WorldWideScience

Sample records for activity exacerbates insulin

  1. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    activation, whereas remained insulin-induced ERK activation. ET-1 and insulin synergistically potentiated migration and proliferation mainly through ETAR/ERK dependent pathway, which is dominant in VSMCs during modest insulin resistance syndrome. Therefore, ET-1 and ETAR are potential targets responsible for the observed synergism effect in the hypertensive atherosclerotic process through enhancement of ET-1 binding, ET-1 binding, ETAR expression, and ET-1-induced mitogenic actions in aortic VSMCs. - Highlights: • ET-1/ETAR signaling and insulin-induced pERK were high in modest insulin resistance. • ET-1 via ETAR suppressed insulin-induced pAKT but remained intact pERK in VSMCs. • Insulin potentiated ET-1-induced VSMC mitogenic action was ETAR/ERK dependent

  2. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    Lin, Yan-Jie [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Juan, Chi-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Kwok, Ching-Fai [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Hsu, Yung-Pei [Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Shih, Kuang-Chung [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chin-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Ho, Low-Tone, E-mail: ltho@vghtpe.gov.tw [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2015-05-08

    suppressed insulin-induced AKT activation, whereas remained insulin-induced ERK activation. ET-1 and insulin synergistically potentiated migration and proliferation mainly through ET{sub A}R/ERK dependent pathway, which is dominant in VSMCs during modest insulin resistance syndrome. Therefore, ET-1 and ET{sub A}R are potential targets responsible for the observed synergism effect in the hypertensive atherosclerotic process through enhancement of ET-1 binding, ET-1 binding, ET{sub A}R expression, and ET-1-induced mitogenic actions in aortic VSMCs. - Highlights: • ET-1/ET{sub A}R signaling and insulin-induced pERK were high in modest insulin resistance. • ET-1 via ET{sub A}R suppressed insulin-induced pAKT but remained intact pERK in VSMCs. • Insulin potentiated ET-1-induced VSMC mitogenic action was ET{sub A}R/ERK dependent.

  3. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  4. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model

    Teng Wei-Ping

    2010-11-01

    Full Text Available Abstract Background Although increasing evidence has indicated that brain insulin dysfunction is a risk factor for Alzheimer disease (AD, the underlying mechanisms by which insulin deficiency may impact the development of AD are still obscure. Using a streptozotocin (STZ-induced insulin deficient diabetic AD transgenic mouse model, we evaluated the effect of insulin deficiency on AD-like behavior and neuropathology. Results Our data showed that administration of STZ increased the level of blood glucose and reduced the level of serum insulin, and further decreased the phosphorylation levels of insulin receptors, and increased the activities of glycogen synthase kinase-3α/β and c-Jun N-terminal kinase in the APP/PS1 mouse brain. We further showed that STZ treatment promoted the processing of amyloid-β (Aβ precursor protein resulting in increased Aβ generation, neuritic plaque formation, and spatial memory deficits in transgenic mice. Conclusions Our present data indicate that there is a close link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.

  5. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis.

    Jonas Christian Schupp

    Full Text Available Acute exacerbation (AE of idiopathic pulmonary fibrosis (IPF is a common cause of disease acceleration in IPF and has a major impact on mortality. The role of macrophage activation in AE of IPF has never been addressed before.We evaluated BAL cell cytokine profiles and BAL differential cell counts in 71 IPF patients w/wo AE and in 20 healthy volunteers. Twelve patients suffered from AE at initial diagnosis while sixteen patients developed AE in the 24 months of follow-up. The levels of IL-1ra, CCL2, CCL17, CCL18, CCL22, TNF-α, IL-1β, CXCL1 and IL-8 spontaneously produced by BAL-cells were analysed by ELISA.In patients with AE, the percentage of BAL neutrophils was significantly increased compared to stable patients. We found an increase in the production rate of the pro-inflammatory cytokines CXCL1 and IL-8 combined with an increase in all tested M2 cytokines by BAL-cells. An increase in CCL18 levels and neutrophil counts during AE was observed in BAL cells from patients from whom serial lavages were obtained. Furthermore, high baseline levels of CCL18 production by BAL cells were significantly predictive for the development of future AE.BAL cell cytokine production levels at acute exacerbation show up-regulation of pro-inflammatory as well as anti-inflammatory/ M2 cytokines. Our data suggest that AE in IPF is not an incidental event but rather driven by cellular mechanisms including M2 macrophage activation.

  6. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice

    Qatanani, Mohammed; Szwergold, Nava R.; Greaves, David R.; Ahima, Rexford S.; Lazar, Mitchell A.

    2009-01-01

    Resistin is an adipokine that contributes to insulin resistance in mice. In humans, however, studies investigating the link between resistin and metabolic disease are conflicting. Further complicating the matter, human resistin is produced mainly by macrophages rather than adipocytes. To address this important issue, we generated mice that lack adipocyte-derived mouse resistin but produce human resistin in a pattern similar to that found in humans, i.e., in macrophages (humanized resistin mic...

  7. Diclofenac derivatives with insulin-sensitizing activity

    Jian Ta Wang; Ying Wang; Ji Quan Zhang; Xing Cui; Yi Zhang; Gao Feng Zhu; Lei Tang

    2011-01-01

    A series of diclofenac derivatives were synthesized. The insulin-sensitizing activity of 28 new compounds was evaluated in 3T3-L1 cells. The compounds 10a and 10f exhibited similar insulin-sensitizing activity with positive drag rosiglitazone.

  8. Stress Exacerbates Neuropathic Pain via Glucocorticoid and NMDA Receptor Activation

    Alexander, Jessica K.; DeVries, A. Courtney; KIGERL, KRISTINA A.; Dahlman, Jason M.; G.Popovich, Phillip

    2009-01-01

    There is growing recognition that psychological stress influences pain. Hormones that comprise the physiological response to stress (e.g. corticosterone; CORT) may interact with effectors of neuropathic pain. To test this hypothesis, mice received a spared nerve injury (SNI) after exposure to 60 min restraint stress. In stressed mice, allodynia was consistently increased. The mechanism(s) underlying the exacerbated pain response involves CORT acting via glucocorticoid receptors (GRs); RU486, ...

