbred trotters in the...

  9. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  10. Acute phase response induced following tumor treatment by photodynamic therapy: relevance for the therapy outcome

    Korbelik, Mladen; Merchant, Soroush; Stott, Brandon; Cecic, Ivana; Payne, Peter; Sun, Jinghai

    2006-02-01

    Acute phase response is an effector process orchestrated by the innate immune system for the optimal mobilization of the resources of the organism distant from the local insult site needed in the execution of a host-protecting reaction. Our research has shown that mice bearing tumors treated by photodynamic therapy (PDT) exhibit the three major hallmarks of acute phase response: release of acute phase reactants, neutrophilia, and pituitary/adrenal axis activation. Of particular interest in this study were acute phase proteins that have a pivotal role in the clearance of dead cells, since the occurrence of this process in PDT-treated tumors emerges as a critical event in the course of PDT-associated host response. It is shown that this type of acute phase reactants, including complement proteins (C3, C5, C9, mannose-binding lectin, and ficolin A) and related pentraxins (serum amyloid P component and PTX3), are upregulated following tumor PDT and accumulate in the targeted lesions. Based on the recently accumulated experimental evidence it is definitely established that the acute phase response is manifested in the hosts bearing PDT-treated tumors and it is becoming clear that this effector process is an important element of PDT-associated host response bearing in impact on the eventual outcome of this therapy.

  11. A double blind, placebo-controlled, randomized crossover study of the acute metabolic effects of olanzapine in healthy volunteers.

    Vance L Albaugh

    Full Text Available Atypical antipsychotics exhibit metabolic side effects including diabetes mellitus and obesity. The adverse events are preceded by acute worsening of oral glucose tolerance (oGTT along with reduced plasma free fatty acids (FFA and leptin in animal models. It is unclear whether the same acute effects occur in humans.A double blind, randomized, placebo-controlled crossover trial was conducted to examine the potential metabolic effects of olanzapine in healthy volunteers. Participants included male (8 and female (7 subjects [18-30 years old, BMI 18.5-25]. Subjects received placebo or olanzapine (10 mg/day for three days prior to oGTT testing. Primary endpoints included measurement of plasma leptin, oral glucose tolerance, and plasma free fatty acids (FFA. Secondary metabolic endpoints included: triglycerides, total cholesterol, high- and low-density lipoprotein cholesterol, heart rate, blood pressure, body weight and BMI. Olanzapine increased glucose Area Under the Curve (AUC by 42% (2808±474 vs. 3984±444 mg/dl·min; P = 0.0105 during an oGTT. Fasting plasma leptin and triglycerides were elevated 24% (Leptin: 6.8±1.3 vs. 8.4±1.7 ng/ml; P = 0.0203 and 22% (Triglycerides: 88.9±10.1 vs. 108.2±11.6 mg/dl; P = 0.0170, whereas FFA and HDL declined by 32% (FFA: 0.38±0.06 vs. 0.26±0.04 mM; P = 0.0166 and 11% (54.2±4.7 vs. 48.9±4.3 mg/dl; P = 0.0184, respectively after olanzapine. Other measures were unchanged.Olanzapine exerts some but not all of the early endocrine/metabolic changes observed in rodent models of the metabolic side effects, and this suggest that antipsychotic effects are not limited to perturbations in glucose metabolism alone. Future prospective clinical studies should focus on identifying which reliable metabolic alterations might be useful as potential screening tools in assessing patient susceptibility to weight gain and diabetes caused by atypical antipsychotics.ClinicalTrials.gov NCT00741026.

  12. Executive function and endocrinological responses to acute resistance exercise

    Chia-Liang Tsai

    2014-08-01

    Full Text Available This study had the following two aims: First, to explore the effects of acute resistance exercise (RE, i.e., using exercise machines to contract and stretch muscles on behavioral and electrophysiological performance when performing a cognitive task involving executive functioning in young male adults; Second, to investigate the potential biochemical mechanisms of such facilitative effects using two neurotrophic factors [i.e., growth hormone (GH and insulin-like growth factor-1 (IGF-1] and the cortisol levels elicited by such an exercise intervention mode with two different exercise intensities. Sixty young male adults were recruited and randomly assigned to a high-intensity (HI exercise group, moderate-intensity (MI exercise group, and non-exercise-intervention (NEI group. Blood samples were taken, and the behavioral and electrophysiological indices were simultaneously measured when individuals performed a Go/No-Go task combined with the Erikson Flanker paradigm at baseline and after either an acute bout of 30 minutes of moderate- or high-intensity RE or a control period. The results showed that the acute RE could not only benefit the subjects’ behavioral (i.e., RTs and accuracy performance, as found in previous studies, but also increase the P3 amplitude. Although the serum GH and IGF-1 levels were significantly increased via moderate or high intensity RE in both the MI and HI groups, the increased serum levels of neurotrophic factors were significantly decreased about 20 minutes after exercise. In addition, such changes were not correlated with the changes in cognitive (i.e., behavioral and electrophysiological performance. In contrast, the serum levels of cortisol in the HI and MI groups were significantly lower after acute RE, and the changes in cortisol levels were significantly associated with the changes in electrophysiological (i.e., P3 amplitude performance. The findings suggest the beneficial effects of acute RE on executive

  13. Metabolic product response profiles of Cherax quadricarinatus towards white spot syndrome virus infection.

    Fan, Weiwei; Ye, Yangfang; Chen, Zhen; Shao, Yina; Xie, Xiaolu; Zhang, Weiwei; Liu, Hai-Peng; Li, Chenghua

    2016-08-01

    White spot syndrome virus (WSSV) is one of the most devastating viral pathogens in both shrimp and crayfish farms, which often causes disease outbreak and leads to massive moralities with significant economic losses of aquaculture. However, limited research has been carried out on the intrinsic mechanisms toward WSSV challenge at the metabolic level. To gain comprehensive insight into metabolic responses induced by WSSV, we applied an NMR approach to investigate metabolic changes of crayfish gill and hepatopancreas infected by WSSV for 1, 6 and 12 h. In gill, an enhanced energy metabolism was observed in WSSV-challenged crayfish samples at 1 h, as marked by increased glucose, alanine, methionine, glutamate and uracil. Afterwards, energy metabolism, lipid metabolism as well as osmoregulation were markedly increased at 6 hpi, as shown by elevated glucose, alanine, methionine, fumarate, tyrosine, tryptophan, histidine, phosphorylcholine, betaine and uracil, whereas no obvious metabolites change was detected at 12 hpi. As for hepatopancreas, disturbed lipid metabolism and induced osmotic regulation was found at 6 hpi based on the metabolic biomarkers such as branched chain amino acids, threonine, alanine, methionine, glutamate, glutamine, tyrosine, phenylalanine, lactate and lipid. However, no obvious metabolic change was shown in hepatopancreas at both 1 hpi and 12 hpi. Taken together, our present results provided essential metabolic information about host-pathogen interactions in crayfish, which shed new light on our understanding of WSSV infection at metabolic level. PMID:27068762

  14. Whole-body CO2 production as an index of the metabolic response to sepsis

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  15. Conventional and homeopathic treatments in late pregnant goats: effects on metabolic status and immune response

    Bruno Ronchi; Umberto Bernabucci; Nicola Lacetera; Pier Paolo Danieli

    2010-01-01

    The study was aimed at assessing the effects of conventional and homeopathic treatments on metabolic status and immune response in late pregnant goats. Administration of an antichetogenic preparation and of Echinacea purpurea in homeopathic dilution did not exert unequivocal effects on metabolic status, but improved some immunological parameters of periparturient goats.

  16. Conventional and homeopathic treatments in late pregnant goats: effects on metabolic status and immune response

    Bruno Ronchi

    2010-01-01

    Full Text Available The study was aimed at assessing the effects of conventional and homeopathic treatments on metabolic status and immune response in late pregnant goats. Administration of an antichetogenic preparation and of Echinacea purpurea in homeopathic dilution did not exert unequivocal effects on metabolic status, but improved some immunological parameters of periparturient goats.

  17. Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine/spermine N1-acetyltransferase (SSAT) overexpressing mice.

    Pirnes-Karhu, Sini; Sironen, Reijo; Alhonen, Leena; Uimari, Anne

    2012-02-01

    Bacterial lipopolysaccharide (LPS) is an effective activator of the components of innate immunity. It has been shown that polyamines and their metabolic enzymes affect the LPS-induced immune response by modulating both pro- and anti-inflammatory actions. On the other hand, LPS causes changes in cellular polyamine metabolism. In this study, the LPS-induced inflammatory response in spermidine/spermine N(1)-acetyltransferase overexpressing transgenic mice (SSAT mice) was analyzed. In liver and kidneys, LPS enhanced the activity of the polyamine biosynthetic enzyme ornithine decarboxylase and increased the intracellular putrescine content in both SSAT overexpressing and wild-type mice. In survival studies, the enhanced polyamine catabolism and concomitantly altered cellular polyamine pools in SSAT mice did not affect the LPS-induced mortality of these animals. However, in the acute phase of LPS-induced inflammatory response, the serum levels of proinflammatory cytokines interleukin-1β and interferon-γ were significantly reduced and, on the contrary, anti-inflammatory cytokine interleukin-10 was significantly increased in the sera of SSAT mice compared with the wild-type animals. In addition, hepatic acute-phase proteins C-reactive protein, haptoglobin and α(1)-acid glycoprotein were expressed in higher amounts in SSAT mice than in the wild-type animals. In summary, the study suggests that SSAT overexpression obtained in SSAT mice enhances the anti-inflammatory actions in the acute phase of LPS-induced immune response. PMID:21814792

  18. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task

    Chien-Heng Chu

    2015-03-01

    Conclusion: Acute exercise has a selective and beneficial effect on cognitive function, specifically affecting the motor response inhibition aspect of executive function. Furthermore, acute exercise predominately impacts later stages of information processing during motor response inhibition, which may lead to an increase in attentional resource allocation and confer the ability to successfully withhold a response to achieve motor response inhibition.

  19. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex

  20. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  1. The inflammatory response in myocarditis and acute myocardial infarction

    Emmens, R.W.

    2016-01-01

    This thesis is about myocarditis and acute myocardial infarction (AMI). These are two cardiac diseases in which inflammation of the cardiac muscle occurs. In myocarditis, inflammation results in the elimination of a viral infection of the heart. During AMI, one of the coronary arteries is occluded, causing ischemia and damaged cardiac muscle cells. Here, inflammation removes these damaged cells, so that scar formation can occur. However, for both diseases, inflammation also results in additio...

  2. Opposite metabolic responses of shoots and roots to drought

    Gargallo-Garriga, A.; Sardans, J.; Pérez-Trujillo, M.; Rivas-Ubach, A.; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T.; Penuelas, J.

    2014-01-01

    Roč. 4, č. 6829 (2014), s. 1-7. ISSN 2045-2322 Grant ostatní: AV ČR(CZ) M200871201 Institutional support: RVO:67179843 Keywords : shoot and roots * autotrophic and heterotrophic organs * environmental change * growth metabolism * water and nutirens Subject RIV: EH - Ecology, Behaviour Impact factor: 5.578, year: 2014

  3. Flexibly combined optical microangiography and dual-wavelength laser speckle system for comprehensive imaging of hemodynamic and metabolic responses

    Shi, Lei; Qin, Jia; An, Lin; Wang, Ruikang K.

    2014-03-01

    We have proposed and developed a multi-modal non-invasive biomedical optical imager. It was combined from the subsystems of optical microangiography and dual-wavelength laser speckle contrast imaging. The system was designed to maintain the performances of both subsystems. It was capable of simultaneously imaging the hemodynamic and metabolic responses in tissue environment in vivo. To achieve such requirements, we utilized unique optical setup, such as paired dichroic mirrors to compensate dispersion, additional relay lens to increase working distance and translational sample probe to freely select imaging area and focal plane. The multi-functionality of the system was demonstrated in an investigation of hemodynamic and metabolic responses on an acute wound healing model in mouse pinna in vivo. The microvasculature, blood flow and hemoglobin concentration from millimeter down to capillary level were comprehensively visualized. The captured instantaneous responses to wound onset differed greatly between localized areas; after that blood flow had a rebalance tendency, and hemoglobin concentration dynamically recovered to baseline situation.

  4. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice

    Ethanol induces cumulative liver damage including steatosis, steatohepatitis and cirrhosis. The aim of this study is to investigate the global intrahepatic gene expression profile in the mouse liver treated with ethanol. A single oral dose of 0.5 or 5 g/kg ethanol was administered to male ICR mice, and liver samples were obtained after 6, 24 and 72 h. Histopathological evaluation showed typical fatty livers in the high-dose group at 24 h. Microarray analysis identified 28 genes as being ethanol responsive (two-way ANOVA; p < 0.05), after adjustment by the Benjamini-Hochberg multiple testing correction; these genes displayed ≥ 2-fold induction or repression. The expression of genes that are known to be involved in fatty acid synthesis was examined. The transcript for lipogenic transcription factor, sterol regulatory element (SRE)-binding factor 1 (Srebf1), was upregulated by acute ethanol exposure. Of the genes known to contain SRE or SRE-like sequences and to be regulated by SRE-binding protein 1 (SREBP1), those encoding malic enzyme (Mod1), ATP-citrate lyase (Acly), fatty acid synthase (Fasn) and stearyl-CoA desaturase (Scd1) were induced by ethanol. Quantitative real-time PCR confirmed the changes in the expression levels of the selected genes. The change in the Srebf1 mRNA level correlates well with that of the SREBP1 protein expression as well as its binding to the promoters of the target genes. The present study identifies differentially expressed genes that can be applied to the biomarkers for alcohol-binge-induced fatty liver. These results support the hypothesis by which ethanol-induced steatosis in mice is mediated by the fatty acid synthetic pathway regulated by SREBP1

  5. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli

    Elizabeth Brooke Riley

    2015-08-01

    Full Text Available Psychostimulants have many effects on visual function, from adverse, following acute and prenatal exposure to therapeutic, on attention deficit. To determine the impact of prenatal and acute cocaine exposure on visual processing, we studied neuronal responses to visual stimuli in two brain regions of a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We found that both red light (LF and dark (DF flashes elicited similar responses in the optic tectum neuropil (TOn, while the dorsal telencephalon (dTe responded only to LF. Acute cocaine (0.5 μM reduced neuronal responses to LF in both brain regions but did not affect responses to DF. Repeated stimulus presentation led to habituation of dTe neurons to LF. Acute cocaine prevented habituation. TOn habituated to DF, but not LF, and DF habituation was not modified by cocaine. Remarkably, prenatal cocaine exposure prevented the effects of acute cocaine on LF response amplitude and habituation later in development in both brain regions, but did not affect DF responses. We discovered that, in spite of similar neural responses to LF and DF in the TO (superior colliculus in mammals, responses to LF are more complex, involving dTe (homologous to the cerebral cortex, and are more vulnerable to cocaine. Our results demonstrate that acute cocaine exposure affects visual processing differentially by brain region, and that prenatal cocaine exposure modifies zebrafish visual processing in multiple structures in a stimulus-dependent manner. These findings are in accordance with the major role that the optic tectum and cerebral cortex play in sustaining visual attention, and support the hypothesis that modification of these areas by prenatal cocaine exposure may be responsible for visual deficits noted in humans. This model offers new methodological approaches for studying the adverse and therapeutic effects of psychostimulants on attention, and for the development of new pharmacological

  6. Muscle metabolic remodelling in response to endurance exercise in salmonids

    Andrea J Morash

    2014-11-01

    Full Text Available Phenotypic plasticity of skeletal muscle is relevant to swimming performance and metabolism in fishes, especially those that undergo extreme locomotory feats, such as seasonal migration. However, the influence of endurance exercise and the molecular mechanisms coordinating this remodelling are not well understood. The present study examines muscle metabolic remodelling associated with endurance exercise in fed rainbow trout as compared to migrating salmon. Trout were swum for 4 weeks at 1.5BL/s, a speed similar to that of migrating salmon and red and white muscles were sampled after each week. We quantified changes in key enzymes in aerobic and carbohydrate metabolism (citrate synthase (CS, β-hydroxyacyl-CoA dehydrogenase (HOAD, hexokinase (HK and changes in mRNA expression of major regulators of metabolic phenotype (AMPK, PPARs and lipid (carnitine palmitoyltransferase, CPT I, protein (aspartate aminotransferase, AST and carbohydrate (HK oxidation pathways. After one week of swimming substantial increases were seen in AMPK and PPARα mRNA expression and of their downstream target genes, CPTI and HK in red muscle. However, significant changes in CS and HK activity occurred only after 4 weeks. In contrast, there were few changes in mRNA expression and enzyme activities in white muscle over the 4-weeks. Red muscle results mimic those found in migrating salmon suggesting a strong influence of exercise on red muscle phenotype. In white muscle, only changes in AMPK and PPAR expression were similar to that seen with migrating salmon. However, in contrast to exercise alone, in natural migration HK decreased while AST increased suggesting that white muscle plays a role in supplying fuel and intermediates possibly through tissue breakdown during prolonged fasting. Dissecting individual and potentially synergistic effects of multiple stressors will enable us to determine major drivers of the metabolic phenotype and their impacts on whole animal

  7. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    International audience The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we st...

  8. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. PMID:27173459

  9. Mechanisms of the Hepatic Acute-Phase Response during Bacterial Pneumonia▿

    Quinton, Lee J.; Jones, Matthew R.; Robson, Bryanne E.; Mizgerd, Joseph P.

    2009-01-01

    The acute-phase response is characterized by increased circulating levels of acute-phase proteins (APPs) generated by the liver. During bacterial pneumonia, APPs correlate with the severity of disease, serve as biomarkers, and are functionally significant. The kinetics and regulatory mechanisms of APP induction in the liver during lung infection have yet to be defined. Here we show that APP mRNA transcription is induced in the livers of mice whose lungs are infected with either Escherichia co...

  10. Acute phase protein response in an experimental model of ovine caseous lymphadenitis

    Lang Tamara L; Waterston Mary M; Bence Laura; Lawson Fraser P; Eckersall Peter D; Donachie William; Fontaine Michael C

    2007-01-01

    Abstract Background Caseous lymphadenitis (CLA) is a disease of small ruminants caused by Corynebacterium pseudotuberculosis. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP) such as haptoglobin (Hp) serum amyloid A (SAA) and α1 acid glycoprotein (AGP) are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CL...

  11. Acute Physiological Responses to Short- and Long-Stage High-Intensity Interval Exercise in Cardiac Rehabilitation: A Pilot Study

    Gerhard Tschakert, Julia M. Kroepfl, Alexander Mueller, Hanns Harpf, Leonhard Harpf, Heimo Traninger, Sandra Wallner-Liebmann, Tatjana Stojakovic, Hubert Scharnagl, Andreas Meinitzer, Patriz Pichlhoefer, Peter Hofmann

    2016-03-01

    Full Text Available Despite described benefits of aerobic high-intensity interval exercise (HIIE, the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg, all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET and three different exercise tests matched for mean load (Pmean and total duration: 1 short HIIE with a peak workload duration (tpeak of 20 s and a peak workload (Ppeak equal to the maximum power output (Pmax from IET; 2 long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax from IET; 3 CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p 0.05. All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach.

  12. Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy

    Today's clinical diagnostic tools are insufficient for giving accurate prognosis to breast cancer patients. The aim of our study was to examine the tumor metabolic changes in patients with locally advanced breast cancer caused by neoadjuvant chemotherapy (NAC), relating these changes to clinical treatment response and long-term survival. Patients (n = 89) participating in a randomized open-label multicenter study were allocated to receive either NAC as epirubicin or paclitaxel monotherapy. Biopsies were excised pre- and post-treatment, and analyzed by high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). The metabolite profiles were examined by paired and unpaired multivariate methods and findings of important metabolites were confirmed by spectral integration of the metabolite peaks. All patients had a significant metabolic response to NAC, and pre- and post-treatment spectra could be discriminated with 87.9%/68.9% classification accuracy by paired/unpaired partial least squares discriminant analysis (PLS-DA) (p < 0.001). Similar metabolic responses were observed for the two chemotherapeutic agents. The metabolic responses were related to patient outcome. Non-survivors (< 5 years) had increased tumor levels of lactate (p = 0.004) after treatment, while survivors (≥ 5 years) experienced a decrease in the levels of glycine (p = 0.047) and choline-containing compounds (p ≤ 0.013) and an increase in glucose (p = 0.002) levels. The metabolic responses were not related to clinical treatment response. The differences in tumor metabolic response to NAC were associated with breast cancer survival, but not to clinical response. Monitoring metabolic responses to NAC by HR MAS MRS may provide information about tumor biology related to individual prognosis

  13. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats.

    Abelaira, Helena M; Réus, Gislaine Z; Ribeiro, Karine F; Zappellini, Giovanni; Ferreira, Gabriela K; Gomes, Lara M; Carvalho-Silva, Milena; Luciano, Thais F; Marques, Scherolin O; Streck, Emilio L; Souza, Cláudio T; Quevedo, João

    2011-12-01

    The present study was aimed to investigate the behavioral and molecular effects of lamotrigine. To this aim, Wistar rats were treated with lamotrigine (10 and 20 mg/kg) or imipramine (30 mg/kg) acutely and chronically. The behavior was assessed using forced swimming test. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), Proteina Kinase B (PKB, AKT), glycogen synthase kinase 3 (GSK-3) and B-cell lymphoma 2 (Bcl-2) levels, citrate synthase, creatine kinase and mitochondrial chain (I, II, II-III and IV) activities were assessed in the brain. The results showed that both treatments reduced the immobility time. The BDNF were increased in the prefrontal after acute treatment with lamotrigine (20 mg/kg), and the BDNF and NGF were increased in the prefrontal after chronic treatment with lamotrigine in all doses. The AKT increased and Bcl-2 and GSK-3 decreased after both treatments in all brain areas. The citrate synthase and creatine kinase increased in the amygdala after acute treatment with imipramine. Chronic treatment with imipramine and lamotrigine (10 mg/kg) increased the creatine kinase in the hippocampus. The complex I was reduced and the complex II, II-III and IV were increased, but related with treatment and brain area. In conclusion, lamotrigine exerted antidepressant-like, which can be attributed to its effects on pathways related to depression, such as neurotrophins, metabolism energy and signaling cascade. PMID:22044672

  14. Intracellular thiols: involvement in drug metabolism and radiation response

    Nitro compunds are activated by coupled enzyme reactions to oxygen reactive intermediates leading to the formation of peroxide, under aerobic conditions, and to the depletion of thiols, under anaerobic conditions. Some nitro compounds as substrates for glutathione-S-transferase, show peroxide production without prior thiol removal. Other drugs reacting spontaneouly with glutathione also produce peroxide. Glutathione plays an important role in the metabolism of the nitrocompounds either by directly reacting with them or their reduced intermediates such as the nitroso, nitro and hydroxyl radical. In the case of misonidazole, protection against their cytotoxic effects can be achieved by the addition of exogenous thiols such as glutathione or cysteamine. Results indicate that oxygen and peroxide electrodes provide convenient means for measuring the products of metabolic activation of nitro compounds. Mechanisms are proposed whereby protein, nonprotein and glutathione thiols can interact with drug radicals or with DNA radicals. 60 references, 14 figures, 5 tables

  15. Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary

    Thottathil, S.D.; Balachandran, K.K.; Jayalakshmy, K.V.; Gupta, G.V.M.; Nair, S.

    , Dona Paula 403004, Goa, India Received 5 September 2007; accepted 4 February 2008 Available online 6 March 2008 Abstract ‘‘Biolog’’ plates were used to study the changes in the metabolic capabilities of bacterioplankton over a complete tidal cycle in a... utilization from carbohydrates to amino acids appears to be due to the physiological adaptation or nitrogen limitation of bacterial community with increasing salinity. C211 2008 Elsevier Ltd. All rights reserved. Keywords: bacterioplankton; community; ‘‘Biolog...

  16. Metabolism

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood ...

  17. Highly sensitive C-reactive protein and male gender are independently related to the severity of coronary disease in patients with metabolic syndrome and an acute coronary event

    C.M.C. Monteiro; Pinheiro, L. F.; Izar, M.C.; S.W. Barros; M.B. Vasco; Fischer, S M; R.M. Povoa; S.A. Brandão; Santos, A.O.; Oliveira, L.; A.C. Carvalho; F.A.H. Fonseca

    2010-01-01

    Patients with metabolic syndrome are at high-risk for development of atherosclerosis and cardiovascular events. The objective of this study was to examine the major determinants of coronary disease severity, including those coronary risk factors associated with metabolic syndrome, during the early period after an acute coronary episode. We tested the hypothesis that inflammatory markers, especially highly sensitive C-reactive protein (hsCRP), are related to coronary atherosclerosis, in additi...

  18. Dose-response relationships of acute exposure to sulfur dioxide

    Acute toxicity effects of sulphur dioxide are reviewed, and the derivation of a dose-lethality curve (presented as LC50 vs. time) for human exposure to sulphur dioxide is attempted for periods ranging from ten seconds to two hours. As an aid to assessment of the hazards involved in operating heavy water manufacturing facilities, the fact that sulphur dioxide would be produced by the combustion of hydrogen sulphide was briefly considered in an appendix. It is suggested that sulphuric acid, a much more toxic substance than sulphur dioxide, may also be formed in such an event. It is concluded, therefore, that an overall hazard evaluation may have to address the contributory effects of sulphuric acid. (author)

  19. Acute phase protein response in Alpine ibex with sarcoptic mange.

    Rahman, Md Mizanur; Lecchi, Cristina; Fraquelli, Cristina; Sartorelli, Paola; Ceciliani, Fabrizio

    2010-03-25

    The acute phase proteins (APP) are a group of serum proteins that change their concentration in animals following external or internal challenges, such as infection, inflammation or stress. The concentrations of four APPs, including serum amyloid A (SAA), haptoglobin (Hp), alpha(1)-acid glycoprotein (AGP) and ceruloplasmin (Cp) were determined in serum collected from healthy Alpine ibexes (Capra ibex) and ibexes with Sarcoptes scabiei mange. Primary structures of all four APPs were determined by cDNA sequencing. The concentrations of all four APPs were higher in serum of animals with clinical signs of sarcoptic mange when compared to healthy animals. Two of the APPs, including SAA and AGP, acted as major APPs, since their serum concentrations were increased more than 10-folds when compared to healthy animals (Psarcoptic mange in free ranging animals. PMID:20036058

  20. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge.

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wang, Qing; Li, Fei; Wu, Huifeng

    2014-08-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis. PMID:24911264

  1. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice

    Pini, Maria; Rhodes, Davina H.; Fantuzzi, Giamila

    2011-01-01

    Obesity is associated with chronic inflammation and elevated levels of IL-6. The role of IL-6 in induction of acute-phase proteins and modulation of haematological responses has been demonstrated in models of inflammation and aging, but not in obesity. We hypothesized that IL-6 is necessary to regulate the acute-phase response and hematological changes associated with diet-induced obesity (DIO) in mice. Feeding a 60% kcal/fat diet for 13 weeks to C57BL6 WT male mice induced a significant incr...

  2. Disturbances of serine and glycine metabolism as a cause of episodic acute polymorphous psychoses

    L. Pepplinkhuizen (Lolke)

    1983-01-01

    textabstractPsychiatrists are frequently confronted with psychoses that are difficult to classify. Many forms of these atypical psychoses have been described in European literature. They often have an acute onset and a tendency towards complete remission, albeit with an episodic course. Rich, multif

  3. Acute hypoxic exercise does not alter post-exercise iron metabolism in moderately trained endurance athletes

    Govus, A.D.; Abbiss, C.R.; Garvican-Lewis, L.A.; Swinkels, D.W.; Laarakkers, C.M.; Gore, C.J.; Peeling, P.

