WorldWideScience

Sample records for activity oxidative stress

  1. OXIDATIVE STRESS AND PHYSICAL ACTIVITY

    Dragan Radovanović

    2012-06-01

    Full Text Available The cells continuously produce free radicals and reactive oxygen species as a part of metabolic processes. Increased aerobic metabolism during exercise is a potential source of oxidative stress. Also, anaerobic physical activity and oxidative stress are interrelated because the intense anaerobic activity leads to damage proteins, lipids and nucleic acids in muscle cells and blood. Complex system of antioxidant defense, which has the enzymatic and non-enzymatic part, has a role in protecting tissues from excessive oxidative damage. Most of the research conducted so far about the impact of various forms of physical activity on levels of oxidative stress is confirmed by changes in biomarkers that indicate lipid peroxidation and proteins modification. Untrained persons, as opposed to trained, are more susceptible to major changes in the body caused by oxidative stress during physical activity. The results of researches have shown that there are no significant differences between the genders in the level of oxidative stress during physical activity and response to antioxidant supplementation possibly applied. It is interesting that, despite of numerous studies, the exact location of oxidative stress origin during physical activity has not been reliably established. In addition, research results provide insufficient evidence on the effectiveness of using antioxidant supplementation to increase the defense against oxidative stress. It is necessary further investigation about the redox status and oxidative stress during physical activity in adolescent athletes.

  2. Multistep Phosphorelay Proteins Transmit Oxidative Stress Signals to the Fission Yeast Stress-activated Protein Kinase

    Nguyen, Aaron Ngocky; Lee, Albert; Place, Warren; Shiozaki, Kazuhiro

    2000-01-01

    In response to oxidative stress, eukaryotic cells induce transcription of genes required for detoxification of oxidants. Here we present evidence that oxidative stress stimuli are transmitted by a multistep phosphorelay system to the Spc1/Sty1 stress-activated protein kinase in the fission yeast Schizosaccharomyces pombe. The fission yeast mpr1+ gene encodes a novel protein with a histidine-containing phosphotransfer domain homologous to the budding yeast Ypd1. Spc1 activation upon oxidative ...

  3. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    Gurunathan S

    2012-11-01

    cell viability, induced oxidative stress, and DNA fragmentation.Conclusion: The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and time-dependent manner. Exposure to GO and rGO induced significant production of superoxide radical anion compared to control. GO and rGO showed dose-dependent antibacterial activity against P. aeruginosa cells through the generation of reactive oxygen species, leading to cell death, which was further confirmed through resulting nuclear fragmentation. The data presented here are novel in that they prove that GO and rGO are effective bactericidal agents against P. aeruginosa, which would be used as a future antibacterial agent.Keywords: graphene oxide, reduced graphene oxide, beta-mercaptoethanol, oxidative stress, antimicrobial activity

  4. Oxidative Stress and Maxi Calcium-Activated Potassium (BK Channels

    Anton Hermann

    2015-08-01

    Full Text Available All cells contain ion channels in their outer (plasma and inner (organelle membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells, alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  5. Relationship between acrosin activity of human spermatozoa and oxidative stress

    AdelA.Zalata; AshrafH.Ahmed; ShyamS.R.Allamaneni; H.Comhaire; AshokAgarwal

    2004-01-01

    Aim: To study the association between seminal oxidative stress and human sperm acrosin activity.Methods: It is a prospective study consisting of 30 infertile men and 12 fertile normozoospermic volunteers. A full history, clinical examination and scrotal ultrasound were done to exclude other related factors such as smoking and varicocele. Presence of white blood cells (WBCs) in semen samples was evaluated by peroxidase staining. Lipid peroxidation in spermatozoa was induced after incubating with ferrous sulphate (4mmol/L) and sodium ascorbate (20 mmol/L). Induced peroxidation of spermatozoa was assessed by determining the production of thiobarbituric acid reactive substances (TBARS). Acrosin activity was measured using the gelatinolysis technique. The halo diameters around the sperm heads and the percentages of spermatozoa showing halo formation were evaluated. An acrosin activity index was calculated by multiplying the halo diameter by the halo formation rate. Results: A significant difference was observed in acrosin activity parameters and TBARS levels between samples with WBCs (>1×106/mL of ejaculate) and those without. This difference was also noted between the normozoospermic and the oligoasthenoteratozoospermic semen samples. The TBARS production by spermatozoa had a significant negativecorrelation with the acrosin activity index (r=-0.89, P<0.001). Conclusion: The presence of oxidative stress in an individual with leukocytospermia and/or abnormal semen parameters is associated with impaired sperm function as measured by its acrosin activity. (Asian J Androl 2004 Dec; 6:313-318)

  6. Oxidative stress

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  7. Oxidative stress

    This book contains 18 chapters. Some of the chapter titles are: Oxidative Stress: Introductory Remarks; Radiolysis of DNA and Model Systems in the Presence of Oxygen; Organic Peroxy Free Radicals as Ultimate Agents in Oxygen Toxicity; Antimalarials; and the Role of Dietary Components in Oxidative Stress in Tissues

  8. Oxidative stress, activity behaviour and body mass in captive parrots

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melo...

  9. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  10. Protective Activity Against Oxidative Stress of Plants Indigenous to Korea

    We have screened the cytoprotective effect against Ha, Oa, and γ-ray radiation induced oxidative stress from 32 Korean plants. Betula ermani var, saitoana (caulis, leaves), Rosa wichuraiana (caulis), Sorbus commixta (caulis), Weigela florida (leaves), Cirsium rhinoceros (whole plant), and Viburnum erosum (caulis) were found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS). As a result, extracts of six plants reduced cell death of Chinese hamster lung fibroblast (V79-4) cells induced by Ha,Oa, treatment. In addition, these extracts protected cell death of V79-4 cells damaged by γ-ray radiation. In addition, these extracts scavenged ROS generated by radiation. Taken together, the results suggest that Betula ermani var. saitoana, Rosa wichuraiana, Sorbus commixta, Weigela florida, Cirsium rhinoceros, and Viburnum erosum protect V79-4 cells against oxidative damage by radiation through scavenging ROS

  11. SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells

    Khan, Reas S.; Fonseca-Kelly, Zoe; Callinan, Catherine; Zuo, Ling; Sachdeva, Mira M.; Shindler, Kenneth S

    2012-01-01

    Activation of SIRT1, an NAD+-dependent deacetylase, prevents retinal ganglion cell (RGC) loss in optic neuritis, an inflammatory demyelinating optic nerve disease. While SIRT1 deacetylates numerous protein targets, downstream mechanisms of SIRT1 activation mediating this neuroprotective effect are unknown. SIRT1 increases mitochondrial function and reduces oxidative stress in muscle and other cells, and oxidative stress occurs in neuronal degeneration. We examined whether SIRT1 activators red...

  12. Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities

    Chakraborty, Koushik; Singh, Amrit L.; Kalariya, Kuldeep A.; Goswami, Nisha

    2015-01-01

    From a field experiment, the changes in oxidative stress and antioxidant enzyme activities was studied in six Spanish peanut cultivars subjected to water deficit stress at two different stages viz. pegging and pod development stages. Imposition of water deficit stress significantly reduced relative water content, membrane stability and total carotenoid content in all the cultivars, whereas total chlorophyll content increased at initially and decreased at later stage. Chlorophyll a/b ratio inc...

  13. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  14. Green Tea Polyphenols Function as Prooxidants To Activate Oxidative-Stress-Responsive Transcription Factors in Yeasts▿

    Maeta, Kazuhiro; Nomura, Wataru; Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2006-01-01

    Epigallocatechin gallate (EGCG) is the most abundant polyphenolic flavonoid in green tea. Catechin and its derivatives, including EGCG, are widely believed to function as antioxidants. Here we demonstrate that both EGCG and green tea extract (GTE) cause oxidative stress-related responses in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe under weak alkaline conditions in terms of the activation of oxidative-stress-responsive transcription factors. GT...

  15. THE ASSOCIATION BETWEEN PHYSICAL ACTIVITY AND SEX-SPECIFIC OXIDATIVE STRESS IN OLDER ADULTS

    Masaki Takahashi

    2013-09-01

    Full Text Available Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs and malondialdehyde (MDA concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002 (MDA; r = -0.549, p = 0. 028, but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006 (GSH; r = 0.549, p = 0.028, but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039, but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin. These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women

  16. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    Gurunathan S; Han JW; Dayem AA; Eppakayala V; Kim JH

    2012-01-01

    Sangiliyandi Gurunathan, Jae Woong Han, Ahmed Abdal Dayem, Vasuki Eppakayala, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, South KoreaBackground: Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxid...

  17. Doxycycline blocks gastric ulcer by regulating matrix metalloproteinase-2 activity and oxidative stress

    Laishram Pradeepkumar Singh; Amartya Mishra; Debjit Saha; Snehasikta Swarnakar

    2011-01-01

    AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury. METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol, and activity of doxycycline was tested by administration 30 min prior to ethanol. Similarly, the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model. The activities and expression of MMPs were examined by zymography and ...

  18. Expression of telomerase activity and oxidative stress in human hepatocellular carcinoma with cirrhosis

    Dao-Yong Liu; Zhi-Hai Peng; Guo-Qiang Qiu; Chong-Zhi Zhou

    2003-01-01

    AIM: To study the expression and significance of telomerase activity and oxidative stress in hepatocellular carcinoma (HCC) with cirrhosis.METHODS: In this study, TRAP-ELISA assay was used to determine telomerase activity in 21 cases of HCC as well as in 23 cases of hepatic cirrhosis. Malondialdehyde(MDA),glutathione S-transferase (GST) and total anti-oxidative capacity (T-AOC) were also examined in the same samples with human MDA, GST and T-AOC kits.RESULTS: Eighteen of 21 cases of HCC were found to have increased telomerase activity, whereas only three of the 23non-cancerous cirrhotic samples were found to have weak telomerase activity, and the difference was significant (P<0.001). No significant difference in telomerase activity was detected according to different tumor size, tumor stage,histological grade, HBsAg, contents of albumin, bilirubin,ALT, AFP, r-GT and platelet. There were significant differences between HCC and cirrhosis in the expression of MDA, GST and T-AOC respectively. Telomerase activity correlated positively with the content of MDA (P<0.05).CONCLUSION: Telomerase activation is the early event of carcinogenesis, which is not correlated with clinicopathological factors of HCC. The dysfunction of the anti-oxidative system is closely correlated with the progression from cirrhosis to hepatocellular carcinoma. Oxidative stress may contribute partly to telomerase activation.

  19. Response of oxidative stress and isoflavone treatment on superoxide dismutase enzyme activities and lipid peroxidation in rat’s liver

    Suarsana IN; Wresdiyati T; Suprayogi A

    2013-01-01

    Oxidative stress is defined as over-production of free radicals which lead to cells damage, pathological condition and cell death. The objective of this study was to analyze respond of oxidative stress and isoflavone treatment on superoxide dismutase (SOD) enzyme activities and lipid peroxidation in rat liver. A total of fifteen male Spraque Dawley rats were used in this study. They were sub-divided into three groups; (1) a negative control group, (2) a stress oxidative group, and (3) treatme...

  20. Anti-Oxidative Stress Activity of Stachys lavandulifolia Aqueous Extract in Human

    Naser Hosseini

    2013-01-01

    Full Text Available Medicinal plants are presumed to be natural sources of antioxidants that protect organisms from oxidative stresses. The present investigation aims to study the anti-oxidative stress activity of the Stachys lavandulifolia (S. lavandulifolia plant. This trial was conducted on 26 healthy human subjects. The study was done in a before after fashion. The included subjects were asked to consume the prepared infusion from 3 g aerial parts of S. lavandulifolia on a daily basis. Doses were administered in every morning and evening for 14 days. At the beginning and the end of the study, blood samples were acquired to determine the level of cellular lipid peroxidation and the total content of serum antioxidants. Biomarkers analyzed from samples obtained before start of treatment and 14 days post treatment, were subjected to paired t test analysis. Total blood antioxidants increased and reached from 2.3 ± 0.84 μmol/ml to 3.3 ± 0.54 μmol/ml. The lipid peroxidation reduced and reached from 8.38 ± 1.78 to 11.6 ± 2.64 nmol/ml. The results suggest that S. lavandulifolia possesses marked anti-oxidative stress activity and it can be useful as a supplement in the management of diseases related to oxidative stress (Registration Number: IRCT2013012210003N2.

  1. Oxidative Stress in Neurodegeneration

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  2. Plasma Homocysteine Is Associated with Increased Oxidative Stress and Antioxidant Enzyme Activity in Welders

    Hung-Hsin Liu

    2013-01-01

    Full Text Available The purpose of this study was to examine the association of vitamin B6 status and plasma homocysteine with oxidative stress and antioxidant capacities in welders. Workers were divided into either the welding exposure group (n=57 or the nonexposure controls (n=42 based on whether they were employed as welders. There were no significant differences in vitamin B6 status and plasma homocysteine concentration between the welding exposure group and the nonexposure controls. The welding exposure group had significantly higher levels of oxidized low-density lipoprotein cholesterol and lower erythrocyte glutathione concentration and superoxide dismutase (SOD activities when compared to nonexposure controls. Plasma pyridoxal 5′-phosphate concentration did not correlate with oxidative stress indicators or antioxidant capacities in either group. However, plasma homocysteine significantly correlated with total antioxidant capacity (TAC (partial rs=-0.34, P<0.05 and erythrocyte SOD activities (partial rs=0.29, P<0.05 after adjusting for potential confounders in the welding exposure group. In the welding exposure group, adequate vitamin B6 status was not associated with oxidative stress or antioxidant capacities. However, elevated plasma homocysteine seemed to be a major contributing factor to antioxidant capacities (TAC and erythrocyte SOD activities in welders.

  3. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  4. Oxidative stress by inorganic nanoparticles.

    Tee, Jie Kai; Ong, Choon Nam; Bay, Boon Huat; Ho, Han Kiat; Leong, David Tai

    2016-05-01

    Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website. PMID:26359790

  5. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents

  6. Time profile of oxidative stress and neutrophil activation in ovine acute lung injury and sepsis

    Lange, Matthias; Szabo, Csaba; Traber, Daniel L.; Horvath, Eszter; Hamahata, Atsumori; Nakano, Yoshimitsu; Traber, Lillian D.; Cox, Robert A.; Schmalstieg, Frank C.; Herndon, David N.; Enkhbaatar, Perenlei

    2012-01-01

    The formation of oxidative stress in the lung and activation of neutrophils are major determinants in the development of respiratory failure following acute lung injury (ALI) and sepsis. However, the time changes of these pathogenic factors have not been sufficiently described. Twenty-four chronically instrumented sheep were subjected to cotton smoke inhalation injury and instillation of live Pseudomonas aeruginosa into both lungs. The sheep and were euthanized at 4, 8, 12, 18, and 24 hours p...

  7. Oxidative stress (Glutathionylation) and Na,K-ATPase activity in rat skeletal muscle

    Juel, Carsten

    2014-01-01

    Background Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes. Results Immunoprecipitation with an anti-glutathione antibody and subsequent ...

  8. S-Glutathionylation Enhances Human Cystathionine β-Synthase Activity Under Oxidative Stress Conditions

    Niu, Wei-Ning; Yadav, Pramod Kumar; Adamec, Jiri; Banerjee, Ruma

    2015-01-01

    Aims: Cystathionine β-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of this regulation has remained unclear. Results: Here, we demonstrate that S-glutathionylation of CBS...

  9. Punica Granatum Juice Effects on Oxidative Stress in Severe Physical Activity

    Naghizadeh-Baghi, Abbas; Mazani, Mohammad; Shadman-Fard, Ali; Nemati, Ali

    2015-01-01

    Aim: The aim of this study was to investigate Punica granatum juice effects on oxidative stress in young healthy males during severe physical activity. Methods: Our subjects were selected from healthy males at 18 - 24 years. They were enrolled and randomly distributed into control and supplemented groups. 240 ml of Punica granatum juice and tap water were given to supplement and control groups daily for two weeks, respectively. Fasting blood samples were taken at the starting and the end of t...

  10. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts.

    Keyse, S M; Applegate, L. A.; Tromvoukis, Y; Tyrrell, R M

    1990-01-01

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents.

  11. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  12. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide

    de Melo, Joana Barbosa; Agostinho, Paula; Oliveira, Catarina Resende

    2003-01-01

    Acetylcholinesterase (AChE) activity is increased within and around amyloid plaques, which are present in Alzheimer's disease (AD) patient's brain. In this study, using cultured retinal cells as a neuronal model, we analyzed the effect of the synthetic peptide A[beta]25-35 on the activity of AChE, the degradation enzyme of acetylcholine, as well as the involvement of oxidative stress in this process. The activity of AChE was increased when retinal cells were incubated with A[beta]25-35 (25 [m...

  13. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  14. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  15. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  16. Spirulina maxima and its effect on antioxidant activity in fructose induced oxidative stress with histopathological observations

    Jarouliya Urmila

    2015-12-01

    Full Text Available Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6 for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT, superoxide dismutase (SOD, reduced glutathione (GSH and thiobarbituric acid reactive substances (TBARS]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001 elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.

  17. Doxycycline blocks gastric ulcer by regulating matrix metalloproteinase-2 activity and oxidative stress

    Laishram Pradeepkumar Singh; Amartya Mishra; Debjit Saha; Snehasikta Swarnakar

    2011-01-01

    AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury. METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol, and activity of doxycycline was tested by administration 30 min prior to ethanol. Similarly, the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model. The activities and expression of MMPs were examined by zymography and Western blot analysis. RESULTS: Gastric injury in rats as judged by elevated ulcer indices following exposure to ulcerogen, either indomethacin or ethanol, was reversed significantly by doxycycline. Indomethacin-induced ulcerated gastric tissues exhibited about 12-fold higher proMMP-9 activity and about 5-fold higher proMMP-3 activity as compared to control tissues. Similarly, ethanol induced about 22-fold and about 6-fold higher proMMP-9 and proMMP-3 activities, respectively, in rat gastric tissues. Both proMMP-9 and MMP-3 activities were markedly decreased by doxycycline in ulcerogen treated rat gastric tissues. In contrast, the reduced MMP-2 activity in ulcerated tissues was increased by doxycycline during ulcer prevention. On the other hand, doxycycline inhibited significantly proMMP-9, -2 and -3 activities in vitro . In addition, doxycycline reduced oxidative load in gastric tissues and scavenged H2O2 in vitro . Our results suggest a novel regulatory role of doxycycline on MMP-2 activity in addition to inhibitory action on MMP-9 and MMP-3 during prevention of gastric ulcers. CONCLUSION: This is the first demonstration of dual action of doxycycline, that is, regulation of MMP activity and reduction of oxidative stress in arresting gastric injury.

  18. Oxidative stress and anxiety

    Bouayed, Jaouad; Rammal, Hassan; Soulimani, Rachid

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal ...

  19. Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation

    Huang, Chun-Jung; McAllister, Matthew J.; Slusher, Aaron L.; Webb, Heather E.; Mock, J. Thomas; Acevedo, Edmund O.

    2015-01-01

    Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysf...

  20. The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity.

    Ma, Shumin; Fang, Zijun; Luo, Wenwen; Yang, Yunzhi; Wang, Chenyao; Zhang, Qian; Wang, Huafei; Chen, Huaiyong; Chan, Chi Bun; Liu, Zhixue

    2016-01-01

    Excessive reactive oxygen species/reactive nitrogen species (ROS/RNS) produced as a result of ageing causes damage to macromolecules and organelles or leads to interference of cell signalling pathways, which in turn results in oxidative stress. Oxidative stress occurs in many neurodegenerative diseases (e.g., Parkinson's disease) and contributes to progressive neuronal loss. In this study, we show that cell apoptosis is induced by oxidative stress and that lysosomes play an important role in cell survival under oxidative stress. As a compensatory response to this stress, lysosomal genes were upregulated via induction of transcription factor EB (TFEB). In addition, localization of TFEB to the nucleus was increased by oxidative stress. We also confirmed that TFEB protects cells from oxidative stress both in vitro and in vivo. Finally, we found that C-ETS2 senses oxidative stress, activates TFEB transcription, and mediates the upregulation of lysosomal genes. Our results demonstrate a mechanistic pathway for inducing lysosomal activity during ageing and neurodegeneration. PMID:27195074

  1. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  2. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation

  3. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to Hydrogen peroxide-induced oxidative stress in Human hepatobiliary Cancer cells

    Nguyen Ho-Bouldoires, Thang Huong; Clapéron, Audrey; Mergey, Martine; Wendum, Dominique; Desbois-Mouthon, Christèle; Tahraoui, Sylvana; Fartoux, Laetitia; Chettouh, Hamza; Merabtene, Fatiha; Scatton, Olivier; Gaestel, Matthias; Praz, Françoise; Housset, Chantal; Fouassier, Laura

    2015-01-01

    The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied. We identified the MAPK-activated protein kinase 2 (MK2)/Heat shock protein 27 (Hsp27) signaling pathway mediating defenses against oxidative stress. Besides to ...