  9. Relationship between Inflammation markers, Coagulation Activation and Impaired Insulin Sensitivity in Obese Healthy Women

    Obesity, insulin resistance syndrome, and atherosclerosis are closely linked phenomena, often connected with a chronic low grade inflammatory state and pro thrombotic hypo fibrinolytic condition. This study investigated the relationship between impaired insulin sensitivity and selected markers of inflammation and thrombin generation in obese healthy women. The study included 36 healthy obese women (body mass index ≥ 30), with normal insulin sensitivity (NIS, n = 18) or impaired insulin sensitivity (IIS, n 18), and 10 non obese women (body mass index < 25).Impaired insulin sensitivity patients had significantly higher levels of high sensitivity C-reactive protein (hs-CRP), transforming growth factor -β1(TGF-β1), plasminogen activator inhibitor-1 (PAI-1), activated factor VII (VIIa), and prothrombin fragments 1 + 2 (F1 + 2) compared with either control subjects or normal insulin sensitivity patients. On the other hand, NIS patients had higher hs-CRP, TGF-β1, PAI-1, and factor VIIa, but not F1 + 2, levels than controls. Significant inverse correlations were observed between the insulin sensitivity index and TGF-β1, hs-CRP, PAI-1; factor VIIa, and F1 + 2 levels. Moreover, significant direct correlations were noted between TGF-β1 and CRP, PAI-1, factor VIIa, and F1 + 2 concentrations. Finally, multiple regressions revealed that TGF-β1 and the insulin sensitivity index were independently related to F1 + 2. These results document an in vivo relationship between insulin sensitivity and coagulation activation in obesity. Here we report that obesity is associated with higher TGF-β, PAI-1, prothrombin fragments 1 and 2 (F1 + 2), and activated factor VII (VIIa) plasma levels, and that insulin resistance exacerbates these alterations. The elevated TGF-β1 levels detected in the obese population may provide a biochemical link between insulin resistance and an increased risk for cardiovascular disease

  10. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity

    Forsayeth, J.R.; Caro, J.F.; Sinha, M.K.; Maddux, B.A.; Goldfine, I.D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the ..cap alpha.. subunit of the human insulin receptor. All three both immunoprecipitated /sup 125/I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited /sup 125/I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  11. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity

  12. Physical activity and exercise capacity in patients with moderate COPD exacerbations.

    Alahmari, Ayedh D; Kowlessar, Beverly S; Patel, Anant R C; Mackay, Alex J; Allinson, James P; Wedzicha, Jadwiga A; Donaldson, Gavin C

    2016-08-01

    Little is known about changes in physical activity during moderate (out-patient managed) exacerbations.6-min walking distance (6MWD) was measured during 50 exacerbations when the patients were stable, and at 3 and 7 days post-exacerbation presentation. At similar time points, quadriceps maximum voluntary contraction (QMVC) was measured during 47 different exacerbations. Physical activity (SenseWear; Bodymedia Inc., Pittsburgh, PA, USA) was recorded over 2 consecutive-week periods post-presentation.6MWD fell from a median 422 m when stable to 373 m on day 3 (p=0.001). Similarly, QMVC fell from 32.6 versus 29.7 kg (p=0.026). Falls in 6MWD were associated with a rise in C-reactive protein (r= -0.364; p=0.041) and increased Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) (r= -0.44; p=0.013). Light physical activity was 2.18 h·day(-1) during the first week post-exacerbation and was less over week 2 (1.98 h·day(-1); p=0.009). Patients who had attended pulmonary rehabilitation had smaller changes in 6MWD than those who had not attended (-35.0 versus -114.9 m; p=0.013). Falls in physical activity were correlated with higher depression scores (rho= -0.51; p=0.006).These findings indicate that exercise capacity and muscle strength fall at exacerbation in chronic obstructive pulmonary disease patients who are treated at home and are free to maintain normal activity. PMID:27126688

  13. NOX Activity in Brain Aging: Exacerbation by High Fat Diet

    Bruce-Keller, Annadora J.; White, Christy L.; Gupta, Sunita; Knight, Alecia G.; Pistell, Paul J.; Ingram, Donald K.; Morrison, Christopher D.; Keller, Jeffrey N.

    2010-01-01

    This study describes how age and high fat diet affect the profile of NADPH oxidase (NOX). Specifically, NOX activity and subunit expression were evaluated in the frontal cerebral cortex of 7-, 16-, and 24-month old mice following a 4-month exposure to either Western diet (WD, 41% calories from fat) or very high fat lard diet (VHFD, 60% calories from fat). Data reveal a significant effect of age in on NOX activity, and show that NOX activity was only increased by VHFD, and only in 24-month old...

  14. Insulin

    ... Short Acting Humulin N NPH Human Insulin (Human Insulin Isophane Suspension) Intermediate Acting Novolin N NPH Human Insulin (Human Insulin Isophane Suspension) Intermediate Acting Lantus Insulin Glargine Long Acting ...

  15. A telecare programme for self-management of COPD exacerbations and promotion of an active lifestyle

    Tabak, Monique; Brusse-Keizer, Marjolein; Ommeren, Clara; Kotte, Hayke; Weltevreden, Paul; Hermens, Hermie; Vollenbroek-Hutten, Miriam

    2013-01-01

    Objective: The Condition Coach (CoCo) is a technology-supported care programme for self-management of COPD exacerbations and for promotion of an active lifestyle. The objective is to investigate the added value of the telecare programme in terms of clinical changes compared to usual care, and in add

  16. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  17. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle.

    Kida, Y; Esposito-Del Puente, A; Bogardus, C; Mott, D M

    1990-01-01

    Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatas...

  18. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice.

    Ussher, John R; Keung, Wendy; Fillmore, Natasha; Koves, Timothy R; Mori, Jun; Zhang, Liyan; Lopaschuk, David G; Ilkayeva, Olga R; Wagg, Cory S; Jaswal, Jagdip S; Muoio, Deborah M; Lopaschuk, Gary D

    2014-06-01

    There is a growing need to understand the underlying mechanisms involved in the progression of cardiovascular disease during obesity and diabetes. Although inhibition of fatty acid oxidation has been proposed as a novel approach to treat ischemic heart disease and heart failure, reduced muscle fatty acid oxidation rates may contribute to the development of obesity-associated insulin resistance. Our aim was to determine whether treatment with the antianginal agent trimetazidine, which inhibits fatty acid oxidation in the heart secondary to inhibition of 3-ketoacyl-CoA thiolase (3-KAT), may have off-target effects on glycemic control in obesity. We fed C57BL/6NCrl mice a high-fat diet (HFD) for 10 weeks before a 22-day treatment with the 3-KAT inhibitor trimetazidine (15 mg/kg per day). Insulin resistance was assessed via glucose/insulin tolerance testing, and lipid metabolite content was assessed in gastrocnemius muscle. Trimetazidine-treatment led to a mild shift in substrate preference toward carbohydrates as an oxidative fuel source in obese mice, evidenced by an increase in the respiratory exchange ratio. This shift in metabolism was accompanied by an accumulation of long-chain acyl-CoA and a trend to an increase in triacylglycerol content in gastrocnemius muscle, but did not exacerbate HFD-induced insulin resistance compared with control-treated mice. It is noteworthy that trimetazidine treatment reduced palmitate oxidation rates in the isolated working mouse heart and neonatal cardiomyocytes but not C2C12 skeletal myotubes. Our findings demonstrate that trimetazidine therapy does not adversely affect HFD-induced insulin resistance, suggesting that treatment with trimetazidine would not worsen glycemic control in obese patients with angina. PMID:24700885

  19. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III.

    Preethi Srikanthan; Hevener, Andrea L.; Karlamangla, Arun S.