    2014-01-01

    PURPOSE: This study measured the influence of acute hypoxic exercise on Interleukin-6 (IL-6), hepcidin, and iron biomarkers in athletes. METHODS: In a repeated measures design, 13 moderately trained endurance athletes performed 5 x 4 min intervals at 90 % of their peak oxygen consumption velocity (v

  4. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult. PMID:19126842

  5. ''Ecstasy''-induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. A 18-FDG PET study

    The aim of this study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylene dioxyethamphetamine) on cerebral glucose metabolism (rMRGlu) of healthy volunteers and to correlate neurometabolism with acute psychopathology. In a radomized double-blind trial, 15 healthy volunteers without a history of drug abuse were examined with fluorine-18-deoxyglucose (18FDG) positron emission tomography (PET) 110-120 min after oral administration of 2 mg/kg MDE (n=7) or placebo (n=8). Two minutes prior to radiotracer injection, constant cognitive stimulation was started and maintained for 32 min using a word repetition paradigm to ensure constant and comparable mental conditions during cerebral glucose uptake. Individual brain anatomy was represented using T1-weighted 3D flash magnetic resonance imaging (MRI), followed by manual regionalization into 108 regions of interest and PET/MRI overlay. After absolute quantification of rMR-Glu and normalization to global metabolism, normalized rMRGlu under MDE was compared to placebo using the Mann-Whitney U-test. Acute psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and rMRGlu was correlated to PANSS scores according to Spearman. MDE subjects showed significantly decreased rMRGlu in the bilateral frontal cortex: left frontal posterior (-7.1%, P<0.05) and right prefrontal superior (-4.6%, P<0.05). On the other hand, rMR-Glu was significantly increased in the bilateral cerebellum (right: +10.1%, P<0.05; left: +7.6%, P<0.05) and in the right putamen (+6.2%, P<0.05). There were positive correlations between rMRGlu in the middle right cingulate and grandiosity (r=0.87; P<0.05), both the right amygadala (r=0.90, P<0.01) and the left posterior cingulate (r=0.90, P<0.01) to difficulties in abstract thinking, and the right frontal inferior (r=0.85, P<0.05), right anterior cingulate (r=0.93, P<0.01), and left anterior cingulate (r=0.85, P<0.05) to attentional deficits. A negative

  6. Hormonal and metabolic response in middle-aged women to moderate physical effort during aerobics.

    Charmas, Małgorzata; Opaszowski, Benedykt H; Charmas, Robert; Rózańska, Dorota; Jówko, Ewa; Sadowski, Jerzy; Dorofeyeva, Lena

    2009-05-01

    The aim of this study is to estimate the metabolic and hormone response in middle-aged women to acute physical aerobic exercise accompanied by music, the so-called "aerobics." The experiment (single 60-minute aerobics session) included 11 women aged between 30 and 50. The following variables were determined in blood samples collected from the participants four times (in fasting state [I], before exercise [II], after exercise [III], and after 12 hours of rest [IV]): concentration of lactic acid, glucose, free fatty acids, leptin, insulin, growth hormone, testosterone, and cortisol. Furthermore, the measurements included body mass before and after the exercise, and body temperature was taken in the auditory canal and on the forehead. The heart rate was registered during the exercise on a continuous basis. In all cases, the heart rate did not reach its maximum level, and on average, it amounted to approximately 70% of the maximum pulse rate. Therefore, this effort can be considered as submaximal. In all cases, we observed loss of body mass (from 0.2 to 0.7 kg) (p > 0.02) increase in the temperature measured on forehead. Significantly, accompanied by nonsignificant increase in the temperature measured on the tympanic membrane was registered. Single loading gives rise to change in hormone and metabolic profiles. Furthermore, a decrease in blood concentration of glucose before and after aerobics (p > 0.001) could be observed, and if the determination taken at measurement IV of glucose in blood is taken into consideration, then the value taken in measurement I is significantly the highest in relation to other measurements. Concentration of free fatty acids were increased (p > 0.002) after exercise and remained on the same level until the following day. The levels of insulin were significantly decreased, but growth hormone levels were increased. The exercise had no impact on testosterone concentration, whereas average blood concentration of leptin in the successive

  7. Anaerobic changes in the energy metabolism of mouse brain during the recovery from acute radiation sickness

    There months after whole-body irradiation of mice with a sublethal dose of 5 Gy a study was made of some indices of energy metabolism like tissue respiration, oxidative phosphorylation, and formation of lactic acid in the survived brain homogenate. Revealed were (a) the diminution of coupling of tissue respiration to oxidative phosphorylation, the rate of oxygen consumption and the level of cyanoresistant respiration being constant, (b) the increase in the rate of glycolysis in anaerobic and particularly, in aerobic conditions, and (c) reduction of the Pasteur and Crabtree effects. The above mentioned changes in the brain energy metabolism seem to be a manifestation of the process of the reduced metabolism formation in the nervous tissue at the remote tims after irradiation

  8. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans

    Jürgens, Gesche; Christensen, Hanne Rolighed; Brøsen, Kim; Sonne, Jesper; Loft, Steffen; Olsen, Niels Vidiendal

    2002-01-01

    measured before departure, at 24 and 96 hours after arrival to high-altitude location, and at 1 month after return to sea level. CYP enzyme activities were measured by means of the metabolic ratios of sparteine (CYP2D6), endogenous cortisol metabolism (CYP3A4), and caffeine (CYP1A2), as well as by the S......% confidence interval, 1.0 to 4.2; P =.047, Friedman test). These changes indicate a small decrease in the activity of CYP2D6 and CYP3A4. There were no significant changes regarding the metabolic ratio of caffeine, the S/R ratio of mephenytoin, or antipyrine clearance. CONCLUSION: The small changes observed...

  9. The effect of environmental temperature on immune response and metabolism of the young chicken

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The ensueing immune response

  10. The relationship between metabolism and the autophagy machinery during the innate immune response

    Martinez, Jennifer; Verbist, Katherine; Wang, Ruoning; Green, Douglas R.

    2013-01-01

    The innate immune response is shaped by multiple factors, including both traditional autophagy and LC3-associated phagocytosis (LAP). As the autophagic machinery is engaged during times of nutrient stress, arising from scarcity or pathogens, we examine how autophagy, specifically LAP, and cellular metabolism together influence macrophage function and the innate immune response.

  11. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions.

    Shimizu, Kazuyuki

    2016-01-01

    Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya. PMID:25712586

  12. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells

    Bro, Christoffer; Regenberg, Birgitte; Lagniel, G.; Labarre, J.; Montero-Lomeli, M.; Nielsen, Jens

    2003-01-01

    Lithium is highly toxic to yeast when grown in galactose medium mainly because phosphoglucomutase, a key enzyme of galactose metabolism, is inhibited. We studied the global protein and gene expression profiles of Saccharomyces cerevisiae grown in galactose in different time intervals after addition...... of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription......, translation, and nucleotide metabolism were down-regulated at the transcriptional level, whereas genes responsive to different stresses as well as genes from energy reserve metabolism and monosaccharide metabolism were up-regulated. Compared with the proteomic data, 26% of the down-regulated and 48% of the up...

  13. Metabolic response to exogenous ethanol in yeast: an in vivo NMR and mathematical modelling approach.

    Martini, Silvia; Ricci, Maso; Bartolini, Fiora; Bonechi, Claudia; Braconi, Daniela; Millucci, Lia; Santucci, Annalisa; Rossi, Claudio

    2006-03-20

    The understanding of the metabolic behaviour of complex systems such as eukaryotic cells needs the development of new approaches that are able to deal with the complexity due to a large number of interactions within the system. In this paper, we applied an approach based on the combined use of in vivo NMR experiments and mathematical modelling in order to analyze the metabolic response to ethanol stress in a wild-strain of Saccharomyces cerevisiae. Considering the cellular metabolic processes resulting from activation, inhibition, and feed-back activities, we developed a model able to describe the modulation of the whole system induced by an external stress due to increasing concentrations of exogenous ethanol. This approach was able to interpret the experimental results in terms of metabolic response to exogenous ethanol in the yeast. The robustness and flexibility of the model enables it to work correctly at different initial exogenous ethanol concentrations. PMID:16316719

  14. Clarithromycin attenuates mastectomy-induced acute inflammatory response

    Chow, Louis W. C.; Yuen, Kwok-Yung; Woo, Patrick C. Y.; Wei, William I.

    2000-01-01

    Based on the observation that administration of clarithromycin led to an attenuation of the inflammatory response induced by surgical trauma in a guinea pig model, we investigated the potential beneficial effects of clarithromycin on the local and systemic inflammatory response in patients undergoing mastectomy in an open-label prospective study. During a 16-month period, 54 patients who underwent mastectomy were randomly divided into two groups. In one group, the patients received oral clari...

  15. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline

    Nazir A. Pala; Laway, Bashir A.; Raiz A Misgar; Rayees A Dar

    2015-01-01

    Background Hyperprolactinemia has been associated with changes in body composition and metabolic abnormalities. Normalization of prolactin (PRL) with dopamine agonists has been found to reverse these abnormalities. This study was designed to assess the anthropometric and metabolic alterations associated with prolactinoma and response of these abnormalities to cabergoline treatment. Methods In a non-randomised matched prospective design, 19 consecutive patients with prolactinoma (median PRL 11...

  16. Response to Cardiac Resynchronization Therapy: The Muscular Metabolic Pathway

    Jérémie Jaussaud

    2011-01-01

    245±140 seconds (=.01. Peak VO2, VE/VCO2, peak circulatory power and NYHA were improved after CRT (13±4 to16±5 ml/kg/min (<.05, 45±16 to 39±13 (<.01, 1805±844 to 2225±1171 mmHg.ml/kg/min (<.01 and 3±0.35 to 1.88±0.4 (=.01. In addition, left ventricular ejection fraction and end-systolic volumes were improved from 24±8 to 29±7% (<.01 and from 157±69 to 122±55 ml (<.01. Conclusion. We suggest that CRT leads to an increase in oxidative muscular metabolism and postponed anaerobic threshold reducing exaggerated hyperventilation during exercise.

  17. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    Bailey, D M; Evans, K A; James, P E;

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O......(2)) and following 6 h passive exposure to hypoxia (12% O(2)). Blood flow velocity in the middle cerebral artery (MCAv) and mean arterial blood pressure (MAP) were measured for determination of CA following calculation of transfer function analysis and rate of regulation (RoR). Nine subjects...... MCAv, S100beta and neuron-specific enolase. In conclusion, these findings suggest that AMS is associated with altered redox homeostasis and disordered CA independent of barrier disruption....

  18. Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions

    Gregersen, N.T.; Bitz, C.; Krog-Mikkelsen, I.;

    2009-01-01

    Green tea may stimulate energy metabolism; however, it is unclear if acute effects are caused by specific catechins, caffeine or their combination. The objective of the present study was to examine the separate and combined effects of different catechins and caffeine on energy expenditure (EE) and...... fat oxidation over a single day. Fifteen healthy, normal-weight males received capsules containing placebo, caffeine alone (150mg), or caffeine plus a catechin mixture (600 mg) enriched in either epigallocatechin-3-gallate (EGCG), epigallocatechin or a mix of catechins, in a randomised cross......-over double-blinded design. On each test day EE, respiratory quotient (RQ) and substrate oxidation were measured under sedentary conditions in a respiratory chamber for 13.5h. We found no significant treatment effect on EE (P=0.20) or RQ (P=0.68). EGCG with caffeine insignificantly raised EE and fat oxidation...

  19. Lentiform fork sign: a magnetic resonance finding in a case of acute metabolic acidosis.

    Grasso, Daniela; Borreggine, Carmela; Perfetto, Francesco; Bertozzi, Vincenzo; Trivisano, Marina; Specchio, Luigi Maria; Grilli, Gianpaolo; Macarini, Luca

    2014-06-01

    We report a 33 year-old woman addicted to chronic unspecified solvents abuse with stupor, respiratory disorders, tetraplegia and severe metabolic acidosis. On admission an unenhanced cranial CT scan showed symmetrical hypodensities of both lentiform nuclei. MR imaging performed 12 hours after stupor demonstrates bilateral putaminal hemorrhagic necrosis, bilateral external capsule, corona radiata and deep cerebellar hyperintensities with right cingulate cortex involvement. DWI reflected bilateral putaminal hyperintensities with restricted water diffusion as to citotoxic edema and development of vasogenic edema in the external capsule recalling a fork. On day twenty, after specific treatments MRI demonstrated a bilateral putaminal marginal enhancement. Bilateral putaminal necrosis is a characteristic but non-specific radiological finding of methanol poisoning. Lentiform Fork sign is a rare MRI finding reported in literature in 22 patients with various conditions characterized by metabolic acidosis. Vasogenic edema may be due to the differences in metabolic vulnerability between neurons and astrocytes. We postulate that metabolic acidosis could have an important role to generate this sign. PMID:24976195

  20. Lentiform Fork Sign: a Magnetic Resonance Finding in a Case of Acute Metabolic Acidosis

    Grasso, Daniela; Borreggine, Carmela; Perfetto, Francesco; Bertozzi, Vincenzo; Trivisano, Marina; Specchio, Luigi Maria; Grilli, Gianpaolo; Macarini, Luca

    2014-01-01

    Summary We report a 33 year-old woman addicted to chronic unspecified solvents abuse with stupor, respiratory disorders, tetraplegia and severe metabolic acidosis. On admission an unenhanced cranial CT scan showed symmetrical hypodensities of both lentiform nuclei. MR imaging performed 12 hours after stupor demonstrates bilateral putaminal hemorrhagic necrosis, bilateral external capsule, corona radiata and deep cerebellar hyperintensities with right cingulate cortex involvement. DWI reflected bilateral putaminal hyperintensities with restricted water diffusion as to citotoxic edema and development of vasogenic edema in the external capsule recalling a fork. On day twenty, after specific treatments MRI demonstrated a bilateral putaminal marginal enhancement. Bilateral putaminal necrosis is a characteristic but non-specific radiological finding of methanol poisoning. Lentiform Fork sign is a rare MRI finding reported in literature in 22 patients with various conditions characterized by metabolic acidosis. Vasogenic edema may be due to the differences in metabolic vulnerability between neurons and astrocytes. We postulate that metabolic acidosis could have an important role to generate this sign. PMID:24976195

  1. Endocrine responses in the rhesus monkey during acute cold exposure

    Lotz, W.G.; Saxton, J.L. (Naval Aerospace Medical Research Lab., Pensacola, FL (United States))

    1991-03-11

    The authors studied five young male rhesus monkeys (Macaca mulatta), 3.4 to 6.7 kg, to determine the relationship between fluid balance hormones and urine production during acute, dry cold exposure. Each monkey served as its own control in duplicate experimental sessions at 6C or 26C. A 6-h experimental session consisted of 120 min equilibration at 26C, 120 min experimental exposure, and 120 min recovery at 26C. Urinary and venous catheters were inserted on the morning of a session. Rectal (Tre) and skin temperatures were monitored continuously. Blood samples were taken at 0, 30, 60 and 120 min of exposure, and at 60 min postexposure. Plasma was analyzed for arginine vasopressin (AVP), atrial natriuretic factor (ANF), plasma renin activity (PRA), plasma aldosterone (PA), and osmolality. Urine samples were analyzed for osmolality, electrolytes, and creatinine. Mean Tre was 1.6C lower after 120 min at 6C than at 26C. Urine volume and osmolality were not altered by cold exposure, as they are in humans and rats. Vasopressin and PA increased sharply, with mean plasma levels in monkeys exposed to cold more than threefold and tenfold, respectively, the levels in monkeys exposed at 26C. In contrast, ANF, PRA, and plasma osmolality were not significantly changed by cold exposure. The absence of a cold-induced diuresis in the monkey may be related to the marked increase in plasma AVP level.

  2. Coupling of metabolism and cardiovascular response represents normal physiology.

    Steinberg, Helmut O

    2003-12-01

    In this issue of Clinical Science, Fugmann and co-workers demonstrate a highly integrated cardiovascular response to changes in plasma concentrations of glucose, triacylglycerols (triglycerides), fatty acids and insulin. Since the different substrates, alone and combined, evoked these changes, this response is likely to be a physiological one and directed towards minimizing the extent and duration of substrate elevations that could cause vascular dysfunction. PMID:12917009

  3. Effects of anabolic steroids on acute phase responses in intra-abdominal sepsis

    K. Mealy

    1997-01-01

    Full Text Available The acute phase response is an important adaptive response to sepsis and injury. As anabolic steroids increase protein synthesis we postulated that these agents might also increase hepatic acute phase protein synthesis. Male Wistar rats were pretreated with testosterone or danazol for 48 h prior to caecal ligation and puncture (CLP. Thirty-six h following surgery the animals were killed and blood taken for full blood count, total protein, albumin, α, β and γ globulin fractions on serum electrophoresis, complement C3 and transferrin levels. Danazol increased the α1, α2 and β1 globulin serum protein fractions in comparison with no surgery and CLP alone groups. These results indicate that danazol increases plasma acute phase proteins, as measured by electrophoresis, in this model of intra-abdominal sepsis.

  4. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats

    Hansen, M B; Olsen, Niels Vidiendal; Hyldegaard, O

    2013-01-01

    -to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 kPa in...

  5. Acute metabolic changes in critical care and cardiac care: Role of potassium, glucose and lactate

    Hoekstra, Miriam

    2016-01-01

    This thesis describes the relation of potassium, glucose and lactate with outcome in critical care and cardiac care and computer-assisted regulation of glucose and potassium in the intensive care. In patient with acute myocardial infarction it is important to identify those who have the highest risk for adverse outcome. Several markers can be used for this purpose. This thesis demonstrates that hyperglycemia predicts short-term prognosis associated with a larger infarct size whereas HbA1c pre...

  6. Disturbances of serine and glycine metabolism as a cause of episodic acute polymorphous psychoses

    Pepplinkhuizen, Lolke

    1983-01-01

    textabstractPsychiatrists are frequently confronted with psychoses that are difficult to classify. Many forms of these atypical psychoses have been described in European literature. They often have an acute onset and a tendency towards complete remission, albeit with an episodic course. Rich, multiform symptomatology is noted sometimes in addition to altered states of consciousness. In patients with a grossly impaired consciousness the psychiatrist has also to consider whether such a psychosi...

  7. Hormonal and metabolic changes during acute myocardial infarction in normotensive vs hypertensive rats.

    Wexler, B. C.; McMurtry, J. P.

    1983-01-01

    Male and female, normotensive, Sprague-Dawley (S-D) rats, and spontaneously hypertensive rats (SHR) were subjected to acute and massive myocardial infarction with isoproterenol. Some of the animals were pre-treated (7 days) with the prolactin-lowering drug, bromocryptine. SHR survived in greater numbers than S-D but developed massive congestive heart failure of late onset. The adrenal glands and hearts became greatly hypertrophied in parallel with severely involuted thymus glands. ECG tracing...

  8. Review of dose-response curves for acute antimigraine drugs

    Hougaard, Anders; Tfelt-Hansen, Peer

    2015-01-01

    calcitonin-gene related peptide receptor antagonists (telcagepant, MK-3207, BI 44370 TA and BMS-927711) in placebo-controlled trials were reviewed. In addition, dose-response curves for adverse events (AEs) were reviewed. Expert opinion: For most triptans, the dose-response curve for efficacy is flat......, there are many unmet needs. Although upcoming drugs may not be superior to triptans, migraine patients will potentially benefit greatly from these, especially patients who are triptan non-responders and patients with cardiovascular disease....

  9. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task

    Chien-Heng Chu; Alderman, Brandon L.; Gao-Xia Wei; Yu-Kai Chang

    2015-01-01

    Purpose: The purpose of this study was to determine the effects of acute exercise on motor response inhibition using both behavioral and electrophysiological approaches. Methods: The P3 and N1 event-related potential (ERP) components were recorded while performing a stop-signal task in 21 college students following a moderately intense acute exercise bout for 30 min and a sedentary control session that involved reading. Results: Acute exercise induced a shorter stop signal response time...

  10. Decrease in cerebral metabolic rate of glucose after high-dose methotrexate in childhood acute lymphocytic leukemia

    We measured changes in the regional cerebral metabolic rate of glucose (rCMRGlu) using 18F-fluorodeoxyglucose and positron emission tomography for the assessment of neurotoxicity in childhood acute lymphocytic leukemia treated with high-dose methotrexate (HD-MTX) therapy. We studied 8 children with acute lymphocytic leukemia (mean age: 9.6 years) treated with HD-MTX (200 mg/kg or 2,000 mg/M2) therapy. CMRGlu after HD-MTX therapy was most reduced (40%) in the patient who had central nervous system leukemia and was treated with the largest total doses of both intrathecal MTX (IT-MTX) and HD-MTX. CMRGlu in the whole brain after HD-MTX therapy was reduced by an average of 21% (P less than 0.05). The reductions of CMRGlu in 8 patients were correlated with total doses of both IT-MTX (r = 0.717; P less than 0.05) and systemic HD-MTX (r = 0.784; P less than 0.05). CMRGlu of the cerebral cortex, especially the frontal and occipital cortex, was reduced more noticeably than that of the basal ganglia and white matter. We suggest that the measurement of changes in rCMRGlu after HD-MTX therapy is useful for detecting accumulated MTX neurotoxicity

  11. Progress in Global Surveillance and Response Capacity 10 Years After Severe Acute Respiratory Syndrome

    2013-04-10

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases' synopsis, Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome.  Created: 4/10/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/11/2013.

  12. Diuretic response in acute heart failure-an analysis from ASCEND-HF

    ter Maaten, Jozine M.; Dunning, Allison M.; Valente, Mattia A. E.; Damman, Kevin; Ezekowitz, Justin A.; Califf, Robert M.; Starling, Randall C.; van der Meer, Peter; O'Connor, Christopher M.; Schulte, Phillip J.; Testani, Jeffrey M.; Hernandez, Adrian F.; Tang, W. H. Wilson; Voors, Adriaan A.

    2015-01-01

    Background Diuretic unresponsiveness often occurs during hospital admission for acute heart failure (AHF) and is associated with adverse outcome. This study aims to investigate determinants, clinical outcome, and the effects of nesiritide on diuretic response early after admission for AHF. Methods D

  13. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  14. Lay Public's Knowledge and Decisions in Response to Symptoms of Acute Myocardial Infarction

    Cytryn, Kayla N.; Yoskowitz, Nicole A.; Cimino, James J.; Patel, Vimla L.

    2009-01-01

    Despite public health initiatives targeting rapid action in response to symptoms of myocardial infarction (MI), people continue to delay in going to a hospital when experiencing these symptoms due to lack of recognition as cardiac-related. The objective of this research was to characterize lay individuals' knowledge of symptoms of acute myocardial…

  15. Clinical value of MRI and acute madopar responsiveness test in diagnosing progressive supranuclear palsy

    LI Xiao-hong

    2013-07-01

    Full Text Available Objective To investigate the MRI abnormalities and acute madopar responsiveness test in diagnosing progressive supranuclear palsy (PSP and Parkinson's disease (PD. Methods Seventeen patients with PSP and 17 gender and age matched patients with PD were studied with cranial MRI examinations and results of acute madopar responsiveness test, and the clinical manifestations of PSP were summarized. Results The atrophy of the midbrain tegmentum and hummingbird sign was demonstrated in all of the PSP patients in our study, but was not observed in the PD patients. The areas of the midbrain on mid-sagittal MRI in PSP patients [(77.35 ± 15.30 mm2] were significantly smaller than that in those with PD [(142.35 ± 31.49 mm2]. The average ratio of the area of the midbrain to the area of pons in the patients with PSP [(14.31 ± 2.47%] was significantly smaller than that in those with PD [(24.08 ± 4.73%; P = 0.000, for all]. According to the result of acute madopar responsiveness test, the maximum Unified Parkinson's Disease Rating Scale (UPDRS Ⅲ improvement rate of 2 patients with PSP and 16 patients with PD was more than 30% (χ2 = 23.142, P = 0.000. Conclusion The assessment of the mid-sagittal MRI and acute madopar responsiveness test may be a useful method to differentiate PSP from PD.

  16. Cytokine responses in acute and persistent human parvovirus B19 infection

    Isa, A; Lundqvist, A; Lindblom, A;

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads...

  17. Endocrine, metabolic and cardiovascular responses to adrenaline after abdominal surgery

    Hilsted, J; Wilken-Jensen, Charlotte; Birch, K;

    1990-01-01

    Adrenaline-induced changes in heart rate, blood pressure, plasma adrenaline and noradrenaline, cortisol, glucagon, insulin, cAMP, glucose lactate, glycerol and beta-hydroxybutyrate were studied preoperatively and 4 and 24 h after skin incision in 8 patients undergoing elective cholecystectomy. Late...... postoperative responses of blood glucose, plasma cAMP, lactate and glycerol to adrenaline infusion were reduced, whereas other responses were unaffected. Blood glucose appearance and disappearance rate as assessed by [3H]3-glucose infusion was unchanged pre- and postoperatively. The increase in glucose...... appearance rate following adrenaline was similar pre- and postoperatively. These findings suggest that several beta-receptor-mediated responses to adrenaline are reduced after abdominal surgery....

  18. Low levels of physical activity increase metabolic responsiveness to cold in a rat (Rattus fuscipes.

    Frank Seebacher

    Full Text Available BACKGROUND: Physical activity modulates expression of metabolic genes and may therefore be a prerequisite for metabolic responses to environmental stimuli. However, the extent to which exercise interacts with environmental conditions to modulate metabolism is unresolved. Hence, we tested the hypothesis that even low levels of physical activity are beneficial by improving metabolic responsiveness to temperatures below the thermal neutral zone, thereby increasing the capacity for substrate oxidation and energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS: We used wild rats (Rattus fuscipes to avoid potential effects of breeding on physiological phenotypes. Exercise acclimation (for 30 min/day on 5 days/week for 30 days at 60% of maximal performance at 22°C increased mRNA concentrations of PGC1α, PPARδ, and NRF-1 in skeletal muscle and brown adipose tissue compared to sedentary animals. Lowering ambient temperature to 12°C caused further increases in relative expression of NRF-1 in skeletal muscle, and of PPARδ of brown adipose tissue. Surprisingly, relative expression of UCP1 increased only when both exercise and cold stimuli were present. Importantly, in sedentary animals cold acclimation (12°C alone did not change any of the above variables. Similarly, cold alone did not increase maximum capacity for substrate oxidation in mitochondria (cytochrome c oxidase and citrate synthase activities of either muscle or brown adipose tissue. Animals that exercised regularly had higher exercise induced metabolic rates in colder environments than sedentary rats, and temperature induced metabolic scope was greater in exercised rats. CONCLUSIONS/SIGNIFICANCE: Physical activity is a necessary prerequisite for the expression of transcriptional regulators that influence a broad range of physiological functions from energy metabolism to cardiovascular function and nutrient uptake. A sedentary lifestyle leads to decreased daily energy expenditure because of a

  19. The bovine acute phase response to endotoxin and Gram-negative bacteria

    Jacobsen, Stine

    The overall aims of the work presented in this thesis were to characterize bovine cytokine and acute phase protein (APP) responses to lipopolysaccharide (LPS) and to investigate how LPS-induced clinical and immunoinflammatory responses differed between individual cows. Two kinds of experimental...... from the udder. APP measurements in milk may therefore have great potential as mastitis diagnostics. Milk and plasma SAA concentrations seemed to be higher in cows with severe mastitis than in cows with moderate or mild mastitis, which suggests that SAA levels reflect severity of udder infection (Paper...... pathogenesis of bovine acute phase response and the biologically relevant functions of central reactants such as cytokines and APPs. Cytokines are known to induce pathophysiological changes and SAA and haptoglobin have also been suggested to be important modulators of the inflammatory response. Success in...

  20. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  1. Regulation of urea synthesis during the acute phase response in rats

    Thomsen, Karen Louise; Jessen, Niels; Buch Møller, Andreas;

    2013-01-01

    the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known...... humoral regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins......The acute-phase response is a catabolic event involving increased waste of amino-nitrogen (N) via hepatic urea synthesis, despite an increased need for amino-N incorporation into acute-phase proteins. This study aimed to clarify the regulation of N elimination via urea during different phases of...