  4. Oxidative Stress and Decrease of Paroxonase Activity in Patients whit Prostate Cancer

    Orhan N

    2015-10-01

    Full Text Available Objective: Prostate cancer is the leading cause of cancer-related deaths. Oxidative DNA damage may contribute to the prostate cancer. The paraoxonase (PON1 is an endogenous antioxidant in the human body. The aim of our study was to determine whether lipid parameters, total oxidant capacity (TOC, total antioxidant capacity (TAC, oxidative stress index (OSĠ, serum paraoxonase (PON1 and arylesterase (ARE levels and phenotypes distribution alter new diagnosis in patients with prostate cancer and to compare the values with those of healthy controls. Methods: The study was performed prospective which consist of the prostate cancer group (PC and healthy control group. Serum PON1, ARE activities, and other parameters were measured in 40 subjects in both groups. The PON1 phenotypes were defined according to the ratio of serum PON1/ARE activity. In statistical evaluation of data was performed by Student t test and Pearson’s correlation analysis. Results: TKOL and LDL-K levels were found to be lower in the patients compared to controls (p=0,044; p=0,026. OSI levels in patients was higher than the controls (p=0,029. PON1 and ARE activities were found to be lower in patients compared to the controls (p=0,040; p=0,027. PON1 enzyme activity was determined as three different phenotypes in both groups. In PC group, significant deviation of PON1 phenotype frequencies from Hardy–Weinberg equilibrium was found. Conclusion: The results of our study suggest that oxidative stress, through lipid peroxidation may play an important role for the development of prostate cancer and that PON1, and PON1 phenotyping may be predictive for prostate cancer.

  5. Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide.

    Julien Santi-Rocca

    Full Text Available The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR. The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii induction of DNA repair and redox gene expression and iii up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis.

  6. Influence of chronic stress and terahertz radiation at nitric oxide frequency on functional activity of thyroid gland

    Tsymbal А.А.

    2010-12-01

    Full Text Available In the chronic stress conditions oppression of functional activity of thyroid gland is revealed. Influence of terahertz radiation at the nitric oxide frequency of 150,176-150,664 GHz on functional activity of thyroid gland in the conditions of chronic experimental stress was studied. It was shown that during 15 minutes of influence of terahertz waves at nitric oxide frequency partial restoration of studied indicators of activity of thyroid gland was observed in stressed animals. At 30 minute mode of influence of specified waves a complete recovery of broken indicators of functional condition of thyroid gland was determined

  7. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction.

    Navarro, Elisa; Buendia, Izaskun; Parada, Esther; León, Rafael; Jansen-Duerr, Pidder; Pircher, Haymo; Egea, Javier; Lopez, Manuela G

    2015-10-15

    Subchronic oxidative stress and inflammation are being increasingly implicated in the pathogenesis of numerous diseases, such as Alzheimer's or Parkinson's disease. This study was designed to evaluate the potential protective role of α7 nicotinic receptor activation in an in vitro model of neurodegeneration based on subchronic oxidative stress. Rat organotypic hippocampal cultures (OHCs) were exposed for 4 days to low concentration of lipopolysaccharide (LPS) and the complex III mitochondrial blocker, antimycin-A. Antimycin-A (0.1μM) and lipopolysaccharide (1ng/ml) caused low neurotoxicity on their own, measured as propidium iodide fluorescence in CA1 and CA3 regions. However, their combination (LPS/AA) caused a greater detrimental effect, in addition to mitochondrial depolarization, overproduction of reactive oxygen species (ROS) and Nox4 overexpression. Antimycin-A per se increased ROS and mitochondrial depolarization, although these effects were significantly higher when combined with LPS. More interesting was the finding that exposure of OHCs to the combination of LPS/AA triggered aberrant protein aggregation, measured as thioflavin S immunofluorescence. The α7 nicotinic receptor agonist, PNU282987, prevented the neurotoxicity and the pathological hallmarks observed in the LPS/AA subchronic toxicity model (oxidative stress and protein aggregates); these effects were blocked by α-bungarotoxin and tin protoporphyrin, indicating the participation of α7 nAChRs and heme-oxygenase I induction. In conclusion, subchronic exposure of OHCs to low concentration of antimycin-A plus LPS reproduced pathological features of neurodegenerative disorders. α7 nAChR activation ameliorated these alterations by a mechanism involving heme-oxygenase I induction. PMID:26212551

  8. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    Yang, Lei [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wu, Zhong [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wang, Jianguang, E-mail: jianguangwang@163.com [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Jianguo, E-mail: gehujianguo68@163.com [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China)

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  9. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria

  10. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509 (Japan); Tanimoto, Keiji; Murakami, Tomoki; Morinaga, Takeshi [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Hosoi, Yoshio, E-mail: hosoi@med.tohoku.ac.jp [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)

    2014-01-24

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria

  11. Temperature stress, anti-oxidative enzyme activity and virus acquisition in Bemisia tabaci (Hemiptera: Aleyrodidae)

    In most eukaryotic systems, antioxidants provide protection when cells are exposed to stressful environmental conditions. Antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase, function in a stepwise series with SOD initially preventing oxidative damage by conve...

  12. Is the Oxidative Stress Really a Disease?

    Fogarasi Erzsébet; Croitoru Mircea Dumitru; Fülöp Ibolya; Muntean Daniela-Lucia

    2016-01-01

    Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes), of protein oxidation (carbonyl...

  13. PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling.

    Ament, Zsuzsanna; West, James A; Stanley, Elizabeth; Ashmore, Tom; Roberts, Lee D; Wright, Jayne; Nicholls, Andrew W; Griffin, Julian L

    2016-06-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation. PMID:26654758

  14. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    Ar/O2 (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  15. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability.

    Ajiboye, T O; Mohammed, A O; Bello, S A; Yusuf, I I; Ibitoye, O B; Muritala, H F; Onajobi, I B

    2016-06-01

    Oxidative stress and membrane permeability as mode of antibacterial activity of aqueous extract of Syzygium aromaticum seeds against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was investigated. The concentration of phytochemical constituents of Syzygium aromaticum was determined using gas chromatography. Syzygium aromaticum seeds contain eugenol acetate > β-carophyllene > eugenin > eugenol > methyl salicylate > β-humulene > rhamnatin > fernesol > α-copeane > β-ylangene > kaempferol > cinnamic acid > oleanolic acid > benzaldehyde > α-humulene > vanillin > α-cubebene > carvicol > benzoic acid. Syzygium aromaticum showed antimicrobial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as 0.06 and 0.10 mg/mL respectively. Time kill susceptibility by Syzygium aromaticum at MBC values showed significant decrease in the optical density and colony-forming unit (CFU) of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Superoxide anion radical content of the bacterial cells increased significantly following exposure to the extract. In a similar vein, superoxide dismutase and catalase activities increased significantly, while the level of reduced glutathione reduced, malondialdehyde increased significantly in bacterial cells exposed to the extract. The extract at MBC also enhanced the leakage of 260 nm absorbing materials and outer membrane permeability. It is evident from the data generated from this study that aqueous extract of Syzygium aromaticum seeds enhanced membrane permeability and oxidative stress in Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. PMID:27038843

  16. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation.

    Zhang, Guosong; Mao, Jianqiang; Liang, Fenfei; Chen, Jiawei; Zhao, Cheng; Yin, Shaowu; Wang, Li; Tang, Zhonglin; Chen, Shuqiao

    2016-05-01

    Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver. In contrast, PvSOD1 was highly expressed in liver. Based on the expression patterns of above parameters, we inferred that brain tissue of P. vachelli under 0.7 mg/L degree of acute hypoxia condition could experience hypometabolic states or no suffering stress, but brain tissue has effective mechanisms to minimize or prevent oxidative stress during the transition from hypoxia to reoxygenation. Our results also demonstrated an increased expression of SODs and enzymatic activities for oxidative stress in liver under hypoxic conditions, which supports the hypothesis that anticipatory preparation takes place in order to deal with the encountered oxidative stress during the recovery from hypoxia as proposed by M. Hermes-Lima. Therefore, this study will provide a clue to better understand the action mode of antioxidant genes and enzymes under oxidative stress in fish. PMID:26945243

  17. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  18. Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice

    Tong Liu; Ru-Rong Ji

    2012-01-01

    Objective To investigate the role of oxidative stress in itch-indicative scratching behavior in mice,and furthermore,to define the cellular and molecular mechanisms underlying oxidative stress-mediated itch.Methods Scratching behavior was induced by intradermal injection of the oxidants hydrogen peroxide (H2O2) or tert-butylhydroperoxide (tBHP) into the nape of the neck in mice.The mice were observed for 30 min.Results Intradermal H2O2 (0.03%-1%) or tBHP (1-30 μmol) elicited robust scratching behavior,displaying an inverted U-shaped dose-response curve.Naloxone,an opioid receptor antagonist,but not morphine,largely suppressed the oxidant-induced scratching.Chlorpheniramine,a histamine H 1 receptor antagonist,blocked histamine-but not oxidant-induced scratching,indicating the involvement of a histamine-independent mechanism in oxidant-evoked itch.Further,resiniferatoxin treatment abolished oxidant-induced scratching,suggesting an essential role of C-fibers.Notably,blockade of transient receptor potential subtype ankyrin 1 (TRPA1) with the selective TRPA1 antagonist HC-030031,or genetic deletion of Trpal but not Trpvl (subfamily V,member 1) resulted in a profound reduction in H2O2-evoked scratching.Finally,systemic administration of the antioxidant Nacety1-L-cysteine or trolox (a water-soluble vitamin E analog) attenuated scratching induced by the oxidants.Conclusion Oxidative stress by different oxidants induces profound scratching behavior,which is largely histamine-and TRPV1-independent but TRPA1-dependent.Antioxidants and TRPA1 antagonists may be used to treat human itch conditions associated with oxidative stress.

  19. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  20. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  1. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  2. Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways.

    Blackburn, Anneke C; Matthaei, Klaus I; Lim, Cindy; Taylor, Matthew C; Cappello, Jean Y; Hayes, John D; Anders, M W; Board, Philip G

    2006-02-01

    Glutathione S-transferase (GST) zeta (GSTZ1-1) plays a significant role in the catabolism of phenylalanine and tyrosine, and a deficiency of GSTZ1-1 results in the accumulation of maleylacetoacetate and its derivatives maleylacetone (MA) and succinylacetone. Induction of GST subunits was detected in the liver of Gstz1(-/-) mice by Western blotting with specific antisera and high-performance liquid chromatography analysis of glutathione affinity column-purified proteins. The greatest induction was observed in members of the mu class. Induction of NAD(P)H:quinone oxidoreductase 1 and the catalytic and modifier subunits of glutamate-cysteine ligase was also observed. Many of the enzymes that are induced in Gstz1(-/-) mice are regulated by antioxidant response elements that respond to oxidative stress via the Keap1/Nrf2 pathway. It is significant that diminished glutathione concentrations were also observed in the liver of Gstz1(-/-) mice, which supports the conclusion that under normal dietary conditions, the accumulation of electrophilic intermediates such as maleylacetoacetate and MA results in a high level of oxidative stress. Elevated GST activities in the livers of Gstz1(-/-) mice suggest that GSTZ1-1 deficiency may alter the metabolism of some drugs and xenobiotics. Gstz1(-/-) mice given acetaminophen demonstrated increased hepatotoxicity compared with wild-type mice. This toxicity may be attributed to the increased GST activity or the decreased hepatic concentrations of glutathione, or both. Patients with acquired deficiency of GSTZ1-1 caused by therapeutic exposure to dichloroacetic acid for the clinical treatment of lactic acidosis may be at increased risk of drug- and chemical-induced toxicity. PMID:16278372

  3. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Klingelhoeffer Christoph; Kämmerer Ulrike; Koospal Monika; Mühling Bettina; Schneider Manuela; Kapp Michaela; Kübler Alexander; Germer Christoph-Thomas; Otto Christoph

    2012-01-01

    Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS) involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L). The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. ...

  4. Response of oxidative stress and isoflavone treatment on superoxide dismutase enzyme activities and lipid peroxidation in rat’s liver

    Suarsana IN

    2013-06-01

    Full Text Available Oxidative stress is defined as over-production of free radicals which lead to cells damage, pathological condition and cell death. The objective of this study was to analyze respond of oxidative stress and isoflavone treatment on superoxide dismutase (SOD enzyme activities and lipid peroxidation in rat liver. A total of fifteen male Spraque Dawley rats were used in this study. They were sub-divided into three groups; (1 a negative control group, (2 a stress oxidative group, and (3 treatment by stress condition followed by treatment with isoflavone. Stress condition was achieved by five days fasting together with swimming for 5 mins/day and only drinking water ad libitum. Isoflavone was orally administrated on a dose of 1 mg/200g bw/day for five days. At the end of the experiment, rats were sacrificed by anesthesia. Liver was collected for analysis of SOD enzyme activities, SOD immunohistochemical analysis, and malondialdehyde (MDA level. Result showed that stress condition increase free radicals that showed by decreased SOD activity, and increased MDA level. Isoflavone treatment could get over reduction of SOD and prevented increase of MDA level in the liver of rats under stress conditions.

  5. Regulation of delta-aminolevulinate synthase activity during the development of oxidative stress.

    Kaliman, P A; Barannik, T V

    1999-06-01

    Activities of rat liver delta-aminolevulinate synthetase (delta-ALAS), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH), GSH content in the liver, and the absorption spectrum of blood serum were investigated after CoCl2, HgCl2, or beta-adrenoblocker (propranolol) injection and after CoCl2 and propranolol co-administration. Inhibition of the activity of the key heme biosynthesis enzyme delta-ALAS was most pronounced and prolonged during the first hours after CoCl2 and CoCl2 plus propranolol injections; this was associated with accumulation of Co2+--protoporphyrin-containing products of hemolysis. Inhibition of delta-ALAS after propranolol injection is not mediated by hemolysis. A decrease in GSH content precedes the induction of heme biosynthesis only in the case of HgCl2 administration, and this was associated with inhibition of GR and G6PDH. The decreased GSH content during the first hours after injection of propranolol and co-administration of CoCl2 and propranolol was not followed by increase in delta-ALAS activity 24 h after the injection. The mechanisms of the increase in the free heme content in the liver during the early stages of oxidative stress and the regulation of the key heme biosynthesis enzyme are discussed. PMID:10395986

  6. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin;

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important in...

  7. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian.

    Li, Mei-Hui

    2008-02-01

    Eight widely used surfactants (cetyltrimethylammonium bromide; CTAB, benzethonium chloride; Hyamine 1622, 4-nonylphenol; NP, octylphenol ethoxylate; Triton X-100, dodecylbenzene sulfonate; LAS, lauryl sulfate; SDS, pentadecafluorooctanoic acid; PFOA, and perfluorooctane sulfonate; PFOS) were selected to examine their acute toxicities and effects on oxidative stress and cholinesterase (ChE) activities in Dugesia japonica. The differences in acute toxicity among eight surfactants to planarians were at least in the range of three orders of magnitudes. The toxicity rank of surfactants according to estimated 48-h LC(50) was SDS>NP>LAS>Hyamine 1622>CTAB>Triton X-100>PFOS>PFOA. The toxicity rank of surfactants according to 96-h LC(50) was as follows: SDS>CTAB>NP>LAS>Hyamine 1622>Triton X-100>PFOS>PFOA. There were significant increases in catalase activities in planarians exposed to LAS at nominal concentrations of 0.5 or 1 mgl(-1) and to PFOS at nominal concentrations of 5 or 10 mgl(-1) after 48-h exposure. Inhibitions of ChE activities were found in planarians exposed to Hyamine 1622 at all concentrations tested, to PFOS at nominal concentration of 10 mgl(-1), to PFOA at nominal concentrations of 50 or 100 mgl(-1) and to NP at nominal concentration of 0.5 mgl(-1). A significant increase in ChE activities was also observed in planarian exposed to Triton X-100 at nominal concentration of 5 mgl(-1). The implication of ChE inhibition by NP, PFOS and PFOA on neurological and behavioral effects in aquatic animals requires further investigation. PMID:17905407

  8. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss

  9. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com; Jiang, Shengdan, E-mail: jiangsd@126.com; Jiang, Leisheng, E-mail: leisheng_jiang@126.com

    2014-08-15

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.

  10. Effect of Enterococcus faecium 1 (EF1 on Antioxidant Functioning Activity of Caco-2 Cells under Oxidative Stress

    H.Z. Wu

    2012-01-01

    Full Text Available The free radical scavenging systems remove most peroxide which shows antioxidantion capacity of body and lactic acid producing bacteria have capacity to support the body in the mechanism. The present study was initiated to investigate the antioxidantion functioning property of Enterococcus faecium 1 (EF1 to Caco-2 cells under oxidative stress condition. The cells were cultured and randomly divided into 4 groups, the control group (T0, the oxidative stress group (T1, Tert-Butyl Hydroquinone (TBHQ with addition of H2O2 (T2 and EF1 with combination of H2O2 (T3. The results showed that Total Antioxidation Capacity (T-AOC, Catalase (CAT, Superoxide Dismutase (SOD activities, Glutathione (GSH contents in the cultured supernatant and SOD activity of the cells lysate at 12 h increased (p3 as compared to T1. The supernatant of cells cultured at 12 h significantly improved the SOD, GSH-Px activities and GSH contents in T3. While, Anti Superoxide Anion Free Radical (ASAFR, CAT, SOD and Glutathione Peroxidase (GSH-Px activities (p3 to T2 supernatant and lysate of cells at 48 h showed significant increase in T-AOC, CAT, SOD, GSH-Px activities and GSH contents of supernatant and in lysate POD activity and GSH contents significantly increased. While, decline (p3. The findings revealed that Enterococcus faecium 1 could increase the antioxidation functioning activity of Caco-2 cells under oxidative stress condition.

  11. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress.

    Qiang, Xiaoyan; Xu, Lulu; Zhang, Miao; Zhang, Pengcheng; Wang, Yinhang; Wang, Yongchen; Zhao, Zheng; Chen, Huan; Liu, Xie; Zhang, Yubin

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) has reached an epidemic level globally, which is recognized to form non-alcoholic steatohepatitis (NASH) by the "two-hit" model, including oxidative stress and inflammation. AMP-activated protein kinase (AMPK) has long been regarded as a key regulator of energy metabolism, which is recognized as a critical target for NAFLD treatment. Here we introduce a natural product, demethyleneberberine (DMB), which potentially ameliorated NAFLD by activating AMPK pathways. Our study showed that the intraperitoneal injection of DMB (20 or 40 mg/kg body weight) decreased hepatic lipid accumulation in methionine and choline deficient (MCD) high-fat diet feeding mice and db/db mice. The further investigation demonstrated that DMB activated AMPK by increasing its phosphorylation in vitro and in vivo. Accompanied with AMPK activation, the expression of lipogenic genes were significantly reduced while genes responsible for the fatty acid β-oxidation were restored in DMB-treated NAFLD mice. In addition, the remarkable oxidative damage and inflammation induced by NAFLD were both attenuated by DMB treatment, which is reflected by decreased lipid oxidative product, malonaldehyde (MDA) and inflammatory factors, tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). Based on all above, DMB could serve as a novel AMPK activator for treating NAFLD and preventing the pathologic progression from NAFLD to NASH by inhibiting the oxidative stress and inflammation. PMID:26970305

  12. The biphasic redox sensing of SENP3 accounts for the HIF-1 transcriptional activity shift by oxidative stress

    Ying WANG; Jie YANG; Kai YANG; Hui CANG; Xin-zhi HUANG; Hui LI; Jing YI

    2012-01-01

    Aim:To investigate the mechanisms underlying the biphasic redox regulation of hypoxia-inducible factor-1 (HIF-1) transcriptional activity under different levels of oxidative stress caused by reactive oxidative species (ROS).Methods:HeLa cells were exposed to different concentrations of H2O2 as a simple model for mild and severe oxidative stress.Luciferase reporter assay and/or quantitative real-time PCR were used to investigate the transcriptional activity.Immunoblot was used to detect protein expression.Chromatin immunoprecipitation assay was used to detect HIF-1/DNA binding.The interaction of p300with HIF-1α or with SENP3,and the SUMO2/3 conjugation states of p300 were examined by coimmunoprecipitation.Results:HIF-1 transcriptional activity in HeLa cells was enhanced by low doses (0.05-0.5 mmol/L) of H202,but suppressed by high doses (0.75-8.0 mmol/L) of H2O2.The amount of co-activator p300 bound to HIF-1α in HeLa cells was increased under mild oxidative stress,but decreased under severe oxidative stress.The ROS levels differentially modified cysteines 243 and 532 in the cysteine protease SENP3,regulating the interaction of SENP3 with p300 to cause different SUMOylation of p300,thus shifting HIF-1 transcriptional activity.Conclusion:The shift of HIF-1 transactivation by ROS is correlated with and dependent on the biphasic redox sensing of SENP3 that leads to the differential SENP3/p300 interaction and the consequent fluctuation in the p300 SUMOylation status.