    2010-01-01

    BACKGROUND: Sarcopenia often co-exists with obesity, and may have additive effects on insulin resistance. Sarcopenic obese individuals could be at increased risk for type 2 diabetes. We performed a study to determine whether sarcopenia is associated with impairment in insulin sensitivity and glucose homeostasis in obese and non-obese individuals. METHODOLOGY: We performed a cross-sectional analysis of National Health and Nutrition Examination Survey III data utilizing subjects of 20 years or ...

  20. Severe Maternal Hyperglycemia Exacerbates the Development of Insulin Resistance and Fatty Liver in the Offspring on High Fat Diet

    Yong Song

    2012-01-01

    Full Text Available Background. Adverse maternal environments may predispose the offspring to metabolic syndrome in adulthoods, but the underlying mechanism has not been fully understood. Methods. Maternal hyperglycemia was induced by streptozotocin (STZ injection while control (CON rats received citrate buffer. Litters were adjusted to eight pups per dam and then weaned to standard diet. Since 13 weeks old, a subset of offspring from STZ and CON dams were switched to high fat diet (HFD for another 13 weeks. Glucose and insulin tolerance tests (GTT and ITT and insulin secretion assay were performed; serum levels of lipids and leptin were measured. Hepatic fat accumulation and islet area were evaluated through haematoxylin and eosin staining. Results. STZ offspring exhibited lower survival rate, lower birth weights, and growth inhibition which persisted throughout the study. STZ offspring on HFD showed more severe impairment in GTT and ITT, and more profound hepatic steatosis and more severe hyperlipidemia compared with CON-HFD rats. Conclusions. Offspring from diabetic dams would be prone to exhibit low birth weight and postnatal growth inhibition, but could maintain normal glucose tolerance and insulin sensitivity. HFD accelerates development of insulin resistance in the offspring of diabetic dams mainly via a compensatory response of islets.

  1. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III.

    Preethi Srikanthan

    2010-05-01

    Full Text Available BACKGROUND: Sarcopenia often co-exists with obesity, and may have additive effects on insulin resistance. Sarcopenic obese individuals could be at increased risk for type 2 diabetes. We performed a study to determine whether sarcopenia is associated with impairment in insulin sensitivity and glucose homeostasis in obese and non-obese individuals. METHODOLOGY: We performed a cross-sectional analysis of National Health and Nutrition Examination Survey III data utilizing subjects of 20 years or older, non-pregnant (N = 14,528. Sarcopenia was identified from bioelectrical impedance measurement of muscle mass. Obesity was identified from body mass index. Outcomes were homeostasis model assessment of insulin resistance (HOMA IR, glycosylated hemoglobin level (HbA1C, and prevalence of pre-diabetes (6.0≤ HbA1C<6.5 and not on medication and type 2 diabetes. Covariates in multiple regression were age, educational level, ethnicity and sex. PRINCIPAL FINDINGS: Sarcopenia was associated with insulin resistance in non-obese (HOMA IR ratio 1.39, 95% confidence interval (CI 1.26 to 1.52 and obese individuals (HOMA-IR ratio 1.16, 95% CI 1.12 to 1.18. Sarcopenia was associated with dysglycemia in obese individuals (HbA1C ratio 1.021, 95% CI 1.011 to 1.043 but not in non-obese individuals. Associations were stronger in those under 60 years of age. We acknowledge that the cross-sectional study design limits our ability to draw causal inferences. CONCLUSIONS: Sarcopenia, independent of obesity, is associated with adverse glucose metabolism, and the association is strongest in individuals under 60 years of age, which suggests that low muscle mass may be an early predictor of diabetes susceptibility. Given the increasing prevalence of obesity, further research is urgently needed to develop interventions to prevent sarcopenic obesity and its metabolic consequences.

  2. Stiffness-activated GEF-H1 expression exacerbates LPS-induced lung inflammation.

    Isa Mambetsariev

    Full Text Available Acute lung injury (ALI is accompanied by decreased lung compliance. However, a role of tissue mechanics in modulation of inflammation remains unclear. We hypothesized that bacterial lipopolysacharide (LPS stimulates extracellular matrix (ECM production and vascular stiffening leading to stiffness-dependent exacerbation of endothelial cell (EC inflammatory activation and lung barrier dysfunction. Expression of GEF-H1, ICAM-1, VCAM-1, ECM proteins fibronectin and collagen, lysyl oxidase (LOX activity, interleukin-8 and activation of Rho signaling were analyzed in lung samples and pulmonary EC grown on soft (1.5 or 2.8 kPa and stiff (40 kPa substrates. LPS induced EC inflammatory activation accompanied by expression of ECM proteins, increase in LOX activity, and activation of Rho signaling. These effects were augmented in EC grown on stiff substrate. Stiffness-dependent enhancement of inflammation was associated with increased expression of Rho activator, GEF-H1. Inhibition of ECM crosslinking and stiffening by LOX suppression reduced EC inflammatory activation and GEF-H1 expression in response to LPS. In vivo, LOX inhibition attenuated LPS-induced expression of GEF-H1 and lung dysfunction. These findings present a novel mechanism of stiffness-dependent exacerbation of vascular inflammation and escalation of ALI via stimulation of GEF-H1-Rho pathway. This pathway represents a fundamental mechanism of positive feedback regulation of inflammation.

  3. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (≤ 2 μM) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 μM arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic

  4. Modulation of insulin degrading enzyme activity and liver cell proliferation

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expre...

  5. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity.

    Qin, Xu-Jun; Hudson, Laurie G; Liu, Wenlan; Timmins, Graham S; Liu, Ke Jian

    2008-10-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic. PMID:18619636

  6. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    Jeffrey B Eells

    Full Text Available Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%, genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/- mice and wild-type (+/+ mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  7. Insulin-like growth factor induced signals activate mitochondrial respiration

    Hütter, E.; Unterluggauer, H.; Viertler, H.P.; Jansen-Dürr, P

    2008-01-01

    From experiments with lower eukaryotes it is known that the metabolic rate and also the rate of aging are tightly controlled by the IGF / insulin signal transduction pathway. The mitochondrial theory of aging implies that an increased metabolic rate leads to increased mitochondrial activity; increased production of reactive oxygen species due to these alterations would speed up the aging process. To address the question if mitochondrial activity is influenced by insulin / IGF signalling, we h...