  2. Late Metabolic Acidosis Caused by Renal Tubular Acidosis in Acute Salicylate Poisoning.

    Sakai, Norihiro; Hirose, Yasuo; Sato, Nobuhiro; Kondo, Daisuke; Shimada, Yuko; Hori, Yasushi

    2016-01-01

    A 16-year-old man was transferred to our emergency department seven hours after ingesting 486 aspirin tablets. His blood salicylate level was 83.7 mg/dL. He was treated with fluid resuscitation and sodium bicarbonate infusion, and his condition gradually improved, with a decline in the blood salicylate level. However, eight days after admission, he again reported nausea, a venous blood gas revealed metabolic acidosis with a normal anion gap. The blood salicylate level was undetectable, and a urinalysis showed glycosuria, proteinuria and elevated beta-2 microglobulin and n-acetyl glucosamine levels, with a normal urinary pH despite the acidosis. We diagnosed him with relapse of metabolic acidosis caused by renal tubular acidosis. PMID:27181539

  3. Organ-specific metabolic responses to drought in Pinus pinaster Ait.

    de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa

    2016-05-01

    Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees. PMID:26897116

  4. Acute naphthalene toxicity presenting with metabolic acidosis:a rare complication

    Karthick C Annamalai; Shrikiran A; Suneel C Mundkur; Chaitanya Varma PV

    2012-01-01

    Naphthalene moth ball poisoning in children can present with diagnostic and therapeutic challenges. A 2 year old boy who had accidentally consumed unknown number of moth balls presented 3 d later with vomiting, seizures, methemoglobinemia, hemolytic anemia and altered sensorium. He was managed with red blood cell transfusion, IV Methylene blue and Sodium bicarbonate. Clinical and laboratory parameters normalized. We describe this case as ingestional naphthalene poisoning with rare manifestation of metabolic acidosis, with a good outcome after treatment.

  5. Acute liver injury induces nucleocytoplasmic redistribution of hepatic methionine metabolism enzymes

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores; Pajares, María A.

    2014-01-01

    Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities,...

  6. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  7. Cumulative Exposure to Prior Collective Trauma and Acute Stress Responses to the Boston Marathon Bombings

    Garfin, DR; Holman, EA; Silver, RC

    2015-01-01

    © The Author(s) 2015 The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metrop...

  8. An Explanation for the Paradoxical Induction and Suppression of an Acute Phase Response by Ethanol

    Pruett, Brandon S.; Pruett, Stephen B

    2006-01-01

    Binge ethanol (EtOH) consumption suppresses inflammatory responses and resistance to infection, but paradoxically it is associated with increased levels of acute phase proteins (which are indicators of inflammation) and an increased risk of inflammation mediated pathologies such as cardiovascular disease and cirrhosis of the liver. The latter effect may be mediated by increased translocation of bacteria leading to activation of toll-like receptor 4 (TLR4). In this study, the dose-response and...

  9. Freeze, Flight, Fight, Fright, Faint: Adaptationist Perspectives on the Acute Stress Response Spectrum

    Bracha, Dr. H. Stefan

    2004-01-01

    This article reviews the existing evolutionary perspectives on the acute stress response habitual faintness and blood-injection-injury type-specific phobia (BIITS phobia). In this article, an alternative evolutionary perspective, based on recent advances in evolutionary psychology, is proposed. Specifically, that fear-induced faintness (eg, fainting following the sight of a syringe, blood, or following a trivial skin injury) is a distinct Homo sapiens-specific extreme-stress survival response...

  10. Identifying patterns in treatment response profiles in acute bipolar mania: a cluster analysis approach

    Houston John P; Lipkovich Ilya A; Ahl Jonna

    2008-01-01

    Abstract Background Patients with acute mania respond differentially to treatment and, in many cases, fail to obtain or sustain symptom remission. The objective of this exploratory analysis was to characterize response in bipolar disorder by identifying groups of patients with similar manic symptom response profiles. Methods Patients (n = 222) were selected from a randomized, double-blind study of treatment with olanzapine or divalproex in bipolar I disorder, manic or mixed episode, with or w...

  11. THE RATE OF CLINICAL RESPONSE OF ORAL LOADING SODIUM VALPROATE IN ACUTELY MANLC PATIENT

    K SHAFIEE; M BAREKATEYN; N BASHARDOOST; Mahmoudi, J

    2003-01-01

    Introduction: Acheiving accelerated clinical response is desirable in patients with acute manic episode. We conducted a prospective study to compare the rate of clinical response of oral loading sodium valproate versus standard dose titration. Methods: Fourty - two patients who met DSM - IV critevia for current manic episode and who had a "Young mania rating scale "score between 20 and 50 were randomly assigned on a double blind basis to recieve valproate oral "loading"(N = 21) at a dose...

  12. Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study

    Daudel, Fritz; Tüller, David; Krähenbühl, Stefanie; Jakob, Stephan M; Takala, Jukka

    2010-01-01

    Introduction We found that pulse pressure variation (PPV) did not predict volume responsiveness in patients with increased pulmonary artery pressure. This study tests the hypothesis that PPV does not predict fluid responsiveness during an endotoxin-induced acute increase in pulmonary artery pressure and right ventricular loading. Methods Pigs were subjected to endotoxemia (0.4 μg/kg/hour lipopolysaccharide), followed by volume expansion, subsequent hemorrhage (20% of estimated blood volume), ...

  13. Effects of acute exhaustive physical exercise upon glutamine metabolism of lymphocytes from trained rats.

    Santos, Ronaldo Vagner Thomatieli; Caperuto, Erico Chagas; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-16

    Transitory immunosupression is reported after intense exercise, especially after an increase in training overload and in overtraining. The influence of intense exercise on plasma hormones and glutamine concentration may contribute to this effect. However, the effect of such exercise-induced changes upon lymphocyte and glutamine metabolism is not known. We compared glutamine metabolism in lymphocytes in sedentary (SED) and trained rats. Rats from the moderate group (MOD) swam for 6 weeks, 1 h/day, in water at 32+/-1 degrees C, with a load of 5.5% body weight attached to the tail. Animals from the exhaustive group (EXT) trained like MOD, with training increasing to 3 times 1 h a day during the last week, with 150 min rest between each bout. Animals were killed immediately after the last training bout. We observed reduced concentrations of plasma glucose (pglutamine (pglutamine (pglutamine consumption (pglutamine consumption (pexercise promoted decreased glutamine plasma concentration and changes in glutamine metabolism that did not impair lymphocyte proliferation in exhaustive trained rats. PMID:17123550

  14. Reduced Acute Inflammatory Responses to Microgel Conformal Coatings

    Bridges, Amanda W.; Singh, Neetu; Burns, Kellie L.; Babensee, Julia E.; Lyon, L. Andrew; García, Andrés J.

    2008-01-01

    Implantation of synthetic materials into the body elicits inflammatory host responses that limit medical device integration and biological performance. This inflammatory cascade involves protein adsorption, leukocyte recruitment and activation, cytokine release, and fibrous encapsulation of the implant. We present a coating strategy based on thin films of poly(N-isopropylacrylamide) hydrogel microparticles (i.e. microgels) cross-linked with poly(ethylene glycol) diacrylate. These particles we...

  15. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells.

    Capasso, Stefania; Alessio, Nicola; Squillaro, Tiziana; Di Bernardo, Giovanni; Melone, Mariarosa A; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-11-24

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes. PMID:26540573

  16. Effects of copper on the acute cortisol response and associated physiology in rainbow trout.

    Tellis, Margaret S; Alsop, Derek; Wood, Chris M

    2012-03-01

    The aim of this study was to determine the effects of chronic waterborne copper (Cu) exposure on the acute stress-induced cortisol response and associated physiological consequences in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 30 μg Cu/L in moderately hard water (120 mg/L as CaCO(3)) for 40 days, following which time the acute cortisol response was examined with a series of stressors. At 40 days, a 65% increase in Cu was observed in the gill, but no accumulation was observed in the liver, brain or head kidney. Stressors such as air exposure or confinement did not elicit an increase in circulating cortisol levels for Cu-exposed fish, in contrast to controls. However, this inhibitory effect on the acute cortisol response appeared to have few implications on the ability of Cu-exposed fish to maintain ion and carbohydrate homeostasis. For example, plasma Na(+), Ca(2+) and glucose levels as well as hepatic glycogen levels were the same post-stress in control and Cu-exposed fish. Trout were also challenged with exposure to 50% seawater for 48 h, where Cu-exposed trout maintained plasma Na(+), glucose and hepatic glycogen levels. However, Cu-exposed fish experienced decreased plasma K(+) levels throughout the Cu exposure and stress tests. In conclusion, chronic Cu exposure resulted in the abolition of an acute cortisol response post-stress. There was no Cu accumulation in the hypothalamus-pituitary-interrenal axis (HPI axis) suggesting this was not a direct toxic effect of Cu on the cortisol regulatory pathway. However, the lack of an acute cortisol response in Cu-exposed fish did not impair the ability of the fish to maintain ion and carbohydrate homeostasis. This effect on cortisol may be a strategy to reduce costs during the chronic stress of Cu exposure, and not endocrine disruption as a result of toxic injury. PMID:21964321

  17. Sexual dimorphism in lung function responses to acute influenza A infection

    Larcombe, Alexander N.; Foong, Rachel E.; Bozanich, Elizabeth M.; Berry, Luke J.; Garratt, Luke W.; Gualano, Rosa C.; Jones, Jessica E.; Dousha, Lovisa F.; Zosky, Graeme R.; Sly, Peter D.

    2011-01-01

    Please cite this paper as: Larcombe et al. (2011) Sexual dimorphism in lung function responses to acute influenza A infection. Influenza and Other Respiratory Viruses 5(5), 334–342. Background  Males are generally more susceptible to respiratory infections; however, there are few data on the physiological responses to such infections in males and females. Objectives  To determine whether sexual dimorphism exists in the physiological/inflammatory responses of weanling and adult BALB/c mice to influenza. Methods  Weanling and adult mice of both sexes were inoculated with influenza A or appropriate control solution. Respiratory mechanics, responsiveness to methacholine (MCh), viral titre and bronchoalveolar lavage (BAL) cellular inflammation/cytokines were measured 4 (acute) and 21 (resolution) days post‐inoculation. Results  Acute infection impaired lung function and induced hyperresponsiveness and cellular inflammation in both sexes at both ages. Males and females responded differently with female mice developing greater abnormalities in tissue damping and elastance and greater MCh responsiveness at both ages. BAL inflammation, cytokines and lung viral titres were similar between the sexes. At resolution, all parameters had returned to baseline levels in adults and weanling males; however, female weanlings had persisting hyperresponsiveness. Conclusions  We identified significant differences in the physiological responses of male and female mice to infection with influenza A, which occurred in the absence of variation in viral titre and cellular inflammation. PMID:21668688

  18. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3H] or L-[U-14C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  19. Response rate of Pakistani children with acute lymphoblastic leukaemia to medical research council acute lymphoblastic leukaemia 97 chemotherapy protocol

    Background: Acute lymphoblastic leukaemia (ALL), a malignancy of lymphoid lineage cells, has excellent prognosis in children. In Pakistan, a few studies highlighted the response of ALL to chemotherapy. The Present study was planned to see the response rate of Pakistani children with ALL to Medical Research Council ALL 97 (MRCALL97) chemotherapy protocol. This descriptive case series was conducted at the Department of Haematology, Armed Forces Institute of Pathology and the Department of Paediatric Oncology, Combined Military Hospital, Rawalpindi from February 16, 2007 to August 16, 2007. Methods: Diagnosed children with ALL fulfilling the inclusion criteria were interviewed regarding history of the present, past illnesses, and family history. Physical examination was performed. Presenting clinical features, blood counts and blood and bone marrow blasts percentage were used to see the response on day 29 post chemotherapy. The data was recorded on a structured proforma for statistical analysis. Results: A total of 33 patients were studied including 26 males and 7 females. Twenty-five patients belonged to age group 2-9 years, and 8 to 9 years, median age being 4.5 years. Presenting WBC count was 50 X 10/sup 9/L in 3 patients. At the end of induction, complete remission was achieved in 31 out of 33 (94%) patients while two patients did not achieve remission. Conclusion: Response rate of Pakistani children with ALL to chemotherapy was superior to the previously reported figures from Pakistan. (author)

  20. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  1. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Yuanyuan Zhang; Li Wang; Soumyadeep Dey; Mawadda Alnaeeli; Sukanya Suresh; Heather Rogers; Ruifeng Teng; Constance Tom Noguchi

    2014-01-01

    Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vas...

  2. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    Lazzaro, Brian P.

    2015-01-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues ele...

  3. Glycolytic metabolism and tumour response to fractionated irradiation

    Background and purpose: To study whether pre-therapeutic lactate or pyruvate predict for tumour response to fractionated irradiation and to identify possible coherencies between intermediates of glycolysis and expression levels of selected proteins. Materials and methods: Concentrations of lactate, pyruvate, glucose and ATP were quantified via bioluminescence imaging in tumour xenografts derived from 10 human head and neck squamous cell carcinoma (HNSCC) lines. Tumours were irradiated with 30 fractions within 6 weeks. Expression levels of the selected proteins in tumours were measured at the mRNA and protein level. Tumour-infiltrating leucocytes were quantified after staining for CD45. Results: Lactate but not pyruvate concentrations were significantly correlated with tumour response to fractionated irradiation. Lactate concentrations in vivo did not reflect lactate production rates in vitro. Metabolite concentrations did not correlate with GLUT1, PFK-L or LDH-A at the transcriptional or protein level. CD45-positive cell infiltration was low in the majority of tumours and did not correlate with lactate concentration. Conclusions: Our data support the hypothesis that the antioxidative capacity of lactate may contribute to radioresistance in malignant tumours. Non-invasive imaging of lactate to monitor radiation response and testing inhibitors of glycolysis to improve outcome after fractionated radiotherapy warrant further investigations.

  4. Cephalic phase metabolic responses in normal weight adults.

    Bruce, D G; Storlien, L H; Furler, S M; Chisholm, D J

    1987-08-01

    The presence and physiologic importance of cephalic phase insulin release in humans remains controversial. The aim of these studies was to determine whether cephalic phase insulin release could be demonstrated in normal weight subjects and whether it would be associated with changes in blood glucose, free fatty acid, and pancreatic polypeptide levels. The studies were followed by a hyperglycemic clamp to determine whether cephalic responses would alter overall glucose disposal or glucose-stimulated insulin secretion. In all, 17 subjects were studied on two occasions with and without (control study) presentation of food stimuli. Tease-feeding alone (n = 6), or the administration of a sweet taste alone (aspartame, n = 5) failed to stimulate cephalic responses. However, the presentation of the combined stimuli (tease meals plus sweet taste, n = 7) resulted in a significant fall (P less than .005) in blood glucose levels and a variable rise in serum insulin (% insulin rise 38 +/- 15%, P less than .05) and C-peptide levels (7 +/- 6%, NS) within five minutes of the food presentation when compared with control studies, with no change seen in free fatty acid or pancreatic polypeptide levels. The blood glucose fall correlated strongly (r = .90, P less than .01) with a score of the subjective response to the food and taste.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3298939

  5. Leg Vascular Responsiveness During Acute Orthostasis Following Simulated Weightlessness

    Blamick, Cynthia A.; Goldwater, Danielle J.; Convertino, Victor A.

    1988-01-01

    Ten men (35-49 years old) underwent lower body negative pressure (LBNP) exposures before and offer 10 d of continuous 6 degrees head-down bedrest in order to predict the effect of weightlessness on the responsiveness of leg vasculature to an orthostatic stress. Heart rate (HR), mean arterial blood pressure (MAP), and Impedance rheographic indices of arterial pulse volume (APV) of the legs were measured during rest and at 1 min at -30 mm Hg LBNP. Bedrest-induced deconditioning was manifested by decreases (p less than 0.06) in plasma volume (17%), peak oxygen uptake (16%), and LBNP tolerance (17%). Resting HR was unchanged after bedrest, but HR was higher (p less than 0.05) at 1 min of -30 mm Hg LBNP after, compared with before bedrest. Responses of MAP to -30 mm Hg LBNP were not altered by bodrest. Resting APV was decreased (p less than 0.05) by simulated weightlessness. However, APV was reduced (p less than 0.05) from rest to 1 min -30 mm Hg LBNP by the same relative magnitude before and after bodrest (-21.4 +/- 3.4% and -20.5 +/- 2.7%, respectively). We conclude that peripheral arterial vasoconstriction, as indicated by reductions in APV during LBNP, was not affected by bedrest. These results suggest that there was no apparent alteration in responsiveness of the leg vasculature following simulated weightlessness. Therefore, it appears unlikely that control mechanisms of peripheral resistance contribute significantly to reduced orthostatic tolerance following space-flight.

  6. COMT polymorphism modulates the resting-state EEG alpha oscillatory response to acute nicotine in male non-smokers.

    Bowers, H; Smith, D; de la Salle, S; Choueiry, J; Impey, D; Philippe, T; Dort, H; Millar, A; Daigle, M; Albert, P R; Beaudoin, A; Knott, V

    2015-07-01

    Performance improvements in cognitive tasks requiring executive functions are evident with nicotinic acetylcholine receptor (nAChR) agonists, and activation of the underlying neural circuitry supporting these cognitive effects is thought to involve dopamine neurotransmission. As individual difference in response to nicotine may be related to a functional polymorphism in the gene encoding catechol-O-methyltransferase (COMT), an enzyme that strongly influences cortical dopamine metabolism, this study examined the modulatory effects of the COMT Val158Met polymorphism on the neural response to acute nicotine as measured with resting-state electroencephalographic (EEG) oscillations. In a sample of 62 healthy non-smoking adult males, a single dose (6 mg) of nicotine gum administered in a randomized, double-blind, placebo-controlled design was shown to affect α oscillatory activity, increasing power of upper α oscillations in frontocentral regions of Met/Met homozygotes and in parietal/occipital regions of Val/Met heterozygotes. Peak α frequency was also found to be faster with nicotine (vs. placebo) treatment in Val/Met heterozygotes, who exhibited a slower α frequency compared to Val/Val homozygotes. The data tentatively suggest that interindividual differences in brain α oscillations and their response to nicotinic agonist treatment are influenced by genetic mechanisms involving COMT. PMID:26096691

  7. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. PMID:26127015

  8. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. PMID:25896419

  9. Acute infection by hepatitis E virus with a slight immunoglobulin M antibody response.

    Inagaki, Yuki; Oshiro, Yukio; Imanishi, Mamiko; Ishige, Kazunori; Takahashi, Masaharu; Okamoto, Hiroaki; Ohkohchi, Nobuhiro

    2015-08-01

    The anti-hepatitis E virus (HEV) immunoglobulin (Ig) M antibody response is generally regarded as a useful marker for diagnosing primary infection. However, in some cases, this antibody is not detected during the acute phase of infection. An 81-year-old man with stable membranous nephropathy who presented with asymptomatic acute liver dysfunction came to our hospital. HEV RNA of genotype 3 was detected in his serum, and he was diagnosed with acute hepatitis E. According to an enzyme-linked immunosorbent assay, high-level positivity for anti-HEV IgG and IgA antibodies was observed, but the assay was negative for IgM antibody throughout the clinical course of infection. The patient was not immunosuppressed. We further investigated the presence of IgM antibody using two other polyclonal antibodies against human IgM as secondary antibodies and another recombinant ORF2 protein of genotype 3 as an immobilized antigen. IgM was weakly detected in the serum during the acute phase only by the test with the antigen of genotype 3. Multi-genotype antigens can detect a slight IgM antibody response; however, anti-HEV IgA is more useful in diagnosing primary HEV infection, particularly in cases with a low IgM antibody response. PMID:26215116

  10. Response of Brazilian native trees to acute ozone dose.

    Moura, Bárbara Baêsso; de Souza, Sílvia Ribeiro; Alves, Edenise Segala

    2014-03-01

    Ozone (O3) is a toxic secondary pollutant able to cause an intense oxidative stress that induces visual symptoms on sensitive plant species. Controlled fumigation experiment was conducted with the aim to verify the O3 sensibility of three tropical species: Piptadenia gonoachanta (Mart.) Macbr. (Fabaceae), Astronium graveolens Jacq. (Anacardiaceae), and Croton floribundus Spreng. (Euphorbiaceae). The microscopical features involved in the oxidative stress were recognized based on specific histochemical analysis. The three species showed visual symptoms, characterized as necrosis and stippling between the veins, mostly visible on the adaxial leaf surface. All the studied species presented hypersensitive-like response (HR-like), and peroxide hydrogen accumulation (H2O2) followed by cell death and proanthocyanidin oxidation in P. gonoachanta and A. graveolens. In P. gonoachanta, a decrease in chlorophyll autofluorescence occurred on symptomatic tissues, and in A. graveolens and C. floribundus, a polyphenol compound accumulation occurred. The responses of Brazilian native species were similar to those described for sensitive species from temperate climate, and microscopical markers may be useful for the detection of ozone symptoms in future studies in the field. PMID:24297466

  11. Pharmacokinetics and interactions of headache medications, part I: introduction, pharmacokinetics, metabolism and acute treatments.

    Sternieri, Emilio; Coccia, Ciro Pio Rosario; Pinetti, Diego; Ferrari, Anna

    2006-12-01

    Recent progress in the treatment of primary headaches has made available specific, effective and safe medications for these disorders, which are widely spread among the general population. One of the negative consequences of this undoubtedly positive progress is the risk of drug-drug interactions. This review is the first in a two-part series on pharmacokinetic drug-drug interactions of headache medications. Part I addresses acute treatments. Part II focuses on prophylactic treatments. The overall aim of this series is to increase the awareness of physicians, either primary care providers or specialists, regarding this topic. Pharmacokinetic drug-drug interactions of major severity involving acute medications are a minority among those reported in literature. The main drug combinations to avoid are: i) NSAIDs plus drugs with a narrow therapeutic range (i.e., digoxin, methotrexate, etc.); ii) sumatriptan, rizatriptan or zolmitriptan plus monoamine oxidase inhibitors; iii) substrates and inhibitors of CYP2D6 (i.e., chlorpromazine, metoclopramide, etc.) and -3A4 (i.e., ergot derivatives, eletriptan, etc.), as well as other substrates or inhibitors of the same CYP isoenzymes. The risk of having clinically significant pharmacokinetic drug-drug interactions seems to be limited in patients with low frequency headaches, but could be higher in chronic headache sufferers with medication overuse. PMID:17125411

  12. Acute phase response to surgery of varying intensity in horses

    Jacobsen, Stine; Nielsen, Jon Vedding; Kjelgaard-Hansen, Mads;

    2009-01-01

    OBJECTIVE: To evaluate the postoperative inflammatory response of horses to elective surgery of varying intensity. STUDY DESIGN: Prospective longitudinal study. ANIMALS: Horses referred to 2 hospitals for either arthroscopic removal of a unilateral osteochondritic lesion in the tibiotarsal joint...... (minimal surgical trauma, n=11), correction of recurrent laryngeal neuropathy by laryngoplasty and ventriculectomy (intermediate surgical trauma, n=10) or removal of an ovarian tumor by laparotomy (major surgical trauma, n=5). METHODS: Horses had a thorough clinical examination every day. White blood cell....... RESULTS: Postoperative concentrations of SAA and fibrinogen were significantly higher in horses that had laparotomy and ovariectomy than in horses that had laryngoplasty and ventriculectomy, or arthroscopy. Iron concentrations decreased to lower levels after intermediate and major surgical trauma than...

  13. Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity

    Shashi Kant

    2013-08-01

    Full Text Available Saturated free fatty acid (FFA is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK pathway that activates cJun NH2-terminal kinase (JNK. Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  14. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts

    Ross Cloak, Andrew Lane, Matthew Wyon

    2016-03-01

    Full Text Available Acute whole body vibration (WBV is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m. Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p < 0.01, Partial Eta2 = 0.22 in peak knee isometric force following acute WBV with no significant differences among amateur players. A significant difference (p < 0.01, Partial Eta2 = 0.16 in PAP amongst professional players following acute WBVT was also reported. No significant differences amongst amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p < 0.01, Partial Eta2 = 0.27 compared to amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players.

  15. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of 201Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and 201Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of 201Tl uptake in non-occluded endocardium. Uptake of 201Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties. (orig.)

  16. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  17. Differential metabolism of acrylonitrile to cyanide is responsible for the greater sensitivity of male vs female mice: role of CYP2E1 and epoxide hydrolases

    Acrylonitrile (AN) is a potent toxicant and a known rodent carcinogen. AN epoxidation to cyanoethylene oxide (CEO) via CYP2E1 and its subsequent metabolism via epoxide hydrolases (EH) to yield cyanide is thought to be responsible for the acute toxicity and mortality of AN. Recent reports showed that male mice are more sensitive than females to the acute toxicity/mortality of AN. The present work was undertaken to assess the metabolic and enzymatic basis for the greater sensitivity of male vs female mice to AN toxicity. Male and female wild-type and CYP2E1-null mice received AN at 0, 2.5, 10, 20, or 40 mg/kg by gavage. Cyanide concentrations were measured at 1 or 3 h after dosing. Current data demonstrated that cyanide levels in blood and tissues of AN-treated wild-type mice of both sexes were significantly greater than in vehicle-treated controls and increased in a dose-dependent manner. In contrast, cyanide levels in AN-treated CYP2E1-null mice were not statistically different from those measured in vehicle-treated controls. Furthermore, higher levels of cyanide were detected in male wild-type mice vs females in association with greater sensitivity of males to the acute toxicity/mortality of this chemical. Using Western blot analysis, negligible difference in CYP2E1 expression with higher levels of soluble and microsomal EH (sEH and mEH) was detected in the liver of male vs female mice. In kidneys, male mice exhibited higher expression of both renal CYP2E1 and sEH than did female mice. In conclusion, higher blood and tissue cyanide levels are responsible for the greater sensitivity of male vs female mice to AN. Further, higher expression of CYP2E1 and EH in male mice may contribute to greater formation of CEO and its subsequent metabolism to yield cyanide, respectively

  18. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders

  19. Cardiovascular, hormonal and metabolic responses to graded exercise in juvenile diabetics with and without autonomic neuropathy

    Hilsted, J; Galbo, H; Christensen, N J

    1980-01-01

    Thirteen juvenile diabetics were studied in order to determine if decreased beat-to-beat variation during deep respiration, indicating abnormal autonomic nerve function, imply that cardiovascular, hormonal and metabolic responses are impaired. Patients with decreased beat-to-beat variation had to...

  20. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    van der Harg, J. M.; Nolle, A.; Zwart, R.; Boerema, A. S.; van Haastert, E. S.; Strijkstra, A. M.; Hoozemans, J. J. M.; Scheper, W.

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstra

  1. Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer's disease

    Smith, Gwenn S.; Kramer, Elisse; Ma, Yilong; Hermann, Carol R.; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David

    2009-01-01

    Pre-clinical and human neuropharmacological evidence suggests a role of cholinergic modulation of monoamines as a pathophysiological and therapeutic mechanism in Alzheimer's disease. The present study measured the effects of treatment with the cholinesterase inhibitor and nicotinic receptor modulator, galantamine, on the cerebral metabolic response to the selective serotonin reuptake inhibitor, citalopram. Seven probable Alzheimer's disease patients and seven demographically comparable contro...

  2. Chromium supplementation enhances the metabolic response of steers to lipopolysaccharide (LPS) challenge

    The effect of chromium (Cr; KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) supplementation on the metabolic response to LPS challenge was examined. Steers (n=20; 235±4 kg body weight (BW)) received a premix that added 0 (Con) or 0.2 mg/kg Cr to the total diet (DM (dry matter) basis) for ...

  3. Prenatal transportation alters the metabolic response of Brahman bull calves exposed to a lipopolysaccharide (LPS) challenge

    This study was designed to determine if prenatal transportation influences the metabolic response to a postnatal lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day 60, 80,...

  4. Physiological and metabolic responses of gestating Brahaman cows to repeated transportation

    The purpose of this study was to examine physiological and metabolic responses to repeated transportation of gestating Brahman cows, previously classified as mature cows into temperament groups of Calm, Intermediate, or Temperamental. Brahman cows (n = 48) were subjected to 2 hours of transport (TRA...