  13. MITOCHONDRIAL OXIDANT STRESS INCREASES PDE5 ACTIVITY IN PERSISTENT PULMONARY HYPERTENSION OF THE NEWBORN

    Farrow, Kathryn N.; Wedgwood, Stephen; Lee, Keng Jin; Czech, Lyubov; Gugino, Sylvia F.; Lakshminrusimha, Satyan; Schumacker, Paul T.; Steinhorn, Robin H.

    2010-01-01

    In the pulmonary vasculature, phosphodiesterase-5 (PDE5) degrades cGMP and inhibits nitric oxide-mediated, cGMP-dependent vasorelaxation. We previously reported that ventilation with 100% O2 increased PDE5 activity in pulmonary arteries (PA) of pulmonary hypertension lambs (PPHN) more than in control lambs. In the present study, PA smooth muscle cells (PASMC) from PPHN lambs had increased basal PDE5 activity, decreased cGMP-responsiveness to NO, and increased mitochondrial matrix oxidant stre...

  14. The synergic effect of regular exercise and resveratrol on kainate-induced oxidative stress and seizure activity in mice.

    Kim, Hee-jae; Kim, Il-Kon; Song, Wook; Lee, Jin; Park, Sok

    2013-01-01

    The synergic effect of regular exercise and resveratrol, a polyphenolic compound with potent antioxidant activity, was investigated against kainate-induced seizures and oxidative stress in mice. After 6 weeks of swimming training, the total body weight decreased and the blood concentration of lactate stabilized statistically in comparison with the sedentary mice, indicate that the training program increased the aerobic resistance of mice. Kainate (30 mg/kg) evoked seizure activity 5 min after injection, and seizure activity was measured seizure rating scores every 5 min up to 2 h. As previously well known experiments, regular exercise and resveratrol (40 mg/kg, daily supplementation for 6 weeks) have an inhibitory effect on kainate-induced seizure activity and oxidative stress. In particularly, a synergistic cooperation of regular exercise and resveratrol was observed in seizure activity, mortality and oxidative stress especially in SOD activity. These results suggest that regular exercise along with an anti-convulsant agent such as resveratrol could be a more efficient method for the prevention of seizure development than exercise alone. PMID:23054073

  15. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress. PMID:16644199

  16. Oxidative Stress in Malaria

    Dolabela, Maria F; Vilhena, Thyago C; Laurindo, Paula S. O. C.; Gonçalves, Ana Carolina M.; Ferreira, Michelli E. S.; Gomes, Bruno A. Q.; Danilo R. Moreira; Sandro Percário; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy.

  17. Oxidative Stress in Myopia

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  18. Oxidative Stress in Myopia

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  19. ANTIOXIDANT ACTIVITY OF MAJORANA HORTENSIS LEAVES SUBJECTED TO OXIDATIVE STRESS IN AN IN VITRO SYSTEM

    Palaniswamy Radha

    2011-06-01

    Full Text Available Oxidative stress can arise from an imbalance between the generation and elimination of reactive oxygen species leading to the excess levels, which in turn cause various diseases and cell death. Reactive oxygen species can be eliminated by a number of enzymic and non-enzymic antioxidant defense mechanisms. This was studied in Majorana hortensis using in vitro model simulating the in vivo system. Precision-cut goat liver slices were challenged with a standard oxidant (H2O2 both in the presence and in the absence of the different extracts of the leaves. The enzymic and non-enzymic antioxidants were analyzed in the homogenate of the liver slices after incubation. The oxidant treated liver slices showed a decrease in the levels of antioxidants compared to the untreated control. But in the presence of the leaf extracts, the antioxidant status was reverted back to a significant extent. Thus, the results showed that the leaf extracts of the candidate plant can improve the antioxidant status in the goat liver slices exposed in vitro to oxidative stress.

  20. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. PMID:27430620

  1. Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects.

    Gubert, Carolina; Stertz, Laura; Pfaffenseller, Bianca; Panizzutti, Bruna Schilling; Rezin, Gislaine Tezza; Massuda, Raffael; Streck, Emilio Luiz; Gama, Clarissa Severino; Kapczinski, Flávio; Kunz, Maurício

    2013-10-01

    Evidence suggests that mitochondrial dysfunction is involved in the pathophysiology of psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BD). However, the exact mechanisms underlying this dysfunction are not well understood. Impaired activity of electron transport chain (ETC) complexes has been described in these disorders and may reflect changes in mitochondrial metabolism and oxidative stress markers. The objective of this study was to compare ETC complex activity and protein and lipid oxidation markers in 12 euthymic patients with BD type I, in 18 patients with stable chronic SZ, and in 30 matched healthy volunteers. Activity of complexes I, II, and III was determined by enzyme kinetics of mitochondria isolated from peripheral blood mononuclear cells (PBMCs). Protein oxidation was evaluated using the protein carbonyl content (PCC) method, and lipid peroxidation, the thiobarbituric acid reactive substances (TBARS) assay kit. A significant decrease in complex I activity was observed (p = 0.02), as well as an increase in plasma levels of TBARS (p = 0.00617) in patients with SZ when compared to matched controls. Conversely, no significant differences were found in complex I activity (p = 0.17) or in plasma TBARS levels (p = 0.26) in patients with BD vs. matched controls. Our results suggest that mitochondrial complex I dysfunction and oxidative stress play important roles in the pathophysiology of SZ and may be used in potential novel adjunctive therapy for SZ, focusing primarily on cognitive impairment and disorder progression. PMID:23870796

  2. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training.

    Sellamuthu S Gounder

    Full Text Available Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2 through antioxidant response cis-elements (AREs and are impaired in the aging heart. Whereas acute exercise stress (AES activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (~2 months, aging mouse (>23 months hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES, but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day for ~6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.

  3. NITRIC OXIDE SYNTHASE ACTIVITY AND PEROXYNITRITE CONTENT IN CELLS OF RAT’S MUCOUS COAT OF STOMACH UNDER EXPERIMENTAL STRESS-INDUCED ULCER

    I. S. Maksymovych; M. V. Mylenko; O. V. Drobinska; L.I. Ostapchenko

    2009-01-01

    Nitric oxide synthase activity in gastric mucosal cells as well as peroxynitrite generation in experimental stress-induced gastric ulcer formation in rats were studied. There was made the conclusion that nitric oxide synthase activity is growing during the stress. It causes increasing of peroxynitrite’ production and ulcer formation. It was established that destructive gastric mucosal damages depend on stress’ duration. It was determined that nitric oxide is involved in complex pathogenetic m...

  4. High susceptibility of activated lymphocytes to oxidative stress-induced cell death

    Giovanna R. Degasperi

    2008-03-01

    Full Text Available The present study provides evidence that activated spleen lymphocytes from Walker 256 tumor bearing rats are more susceptible than controls to tert-butyl hydroperoxide (t-BOOH-induced necrotic cell death in vitro. The iron chelator and antioxidant deferoxamine, the intracellular Ca2+ chelator BAPTA, the L-type Ca2+ channel antagonist nifedipine or the mitochondrial permeability transition inhibitor cyclosporin A, but not the calcineurin inhibitor FK-506, render control and activated lymphocytes equally resistant to the toxic effects of t-BOOH. Incubation of activated lymphocytes in the presence of t-BOOH resulted in a cyclosporin A-sensitive decrease in mitochondrial membrane potential. These results indicate that the higher cytosolic Ca2+ level in activated lymphocytes increases their susceptibility to oxidative stress-induced cell death in a mechanism involving the participation of mitochondrial permeability transition.O presente estudo demonstra que linfócitos ativados de baço de ratos portadores do tumor de Walker 256 são mais susceptíveis à morte celular necrótica induzida por tert-butil hidroperóxido (t-BOOH in vitro quando comparados aos controles. O quelante de ferro e antioxidante deferoxamina, o quelante intracelular de Ca2+ BAPTA, o antagonista de canal de Ca2+ nifedipina ou o inibidor da transição de permeabilidade mitocondrial ciclosporina-A, mas não o inibidor de calcineurina FK-506, inibiram de maneira similar a morte celular induzida por t-BOOH em linfócitos ativados e controles. Os linfócitos ativados apresentaram redução do potencial de membrana mitocondrial induzida por t-BOOH num mecanismo sensível a ciclosporina-A. Nossos resultados indicam que o aumento da concentração de Ca2+ citosólico em linfócitos ativados aumenta a susceptibilidade dos mesmos à morte celular induzida por estresse oxidativo, num mecanismo envolvendo a participação do poro de transição de permeabilidade mitocondrial.

  5. Oxidative stress reduces Na+/H+ exchange (NHE) activity in a biliary epithelial cancer cell line (Mz-Cha-1).

    Elsing, Christoph; Voss, Agnieszka; Herrmann, Thomas; Kaiser, Iris; Huebner, Chrisitan A; Schlenker, Thorsten

    2011-02-01

    In cholangiocarcinogenesis, chronic inflammation and oxidative stress play a key role. The Na(+)/H(+) exchanger (NHE) forms a potential link between control of intra- and pericellular pH and tumor development. Therefore, the effects of oxidant stress were determined by the use of tert-butyl hydroperoxide (t-BOOH) on Na(+)/H(+) exchange in a biliary epithelial cancer cell line (Mz-Cha-1). The cells were exposed to the hydroperoxide and the rate of recovery from acidosis was determined by the use of the pH-sensitive fluorochrome 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF/AM). t-BOOH reduced Na(+)/H(+) exchange activity in a dose-dependent manner. At 4 mM t-BOOH, Na(+)/H(+) exchange activity was virtually absent. This was accompanied by an increase in cytotoxicity (MTT assay). Glutathione repletion and intracellular Ca(++) chelation partially restored the Na(+)/H(+) exchange activity. Hydroperoxide seemed neither to alter the intracellular signal transduction pathways (cAMP and Ca(++) oscillations) nor the membrane distribution of the exchanger (immunostaining). Decrease in Na(+)/H(+) exchange activity in this model of oxidant stress may represent an early perturbation of membrane function, and the functional integrity of Na(+)/H(+) exchange could therefore be dependent on the glutathione redox system. PMID:21378324

  6. Skin aging and oxidative stress

    Sayeeda Ahsanuddin; Minh Lam; Baron, Elma D.

    2016-01-01

    Skin aging occurs through two main pathways, intrinsic and extrinsic. These pathways have significant interaction in contributing to the aging phenotype, which includes skin laxity, wrinkling, pigmentation irregularities, and the appearance of neoplastic skin lesions. Here, we review the critical role that oxidative stress plays in skin aging, including its effects on signaling pathways involved in skin matrix formation and degradation, proteasome activity, as well as DNA structure. Furthermo...

  7. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia. PMID:26689453

  8. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Inbal Nussbaum

    Full Text Available Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  9. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  10. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  11. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G2/M arrest and appearance of a distinctive SubG1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  12. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  13. Effects of pristane alone or combined with chloroquine on macrophage activation, oxidative stress, and TH1/TH2 skewness.

    Ouyang, Qiufang; Huang, Ziyang; Wang, Zhenhua; Chen, Xiaoqing; Ni, Jingqin; Lin, Ling

    2014-01-01

    We investigated the protective role of chloroquine against pristane-induced macrophage activation, oxidative stress, and Th1/Th2 skewness in C57BL/6J mice. Those mice were treated with pristane alone or combined with chloroquine. Hematological and biochemical parameters, macrophage phagocytic function, the oxidant/antioxidant index, cytokine for IFN-γ, TNF-α, IL-4, and IL-6, and the isotypes of IgG2a and IgG1 were determined. And the expression of T-bet/GATA-3 and IL-12/IL-10 mRNA in spleen were analyzed by real-time PCR. We found that pristane treatment for a period of 12 or 24 weeks triggered macrophage activation syndrome, characterized by hemophagocytosis in spleen and peripheral blood, enhanced lipid phagocytosis by peritoneal macrophages in vitro, erythropenia and leucopenia, increased anti-Smith, lactic dehydrogenase, triglyceride, and ferritin, as well as hypercytokinemia of IFN-γ, TNF-α, IL-4, and IL-6. In parallel, a significant increase in lipid peroxidation and a decrease in superoxide dismutase, glutathione, and catalase activity, as well as a skewed Th1/Th2 balance in spleen, were observed. However, chloroquine supplementation showed a remarkable amelioration of these abnormalities. Our data indicate that pristane administration induces macrophage activation, oxidative stress, and Th1/Th2 skewness, which can be attenuated by chloroquine. PMID:25136646

  14. THERAPEUTIC ACTIVITY OF BEE-STINGS THERAPY IN RHEUMATOID ARTHRITIS CAUSES INFLAMMATION AND OXIDATIVE STRESS IN FEMALE PATIENTS

    Abdel-Rahman M.

    2013-06-01

    Full Text Available Here the present study aimed to evaluate the therapeutic activity of bee venom acupuncture in rheumatoid arthritis (RA which causes inflammation and oxidative stress in female patients. 75 female patients were divided into 5 groups as control, bee venom acupuncture, rheumatoid arthritis, treated rheumatoid arthritis and rheumatoid arthritis stung with bee venom groups. Serum rheumatoid factor, erythrocyte sedimentation rate, C-reactive protein, prostaglandins E2 and F2α, lipid peroxidation, nitric oxide, glutathione and total antioxidant capacity levels were determined in all groups. Rheumatoid arthritis in female patients was resulted in a significant elevation in serum rheumatoid factor, erythrocyte sedimentation rate, C-reactive protein, prostaglandins E2 and F2α, lipid peroxidation and nitric oxide levels (p < 0.05 compared to control group. In addition, rheumatoid arthritis caused a significant reduction in serum glutathione and total antioxidant capacity levels. On the other hand, bee venom stings alleviated rheumatoid arthritis inflammation and oxidative stress effects, where all investigated parameters were statistically significant compared to rheumatoid arthritis group. Moreover, bee venom therapy was more potent than the routine treatment of rheumatoid arthritis in patients treated group. Bee venom acupuncture in RA patient may have therapeutic, anti-inflammatory and antioxidant activities.

  15. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. PMID:26890602

  16. Oxidative Stress and Psychological Disorders

    Salim, Samina

    2014-01-01

    Oxidative stress is an imbalance between cellular production of reactive oxygen species and the counteracting antioxidant mechanisms. The brain with its high oxygen consumption and a lipid-rich environment is considered highly susceptible to oxidative stress or redox imbalances. Therefore, the fact that oxidative stress is implicated in several mental disorders including depression, anxiety disorders, schizophrenia and bipolar disorder, is not surprising. Although several elegant studies have...

  17. BRCA1 and Oxidative Stress

    Yong Weon Yi; Hyo Jin Kang; Insoo Bae

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to tre...

  18. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase

    Fonfria, Elena; Marshall, Ian C B; Benham, Christopher D; Boyfield, Izzy; Brown, Jason D; Hill, Kerstin; Hughes, Jane P; Skaper, Stephen D.; McNulty, Shaun

    2004-01-01

    TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca2+ concentration ([Ca2+]i) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide (H2O2)-mediated TRPM2 activation using a tetracycline-inducible TRPM2-expressing cell line.In whole-cell patch-clamp recordings, intracellular adenine...

  19. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.

    Aung, Hnin Hnin; Altman, Robin; Nyunt, Tun; Kim, Jeffrey; Nuthikattu, Saivageethi; Budamagunta, Madhu; Voss, John C; Wilson, Dennis; Rutledge, John C; Villablanca, Amparo C

    2016-06-01

    Dysfunction of the cerebrovasculature plays an important role in vascular cognitive impairment (VCI). Lipotoxic injury of the systemic endothelium in response to hydrolyzed triglyceride-rich lipoproteins (TGRLs; TGRL lipolysis products) or a high-fat Western diet (WD) suggests similar mechanisms may be present in brain microvascular endothelium. We investigated the hypothesis that TGRL lipolysis products cause lipotoxic injury to brain microvascular endothelium by generating increased mitochondrial superoxide radical generation, upregulation of activating transcription factor 3 (ATF3)-dependent inflammatory pathways, and activation of cellular oxidative stress and apoptotic pathways. Human brain microvascular endothelial cells were treated with human TGRL lipolysis products that induced intracellular lipid droplet formation, mitochondrial superoxide generation, ATF3-dependent transcription of proinflammatory, stress response, and oxidative stress genes, as well as activation of proapoptotic cascades. Male apoE knockout mice were fed a high-fat/high-cholesterol WD for 2 months, and brain microvessels were isolated by laser capture microdissection. ATF3 gene transcription was elevated 8-fold in the hippocampus and cerebellar brain region of the WD-fed animals compared with chow-fed control animals. The microvascular injury phenotypes observed in vitro and in vivo were similar. ATF3 plays an important role in mediating brain microvascular responses to acute and chronic lipotoxic injury and may be an important preventative and therapeutic target for endothelial dysfunction in VCI. PMID:27087439

  20. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress.

    Pedro Miramón

    Full Text Available Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2 renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS. We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1Δ/Δ mutant, unable to detoxify NO•, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1Δ/Δ mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal

  1. Fumigant Activity of the Psidium guajava Var. Pomifera (Myrtaceae Essential Oil in Drosophila melanogaster by Means of Oxidative Stress

    Antonio Ivanildo Pinho

    2014-01-01

    Full Text Available The guava fruit, Psidium guajava var. pomifera (Myrtaceae family, is a native plant from South America. Its leaves and fruits are widely used in popular medicine in tropical and subtropical countries. Drosophila melanogaster has been used as one of the main model organisms in genetic studies since the 1900s. The extensive knowledge about this species makes it one of the most suitable organisms to study many aspects of toxic compound effects. Due to the lack of studies on the effects of the bioactive compounds present in the P. guajava var. pomifera essential oil, we performed a phytochemical characterization by CG-MS and evaluated the toxicity induced by the essential oil in the D. melanogaster insect model. In order to understand the biochemical mechanisms of toxicity, changes on the Nrf2 signaling as well as hallmarks of oxidative stress response were followed in the exposed flies. Our results showed that exposure of insects to the P. guajava oil increased mortality and locomotor deficits in parallel with an oxidative stress response signaling. Therefore, it suggested a bioinsecticidal activity for P. guajava volatile compounds by means of oxidative stress. Further studies are ongoing to identify which oil compounds are responsible for such effect.

  2. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  3. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high/ Fbw7 high/ c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high/ Fbw7 low/ c-Myc high

  4. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na+, K+-ATPase and Ca2+-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na+, K+-ATPase and Ca2+-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property

  5. Is the Oxidative Stress Really a Disease?

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  6. Evaluation of Antioxidant Activity and γ-radiation Induced Oxidative Stress Protection of Aquilaria crassna Leaf Extract

    In Asia Aquilaria has long been used in many traditional medicines due to its enrichment inseveral active ingredients such as flavonoids, tannins, and cardiac glycosides. The objective of this work is to investigate and evaluate antioxidant and γ-radiation induced oxidative stress protection activities of the Aquilaria leaf extract. The leaf was extracted by Soxhlet extractor in which both the upper fraction (filtrate) and the lower fraction (precipitate) were kept separately for evaluation. In terms of antioxidant activity, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) was used in a free radical scavenging assay. The precipitate of 3.13, 6.25, 12.50, 25.00, 50.00 and 100 μg/ml exhibited 17.70%, 33.52%, 45.80%, 60.49%, 76.30% and 85.71% DPPH inhibition, respectively. The filtrate at the same concentrations showed approximately 50% less inhibition than the precipitate. The extracts did not exhibit any cytotoxicity by MTT assay. However, the precipitate at 10, 20, 100 μg/ml and the filtrate at 50, 100, 200 μg/ ml could not protect human dermal fibroblast cells from irradiation damage when the cells were treated for 45 min or 24 h prior to exposure to gamma radiation at 0, 3 and 10 Gy. In conclusion, the Aquilaria leaf extract contained a potent antioxidant activity, but not μ-radiation induced oxidative stress protection activity.

  7. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR

  8. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity.

    Caitlin C Otto

    Full Text Available Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4-5, generate reactive oxygen species (ROS and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions.

  9. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages.