  8. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  9. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    Bjerre, M.; Kistorp, C.; Hansen, T.K.;

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  10. Soluble urokinase-type plasminogen activator receptor is a novel biomarker predicting acute exacerbation in COPD

    Gumus A

    2015-02-01

    Full Text Available Aziz Gumus,1 Nejat Altintas,2 Halit Cinarka,1 Aynur Kirbas,3 Muge Haziroglu,1 Mevlut Karatas,1 Unal Sahin1 1Department of Pulmonary Medicine, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey; 2Department of Pulmonary Medicine, School of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Clinical Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey Background: Chronic obstructive pulmonary disease (COPD is a chronic inflammatory condition, and progresses with acute exacerbations. (AE. During AE, levels of acute phase reactants such as C-reactive protein (CRP and inflammatory cells in the circulation increase. Soluble urokinase-type plasminogen activator receptor (suPAR levels increase in acute viral and bacterial infections and in diseases involving chronic inflammation. The purpose of this study was to investigate the effectiveness of suPAR in predicting diagnosis of AE of COPD (AE-COPD and response to treatment. Methods: The study population consisted of 43 patients diagnosed with AE-COPD and 30 healthy controls. suPAR, CRP, and fibrinogen levels were measured on the first day of hospitalization and on the seventh day of treatment. Results: We found that fibrinogen (P<0.001, CRP (P<0.001, and suPAR (P<0.001 were significantly higher in patients with AE-COPD than in healthy controls. Fibrinogen (P<0.001, CRP (P=0.001, and suPAR (P<0.001 were significantly decreased by the seventh day of treatment. However, the area under receiver operator characteristic curve showed that suPAR is superior to CRP and fibrinogen in distinguishing AE-COPD. There was a correlation between fibrinogen, CRP, and suPAR. However, only fibrinogen was a powerful predictor of suPAR in multiple linear regression. In multiple logistic regression, only suPAR and fibrinogen were strong predictors of AE-COPD (P=0.002 and P=0.014, respectively. Serum suPAR was negatively correlated with forced expiratory volume in 1

  11. Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes

    Mabel B. Esteves

    2005-06-01

    Full Text Available Lymphocytes activated by mitogenic lectins display changes in transmembrane potential, an elevation in the cytoplasmic Ca2+ concentrations, proliferation and/or activation induced cell death. Low concentrations of ouabain (an inhibitor of Na+,K+-ATPase suppress mitogen-induced proliferation and increases cell death. To understand the mechanisms involved, a number of parameters were analyzed using fluorescent probes and flow cytometry. The addition of 100nM ouabain to cultures of peripheral blood lymphocytes activated with 5µg/ml phytohemagglutinin (PHA did not modify the increased expression of the Fas receptor or its ligand FasL induced by the mitogen. However, treatment with ouabain potentiated apoptosis induced by an anti-Fas agonist antibody. A synergy between ouabain and PHA was also observed with regard to plasma membrane depolarization. PHA per se did not induce dissipation of mitochondrial membrane potential but when cells were also exposed to ouabain a marked depolarization could be observed, and this was a late event. It is possible that the inhibitory effect of ouabain on activated peripheral blood lymphocytes involves the potentiation of some of the steps of the apoptotic process and reflects an exacerbation of the mechanism of activation-induced cell death.Quando linfócitos são ativados por lectinas mitogênicas apresentam mudanças do potencial de membrana, elevação das concentrações citoplasmáticas de cálcio, proliferação e/ou morte celular induzida por ativação (AICD. Concentrações baixas de ouabaína (um inibidor da Na,K-ATPase suprimem a proliferação induzida por mitógenos e aumentam a morte celular. Para entender os mecanismos envolvidos, uma série de parâmetros foram avaliados usando sondas fluorescentes e citometria de fluxo. A adição de 100nM de ouabaína para culturas de linfócitos de sangue periférico ativadas por fitohemaglutinina (PHA não modificou o aumento de expressão do receptor Fas ou de

  12. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  13. Allergic Conjunctivitis Exacerbates Corneal Allograft Rejection by Activating Th1 and Th2 Alloimmune Responses

    Niederkorn, Jerry Y.; Chen, Peter W.; Mellon, Jessamee; Stevens, Christina; Mayhew, Elizabeth

    2010-01-01

    Allergic conjunctivitis (AC) and airway hyperreactivity exacerbate corneal allograft rejection. Because AC and airway hyperreactivity are allergic diseases of mucosal tissues, we determined whether an allergic disease of a nonmucosal tissue would affect corneal allograft rejection and whether Th2 cells alone accounted for accelerated graft rejection in allergic mice. Hosts sensitized cutaneously with short ragweed pollen developed cutaneous immediate hypersensitivity but rejected corneal allo...

  14. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  15. Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons

    The effect of insulin on the appearance of the enzyme choline acetyltransferase in embryonic chicken retina neurons cultured in defined medium was studied. In the presence of a minimal level of insulin (1 ng/ml), ChoAcT activity increased with time in culture. A correspondence between the insulin concentration in the defined medium (1-100 ng/ml) and both the rate of increase and maximum attained level of ChoAcT activity was observed. Maximal ChoAcT activity was 2- to 3-fold greater in cells cultured in the presence of 100 ng of insulin per ml than in cells cultured in the presence of 1 ng of insulin per ml. To elicit maximum ChoAcT activity, insulin at 100 ng/ml was required in the medium for only the first 4 days of the culture period, at which time insulin could be reduced to maintenance levels (10 ng/ml) without affecting ChoAcT activity. Insulin binding assays performed during a 7-day culture period revealed that irrespective of the 125I-insulin concentration in the medium during culture, cell-surface insulin receptors decreased by ≅ 90% between 4 and 7 days in culture. This decrease in insulin binding corresponded to the observed decrease in the sensitivity of ChoAcT activity to insulin. The findings suggest that insulin plays a role in mediating cholinergic differentiation in the embryonic chicken retina

  16. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  17. Orally active insulin mimics: where do we stand now?

    M Balasubramanyam; V Mohan

    2001-09-01

    The war against diabetes through the development of new drugs is an ongoing continuous process to counter the alarming global increase in the prevalence of diabetes and its complications, particularly in developing countries like India. Unfortunately, the speed with which our knowledge of diabetes and its effects is expanding is not matched by the availability of new drugs. Following the identification of the insulin receptor (IR), its intrinsic kinase activity and molecular cloning, many studies have looked at IR as an ideal drug target. This review summarizes in brief the latest advancements in this field with particular reference to the current situation in respect of the development of orally active insulin mimetics in the treatment of type 2 diabetes.

  18. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  19. The insulin receptor activation process involves localized conformational changes.

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  20. Insulin regulation of Na/K pump activity in rat hepatoma cells

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  1. Insulin regulation of Na/K pump activity in rat hepatoma cells

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-05-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by /sup 3/H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of /sup 22/Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes.

  2. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin

    Hjorth, Christian Fogt; Norrman, Mathias; Wahlund, Per-Olof; Benie, Andrew J.; Petersen, Bent O.; Jessen, Christian M; Pedersen, Thomas Å.; Vestergaard, Kirsten; Steensgaard, Dorte B; Pedersen, Jan Skov; Naver, Helle; Hubálek, František; Poulsen, Christian; Otzen, Daniel

    2016-01-01

    first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure......A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation...

  3. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity.

    Forsayeth, J R; Caro, J F; Sinha, M K; Maddux, B A; Goldfine, I D

    1987-01-01

    Three mouse monoclonal antibodies were produced that reacted with the alpha subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate ...