  5. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch) to an acute thermal challenge and a simulated capture event.

    Clark, Timothy D; Donaldson, Michael R; Pieperhoff, Sebastian; Drenner, S Matthew; Lotto, Andrew; Cooke, Steven J; Hinch, Scott G; Patterson, David A; Farrell, Anthony P

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1)) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1) kg(-1). Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  6. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch to an acute thermal challenge and a simulated capture event.

    Timothy D Clark

    Full Text Available Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure in maturing male coho salmon (Oncorhynchus kisutch. Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1 was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'. Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1 kg(-1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  7. Acute mechano-electronic responses in twisted phosphorene nanoribbons

    Jang, Woosun; Kang, Kisung; Soon, Aloysius

    2016-08-01

    Many different forms of mechanical and structural deformations have been employed to alter the electronic structure of various modern two-dimensional (2D) nanomaterials. Given the recent interest in the new class of 2D nanomaterials - phosphorene, here we investigate how the rotational strain-dependent electronic properties of low-dimensional phosphorene may be exploited for technological gain. Here, using first-principles density-functional theory, we investigate the mechanical stability of twisted one-dimensional phosphorene nanoribbons (TPNR) by measuring their critical twist angle (θc) and shear modulus as a function of the applied mechanical torque. We find a strong anisotropic, chirality-dependent mechano-electronic response in the hydrogen-passivated TPNRs upon vortical deformation, resulting in a striking difference in the change in the carrier effective mass as a function of torque angle (and thus, the corresponding change in carrier mobility) between the zigzag and armchair directions in these TPNRs. The accompanied tunable band-gap energies for the hydrogen-passivated zigzag TPNRs may then be exploited for various key opto-electronic nanodevices.Many different forms of mechanical and structural deformations have been employed to alter the electronic structure of various modern two-dimensional (2D) nanomaterials. Given the recent interest in the new class of 2D nanomaterials - phosphorene, here we investigate how the rotational strain-dependent electronic properties of low-dimensional phosphorene may be exploited for technological gain. Here, using first-principles density-functional theory, we investigate the mechanical stability of twisted one-dimensional phosphorene nanoribbons (TPNR) by measuring their critical twist angle (θc) and shear modulus as a function of the applied mechanical torque. We find a strong anisotropic, chirality-dependent mechano-electronic response in the hydrogen-passivated TPNRs upon vortical deformation, resulting in a

  8. Calcium-Dependent Physiologic and Pathologic Stimulus-Metabolic Response Coupling in Hepatocytes

    Gaspers, Lawrence D.; Mémin, Elisabeth; Thomas, Andrew P.

    2012-01-01

    A recurrent paradigm in calcium signaling is the coordination of the target response of the calcium signal with activation of metabolic energy production to support that response. This occurs in many tissues, including cardiac and skeletal muscle where contractile activity and ATP production are coordinately regulated by the frequency and amplitude of calcium transients, endocrine and exocrine cells that use calcium to drive the secretory process, and hepatocytes where the downstream targets ...

  9. Fructose modifies the hormonal response and modulates lipid metabolism in aerobic exercise after glucose supplementation

    Fernández, Juan Marcelo; Da Silva-Grigoletto, Marzo Edir; Ruano-Ruiz, Juan; Caballero-Villarraso, Javier; Moreno-Luna, Rafael; Tunez-Fiñana, Isaac; Tasset-Cuevas, Inmaculada; Pérez-Martinez, Pablo; López-Miranda, José; Pérez-Jiménez, Francisco

    2008-01-01

    Abstract The metabolic response, when aerobic exercise is performed after the ingestion of glucose plus fructose, is unclear. To compare the hormonal and lipid responses provoked by the ingestion of glucose plus fructose in relation to glucose alone, during aerobic exercise and the recovery phase, we administered two beverages containing glucose plus fructose or glucose in a randomised crossover design, to twenty healthy, aerobically trained volunteers. After a 15-minute resting pe...

  10. Does Fasciola hepatica infection modify the response of acute hepatitis C virus infection to IFN-α treatment?

    Mehmet Sahin; Mehmet Isler; Altug Senol; Mustafa Demirci; Zeynep Dilek Aydin

    2005-01-01

    Immunologic response to acute hepatitis C is mainly a Th1 response, whereas fasciolopsiasis is associated with a diverse T-cell response. Interferon-alpha has immunomodulatory effects and enhances Th1 immune response. Fasciola infection could theoretically interfere with the Th1 immune response, even when acquired after an initial response to interferon-alpha treatment for acute hepatitis C virus (HCV) infection. We report here the case of a male patient who acquired Fasciola hepatica infection after an initial response to IFN-alpha therapy with a favorable outcome

  11. Social stress modulates the cortisol response to an acute stressor in rainbow trout (Oncorhynchus mykiss).

    Jeffrey, J D; Gollock, M J; Gilmour, K M

    2014-01-15

    In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated

  12. The mortality and response rate after FLANG regimen in patients with refractory/relapsed acute leukemia

    Vali A Mehrzad

    2012-01-01

    Full Text Available Background: Oncologists today are greatly concerned about the treatment of relapsed/refractory acute leukemia. FLANG regimen, combination of novantron, cytarabine, fludarabine, and granulocyte-colony stimulating factor, has been used in treatment of refractory/relapsed acute leukemia since 1990s. The present study has evaluated mortality and response rate of this regimen. Materials and Methods: In this study, 25 patients with refractory/relapsed acute leukemia aged 15-55 years underwent FLANG regimen at Seyed-Al-Shohada Hospital, Isfahan, Iran during 2008-2009. One month later, bone marrow samples were taken to evaluate the responsiveness to treatment. Participants were followed for a year. The data was analyzed by student-t and chi-square tests, logistic, and Cox regression analysis, and Kaplan-Meier curves in SPSS 19. Results: Out of the 25 patients, 8 patients (32% had acute lymphoblastic leukemia (5 refractory and 3 relapsed cases and 17 subjects had acute myeloid leukemia (7 refractory and 10 relapsed cases. According to the bone marrow biopsies taken one month after FLANG regimen, 10 patients (40% had responded to treatment. Five patients of the 10 responders underwent successful bone marrow transplantation (BMT. On the other hand, 13 patients (52%, who had not entered the CR period, died during the follow-up. Logistic regression analysis did not reveal any significant associations between disease type and responsiveness to treatment. Conclusion: This study indicated higher rates of unresponsiveness to treatment while its mortality rate was comparable with other studies. Overall, according to limitations for BMT (as the only chance for cure in Iran, it seems that FLANG therapy is an acceptable choice for these patients.

  13. Lack of acute phase response in the livers of mice exposed to diesel exhaust particles or carbon black by inhalation

    Saber, Anne T; Halappanavar, Sabina; Folkmann, Janne K;

    2009-01-01

    phase responses, including C-reactive protein (CRP) and serum amyloid A (SAA) in humans. In this study we test the hypothesis that diesel exhaust particles (DEP) - or carbon black (CB)-induced lung inflammation initiates an acute phase response in the liver. RESULTS: Mice were exposed to filtered air...... pulmonary inflammation., Arch. Toxicol. 79 (2005) 177-182). As a positive control for the induction of an acute phase response, mice were exposed to 12.5 mg/kg of lipopolysaccharide (LPS) intraperitoneally. Quantitative real time RT-PCR was used to examine the hepatic mRNA expression of acute phase proteins......, serum amyloid P (Sap) (the murine homologue of Crp) and Saa1 and Saa3. While significant increases in the hepatic expression of Sap, Saa1 and Saa3 were observed in response to LPS, their levels did not change in response to DEP or CB. In a comprehensive search for markers of an acute phase response, we...

  14. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. PMID:27030776

  15. A medical costs study of older patients with acute myocardial infarction and metabolic syndrome in hospital

    Fan GQ

    2015-01-01

    Full Text Available Guan-qi Fan,1 Kai-li Fu,1 Cheng-wei Jin,1 Xiao-zhen Wang,2 Lu Han,1 Hui Wang,1 Ming Zhong,1 Yun Zhang,1 Wei Zhang,1 Zhi-hao Wang1,3 1Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, 2Shandong University of Traditional Chinese Medicine, 3Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji’nan, People’s Republic of China Background: Older patients with acute myocardial infarction (AMI usually have a poor prognosis, but whether this poor prognosis leads to high hospital costs remains unclear. This study investigated the clinical outcomes of and costs incurred by older patients with AMI and metabolic syndrome (MS in hospital.Methods and results: Patients with AMI seen at Qilu Hospital of Shandong University between January 2011 and May 2013 were separated into four groups: young non-MS patients (n=282, older non-MS patients (n=324, young MS patients (n=217, and older MS patients (n=174. We found that advanced age was significantly associated with worse clinical outcomes, and that the clinical outcomes in patients with AMI and MS are also worsened. At the same cost (RMB¥10,000, older patients with and without MS had a markedly increased number of cardiovascular incidences compared with younger patients without MS. In a comparison of the incremental cost-effectiveness ratio (ICER of percutaneous coronary intervention, older patients without MS had a lower ICER for cardiovascular incidences and a higher ICER for cardiac event-free survival rate when compared with young patients without MS, but a lower ICER for cardiovascular incidences and a higher ICER for cardiac event-free survival rate when compared with older MS patients. Conclusion: Older AMI patients have poor clinical outcomes and their treatment is not cost-effective; however, the results are worse in patients with

  16. Increased Serum Phospholipase A2 Activity in Advanced Chronic Liver Disease as an Expression of the Acute Phase Response

    Mario Pirisi; Carlo Fabris; Maria Piera Panozzo; Giorgio Soardo; Pierluigi Toniutto; Ettore Bartou

    1993-01-01

    Phospholipase A2 (PLA2) modifications were investigated in patients with acute and chronic liver diseases, PLA2 variations were related to indices of liver function as well as to parameters of the acute phase response. Serum PLA2 activity modifications were f1uorimetrically measured in 105 patients affected by acute and chronic liver diseases or extra-hepatic diseases. One-way ANOV A demonstrated a significant difference among groups (F= 4.53, P

  17. Risk Factors and Immune Response to Hepatitis E viral Infection among Acute Hepatitis Patients in Assiut, Egypt

    Seif Eldin, Salwa S.; Seddik, Ismail; Daef, Enas A; Shata, M.T.; Raafat, Marwa; Baky, Laila Abdel; Nafeh, MA

    2010-01-01

    Hepatitis E virus (HEV) infection is a common cause of acute viral hepatitis (AVH) in Egypt. We aimed to identify risk factors of HEV among acute hepatitis cases, measure HEV specific immune response to differentiate between symptomatic and asymptomatic infections. The study included symptomatic acute hepatitis (AH) patients (n=235) and asymptomatic contacts (n=200) to HEV cases. They completed a lifestyle questionnaire, screened for common hepatotropic viruses. Blood and serum samples were c...

  18. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Andrea Bonetto; Tufan Aydogdu; Noelia Kunzevitzky; Guttridge, Denis C.; Sawsan Khuri; Koniaris, Leonidas G.; Teresa A Zimmers

    2011-01-01

    BACKGROUND: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the i...

  19. Acute toxicity of carbamazepine to juvenile rainbow trout (Oncorhynchus mykiss): effects on antioxidant responses, hematological parameters and hepatic EROD.

    Li, Zhi-Hua; Zlabek, Vladimir; Velisek, Josef; Grabic, Roman; Machova, Jana; Kolarova, Jitka; Li, Ping; Randak, Tomas

    2011-03-01

    Awareness of residual pharmaceutically active compounds (PhACs) in the aquatic environment is growing as investigations into these pollutants are increasing and analytical detection techniques are improving. However, the toxicological effects of PhACs have not been adequately researched. In this study, the toxic effects of carbamazepine (CBZ), an anticonvulsant drug commonly present in surface and groundwater, was studied in juvenile rainbow trout, Oncorhynchus mykiss, by acute semi-static bioassay. Blood parameters, liver xenobiotic-metabolizing response and tissue antioxidant status were evaluated. Compared to the control group, fish exposed to CBZ (96 h LC50) showed significantly higher Er, Hb, MCHC, monocytes, neutrophil granulocytes and plasma enzymes activity, and significantly lower MCV and lymphocytes. CF and HSI were not significantly different among groups such as hepatic EROD. SOD, CAT, GPx and GR activity was significantly higher in liver of experimental groups, but decreased significantly in brain and gill. In general, antioxidant enzyme activity in intestine and muscle was less evident than in liver. Oxidative stress indices (levels of LPO and CP) were significantly higher in gill and brain, despite a trend to increased values were manifested in the remaining tissues. In short, CBZ-induced stress responses in different tissues were reflected in the oxidant stress indices and hematological parameters. However, before those parameters are used as special biomarkers for monitoring residual pharmaceuticals in aquatic environment, more detailed experiments in laboratory need to be performed in the future. PMID:20971511

  20. Acute and chronic effects of bupivacaine on muscle energetics during contraction in vivo: a modular metabolic control analysis.

    Arsac, Laurent M; Nouette-Gaulain, Karine; Miraux, Sylvain; Deschodt-Arsac, Veronique; Rossignol, Rodrigue; Thiaudiere, Eric; Diolez, Philippe

    2012-06-01

    Bupivacaine is a widely used anaesthetic injected locally in clinical practice for short-term neurotransmission blockade. However, persistent side effects on mitochondrial integrity have been demonstrated in muscle parts surrounding the injection site. We use the precise language of metabolic control analysis in the present study to describe in vivo consequences of bupivacaine injection on muscle energetics during contraction. We define a model system of muscle energy metabolism in rats with a sciatic nerve catheter that consists of two modules of reactions, ATP/PCr (phosphocreatine) supply and ATP/PCr demand, linked by the common intermediate PCr detected in vivo by (31)P-MRS (magnetic resonance spectroscopy). Measured system variables were [PCr] (intermediate) and contraction (flux). We first applied regulation analysis to quantify acute effects of bupivacaine. After bupivacaine injection, contraction decreased by 15.7% and, concomitantly, [PCr] increased by 11.2%. The regulation analysis quantified that demand was in fact directly inhibited by bupivacaine (-21.3%), causing an increase in PCr. This increase in PCr indirectly reduced mitochondrial activity (-22.4%). Globally, the decrease in contractions was almost fully explained by inhibition of demand (-17.0%) without significant effect through energy supply. Finally we applied elasticity analysis to quantify chronic effects of bupivacaine iterative injections. The absence of a difference in elasticities obtained in treated rats when compared with healthy control rats clearly shows the absence of dysfunction in energetic control of muscle contraction energetics. The present study constitutes the first and direct evidence that bupivacaine myotoxicity is compromised by other factors during contraction in vivo, and illustrates the interest of modular approaches to appreciate simple rules governing bioenergetic systems when affected by drugs. PMID:22390862

  1. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians

    Weyer, C; Vozarova, B; Ravussin, E; Tataranni, P A; de Courten, Barbora

    2001-01-01

    Differences in the metabolic response to overfeeding and starvation may confer susceptibility or resistance to obesity in humans. To further examine this hypothesis, we assessed the changes in 24 h energy metabolism in response to short-term overfeeding and fasting in Caucasians (C) and Pima...

  2. Metabolic and fibrinolytic response to changed insulin sensitivity in users of oral contraceptives

    Petersen, Kresten R.; Christiansen, Erik; Madsbad, Sten;

    1999-01-01

    The fundamental role of insulin resistance for metabolic changes linked to cardiovascular disease and type 2 diabetes is increasingly recognized. Oral contraceptives (OC) may affect insulin sensitivity, and a detailed characterization hereof, as well as the secondary effects on related metabolic...... systems, are relevant in the evaluation of the risk of developing vascular disorders or diabetes in OC users. We studied insulin sensitivity index (S(I)), glucose effectiveness (S(g)), and insulin response in young, healthy women by frequently sampled intravenous glucose tolerance tests before and after...

  3. Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats.

    Guerre-Millo, M.; Leturque, A.; Girard, J.; Lavau, M

    1985-01-01

    This study was undertaken to examine whether there were sex-associated differences in the action of insulin on glucose metabolism in adipocytes. Insulin binding and the dose-response curves for glucose transport (assessed by measuring the cell-associated radioactivity after 15-s incubation with 50 microM [6-14C]glucose) and [U-14C]glucose (5 mM) metabolism into CO2 and lipids were compared in retroperitoneal adipocytes from age-matched (84 d) male and female rats. In addition, the activity of...

  4. Metabolic response to exogenous ethanol in yeast: An in vivo statistical total correlation NMR spectroscopy approach

    Maso Ricci; Marianna Aggravi; Claudia Bonechi; Silvia Martini; Anna Maria; Claudio Rossi

    2012-09-01

    In vivo NMR spectroscopy, together with selectively 13C-labelled substrates and ‘statistical total correlation spectroscopy’ analysis (STOCSY), are valuable tools to collect and interpret the metabolic responses of a living organism to external stimuli. In this study, we applied this approach to evaluate the effects of increasing concentration of exogenous ethanol on the Saccharomyces cerevisiae fermentative metabolism. We show that the STOCSY analysis correctly identifies the different types of correlations among the enriched metabolites involved in the fermentation, and that these correlations are quite stable even in presence of a stressing factor such as the exogenous ethanol.

  5. Lung Surfactant Protein D (SP-D) Response and Regulation During Acute and Chronic Lung Injury

    Gaunsbaek, Maria Quisgaard; Rasmussen, Karina Juhl; Beers, Michael F.;

    2013-01-01

    lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized......BACKGROUND: Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in...... three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. METHODS: Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. RESULTS: In lipopolysaccharide-challenged mice, the level of SP-D in...

  6. Blunted Electrodermal and Psychological Response to Acute Stress in Family Caregivers of People with Eating Disorders.

    Ruiz-Robledillo, Nicolás; Romero-Martínez, Ángel; Moya-Albiol, Luis

    2016-01-01

    Caring for an offspring with an eating disorder (ED) is associated with high levels of distress, and health problems. Indeed, ED caregivers have to cope with a range of challenges related to their caring role, which represents a chronic stress situation. This tends to alter body homeostasis and caregivers' health status. This study aimed to analyse the electrodermal reactivity and psychological response to acute stress in ED caregivers compared to non-caregivers. As expected, caregivers showed lower electrodermal (p < .001, η2partial = .269 for SCL and p < .01, η2partial = .214 for NSCRs) and psychological response (p < .05, η2partial = .198) to acute stress than non-caregivers. The findings suggest the existence of physiological adaptation to chronic stress in family caregivers of people with EDs. PMID:27160010

  7. Acute Phase Response of Rabbit to HgCl2 and CdCl2

    NinaGHOSH; SHELLEYBHATTACHARYA

    1993-01-01

    A variety of changes occur in the rabbit under metal stress which include the appearance of the acute phase protein,C-reactive protein in the serum and significant reduction in the serum titres of albumin and acetylcholinesterase.The phospholipid profile is postively correlated with the higher degree of tissue necrosis encountered in mercury treated rabbit.Cadmium and mercury treatments evoke a similar response pattern in rabbit differing only in the degree of change.

  8. Markers of acute-phase response in the treatment of pulmonary tuberculosis

    Cristiane Martins; Antônio Carlos de Castro Gama; Daniela Valcarenghi; Anna Paula de Borba Batschauer

    2014-01-01

    Introduction:Tuberculosis promotes an acute phase response with an increase of blood reactants, such as C-reactive protein (CRP), among others, which are associated with increased erythrocyte sedimentation rate (ESR).Objective:Evaluate the ESR and the CRP as markers for diagnosis and monitoring cases of pulmonary tuberculosis.Method:Research on patients with clinical, laboratory, and imaging diagnosis of pulmonary tuberculosis, from Itajaí-SC; in which CRP and ESR were analyzed in three diffe...

  9. Nitric Oxide Response to Acute Exercise in Patients with Coronary Artery Disease

    Kaya, Ayşem; Arat-Özkan, Alev; Köner, Özge; Balcı, Huriye; Abacı, Okay; Gürmen, Tevfik; Küçükoğlu, Serdar; Yiğit, Zerrin

    2010-01-01

    Nitric oxide (NO) has been identified as a vasodilatory substance released from the endothelium which decreases in the presence of atherosclerosis. This study aimed to evaluate the systemic NO response to acute exercise in untrained diabetic and nondiabetic patients with atherosclerotic coronary artery disease (CAD). This is a prospective, clinical study consisting of three groups. Group A (n=50) consisted of nondiabetic CAD patients,group B (n=20) consisting of diabetic, CAD patients and gro...

  10. High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish

    Chatterjee, Diptendu; Gerlai, Robert

    2009-01-01

    Zebrafish is gaining popularity in behavioral neuroscience in general and in alcohol research in particular. Alcohol is known to affect numerous molecular mechanisms depending on dose and administration regimen. Prominent among these mechanisms are several neurotransmitter systems. Here we analyze the responses of the dopaminergic and serotoninergic neurotransmitter systems of zebrafish to acute alcohol treatment (1 h long exposure of adult fish to 0.00%, 0.25%, 0.50%, or 1.00% ethyl alcohol)...

  11. Does Prior Training Affect Acute O2 Supply Responses During Exercise in Desaturator COPD Patients?

    Delample, Delphine; Sabate, Meritxell; Préfaut, Christian; Durand, Fabienne

    2008-01-01

    Background: This study investigated the effects of a prior individualized training program (TP) on the response to acute oxygen supply during exercise in chronic obstructive pulmonary disease (COPD) patients showing exercise-induced desaturation. Methods: Twenty-two COPD patients (mean [SD] FEV1 = 52.1 [3]% predicted) who desaturated on exercise participated in a TP. Exercise tolerance while breathing compressed air or oxygen was assessed using a walking test (WT) before and after TP. Oxygen ...

  12. Acute administration of methylphenidate alters the prefrontal cortex neuronal activity in a dose–response characteristic

    Claussen CM; Dafny N

    2014-01-01

    Catherine M Claussen, Nachum Dafny Department of Neurobiology and Anatomy, University of Texas Health Science Center Medical School at Houston, Houston, TX, USA Abstract: The prefrontal cortex (PFC) is part of the collective structures known as the motive circuit. The PFC acts to enhance higher cognitive functions as well as mediate the effects of psychostimulants. Previous literature shows the importance of PFC neuronal adaptation in response to acute and chronic psychostimulant exposure. T...

  13. Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity.

    Griffin, C; Lanzetta, N; Eter, L; Singer, K

    2016-08-01

    It is well known in clinical and animal studies that women and men have different disease risk as well as different disease physiology. Women of reproductive age are protected from metabolic and cardiovascular disease compared with postmenopausal women and men. Most murine studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of similar protection in female mice. We have investigated dietary obesity in a mouse model and have directly compared inflammatory responses in males and females. In this review we will summarize what is known about sex differences in diet-induced inflammation and will summarize our data on this topic. It is clear that sex differences in high-fat diet-induced inflammatory activation are due to cell intrinsic differences in hematopoietic responses to obesogenic cues, but further research is needed to understand what leads to sexually dimorphic responses. PMID:27252473

  14. Metabolic history impacts mammary tumor epithelial hierarchy and early drug response in mice.

    Montales, Maria Theresa E; Melnyk, Stepan B; Liu, Shi J; Simmen, Frank A; Liu, Y Lucy; Simmen, Rosalia C M

    2016-09-01

    The emerging links between breast cancer and metabolic dysfunctions brought forth by the obesity pandemic predict a disproportionate early disease onset in successive generations. Moreover, sensitivity to chemotherapeutic agents may be influenced by the patient's metabolic status that affects the disease outcome. Maternal metabolic stress as a determinant of drug response in progeny is not well defined. Here, we evaluated mammary tumor response to doxorubicin in female mouse mammary tumor virus-Wnt1 transgenic offspring exposed to a metabolically compromised environment imposed by maternal high-fat diet. Control progeny were from dams consuming diets with regular fat content. Maternal high-fat diet exposure increased tumor incidence and reduced tumor latency but did not affect tumor volume response to doxorubicin, compared with control diet exposure. However, doxorubicin-treated tumors from high-fat-diet-exposed offspring demonstrated higher proliferation status (Ki-67), mammary stem cell-associated gene expression (Notch1, Aldh1) and basal stem cell-like (CD29(hi)CD24(+)) epithelial subpopulation frequencies, than tumors from control diet progeny. Notably, all epithelial subpopulations (CD29(hi)CD24(+), CD29(lo)CD24(+), CD29(hi)CD24(+)Thy1(+)) in tumors from high-fat-diet-exposed offspring were refractory to doxorubicin. Further, sera from high-fat-diet-exposed offspring promoted sphere formation of mouse mammary tumor epithelial cells and of human MCF7 cells. Untargeted metabolomics analyses identified higher levels of kynurenine and 2-hydroxyglutarate in plasma of high-fat diet than control diet offspring. Kynurenine/doxorubicin co-treatment of MCF7 cells enhanced the ability to form mammosphere and decreased apoptosis, relative to doxorubicin-only-treated cells. Maternal metabolic dysfunctions during pregnancy and lactation may be targeted to reduce breast cancer risk and improve early drug response in progeny, and may inform clinical management of disease

  15. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi.

    Liu, Xiaoli; Sun, Hushan; Wang, Yiyan; Ma, Mengwen; Zhang, Yuemei

    2014-10-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish and frequently studied in shellfish immunology. In this work, the gender-specific metabolic responses induced by Vibrio harveyi in hepatopancreas from M. galloprovincialis were characterized using NMR-based metabolomics. In details, V. harveyi challenge increased the levels of amino acids including (valine, leucine, isoleucine, threonine, alanine, arginine and tyrosine) and ATP, and decreased the level of glucose in male mussel hepatopancreas. In V. harveyi-challenged female mussel hepatopancreas, both threonine and AMP were significantly elevated, and choline, phoshphocholine, sn-glycero-3-phosphocholine, taurine, betaine and ATP were depleted. Obviously, only threonine was similarly altered to that in V. harveyi-challenged male mussel hepatopancreas. These findings confirmed the gender-specific metabolic responses in mussels challenged by V. harveyi. Overall, V. harveyi induced an enhanced energy demand through activated glycolysis and immune response indicated by increased BCAAs in male mussel hepatopancreas. In female mussel hepatopancreas, V. harveyi basically caused disturbances in both osmotic regulation and energy metabolism through the metabolic pathways of conversions of phosphocholine and ADP to choline and ATP, and sn-glycero-3-phosphocholine and H2O into choline and sn-glycerol 3-phosphate. The altered mRNA expression levels of related genes (Cu/Zn-SOD, HSP90, lysozyme and defensin) suggested that V. harveyi induced obvious oxidative and immune stresses in both male and female mussel hepatopancreas. This work demonstrated that V. harveyi could induce gender-specific metabolic responses in mussel M. galloprovincialis hepatopancreas using NMR-based metabolomics. PMID:25123832

  16. Acute phase protein response in an experimental model of ovine caseous lymphadenitis

    Lang Tamara L

    2007-12-01

    Full Text Available Abstract Background Caseous lymphadenitis (CLA is a disease of small ruminants caused by Corynebacterium pseudotuberculosis. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP such as haptoglobin (Hp serum amyloid A (SAA and α1 acid glycoprotein (AGP are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CLA but it is not known if SAA and AGP respond in parallel or have differing response profiles. Results The concentration in serum of Hp, SAA and AGP in 6 sheep challenged with 2 × 105 cells of C. pseudotuberculosis showed significant increases (P C. pseudotuberculosis became detectable at 11 days p.i. and continued to rise throughout the experiment. Conclusion The serum concentrations of Hp, SAA and AGP were raised in sheep in an experimental model of CLA. An extended response was found for AGP which occurred at a point when the infection was likely to have been transforming from an acute to a chronic phase. The results suggest that AGP could have a role as a marker for chronic conditions in sheep.

  17. Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man.