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2008-02-15

    The present study reports the antioxidant activity of ethanolic extract of Quercus infectoria galls. The antioxidant potency of galls was investigated employing several established in vitro model systems. Their protective efficacy on oxidative modulation of murine macrophages was also explored. Gall extract was found to contain a large amount of polyphenols and possess a potent reducing power. HPTLC analysis of the extract suggested it to contain 19.925% tannic acid (TA) and 8.75% gallic acid (GA). The extract potently scavenged free radicals including DPPH (IC(50)~0.5 microg/ml), ABTS (IC(50)~1 microg/ml), hydrogen peroxide (H(2)O(2)) (IC(50)~2.6 microg/ml) and hydroxyl (*OH) radicals (IC(50)~6 microg/ml). Gall extract also chelated metal ions and inhibited Fe(3+) -ascorbate-induced oxidation of protein and peroxidation of lipids. Exposure of rat peritoneal macrophages to tertiary butyl hydroperoxide (tBOOH) induced oxidative stress in them and altered their phagocytic functions. These macrophages showed elevated secretion of lysosomal hydrolases, and attenuated phagocytosis and respiratory burst. Activity of macrophage mannose receptor (MR) also diminished following oxidant exposure. Pretreatment of macrophages with gall extract preserved antioxidant armory near to control values and significantly protected against all the investigated functional mutilations. MTT assay revealed gall extract to enhance percent survival of tBOOH exposed macrophages. These results indicate that Q. infectoria galls possess potent antioxidant activity, when tested both in chemical as well as biological models. PMID:18076871

  10. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  11. BRCA1 and Oxidative Stress

    Yi, Yong Weon; Kang, Hyo Jin [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Bae, Insoo, E-mail: ib42@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2014-04-03

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  12. BRCA1 and Oxidative Stress

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers

  13. Activation of NF-κB in human skin fibroblasts by the oxidative stress generated by UVA radiation

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-κB that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-κB in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-κB appeared to be correlated with membrane damage, and activation could be prevented by α-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-κB by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-κB over all wavelength ranges examined. (Author)

  14. Activation of NF-{kappa}B in human skin fibroblasts by the oxidative stress generated by UVA radiation

    Vile, G.F.; Tanew-Iliitschew, Adrian; Tyrrell, R.M. [Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne (Switzerland)

    1995-09-01

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-{kappa}B that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-{kappa}B in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-{kappa}B appeared to be correlated with membrane damage, and activation could be prevented by {alpha}-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-{kappa}B by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-{kappa}B over all wavelength ranges examined. (Author).

  15. Skin aging and oxidative stress

    Sayeeda Ahsanuddin

    2016-05-01

    Full Text Available Skin aging occurs through two main pathways, intrinsic and extrinsic. These pathways have significant interaction in contributing to the aging phenotype, which includes skin laxity, wrinkling, pigmentation irregularities, and the appearance of neoplastic skin lesions. Here, we review the critical role that oxidative stress plays in skin aging, including its effects on signaling pathways involved in skin matrix formation and degradation, proteasome activity, as well as DNA structure. Furthermore, we discuss the recent literature surrounding the prevention and treatment of skin aging. Although current research is suggestive of the role of antioxidants in anti-aging skin therapies, further research is much needed to explore its role in humans.

  16. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. PMID:23856402

  17. Crocin, the main active saffron constituent, mitigates dichlorvos-induced oxidative stress and apoptosis in HCT-116 cells.

    Ben Salem, Intidhar; Boussabbeh, Manel; Kantaoui, Hiba; Bacha, Hassen; Abid-Essefi, Salwa

    2016-08-01

    The protective effects of Crocin (CRO), a carotenoid with wide spectrum of pharmacological effects, against the cytotoxicity and the apoptosis produced by exposure to Dichlorvos (DDVP) in HCT116 cells were investigated in this work. The cytotoxicity was monitored by cell viability, ROS generation, antioxidant enzymes activities, malondialdehyde (MDA) production and DNA fragmentation. The apoptosis was assessed through the measurement of the mitochondrial transmembrane potential (ΔΨm) and caspases activation. The results indicated that pretreatment of HCT116 cells with CRO, 2h prior to DDVP exposure, significantly increased the survival of cells, inhibited the ROS generation, modulated the activities of catalase (CAT) and superoxide dismutase (SOD) and reduced the MDA level. The reduction in mitochondrial membrane potential, DNA fragmentation and caspases activation were also inhibited by CRO. These findings suggest that CRO can protect HCT116 cells from DDVP-induced oxidative stress and apoptosis. PMID:27470340

  18. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-κB) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-κB activity. An inhibitor of NF-κB, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-κB signalling pathway by styrene is mediated via a redox-sensitive mechanism

  19. Potential benefits of physical activity during pregnancy for the reduction of gestational diabetes prevalence and oxidative stress.

    Cid, Marcela; González, Marcelo

    2016-03-01

    Changes in quality of nutrition, habits, and physical activity in modern societies increase susceptibility to obesity, which can deleteriously affect pregnancy outcome. In particular, a sedentary lifestyle causes dysfunction in blood flow, which impacts the cardiovascular function of pregnant women. The main molecular mechanism responsible for this effect is the synthesis and bioavailability of nitric oxide, a phenomenon regulated by the antioxidant capacity of endothelial cells. These alterations affect the vascular health of the mother and vascular performance of the placenta, the key organ responsible for the healthy development of the fetus. In addition to the increases in systemic vascular resistance in the mother, placental oxidative stress also affects the feto-placental blood flow. These changes can be integrated into the proteomics and metabolomics of newborns. PMID:26833143

  20. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene. PMID:26837748

  1. Oxidative Stress and HPV Carcinogenesis

    Federico De Marco

    2013-02-01

    Full Text Available Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV, represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide and iNOS (inducible nitric oxide synthase will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis

  2. Oxidative Stress, Molecular Inflammation and Sarcopenia

    Si-Jin Meng; Long-Jiang Yu

    2010-01-01

    Sarcopenia is the decline of muscle mass and strength with age. Evidence suggests that oxidative stress and molecular inflammation play important roles in age-related muscle atrophy. The two factors may interfere with the balance between protein synthesis and breakdown, cause mitochondrial dysfunction, and induce apoptosis. The purpose of this review is to discuss some of the major signaling pathways that are activated or inactivated during the oxidative stress and molecular inflammation seen...

  3. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  4. Effect of Sodium Chloride and Cadmium on the Growth, Oxidative Stress and Antioxidant Enzyme Activities of Zygosaccharomyces rouxii

    LI Chunsheng; XU Ying; JIANG Wei; LV Xin; DONG Xiaoyan

    2014-01-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly under-stood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6%NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory ef-fect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  5. Biochemical assessment of oxidative stress by the use of açai (Euterpe oleracea Martius) gel in physically active individuals

    Daniela Soares VIANA; Carvalho, Lucia Maria Jaeger de; Mirian Ribeiro Leite MOURA; Jacqueline Carvalho PEIXOTO; Carvalho, José Luiz Viana de

    2016-01-01

    Abstract The relation between oxidative stress and inflammation induced by diseases and exercise has increased the interest in the benefits of antioxidant supplements in the improvement of health and physical and mental performance. The aim of this study was to evaluate the effectiveness of açai gel in reducing oxidative stress in individuals engaged in physical activities as well as their acceptance. Sensory evaluation was performed to determine its acceptability and the biochemical paramete...

  6. Mechanisms Underlying the Delayed Activation of the Cap1 Transcription Factor in Candida albicans following Combinatorial Oxidative and Cationic Stress Important for Phagocytic Potency

    Kos, Iaroslava; Patterson, Miranda J.; Znaidi, Sadri; Kaloriti, Despoina; da Silva Dantas, Alessandra; Herrero-de-Dios, Carmen M.; d’Enfert, Christophe; Brown, Alistair J. P.

    2016-01-01

    ABSTRACT Following phagocytosis, microbes are exposed to an array of antimicrobial weapons that include reactive oxygen species (ROS) and cationic fluxes. This is significant as combinations of oxidative and cationic stresses are much more potent than the corresponding single stresses, triggering the synergistic killing of the fungal pathogen Candida albicans by “stress pathway interference.” Previously we demonstrated that combinatorial oxidative plus cationic stress triggers a dramatic increase in intracellular ROS levels compared to oxidative stress alone. Here we show that activation of Cap1, the major regulator of antioxidant gene expression in C. albicans, is significantly delayed in response to combinatorial stress treatments and to high levels of H2O2. Cap1 is normally oxidized in response to H2O2; this masks the nuclear export sequence, resulting in the rapid nuclear accumulation of Cap1 and the induction of Cap1-dependent genes. Here we demonstrate that following exposure of cells to combinatorial stress or to high levels of H2O2, Cap1 becomes trapped in a partially oxidized form, Cap1OX-1. Notably, Cap1-dependent gene expression is not induced when Cap1 is in this partially oxidized form. However, while Cap1OX-1 readily accumulates in the nucleus and binds to target genes following high-H2O2 stress, the nuclear accumulation of Cap1OX-1 following combinatorial H2O2 and NaCl stress is delayed due to a cationic stress-enhanced interaction with the Crm1 nuclear export factor. These findings define novel mechanisms that delay activation of the Cap1 transcription factor, thus preventing the rapid activation of the stress responses vital for the survival of C. albicans within the host. PMID:27025253

  7. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2.

    Cardozo, Ludmila F M F; Pedruzzi, Liliana M; Stenvinkel, Peter; Stockler-Pinto, Milena B; Daleprane, Julio B; Leite, Maurilo; Mafra, Denise

    2013-08-01

    The nuclear factor E2-related factor 2 (Nrf2) plays an important role in cellular protection against cancer, renal, pulmonary, cardiovascular and neurodegenerative diseases where oxidative stress and inflammation are common conditions. The Nrf2 regulates the expression of detoxifying enzymes by recognizing the human Antioxidant Response Element (ARE) binding site and it can regulate antioxidant and anti-inflammatory cellular responses, playing an important protective role on the development of the diseases. Studies designed to investigate how effective Nrf2 activators or modulators are need to be initiated. Several recent studies have shown that nutritional compounds can modulate the activation of Nrf2-Keap1 system. This review aims to discuss some of the key nutritional compounds that promote the activation of Nrf2, which may have impact on the human health. PMID:23643732

  8. Effect of Proline-Containing Oligopeptides PGP and RGP on Proliferative and Protein-Synthesizing Activity of Cultured Pulmonary Fibroblasts under Conditions of Oxidative Stress.

    Tolstenok, I V; Fleishman, M Yu; Sazonova, E N; Lebed'ko, O A; Maltseva, I M; Myasoedov, N F; Timoshin, S S

    2016-05-01

    We studied the effect of glyprolines Pro-Gly-Pro (PGP) and Arg-Gly-Pro (RGP) on the primary culture of pulmonary fibroblasts from newborn albino rats under normal conditions and during oxidative stress. Under physiological conditions, the peptides had no effect on parameters of cell division. Hydrogen peroxide induced intensive oxidative stress accompanied by suppression of protein-synthesizing function. When hydrogen peroxide was added to the culture containing the test peptides, correction of the oxidative status was observed accompanied by activation of DNA-synthesizing activity and inhibition of lucigenin-dependent chemiluminescence. PMID:27265140

  9. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918530

  10. Cardiac peroxisome proliferator-activated receptor-γ expression is modulated by oxidative stress in acutely infrasound-exposed cardiomyocytes.

    Pei, Zhaohui; Meng, Rongsen; Zhuang, Zhiqiang; Zhao, Yiqiao; Liu, Fangpeng; Zhu, Miao-Zhang; Li, Ruiman

    2013-12-01

    The aim of the present study was to examine the effects of acute infrasound exposure on oxidative damage and investigate the underlying mechanisms in rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured and exposed to infrasound for several days. In the study, the expression of CAT, GPx, SOD1, and SOD2 and their activities in rat cardiomyocytes in infrasound exposure groups were significantly decreased compared to those in the various time controls, along with significantly higher levels of O2 (-) and H2O2. Decreased cardiac cell viability was not observed in various time controls. A significant reduction in cardiac cell viability was observed in the infrasound group compared to the control, while significantly increased cardiac cell viability was observed in the infrasound exposure and rosiglitazone pretreatment group. Compared to the control, rosiglitazone significantly upregulated CAT, GPx, SOD1, and SOD2 expression and their activities in rat cardiomyocytes exposed to infrasound, while the levels of O2 (-) or H2O2 were significantly decreased. A potential link between a significant downregulation of PPAR-γ expression in rat cardiomyocytes in the infrasound group was compared to the control and infrasound-induced oxidative stress. These findings indicate that infrasound can induce oxidative damage in rat cardiomyocytes by inactivating PPAR-γ. PMID:23632742

  11. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice.

    Calixto-Campos, Cássia; Carvalho, Thacyana T; Hohmann, Miriam S N; Pinho-Ribeiro, Felipe A; Fattori, Victor; Manchope, Marília F; Zarpelon, Ana C; Baracat, Marcela M; Georgetti, Sandra R; Casagrande, Rubia; Verri, Waldiceu A

    2015-08-28

    Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-β-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production. PMID:26192250

  12. Halothane induces oxidative stress and NF-κB activation in rat liver: Protective effect of propofol

    We investigated the effects of propofol on markers of oxidative stress, nuclear factor kappa B (NF-κB) activation and inducible nitric oxide synthase (iNOS) expression in liver of rats treated with halothane under hypoxic conditions. Male Wistar rats received halothane 1%/oxygen 14%, oxygen 14%/propofol 60 mg kg-1 i.p., or halothane 1%/oxygen 14%/propofol 60 mg kg-1 i.p. Morphological examination showed complete loss of architecture with massive necrosis of parenchyma in the halothane group, while only minor histological abnormalities were observed in rats receiving halothane plus propofol. The cytosolic concentration of TBARS and the hydroperoxide-initiated chemiluminescence increased significantly in the liver of animals from the halothane group (+62% and +40% versus controls, respectively), and this increase was abolished by propofol administration. Halothane induced a marked activation of NF-κB (+180%), and resulted in a significant decrease of the nonphosphorylated form of the inhibitor IκBα (-53%), while phosphorylated IκBα protein level was markedly increased (+146%). Propofol administration lowered these effects to +30% (NF-κB), -26% (nonphosphorylated IκBα), and +56% (phosphorylated IκBα). The increase of iNOS protein level (+59%) induced by halothane was significantly reduced to +22% by additional administration of propofol. Results obtained show that administration of propofol inhibits oxidative stress, NF-κB nuclear traslocation and iNOS overexpression in liver of rats receiving halothane. Propofol treatment, by inhibiting the NF-κB signal transduction pathway, might block the production of noxious mediators involved in the development of halothane-induced injury

  13. Oxidative Stress and Neurodegenerative Disorders

    Jie Li; Wuliji O; Wei Li; Zhi-Gang Jiang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. T...

  14. Effects of L-carnitine against oxidative stress in human hepatocytes: involvement of peroxisome proliferator-activated receptor alpha

    Li Jin-Lian

    2012-03-01

    Full Text Available Abstract Background Excessive oxidative stress and lipid peroxidation have been demonstrated to play important roles in the production of liver damage. L-carnitine is a natural substance and acts as a carrier for fatty acids across the inner mitochondrial membrane for subsequent beta-oxidation. It is also an antioxidant that reduces metabolic stress in the cells. Recent years L-carnitine has been proposed for treatment of various kinds of disease, including liver injury. This study was conducted to evaluate the protective effect of L-carnitine against hydrogen peroxide (H2O2-induced cytotoxicity in a normal human hepatocyte cell line, HL7702. Methods We analyzed cytotoxicity using MTT assay and lactate dehydrogenase (LDH release. Antioxidant activity and lipid peroxidation were estimated by reactive oxygen species (ROS levels, activities and protein expressions of superoxide dismutase (SOD and catalase (CAT, and malondialdehyde (MDA formation. Expressions of peroxisome proliferator-activated receptor (PPAR-alpha and its target genes were evaluated by RT-PCR or western blotting. The role of PPAR-alpha in L-carnitine-enhanced expression of SOD and CAT was also explored. Statistical analysis was performed by a one-way analysis of variance, and its significance was assessed by Dennett's post-hoc test. Results The results showed that L-carnitine protected HL7702 cells against cytotoxity induced by H2O2. This protection was related to the scavenging of ROS, the promotion of SOD and CAT activity and expression, and the prevention of lipid peroxidation in cultured HL7702 cells. The decreased expressions of PPAR-alpha, carnitine palmitoyl transferase 1 (CPT1 and acyl-CoA oxidase (ACOX induced by H2O2 can be attenuated by L-carnitine. Besides, we also found that the promotion of SOD and CAT protein expression induced by L-carnitine was blocked by PPAR-alpha inhibitor MK886. Conclusions Taken together, our findings suggest that L-carnitine could protect HL

  15. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.

    Nady Braidy

    Full Text Available The cofactor nicotinamide adenine dinucleotide (NAD+ has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose polymerase (PARP, an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months compared to young (i.e. 3 month old rats. These changes in [NAD(H] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.

  16. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  17. PPARα agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors α (PPARα) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  18. Oxidative Stress and Major Depression

    Bajpai, Ashutosh; Verma, Akhilesh Kumar; Srivastava, Mona; Srivastava, Ragini

    2014-01-01

    Background: Major causative factor for major depression is inflammation, autoimmune tissue damage and prolonged psychological stress, which leads to oxidative stress. The aim of this study was to know the association of free radicals and antioxidant status in subjects suffering from major depression.

  19. Oxidative stress and damage to erythrocytes in patients with chronic obstructive pulmonary disease--changes in ATPase and acetylcholinesterase activity.

    Bukowska, Bożena; Sicińska, Paulina; Pająk, Aneta; Koceva-Chyla, Aneta; Pietras, Tadeusz; Pszczółkowska, Anna; Górski, Paweł; Koter-Michalak, Maria

    2015-12-01

    The study indicates, for the first time, the changes in both ATPase and AChE activities in the membrane of red blood cells of patients diagnosed with COPD. Chronic obstructive pulmonary disease (COPD) is one of the most common and severe lung disorders. We examined the impact of COPD on redox balance and properties of the membrane of red blood cells. The study involved 30 patients with COPD and 18 healthy subjects. An increase in lipid peroxidation products and a decrease in the content of -SH groups in the membrane of red blood cells in patients with COPD were observed. Moreover, an increase in the activity of glutathione peroxidase and a decrease in superoxide dismutase, but not in catalase activity, were found as well. Significant changes in activities of erythrocyte membrane enzymes in COPD patients were also evident demonstrated by a considerably lowered ATPase activity and elevated AChE activity. Changes in the structure and function of red blood cells observed in COPD patients, together with changes in the activity of the key membrane enzymes (ATPases and AChE), can result from the imbalance of redox status of these cells due to extensive oxidative stress induced by COPD disease. PMID:26369587

  20. Inflammation, Oxidative Stress, and Obesity

    José A. Morales-González

    2011-05-01

    Full Text Available Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6; other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS, generating a process known as oxidative stress (OS. Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO, and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease.

  1. Vitamin B6 Supplementation Improves Oxidative Stress and Enhances Serum Paraoxonase/Arylesterase Activities in Streptozotocin-Induced Diabetic Rats

    Sibel Taş

    2014-01-01

    Full Text Available The purpose of this study was to investigate the effects of vitamin B6 (Vit B6 on oxidant and antioxidant status in streptozotocin-induced diabetic rats. Thirty-two Wistar rats were divided into four groups: control (C, control + Vit B6 group (C + Vit B6, diabetes (D, and diabetes + Vit B6 group (D + Vit B6. Vit B6 (4 mg/kg body weight was administered in drinking water for 4 weeks after the induction of diabetes. Vitamin B6 reduced serum total cholesterol level in the C + Vit B6 (P < 0.01 and D + Vit B6 (P < 0.05 groups. Plasma and tissue malondialdehyde levels were reduced in the C + Vit B6 and D + Vit B6 groups. Whole blood glutathione peroxidase (GSH-Px and erythrocyte superoxide dismutase (SOD activities were higher in the D group (P < 0.05. GSH-Px and SOD activities were increased in C + Vit B6 group while these parameters decreased in the D + Vit B6 group. Paraoxonase and arylesterase activities were decreased in the D group while they were increased in C + Vit B6 and D + Vit B6 groups. The results of present study suggest that vitamin B6 supplementation might be a promising adjunctive agent for improving oxidative stress and metabolic disturbances and for preventing diabetic complications including atherogenesis.