  4. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors. PMID:1802921

  5. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  6. Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice

    Ussher, John R.; Keung, Wendy; Fillmore, Natasha; Koves, Timothy R.; Mori, Jun; Zhang, Liyan; Lopaschuk, David G.; Ilkayeva, Olga R.; Wagg, Cory S.; Jaswal, Jagdip S.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2014-01-01

    There is a growing need to understand the underlying mechanisms involved in the progression of cardiovascular disease during obesity and diabetes. Although inhibition of fatty acid oxidation has been proposed as a novel approach to treat ischemic heart disease and heart failure, reduced muscle fatty acid oxidation rates may contribute to the development of obesity-associated insulin resistance. Our aim was to determine whether treatment with the antianginal agent trimetazidine, which inhibits...

  7. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal.

    Woods, C A; Guttman, Z R; Huang, D; Kolaric, R A; Rabinowitsch, A I; Jones, K T; Cabeza de Vaca, S; Sclafani, A; Carr, K D

    2016-05-15

    With respect to feeding, insulin is typically thought of as a satiety hormone, acting in the hypothalamus to limit ingestive behavior. However, accumulating evidence suggests that insulin also has the ability to alter dopamine release in the striatum and influence food preferences. With increased access to high calorie foods, Western societies have a high prevalence of obesity, accompanied by insulin insensitivity. Little is known about how insulin is trafficked into the brain following food consumption and whether insulin insensitivity in the periphery is mirrored in the central nervous system. We investigated insulin receptor activation in the ventral striatum of rats receiving water or 16% glucose either orally or intragastrically. We also investigated whether glucose-induced insulin receptor activation was altered in food-restricted (FR) or diet-induced obesity (OB) rat models. Lastly, we examined whether insulin plays a significant role in flavor-nutrient preference learning. Glucose intake stimulated a rapid increase in insulin receptor activity in the ventral striatum of FR and ad libitum (AL) fed rats, but not OB rats. Similarly, both AL and FR, but not OB rats demonstrated significant flavor-nutrient preferences. However AL rats receiving brief inhibition of insulin activity during conditioning failed to acquire a significant flavor-nutrient preference. These findings suggest that impaired insulin receptor activation in the ventral striatum may result in inaccurate valuation of nutritive foods, which could lead to overconsumption of food or the selection of foods that don't accurately meet the body's current physiological needs. PMID:26988281

  8. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts

    Jensen, M.; Palsgaard, J.; Borup, R.;

    2008-01-01

    Single-chain peptides have been recently produced that display either mimetic or antagonistic properties against the insulin and IGF-1 (insulin-like growth factor 1) receptors. We have shown previously that the insulin mimetic peptide S597 leads to significant differences in receptor activation and...

  9. DAMPs-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury

    Huang, Hai; Tohme, Samer; Al-Khafaji, Ahmed B; Tai, Sheng; Loughran, Patricia; Chen, Li; Wang, Shu; Kim, Jiyun; Billiar, Timothy; Wang, Yanming; Tsung, Allan

    2015-01-01

    Innate immunity plays a crucial role in the response to sterile inflammation such as liver ischemia/reperfusion (I/R) injury. The initiation of liver I/R injury results in the release of damage associated molecular patterns (DAMPs), which trigger innate immune and inflammatory cascade via pattern recognition receptors. Neutrophils are recruited to the liver after I/R and contribute to the organ damage, innate immune and inflammatory responses. Formation of neutrophil extracellular trap (NET) has been recently found in response to various stimuli. However, the role of NETs during liver I/R injury remains unknown. We show that NETs form in the sinusoids of ischemic liver lobes in vivo. This was associated with increased NET markers, serum level of myeloperoxidase (MPO)-DNA complexes and tissue level of citrullinated-histone H3 compared to control mice. Treatment with peptidyl-arginine-deiminase (PAD) 4 inhibitor or DNase I significantly protected hepatocytes and reduced inflammation after liver I/R as evidenced by inhibition of NET formation, indicating the pathophysiological role of NETs in liver I/R injury. In vitro, NETs increase hepatocyte death and induce Kupffer cells to release proinflammatory cytokines. DAMPs, such as HMGB1 and histones, released by injured hepatocytes stimulate NET formation through Toll-like receptor (TLR4)- and TLR9-MyD88 signaling pathways. After neutrophil depletion in mice, the adoptive transfer of TLR4 knockout (KO) or TLR9 KO neutrophils confers significant protection from liver I/R injury with significant decrease in NET formation. In addition, we found inhibition of NET formation by PAD4 inhibitor or DNase I reduces HMGB1 and histone-mediated liver I/R injury. Conclusion DAMPs released during liver I/R promotes NET formation through TLRs signaling pathway. Development of NETs subsequently exacerbates organ damage and initiates inflammatory responses during liver I/R. PMID:25855125

  10. Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity

    To test whether the tyrosine kinase activity of the insulin receptor is crucial for insulin action, the authors have constructed mutations of the human insulin receptor at Lys-1030, which is in the presumed ATP-binding region. By using oligonucleotide-directed mutagenesis, this lysine residue was replaced with either methionine, arginine, or alanine. Chinese hamster ovary cells were transfected by mutant cDNAs and the expressed insulin receptors were characterized. They show here that none of these mutants exhibited insulin-activated autophosphorylation and kinase activity in vitro. They also do not mediate insulin- and antibody-stimulated uptake of 2-deoxyglucose. The tyrosine kinase activity is thus required for a key physiological response of insulin

  11. A two-week reduction of ambulatory activity attenuates peripheral insulin sensitivity

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa;

    2009-01-01

    activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, non-exercising subjects who went from a normal to a low level of ambulatory activity for two weeks would display metabolic alterations including reduced peripheral insulin sensitivity. -To do this, ten healthy young...... number of daily steps induced a significant reduction of 17% in the glucose infusion rate (GIR) during the clamp. This reduction was due to a decline in peripheral insulin sensitivity with no effect on hepatic endogenous glucose production. The insulin-stimulated ratio of pAkt(thr308)/total Akt decreased...... possible biological cause for the public health problem of type 2 diabetes has been identified. Reduced ambulatory activity for two weeks in healthy, non-exercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass. Key words: Inactivity, Insulin...

  12. Association of disease activity with acute exacerbation of interstitial lung disease during tocilizumab treatment in patients with rheumatoid arthritis: a retrospective, case-control study.