    Davis, S N; Galassetti, P; Wasserman, D H; Tate, D

    2000-01-01

    Significant, sexual dimorphisms exist in counterregulatory responses to commonly occurring stresses, such as hypoglycemia, fasting, and cognitive testing. The question of whether counterregulatory responses differ during exercise in healthy men and women remains controversial. The aim of this study was to determine whether a sexual dimorphism exists in neuroendocrine, metabolic, or cardiovascular responses to prolonged moderate exercise. Sixteen healthy (eight men and eight women) subjects matched for age (28+/-2 yr), body mass index (22+/-1 kg/m2), nutrient intake, and spectrum of physical fitness were studied in a randomized fashion during 90 min of exercise on a cycle ergometer at 80% of their anaerobic threshold (approximately 50% VO2 max). Respiratory quotient and oxygen consumption relative to body weight were identical in men and women. Glycemia was equated (5.3+/-0.2 mmol/L) during exercise via an exogenous glucose infusion. Gender had significant effects on counterregulatory responses during exercise. Arterialized epinephrine (1.05+/-0.2 vs. 0.45+/-0.04 nmol/L), norepinephrine (9.2+/-1.1 vs. 5.8+/-1.1 nmol/L), and pancreatic polypeptide (52+/-6 vs. 37+/-6 pmol/L) were significantly (Psystem (SNS) drive, lipolytic responses were increased in women. Arterialized blood glycerol (215+/-30 vs. 140+/-20 micromol/L), beta-hydroxybutyrate (54+/-9 vs. 25+/-10 micromol/L), and plasma nonesterified fatty acids (720+/-56 vs. 469+/-103 micromol/L) were significantly (Psexual dimorphism exists in neuroendocrine, metabolic, and cardiovascular counterregulatory responses to prolonged moderate exercise in man. We conclude that during exercise, men have increased autonomic nervous system (epinephrine, norepinephrine, pancreatic polypeptide), cardiovascular (systolic, mean arterial pressure) and certain metabolic (carbohydrate oxidation) counterregulatory responses, but that women have increased lipolytic (glycerol, nonesterified fatty acids) and ketogenic (beta

  18. Vanadium metabolism in sheep. I. Comparative and acute toxicity of vanadium compounds in sheep.

    Hansard, S L; Ammerman, C B; Henry, P R; Simpson, C F

    1982-08-01

    Twelve Florida native wethers were given ammonium metavandate, calcium orthovanadate and calcium pyrovanadate by capsule in a study to examine the toxicity of the compounds. The initial daily dosage of 100 mg elemental vanadium was increased by 50 mg at 2-d intervals for an assessment not only of the toxic effects, but also to determined the amount that caused a decline in feed intake to 25% of that of control animals. The initial decline in feed intake was observed at 400 to 500 mg vanadium/d (9.6 to 12 mg/kg body weight, 310 to 350 ppm); a rapid decline in feed intake was accompanied by diarrhea. One sheep fed 550 mg vanadium as calcium orthovanadate died 3 d after dosing. One animal on each of the other three treatments was killed and necropsied for immediate comparison. Extensive mucosal hemorrhage of the small intestine and diffuse or petechial subcapsular hemorrhages of the kidneys were observed for sheep fed all compounds. The three vanadium compounds appeared to be similar in toxicity, as determined by abrupt declines in feed intake and pathological changes of the intestine and kidney. For a determination of acute toxicosis, three sheep were given 40 mg/kg body weight of vanadium as NH4VO3 in gelatin capsules and two sheep were included as controls. Two of the treated animals died within 80 h after administration and the other three were killed at 96 h. Vanadium content of kidney, liver, bone, spleen, lung and muscle was elevated by treatment. PMID:6982890

  19. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  20. Deep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism

    Valencia, C. Alexander; Wang, Xinjian; Wang, Jin; Peters, Anna; Simmons, Julia R.; Moran, Molly C.; Mathur, Abhinav; Husami, Ammar; Qian, Yaping; Sheridan, Rachel; Bove, Kevin E.; Witte, David; Huang, Taosheng; Miethke, Alexander G.

    2016-01-01

    Background & Aims The etiology of acute liver failure (ALF) remains elusive in almost half of affected children. We hypothesized that inherited mitochondrial and fatty acid oxidation disorders were occult etiological factors in patients with idiopathic ALF and impaired energy metabolism. Methods Twelve patients with elevated blood molar lactate/pyruvate ratio and indeterminate etiology were selected from a retrospective cohort of 74 subjects with ALF because their fixed and frozen liver samples were available for histological, ultrastructural, molecular and biochemical analysis. Results A customized next-generation sequencing panel for 26 genes associated with mitochondrial and fatty acid oxidation defects revealed mutations and sequence variants in five subjects. Variants involved the genes ACAD9, POLG, POLG2, DGUOK, and RRM2B; the latter not previously reported in subjects with ALF. The explanted livers of the patients with heterozygous, truncating insertion mutations in RRM2B showed patchy micro- and macrovesicular steatosis, decreased mitochondrial DNA (mtDNA) content acidosis was found to carry two heterozygous variants in ACAD9, which was associated with isolated complex I deficiency and diffuse hypergranular hepatocytes. The two subjects with heterozygous variants of unknown clinical significance in POLG and DGUOK developed ALF following drug exposure. Their hepatocytes displayed abnormal mitochondria by electron microscopy. Conclusion Targeted next generation sequencing and correlation with histological, ultrastructural and functional studies on liver tissue in children with elevated lactate/pyruvate ratio expand the spectrum of genes associated with pediatric ALF. PMID:27483465

  1. Effect of Yuxingeng Fluid(愈心梗液)on Myocardial Energy Metabolism in Wistar Rats with Acute Myocardial Infarction

    董国菊; 刘剑刚; 史大卓

    2004-01-01

    Objective: To examine the effect of Yuxingeng fluid (愈心梗液, YXGF) on myocardial energy metabolism in Wistar rats with acute myocardial infarction (AMI) by observing the ultrastructure of mitochondria and the enzyme activities of rat myocardial adenosine triphosphate (ATP), succinate dehydrogenase (SDH), acid phosphatase (ACP), alkaline phosphatase (ALP) and the content of glycogen. Methods: AMI models were established by ligature of left anterior descending coronary artery and then the rats with AMI were randomly divided into 7 groups: namely, blank group, model group, sham-operated group, captopil group, high-dose YXGF group, middle-dose YXGF group and Iow-dose YXGF group. From the next day after modeling, the rats were given YXGF through gastrogavage which lasted for 4 weeks. And then, the ultrastructure of mitochondria was observed by electronic microscope and the enzyme activities of ATP, SDH,ACP, ALP and the content of glycogen were determined. Results: Compared with model group, the other three groups of high-dose YXGF, middle-dose YXGF, Iow-dose YXGF and captopril group could protect the ultrastructure of mitochondria and significantly increase enzyme activities of ATP, SDH, ACP, ALP and the content of glycogen (P<0.01). Conclusion: YXGF can protect mitochondria and increase myocardial enzyme activities and the content of glycogen, which may be one of the mechanisms intervening in the pathological course of the early ventricular remodeling in rats with AMI.

  2. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  3. The Impact of Acute and Chronic Weight Restriction and Weight Regulation practices on Physiological, Osteogenic, Metabolic and Cognitive Function in Elite Jockeys

    Dolan, Eimear

    2010-01-01

    Horse racing is a weight category sport. One of the key challenges facing jockeys is the pressure of “making weight” throughout the protracted racing season. Aim: The aim of this study was to examine the effect of a chronically weight restrictive lifestyle and acute weight loss practices on aspects of physiological, osteogenic, metabolic and cognitive function in jockeys. Methods: The primary aim was achieved through the completion of four related studies. Study One: The effect of a 4% reduct...

  4. No inflammatory gene-expression response to acute exercise in human Achilles tendinopathy

    Pingel, Jessica; Fredberg, Ulrich; Mikkelsen, Lone Ramer;

    2013-01-01

    Although histology data favour the view of a degenerative nature of tendinopathy, indirect support for inflammatory reactions to loading in affected tendons exists. The purpose of the present study was to elucidate whether inflammatory signalling responses after acute mechanical loading were more...... pronounced in tendinopathic versus healthy regions of human tendon and if treatment with non-steroidal anti-inflammatory medications (NSAID's) reduces this response. Twenty-seven tendinopathy patients (>6 months) were randomly assigned to a placebo (n = 14) or NSAID (Ibumetin NYCOMED GmbH Plant Oranienburg...

  5. Metabolic responses to fasting and refeeding in lean and genetically obese rats.

    Rothwell, N J; Saville, M E; Stock, M J

    1983-05-01

    Injection of norepinephrine (NE) (25 micrograms/100 g body wt) caused a similar rise in metabolic rate in lean and obese (fa/fa) Zucker rats, but 3-day fasting suppressed the response in lean rats and enhanced the rise in obese mutants. Triiodothyronine (T3) injection (10 micrograms/100 g body wt) caused a significantly greater rise in oxygen consumption (Vo2) in obese than lean rats, but the response was attenuated by fasting in all animals. The thermic response to a single meal of either mixed composition, carbohydrate, or protein (40 kJ) was much smaller in obese rats than lean, but the response to the mixed nutrient meal was similar for all rats after a 3-day fast. Refeeding 3-day fasted lean rats with a single carbohydrate meal (40 kJ) caused a rise in plasma T3 levels after 3 h and a delayed increase in metabolic rate 24 h later. Injection of NE instead of refeeding caused a similar delayed rise in metabolic rate. Carbohydrate refeeding had no effect on plasma T3 levels or oxygen consumption in 3-day fasted obese Zuckers, but injection of NE did produce a significant increase in metabolic rate after 24 h. Refeeding 3-day fasted rats with protein (40 kJ) caused a rise in oxygen consumption 24 h later in lean animals but had no effect in obese animals. The data from lean Zucker rats confirm previous findings in Sprague-Dawley rats and suggest that the thermic response to refeeding involves a complex interaction between the sympathetic nervous system and thyroid hormones. Obese Zuckers responded normally to NE and T3, indicating that their reduced thermogenesis after food may be due to insensitivity to nutrient availability or an inability to activate the sympathetic nervous system. PMID:6846570

  6. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction

    Feinman Richard D

    2005-11-01

    conclusion is probably not surprising but has not been explicitly stated before. The known effects of CHO-induced hypertriglyceridemia, the HDL-lowering effect of low fat, high CHO interventions and the obvious improvement in glucose and insulin from CHO restriction should have made this evident. In addition, recent studies suggest that a subset of MetS, the ratio of TAG/HDL, is a good marker for insulin resistance and risk of CVD, and this indicator is reliably reduced by CHO restriction and exacerbated by high CHO intake. Inability to make this connection in the past has probably been due to the fact that individual responses have been studied in isolation as well as to the emphasis of traditional therapeutic approaches on low fat rather than low CHO. We emphasize that MetS is not a disease but a collection of markers. Individual physicians must decide whether high LDL, or other risk factors are more important than the features of MetS in any individual case but if MetS is to be considered it should be recognized that reducing CHO will bring improvement. Response of symptoms to CHO restriction might thus provide a new experimental criterion for MetS in the face of on-going controversy about a useful definition. As a guide to future research, the idea that control of insulin metabolism by CHO intake is, to a first approximation, the underlying mechanism in MetS is a testable hypothesis.

  7. Divergent metabolic responses of Apostichopus japonicus suffered from skin ulceration syndrome and pathogen challenge.

    Shao, Yina; Li, Chenghua; Ou, Changrong; Zhang, Peng; Lu, Yali; Su, Xiurong; Li, Ye; Li, Taiwu

    2013-11-13

    Skin ulceration syndrome (SUS) is the main limitation in the development of Apostichopus japonicus culture industries, in which Vibrio splendidus has been well documented as one of the major pathogens. However, the intrinsic mechanisms toward pathogen challenge and disease outbreak remain largely unknown at the metabolic level. In this work, the metabolic responses were investigated in muscles of sea cucumber among natural SUS-diseased and V. splendidus-challenged samples. The pathogen did not induce obvious biological effects in A. japonicus samples after infection for the first 24 h. An enhanced energy storage (or reduced energy demand) and immune responses were observed in V. splendidus-challenged A. japonicus samples at 48 h, as marked by increased glucose and branched chain amino acids, respectively. Afterward, infection of V. splendidus induced significant increases in energy demand in A. japonicus samples at both 72 and 96 h, confirmed by decreased glucose and glycogen, and increased ATP. Surprisingly, high levels of glycogen and glucose and low levels of threonine, alanine, arginine, glutamate, glutamine, taurine and ATP were founded in natural SUS-diseased sea cucumber. Our present results provided essential metabolic information about host-pathogen interaction for sea cucumber, and informed that the metabolic biomarkers induced by V. splendidus were not usable for the prediction of SUS disease in practice. PMID:24127639

  8. Application of the Key Events Dose-response Framework to Folate Metabolism.

    Hu, Jing; Wang, Bing; Sahyoun, Nadine R

    2016-06-10

    Folate is a vitamin that plays a role as a cofactor and coenzyme in many essential reactions. These reactions are interrelated and any change in folate homeostasis could affect other reactions. With food fortified with folic acid, and use of multivitamin, unmetabolized folic acid (UMFA) has been detected in blood circulation, particularly among older adults. This has raised concern about the potential harmful effect of high folic acid intake and UMFA on health conditions such as cognitive dysfunction and cancer. To examine what is known about folate metabolism and the release of circulating UMFA, the Key Events Dose-Response Framework (KEDRF) was used to review each of the major key events, dose-response characteristics and homeostatic mechanisms of folate metabolism. The intestine, liver and kidneys each play essential roles in regulating body folate homeostasis. But the determining event in folate metabolism leading to the release of UMFA in circulation appears to be the saturation of dihydrofolate reductase in the liver. However, at each of the key events in folate metabolism, limited information is available on threshold, homeostatic regulation and intracellular effects of folic acid. More studies are needed to fill in the knowledge gaps for quantitatively characterizing the dose-effect relationship especially in light of the call for extending folate fortification to other foods. PMID:25674817

  9. Acute responses of blood pressure, heart rate and rating of perceived exertion in hypertensive patients

    César Giovanni García Cardona

    2007-06-01

    Full Text Available Objective: To assess and compare acute responsesin arterial blood pressure (BP, heartrate (HR and rating of perceived exertion scale(PES during a variable-resistance weight-liftingcircuit (WC versus submaximal aerobicexercise in cycloergometer (AE in individualswith hypertension scaled I and II.Methods: 21 subjects with controlled hypertensionscaled I and II (8 males and 13 females,15 actives and 6 sedentary, age 56±5.9 yearswere evaluated. All the participants receivedtraining about warm-up, use of PES, and respiratoryand weight lifting machines techniquesin exercise. All underwent a single session ofWC in six stations at 50% 1RM and a singlesession of AE at 70%-80% FCmax, in intervalsof one week. BP, HR and PES was measured inboth exercises.Results: To compare responses in both typesof exercise, at Test was used. It found a lowerresponse of HR (p<0.001, systolic BP (p<0.005and PES (p<0.005 during WC. Greater diastolicBP response was found in WC, although it wasnot significative (p=0.139. Sedentary subjectsshowed greater increases. Responses of variableswere similar between stations in WC.Conclusion: This study evidenced a similarbehavior of acute cardiovascular responses and PESduring WC versus AE in hypertensive subjects. Itshowed a lower pressure response during WC insubjects with previous aerobic training.

  10. Adverse Remodeling of the Electrophysiological Response to Ischemia-Reperfusion in Human Heart Failure Is Associated with Remodeling of Metabolic Gene Expression

    Ng, Fu Siong; Holzem, Katherine M.; Koppel, Aaron C.; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L.; Peters, Nicholas S.; Efimov, Igor R.

    2014-01-01

    Background Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion (I-R), although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute I-R in heart failure, and its potential causes, including the remodeling of metabolic gene expression. Methods and Results We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to I-R, with greater action potential duration (APD) shortening (p<0.001 at 8 minutes ischemia; p=0.001 at 12 minutes ischemia) and greater conduction slowing during ischemia, delayed recovery of electrical excitability following reperfusion (F 4.8±1.8 vs. D 1.0±0 mins, p<0.05), and incomplete restoration of APD and conduction velocity early after reperfusion. Expression of 46 metabolic genes were probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. Conclusions We demonstrate, for the first time in human hearts, that the electrophysiological response to I-R in heart failure is accelerated during ischemia with slower recovery following reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. PMID:25114062

  11. Acute Phase Proteins in Response to Dictyocaulus viviparus Infection in Calves

    Waller K Persson

    2004-06-01

    Full Text Available Three experiments were carried out to examine the acute phase response, as measured by the acute phase proteins (APP haptoglobin, serum amyloid A (SAA and fibrinogen, in calves infected with lungworm, Dictyocaulus vivparus. In addition, eosinophil counts were analysed. Three different dose models were used in 3 separate experiments: I 250 D. viviparus infective third stage larvae (L3 once daily for 2 consecutive days, II 100 D. viviparus L3 once daily for 5 consecutive days, and III 2000 L3 once. All 3 dose regimes induced elevated levels of haptoglobin, SAA and fibrinogen, although there was considerable variation both between and within experiments. A significant increase was observed in all 3 APP at one or several time points in experiment I and III, whereas in experiment II, the only significant elevation was observed for fibrinogen at one occasion. The eosinophil numbers were significantly elevated in all 3 experiments. The results show that lungworm infection can induce an acute phase response, which can be monitored by the selected APP. Elevated APP levels in combination with high numbers of eosinophils in an animal with respiratory disease may be used as an indicator of lung worm infection, and help the clinician to decide on treatment. However, high numbers of eosinophils and low levels of APP do not exclude a diagnosis of lungworm. Thus, lungworm infection may not be detected if measurements of APP are used to assess calf health in herds or individual animals.

  12. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis.

    Kjølhede, T; Dalgas, U; Gade, A B; Bjerre, M; Stenager, E; Petersen, T; Vissing, K

    2016-07-01

    Exercise is a well-established part of rehabilitation for people with multiple sclerosis (PwMS), and it has been hypothesized to stimulate an anti-inflammatory environment that might be disease modifying. Yet, investigations on exercise-induced immune responses are scarce and generally not paying attention to the medical treatments of the patient. At present, PwMS are routinely enrolled in immunosuppressive medication, but exercise-induced immunomodulatory effects have not been investigated under these circumstances. The objective of this study was to investigate the acute and chronic cytokines responses to resistance exercise training in medicated PwMS. Thirty-five people with relapsing-remitting multiple sclerosis (MS) treated with interferon (IFN)-β, were randomized to a 24-week progressive resistance training (PRT) or control group. Plasma interleukin (IL)-1β, IL-4, IL-10, IL-17F, IL-23, tumor necrosis factor-α and IFN-γ were measured before and after 24 weeks of PRT. The acute effect was evaluated following standardized single-bout resistance exercise in the untrained and the trained state. No changes were observed in resting cytokine levels after PRT. However, an indication of reduced IL-17F secretion following resistance exercise was observed in the trained compared with the untrained state. This study suggests little acute and chronic effect of PRT on cytokine levels in IFN-treated PwMS. PMID:26105554

  13. Bronchodilator response following methacholine-induced bronchoconstriction predicts acute asthma exacerbations.

    Park, Heung-Woo; Song, Woo-Jung; Chang, Yoon-Suk; Cho, Sang-Heon; Datta, Soma; Weiss, Scott T; Tantisira, Kelan G

    2016-07-01

    Methacholine bronchial provocation test provides the concentration of methacholine causing a 20% decrease in forced expiratory volume in 1 s (FEV1) from baseline (PC20). The dose-response slope (DRS), and other continuous indices of responsiveness (CIR; the percentage decline from the post-diluent baseline FEV1 after the last dose of methacholine), and per cent recovery index (PRI; the percentage increase from the maximally reduced FEV1 after bronchodilator inhalation) are alternative measures. The clinical relevance of these indices in predicting acute asthma exacerbations has not been fully evaluated.In two prospective cohorts of childhood and elderly asthmatics, baseline PC20, DRS, CIR and PRI were measured and evaluated as predictors of acute asthma exacerbations.We found that PRI was significantly related to the presence of asthma exacerbations during the first year of follow-up in both cohorts of childhood (p=0.025) and elderly asthmatics (p=0.003). In addition, PRI showed a significant association with the total number of steroid bursts during 4.3 years of follow-up in the cohort of childhood asthmatics (p=0.04).We demonstrated that PRI, an index of reversibility following methacholine-induced bronchoconstriction, was a good clinical predictor of acute exacerbations of asthma in both childhood and elderly asthmatics. PMID:27076579

  14. The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students.

    Wegner, Mirko; Schüler, Julia; Budde, Henning

    2014-10-01

    It has been previously shown that the implicit affiliation motive - the need to establish and maintain friendly relationships with others - leads to chronic health benefits. The underlying assumption for the present research was that the implicit affiliation motive also moderates the salivary cortisol response to acute psychological stress when some aspects of social evaluation and uncontrollability are involved. By contrast we did not expect similar effects in response to exercise as a physical stressor. Fifty-nine high school students aged M=14.8 years were randomly assigned to a psychosocial stress (publishing the results of an intelligence test performed), a physical stress (exercise intensity of 65-75% of HRmax), and a control condition (normal school lesson) each lasting 15min. Participants' affiliation motives were assessed using the Operant Motive Test and salivary cortisol samples were taken pre and post stressor. We found that the strength of the affiliation motive negatively predicted cortisol reactions to acute psychosocial but not to physical stress when compared to a control group. The results suggest that the affiliation motive buffers the effect of acute psychosocial stress on the HPA axis. PMID:25016451

  15. Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge

    McCarthy Andrea T

    2010-05-01

    Full Text Available Abstract Background Pseudomonas putida is a model organism for bioremediation because of its remarkable metabolic versatility, extensive biodegradative functions, and ubiquity in contaminated soil environments. To further the understanding of molecular pathways responding to the heavy metal chromium(VI [Cr(VI], the proteome of aerobically grown, Cr(VI-stressed P. putida strain F1 was characterized within the context of two disparate nutritional environments: rich (LB media and minimal (M9L media containing lactate as the sole carbon source. Results Growth studies demonstrated that F1 sensitivity to Cr(VI was impacted substantially by nutrient conditions, with a carbon-source-dependent hierarchy (lactate > glucose >> acetate observed in minimal media. Two-dimensional HPLC-MS/MS was employed to identify differential proteome profiles generated in response to 1 mM chromate under LB and M9L growth conditions. The immediate response to Cr(VI in LB-grown cells was up-regulation of proteins involved in inorganic ion transport, secondary metabolite biosynthesis and catabolism, and amino acid metabolism. By contrast, the chromate-responsive proteome derived under defined minimal growth conditions was characterized predominantly by up-regulated proteins related to cell envelope biogenesis, inorganic ion transport, and motility. TonB-dependent siderophore receptors involved in ferric iron acquisition and amino acid adenylation domains characterized up-regulated systems under LB-Cr(VI conditions, while DNA repair proteins and systems scavenging sulfur from alternative sources (e.g., aliphatic sulfonates tended to predominate the up-regulated proteome profile obtained under M9L-Cr(VI conditions. Conclusions Comparative analysis indicated that the core molecular response to chromate, irrespective of the nutritional conditions tested, comprised seven up-regulated proteins belonging to six different functional categories including transcription, inorganic ion

  16. The structure of wheat bread influences the postprandial metabolic response in healthy men

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-01-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with...... a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy...... male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose...

  17. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  18. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  19. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Xu Dong

    Full Text Available BACKGROUND: Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. METHODOLOGY/PRINCIPAL FINDINGS: An agent-based modeling (ABM framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (noninfectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. CONCLUSIONS/SIGNIFICANCE: The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological

  20. Acute stress response and recovery after whiplash injuries. A one-year prospective study

    Kongsted, Alice; Bendix, Tom; Qerama, Erisela;

    2007-01-01

    Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury...... response was obtained by 13% of the participants. This was associated with increased risk of considerable persistent pain (OR=3.3; 1.8-5.9), neck disability (OR=3.2; 1.7-6.0), reduced working ability (OR=2.8; 1.6-4.9), and lowered self-reported general health one year after the accident. These associations...... were modified by baseline neck pain intensity. It was not possible to distinguish between participants who recovered and those who did not by means of the IES (AUC=0.6). In conclusion, the association between the acute stress reaction and persistent WAD suggests that post traumatic stress reaction may...

  1. Acute stress response and recovery after whiplash injuries. A one-year prospective study

    Kongsted, Alice; Bendix, Tom; Montvilas, Erisela Qerama;

    2008-01-01

    Chronic whiplash-associated disorder (WAD) represents a major medical and psycho-social problem. The typical symptomatology presented in WAD is to some extent similar to symptoms of post traumatic stress disorder. In this study we examined if the acute stress reaction following a whiplash injury...... response was obtained by 13% of the participants. This was associated with increased risk of considerable persistent pain (OR=3.3; 1.8-5.9), neck disability (OR=3.2; 1.7-6.0), reduced working ability (OR=2.8; 1.6-4.9), and lowered self-reported general health one year after the accident. These associations...... were modified by baseline neck pain intensity. It was not possible to distinguish between participants who recovered and those who did not by means of the IES (AUC=0.6). In conclusion, the association between the acute stress reaction and persistent WAD suggests that post traumatic stress reaction may...

  2. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke.

    Drath, D B; Shorey, J M; Huber, G L

    1981-01-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas p...

  3. Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction

    Stare, Tjaša; Ramšak, Živa; Blejec, Andrej; Stare, Katja; Turnšek, Neža; Weckwerth, Wolfram; Wienkoop, Stefanie; Vodnik, Dominik; Gruden, Kristina

    2015-01-01

    Background Potato virus Y (PVY) is a major pathogen that causes substantial economic losses in worldwide potato production. Different potato cultivars differ in resistance to PVY, from severe susceptibility, through tolerance, to complete resistance. The aim of this study was to better define the mechanisms underlying tolerant responses of potato to infection by the particularly aggressive PVYNTN strain. We focused on the dynamics of the primary metabolism-related processes during PVYNTN infe...

  4. Metabolism of Albumin after Continuous Venovenous Hemofiltration in Patients with Systemic Inflammatory Response Syndrome

    Yu Chen; Jianan Ren; Xiaodong Qin; Guanwei Li; Bo Zhou; Guosheng Gu; Zhiwu Hong; JiYe Aa; Jieshou Li

    2015-01-01

    Background. The systemic inflammatory response syndrome (SIRS) is characterized by a hypercatabolic state induced by inflammatory mediators. Continuous venovenous hemofiltration (CVVH) stabilizes the internal environment but also aggravates loss of amino acids. The effect of CVVH on protein dynamics is largely unknown. We adopted the stable isotopic tracer technology to investigate how CVVH changed serum albumin metabolism. Methods. Twenty SIRS patients were randomized into low- (2000 mL/h) a...

  5. Metabolic cost of neuronal information in an empirical stimulus-response model

    Košťál, Lubomír; Lánský, Petr; McDonnell, M.D.

    2013-01-01

    Roč. 107, č. 3 (2013), s. 355-365. ISSN 0340-1200 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GPP103/12/P558 Institutional support: RVO:67985823 Keywords : information capacity * metabolic cost * stimulus-response curve Subject RIV: FH - Neurology Impact factor: 1.933, year: 2013

  6. Metabolic response to different glycemic indexes of pre-exercise meal

    Valéria Cristina de Faria; João Carlos Bouzas Marins; Gustavo Antônio de Oliveira; Samuel de Souza Sales; Fernando Fonseca dos Reis; Juscélia Cristina Pereira; Luciana Moreira Lima

    2015-01-01

    INTRODUCTION: To ensure performance and health, the type of food and the time of pre-exercise ingestion should be considered by practitioners of morning physical activity. Objective: This study assessed the metabolic response after pre-exercise meals with different glycemic indexes (GI) and in the fasting state adopting different types of hydration.METHODS: Twelve men performed four experimental tests; two with pre-exercise meals of high GI (HGI) and low GI (LGI), and two were performed in th...