  2. The Role Oxidative Stress in the Pathogenesis of Eye Diseases: Current Status and a Dual Role of Physical Activity.

    Kruk, Joanna; Kubasik-Kladna, Katarzyna; Aboul-Enein, Hassan Y

    2015-01-01

    Extensive research during the past three decades has demonstrated the mechanisms by which an imbalance in the redox status of prooxidant/antioxidant reactions in cells with advantage of prooxidant reactions (oxidative stress, OS) can cause peroxidation of nucleic acids, bases, lipids, proteins and carbohydrates, thus resulting in their damage. These actions result in stimulation of signal transduction pathways and activation of transcription factors that can lead to chronic inflammation and cause tissue dysfunction. The most important oxidants are reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by various metabolic pathways, physical, chemical and biological factors, and pathological conditions. The eye is one of the major target of the ROS/RNS attack due to exposition on several environmental factors like high pressure of oxygen, light exposure, ultraviolet rays, ionizing radiation, chemical pollutants, irritant, and pathogenic microbes, which are able to shift the redox status of a cell towards oxidizing conditions. There is increasing evidence indicating that persistent OS contributes to the development of many ocular diseases. Increases in the accumulation of hydrogen peroxide and markers of the oxidative damage to DNA, lipids, proteins observed in several eye diseases and usage of antioxidants in their treatment and prevention emphasize the involvement of OS pathways. This paper summarizes the present state of knowledge in the involvement of OS in the etiology of non-cancer ocular diseases (dry eye syndrome; corneal and conjunctive diseases; cataract; glaucoma; age-related macular degeneration; retinitis pigmentosa; diabetic retinopathy, autoimmune and inflammatory uveitis) and cancer ocular diseases (melanoma; retinoblastoma; lymphoma). The paper also discusses the potential applications of antioxidants in the prevention of eye diseases and shows a duality of physical exercise actions: protection against the ROS/RNS damage by

  3. Nitro-oxidative Stress Is Involved in Anticancer Activity of 17β-Estradiol Derivative in Neuroblastoma Cells.

    Gorska, Magdalena; Kuban-Jankowska, Alicja; Milczarek, Ryszard; Wozniak, Michal

    2016-04-01

    Neuroblastoma is one of the most common childhood malignancies and the primary cause of death from pediatric cancer. Derivatives of 17β-estradiol, 2-methoxyestradiol, as well as selective estrogen receptor modulators, such as fulvestrant, are novel potentially active anticancer agents. In particular, 2-methoxyestradiol is effective in treatment of numerous malignancies, including breast and prostate cancer, Ewing sarcoma, and osteosarcoma. Herein, we treated neuroblastoma SH-SY5Y cells with physiologically and pharmacologically relevant concentrations of 2-methoxyestradiol. We used flow cytometry in order to determine cell viability, cell death, level of nitric oxide and mitochondrial membrane potential. We demonstrated that at pharmacologically relevant concentrations, 2-methoxyestradiol results in induction of apoptosis of neuroblastoma SH-SY5Y cells via nitric oxide generation and reduction of mitochondrial membrane potential. Based on the obtained data, we propose that 2-methoxyestradiol may be a natural modulator of cancer cell death and survival through nitro-oxidative stress-dependent mechanisms. Moreover, the results confirm the efficiency of 2-methoxyestradiol in treatment of neuroblastoma. PMID:27069147

  4. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.

    Cheng, Yedong; Di, Shouyin; Fan, Chongxi; Cai, Liping; Gao, Chao; Jiang, Peng; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Dong, Yushu; Li, Tian; Wu, Guiling; Lv, Jianjun; Yang, Yang

    2016-08-01

    Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells. PMID:27270300

  5. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  6. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC50 = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  7. Chronic photo-oxidative stress and subsequent MCP-1 activation as causative factors for age-related macular degeneration.

    Suzuki, Mihoko; Tsujikawa, Motokazu; Itabe, Hiroyuki; Du, Zhao-Jiang; Xie, Ping; Matsumura, Nagakazu; Fu, Xiaoming; Zhang, Renliang; Sonoda, Koh-hei; Egashira, Kensuke; Hazen, Stanley L; Kamei, Motohiro

    2012-05-15

    Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. Although pathogenic factors, such as oxidative stress, inflammation and genetics are thought to contribute to the development of AMD, little is known about the relationships and priorities between these factors. Here, we show that chronic photo-oxidative stress is an environmental factor involved in AMD pathogenesis. We first demonstrated that exposure to light induced phospholipid oxidation in the mouse retina, which was more prominent in aged animals. The induced oxidized phospholipids led to an increase in the expression of monocyte chemoattractant protein-1, which then resulted in macrophage accumulation, an inflammatory process. Antioxidant treatment prevented light-induced phospholipid oxidation and the subsequent increase of monocyte chemoattractant protein-1 (also known as C-C motif chemokine 2; CCL2), which are the beginnings of the light-induced changes. Subretinal application of oxidized phospholipids induced choroidal neovascularization, a characteristic feature of wet-type AMD, which was inhibited by blocking monocyte chemoattractant protein-1. These findings strongly suggest that a sequential cascade from photic stress to inflammatory processes through phospholipid oxidation has an important role in AMD pathogenesis. Finally, we succeeded in mimicking human AMD in mice with low-level, long-term photic stress, in which characteristic pathological changes, including choroidal neovascularization formation, were observed. Therefore, we propose a consecutive pathogenic pathway involving photic stress, oxidation of phospholipids and chronic inflammation, leading to angiogenesis. These findings add to the current understanding of AMD pathology and suggest protection from oxidative stress or suppression of the subsequent inflammation as new potential therapeutic targets for AMD. PMID:22357958

  8. [Heme metabolism and oxidative stress].

    Kaliman, P A; Barannik, T B

    2001-01-01

    The role of heme metabolism in oxidative stress development and defense reactions formation in mammals under different stress factors are discussed in the article. Heme metabolism is considered as the totality of synthesis, degradation, transport and exchange processes of exogenous heme and heme liberated from erythrocyte hemoglobin under erythrocyte aging and hemolysis. The literature data presented display normal heme metabolism including mammals heme-binding proteins and intracellular free heme pool and heme metabolism alterations under oxidative stress development. The main attention is focused to the prooxidant action of heme, the interaction of heme transport and lipid exchange, and to the heme metabolism key enzymes (delta-aminolevulinate synthase and heme oxygenase), serum heme-binding protein hemopexin and intracellular heme-binding proteins participating in metabolism adaptation under the action of factors, which cause oxidative stress. PMID:11599427

  9. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  10. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells.

    Smirnova, Olga A; Isaguliants, Maria G; Hyvonen, Mervi T; Keinanen, Tuomo A; Tunitskaya, Vera L; Vepsalainen, Jouko; Alhonen, Leena; Kochetkov, Sergey N; Ivanov, Alexander V

    2012-09-01

    Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress. PMID:22579641

  11. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  12. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  13. The oxidative stress hypothesis in Alzheimer's disease.

    Padurariu, Manuela; Ciobica, Alin; Lefter, Radu; Serban, Ionela Lacramioara; Stefanescu, Cristinel; Chirita, Roxana

    2013-12-01

    Oxidative stress may be involved in many somatic and psychiatric pathological states including dementia. The hypothesis of oxidative stress involvement in dementia is supported by much scientific data through biochemical, genetic and molecular studies. Thus, there are many reports of an increased level of the markers for oxidative damage, alterations in the specific activity of the antioxidant system, mutations in specific genes, mitochondrial disturbances and also several connections between oxidative stress and amyloid plaques. Despite these evidence and clinical approaches in using antioxidant therapy in dementia treatment, studies have failed to prove a clear benefit for antioxidant treatment in dementia. Hence, there is a need for further research regarding antioxidant therapy in very early stages of dementia. PMID:24247053

  14. Oxidative Stress in Placenta: Health and Diseases

    Fan Wu

    2015-01-01

    Full Text Available During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed.

  15. Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis.

    Polachini, Carla Roberta Nunes; Spanevello, Roselia Maria; Zanini, Daniela; Baldissarelli, Jucimara; Pereira, Luciane Belmonte; Schetinger, Maria Rosa Chitolina; da Cruz, Ivana Beatrice Mânica; Assmann, Charles Elias; Bagatini, Margarete Dulce; Morsch, Vera Maria

    2016-02-01

    Multiple sclerosis (MS) is an autoimmune neurological disorder of unknown etiology. Oxidative stress and alterations in vitamin D levels have been implicated in the pathophysiology of MS. The aim of this study was to investigate δ-aminolevulinate dehydratase (δ-ALA-D) activity as well as the levels of vitamin D, lipid peroxidation levels, carbonyl protein content, DNA damage, superoxide dismutase (SOD) and catalase (CAT) activities, and the vitamin C, vitamin E, and non-protein thiol (NPSH) content in samples from patients with the relapsing-remitting form of MS (RRMS). The study population consisted of 29 RRMS patients and 29 healthy subjects. Twelve milliliters of blood was obtained from each individual and used for biochemical determinations. The results showed that δ-ALA-D and CAT activities were significantly increased, while SOD activity was decreased in the whole blood of RRMS patients compared to the control group (P vitamin C, vitamin E, NPSH, and vitamin D were significantly decreased in RRMS patients in relation to the healthy individuals (P vitamin D levels may contribute to the pathophysiology of MS. PMID:26690779

  16. Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line

    Matos, MT; Duarte, CB; Gonçalo, Margarida; Lopes, MC

    2005-01-01

    The intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse sk...

  17. Oxidative Stress, Tumor Microenvironment, and Metabolic Reprogramming: A Diabolic Liaison

    Paola Chiarugi; Tania Fiaschi

    2012-01-01

    Conversely to normal cells, where deregulated oxidative stress drives the activation of death pathways, malignant cells exploit oxidative milieu for its advantage. Cancer cells are located in a very complex microenvironment together with stromal components that participate to enhance oxidative stress to promote tumor progression. Indeed, convincing experimental and clinical evidence underline the key role of oxidative stress in several tumor aspects thus affecting several characteristics of c...

  18. Comparison of soluble guanylate cyclase stimulators and activators in models of cardiovascular disease associated with oxidative stress

    Melissa H Costell

    2012-07-01

    Full Text Available Soluble guanylate cyclase (sGC, the primary mediator of nitric oxide (NO bioactivity, exists as reduced (NO-sensitive and oxidized (NO-insensitive forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A (a non-depressor dose and a higher dose which lowered mean arterial pressure [MAP] by 5-10mmHg and equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R and spontaneously hypertensive stroke prone rats (SHR-SP on a high salt/fat diet (HSFD. In I/R, neither compound reduced infarct size. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria and mortality, caused left ventricular hypertrophy and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552 but not GSK2181236A decreased urine output and mortality. Conversely, the low dose of GSK2181236A attenuated cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and mortality. In addition, the high dose of BAY 60-4552 reduced urine output, microalbuminuria and MAP. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the sGC oxidative state is responsible for the vascular dysfunction. In summary, GSK2181236A and BAY 60-4552 provide partial benefit against hypertension-induced end organ damage. The differential beneficial effects observed between these compounds could reflect tissue-specific changes in the s

  19. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity

    Effective nutritional approaches to counteract the negative effects of stress would both improve human health and provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed a standard diet or the same diet supplemented with yeast extract (Alphamune™, YE), ...

  20. Controlled exposure to diesel exhaust and traffic noise - Effects on oxidative stress and activation in mononuclear blood cells

    Hemmingsen, Jette Gjerke; Møller, Peter; Jantzen, Kim;

    2015-01-01

    Particulate air pollution increases risk of cancer and cardiopulmonary disease, partly through oxidative stress. Traffic-related noise increases risk of cardiovascular disease and may cause oxidative stress. In this controlled random sequence study, 18 healthy subjects were exposed for 3h to diesel...... exhaust (DE) at 276μg/m(3) from a passenger car or filtered air, with co-exposure to traffic noise at 48 or 75dB(A). Gene expression markers of inflammation, (interleukin-8 and tumor necrosis factor), oxidative stress (heme oxygenase (decycling-1)) and DNA repair (8-oxoguanine DNA glycosylase (OGG1)) were...... unaltered in peripheral blood mononuclear cells (PBMCs). No significant differences in DNA damage levels, measured by the comet assay, were observed after DE exposure, whereas exposure to high noise levels was associated with significantly increased levels of hOGG1-sensitive sites in PBMCs. Urinary levels...

  1. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H2O2), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H2O2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H2O2-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H2O2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H2O2-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes in HSCs under

  2. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments. PMID:26880140

  3. Hypoxia/oxidative stress alters the pharmacokinetics of CPU86017-RS through mitochondrial dysfunction and NADPH oxidase activation

    Gao, Jie; Ding, Xuan-Sheng; Zhang, Yu-mao; Dai, De-zai; Liu, Mei; Zhang, Can; Dai, Yin

    2013-01-01

    Aim: Hypoxia/oxidative stress can alter the pharmacokinetics (PK) of CPU86017-RS, a novel antiarrhythmic agent. The aim of this study was to investigate the mechanisms underlying the alteration of PK of CPU86017-RS by hypoxia/oxidative stress. Methods: Male SD rats exposed to normal or intermittent hypoxia (10% O2) were administered CPU86017-RS (20, 40 or 80 mg/kg, ig) for 8 consecutive days. The PK parameters of CPU86017-RS were examined on d 8. In a separate set of experiments, female SD ra...

  4. Ethanol and oxidative stress.

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  5. Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway

    Perfluoroalkyl acid (PFAA)-induced apoptosis has been reported in many cell types. However, minimal information on its mode of action is available. This study explored the possible involvement of apoptotic signaling pathways in a nine-carbon-chain length PFAA-perfluorononanoic acid (PFNA)-induced splenocyte apoptosis. After a 14-day exposure to PFNA, rat spleens showed dose-dependent levels of apoptosis. The production of pro-inflammatory and anti-inflammatory cytokines was significantly increased and decreased, respectively. However, protein levels of tumor necrosis factor receptor 1 (TNFR1), fas-associated protein with death domain (FADD), caspase 8 and caspase 3, which are involved in inflammation-related and caspase-dependent apoptosis, were discordant. Peroxisome proliferator-activated receptors alpha (PPARα) and PPARγ genes expression was up-regulated in rats treated with 3 or 5 mg/kg/day of PFNA, and the level of hydrogen peroxide (H2O2) increased concurrently in rats treated with the highest dose. Moreover, superoxide dismutase (SOD) activity and Bcl-2 protein levels were dramatically decreased in spleens after treatment with 3 and 5 mg/kg/day of PFNA. However, protein levels of Bax were unchanged. Apoptosis-inducing factor (AIF), an initiator of caspase-independent apoptosis, was significantly increased in all PFNA-dosed rats. Thus, oxidative stress and the activation of a caspase-independent apoptotic signaling pathway contributed to PFNA-induced apoptosis in rat splenocytes.

  6. Hemoglobin oxidative stress

    Venous blood obtained from healthy donors and from patients suffering from breast cancer have been treated with acetylphenylhydrazine (APH) for different time. Moessbauer spectra of the packed red cells have been recorded and compared. The largest difference occurs after 50 min of treatment with APH where the patient samples show a broad spectral pattern indicating an advanced hemoglobin oxidation. These results may have some relevance in early cancer diagnosis

  7. Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor

    Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He

    2016-08-01

    Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm–800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10‑12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.

  8. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress

    Cheng-Chin Hsu

    2015-04-01

    Full Text Available Background: Vitamin B6 may directly or indirectly play a role in oxidative stress and the antioxidant defense system. Objective: The purpose of this study was to examine the associations of vitamin B6 status with cysteine, glutathione, and its related enzyme activities in mice with homocysteine-induced oxidative stress. Design: Four-week-old male BALB/c mice were weighed and divided into one of four dietary treatment groups fed either a normal diet (as a control group and a homocysteine group, a vitamin B6-deficient diet (as a B6-deficient group, or a B6-supplemented diet (a pyridoxine-HCl-free diet supplemented with 14 mg/kg of pyridoxine-HCl, as a B6 supplement group for 28 days. Homocysteine thiolactone was then added to drinking water in three groups for 21 days to induce oxidative stress. At the end of the study, mice were sacrificed by decapitation and blood and liver samples were obtained. Results: Mice with vitamin B6-deficient diet had the highest homocysteine concentration in plasma and liver among groups. Significantly increased hepatic malondialdehyde levels were observed in the vitamin B6-deficient group. Among homocysteine-treated groups, mice with vitamin B6-deficient diet had the highest plasma glutathione concentration and relatively lower hepatic glutathione concentration. The glutathione peroxidase activities remained relatively stable in plasma and liver whether vitamin B6 was adequate, deficient, or supplemented. Conclusions: Mice with deficient vitamin B6 intakes had an aggravate effect under homocysteine-induced oxidative stress. The vitamin B6-deficient status seems to mediate the oxidative stress in connection with the redistribution of glutathione from liver to plasma, but not further affect glutathione-related enzyme activities in mice with homocysteine-induced oxidative stress.

  9. HEPATOPROTECTIVE AND ANTIOXIDANT ACTIVITY OF COCCINIA GRANDIS ROOT EXTRACT AGAINST PARACETAMOL INDUCED HEPATIC OXIDATIVE STRESS IN WISTAR ALBINO RATS

    Moideen K

    2011-03-01

    Full Text Available The present study was conducted to evaluate the hepatoprotective and antioxidant activity of Coccinia grandis root extract against paracetamol induced hepatic oxidative stress in wistar albino rats. The ethanolic extracts of Coccinia grandis (200mg/kg and 400mg/kg were administered orally to the animals and hepatotoxicity induced by paracetamol (750mg/kg. The extracts were administered orally by suspending in 0.5% Carboxy methyl cellulose solution. Silymarin (25mg/kg was given as reference standard. The ethanolic extract of Coccinia grandis roots produced a significant (P<0.01 decrease in SGOT, SGPT, SALP, Total bilirubin and Direct bilirubin and it also produced a significant (P<0.01 increase in Total protein when compared to paracetamol treated group indicating hepatoprotective action. The ethanolic extract of Coccinia grandis root produced a significant (P<0.01 increase in SOD, CAT and GSH activity when compared to paracetamol treated group and it also produced significant (P<0.01 increase in activity of Px and GPx at 400mg/kg dose, indicating antioxidant activity. But it produced less significant in Px at 200mg/kg dose and it showed no significant activity in GPx at 200mg/kg dose. The histopathological study of liver section of rat treated with ethanolic extract of Coccinia grandis (200 and 400 mg/kg showed mild hepatocyte degeneration. It was concluded from the result that ethanolic extract of Coccinia grandis possesses hepatoprotective and antioxidant activity against paracetamol induced hepatotoxicity in wistar albino rats.

  10. Oxidative Stress, Molecular Inflammation and Sarcopenia

    Si-Jin Meng

    2010-04-01

    Full Text Available Sarcopenia is the decline of muscle mass and strength with age. Evidence suggests that oxidative stress and molecular inflammation play important roles in age-related muscle atrophy. The two factors may interfere with the balance between protein synthesis and breakdown, cause mitochondrial dysfunction, and induce apoptosis. The purpose of this review is to discuss some of the major signaling pathways that are activated or inactivated during the oxidative stress and molecular inflammation seen in aged skeletal muscle. Combined interventions that may be required to reverse sarcopenia, such as exercise, caloric restriction, and nutrition, will also be discussed.

  11. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress

    Huang, Yi-Chia; Hsu, Cheng-Chin; Cheng, Chien-Hsiang; Hsu, Chin-Lin; Lee, Wan-Ju; Huang, Shih-Chien

    2015-01-01

    Background: Vitamin B6 may directly or indirectly play a role in oxidative stress and the antioxidant defense system.Objective: The purpose of this study was to examine the associations of vitamin B6 status with cysteine, glutathione, and its related enzyme activities in mice with homocysteine-induced oxidative stress.Design: Four-week-old male BALB/c mice were weighed and divided into one of four dietary treatment groups fed either a normal diet (as a control group and a homocysteine group),...

  12. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes

    Wang, Jieting; Deng, Xiaobei; Zhang, Fang; Chen, Deliang; Ding, Wenjun

    2014-03-01

    It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP exposure. ZnO NP exposure was found to reduce cell viability in MTT assays, increase lactate dehydrogenase (LDH) release, stimulate intracellular reactive oxygen species (ROS) generation, and elicit caspase-3 activation in a dose- and time-dependent manner. Apoptosis occurred after ZnO NP exposure as evidenced by nuclear condensation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. A decrease in mitochondrial membrane potential (MMP) with a concomitant increase in the expression of Bax/Bcl-2 ratio suggested that the mitochondria also mediated the pathway involved in ZnO NP-induced apoptosis. In addition, exposure of the cultured cells to ZnO NPs led to phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK). Moreover, JNK inhibitor (SP600125) significantly reduced ZnO NP-induced cleaved PARP and cleaved caspase-3 expression, but not ERK inhibitor (U0126) or p38 MAPK inhibitor (SB203580), indicating that JNK signaling pathway is involved in ZnO NP-induced apoptosis in primary astrocytes.

  13. Biochemical assessment of oxidative stress by the use of açai (Euterpe oleracea Martius gel in physically active individuals

    Daniela Soares VIANA

    2016-01-01

    Full Text Available Abstract The relation between oxidative stress and inflammation induced by diseases and exercise has increased the interest in the benefits of antioxidant supplements in the improvement of health and physical and mental performance. The aim of this study was to evaluate the effectiveness of açai gel in reducing oxidative stress in individuals engaged in physical activities as well as their acceptance. Sensory evaluation was performed to determine its acceptability and the biochemical parameters related to immune profile and biomarkers of muscle, liver and oxidative stress, with and without the use of gel were evaluated. The appearance, sweetness and overall impression of the açai gel were considered good. It was observed a significant increase in CK enzyme, without the gel as well as the oxidative stress biomarkers, it was observed that the MDA (with and without gel a significant increase (p < 0.05. Through biochemical evaluation, it is concluded that the gel provided protection for some of parameters studied, since it modulated the immunological parameter reducing the lymphocyte activity and muscular stress. However, more studies must be carried out with a larger number of individuals to confirm the gel functionality.

  14. Oxidative Stress and Neurodegenerative Disorders

    Jie Li

    2013-12-01

    Full Text Available Living cells continually generate reactive oxygen species (ROS through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.