    Akiyama, Mitsuhiro; Kaneko, Yuko; Yamaoka, Kunihiro; Kondo, Harumi; Takeuchi, Tsutomu

    2016-06-01

    The objective of the study was to identify risk factors for acute exacerbation of interstitial lung disease (ILD) during tocilizumab treatment in patients with rheumatoid arthritis (RA). This is a retrospective, case-control study. We reviewed 395 consecutive RA patients who received tocilizumab. First, we divided the patients according to the presence (RA-ILD) or absence of ILD (non-ILD) assessed by chest X-ray or high-resolution computed tomography, and compared them for characteristics relevant to RA-ILD. Subsequently, focusing on the patients with RA-ILD, we assessed their baseline characteristics and clinical courses comparing patients with acute exacerbation to those without. Comparing 78 with ILD and 317 without ILD, the following were identified as factors related to RA-ILD on multivariate analysis: age 60 years or older (OR 4.5, 95 % CI 2.2-9.4, P smoking habit (OR 2.9, 95 % CI 1.5-5.5, P = 0.002), and high rheumatoid factor levels (OR 2.8, 95 % CI 1.4-5.5, P = 0.002). Of 78 RA-ILD patients, six developed acute exacerbation during tocilizumab treatment. The median duration between the initiation of tocilizumab treatment and the acute exacerbation occurrence was 48 weeks. While baseline characteristics did not differ between acute exacerbation and non-acute exacerbation groups, patients experiencing acute exacerbation had significantly higher Clinical Disease Activity Index (CDAI) at 24 weeks (20.8 vs. 6.2, P = 0.019). Univariate analysis showed that CDAI > 10 at 24 weeks was a risk factor for acute exacerbation (OR 4.7, 95 % CI 2.1-10.4, P = 0.02). Uncontrolled arthritis activity during tocilizumab treatment may be associated with acute exacerbation of RA-ILD, suggesting post-treatment monitoring of disease activity is important not only with respect to RA itself but also for RA-ILD. PMID:27072347

  13. Intraoral film containing insulin-phospholipid microemulsion: formulation and in vivo hypoglycemic activity study.

    Rachmawati, Heni; Haryadi, Bernard Manuel; Anggadiredja, Kusnandar; Suendo, Veinardi

    2015-06-01

    Non-invasive administration of insulin is expected for better diabetes mellitus therapy. In this report, we developed intraoral preparation for insulin. Insulin was encapsulated into nanocarrier using self-assembly emulsification process. To increase lipophilicity of insulin, it was dispersed in phospholipid resulted in insulin-phospholipid solid dispersion. The microemulsion formula was established from our previous work which contained glyceryl monooleate (GMO), Tween 20, and polyethylene glycol (PEG 400) in a ratio of 1:8:1. To confirm the formation of insulin-phospholipid solid dispersion, PXRD, FTIR spectroscopy, and Raman spectroscopy were performed. Then, the microemulsion was evaluated for droplet size and distribution, zeta potential, entrapment efficiency, physical stability, and Raman spectroscopy. In addition, microemulsion with expected characteristic was evaluated for in vitro release, in vitro permeation, and in vivo activity. The droplets size of ∼100 nm with narrow distribution and positive charge of +0.56 mV were formed. The insulin encapsulated in the oil droplet was accounted of >90%. Water-soluble chitosan seems to be a promising film matrix polymer which also functioned as insulin release controller. Oral administration of insulin microemulsion to healthy Swiss-Webster mice showed hypoglycemic effect indicating the success of this protein against a harsh environment of the gastrointestinal tract. This effectiveness significantly increased by fourfold as compared to free insulin. Taken together, microemulsion seems to be a promising carrier for oral delivery of insulin. PMID:25511810

  14. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin.

    Hjorth, Christian Fogt; Norrman, Mathias; Wahlund, Per-Olof; Benie, Andrew J; Petersen, Bent O; Jessen, Christian M; Pedersen, Thomas Å; Vestergaard, Kirsten; Steensgaard, Dorte B; Pedersen, Jan Skov; Naver, Helle; Hubálek, František; Poulsen, Christian; Otzen, Daniel

    2016-04-01

    A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation. PMID:26921119

  15. Dark chocolate exacerbates acne.

    Vongraviopap, Saivaree; Asawanonda, Pravit

    2016-05-01

    The effects of chocolate on acne exacerbations have recently been reevaluated. For so many years, it was thought that it had no role in worsening acne. To investigate whether 99% dark chocolate, when consumed in regular daily amounts, would cause acne to worsen in acne-prone male subjects, twenty-five acne prone male subjects were asked to consume 25 g of 99% dark chocolate daily for 4 weeks. Assessments which included Leeds revised acne scores as well as lesion counts took place weekly. Food frequency questionnaire was used, and daily activities were recorded. Statistically significant changes of acne scores and numbers of comedones and inflammatory papules were detected as early as 2 weeks into the study. At 4 weeks, the changes remained statistically significant compared to baseline. Dark chocolate when consumed in normal amounts for 4 weeks can exacerbate acne in male subjects with acne-prone skin. PMID:26711092

  16. Bcl10 links saturated fat overnutrition with hepatocellular NF-kB activation and insulin resistance

    Beek, M.H. van; Oravecz-Wilson, K.I.; Delekta, P.C.; Gu, S.; Li, X.; Jin, X.; Apel, I.J.; Konkle, K.S.; Feng, Y.; Teitelbaum, D.H.; Ruland, J.; McAllister-Lucas, L.M.; Lucas, P.C.

    2012-01-01

    Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. With high-fat feeding, FFAs activate NF-kB in target tissues, initiating negative crosstalk with insulin signaling. However, the mechanisms underlying FFA-dependent NF-kB activation remain unclear. Here,

  17. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    Nellemann, Birgitte; Vendelbo, Mikkel H; Nielsen, Thomas S;

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  18. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat.

    Hanlon, Lauren A; Huh, Jimmy W; Raghupathi, Ramesh

    2016-03-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  19. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Satwiko, Muhammad Gahan [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Ikeda, Koji [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Nakayama, Kazuhiko [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hocher, Berthold [Institute for Nutritional Science, University of Potsdam, Potsdam (Germany); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  20. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  1. Insulin Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase B (Akt) Pathway Reduces Lipopolysaccharide-Induced Inflammation in Mice

    Kidd, Linda B.; Schabbauer, Gernot A.; Luyendyk, James P.; Holscher, Todd D.; Tilley, Rachel E.; Tencati, Michael; Mackman, Nigel

    2008-01-01

    Insulin is used to control pro-inflammatory hyperglycemia in critically ill patients. However, recent studies suggest that insulin-induced hypoglycemia may negate its beneficial effects in these patients. It is noteworthy that recent evidence indicates that insulin has anti-inflammatory effects that are independent of controlling hyperglycemia. To date, the mechanism by which insulin directly reduces inflammation has not been elucidated. It is well established that insulin activates phosphati...

  2. Effect of insulin-like factors on glucose transport activity in unweighted rat skeletal muscle

    Henriksen, Erik J.; Ritter, Leslie S.

    1993-01-01

    The effect of 3 or 6 days of unweighting on glucose transport activity, as assessed by 2-deoxyglucose uptake, in soleus strips stimulated by maximally effective concentrations of insulin, IGF-I, vanadate, or phospholipase C (PLC) is examined. Progressively increased responses to maximally effective doses of insulin or insulin-like growth factor were observed after 3 and 6 days of unweighting compared with weight matched control strips. Enhanced maximal responses to vanadate (6 days only) and PLC (3 and 6 days) were also observed. The data provide support for the existance of postreceptor binding mechanisms for the increased action of insulin on the glucose transport system in unweighted rat skeletal muscle.