  7. Dose-response curve to salbutamol during acute and chronic treatment with formoterol in COPD

    La Piana GE

    2011-07-01

    Full Text Available Giuseppe Emanuele La Piana¹, Luciano Corda², Enrica Bertella¹, Luigi Taranto Montemurro¹, Laura Pini¹, Claudio Tantucci¹¹Cattedra di Malattie dell'Apparato Respiratorio, Università di Brescia, ²Prima Divisione di Medicina Interna, Spedali Civili, Brescia, ItalyBackground: Use of short-acting ß2-agonists in chronic obstructive pulmonary disease (COPD during treatment with long-acting ß2-agonists is recommended as needed, but its effectiveness is unclear. The purpose of this study was to assess the additional bronchodilating effect of increasing doses of salbutamol during acute and chronic treatment with formoterol in patients with COPD.Methods: Ten patients with COPD underwent a dose-response curve to salbutamol (until 800 µg of cumulative dose after a 1-week washout (baseline, 8 hours after the first administration of formoterol 12 µg (day 1, and after a 12-week and 24-week period of treatment with formoterol (12 µg twice daily by dry powder inhaler. Peak expiratory flow, forced expiratory volume in one second (FEV1, forced vital capacity, and inspiratory capacity were measured at the different periods of treatment and at different steps of the dose-response curve.Results: Despite acute or chronic administration of formoterol, maximal values of peak expiratory flow, FEV1, and forced vital capacity after 800 µg of salbutamol were unchanged compared with baseline. The baseline FEV1 dose-response curve was steeper than that at day 1, week 12, or week 24 (P < 0.0001. Within each dose-response curve, FEV1 was different only at baseline and at day 1 (P < 0.001, when FEV1 was still greater at 800 µg than at 0 µg (P < 0.02. In contrast, the forced vital capacity dose-response curves were similar at the different periods, while within each dose-response curve, forced vital capacity was different in all instances (P < 0.001, always being higher at 800 µg than at 0 µg (P < 0.05.Conclusion: In patients with stable COPD, the maximal effect

  8. Eletriptan in the management of acute migraine: an update on the evidence for efficacy, safety, and consistent response.

    Capi, Matilde; Curto, Martina; Lionetto, Luana; de Andrés, Fernando; Gentile, Giovanna; Negro, Andrea; Martelletti, Paolo

    2016-09-01

    Migraine is a multifactorial, neurological and disabling disorder, also characterized by several autonomic symptoms. Triptans, selective serotonin 5-HT1B/1D agonists, are the first-line treatment option for moderate-to-severe headache attacks. In this paper, we review the recent data on eletriptan clinical efficacy, safety, and tolerability, and potential clinically relevant interactions with other drugs. Among triptans, eletriptan shows a consistent and significant clinical efficacy and a good tolerability profile in the treatment of migraine, especially for patients with cardiovascular risk factors without coronary artery disease. It shows the most favorable clinical response, together with sumatriptan injections, zolmitriptan and rizatriptan. Additionally, eletriptan shows the most complex pharmacokinetic/dynamic profile compared with the other triptans. It is metabolized primarily by the CYP3A4 hepatic enzyme and therefore the concomitant administration of CYP3A4-potent inhibitors should be carefully evaluated. A relatively low risk of serotonin syndrome is given by the co-administration with serotoninergic drugs. No clinically relevant interaction has been found with drugs used for migraine prophylactic treatment or other acute drugs, with the exception of ergot derivatives that should not be co-administered with eletriptan. PMID:27582896

  9. Eletriptan in the management of acute migraine: an update on the evidence for efficacy, safety, and consistent response

    Capi, Matilde; Curto, Martina; Lionetto, Luana; de Andrés, Fernando; Gentile, Giovanna; Negro, Andrea; Martelletti, Paolo

    2016-01-01

    Migraine is a multifactorial, neurological and disabling disorder, also characterized by several autonomic symptoms. Triptans, selective serotonin 5-HT1B/1D agonists, are the first-line treatment option for moderate-to-severe headache attacks. In this paper, we review the recent data on eletriptan clinical efficacy, safety, and tolerability, and potential clinically relevant interactions with other drugs. Among triptans, eletriptan shows a consistent and significant clinical efficacy and a good tolerability profile in the treatment of migraine, especially for patients with cardiovascular risk factors without coronary artery disease. It shows the most favorable clinical response, together with sumatriptan injections, zolmitriptan and rizatriptan. Additionally, eletriptan shows the most complex pharmacokinetic/dynamic profile compared with the other triptans. It is metabolized primarily by the CYP3A4 hepatic enzyme and therefore the concomitant administration of CYP3A4-potent inhibitors should be carefully evaluated. A relatively low risk of serotonin syndrome is given by the co-administration with serotoninergic drugs. No clinically relevant interaction has been found with drugs used for migraine prophylactic treatment or other acute drugs, with the exception of ergot derivatives that should not be co-administered with eletriptan. PMID:27582896

  10. Acute bronchodilator responsiveness and health outcomes in COPD patients in the UPLIFT trial

    Decramer Marc

    2011-01-01

    Full Text Available Abstract Background Debate continues as to whether acute bronchodilator responsiveness (BDR predicts long-term outcomes in COPD. Furthermore, there is no consensus on a threshold for BDR. Methods At baseline and during the 4-year Understanding Potential Long-term Improvements in Function with Tiotropium (UPLIFT® trial, patients had spirometry performed before and after administration of ipratropium bromide 80 mcg and albuterol 400 mcg. Patients were split according to three BDR thresholds: ≥12% + ≥200 mL above baseline (criterion A, ≥15% above baseline (criterion B; and ≥10% absolute increase in percent predicted FEV1 values (criterion C. Several outcomes (pre-dose spirometry, exacerbations, St. George's Respiratory Questionnaire [SGRQ] total score were assessed according to presence or absence of BDR in the treatment groups. Results 5783 of 5993 randomized patients had evaluable pre- and post-bronchodilator spirometry at baseline. Mean age (SD was 64 (8 years, with 75% men, mean post-bronchodilator FEV1 1.33 ± 0.44 L (47.6 ± 12.7% predicted and 30% current smokers. At baseline, 52%, 66%, and 39% of patients had acute BDR using criterion A, B, and C, respectively. The presence of BDR was variable at follow-up visits. Statistically significant improvements in spirometry and health outcomes occurred with tiotropium regardless of the baseline BDR or criterion used. Conclusions A large proportion of COPD patients demonstrate significant acute BDR. BDR in these patients is variable over time and differs according to the criterion used. BDR status at baseline does not predict long-term response to tiotropium. Assessment of acute BDR should not be used as a decision-making tool when prescribing tiotropium to patients with COPD.

  11. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.

    Feng, Tian-Ya; Yang, Zhi-Kai; Zheng, Jian-Wei; Xie, Ying; Li, Da-Wei; Murugan, Shanmugaraj Bala; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2015-01-01

    Phosphorus (P) is an essential macronutrient for the survival of marine phytoplankton. In the present study, phytoplankton response to phosphorus limitation was studied by proteomic profiling in diatom Phaeodactylum tricornutum in both cellular and molecular levels. A total of 42 non-redundant proteins were identified, among which 8 proteins were found to be upregulated and 34 proteins were downregulated. The results also showed that the proteins associated with inorganic phosphate uptake were downregulated, whereas the proteins involved in organic phosphorus uptake such as alkaline phosphatase were upregulated. The proteins involved in metabolic responses such as protein degradation, lipid accumulation and photorespiration were upregulated whereas energy metabolism, photosynthesis, amino acid and nucleic acid metabolism tend to be downregulated. Overall our results showed the changes in protein levels of P. tricornutum during phosphorus stress. This study preludes for understanding the role of phosphorous in marine biogeochemical cycles and phytoplankton response to phosphorous scarcity in ocean. It also provides insight into the succession of phytoplankton community, providing scientific basis for elucidating the mechanism of algal blooms. PMID:26020491

  12. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in their Response to a Caloric Challenge

    Perreault, Maude; Zulyniak, Michael A.; Britz-McKibbin, Philip; Mutch, David M.

    2015-01-01

    Objective To determine if metabolically healthy obese (MHO) individuals have a different metabolic response to a standardized diet compared to lean healthy (LH) and metabolically unhealthy obese (MUO) individuals. Methods Thirty adults (35–70 yrs) were classified as LH, MHO, and MUO according to anthropometric and clinical measurements. Participants consumed a standardized high calorie meal (~1330 kcal). Blood glucose and insulin were measured at fasting, and 15, 30, 60, 90 and 120 min postprandially. Additional blood samples were collected for the targeted analysis of amino acids (AAs) and derivatives, and fatty acids (FAs). Results The postprandial response (i.e., area under the curve, AUC) for serum glucose and insulin were similar between MHO and LH individuals, and significantly lower than MUO individuals (p < 0.05). Minor differences were found in postprandial responses for AAs between MHO and MUO individuals, while three polyunsaturated FAs (linoleic acid, γ-linolenic acid, arachidonic acid) showed smaller changes in serum after the meal in MHO individuals compared to MUO. Fasting levels for various AAs (notably branched-chain AA) and FAs (e.g., saturated myristic and palmitic acids) were found to correlate with glucose and insulin AUC. Conclusion MHO individuals show preserved insulin sensitivity and a greater ability to adapt to a caloric challenge compared to MUO individuals. PMID:26274804

  13. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin.

    Jackson, Lindsay M D; Kroukamp, Otini; Wolfaardt, Gideon M

    2015-01-01

    Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures. PMID:26441887

  14. Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: A time course study.

    Orona, Nadia S; Ferraro, Sebastián A; Astort, Francisco; Morales, Celina; Brites, Fernando; Boero, Laura; Tiscornia, Gisela; Maglione, Guillermo A; Saldiva, Paulo H N; Yakisich, Sebastian; Tasat, Deborah R

    2016-01-01

    Exposure to air particulate matter (PM) is associated with increased cardiovascular morbimortality. However, PM doesn't affect equally to all people, being the old cohort the most susceptible and studied. We hypothesized that another specific life phase, the middle-aged subpopulation, may be negatively affected. Therefore, the aim of this study was to analyze in vivo the acute biological impact of two environmental particles, Urban Air Particles from Buenos Aires and Residual Oil Fly Ash, on the cardiorespiratory system of middle-aged mice, evaluating oxidative metabolism and inflammation. Both PM provoked a local and systemic inflammatory response, leading to a reduced alveolar area in the lung, an epicard inflammation in the heart, an increment of IL-6, and a reduction on PON 1 activity in serum of middle-aged animals. The positive correlation of local parameters with systemic markers of oxidative stress and inflammation could be responsible for associations of cardiovascular morbimortality in this subpopulation. PMID:26255684

  15. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  16. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    Fenja Klevenhusen; Elke Humer; Barbara Metzler-Zebeli; Leopold Podstatzky-Lichtenstein; Thomas Wittek; Qendrim Zebeli

    2015-01-01

    Simple Summary This research established an association between lactation number and milk production and metabolic and inflammatory responses in high-producing dairy cows affected by left abomasal displacement in small-scaled dairy farms. The study showed metabolic alterations, liver damage, and inflammation in the sick cows, which were further exacerbated with increasing lactation number and milk yield of the cows. Abstract Left displaced abomasum (LDA) is a severe metabolic disease of cattl...

  17. Role of metabolic CO2 production in ventilatory response to steady-state exercise.

    Phillipson, E A; Bowes, G.; Townsend, E. R.; Duffin, J; Cooper, J. D.

    1981-01-01

    We examined the role of metabolic CO2 production in the hyperpnea of muscular exercise by comparing the response of alveolar ventilation to moderate levels of exercise with the response to venous infusion of CO2 at rest. Studies were performed in four awake sheep that were trained to run on a treadmill. The sheep had been cannulated for veno-venous extracorporeal perfusion so that CO2 could be infused into the peripheral venous blood through membrane lungs in the perfusion circuit. The sheep ...

  18. L-carnitine: a partner between immune response and lipid metabolism ?

    Giuseppe Famularo

    1993-01-01

    Full Text Available The authors demonstrated that in vivo administered L-carnitine strongly ameliorated the immune response in both healthy individuals receiving Intralipid and ageing subjects with cardiovascular diseases, as shown by the enhancement of mixed lymphocyte reaction. Notably, in the latter group L-carnitine treatment also resulted in a significant reduction of serum levels of both cholesterol and triglycerides. Therefore, the hypothesis is that L-carnitine supplementation could ameliorate both the dysregulated immune response and the abnormal lipid metabolism in several conditions.

  19. The miRNA plasma signature in response to acute aerobic exercise and endurance training.

    Søren Nielsen

    Full Text Available MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs. We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p, 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143 and 3 hours (miR-1 after an acute exercise bout (P<0.00032. Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21 and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107 (P<0.00032. In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma.

  20. Fever and acute phase response induced in dwarf goats by endotoxin and bovine and human recombinant tumour necrosis factor alpha.

    van Miert, A S; van Duin, C T; Wensing, T

    1992-12-01

    Tumour necrosis factor (TNF), a polypeptide produced by mononuclear phagocytes, has been implicated as an important mediator of inflammatory processes and of clinical manifestations in acute infectious diseases. To study further the potential role of TNF in infectious diseases, recombinant Escherichia coli (E. coli) derived human (r.HuTNF-alpha) and bovine TNF (r.BoTNF-alpha) were intravenously (i.v.) administered in dwarf goats. Rectal temperature, heart rate, rumen motility, plasma zinc and iron concentrations, and certain other blood biochemical and haematological values were studied and compared with the changes seen after E. coli endotoxin (LPS) was administered (dose: 0.1 microgram/kg i.v.). Following a single injection of 4 micrograms/kg of r.BoTNF-alpha, shivering and biphasic febrile response were observed, accompanied by tachycardia, inhibition of rumen contractions, drop in plasma zinc and iron concentrations, lymphopenia, and neutropenia followed by neutrophilia. The i.v. administration of a single injection of 4 micrograms/kg r.HuTNF-alpha induced shivering and biphasic febrile responses, accompanied by anorexia and a similar drop in plasma trace metal concentrations when compared with r.BoTNF-alpha-treated goats. The TNF-alpha-induced symptoms were essentially the same as those that occurred after LPS administration. However, the time of onset of these changes after the injection of TNF-alpha was significantly shorter than after LPS. Moreover, the r.BoTNF-alpha induced a longer lasting neutrophilic leucopenia, less neutrophilia, and a more persistent lymphopenia than after LPS injection. Neither r.BoTNF-alpha nor LPS caused severe haemo-concentration. Furthermore, no cross-tolerance between r.BoTNF-alpha and LPS could be demonstrated. We conclude that both r.BoTNF-alpha and r.HuTNF-alpha induce many of the physiologic, haematologic and metabolic changes that characterize the acute phase response to LPS. The overlapping biological activities of r

  1. Is there an increased risk of metabolic syndrome among childhood acute lymphoblastic leukemia survivors? A developing country experience.

    Mohapatra, Sonali; Bansal, Deepak; Bhalla, A K; Verma Attri, Savita; Sachdeva, Naresh; Trehan, Amita; Marwaha, R K

    2016-03-01

    Data on metabolic syndrome (MS) in survivors of childhood acute lymphoblastic leukemia (ALL) from developing countries are lacking. The purpose of this single-center, uncontrolled, observational study was to assess the frequency of MS in our survivors. The survivors of ALL ≤15 years at diagnosis, who had completed therapy ≥2 years earlier, were enrolled. Anthropometric measurements (weight, height, waist circumference), biochemistry (glucose, insulin, triglycerides, high-density lipoprotein [HDL], thyroid function tests, C-reactive protein [CRP], magnesium), measurement of blood pressure, and Tanner staging were performed. MS was defined by International Diabetes Federation (IDF) and the National Cholesterol Education Program Third Adult Treatment Panel guidelines (NCEP ATP III) criteria, modified by Cook et al. (Arch Pediatr Adolesc Med. 2003;157:821-827) and Ford et al. (Diabetes Care. 2005;28:878-881). The median age of 76 survivors was 11.9 years (interquartile range [IQR]: 9.6-13.5). Twenty-four (32%) survivors were obese or overweight. The prevalence of insulin resistance (17%), hypertension (7%), hypertriglyceridemia (20%), and low HDL (37%) was comparable to the prevalence in children/adolescents in historical population-based studies from India. The prevalence of MS ranged from 1.3% to 5.2%, as per different defining criteria. Cranial radiotherapy, age at diagnosis, sex, or socioeconomic status were not risk factors for MS. The prevalence of MS in survivors of childhood ALL, at a median duration of 3 years from completion of chemotherapy, was comparable to the reference population. The prevalence of being obese or overweight was, however, greater than historical controls. PMID:26984439

  2. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review

    Famakin, Bolanle M.

    2014-01-01

    It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to r...

  3. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra;

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction of...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk of...... cardiovascular disease. Increased levels of acute phase mRNA and proteins in lung tissues, bronchoalveolar lavage fluid and plasma clearly indicate pulmonary acute phase response following pulmonary deposition of different kinds of particles including diesel exhaust particles, nanoparticles, and carbon nanotubes...

  4. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  5. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli. In this study, we investigated gene expression changes in the kidney after acute exposure to a nephrotoxin, D-serine, which targets the proximal tubule of the kidney. Male F-344 rats injected intraperitoneally with a single dose of D-serine (5, 20, 50, 200 or 500 mg/kg), and gene expression profiles in the kidney were determined using the Affymetrix RAE230A gene arrays at 96 h post-dosing. D-Serine treatment resulted in the up- and down-regulation of 1158 and 749 genes, respectively, over the entire dose range based on the intersection of the results of t-test, p < 0.01 over two consecutive doses, and ANOVA with Bonferonni correction for multiple testing. Interestingly, both the up-and down-regulated genes show a unified dose response pattern as revealed in the self-organized map clustering analysis using the expression profiles of the 1907 differentially expressed genes as input data. There appears to be minimal changes in the expression level of these genes in the dose range of 5-50 mg/kg, while the most prominent changes were observed at the highest doses tested, i.e. 200 and 500 mg/kg. Pathway analysis of the differentially expressed genes showed perturbation of a large number of biological processes/pathways after D-serine exposure. Among the up-regulated pathways are actin cytoskeleton biogenesis and organization, apoptosis, cell cycle regulation, chromatin assembly, excision repair of damaged DNA, DNA replication and packaging, protein biosynthesis

  6. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Heather M Buechel

    2014-02-01

    Full Text Available Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation, and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 mo. and aged (21 mo. male F344 rats into control and acute restraint (an animal model of psychosocial stress groups (n = 9-12/ group. We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the three hour restraint, as well as highly significant increases in blood glucocorticoid levels 21 hours after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  7. Plasticity of the systemic inflammatory response to acute infection during critical illness: development of the riboleukogram.

    Jonathan E McDunn

    Full Text Available BACKGROUND: Diagnosis of acute infection in the critically ill remains a challenge. We hypothesized that circulating leukocyte transcriptional profiles can be used to monitor the host response to and recovery from infection complicating critical illness. METHODOLOGY/PRINCIPAL FINDINGS: A translational research approach was employed. Fifteen mice underwent intratracheal injections of live P. aeruginosa, P. aeruginosa endotoxin, live S. pneumoniae, or normal saline. At 24 hours after injury, GeneChip microarray analysis of circulating buffy coat RNA identified 219 genes that distinguished between the pulmonary insults and differences in 7-day mortality. Similarly, buffy coat microarray expression profiles were generated from 27 mechanically ventilated patients every two days for up to three weeks. Significant heterogeneity of VAP microarray profiles was observed secondary to patient ethnicity, age, and gender, yet 85 genes were identified with consistent changes in abundance during the seven days bracketing the diagnosis of VAP. Principal components analysis of these 85 genes appeared to differentiate between the responses of subjects who did versus those who did not develop VAP, as defined by a general trajectory (riboleukogram for the onset and resolution of VAP. As patients recovered from critical illness complicated by acute infection, the riboleukograms converged, consistent with an immune attractor. CONCLUSIONS/SIGNIFICANCE: Here we present the culmination of a mouse pneumonia study, demonstrating for the first time that disease trajectories derived from microarray expression profiles can be used to quantitatively track the clinical course of acute disease and identify a state of immune recovery. These data suggest that the onset of an infection-specific transcriptional program may precede the clinical diagnosis of pneumonia in patients. Moreover, riboleukograms may help explain variance in the host response due to differences in ethnic

  8. Intramolecular stable isotope distributions detect plant metabolic responses on century time scales

    Schleucher, Jürgen; Ehlers, Ina; Augusti, Angela; Betson, Tatiana

    2014-05-01

    Plants respond to environmental changes on a vast range of time scales, and plant gas exchanges constitute important feedback mechanisms in the global C cycle. Responses on time scales of decades to centuries are most important for climate models, for prediction of crop productivity, and for adaptation to climate change. Unfortunately, responses on these timescale are least understood. We argue that the knowledge gap on intermediate time scales is due to a lack of adequate methods that can bridge between short-term manipulative experiments (e.g. FACE) and paleo research. Manipulative experiments in plant ecophysiology give information on metabolism on time scales up to years. However, this information cannot be linked to results from retrospective studies in paleo research, because little metabolic information can be derived from paleo archives. Stable isotopes are prominent tools in plant ecophysiology, biogeochemistry and in paleo research, but in all applications to date, isotope ratios of whole molecules are measured. However, it is well established that stable isotope abundance varies among intramolecular groups of biochemical metabolites, that is each so-called "isotopomer" has a distinct abundance. This intramolecular variation carries information on metabolic regulation, which can even be traced to individual enzymes (Schleucher et al., Plant, Cell Environ 1999). Here, we apply intramolecular isotope distributions to study the metabolic response of plants to increasing atmospheric [CO2] during the past century. Greenhouse experiments show that the deuterium abundance among the two positions in the C6H2 group of photosynthetic glucose depends on [CO2] during growth. This is observed for all plants using C3 photosynthesis, and reflects the metabolic flux ratio between photorespiration and photosynthesis. Photorespiration is a major C flux that limits assimilation in C3 plants, which encompass the overwhelming fraction of terrestrial photosynthesis and the

  9. An acute bout of whole body passive hyperthermia increases plasma leptin, but does not alter glucose or insulin responses in obese type 2 diabetics and healthy adults.

    Rivas, Eric; Newmire, Dan E; Crandall, Craig G; Hooper, Philip L; Ben-Ezra, Vic

    2016-07-01

    Acute and chronic hyperthermic treatments in diabetic animal models repeatedly improve insulin sensitivity and glycemic control. Therefore, the purpose of this study was to test the hypothesis that an acute 1h bout of hyperthermic treatment improves glucose, insulin, and leptin responses to an oral glucose challenge (OGTT) in obese type 2 diabetics and healthy humans. Nine obese (45±7.1% fat mass) type 2 diabetics (T2DM: 50.1±12y, 7.5±1.8% HbA1c) absent of insulin therapy and nine similar aged (41.1±13.7y) healthy non-obese controls (HC: 33.4±7.8% fat mass, Pleptin concentrations. Hyperthermia itself did not alter area under the curve for plasma glucose, insulin, or C-peptide during the OGTT in either group. Fasting absolute and normalized (kg·fat mass) plasma leptin was significantly increased (P<0.01) only after the hyperthermic exposure by 17% in T2DM and 24% in HC groups (P<0.001) when compared to the control condition. These data indicate that an acute hyperthermic treatment does not improve glucose tolerance 24h post treatment in moderate metabolic controlled obese T2DM or HC individuals. PMID:27264884

  10. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress.

    Wawrzyniak, Andrew J; Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-05-01

    Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75-min recovery. RT measures were generated from an ex-Gaussian distribution that yielded three predictors: mu-RT, sigma-RT, and tau-RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = -.009, SE = .005, p = .09) and diastolic (B = -.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = -.007, SE = .003, p = .03) and impaired vagal tone (B = -.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. PMID:26894967

  11. Cytogenetically Unrelated Clones in Acute Myeloid Leukemia Showing Different Responses to Chemotherapy

    Onozawa, Masahiro; Miyashita, Naohiro; Yokohata, Emi; Yoshida, Miho; Kanaya, Minoru; Kosugi-Kanaya, Mizuha; Takemura, Ryo; Takahashi, Shojiro; Sugita, Junichi; Shigematsu, Akio; Takahata, Mutsumi; Fujisawa, Shinichi; Hashimoto, Daigo; Fujimoto, Katsuya; Endo, Tomoyuki; Kondo, Takeshi; Teshima, Takanori

    2016-01-01

    We report a case of acute myeloid leukemia (AML) with two cytogenetically unrelated clones. The patient was a 45-year-old male who was diagnosed with acute monoblastic leukemia (AMoL). Initial G-band analysis showed 51,XY,+6,+8,inv(9)(p12q13)c,+11,+13,+19[12]/52,idem,+Y[8], but G-band analysis after induction therapy showed 45,XY,-7,inv(9)(p12q13)c[19]/46,XY,inv(9)(p12q13)c[1]. Retrospective FISH analysis revealed a cryptic monosomy 7 clone in the initial AML sample. The clone with multiple trisomies was eliminated after induction therapy and never recurred, but a clone with monosomy 7 was still detected in myelodysplastic marrow with a normal blast percentage. Both clones were successfully eliminated after related peripheral blood stem cell transplantation, but the patient died of relapsed AML with monosomy 7. We concluded that one clone was de novo AMoL with chromosome 6, 8, 11, 13, and 19 trisomy and that the other was acute myeloid leukemia with myelodysplasia-related changes(AML-MRC) with chromosome 7 monosomy showing different responses to chemotherapy. Simultaneous onset of cytogenetically unrelated hematological malignancies that each have a different disease status is a rare phenomenon but is important to diagnose for a correct understanding of the disease status and for establishing an appropriate treatment strategy. PMID:27034857

  12. CT Findings of Acute Pulmonary Thromboembolism as a Predictor of the Response to Anticoagulant Therapy

    To determine the CT findings of an acute pulmonary thromboembolism for the prediction of response to anticoagulant therapy. Forty-eight patients diagnosed with a pulmonary embolism underwent anticoagulant therapy, and underwent pre- and post-treatment CT scans, were selected to be part of the study. Pre-treatment CT scans were retrospectively reviewed for the number and degree of emboli, right ventricular to left ventricular (RV/LV) diameter ratio, pulmonary arterial to aorta (PA/aorta) diameter ratio, ventricular septal bowing, consolidation, mosaic perfusion, and pleural effusion. The response to anticoagulant therapy was assessed by a change in embolic burden on pre-and post-treatment CT scans. The 48 patients were divided into two groups: good responder and poor responder. The pre-treatment CT findings were compared by group to determine if there were any differences in the CT findings. Thirty patients were categorized as good responders (62.5%) and eighteen patients as poor responders (37.5%). A pleura-based wedge-shaped consolidation was observed in 9 of 18 cases (50%) from the poor responder group and one of 30 (3%) cases from the good responder group. The comparison of the finding by group was found to be significantly different (p<0.001). No other CT findings were significantly different between the good and poor responders. The pre-treatment CT scans of patients with acute pulmonary embolism indicate that pleurabased wedge-shaped consolidations can predict a poor response to anticoagulant therapy

  13. THE RATE OF CLINICAL RESPONSE OF ORAL LOADING SODIUM VALPROATE IN ACUTELY MANLC PATIENT

    K SHAFIEE

    2003-12-01

    Full Text Available Introduction: Acheiving accelerated clinical response is desirable in patients with acute manic episode. We conducted a prospective study to compare the rate of clinical response of oral loading sodium valproate versus standard dose titration. Methods: Fourty - two patients who met DSM - IV critevia for current manic episode and who had a "Young mania rating scale "score between 20 and 50 were randomly assigned on a double blind basis to recieve valproate oral "loading"(N = 21 at a dose of 20 mg/kg in divided doses for 7 days and valproate "non -loading" at a starting dose of 10 mg/kg followed by standard titration which at day 6 , they recieved 20 mg/kg valproate. Patients were scored at day 0, 3, 5 and 7 by a blindraterusing YMRS. Results: There was no significat differences between the groups in advers events and useing of adjunctive tranquilizer .The efficacy of valproate in both two groups was similar but " the rate of improvement on YMRS" over the first 3 days was significantly greater in loading group. Conclusion: Valproate oral loading with sodium valproate can induced a more rapid clinical response in acutely manic patient.