  15. Oxidative stress in psoriasis and potential therapeutic use of antioxidants.

    Lin, Xiran; Huang, Tian

    2016-06-01

    The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity. PMID:27098416

  16. Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death

    Vliegenthart, J.F.G.; Maccarrone, M.; Zadelhoff, G. van; Veldink, G.A.; Finazzi Agrò, A.

    2000-01-01

    Oxidative stress caused by hydrogen peroxide (H2O2) triggers the hypersensitive response of plants to pathogens. Here, short pulses of H2O2 are shown to cause death of lentil (Lens culinaris) root protoplasts. Dead cells showed DNA fragmentation and ladder formation, typical hallmarks of apoptosis (

  17. Deranged Bioenergetics and Defective Redox Capacity in T Lymphocytes and Neutrophils Are Related to Cellular Dysfunction and Increased Oxidative Stress in Patients with Active Systemic Lupus Erythematosus

    Ko-Jen Li

    2012-01-01

    Full Text Available Urinary excretion of N-benzoyl-glycyl-Nε-(hexanonyllysine, a biomarker of oxidative stress, was higher in 26 patients with active systemic lupus erythematosus (SLE than in 11 non-SLE patients with connective tissue diseases and in 14 healthy volunteers. We hypothesized that increased oxidative stress in active SLE might be attributable to deranged bioenergetics, defective reduction-oxidation (redox capacity, or other factors. We demonstrated that, compared to normal cells, T lymphocytes (T and polymorphonuclear neutrophils (PMN of active SLE showed defective expression of facilitative glucose transporters GLUT-3 and GLUT-6, which led to increased intracellular basal lactate and decreased ATP production. In addition, the redox capacity, including intracellular GSH levels and the enzyme activity of glutathione peroxidase (GSH-Px and γ-glutamyl-transpeptidase (GGT, was decreased in SLE-T. Compared to normal cells, SLE-PMN showed decreased intracellular GSH levels, and GGT enzyme activity was found in SLE-PMN and enhanced expression of CD53, a coprecipitating molecule for GGT. We conclude that deranged cellular bioenergetics and defective redox capacity in T and PMN are responsible for cellular immune dysfunction and are related to increased oxidative stress in active SLE patients.

  18. Oxidative Stress Adaptation with Acute, Chronic and Repeated Stress

    Pickering, Andrew. M.; Vojtovich, Lesya; Tower, John; Davies, Kelvin J. A.

    2012-01-01

    Oxidative stress adaptation or hormesis is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells, and the fruit fly Drosophila melanogaster,...

  19. Potentiating Effect of Piperine on Hepatoprotective Activity of Boerhaavia diffusa to Combat Oxidative Stress

    S.K. Desai

    2008-01-01

    Full Text Available The hydro alcoholic extract of roots of Boerhaavia diffusa (HEBD was evaluated for its hepatoprotective activity against CCl4 and Rifampicin - Isoniazid combination induced hepatotoxicity at two dose levels 150 and 300 mg kg-1 . HEBD exhibited a significant protective action on the liver evident by a reduction in the elevated levels of serum lysosomal enzymes namely Serum Glutamate Pyruvate Transaminase (SGPT, Serum Glutamate Oxaloacetate Transminase (SGOT, Alkaline Phosphatase (ALP in both CCl4 and Rifampicin-Isoniazid induced hepatotoxicity. Thus HEBD showed a dose dependent hepatoprotective activity. In addition, the hepatoprotective activity of Boerhaavia diffusa was evaluated for possible potentiation in the presence of piperine based on recent research which has reported the latter enhancing bioavailability of certain drugs and nutritional compounds. Piperine was checked for potentiation, if any, at two dose levels 10 and 20 mg, respectively. Piperine was found to produce a dose dependent potentiation of the hepatoprotective activity of Boerhaavia diffusa.

  20. Oxidative stress during aging and in Alzheimer's disease : a comparative study of oxidative damage and antioxidant enzymatic activities in mouse models and human brain tissue

    Schüssel, Katrin

    2005-01-01

    The hypothesis that oxidative stress plays a role in the pathogenesis of Alzheimer’s disease (AD) was tested by studying oxidative damage, acitvities of antioxidant enzymes and levels of reactive oxygen species (ROS) in several models. To this end, mouse models transgenic for mutant presenilin (PS1M146L) as well as mutant amyloid precursor protein (APP) and human post mortem brain tissue from sporadic AD patients and age-matched controls were studied. Aging leads to an upregulation of antioxi...

  1. Theileria induces oxidative stress and HIF1α activation that are essential for host leukocyte transformation.

    Medjkane, S; Perichon, M; Marsolier, J; Dairou, J; Weitzman, J B

    2014-04-01

    Complex links between infection and cancer suggest that we still can learn much about tumorigenesis by studying how infectious agents hijack the host cell machinery. We studied the effects of an intracellular parasite called Theileria that infects bovine leukocytes and turns them into invasive cancer-like cells. We investigated the host cells pathways that are deregulated in infected leukocytes and might link infection and lymphoproliferative disease. We show that intracellular Theileria parasites drive a Warburg-like phenotype in infected host leukocytes, characterized by increased expression of metabolic regulators, increased glucose uptake and elevated lactate production, which were lost when the parasite was eliminated. The cohabitation of the parasites within the host cells leads to disruption of the redox balance (as measured by reduced/oxidized glutathione ratio) and elevated ROS (reactive oxygen species) levels, associated with chronic stabilization of the hypoxia-inducible factor 1 alpha (HIF1α). Inhibition of HIF1α (pharmacologically or genetically), or treatment with antioxidants, led to a marked reduction in expression of aerobic glycolytic genes and inhibited the transformed phenotype. These data show that stabilization of HIF1α, following increased ROS production, modulates host glucose metabolism and is critical for parasite-induced transformation. Our study expands knowledge about the molecular strategy used by the parasite Theileria to induce the transformed phenotypes of infected cells via reprogramming of glucose metabolism and redox signaling. PMID:23665677

  2. Hypoxia, Oxidative Stress and Fat

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  3. Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation

    Nardi, Geisson Marcos; Farias Januario, Adriana Graziele; Freire, Cassio Geremia; Megiolaro, Fernanda; Schneider, Kétlin; Perazzoli, Marlene Raimunda Andreola; Do Nascimento, Scheley Raap; Gon, Ana Cristina; Mariano, Luísa Nathália Bolda; Wagner, Glauber; Niero, Rivaldo; Locatelli, Claudriana

    2016-01-01

    Background: Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. Objective: The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). Materials and Methods: Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. Results: High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. Conclusion: These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this

  4. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean.

    Pimentel, Marta S; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A; Pörtner, Hans O; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems. PMID:26221723

  5. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean.

    Marta S Pimentel

    Full Text Available Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm significantly decreased metabolic rates (up to 27.4 % of flatfish larvae, Solea senegalensis, at both present (18 °C and warmer temperatures (+4 °C. Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT and glutathione S-transferase (GST, mainly in post-metamorphic larvae (30 dph. The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase and intestinal enzymes (up to 36.1 % for alkaline phosphatase in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.

  6. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian

    2015-05-01

    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism. PMID:25743585

  7. Antioxidant Activity of Cabbage and/or Carrot Against Oxidative Stress Induced by Gamma Irradiation in Male Albino Rats

    could modulate the oxidative stress and protect against chronic diseases caused by radiation exposure and that may be due to the antioxidant activity of both cabbage and carrot

  8. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model.

    Rai, Sachchida Nand; Yadav, Satyndra Kumar; Singh, Divakar; Singh, Surya Pratap

    2016-01-01

    Parkinson's disease (PD) is characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc) region of brain. Oxidative stress and inflammation plays important role in the neurodegeneration and development of PD. Ursolic Acid (UA: 3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid found in various medicinal plants. Its anti-inflammatory and antioxidant activity is a well-established fact. In this paper, the neuroprotective efficiency of UA in MPTP induced PD mouse model has been explored. For this purpose, we divided 30 mice into 5 different groups; first was control, second was MPTP-treated, third, fourth and fifth were different doses of UA viz., 5 mg/kg, 25 mg/kg, and 50 mg/kg body weight (wt) respectively, along with MPTP. After 21 days of treatment, different behavioral parameters and biochemical assays were conducted. Tyrosine hydroxylase (TH) immunostaining of SN dopaminergic neurons as well as HPLC quantification of dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) were also performed. Our results proved that, UA improves behavioral deficits, restored altered dopamine level and protect dopaminergic neurons in the MPTP intoxicated mouse. Among three different doses, 25 mg/kg body wt was the most effective dose for the PD. This work reveals the potential of UA as a promising drug candidate for PD treatment. PMID:26686287

  9. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean

    Pimentel, Marta S.; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A.; Pörtner, Hans O.; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, na...

  10. Orange Juice and Hesperetin Supplementation to Hyperuricemic Rats Alter Oxidative Stress Markers and Xanthine Oxidoreductase Activity

    Haidari, Fatemeh; Ali Keshavarz, Seid; Reza Rashidi, Mohammad; Mohammad Shahi, Majid

    2009-01-01

    Our objective was to examine the effect of orange juice and hesperetin on serum total antioxidant capacity (TAC), lipid peroxidation (MDA), uric acid and hepatic xanthine oxidase (XO) and xanthine dehydrogenase (XDH) activity in hyperuricemic rats. Experimentally hyperuricemia in rats was induced by intraperitoneal injection of potassium oxonate (250 mg/kg). Orange juice (5 ml/kg) and hesperetin (5 mg/kg) was given by oral gavage to rats for 2 weeks and biochemical data was measured. Data sho...

  11. Riluzole-Triggered GSH Synthesis via Activation of Glutamate Transporters to Antagonize Methylmercury-Induced Oxidative Stress in Rat Cerebral Cortex

    Yu Deng

    2012-01-01

    Full Text Available Objective. This study was to evaluate the effect of riluzole on methylmercury- (MeHg- induced oxidative stress, through promotion of glutathione (GSH synthesis by activating of glutamate transporters (GluTs in rat cerebral cortex. Methods. Eighty rats were randomly assigned to four groups, control group, riluzole alone group, MeHg alone group, and riluzole + MeHg group. The neurotoxicity of MeHg was observed by measuring mercury (Hg absorption, pathological changes, and cell apoptosis of cortex. Oxidative stress was evaluated via determining reactive oxygen species (ROS, 8-hydroxy-2-deoxyguanosine (8-OHdG, malondialdehyde (MDAs, carbonyl, sulfydryl, and GSH in cortex. Glutamate (Glu transport was studied by measuring Glu, glutamine (Gln, mRNA, and protein of glutamate/aspartate transporter (GLAST and glutamate transporter-1 (GLT-1. Result. (1 MeHg induced Hg accumulation, pathological injury, and apoptosis of cortex; (2 MeHg increased ROS, 8-OHdG, MDA, and carbonyl, and inhibited sulfydryl and GSH; (3 MeHg elevated Glu, decreased Gln, and downregulated GLAST and GLT-1 mRNA expression and protein levels; (4 riluzole antagonized MeHg-induced downregulation of GLAST and GLT-1 function and expression, GSH depletion, oxidative stress, pathological injury, and apoptosis obviously. Conclusion. Data indicate that MeHg administration induced oxidative stress in cortex and that riluzole could antagonize this situation through elevation of GSH synthesis by activating of GluTs.

  12. Oxidative stress, hemoglobin content, superoxide dismutase and catalase activity influenced by sulphur baths and mud packs in patients with osteoarthritis

    Jokić Aleksandar

    2010-01-01

    Full Text Available Background/Aim. It is weel-known that sulphur baths and mud paks demonstrate beneficial effects on patients suffering from degenerative knee and hip osteoarthritis (OA through the increased activity of protective antioxidant enzymes. The aim of this study was to assess lipid peroxidation level, i.e. malondialdehyde concetration, in individuals with knee and/or hip osteoarthritis (OA, as well as to determine the influence of sulphur baths and mud packs application on the activity of superoxide dismutase (SOD and catalase (CAT in order to minimize or eliminate excessive free radical species production (oxidative stress. Methods. Thirty one patiens with knee and/or hip OA of both sexes were included in the study. All OA patients received mud pack and sulphur bath for 20 minutes a day, for 6 consecutive days a week, over 3 weeks. Blood lipid peroxidation, ie malondialdehyde concentration, superoxide dismutase and catalase activity were measured spectrophotometrically, before, on day 5 during the treatment and at the end of spa cure. Healthy volunteers (n = 31 were the controls. Results. The sulphur baths and mud packs treatment of OA patients caused a significant decrease in plasma malondialdehyde concentration compared to the controls ( p < 0.001. The mean SOD activity before the terapy was 1 836.24 U/gHb, on day 5 it rose to 1 942.15 U/gHb and after the spa cure dropped to 1 745.98 U/gHb. Catalase activity before the therapy was 20.56 kU/gHb and at the end of the terapy decreased to 16.16 kU/gHb. The difference in catalase activity before and after the therapy was significant (p < 0.001, and also significant as compared to control (p < 0.001. At the end of the treatment significant increase of hemoglobin level and significant decrease of pain intensity were noticed. Conclusion. A combined 3-week treatment by sulphur bath and mud packs led to a significant decrease of lipid peroxidation in plasma, as well as pain intensity in the patients with OA

  13. APOPTOSIS, OXIDATIVE STRESS AND NEUROLOGICAL DISEASE

    P. Formichi

    2012-01-01

    Full Text Available Apoptosis is a selective cell deletion process which requires the triggering of a specific cell death programme. Two main pathways determining cell death have been identified: the extrinsic or receptor-mediated pathway, activated in response to extracellular pro-apoptotic signals, and the intrinsic pathway, activated by extracellular receptor-independent stimuli or by intracellular insults, such as DNA damage and oxidative stress. All these stress signals are integrated by mitochondria which participate by releasing the main effectors of this process: a family of aspartic-specific proteases known as caspase. Today there is much evidence to suggest that deregulation of apoptosis is a key feature of many neurodegenerative disease. Our group sought cell models for the study of apoptotic pathways and for the evaluation of the role of apoptosis in specific neurodegenerative diseases. We focused on oxidative stress-induced apoptosis and activation of the intrinsic mitochondrial pathway. In our in-vitro model, lymphocytes from patients and control subjects were cultured both in basal conditions and with 2-deoxy-D-ribose (dRib, a reducing sugar which induces apoptosis through oxidative stress. In the last ten years, we evaluated the role of apoptosis in the pathogenesis of several neurodegenerative diseases: Ataxiatelangiectasia,Rett syndrome, Mitochondrial disease, Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL. Here we report some of our ongoing and recently published articles.

  14. Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway

    Park, Kwon Moo; Fogelgren, Ben; Zuo, Xiaofeng; Kim, Jinu; Chung, Daniel C.; LIPSCHUTZ, Joshua H.

    2010-01-01

    Cell-cell contacts are essential for epithelial cell function, and disruption is associated with pathological conditions including ischemic kidney injury. We hypothesize that the exocyst, a highly-conserved eight-protein complex that targets secretory vesicles carrying membrane proteins, is involved in maintaining renal epithelial barrier integrity. Accordingly, increasing exocyst expression in renal tubule cells may protect barrier function from oxidative stress resulting from ischemia and r...

  15. Binding to WGR Domain by Salidroside Activates PARP1 and Protects Hematopoietic Stem Cells from Oxidative Stress

    Li, Xue; Erden, Ozlem; Li, Liang; Ye, Qidong; Wilson, Andrew; Du, Wei

    2014-01-01

    Aims: A component of the base excision repair pathway, poly(ADP-ribose) polymerase-1 (PARP1) functions in multiple cellular processes, including DNA repair and programmed cell death. We previously showed that Salidroside, a phenylpropanoid glycoside isolated from medicinal plants, prevented the loss of hematopoietic stem cells (HSCs) in native mice and rescued HSCs repopulating in transplanted recipients under oxidative stress. The aim of this study was to investigate the mechanism by which P...

  16. Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress.

    Bertin, Riccardo; Chen, Zheng; Marin, Raffaella; Donati, Maddalena; Feltrinelli, Angela; Montopoli, Monica; Zambon, Sabina; Manzato, Enzo; Froldi, Guglielmina

    2016-08-01

    Studies indicate that oxidative modifications of endothelium and LDL play a preeminent role in atherogenesis; therefore, the preservation of the endothelial antioxidant capacity and the inhibition of LDL oxidation by use of plant-derived compounds are an appealing strategy against several vascular disorders. On this basis, baicalein, eupatorin, galangin, magnolol, myricetin, oleuropein, silibinin and bilobalide were studied against various oxidative conditions. The radical scavenging capacity was analysed using DPPH and ORAC assays. Furthermore, the LDL oxidation was detected by measuring the formation of thiobarbituric acid reactive substances (TBARS) and by monitoring the oxidation kinetics. Further, we used cultured HUVEC to investigate the activities of the polyhydroxyl compounds towards the oxidative stress induced by H2O2. The lowest levels of TBARS were observed in the presence of oleuropein and baicalein, while myricetin, magnolol and eupatorin inhibited these ones to a lesser extent. In addition, oleuropein and myricetin exhibited higher protection in copper-induced LDL oxidation kinetics. However, only myricetin and galangin showed significant protective effects against H2O2 oxidative injury in HUVEC cells. Taken all together the results indicate myricetin as the most active agent among the selected plant-derived polyhydroxyl compounds, with prominent capacities against ox-LDL and ROS production in HUVEC. PMID:27470387

  17. Type 1 5'-deiodinase activity is inhibited by oxidative stress and restored by alpha-lipoic acid in HepG2 cells.

    Chen, Kanjun; Yan, Biao; Wang, Fei; Wen, Feiting; Xing, Xingan; Tang, Xue; Shi, Yonghui; Le, Guowei

    2016-04-01

    3,3',5-triiodothyronine (T3) is largely generated from thyroxine (T4) by the catalysis of deiodinases in peripheral tissues. Emerging evidences have indicated its broad participation in regulating various metabolic process via protecting tissues from oxidative stress and improving cellular antioxidant capacity. However, the potential correlation between the oxidative stress and conversion of T4 to T3 is still unclear. In the present study, the effects of T3 and T4 on redox homeostasis in HepG2 cells pre-treated with H2O2 was investigated. It revealed that T3 significantly rescued the apoptotic cell death, consistent with an upregulation of cell antioxidant ability and reduction of ROS accumulation while T4 did not. Afterwards, we examined the enzyme activity and mRNA expression of type 1 5'-deiodianse (DIO1), T3 and rT3 level and found that H2O2 reduced both DIO1 activity and expression in a dose-dependent manner, which consequently declined T3 and rT3 generation. Alpha-lipoic acid (LA) treatment notably restored DIO1 activity, T3 and rT3 level, as well as transcriptional abnormalities of inflammation-associated genes. It suggests that oxidative stress may reduce DIO1 activity by an indirect way like activating cellular inflammatory responses. All these results indicate that the oxidative stress downregulates the conversion of T4 to T3 through DIO1 function in HepG2 cells. PMID:26947333

  18. Oxidative stress in neurodegenerative diseases

    Xueping Chen; Chunyan Guo; Jiming Kong

    2012-01-01

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2-) and hydroxyl radical (OH-), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  19. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  20. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  1. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Zhang, Feng [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Ni, Chunyan [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); The First People' s Hospital of Changzhou, Changzhou 213003 (China); Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Lu, Yin [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China); Zheng, Shizhong, E-mail: nytws@163.com [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China)

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  2. A Novel Rodent Model of Autism: Intraventricular Infusions of Propionic Acid Increase Locomotor Activity and Induce Neuroinflammation and Oxidative Stress in Discrete Regions of Adult Rat Brain

    Derrick F. MacFabe

    2008-01-01

    Full Text Available Innate neuroinflammatory changes, increased oxidative stress and disorders of glutathione metabolism may be involved in the pathophysiology of autism spectrum disorders (ASD. Propionic acid (PPA is a dietary and gut bacterial short chain fatty acid which can produce brain and behavioral changes reminiscent of ASD following intraventricular infusion in rats. Adult Long-Evans rats were given intraventricular infusions of either PPA (500ug uL-1, 4µl anima-1 or phosphate buffered saline (PBS vehicle, twice daily for 7 days. Immediately following the second daily infusion, the locomotor activity of each rat was assessed in an automated open field (Versamax for 30 min. PPA-treated rats showed significant increases in locomotor activity compared to PBS vehicle controls. Following the last treatment day, specific brain regions were assessed for neuroinflammatory or oxidative stress markers. Immunohistochemical analyses revealed reactive astrogliosis (GFAP, activated microglia (CD68, Iba1 without apoptotic cell loss (Caspase 3 and NeuN in hippocampus and white matter (external capsule of PPA treated rats. Biomarkers of protein and lipid peroxidation, total glutathione (GSH as well as the activity of the antioxidant enzymes superoxide dismutase (SOD, catalase, glutathione peroxidase (GPx, glutathione reductase (GR and glutathione S-transferase (GST were examined in brain homogenates. Some brain regions of PPA treated animals (neocortex, hippocampus, thalamus, striatum showed increased lipid and protein oxidation accompanied by decreased total GSH in neocortex. Catalase activity was decreased in most brain regions of PPA treated animals suggestive of reduced antioxidant enzymatic activity. GPx and GR activity was relatively unaffected by PPA treatment while GST was increased perhaps indicating involvement of GSH in the removal of PPA or related catabolites. Impairments in GSH and catalase levels may render CNS cells more susceptible to oxidative stress

  3. Tumor Necrosis Factor-alpha Potentiates the Cytotoxicity of Amiodarone in Hepa1c1c7 Cells: Roles of Caspase Activation and Oxidative Stress

    Lu, Jingtao; Miyakawa, Kazuhisa; Roth, Robert A.; Ganey, Patricia E.