  3. Latent cytomegalovirus infection exacerbates experimental pulmonary fibrosis by activating TGF-β1.

    Li, Yonghuai; Gao, Jian; Wang, Guoliang; Fei, Guanghe

    2016-08-01

    The aim of the present study was to investigate the hypotheses that cytomegalovirus (CMV) may trigger idiopathic pulmonary fibrosis (IPF) in a susceptible host and/or that the presence of CMV may alter IPF in response to a well-defined trigger of pulmonary fibrosis. A mouse model of murine CMV (MCMV) infection was established, and the mice were divided into a control group, bleomycin group and an MCMV+bleomycin group. Changes in the weights of the mice were determined in the three groups. Pulmonary fibrosis was detected using a histopathological method. The activity of transforming growth factor (TGF)‑β1 was measured, and the levels of E‑cadherin, Vimentin and phosphorylated (phospho)‑small mothers against decapentaplegic (SMAD)2 were determined using western blot analysis. MCMV was found to invade the lungs, however, it did not cause pulmonary fibrosis. The progression of fibrosis in the mice treated with MCMV+bleomycin was more rapid, compared with that in the control mice. The protein levels of Vimentin and phospho-SMAD2 were upregulated, whereas the level of E‑cadherin was downregulated in the MCMV+bleomycin group,. The results suggested that latent MCMV infection aggravated pulmonary fibrosis in the mouse model, possibly through the activation of TGF-β1. PMID:27279470

  4. Degradation of insulin by isolated mouse pancreatic acini. Evidence for cell surface protease activity

    In the present study, we have used isolated mouse pancreatic acini were used to investigate the relationship between 125I-insulin binding and its degradation in order to probe the nature and cellular localization of the degradative process. In these cells, the proteolysis of 125I-insulin was dependent on time and cell concentration, and was saturated by unlabeled insulin with a Km of 290 nM. Since this value was much higher than the Kd for insulin binding to its receptor (1.1 nM), the data indicated that 125I-insulin degradation by acini occurred primarily via nonreceptor mechanisms. Several lines of evidence suggested that insulin was being degraded by the neutral thiol protease, insulin degrading enzyme (IDE). First, insulin degradation was inhibited by thiolreacting agents such as N-ethylmaleimide and p-chloromercuribenzoate. Second, the Km for degradation in acini was similar to the reported Km for IDE in other tissues. Third, the enzyme activity had a relative mol wt of approximately 130,000 by gel filtration, a value similar to that reported for purified IDE. Fourth, the degrading activity was removed with a specific antibody to IDE. Other lines of evidence suggested that enzymes located on the cell surface played a role in insulin degradation by acini. First, the nonpenetrating sulfhydryl reacting agent 5,5' dithiobis-2-nitrobenzoic acid blocked 125I-insulin degradation. Second, a specific antibody to IDE identified the presence of the enzyme on the cell surface. Third, chloroquine, leupeptin and antipain, agents that inhibit lysosomal function, did not influence 125I-insulin degradation. Fourth, highly purified pancreatic plasma membranes degraded 125I-insulin

  5. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using [32P]phosphorylase α as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at ∼5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase

  6. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.

    Keung, Wendy; Ussher, John R; Jaswal, Jagdip S; Raubenheimer, Monique; Lam, Victoria H M; Wagg, Cory S; Lopaschuk, Gary D

    2013-03-01

    Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. PMID:23139350

  7. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

    Yusaku Iwasaki

    Full Text Available Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs of vagal afferents in mice. NGs expressed insulin receptor (IR and insulin receptor substrate-2 (IRS2 mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12∼10(-6 M depolarized and increased cytosolic Ca(2+ concentration ([Ca(2+]i in single NGNs. The insulin-induced [Ca(2+]i increases were attenuated by L- and N-type Ca(2+ channel blockers, by phosphatidylinositol 3 kinase (PI3K inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7 M recruited a remarkably greater population of NGNs to [Ca(2+]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+ influx. Pancreas

  8. Oxcarbazepine and its active metabolite, (S)-licarbazepine, exacerbate seizures in a mouse model of genetic generalized epilepsy.

    Kim, Tae Hwan; Reid, Christopher A; Petrou, Steven

    2015-01-01

    Oxcarbazepine (OXC), widely used to treat focal epilepsy, is reported to exacerbate seizures in patients with generalized epilepsy. OXC is metabolized to monohydroxy derivatives in two enantiomeric forms: (R)-licarbazepine and (S)-licarbazepine. Eslicarbazepine acetate is a recently approved antiepileptic drug that is rapidly metabolized to (S)-licarbazepine. It is not known whether (S)-licarbazepine exacerbates seizures. Here, we test whether OXC or either of its enantiomers exacerbates the number of spike-and-wave discharges (SWDs) in mice harboring the human γ-aminobutyric acid A receptor (GABAA)γ2(R43Q) mutation. OXC (20 mg/kg), (S)-licarbazepine (20 mg/kg), and (R)-licarbazepine (20 mg/kg) all significantly increased the number of SWDs, while their duration was unaffected. The potential for (S)-licarbazepine to exacerbate SWDs suggests that eslicarbazepine acetate should be used with caution in generalized epilepsy. Furthermore, generalized seizure exacerbation for first-, second-, and third-generation carbamazepine-based compounds is likely to occur through a common mechanism. PMID:25489632

  9. Body fat related to daily physical activity and insulin concentrations in non-diabetic children

    Dencker, Magnus; Thorsson, Ola; Karlsson, Magnus K; Lindén, Christian; Eiberg, Stig; Wollmer, Per; Andersen, Lars Bo; Ahrén, Bo

    2008-01-01

    This study explored the associations between body fat versus daily physical activity and insulin concentrations in non-diabetic young children in a cross-sectional study of 172 children (93 boys and 79 girls) aged 8–11 years. Blood samples were analysed for serum insulin and daily physical activity was measured by accelerometers. Time spent performing vigorous activity was estimated from accelerometer data by using established cut-off points. Dual-energy x-ray absorptiometry (DXA) was used to...

  10. Coupling between insulin binding and activation of glucose transport in rat adipocytes

    Previous studies have shown that the kinetics of binding of insulin (I) to its receptor (R) in isolated rat adipocytes at 150C, where insulin degradation was observed to be negligible, could best be described by the model: R+I ↔ RI ↔ R'I. According to this model, bound insulin is distributed between two kinetically distinct states of the occupied receptor, RI and R'I. The quantities of RI and R'I contributing to the observed total binding of insulin to cells can be obtained from the four rate constants describing the model. In order to examine the possible roles of RI and R'I in mediating hormone action, insulin stimulation of carrier-mediated 3-0-methyl-[U-14C] glucose transport at 150C was studied. The results show that insulin activation of the rate of glucose transport was sigmoidal with time, and this was qualitatively similar to the formation of R'I with time. In contrast, formation of RI was described by an exponential approach to a plateau. This finding raises the possibility that R'I is the form of the insulin receptor directly mediating insulin activation of glucose transport

  11. Relationship between insulinase activity of erythrocytes and insulin resistance in patients with type 2 diabetes mellitus