  14. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response

    Killeen S. Kirkconnell

    2016-06-01

    Full Text Available Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.

  15. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response.

    Kirkconnell, Killeen S; Paulsen, Michelle T; Magnuson, Brian; Bedi, Karan; Ljungman, Mats

    2016-01-01

    Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome. PMID:27230646

  16. Acute phase response in two consecutive experimentally induced E. coli intramammary infections in dairy cows

    Saatsi Johanna

    2008-06-01

    Full Text Available Abstract Background Acute phase proteins haptoglobin (Hp, serum amyloid A (SAA and lipopolysaccharide binding protein (LBP have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with Escherichia coli and to evaluate the possible carry-over effect when same animals are used in an experimental model. Methods Mastitis was induced with a dose of 1500 cfu of E. coli in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp, serum amyloid A (SAA and lipopolysaccharide binding protein (LBP were determined in serum and milk. Results In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the E. coli infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by E. coli. Conclusion Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary

  17. Influence of acute pancreatitis on the in vitro responsiveness of rat mesenteric and pulmonary arteries

    Antunes Edson

    2008-05-01

    Full Text Available Abstract Background Acute pancreatitis is an inflammatory disease characterized by local tissue injury and systemic inflammatory response leading to massive nitric oxide (NO production and haemodynamic disturbances. Therefore, the aim of this work was to evaluate the vascular reactivity of pulmonary and mesenteric artery rings from rats submitted to experimental pancreatitis. Male Wistar rats were divided into three groups: saline (SAL; tauracholate (TAU and phospholipase A2 (PLA2. Pancreatitis was induced by administration of TAU or PLA2 from Naja mocambique mocambique into the common bile duct of rats, and after 4 h of duct injection the animals were sacrificed. Concentration-response curves to acetylcholine (ACh, sodium nitroprusside (SNP and phenylephrine (PHE in isolated mesenteric and pulmonary arteries were obtained. Potency (pEC50 and maximal responses (EMAX were determined. Blood samples were collected for biochemical analysis. Results In mesenteric rings, the potency for ACh was significantly decreased from animals treated with TAU (about 4.2-fold or PLA2 (about 6.9-fold compared to saline group without changes in the maximal responses. Neither pEC50 nor EMAX values for Ach were altered in pulmonary rings in any group. Similarly, the pEC50 and the EMAX values for SNP were not changed in both preparations in any group. The potency for PHE was significantly decreased in rat mesenteric and pulmonary rings from TAU group compared to SAL group (about 2.2- and 2.69-fold, for mesenteric and pulmonary rings, respectively. No changes were seen in the EMAX for PHE. The nitrite/nitrate (NOx- levels were markedly increased in animals submitted to acute pancreatitis as compared to SAL group, approximately 76 and 68% in TAU and PLA2 protocol, respectively. Conclusion Acute pancreatitis provoked deleterious effects in endothelium-dependent relaxing response for ACh in mesenteric rings that were strongly associated with high plasma NOx- levels as

  18. Neutrophil Gelatinase-Associated Lipocalin: Its Response to Hypoxia and Association with Acute Mountain Sickness

    Adrian Mellor; Christopher Boos; Mike Stacey; Tim Hooper; Chris Smith; Joe Begley; Jo Yarker; Rick Piper; John O'Hara; Rod King; Steve Turner; Woods, David R.

    2013-01-01

    Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 ...

  19. Vasopressin, renin, and cortisol responses to hemorrhage during acute blockade of cardiac nerves in conscious dogs

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1993-01-01

    The effect of acute cardiac nerve blockade (CNB) on the increases in plasma renin activity (PRA), arginine vasopressin (AVP), and cortisol in response to a 30 ml/kg hemorrhage was determined in conscious dogs (n = 9). Procaine was infused into the pericardial space to produce acute reversible CNB, or saline was infused in the control hemorrhage. Blood was removed from the inferior vena cava at a rate of 1 ml.kg-1.min-1. In the control hemorrhage, plasma AVP increased from 1.8 +/- 0.3 to 219 +/- 66 pg/ml, PRA increased from 0.63 +/- 0.20 to 3.08 +/- 0.91 ng angiotensin I (ANG I).ml-1.3 h-1, and cortisol increased from 1.4 +/- 0.2 to 4.0 +/- 0.7 micrograms/dl. When the hemorrhage was repeated during acute CNB, plasma AVP increased from 2.8 +/- 1.6 to 185 +/- 59 pg/ml, PRA increased from 0.44 +/- 0.14 to 2.24 +/- 0.27 ng ANG I.ml-1.3 h-1, and cortisol increased from 1.9 +/- 0.3 to 5.4 +/- 0.6 micrograms/dl, and none of the increases differed significantly from the responses during the control hemorrhage. Left atrial pressure fell significantly after removal of 6 ml/kg of blood, but mean arterial pressure was maintained at control levels until blood loss reached 20 ml/kg during pericardial infusion of either saline or procaine. The declines in MAP at the 30 ml/kg level of hemorrhage in both treatments were similar. These results demonstrate that acutely blocking input from cardiac receptors does not reduce the increases in plasma AVP, cortisol, and PRA in response to a 30 ml/kg hemorrhage. The results of this study do not support the hypothesis that input from cardiac receptors is required for a normal AVP response to hemorrhage and suggest that other receptors, presumably arterial baroreceptors, can stimulate AVP and cortisol secretion in the absence of signals from the heart.

  20. Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences.

    Corrêa, Cristina Ferro; de Aguiar, Lúcia Helena; Lundstedt, Lícia Maria; Moraes, Gilberto

    2007-08-01

    Digestive enzyme responses plus metabolic implications were studied in tambaqui (Colossoma macropomum) fed isoproteic diets containing 28% crude protein, 3300 kcal of gross energy/kg and different amounts of cornstarch (30, 40 and 50%). Amylase, maltase, acid protease, trypsin and chymotrypsin from the alimentary tract were assayed. Plasma, liver and white muscle metabolites were gauged to profile metabolism of the fish. The alimentary tract of tambaqui is compartmentalized morphologically and enzymatically. Amylase was present through the gut; acid protease was detected in stomach; maltase, trypsin and chymotrypsin were found in pyloric caeca and proximal and distal intestine sections. Increase of cornstarch levels from 40 to 50% in the diet resulted in an increase in amylase and maltase. Trypsin and chymotrypsin were unresponsive to starch levels. Acid protease follows the protein/carbohydrate ratio decrease. The increase of dietary cornstarch resulted in liver glycogenesis and the increase in plasma triglycerides is suggestive of lipogenesis. Digestive biochemical responses of tambaqui correlated with changes of feeding plus the analyses of metabolic profile are assumed as a tool for optimizing diet formulation and are a clue to other feeding optimizations for freshwater tropical species. PMID:17490905

  1. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke

    Drath, D.B.; Shorey, J.M.; Huber, G.L.

    1981-10-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas phase. Hexose monophosphate shunt activity was not altered by either treatment. When metabolic alterations were seen in response to the separate exposures, they were seen only after a phagocytic challenge to the macrophage and not when the cell was unchallenged. Neither whole tobacco smoke nor the gas phase had any significant effect on the ability of alveolar macrophages to phagocytize a viable challenge of Staphylococcus aureus. Our results suggest that many of the metabolic and functional effects of tobacco smoke on alveolar macrophages can be attributed to the gas-phase component of whole tobacco smoke.

  2. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke.

    Drath, D B; Shorey, J M; Huber, G L

    1981-10-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas phase. Hexose monophosphate shunt activity was not altered by either treatment. When metabolic alterations were seen in response to the separate exposures, they were seen only after a phagocytic challenge to the macrophage and not when the cell was unchallenged. Neither whole tobacco smoke nor the gas phase had any significant effect on the ability of alveolar macrophages to phagocytize a viable challenge of Staphylococcus aureus. Our results suggest that many of the metabolic and functional effects of tobacco smoke on alveolar macrophages can be attributed to the gas-phase component of whole tobacco smoke. PMID:6271676

  3. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  4. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation. PMID:26084921

  5. The acute effects of alpha and beta irradiation of mouse skin and the factors affecting the response

    Several problems regarding acute effects of alpha and beta irradiation were investigated in order to clarify protection problems of localised doses to the skin. A study into the acute biological effects of different energy beta emitters and the effects of energy and area on the response showed direct relationships between these criteria for a range of different acute responses with different time courses. Three different types of acute response were found and these are described as 'moist desquamation', 'acute ulceration' and 'acute epidermal necrosis'. An unexpected finding was that the lower energy beta emitter 170Tm was as efficient at inducing scab formation as the higher energy 90Sr sources for the same area of exposure. Experiments using 2x4 cm2 exposures to 224Cm alpha particles showed that the response to this poorly penetrating radiation was minimal after doses as high as 180 Gy measured at 10 μm into the skin. In comparison, large area exposure to 170Tm produced areas of prolonged scabbing after doses up to 100 Gy. However, the intensity of the reaction varied between strains. (author)

  6. Metabolic response to an inflammatory challenge in pigs divergently selected for residual feed intake.

    Merlot, E; Gilbert, H; Le Floc'h, N

    2016-02-01

    Selection for residual feed intake (RFI), which is used to select animals for feed efficiency, also influences nutrient partitioning between growth and maintenance functions. This study was designed to investigate if selection for reduced RFI can alter the trade-off between growth and immunity and contributes to differences in metabolic responses to an inflammatory challenge. Piglets from 2 lines divergently selected on RFI (low: RFI, = 10, and high: RFI, = 11) were challenged at 55 d of age (on d 0) with complete Freund's adjuvant (CFA) to induce a noninfectious pneumonia. Plasma haptoglobin and nutrient concentrations (in fasted state and 2 h after feeding) were determined from d -1 to d 7, and tissue protein metabolism was determined on d 8. Haptoglobin concentrations were greater from d 1 to d 7 relative to d -1 ( RFI pigs, glucose concentration was greater on d 1 than on d 3, 5, and 7 ( RFI than RFI pigs at fed state, whereas Ala and Gly were less in RFI pigs at fasted and fed states ( RFI than RFI pigs in the fasted state, whereas Asp was greater in RFI pigs in both fasted and fed states ( RFI than RFI pigs. Liver and LM proteasome did not differ between lines ( 0.1). The metabolic differences between lines were not associated with differences in feed intake, ADG between d -1 and d 8, and haptoglobin concentration ( 0.1). Thus, it seems that that, using different metabolic strategies, both lines coped similarly with the CFA challenge. Contrary to our hypothesis, this experiment showed, in young pigs, no advantage of RFI animals in response to an inflammatory challenge. PMID:27065126

  7. Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes.

    Lauren M Sparks

    Full Text Available OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D. We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control. Mitochondrial content, (14C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2 (p<0.001, isoproterenol-stimulated lipolysis (p = 0.01, triacylglycerol (TAG storage (p<0.05 and mitochondrial DNA copy number (p = 0.01 and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001. CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes.

  8. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Sriskandarajah Nadarajah

    2004-09-01

    Full Text Available Abstract Background Elevated non-esterified fatty acids (NEFA concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL, 105 and 135 days gestational age (dGA, term 147+/- 3 days. Methods The plasma concentrations of insulin, growth hormone (GH and ovine placental lactogen (oPL were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p Conclusions Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones

  9. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children.

    Chen, Long Hui; Yang, Ze Min; Chen, Wei Wen; Lin, Jing; Zhang, Min; Yang, Xiao Rong; Zhao, Ling Bo

    2015-04-14

    Salivary α-amylase (sAA) is responsible for the 'pre-digestion' of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children. PMID:25784372

  10. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Jia Li; Armstrong, Cheryl L.H.; Campbell, Wayne W.

    2016-01-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER)...

  11. Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults

    Chowdhury, E. A.; Richardson, J D; Tsintzas, K.; Thompson, D.; Betts, J A

    2015-01-01

    Background/Objectives: Breakfast omission is positively associated with obesity and increased risk of disease. However, little is known about the acute effects of extended morning fasting upon subsequent energy intake and associated metabolic/regulatory factors in obese adults. Subjects/Methods: In a randomised cross-over design, 24 obese men (n=8) and women (n=16) extended their overnight fast by omitting breakfast consumption or ingesting a typical carbohydrate-rich breakfast of 2183±393 kJ...

  12. The onset of the progression of acute phase response mechanisms induced by extreme impacts can be followed by the decrease in blood levels of positive acute phase proteins.

    Larina, Olga; Bekker, Anna

    Studies performed at space flights and earth-based simulation models detected the plasma indices of acute phase reaction (APR), i.e. the increase of APR cytokine mediators and alterations in the production of blood acute phase proteins (APP) at the initial stages of adaptation to altered gravity conditions. Acute phase response is the principal constituent of the functional activity of innate immunity system. Changes in plasma APPs contents are considered to serve the restoration of homeostasis state. According to trends of their concentration shifts at the evolving of acute phase reaction APPs are denoted as positive, neutral, or negative. Plasma concentrations of positive acute phase proteins α1-acid glycoprotein (α1-AGP), α1-antitrypsin (α1-AT), and neutral α2-macroglobulin (α2-M) were measured in human study at 12-hour antiorthostatic position (AOP) with 15° head down tilt and hypoxia experiments at 14% oxygen in pressure chamber. Both of these impacts were shown to produce alterations in the APP levels indicative for acute phase response. Nevertheless, in AOP experiment noticeable decrease in α1-AGP concentration occurred by hour 12, and even more pronounced decline of α1-AGP and α1-AT were found on hypoxia hours 12 and 36. Acute phase proteins α1-AGP and α2-M possess the features of proteinase inhibitors. This function is implemented by the formation of complexes with the molecules of proteolytic enzymes which subsequently are removed from the blood flow. Transient decrease in plasma concentrations of protease inhibitors on early phases of APR development was reported to result from the growth of plasma protease activity due to cathepsin release from activated leukocytes, which had not yet been compensated by enhanced APP synthesis. Being a carrier protein for positively charged and neutral substances, α1-AGP shows pronounced elevation in its blood content during APR development. As assumed, it is required for the transportation of the increased

  13. Effects of substrate availability and acute ischemia on regional myocardial metabolism demonstrated noninvasively with F-18 deoxyglucose, C-11 palmitic acid and positron computed tomography

    The results indicate that both, F-18 deoxyglucose and C-11 palmitic acid accurately trace different aspects of myocardial metabolism and their changes induced by altered substrate availability and by reduced oxygen supply. Through the pattern of tissue clearance of C-11 palmitic acid, the metabolic fate of Free fatty acids (FFA) can be assessed. Size and turnover rate of the early phase indicate the fraction of C-11 palmitic acid entering immediate oxidation and the rate of oxidation, yet the absence of such a phase does not indicate a metabolic abnormality but merely a shift in myocardial sustrate utilization from FFA to glucose or lactic acid. The normal variability is no longer present when oxygen supply is limited as for example in acute ischemia and this restriction in substrate utilization can be demonstrated with positron computed tomography (PCT). Not only is FFA uptake reduced in proportion to blood flow, but the fraction entering the oxidative pool and its turnover rate are depressed. The regional shift to glucose utilization in acute ischemia is also demonstrated noninvasively by FDG uptake in excess of blood flow and oxygen supply. These studies from the basis for evaluating alternate substrate utilization and tissue viability in myocardial disease

  14. Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures

    Proctor Richard A

    2009-04-01

    Full Text Available Abstract Background Previous evaluation by different molecular and physiological assays of Staphylococcus aureus (S. aureus responses to heat shock exposure yielded a still fragmentary view of the mechanisms determining bacterial survival or death at supra-physiological temperatures. This study analyzed diverse facets of S. aureus heat-shock adjustment by recording global transcriptomic and metabolic responses of bacterial cultures shifted for 10 min from 37°C to a sub-lethal (43°C or eventually lethal (48°C temperature. A relevant metabolic model of the combined action of specific stress response mechanisms with more general, energy-regulating metabolic pathways in heat-shocked S. aureus is presented. Results While S. aureus cultures shifted to 43°C or left at 37°C showed marginal differences in growth and survival rates, bacterial cultures exposed to 48°C showed a rapid growth arrest followed by a subsequent decline in viable counts. The most substantial heat shock-induced changes at both 43°C and 48°C occurred in transcript levels of HrcA- and CtsR-regulated genes, encoding classical chaperones DnaK and GroESL, and some Hsp100/Clp ATPases components, respectively. Other metabolic pathways up-regulated by S. aureus exposure at 48°C included genes encoding several enzymes coping with oxidative stress, and DNA damage, or/and impaired osmotic balance. Some major components of the pentose phosphate cycle and gluconeogenesis were also up-regulated, which reflected depletion of free glucose by bacterial cultures grown in Mueller-Hinton broth prior to heat shock. In contrast, most purine- and pyrimidine-synthesis pathway components and amino acyl-tRNA synthetases were down-regulated at 48°C, as well as arginine deiminase and major fermentative pathway components, such as alcohol, lactate and formate dehydrogenases. Despite the heat-induced, increased requirements for ATP-dependent macromolecular repair mechanisms combined with declining

  15. Variations in insulin responsiveness in rat fat cells are due to metabolic differences rather than insulin binding

    Hansen, Finn Mølgård; Nilsson, Poul; Sonne, Ole;

    1983-01-01

    Insulin resistance was studied by comparing insulin response and insulin binding in four groups of rats. Glucose metabolism in isolated fat cells from male Wistar rats weighing 340 g was less responsive to a supramaximal dose of insulin than glucose metabolism in fat cells from rats weighing 200 g...... to fat cells. Insulin binding was not correlated to the plasma insulin level which however was reflected in the lipoprotein lipase activity in the adipose tissue. In conclusion, these results indicate that variations in insulin responsiveness in fat cells are due to alterations in cellular metabolism....... Induction of streptozotocin-diabetes in rats weighing 200 g resulted in a marked decrease in the insulin responsiveness of fat cells. Ventromedial hypothalamic lesions of 340 g rats had the opposite effect and restored the insulin responsiveness of fat cells. The responsiveness in the four groups was...

  16. Interneurons contribute to the hemodynamic/metabolic response to epileptiform discharges.

    Saillet, Sandrine; Quilichini, Pascale P; Ghestem, Antoine; Giusiano, Bernard; Ivanov, Anton I; Hitziger, Sebastian; Vanzetta, Ivo; Bernard, Christophe; Bénar, Christian-G

    2016-03-01

    Interpretation of hemodynamic responses in epilepsy is hampered by an incomplete understanding of the underlying neurovascular coupling, especially the contributions of excitation and inhibition. We made simultaneous multimodal recordings of local field potentials (LFPs), firing of individual neurons, blood flow, and oxygen level in the somatosensory cortex of anesthetized rats. Epileptiform discharges induced by bicuculline injections were used to trigger large local events. LFP and blood flow were robustly coupled, as were LFP and tissue oxygen. In a parametric linear model, LFP and the baseline activities of cerebral blood flow and tissue partial oxygen tension contributed significantly to blood flow and oxygen responses. In an analysis of recordings from 402 neurons, blood flow/tissue oxygen correlated with the discharge of putative interneurons but not of principal cells. Our results show that interneuron activity is important in the vascular and metabolic responses during epileptiform discharges. PMID:26745250

  17. N-terminal pro-atrial natriuretic peptide response to acute exercise in depressed patients and healthy controls

    Krogh, Jesper; Ströhle, Andreas; Westrin, Asa; Klausen, Tobias; Jørgensen, Martin Balslev; Nordentoft, Merete

    that patients with depression would have an attenuated N-terminal proANP (NT-proANP) response to acute exercise compared to healthy controls. Secondly, we aimed to assess the effect of antidepressants on NT-proANP response to acute exercise. METHODS: We examined 132 outpatients with mild to moderate...... depression (ICD-10) and 44 healthy controls, group matched for age, sex, and BMI. We used an incremental bicycle ergometer test as a physical stressor. Blood samples were drawn at rest, at exhaustion, and 15, 30, and 60min post-exercise. RESULTS: The NT-proANP response to physical exercise differed between...

  18. Study on Blood Cell Immune Response in Water Buffaloes Infected Acutely with F. hepatica

    CHEN Long; MAO Xin-zhi; WANG Bing-yun; Award Daugschies; J. Gonzalez-Gallego

    2002-01-01

    Action mechanism of blood cell immune response in water buffaloes against acute infection with F. Hepatica was studied. The results showed that after water buffaloes were infected, the total levels of WBC surpassed control group during whole infection period; Eosinophiles (%) of DC were higher than control group at the 2nd week until 19th week, and then dropped and was close to control group; Neutrophiles(%)was low or significantly lower than control group within the 5 - 16th weeks; The total levels of lymphocytes (%) was lower than control group during the whole infection period; T-lymphocytes (%) dropped significantly, but B-lymphocytes(%) had opposite changes from the first week of infection, and they were close to the control group after 11 weeks; RBC-CR1 and RBC-IC rosette rates dropped and rose during 2 - 16 and 2- 18 weeks, respectively, and then approached the same between both groups. It was suggested that the violent changes of specific and nonspecific immune responses in water buffaloes with acute F. hepatica infection are related with the mechanism against infection with F. hepatica together.

  19. Semiquantitative dynamic computed tomography to predict response to anti-platelet therapy in acute cerebral infarction

    Chokyu, K.; Shimizu, K. [Department of Neurosurgery, Kochi Medical School, Kohasu (Japan); Fukumoto, M. [Department of Radiology, Kochi Medical School (Japan); Mori, T. [Department of Stroke Treatment, Shonan Kamakura General Hospital, Kanagawa (Japan); Mokudai, T.; Mori, K. [Mominoki Hospital, Kochi (Japan)

    2002-04-01

    We investigated whether dynamic computed tomography (CT) in patients with acute cerebral infarction could identify patients likely to respond to anti-platelet therapy. Seventy patients underwent semiquantitative dynamic CT within 6 h as well as cerebral angiography. All then received anti-platelet therapy with a thromboxane A2 synthetase inhibitor. Peak value (pv) and time-to-peak (tp) (time-density curves) for the Sylvian fissure were extracted from dynamic CT data and standardizing interpatient data, two indices, PV/TP index and TP index, were prepared following a standard semiquantitative manner. Both PV/TP index and TP index were effective in discriminating between 48 responders (modified Rankin scale (mRS): 0 to 2) and 22 non-responders (mRS: 3 to 5, or death: 6; both P<0.0001). High PV/TP index ({>=}0.8) was a strong indicator of favorable response. Most of these patients maintained regional cerebral blood flow (rCBF) via anterograde flow or collaterals, with a TP index {<=}1.1. Low PV/TP index ({<=}0.4) predicted non-response associated with increased TP index (>1.1) and non-compensated rCBF. Intermediate PV/TP values could not predict outcome. Dynamic CT prior to therapy can identify patients with acute cerebral infarction who are treatable with anti-platelet therapy alone. (orig.)

  20. Tail biting induces a strong acute phase response and tail-end inflammation in finishing pigs.

    Heinonen, Mari; Orro, Toomas; Kokkonen, Teija; Munsterhjelm, Camilla; Peltoniemi, Olli; Valros, Anna

    2010-06-01

    The extent of inflammation associated with tail biting in finishing pigs was evaluated. Tail histopathology, carcass condemnation and the concentration of three acute phase proteins (APPs), C-reactive protein (CRP), serum amyloid-A (SAA) and haptoglobin (Hp), were examined in 12 tail-bitten and 13 control pigs. The median concentrations of APPs were higher (Ppigs (CRP 65.7mg/L, 28.4-180.4; SAA 6.2mg/L, 6.2-21.4; Hp 1.2g/L, 0.9-1.5). There was a tendency for APP concentrations to rise with the histopathological score but the differences were only statistically significant between some of the scores. Five (42%) bitten cases and one (8%) control pig had partial carcass condemnations owing to abscesses (P=0.07). The results show that tail biting induces an inflammatory response in the tail end leading to an acute phase response and formation of carcass abscesses. PMID:19398209

  1. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study

    Felix Kaspar

    2016-01-01

    Full Text Available Objective. This study compared acute and late effect of single-bout endurance training (ET and high-intensity interval training (HIIT on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL, IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1, insulin growth factor 1 (IGF-1, and C-reactive protein (CRP. Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p=0.047 and a decrease of MCP-1 (−17.9%; p=0.03. Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.

  2. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study.

    Kaspar, Felix; Jelinek, Herbert F; Perkins, Steven; Al-Aubaidy, Hayder A; deJong, Bev; Butkowski, Eugene

    2016-01-01

    Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (-20%; p = 0.047) and a decrease of MCP-1 (-17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis. PMID:27212809

  3. Cortico-limbic-striatal contribution after response and reversal learning: a metabolic mapping study.

    Fidalgo, Camino; Conejo, N M; González-Pardo, Héctor; Arias, J L

    2011-01-12

    Learning of arbitrary stimulus-response associations is an adaptive behavior essential for species survival in an ever-changing environment. Particular subdivisions of the striatum have been shown to be critical for both motor-response learning and reversal learning. However, recent evidence suggests that different cortical and subcortical brain regions may be involved in response learning, a kind of learning more complex than previously thought. In fact, many brain regions subserving response learning seem to be also related to reversal learning, traditionally ascribed to the prefrontal cortex. The present study examined the role of different subdivisions of the rat prefrontal cortex, striatum, amygdala and the ventral tegmental area on both response and reversal learning evaluated in the water T-maze. Increased neuronal metabolic activity, as measured by cytochrome oxidase (CO) histochemistry, was found in most brain regions after training rats in a response learning task as compared to yoked controls. Reversal learning was associated with a return to baseline CO activity levels except for the orbitofrontal cortex and the ventral tegmental area. Analysis of functional connectivity among brain regions showed significant correlations in CO activity between particular cortical and striatal subdivisions in the reversal learning group. These findings suggest that the interaction of specific frontal and subcortical regions is required for reversal but not for response learning. However, our findings support the involvement of a cortico-limbic-striatal circuit in both types of learning. PMID:21036158

  4. The inflammatory response in blood and in remote organs following acute kidney injury

    Brøchner, Anne Craveiro; Dagnaes-Hansen, Frederik; Højberg-Holm, Jimmy;

    2014-01-01

    In patients with acute kidney injury (AKI) mortality remains high, despite the fact that the patients are treated with continuous renal replacement therapy. The interaction between the kidney and the immune system might explain the high mortality observed in AKI. In order to elucidate the...... interaction between the kidney and immune system we developed a two-hit model of AKI and endotoxemia. Our hypothesis was that ischemia/reperfusion (I/R) of the kidney simultaneously with endotoxemia would generate a more extensive inflammatory response compared to I/R of the hind legs. Our expectation was....... The neutrophil infiltration of distant organs measured by the levels of MPO in the lung and liver also showed a significantly higher level in renal I/R compared to hind leg I/R. Renal I/R is associated with a more pronounced inflammatory response in blood and distant organs. The high cytokine levels...

  5. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis

    Kjølhede, T; Dalgas, U; Gade, A B;

    2016-01-01

    Exercise is a well-established part of rehabilitation for people with multiple sclerosis (PwMS), and it has been hypothesized to stimulate an anti-inflammatory environment that might be disease modifying. Yet, investigations on exercise-induced immune responses are scarce and generally not paying...... attention to the medical treatments of the patient. At present, PwMS are routinely enrolled in immunosuppressive medication, but exercise-induced immunomodulatory effects have not been investigated under these circumstances. The objective of this study was to investigate the acute and chronic cytokines...... responses to resistance exercise training in medicated PwMS. Thirty-five people with relapsing-remitting multiple sclerosis (MS) treated with interferon (IFN)-β, were randomized to a 24-week progressive resistance training (PRT) or control group. Plasma interleukin (IL)-1β, IL-4, IL-10, IL-17F, IL-23, tumor...