    2012-01-01

    Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-α) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its t...

  4. Oxidative stress in normal and diabetic rats.

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (pvitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected. PMID:10523056

  5. Role of oxidant stress in rheumatoid arthritis

    GS, Lekshmi; BR, Suchit Roy; K., Parvathy; K., Geetha Damodaran

    2015-01-01

    Oxygen derived free radicals have been implicated in the causation of Rheumatoid arthritis (RA) [1].In this study, evidence of free radical injury and oxidative stress in patients with RA is compared with healthy subjects by estimating superoxide dismutase (SOD) and catalase, which are anti-oxidant enzymes in RBCs, Glucose 6 Phosphate Dehydrogenase (G6PD) in RBCs and serum Malon-di-aldehyde (MDA) levels. Serum MDA levels in RA could be used as a biochemical marker of disease activity and for ...

  6. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways

    Wu Qing; Saw Constance; Kong Ah-Ng Tony

    2010-01-01

    Abstract This article reviews recent basic and clinical studies of ginseng, particularly the anti-cancer effects and the potential chemopreventive actions by activating the transcriptional factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2)-mediated anti-oxidative stress or anti-inflammatory pathways. Nrf2 is a novel target for cancer prevention as it regulates the antioxidant responsive element (ARE), a critical regulatory element in the promoter region of genes encoding cel...

  7. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon;

    2015-01-01

    subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). APPROACH AND RESULTS: We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT......OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the...

  8. Oxidative stress in prostate hypertrophy and carcinogenesis

    Waldemar M. Przybyszewski

    2009-07-01

    Full Text Available Aging, significant impairment of the oxidation/reduction balance, infection, and inflammation are recognized risk factors of benign hyperplasia and prostate cancer. Chronic symptomatic and asymptomatic prostate inflammatory processes generate significantly elevated levels of reactive oxygen and nitrogen species, and halogenated compounds. Prostate cancer patients showed significantly higher lipid peroxidation and lower antioxidant levels in peripheral blood than healthy controls, whereas patients with prostate hyperplasia did not show such symptoms. Oxidative/nitrosative/halogenative stress causes DNA modifications leading to genome instability that may initiate carcinogenesis; however, it was shown that oxidative damage alone is not sufficient to initiate this process. Peroxidation products induced by reactive oxygen and nitrogen species seem to take part in epigenetic mechanisms regulating genome activity. One of the most common changes occurring in more than 90�0of all analyzed prostate cancers is the silencing of GSTP1 gene activity. The gene encodes glutathione transferase, an enzyme participating in detoxification processes. Prostate hyperplasia is often accompanied by chronic inflammation and such a relationship was not observed in prostate cancer. The participation of infection and inflammation in the development of hyperplasia is unquestionable and these factors probably also take part in initiating the early stages of prostate carcinogenesis. Thus it seems that therapeutic strategies that prevent genome oxidative damage in situations involving oxidative/nitrosative/halogenative stress, i.e. use of antioxidants, plant steroids, antibiotics, and non-steroidal anti-inflammatory drugs, could help prevent carcinogenesis.

  9. Evaluation of oxidative stress in brucella infected cows

    N. Kataria

    2010-05-01

    Full Text Available Oxidative stress can influence the metabolism of cells in vital organs of the body. Oxidative stress is extremely dangerous as it does not exhibit any symptom and is recognisable with great difficulty by means of laboratory methods. It can be monitored with several biomarkers like antioxidants and pro-oxidants which can be assessed in serum. The inexorableness of exposure of cows to brucella infection makes oxidative stress associated with this infection an appropriate field of investigation. There is paucity of work to detect stress, which is essential to take timely corrective measures and to save the animal population. Therefore the investigation was carried out to evaluate oxidative stress in the cows suffering from brucellosis. For this serum iomarkers of oxidative stress viz. vitamin C, vitamin E, catalase, monoamine oxidase, glutathione reductase, superoxide dismutase, glutathione, xanthine oxidase, oxidase and peroxidase were determined. Results indicated that vitamin C, vitamin E and glutathione activity decreased significantly in affected cows as compared to healthy cows. Serum catalase, superoxide dismutase, monoamine oxidase, glutathione reductase, xanthine oxidase, oxidase and peroxidase activities increased significantly in affected cows as compared to healthy cows. Decreased activity of vitamin C, vitamin E and glutathione indicated towards their depletion which generally occurs in the oxidative stress to scavenge the free radicals. It was concluded that oxidative stress was there in the animals. This study recommends the use of antioxidants in affected cows

  10. Ionizing radiations and oxidizing stress

    The normal cell metabolism produces continuously reactive oxygenated species which sometimes are not completely transformed and can lead to a highly reactive form of oxygen: the superoxide anion (characteristic of free radicals). These aggressive molecules are normally eliminated by the enzymatic and biochemical defense systems, but some external factors, like the ionizing radiations, can accelerate their production and saturate the natural defense systems. Such a situation leads to a disorganization of the membrane structures, to the oxidation of the lipo-proteins and proteins and to a degradation and fragmentation of DNA. This oxidative stress affects all kind of tissues and metabolisms and thus participates to a large number of pathologies, in particular cancers. (J.S.)

  11. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    Rook, Denise

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants and to explore possible options to reduce the impact of oxidative stress in neonatal care. The studies presented in this thesis concern the optimal oxygen concentration for the resuscitation at bir...

  12. Oxidative Stress in Cardiovascular Disease

    Gábor Csányi

    2014-04-01

    Full Text Available In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine.

  13. Oxidative stress in inherited mitochondrial diseases.

    Hayashi, Genki; Cortopassi, Gino

    2015-11-01

    Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production or decreased ROS protection. The role of oxidative stress in the five most common inherited mitochondrial diseases, Friedreich ataxia, LHON, MELAS, MERRF, and Leigh syndrome (LS), is discussed. Published reports of oxidative stress involvement in the pathomechanisms of these five mitochondrial diseases are reviewed. The strongest evidence for an oxidative stress pathomechanism among the five diseases was for Friedreich ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for "oxidative stress" citation count frequency for each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is for Friedreich ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich ataxia. PMID:26073122

  14. Nitric oxide, stomatal closure, and abiotic stress.

    Neill, Steven; Barros, Raimundo; Bright, Jo; Desikan, Radhika; Hancock, John; Harrison, Judith; Morris, Peter; Ribeiro, Dimas; Wilson, Ian

    2008-01-01

    Various data indicate that nitric oxide (NO) is an endogenous signal in plants that mediates responses to several stimuli. Experimental evidence in support of such signalling roles for NO has been obtained via the application of NO, usually in the form of NO donors, via the measurement of endogenous NO, and through the manipulation of endogenous NO content by chemical and genetic means. Stomatal closure, initiated by abscisic acid (ABA), is effected through a complex symphony of intracellular signalling in which NO appears to be one component. Exogenous NO induces stomatal closure, ABA triggers NO generation, removal of NO by scavengers inhibits stomatal closure in response to ABA, and ABA-induced stomatal closure is reduced in mutants that are impaired in NO generation. The data indicate that ABA-induced guard cell NO generation requires both nitric oxide synthase-like activity and, in Arabidopsis, the NIA1 isoform of nitrate reductase (NR). NO stimulates mitogen-activated protein kinase (MAPK) activity and cGMP production. Both these NO-stimulated events are required for ABA-induced stomatal closure. ABA also stimulates the generation of H2O2 in guard cells, and pharmacological and genetic data demonstrate that NO accumulation in these cells is dependent on such production. Recent data have extended this model to maize mesophyll cells where the induction of antioxidant defences by water stress and ABA required the generation of H2O2 and NO and the activation of a MAPK. Published data suggest that drought and salinity induce NO generation which activates cellular processes that afford some protection against the oxidative stress associated with these conditions. Exogenous NO can also protect cells against oxidative stress. Thus, the data suggest an emerging model of stress responses in which ABA has several ameliorative functions. These include the rapid induction of stomatal closure to reduce transpirational water loss and the activation of antioxidant defences

  15. Oxidative stress in oral diseases.

    Kesarwala, A H; Krishna, M C; Mitchell, J B

    2016-01-01

    Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes. PMID:25417961

  16. Effects of Exogenous Nitric Oxide on Photochemical Activity of Photosystem Ⅱ in Potato Leaf Tissue Under Non-stress Condition

    YANGJia-Ding; ZHAOHa-Lin; ZHANGTong-Hui; YUNJian-Fei

    2004-01-01

    Under non-stress condition, effects of exogenous nitric oxide (NO) on chlorophyll fluorescence parameters in detached leaves and leaf discs of potato (Solanum tuberosum L.) were surveyed. Results showed that the maximal quantum efficiency (Fv/Fm) and the effective quantum efficiency (ΦPSⅡ)of photosystem Ⅱ (PSⅡ) were reduced by exogenous NO under illumination (150μmol.m-2·s-1, 25℃). This influence was related not only to the concentration of sodium nitroprusside (SNP, a NO donor) solution, but also to the active duration of NO on leaf tissue. Results with leaf discs showed that the effects of SNP on ΦPSⅡ could be prevented by bovine hemoglobin (a powerful NO scavenger), while amixture of NO2- and NO3-(the decomposition product of NO or its donor SNP) had much less influence on ΦPSⅡ than SNP, indicating that effects of exogenous SNP on PSⅡ photochemical activity was mainly due to NO generation. Under light (150μmol·m-2·s-1, 25℃) for 4h or longer period, the non-photochemical quenching (NPQ) in SNP-soaked leaves was statistically similar to that in H2O-soaked control, but ΦPSⅡ and the proportion of open reaction centers (measured as qP) were lower than control, respectively. After 25min dark-adaptation, the maximal fluorescence (Fm) in SNP treatment (8 and 12h illumination duration) was significantly lower than the control, while the initial fluorescence (Fo) in SNP and H2O-treated leaves had no significant difference. Therefore this indicated that under the present experimental condition, the NO-affected site might not be the PSⅡ reaction centers. On the donor side of PSⅡ, NO putatively influenced the light-harvesting capacity of leaves under light; on the acceptor side, NO-affected sites were some components of electron transport chain after QA, i.e.NO enhanced the reductive degree of reaction centers through blocking the electron transport after QA, thus reducing the photochemical activitv of PSⅡ.

  17. Reciprocal Effects of Oxidative Stress on Heme Oxygenase Expression and Activity Contributes to Reno-Vascular Abnormalities in EC-SOD Knockout Mice

    Tomoko Kawakami

    2012-01-01

    although, HO activity was significantly (P<0.05 attenuated along with attenuation of serum adiponectin and vascular epoxide levels (P<0.05. CoPP, in EC-SOD(−/− mice, enhanced HO activity (P<0.05 and reversed aforementioned pathophysiological abnormalities along with restoration of vascular EET, p-eNOS, p-AKT and serum adiponectin levels in these animals. Taken together our results implicate a causative role of insufficient activation of heme-HO-adiponectin system in pathophysiological abnormalities observed in animal models of chronic oxidative stress such as EC-SOD(−/− mice.

  18. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  19. Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats.

    Chen, Ye; Zhou, Jun; Li, Jun; Yang, Shi-Bin; Mo, Li-Qun; Hu, Jie-Hui; Yuan, Wan-Li

    2012-01-13

    Limb ischemia-reperfusion (LI/R) is associated with high morbidity and mortality. Furthermore, critical trauma survivors can present cognitive impairment. Cognitive function, survival rate, oxidative stress and neuronal health were examined to elucidate (1) the magnitude of cognitive effects of prolonged reperfusion, (2) potential players in the mechanistic pathway mediating such effects, and (3) possible benefits of electroacupuncture (EA) pretreatment at Baihui (GV20), Yanglingquan (GB34), Taichong (LR3), Zusanli (ST36) and Xuehai (SP10) acupoints. LI/R was induced in rats by placing a rubber tourniquet on each hind limb for 3h, and the animals were evaluated periodically for 7d after LI/R. Rats subjected to LI/R had significantly lower survival rates, and displayed evidence of brain injury and cognitive dysfunction (as determined by the Morris water maze test) 1d and 3d after reperfusion compared to sham-operated controls. LI/R also resulted in higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA), microglial activation, and decreased superoxide dismutase (SOD) activity within Cornu Ammonis area 1 (CA1) of the hippocampus. Depressed survival rates, microglial activation, oxidative damage, and histological changes, as well as cognitive dysfunction were partially or fully attenuated in rats that received 14d of EA prior to LI/R. These findings indicate that LI/R can result in cognitive dysfunction related to activated microglia and elevated oxidative stress, and that EA has neuroprotective potential mediated, at least in part, by inhibition of microglial activation and attenuation of oxidative stress. PMID:22129788

  20. Biomarkers of oxidative stress and acetylcholinesterase activity in the blood of grass snake (Natrix natrix L. during prehibernation and posthibernation periods

    Jelena Gavric

    2015-06-01

    Full Text Available This work examined the enzymatic (superoxide dismutase-CuZn SOD, catalase-CAT, glutathione peroxidase-GSHPx, glutathione reductase-GR, and the biotransformation phase II enzyme glutathione-S-transferase-GST and nonenzymatic (total glutathione-GSH and lipid peroxides-TBARS concentrations biomarkers of oxidative stress and acetylcholinesterase (AChE activity in the blood of the grass snake (Natrix natrix L. during prehibernation and posthibernation. The animals were collected in October (prehibernation and April (posthibernation at the nature reserve Obedska Bara (OB and industrial region Pancevacki Rit (PR in Serbia. In posthibernation, decreased CAT activity and TBARS concentration in specimens from PR, and decreased GR and AChE activities, and TBARS concentration in specimens from OB were observed, whereas GR and GST activities and GSH concentration were significantly elevated in the specimens from PR. In prehibernation, CAT activity and GSH concentration were increased, while GSH-Px, GR, GST and AChE activities and TBARS concentration were decreased in the specimens from PR when compared to animals from OB. During the posthibernation, the activity of CuZn SOD was decreased, while GST and AChE activities were increased in the specimens from PR when compared to the specimens from OB. These differences represented an adaptive mechanism to oxidative stress induced by tissue reoxygenation during arousal from hibernation and could be modulated by environmental pollution.

  1. Actively stressed marginal networks

    Sheinman, M; MacKintosh, F C

    2012-01-01

    We study the effects of motor-generated stresses in disordered three dimensional fiber networks using a combination of a mean-field, effective medium theory, scaling analysis and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of non-affine strain fluctuations as a susceptibility to motor stress.

  2. Role of Lipid Peroxidation Products, Plasma Total Antioxidant Status, and Cu-, Zn-Superoxide Dismutase Activity as Biomarkers of Oxidative Stress in Elderly Prediabetics

    Sylwia Dzięgielewska-Gęsiak

    2014-01-01

    Full Text Available The relationship between hyperglycemia and oxidative stress in diabetes is well known, but the influence of metabolic disturbances recognized as prediabetes, in elderly patients especially, awaits for an explanation. Methods. 52 elderly persons (65 years old and older with no acute or severe chronic disorders were assessed: waist circumference (WC, body mass index (BMI, percentage of body fat (FAT, and arterial blood pressure. During an oral glucose tolerance test (OGTT fasting (0′ and 120-minute (120′ glycemia and insulinemia were determined, and type 2 diabetics (n=6 were excluded. Subjects were tested for glycated hemoglobin HbA1c, plasma lipids, total antioxidant status (TAS, thiobarbituric acid-reacting substances (TBARS, and activity of erythrocyte superoxide dismutase (SOD-1. According to OGTT results, patients were classified as normoglycemics, (NGT, n=18 and prediabetics, (PRE, n=28. Results. Both groups did not differ with their lipids, FAT, and TBARS. PRE group had higher WC (P<0.002 and BMI (P<0.002. Lower SOD-1 activity (P<0.04 and TAS status (P<0.04 were found in PRE versus NGT group. Significance. In elderly prediabetics, SOD-1 and TAS seem to reflect the first symptoms of oxidative stress, while TBARS are later biomarkers of oxidative stress.

  3. Morin Mitigates Chronic Constriction Injury (CCI)-Induced Peripheral Neuropathy by Inhibiting Oxidative Stress Induced PARP Over-Activation and Neuroinflammation.

    Komirishetty, Prashanth; Areti, Aparna; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-08-01

    Neuropathic pain is initiated or caused due to the primary lesion or dysfunction in the nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, neuroinflammation and apoptosis. Oxidative/nitrosative stress aggravates the neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of the phytoconstituent; morin in chronic constriction injury (CCI) induced neuropathy. Neuropathic pain was induced by chronic constriction of the left sciatic nerve in rats, and the effect of morin (15 and 30 mg/kg, p.o.) was evaluated by measuring behavioural and biochemical changes. Mechanical, chemical and thermal stimuli confirmed the CCI-induced neuropathic pain and treatment with morin significantly improved these behavioural deficits and improved the sciatic functional index by the 14th day after CCI induction. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers were elevated in rat lumbar spinal cord. Oxidative stress induced PARP overactivation resulted in depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR). Treatment with morin reduced the levels of nitrites, restored glutathione levels and abrogated the oxidant induced DNA damage. It also mitigated the increased levels of TNF-α and IL-6. Protein expression studies confirmed the PARP inhibition and anti-inflammatory activity of morin. Findings of this study suggest that morin, by virtue of its antioxidant properties, limited PARP overactivation and neuroinflammation and protected against CCI induced functional, behavioural and biochemical deficits. PMID:27084773

  4. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  5. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude that...... brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low......-oxygen culture conditions and in clinical specimens of both low- and high-grade tumors. The observed global checkpoint signaling, in contrast to only focal areas of overabundant p53 (indicative of p53 mutation) in grade II astrocytomas, are consistent with DDR activation being an early event in gliomagenesis...

  6. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy

    Loren E WOLD; Asli F CEYLAN-ISIK; Jun REN

    2005-01-01

    Cardiovascular disease is the most common cause of death in the diabetic population and is currently one of the leading causes of death in the United States and other industrialized countries. The health care expenses associated with cardiovascular disease are staggering, reaching more than US$350 billion in 2003. The risk factors for cardiovascular disease include high fat/cholesterol levels,alcoholism, smoking, genetics, environmental factors and hypertension, which are commonly used to gauge an individual's risk of cardiovascular disease and to track their progress during therapy. Most recently, these factors have become important in the early prevention of cardiovascular diseases. Oxidative stress, the imbalance between reactive oxygen species production and breakdown by endogenous antioxidants, has been implicated in the onset and progression of cardiovascular diseases such as congestive heart failure and diabetes-associated heart dysfunction (diabetic cardiomyopathy). Antioxidant therapy has shown promise in preventing the development of diabetic heart complications. This review focuses on recent advances in oxidative stress theory and antioxidant therapy in diabetic cardiomyopathy, with an emphasis on the stress signaling pathways hypothesized to be involved. Many of these stress signaling pathways lead to activation of reactive oxygen species, major players in the development and progression of diabetic cardiomyopathy.

  7. Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats

    Okafor OY; Erukainure OL; Ajiboye JA; Adejobi RO; Owolabi FO; Kosoko SB

    2011-01-01

    Objective: To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation, changes in catalase activities and hepatic biochemical marker levels in blood plasma. Methods: Oxidative stress was induced by oral administration of ethanol (20% w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min. The plasma was analyzed to evaluate malondialdehyde (MDA), catalase activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) concentrations. Results: Administration of alcohol caused a drastic increase (87.74%) in MDA level compared with the control. Pineapple peel extract significantly reduced the MDA level by 60.16% at 2.5 mL/kg bw. Rats fed alcohol only had the highest catalase activity, treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity. Increased AST, ALP and ALT activities were observed in rats fed alcohol only respectively, treatment with pineapple peel extract drastically reduced their activities. Conclusions: The positive modulation of lipid peroxidation, catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcohol-induced oxidative stress is an indication of its protective ability in the management of alcohol-induced toxicity.

  8. Oxidative Stress in Cystinosis Patients

    Vaisbich, Maria Helena; Pache de Faria Guimaraes, Luciana; Shimizu, Maria Heloisa Mazzola; Seguro, Antonio Carlos

    2011-01-01

    Background/Aims Nephropathic cystinosis (NC) is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS) and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS) in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p < 0.0001). We detected no significant correlation between plasma TBARS levels and renal function. Conclusion An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients. PMID:22470381

  9. Oxidative Stress in Cystinosis Patients

    Maria Helena Vaisbich

    2011-09-01

    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  10. Airway oxidative stress in chronic cough

    Koskela, Heikki O; Purokivi, Minna K

    2013-01-01

    Background The mechanisms of chronic cough are unclear. Many reactive oxygen species affect airway sensory C-fibres which are capable to induce cough. Several chronic lung diseases are characterised by cough and oxidative stress. In asthma, an association between the cough severity and airway oxidative stress has been demonstrated. The present study was conducted to investigate whether airway oxidative stress is associated with chronic cough in subjects without chronic lung diseases. Methods ...

  11. Polydatin inhibits the oxidative stress-induced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway.

    Ma, Yi; Gong, Xun; Mo, Yingli; Wu, Saizhu

    2016-06-01

    Oxidative stress-mediated proliferation of vascular smooth muscle cells (VSMCs) contributes to plaque formation and the progression of atherosclerosis. Polydatin is a derivative of resveratrol, and is widely present in certain herbal medications used for the treatment of cardiovascular diseases. In the present study, we examined whether polydatin was capable of attenuating VSMC proliferation induced by oxidative stress as well as the potential involvement of the endothelial nitric oxide synthetase (eNOS)/SIRT1 pathway. Briefly, VSMCs were exposed to H2O2 for 24 h in the absence or presence of polydatin (10-100 µM) prior to performing a cell proliferation assay. In mechanistic studies, the cells were incubated with the silent information regulator 1 (SIRT1) inhibitor, EX527, or the eNOS inhibitor, L-NAME, prior to polydatin treatment. The results showed that polydatin inhibited VSMC proliferation and the level of reactive oxygen species, increased the expression of Kip1/p27, SIRT1 and eNOS, whereas the expression of cyclin B1, Cdk1 and c-myc was decreased. The number of cells in the G2/M phase was increased. Pre-treatment with L-NAME attenuated the inhibitory effects of polydatin on cell proliferation, inhibited the expression of SIRT1 and the phosphorylation of eNOS. Pre-treatment with EX527 also attenuated the inhibitory effects of polydatin on cell proliferation, but failed to reduce the activation of eNOS and the production of nitric oxide. Taken together, these findings suggest that, polydatin inhibited the oxidative stress-induced proliferation of VMSCs by activating the eNOS/SIRT1 pathway. PMID:27081912

  12. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling

    Guo C

    2015-02-01

    Full Text Available Caixia Guo,1,2 Yinye Xia,1,2 Piye Niu,1,2 Lizhen Jiang,1,2 Junchao Duan,1,2 Yang Yu,1,2 Xianqing Zhou,1,2 Yanbo Li,1,2 Zhiwei Sun1,2 1School of Public Health, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China Abstract: Despite the widespread application of silica nanoparticles (SiNPs in industrial, commercial, and biomedical fields, their response to human cells has not been fully elucidated. Overall, little is known about the toxicological effects of SiNPs on the cardiovascular system. In this study, SiNPs with a 58 nm diameter were used to study their interaction with human umbilical vein endothelial cells (HUVECs. Dose- and time-dependent decrease in cell viability and damage on cell plasma-membrane integrity showed the cytotoxic potential of the SiNPs. SiNPs were found to induce oxidative stress, as evidenced by the significant elevation of reactive oxygen species generation and malondialdehyde production and downregulated activity in glutathione peroxidase. SiNPs also stimulated release of cytoprotective nitric oxide (NO and upregulated inducible nitric oxide synthase (NOS messenger ribonucleic acid, while downregulating endothelial NOS and ET-1 messenger ribonucleic acid, suggesting that SiNPs disturbed the NO/NOS system. SiNP-induced oxidative stress and NO/NOS imbalance resulted in endothelial dysfunction. SiNPs induced inflammation characterized by the upregulation of key inflammatory mediators, including IL-1β, IL-6, IL-8, TNFα, ICAM-1, VCAM-1, and MCP-1. In addition, SiNPs triggered the activation of the Nrf2-mediated antioxidant system, as evidenced by the induction of nuclear factor-κB and MAPK pathway activation. Our findings demonstrated that SiNPs could induce oxidative stress, inflammation, and NO/NOS system imbalance, and eventually lead to endothelial dysfunction via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. This study indicated

  13. Squamosamide derivative FLZ protects retinal pigment epithelium cells from oxidative stress through activation of epidermal growth factor receptor (EGFR)-AKT signaling.

    Cheng, Li-Bo; Chen, Chun-Ming; Zhong, Hong; Zhu, Li-Juan

    2014-01-01

    Reactive oxygen species (ROS)-mediated retinal pigment epithelium (RPE) cell apoptosis is attributed to age-related macular degeneration (AMD) pathogenesis. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant cyto-protective activity. In the current study, we explored the pro-survival effect of FLZ in oxidative stressed-RPE cells and studied the underlying signaling mechanisms. Our results showed that FLZ attenuated hydrogen peroxide (H2O2)-induced viability decrease and apoptosis in the RPE cell line (ARPE-19 cells) and in primary mouse RPE cells. Western blotting results showed that FLZ activated AKT signaling in RPE cells. The AKT-specific inhibitor, MK-2206, the phosphoinositide 3-kinase (PI3K)/AKT pan inhibitor, wortmannin, and AKT1-shRNA (short hairpin RNA) depletion almost abolished FLZ-mediated pro-survival/anti-apoptosis activity. We discovered that epidermal growth factor receptor (EGFR) trans-activation mediated FLZ-induced AKT activation and the pro-survival effect in RPE cells, and the anti-apoptosis effect of FLZ against H2O2 was inhibited by the EGFR inhibitor, PD153035, or by EGFR shRNA-knockdown. In conclusion, FLZ protects RPE cells from oxidative stress through activation of EGFR-AKT signaling, and our results suggest that FLZ might have therapeutic values for AMD. PMID:25329617

  14. Cu(II)-disulfide complexes with superoxide dismutase- and catalase-like activities protect mitochondria and whole cells against oxidative stress.

    Aliaga, Margarita E; Sandoval-Acuña, Cristián; López-Alarcón, Camilo; Fuentes, Jocelyn; Speisky, Hernan

    2014-10-01

    Mitochondria are a major subcellular site of superoxide (O2(-)) formation. Conditions leading to an uncontrolled production, accumulation and/or conversion of O2(-) into hydrogen peroxide result in an increment in the intramitochondrial oxidative tone which, ultimately leads to the loss of cell viability. Recently, we reported on the ability of a series of Cu(II)-disulfide complexes to act simultaneously as SOD- and catalase-like molecules. In the present study, we addressed the potential of such compounds to protect mitochondria and cells against the oxidative stress and the cytolytic damage induced by diclofenac. Exposure of Caco-2 cells to diclofenac (250µM, 20min) led to a near 80% inhibition of mitochondrial complex I activity and almost doubled the rate of mitochondrial O2(-) production (assessed by Mitosox). A comparable increment was seen in whole cells when the oxidative tone was assessed through the largely hydrogen peroxide-dependent dichlorofluorescein (DCFH) oxidation. The increment in mitochondrial O2(-) production was totally and concentration-dependently prevented by the addition of the complexes formed between Cu(II) and the disulfides of glutathione, homocysteine, or a-dehydro-lipoic acid (20µM each); comparatively, the Cu(II)-cystine complex exerted a weaker protection. A comparable protection pattern was seen at the whole cell level, as these complexes were also effective in preventing the increment in DCFH oxidation. The mitochondrial and whole cell antioxidant protection also translated into a full protection against the cytolytic effects of diclofenac (45min). Results from the present study indicate that the here-tested Cu(II)-disulfides complexes are able to effectively protect cells against the oxidative and the lytic effects of O2(-)-overproducing mitochondria, suggesting a potential for these type of compounds to act as SOD- and catalase-like molecules under oxidative-stress conditions. Supported by FONDECYT #1110018. PMID:26461399

  15. Asthmatic cough and airway oxidative stress.

    Koskela, Heikki O; Purokivi, Minna K; Nieminen, Riina M; Moilanen, Eeva

    2012-05-31

    The mechanisms of cough in asthma are unclear. Asthma is associated with an oxidative stress. Many reactive oxygen species sensitize or activate sensory C-fibers which are capable to induce cough. It was hypothesized that oxidative stress in the airways might contribute to the cough severity in asthma. Exhaled breath condensate samples were collected in ten healthy and 26 asthmatic subjects. The concentration of 8-isoprostane was measured. In addition, the subjects filled in Leicester Cough Questionnaire and underwent cough provocation tests with dry air hyperpnoea and hypertonic saline, among other measurements. Among the asthmatic subjects, high 8-isoprostane was associated with severe cough response to hyperpnoea (p=0.001), low Leicester Cough Questionnaire values (indicating severe subjective cough, p=0.02), and usage of combination asthma drugs (p=0.03-0.04). However, the 8-isoprostane concentrations did not differ significantly between the healthy and the asthmatic subjects. Airway oxidative stress may be associated with experienced cough severity and measured cough sensitivity in asthma. PMID:22546340

  16. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans.

    Wu, J Z; Huang, J H; Khanabdali, R; Kalionis, B; Xia, S J; Cai, W J

    2016-07-01

    Pyrroloquinoline quinone (PQQ) is linked to fundamental biological processes such as mitochondrial biogenesis and lipid metabolism. PQQ may also function as an essential micronutrient during animal development. Recent studies have shown the therapeutic potential of PQQ for several age-related diseases due to its antioxidant capacity. However, whether PQQ can promote longevity is unknown. Here, we investigate the effects of PQQ on oxidative stress resistance as well as lifespan modulation in Caenorhabditis elegans. We find that PQQ enhances resistance to oxidative stress and extends the lifespan of C. elegans at optimal doses. The underlying molecular mechanism involves the increased activities of the primary lifespan extension transcriptional factors DAF-16/FOXO, the conserved oxidative stress-responsive transcription factor SKN-1/Nrf2, and upregulation of daf-16, skn-1 downstream targets including sod-3, hsp16.2, gst-1 and gst-10. Our findings uncover a novel role of PQQ in longevity, supporting PQQ as a possible dietary supplement for overall health improvement. PMID:27090484

  17. Epigallocatechin gallate exacerbates fluoride-induced oxidative stress mediated testicular toxicity in rats through the activation of Nrf2 signaling pathway

    S. Thangapandiyan; S. Miltonprabu

    2015-01-01

    Objective:To explore the ameliorative potential of epigallocatechin gallate (EGCG) by evaluating markers of oxidative stress, apoptosis, and inflammation and antioxidant competence in Fl intoxicated rats.Methods:The animals were divided in to four groups that is control, EGCG alone, NaF, and EGCG with NaF. Group III animal were exposed to Fl as sodium Fluoride (NaF) (25 mg/kg BW) for 4 weeks. After the completion of the treatment, the testis tissues has been removed and used for the experimental observations.Results:Pre-administration of EGCG to Fl intoxicated rats showed a significant normalization in the levels of steroidogenic enzymes, testosterone, sperm functions, oxidative stress markers and antioxidant status. The altered levels of proinflammatory cytokines and apoptotic markers were also relapsed in close proximity to control. In addition, EGCG significantly improved antioxidant status and reduced the oxidative stress and pathological changes in testes. The mRNA and protein analysis also substantiated that EGCG pre-treatment markedly enhanced the expression of Nrf2 and its target genes HO-1, NQO1 andγGCS and suppressed the expression of Keap1 in testis.Conclusion: Altogether, our findings supports that EGCG attenuates Fl toxicity in testis through Nrf2 activation.

  18. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy.

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen; Chen, Gang

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  19. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  20. Treatment of 24-EBL to Brassica juncea Plants Under Cu-metal Stress Lowers Oxidative Burst by Activity of Antioxidative Enzymes

    Poonam

    2014-05-01

    Full Text Available Heavy metal contamination is becoming a major threat to plants due to increasing industrialization. Copper is one of essential element required in trace amounts for the regular development of plants. Its excessive concentration alters the metabolism of plants. Brassinosteroids are polyhydoxylated steroidal plant hormone found to alleviate the various abiotic stresses including heavy metal stress. In the present study, effect of 24-EBL was studied in Brassica juncea plants under Cu stress. The B. juncea was grown in Cu (0, 0.25mM, 0.50mM and 0.75mM treated soil. The seeds was soaked in the solution of 24-EBL (0, 10-7, 10-9 and 10-11 M for 8 hours. The plants were harvested on 45th DAS. The harvested plants were used for the protein quantification and analysis of antioxidative enzymes (CAT, SOD, POD, GR, APOX, DHAR and MDHAR. The results revealed that Cu treatment lowered the protein content, while at the same time, application of 24-EBL improved the protein content. The activity of various enzymes increased under the Cu stress. The application of 24-EBl had further enhanced the activity of enzymes indicating that it may relieve the oxidative stress caused by the copper metal.

  1. Cardiac Peroxisome Proliferator-Activated Receptor-γ Expression is Modulated by Oxidative Stress in Acutely Infrasound-Exposed Cardiomyocytes

    Pei, Zhaohui; Meng, Rongsen; Zhuang, Zhiqiang; Zhao, Yiqiao; Liu, Fangpeng; Zhu, Miao-Zhang; Li, Ruiman

    2013-01-01

    The aim of the present study was to examine the effects of acute infrasound exposure on oxidative damage and investigate the underlying mechanisms in rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured and exposed to infrasound for several days. In the study, the expression of CAT, GPx, SOD1, and SOD2 and their activities in rat cardiomyocytes in infrasound exposure groups were significantly decreased compared to those in the various time controls, along with significantly higher le...

  2. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  3. Heavy metal exposure, in combination with physical activity and aging, is related with oxidative stress in Japanese women from a rural agricultural community.

    Cui, Xiaoyi; Ohtsu, Mayumi; Mise, Nathan; Ikegami, Akihiko; Mizuno, Atsuko; Sakamoto, Takako; Ogawa, Masanori; Machida, Munehito; Kayama, Fujio

    2016-01-01

    This study aimed to evaluate the relationships between oxidative stress and heavy metal exposure (lead [Pb] and cadmium [Cd]), as well as co-factors such as physical activity and age, in Japanese women. This study was conducted with female subjects from a rural agricultural community in Japan. Subjects were asked to complete lifestyle-related questionnaires and undergo a group health examination. Physical activity, alcohol consumption, body mass index, and other demographic information were collected. Blood and urine samples were collected to measure urinary 8-hydroxydeoxyguanosine (8-OHdG) levels and blood and urinary Cd and Pb concentrations. Urine samples were analyzed using high performance liquid chromatography and flameless atomic absorption spectrometry; blood samples were analyzed using inductively coupled plasma-mass spectrometry. Age, physical activity, and blood and urinary Cd and Pb concentrations were included in structural equation modeling analysis. Two latent factors for heavy metal exposure and physical activity were produced to predict the total influence of the variables. The final model was good: CMIN/DF = 0.775, CFI = 1.000, GFI = 0.975, AGFI = 0.954, RMSEA = 0.000. 8-OHdG levels were positively associated with heavy metal exposure, physical activity, and age (standard β of path analysis: 0.33, 0.38, and 0.20, respectively). Therefore, oxidative stress is associated with both, environmental and lifestyle factors, in combination with aging. PMID:27386333

  4. Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9

    Hangping Yao; Xiajing Tang; Xueting Shao; Lei Feng; Nanping Wu; Ke Yao

    2007-01-01

    The apoptosis of lens epithelial cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H2O2 for 18h, a high fraction of HLE cells underwent apoptosis, while in the presence of parthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H2O2 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation of caspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation of caspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.

  5. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells. PMID:27185188

  6. Astaxanthin reduces type 2 diabetic‑associated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress.

    Li, Xiaobin; Qi, Zhonghua; Zhao, Longshan; Yu, Zhan

    2016-01-01

    Astaxanthin (AST) is an oxygenated derivative of carotenoid, which possesses a strong antioxidant activity. AST can effectively remove active oxygen from the body, and is thus considered to have an important role in disease prevention and treatment. The present study aimed to determine the effects of AST on type 2 diabetic‑associated cognitive decline (DACD) in rats. Rats were intraperitoneally injected with streptozotocin (STZ), in order to establish a model of diabetes mellitus (DM). A total of 40 rats were randomly divided into five groups: The control group, the DM group, the AST (50 mg/kg) group, the AST (100 mg/kg) group, and the AST+LY294002 group (AST, 50 mg/kg and LY, 0.25 µg/100 g). Following a 14‑day treatment with AST, the body weight, blood glucose levels and cognitive function were determined. In addition, the protein expression levels of phosphatidylinositol 3‑kinase (PI3K)/Akt, glutathione peroxidase and superoxide dismutase activity, glutathione and malondialdehyde content, and inducible nitric oxide synthase (iNOS), caspase‑3 and caspase‑9 activity were detected in the rats with DM. AST clearly augmented body weight and reduced blood glucose levels in rats with DM. Furthermore, treatment with AST significantly improved the cognitive function of rats with DM. Treatment with AST activated the PI3K/Akt pathway, and suppressed oxidative stress in the DM rats. In the cerebral cortex and hippocampus of the rats with DM, the activities of iNOS, caspase‑3 and caspase‑9 were markedly reduced. Furthermore, treatment with the Akt inhibitor LY294002 reduced the effectiveness of AST on DACD in rats. In conclusion, AST may reduce type 2 DACD in rats via activation of PI3K/Akt and attenuation of oxidative stress. PMID:26648531

  7. Indian herb `Sanjeevani' (Selaginella bryopteris) can promote growth and protect against heat shock and apoptotic activities of ultra violet and oxidative stress

    Nand K Sah; Shyam Nandan P Singh; Sudhir Sahdev; Sharmishta Banerji; Vidyanath Jha; Zakir Khan; Seyed E Hasnain

    2005-09-01

    Selaginella bryopteris is a lithophyte with remarkable ressurection capabilities. It is full of medicinal properties, hence also known as ‘Sanjeevani’ (one that infuses life). For lack of credible scientific evidence the plant is not in active use as a medicinal herb. We provide scientific evidence for why S. bryopteris is known as ‘Sanjeevani’. The aqueous extract of S. bryopteris possesses growth-promoting activity as well as protective action against stress-induced cell death in a number of experimental cell systems including mammalian cells. Treatment of the cells in culture with 10% aqueous extract enhanced cell growth by about 41% in Sf9 cells and 78% in mammalian cells. Pre-treatment of cells with the Selaginella extract (SE) (1–2.5%) protected against oxidative stress (H2O2)-induced cell death. The killing potential of ultra violet (UV) was also significantly reduced when the cells were pre-treated with SE for 1 h. Thermal radiation suppressed cell growth by about 50%. Pre-treatment of cells with SE for 1 h afforded complete protection against heat-induced growth suppression. SE may possess anti-stress and antioxidant activities that could be responsible for the observed effects. Chemical analysis shows that SE contains hexoses and proteins. Taken together, S. bryopteris extract may help in stress-induced complications including those due to heat shock.

  8. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  9. Oxidative stress in primary glomerular diseases

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal;

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  10. Induction of oxidative stress and inhibition of plasminogen activator inhibitor-1 production in endothelial cells following exposure to organic extracts of diesel exhaust particles and urban fine particles

    Furuyama, Akiko; Koike, Eiko [National Institute for Environmental Studies, Inhalation toxicology Team, Tsukuba (Japan); Hirano, Seishiro [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba (Japan); Kobayashi, Takahiro [National Institute for Environmental Studies, Inhalation toxicology Team, Tsukuba (Japan); National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba (Japan)

    2006-03-15

    Endothelial cells play important roles in anticoagulant and fibrinolytic systems. Recent studies suggest that increases in ambient particulate matter (PM) levels have been associated with an increase in mortality rate from cardiovascular diseases. We examined the production of heme oxygenase-1 (HO-1) and factors related to the fibrinolytic function by rat heart microvessel endothelial cells exposed to organic extracts of diesel exhaust particles (OE-DEP) and urban fine particles (OE-UFP) to investigate the direct effects of these soluble organic fractions in these PM on the fibrinolytic function of endothelial cells. The cell monolayer exposed to 10 {mu}g/ml OE-DEP produced a larger amount of HO-1 than cells exposed to 10 {mu}g/ml OE-UFP. OE-DEP and OE-UFP exposure reduced plasminogen activator inhibitor-1 (PAI-1) production by the cells but did not affect the production of thrombomodulin, tissue-type plasminogen activator, or urokinase-type plasminogen activator. Increased PAI-1 synthesis in response to treatment with 1.0 ng/ml tumor necrosis factor-{alpha} or 0.5 ng/ml transforming growth factor-{beta}1 was reduced by OE-DEP exposure. Suppression of PAI-1 production by OE-DEP exposure was mediated through oxidative stress and was independent of HO-1 activity. These results suggest that exposure to the soluble organic fraction of PM and DEP induced oxidative stress and reduced the PAI-1 production of endothelial cells. (orig.)