  6. Full-breadth analysis of CD8+ T-cell responses in acute hepatitis C virus infection and early therapy.

    Lauer, Georg M; Lucas, Michaela; Timm, Joerg; Ouchi, Kei; Kim, Arthur Y; Day, Cheryl L; Schulze Zur Wiesch, Julian; Paranhos-Baccala, Glaucia; Sheridan, Isabelle; Casson, Deborah R; Reiser, Markus; Gandhi, Rajesh T; Li, Bin; Allen, Todd M; Chung, Raymond T; Klenerman, Paul; Walker, Bruce D

    2005-10-01

    Multispecific CD8(+) T-cell responses are thought to be important for the control of acute hepatitis C virus (HCV) infection, but to date little information is actually available on the breadth of responses at early time points. Additionally, the influence of early therapy on these responses and their relationships to outcome are controversial. To investigate this issue, we performed comprehensive analysis of the breadth and frequencies of virus-specific CD8(+) T-cell responses on the single epitope level in eight acutely infected individuals who were all started on early therapy. During the acute phase, responses against up to five peptides were identified. During therapy, CD8(+) T-cell responses decreased rather than increased as virus was controlled, and no new specificities emerged. A sustained virological response following completion of treatment was independent of CD8(+) T-cell responses, as well as CD4(+) T-cell responses. Rapid recrudescence also occurred despite broad CD8(+) T-cell responses. Importantly, in vivo suppression of CD3(+) T cells using OKT3 in one subject did not result in recurrence of viremia. These data suggest that broad CD8(+) T-cell responses alone may be insufficient to contain HCV replication, and also that early therapy is effective independent of such responses. PMID:16189000

  7. Effect of Acetazolamide and Gingko Biloba on the Human Pulmonary Vascular Response to an Acute Altitude Ascent

    Ke, Tao; Wang, Jiye; Swenson, Erik R; Zhang, Xiangnan; Hu, Yunlong; Chen, Yaoming; Liu, Mingchao; Zhang, Wenbin; Zhao, Feng; Shen, Xuefeng; Yang, Qun; Chen, Jingyuan; Luo, Wenjing

    2013-01-01

    Ke, Tao, Jiye Wang, Erik R. Swenson, Xiangnan Zhang, Yunlong Hu, Yaoming Chen, Mingchao Liu, Wenbin Zhang, Feng Zhao, Xuefeng Shen, Qun Yang, Jingyuan Chen, and Wenjing Luo. Effect of acetazolamide and gingko biloba on the human pulmonary vascular response to an acute altitude ascent. High Alt Med Biol 14:162–167, 2013.—Acetazolamide and gingko biloba are the two most investigated drugs for the prevention of acute mountain sickness (AMS). Evidence suggests that they may also reduce pulmonary ...

  8. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  9. Placebo response in antipsychotic trials of patients with acute mania : Results of an individual patient data meta-analysis

    Welten, C C M; Koeter, M W J; Wohlfarth, T; Storosum, J G; van den Brink, W; Gispen-de Wied, C C; Leufkens, H G M; Denys, D A J P

    2015-01-01

    We examined the role of placebo response in acute mania trials. Specifically, whether placebo response: (1) predicts treatment effect, (2) can be predicted by patient and study characteristics, and (3) can be predicted by a parsimonious model. We performed a meta-analysis of individual patient data

  10. Botanical and biological pesticides elicit a similar Induced Systemic Response in tomato (Solanum lycopersicum) secondary metabolism.

    Pretali, Luca; Bernardo, Letizia; Butterfield, Timothy S; Trevisan, Marco; Lucini, Luigi

    2016-10-01

    Natural pesticides have attracted substantial interest due to the increase in organic agriculture and enhanced attention to environmental pollution. Plant Growth Promoting Bacteria (PGPB) are applied for both disease control and growth enhancement; PGPBs are known to elicit Induced Systemic Response (ISR) in plants. However, less is known about the effect of botanical pesticides, such as the azadirachtin-containing neem extracts, on plant metabolism. This study aimed to investigate the effects of foliar application of the above-mentioned natural pesticides on the metabolic profiling of tomato. Leaf application of Bacillus subtilis fostered Induced Systemic Resistance (ISR) in treated plants via the Jasmonic acid pathway, and enhanced production of secondary metabolites such as flavonoids, phytoalexins and auxins. Changes in sterols and terpenes, as well as an increase in glucosinolates were also observed. Interestingly, azadirachtin-treated tomatoes also showed an increase in ISR and our results revealed that most of the enriched metabolites are shared with a B. subtilis treatment, suggesting conserved biochemical responses. These (un)expected findings indicate that plants are not insensitive to application of natural pesticide and while Azadirachtin is applied as a direct pesticide, it also stimulates a defense response in tomatoes very similar to B. subtilis induced ISR. PMID:27251587

  11. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  12. Metabolic responses of clam Ruditapes philippinarum exposed to its pathogen Vibrio tapetis in relation to diet.

    Richard, Gaëlle; Guérard, Fabienne; Corporeau, Charlotte; Lambert, Christophe; Paillard, Christine; Pernet, Fabrice

    2016-07-01

    We investigated the effect of brown ring disease (BRD) development and algal diet on energy reserves and activity of enzymes related to energy metabolism, antioxidant system and immunity in Manila clam, Ruditapes philippinarum. We found that algal diet did not impact the metabolic response of clams exposed to Vibrio tapetis. At two days post-injection (dpi), activities of superoxide dismutase and glutathione peroxidase (GPx) decreased whereas activities of nitric oxide synthase (iNOS) and catalase increased in infected clams, although no clinical signs were visible (BRD-). At 7 dpi, activities of several antioxidant and immune-related enzymes were markedly increased in BRD-likely indicating an efficient reactive oxygen species (ROS) scavenging compared to animals which developed clinical signs of BRD (BRD+). Therefore, resistance to BRD clinical signs appearance was associated with higher detoxification of ROS and enhancement of immune response. This study provides new biochemical indicators of disease resistance and a more comprehensive view of the global antioxidant response of clam to BRD development. PMID:26921670

  13. Metabolic response to subacute and subchronic iron overload in a rat model.

    Adham, Khadiga G; Farhood, Manal H; Daghestani, Maha H; Aleisa, Nadia A; Alkhalifa, Ahlam A; El Amin, Maha H; Virk, Promy; Al-Obeid, Mai A; Al-Humaidhi, Eman M H

    2015-12-01

    One of the common causes of iron overload is excessive iron intake in cases of iron-poor anemia, where iron saccharate complex (ISC) is routinely used to optimize erythropoiesis. However, non-standardized ISC administration could entail the risk of iron overload. To induce iron overload, Wistar rats were intraperitoneally injected with subacute (0.2 mg kg⁻¹) and subchronic (0.1 mg kg⁻¹) overdoses of ISC for 2 and 4 weeks, respectively. Iron status was displayed by an increase in transferrin saturation (up to 332%) and serum and liver iron burden (up to 19.3 μmol L⁻¹ and 13.2 μmol g⁻¹ wet tissue, respectively) together with a drop in total and unsaturated iron binding capacities "TIBC, UIBC" as surrogate markers of transferrin activity. Iron-induced leukocytosis (up to 140%), along with the decline in serum transferrin markers (up to 43%), respectively, mark positive and negative acute phase reactions. Chemical stress was demonstrated by a significant rise (p > 0.05) in indices of the hemogram (erythrocytes, hemoglobin, hematocrit, leukocytes) and stress metabolites [corticosterone (CORT) and lactate]. Yet, potential causes of the unexpected decline in serum activities of ALT, AST and LDH (p > 0.05) might include decreased hepatocellular enzyme production and/or inhibition or reduction of the enzyme activities. The current findings highlight the toxic role of elevated serum and liver iron in initiating erythropoiesis and acute phase reactions, modifying iron status and animal organ function, changing energy metabolism and bringing about accelerated glycolysis and impaired lactate clearance supposedly by decreasing anaerobic threshold and causing premature entering to the anaerobic system. PMID:26616369

  14. Dynamics of uptake and metabolism of small molecules in cellular response systems.

    Maria Werner

    Full Text Available BACKGROUND: Proper cellular function requires uptake of small molecules from the environment. In response to changes in extracellular conditions cells alter the import and utilization of small molecules. For a wide variety of small molecules the cellular response is regulated by a network motif that combines two feedback loops, one which regulates the transport and the other which regulates the subsequent metabolism. RESULTS: We analyze the dynamic behavior of two widespread but logically distinct two-loop motifs. These motifs differ in the logic of the feedback loop regulating the uptake of the small molecule. Our aim is to examine the qualitative features of the dynamics of these two classes of feedback motifs. We find that the negative feedback to transport is accompanied by overshoot in the intracellular amount of small molecules, whereas a positive feedback to transport removes overshoot by boosting the final steady state level. On the other hand, the negative feedback allows for a rapid initial response, whereas the positive feedback is slower. We also illustrate how the dynamical deficiencies of one feedback motif can be mitigated by an additional loop, while maintaining the original steady-state properties. CONCLUSIONS: Our analysis emphasizes the core of the regulation found in many motifs at the interface between the metabolic network and the environment of the cell. By simplifying the regulation into uptake and the first metabolic step, we provide a basis for elaborate studies of more realistic network structures. Particularly, this theoretical analysis predicts that FeS cluster formation plays an important role in the dynamics of iron homeostasis.

  15. Highly sensitive C-reactive protein and male gender are independently related to the severity of coronary disease in patients with metabolic syndrome and an acute coronary event

    C.M.C. Monteiro

    2010-03-01

    Full Text Available Patients with metabolic syndrome are at high-risk for development of atherosclerosis and cardiovascular events. The objective of this study was to examine the major determinants of coronary disease severity, including those coronary risk factors associated with metabolic syndrome, during the early period after an acute coronary episode. We tested the hypothesis that inflammatory markers, especially highly sensitive C-reactive protein (hsCRP, are related to coronary atherosclerosis, in addition to traditional coronary risk factors. Subjects of both genders aged 30 to 75 years (N = 116 were prospectively included if they had suffered a recent acute coronary syndrome (acute myocardial infarction or unstable angina pectoris requiring hospitalization and if they had metabolic syndrome diagnosed according to the National Cholesterol Education Program/Adult Treatment Panel III. Patients were submitted to a coronary angiography and the burden of atherosclerosis was estimated by the Gensini score. The severity of coronary disease was correlated (Spearman’s or Pearson’s coefficient with gender (r = 0.291, P = 0.008, age (r = 0.218, P = 0.048, hsCRP (r = 0.256, P = 0.020, ApoB/ApoA ratio (r = 0.233, P = 0.041, and carotid intima-media thickness (r = 0.236, P = 0.041. After multiple linear regression, only male gender (P = 0.046 and hsCRP (P = 0.012 remained independently associated with the Gensini score. In this high-risk population, male gender and high levels of hsCRP, two variables that can be easily obtained, were associated with more extensive coronary disease, identifying patients with the highest potential of developing new coronary events.

  16. Growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus Selenka during periods of inactivity

    Du, Rongbin; Zang, Yuanqi; Tian, Xiangli; Dong, Shuanglin

    2013-03-01

    The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), and content of heat shock protein 70 (Hsp70) in the body wall and coelomic fluid of A. japonicus were measured during starvation, experimental aestivation and aestivation. The results showed that the body weight of sea cucumber in the three treatments decreased significantly during the experimental period ( P japonicus is complex and may not be attributed to the elevated temperature only.

  17. Sex differences in renal and metabolic responses to a high-fructose diet in mice

    Sharma, Nikhil; Li, Lijun; Ecelbarger, C. M.

    2014-01-01

    High fructose intake has been associated with increased incidences of renal disease and hypertension, among other pathologies. Most fructose is cleared by the portal system and metabolized in the liver; however, systemic levels of fructose can rise with increased consumption. We tested whether there were sex differences in the renal responses to a high-fructose diet in mice. Two-month-old male and female C57BL6/129/SV mice (n = 6 mice per sex per treatment) were randomized to receive control ...

  18. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs

    Le Naou, Thierry; Le Floc'H, Nathalie; Louveau, Isabelle; Gilbert, Hélène

    2012-01-01

    Previous selection experiments using residual feed intake (RFI) to select pigs with a high feed efficiency have reported that a low RFI was associated with a reduced body fat content and a greater muscle glycogen content. In the current study, growing Large White female piglets from 2 lines divergently selected for RFI were used to determine the changes in energy and protein metabolisms in key tissues and their cross talks in response to selection. Pigs of low RFI (RFI(-); n = 26) or high RFI...

  19. Response of Biochemical Markers of Bone Metabolism to Exercise Intensity in Thoroughbred Horses

    INOUE, Yoshinobu; MATSUI, Akira; Asai, Yo; AOKI, Fumiki; YOSHIMOTO, Kenji; MATSUI, Tohru; Yano, Hideo

    2009-01-01

    We studied the response of biochemical markers of bone metabolism to exercise intensity in horses. Four horses were walked on a mechanical walker for one week (pre-exercise). Then they performed low-speed exercise on a high-speed treadmill in the first week and medium-speed exercise in the second week and high-speed exercise in the third week of training. We measured two indices of bone resorption, serum hydroxyproline concentration and the urinary deoxypyridinoline/creatinine ratio, and seru...

  20. Induced Expression of Drug Metabolizing Enzymes by Preventive Agents: Role of the Antioxidant Response Element

    Lubet, Ronald A; Yao, Ruisheng; Grubbs, Clinton J; You, Ming; Wang, Yian

    2009-01-01

    Identifying agents that block tumor initiation is a goal of cancer prevention. The ability of a chemically varied group of agents to induce various drug metabolizing genes in livers of rats was examined. Sprague-Dawley rats were treated for seven days with various agents in the diet or by gavage. The agents examined, which might be expected to respond via specific nuclear receptors (CAR, AhR) as well as antioxidant response elements (AREs), included Phase I/II inducers [5,6 benzoflavone (BF, ...

  1. Acute effect of rosiglitazone on relaxation responses in hypercholesterolemic corpus cavernosum.

    Akdag, H; Murat, N; Evcim, S; Esen, A; Gidener, S

    2016-05-01

    Thiazolidinediones (TZDs) improve vascular endothelial dysfunction through non-genomic effects of peroxisomal proliferator-activated receptor γ. This study investigated the acute effect of one of the TZD, rosiglitazone, on endothelium-dependent relaxation response of corpus cavernosum (CC) in hypercholesterolemic rabbits. New Zealand rabbits were divided into two groups randomly as control and cholesterol groups. Hypercholesterolemia was induced by feeding rabbits with 2% cholesterol diet (w/w) for 6 weeks. Endothelium-dependent and -independent relaxation response of CC were evaluated in the presence of rosiglitazone by organ bath studies with cumulative doses of acetylcholine (Ach) and sodium nitroprusside (SNP). Maximal relaxation (Emax) response to Ach significantly decreased owing to hypercholesterolemia in CC tissues. However, in vitro incubation of rosiglitazone with different concentrations (0.1, 1 and 10 μm) did not improve the Ach-dependent Emax responses in hypercholesterolemic rabbit CC. Surprisingly, rosiglitazone caused a significant decrease in Ach-dependent relaxation in healthy CC. Emax responses to SNP did not differ in the presence of rosiglitazone in both the control and hypercholesterolemic groups. Rosiglitazone does not improve hypercholesterolemia-induced endothelial dysfunction in CC tissues while it dose-dependently impairs endothelium-dependent relaxation in healthy CC tissue. PMID:27030054

  2. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  3. Acute Phase Response, Inflammation and Metabolic Syndrome Biomarkers of Libby Asbestos Exposure

    Background: Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. Objective: We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help ...

  4. Acute Phase Response and Metabolic Syndrome Biomarkers of Libby Asbestos Exposure

    Identification of biomarkers assists in the disease diagnosis and environmental health risk assessment. Exposure to Libby amphibole (LA) has been associated with increased cardiovascular mortality. We hypothesized that rats exposed to LA would present a unique serum proteomic pro...

  5. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  6. White Blood Cell Count to Mean Platelet Volume Ratio Is a Prognostic Factor in Patients with Non-ST Elevation Acute Coronary Syndrome with or without Metabolic Syndrome

    Dehghani, Mohammad Reza; Rezaei, Yousef; Fakour, Sanam; Arjmand, Nasim

    2016-01-01

    Background and Objectives Leukocyte and platelet have been found to be associated with metabolic syndrome (MetS). We aimed to determine the usefulness of a novel marker named white blood cell count to mean platelet volume ratio (WMR) for predicting outcomes of non-ST elevation acute coronary syndrome (NSTE-ACS) with or without MetS. Subjects and Methods A total of 331 NSTE-ACS individuals (60±12.5 years, 57.4% male) were enrolled and followed for a median of 24 months. MetS was identified usi...

  7. Aquatic metabolism response to the hydrologic alteration in the Yellow River estuary, China

    Shen, Xiaomei; Sun, Tao; Liu, Fangfang; Xu, Jing; Pang, Aiping

    2015-06-01

    Successful artificial hydrologic regulation and environmental flow assessments for the ecosystem protection require an accurate understanding of the linkages between flow events and biotic responses. To explore an ecosystem's functional responses to hydrologic alterations, we analysed spatial and temporal variations in aquatic metabolism and the main factors influenced by artificial hydrologic alterations based on the data collected from 2009 to 2012 in the Yellow River estuary, China. Gross primary production (GPP) ranged from 0.002 to 8.488 mg O2 L-1 d-1. Ecosystem respiration (ER) ranged from 0.382 to 8.968 mg O2 L-1 d-1. Net ecosystem production (NEP) ranged from -5.792 to 7.293 mg O2 L-1 d-1 and the mean of NEP was -0.506 mg O2 L-1 d-1, which means that the trophic status of entire estuary was near to balance. The results showed that seasonal variations in the aquatic metabolism are influenced by the hydrologic alteration in the estuary. High water temperature and solar radiation in summer are associated with low turbidity and consequently high rates of GPP and ER, making the estuary net autotrophic in summer, and that also occurred after water-sediment regulation in August. Turbidity and water temperature were identified as two particularly important factors that influenced the variation in the metabolic balance. As a result, metabolism rate did not decrease but increased after the regulation. ER increased significantly in summer and autumn and reached a maximum after the water-sediment regulation in September. GPP and NEP reached a maximum value after the water-sediment regulation in August, and then decreased in autumn. Estuarine ecosystem shifted from net heterotrophy in spring to net autotrophy in summer, and then to net heterotrophy in autumn. Our study indicated that estuarine metabolism may recover to a high level faster in summer than that in other seasons after the short-term water-sediment regulation due to higher water temperature and nutrients.

  8. Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment.

    Craig E Nelson

    Full Text Available Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient

  9. Metabolic Response of Dungeness Crab Larvae Exposed to Elevated CO2 and Hypoxia

    Nichols, Z.; Busch, S.; McElhany, P.

    2015-12-01

    Ocean acidification (OA) and deoxygenation, both resulting from rising atmospheric CO2 levels, are lowering the pH and oxygen levels of global oceans. Assessing the impacts of OA and deoxygenation on harvested species is crucial for guiding resource management with the aim of maintaining healthy and sustainable populations. The Dungeness crab, Cancer magister, is an important species ecologically and economically for the US West Coast. Crabs transition through four main stages: zoea, megalopa, juvenile, and adult. Each stage results in a different morphology and behavior, and as a result, is exposed to various environmental parameters, such as pH and dissolved oxygen (DO). The first two stages exhibit diel vertical migration while the final stages are benthic. Our study focused on the megalopae stage and their metabolic response to OA and hypoxia. We exposed wild-caught megalopae to a pH x DO cross, producing treatment waters with combinations of low or high pH and O2, all maintained at 12˚C. Closed-chamber respirometry was used to compare standard metabolic rates in a common garden setting with high pH/high DO conditions. We predict that the megalopae exposed to the low pH/high DO treatment will have a higher metabolic rate than those exposed to the high pH/high DO treatment. This may be a result of homeostatic processes increasing to return the megalopae's internal pH back to equilibrium. We predict that the high pH/low DO treatment will cause a decrease in metabolism when compared to the high pH/high DO treatment due to the megalopae conserving oxygen in a limiting environment. If results support our hypothesis, they would suggest that OA and hypoxia affects Dungeness crabs in sublethal ways.

  10. Effect of fasting on the metabolic response of liver to experimental burn injury.

    Mehmet A Orman

    Full Text Available Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid

  11. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk.

    Cathy Slack

    2010-03-01

    Full Text Available Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF-1 signaling (IIS pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the

  12. Ventilatory response in metabolic acidosis and cerebral blood volume in humans.

    Ven, M.T.P. van de; Colier, W.N.J.M.; Sluijs, M.C. van der; Oeseburg, B.; Folgering, H.T.M.

    2001-01-01

    The relationship between alterations in cerebral blood volume (CBV) and central chemosensitivity regulation was studied under neutral metabolic conditions and during metabolic acidosis. Fifteen healthy subjects (5610 years) were investigated. To induce metabolic acidosis, ammonium chloride (NH(4)Cl)

  13. Renal Handling of Sclerostin in Response to Acute Glomerular Filtration Decline.

    Kakareko, K; Rydzewska-Rosolowska, A; Brzosko, S; Gozdzikiewicz-Lapinska, J; Koc-Zorawska, E; Samocik, P; Kozlowski, R; Mysliwiec, M; Naumnik, B; Hryszko, T

    2016-07-01

    Deterioration of glomerular filtration rate (GFR) is associated with alterations of bone metabolism. It translates clinically to bone fragility and increased fractures rate among patients with impaired GFR. Recently, sclerostin (SCL) gained much attention as an important factor in pathogenesis of mineral and bone disturbances in patients with renal diseases. There is no data about SCL behaviour in patients with acute GFR decline. The aim of this study was to evaluate the renal handling of SCL. This is a prospective, single-centre observational study in patients undergoing nephrectomy due to urological indications. Serum and urinary SCL levels were measured prior and after nephrectomy. 25 patients were enrolled. After surgery, eGFR significantly declined (from 87.4±19.7 to 67.7±25.7 ml/min/1.73 m(2), presults suggest that increased serum SCL concentrations at moderately reduced GFR are not due to diminished renal clearance. At more severely decreased GFR, elevated SCL concentration results from both increased production and reduced renal elimination. PMID:27214309

  14. Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol

    Laloy, J., E-mail: julie.laloy@unamur.be [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Lozano, O. [University of Namur (UNamur), Research Centre in Physics of Matter and Radiation (PMR), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium); Alpan, L.; Masereel, B. [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Toussaint, O. [University of Namur (UNamur), Laboratory of Cellular Biochemistry and Biology (URBC), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium); Dogné, J. M. [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Lucas, S. [University of Namur (UNamur), Research Centre in Physics of Matter and Radiation (PMR), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium)

    2015-08-15

    Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.

  15. The Effect of Oxandrolone on the Endocrinologic, Inflammatory, and Hypermetabolic Responses During the Acute Phase Postburn

    Jeschke, Marc G.; Finnerty, Celeste C.; Suman, Oscar E.; Kulp, Gabriela; Mlcak, Ronald P.; Herndon, David N.

    2007-01-01

    Objective and Summary Background Data: Postburn long-term oxandrolone treatment improves hypermetabolism and body composition. The effects of oxandrolone on clinical outcome, body composition, endocrine system, and inflammation during the acute phase postburn in a large prospective randomized single-center trial have not been studied. Methods: Burned children (n = 235) with >40% total body surface area burn were randomized (block randomization 4:1) to receive standard burn care (control, n = 190) or standard burn care plus oxandrolone for at least 7 days (oxandrolone 0.1 mg/kg body weight q.12 hours p.o, n = 45). Clinical parameters, body composition, serum hormones, and cytokine expression profiles were measured throughout acute hospitalization. Statistical analysis was performed by Student t test, or ANOVA followed by Bonferroni correction with significance accepted at P < 0.05. Results: Demographics and clinical data were similar in both groups. Length of intensive care unit stay was significantly decreased in oxandrolone-treated patients (0.48 ± 0.02 days/% burn) compared with controls (0.56 ± 0.02 days/% burn), (P < 0.05). Control patients lost 8 ± 1% of their lean body mass (LBM), whereas oxandrolone-treated patients had preserved LBM (+9 ± 4%), P < 0.05. Oxandrolone significantly increased serum prealbumin, total protein, testosterone, and AST/ALT, whereas it significantly decreased α2-macroglobulin and complement C3, P < 0.05. Oxandrolone did not adversely affect the endocrine and inflammatory response as we found no significant differences in the hormone panels and cytokine expression profiles. Conclusions: In this large prospective, double-blinded, randomized single-center study, oxandrolone shortened length of acute hospital stay, maintained LBM, improved body composition and hepatic protein synthesis while having no adverse effects on the endocrine axis postburn, but was associated with an increase in AST and ALT. PMID:17717439

  16. Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol

    Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time

  17. Dissimilar genome response to acute and chronic low-dose radiation in male and female mice

    The long-term genetic consequences of chronic exposure to low-dose irradiation constitutes a major concern to the general public and research community, especially as chronic radiation has recently been proven to be much more mutagenic and carcinogenic than previously thought. Here we report the results of the first ever comparison of the effects of acute and chronic whole body low-dose radiation exposure on global gene expression. We found a substantial difference between males and females in the expression of genes involved in signaling, growth control, transcription and other pathways upon acute and chronic radiation exposure. Specifically, we found sex differences in the expression of genes coding for G protein-coupled receptors and nuclear receptors. We also found different induction of PKCδ, PKCβ and PKCμ, members of PKC signaling pathway as well as in TGF and WNT signaling in males and females. Very pronounced difference, that was confirmed on the level of protein, was observed in the expression of WNT5A that plays an important role in carcinogenesis and muscle regeneration. WNT5A expression was significantly elevated only in chronically exposed females. We also provide the first evidence of the effect of ionizing radiation on the estrogen receptor in females. Repetitive irradiation of muscle tissue has been linked to development of rhabdomyosarcoma (RMS), which, enigmatically, occurs more frequently in males. Our data may be used to study possible mechanisms of RMS development upon chronic radiation exposure. They may provide some clues about the molecular background of the sex differences of RMS occurrence and may in the future lead to the discovery of new biomarkers for RMS predisposition in the irradiated tissue. Overall, differences in male and female responses to acute and chronic low-dose radiation obtained by this study were more drastic than we could have predicted. If confirmed in other experimental systems, these findings could potentially lead

  18. Host immune response and acute disease in a zebrafish model of francisella pathogenesis

    Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D.

    2009-01-01

    Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebraflsh were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebraflsh following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebraflsh mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-l?? (IL-1??), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebraflsh to heat-killed bacteria demonstrated that the significant induction of IL-?? was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebraflsh share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  19. Metabolic consequences of resistive-type exercise

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  20. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells.

    Ringqvist, Emma; Palm, J E Daniel; Skarin, Hanna; Hehl, Adrian B; Weiland, Malin; Davids, Barbara J; Reiner, David S; Griffiths, William J; Eckmann, Lars; Gillin, Frances D; Svärd, Staffan G

    2008-06-01

    Giardia lamblia, an important cause of diarrheal disease, resides in the small intestinal lumen in close apposition to epithelial cells. Since the disease mechanisms underlying giardiasis are poorly understood, elucidating the specific interactions of the parasite with the host epithelium is likely to provide clues to understanding the pathogenesis. Here we tested the hypothesis that contact of Giardia lamblia with intestinal epithelial cells might lead to release of specific proteins. Using established co-culture models, intestinal ligated loops and a proteomics approach, we identified three G. lamblia proteins (arginine deiminase, ornithine carbamoyl transferase and enolase), previously recognized as immunodominant antigens during acute giardiasis. Release was stimulated by cell-cell interactions, since only small amounts of arginine deiminase and enolase were detected in the medium after culturing of G. lamblia alone. The secreted G. lamblia proteins were localized to the cytoplasm and the inside of the plasma membrane of trophozoites. Furthermore, in vitro studies with recombinant arginine deiminase showed that the secreted Giardia proteins can disable host innate immune factors such as nitric oxide production. These results indicate that contact of Giardia with epithelial cells triggers metabolic enzyme release, which might facilitate effective colonization of the human small intestine. PMID:18359106