    LI Chen-zhong; ZHANG Su-hua; QIU Hong-xin; WANG Ding-nian

    2001-01-01

    To investigate the relationship between insulinase activity of erythrocytes (EIA) and insulin resistance in patients with type 2 diabetes mellitus. Methods: EIA was determined with the method of radioassay of enzyme activity in 65 healthy subjects, and 109 patients with type 2 diabetes mellitus divided into 3 subgroups according to their therapy and plasma glucose control. Fasting plasma insulin (FINS) and other related indices were also measured in all the subjects. Moreover, insulin sensitive index (lSI) was calculated for estimation of insulin sensitivity. Results: EIA and FINS are increased in two subgroups of diabetic patients on hypoglycemics (subgroup A and subgroup B), and especially higher in the poor controlled subgroup of patients ( subgroup A). EIA and FINS are normal in subgroup of patients without medication (subgroup C). Moreover, ISI is decreased in all the subgroups of patients as compared with normal subjects. Correlation analysis show that EIA is inversely correlated with ISI in all subgroups of patients and normal subjects, and positively correlated with FINS in normal subjects. Conclusions:The rate of insulin degradation in erythrocytes is increased in patients with type 2 diabetes, and increased insulin degradation may result in their insulin- resistant state. Moreover, EIA may be used as one of the indices for estimation of insulin sensitivity.

  12. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α2β2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α2β2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α2β2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α2β2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α2β2 insulin receptor subunit complex

  13. Activation of transforming potential of the human insulin receptor gene

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the β subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  14. Activation of transforming potential of the human insulin receptor gene

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  15. Body fat related to daily physical activity and insulin concentrations in non-diabetic children

    Dencker, Magnus; Thorsson, Ola; Karlsson, Magnus K;

    2007-01-01

    This study explored the associations between body fat versus daily physical activity and insulin concentrations in non-diabetic young children in a cross-sectional study of 172 children (93 boys and 79 girls) aged 8-11 years. Blood samples were analysed for serum insulin and daily physical activity...... was measured by accelerometers. Time spent performing vigorous activity was estimated from accelerometer data by using established cut-off points. Dual-energy x-ray absorptiometry (DXA) was used to quantify abdominal fat mass (AFM) and total body fat (TBF), also calculated as percentage of body weight (BF......%). Body fat distribution was calculated as AFM/TBF. Body fat distribution was independently linked to both insulin concentrations and physical activity. In contrast, TBF, AFM, and BF% were linked to physical activity only and not to insulin concentrations. In conclusion in this population of non...

  16. Alteration of insulin content in thermal and combined radiation-thermal burns and the insulin modulating activity of blood medium-weight molecular peptides

    Influence of thermal and combined radiation thermal burns on insulin content in blood plasma was studied in mice irradiated with 137Cs in 3.4 Gy. Insulin content in blood plasma of experimental animals and patients with thermal burns was determined with the help of radioimmune method. The insulin modulating activity of bolld medium-weight molecular peptides wqas considered. The investigations conducted showed that with the severity of burn in the period of toxemia the level of immunoreactive insulin and medium-weight molecular peptides increased

  17. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  18. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with [γ-32P]ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the 32P-labeled β-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total 32P radioactivity is found in site I and the rate of 32P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the β-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress

  19. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    Flores-Riveros, J.R.; Lane, M.D.

    1987-05-01

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with (..gamma..-/sup 32/P)ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the /sup 32/P-labeled ..beta..-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total /sup 32/P radioactivity is found in site I and the rate of /sup 32/P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the ..beta..-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress.

  20. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-01-01

    Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and M...

  1. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases.

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-05-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (-40%) through reduced glucose transporter 4 (GLUT4) recruitment to the plasma membrane (-70%), without affecting GLUT4 gene expression. These findings were associated to the impairment of insulin signaling. Specifically, in oxLDL-treated cells insulin receptor (IR) substrate-1 (IRS-1) was highly degraded likely because of the enhanced Ser(307)phosphorylation. This process was largely mediated by the activation of the inhibitor of kappaB-kinase beta (IKKbeta) and the c-Jun NH(2)-terminal kinase (JNK). Moreover, the activation of IKKbeta positively regulated the nuclear content of nuclear factor kappaB (NF-kappaB), by inactivating the inhibitor of NF-kappaB (IkappaBalpha). The activated NF-kappaB further impaired per se GLUT4 functionality. Specific inhibitors of IKKbeta, JNK, and NF-kappaB restored insulin sensitivity in adipocytes treated with oxLDL. These data provide the first evidence that oxLDL, by activating serine/threonine kinases, impaired adipocyte response to insulin affecting pathways involved in the recruitment of GLUT4 to plasma membranes (PM). This suggests that oxLDL might participate in the development of insulin resistance. PMID:19136667

  2. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu;

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...

  3. Insulin modulates network activity in olfactory bulb slices: impact on odour processing

    Kuczewski, Nicola; Fourcaud-Trocmé, Nicolas; Savigner, Agnès; Thevenet, Marc; Aimé, Pascaline; Garcia, Samuel; Duchamp-Viret, Patricia; Palouzier-Paulignan, Brigitte

    2014-01-01

    Odour perception depends closely on nutritional status, in animals as in humans. Insulin, the principal anorectic hormone, appears to be one of the major candidates for ensuring the link between olfactory abilities and nutritional status, by modifying processing in the olfactory bulb (OB), one of its main central targets. The present study investigates whether and how insulin can act in OB, by evaluating its action on the main output neurons activities, mitral cells (MCs), in acute rat OB slices. Insulin was found to act at two OB network levels: (1) on MCs, by increasing their excitability, probably by inhibiting two voltage-gated potassium (K+) channels; (2) on interneurons by modifying the GABAergic and on glutamatergic synaptic activity impinging on MCs, mainly reducing them. Insulin also altered the olfactory nerve (ON)-evoked excitatory postsynaptic currents in 60% of MCs. Insulin decreased or increased the ON-evoked responses in equal proportion and the direction of its effect depended on the initial neuron ON-evoked firing rate. Indeed, insulin tended to decrease the high and to increase the low ON-evoked firing rates, thereby reducing inter-MC response firing variability. Therefore, the effects of insulin on the evoked firing rates were not carried out indiscriminately in the MC population. By constructing a mathematical model, the impact of insulin complex effects on OB was assessed at the population activity level. The model shows that the reduction of variability across cells could affect MC detection and discrimination abilities, mainly by decreasing and, less frequently, increasing them, depending on odour quality. Thus, as previously proposed, this differential action of insulin on MCs across odours would allow this hormone to put the olfactory function under feeding signal control, given the discerning valence of an odour as a function of nutritional status. PMID:24710056

  4. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond

    Vinther, Tine N.; Kjeldsen, Thomas B.; Jensen, Knud Jørgen;

    2015-01-01

    addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs...

  5. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  6. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats

    Nayak, Yogendra; Venkatachalam, H.; Daroji, Vijay Kumar; Mathew, Geetha; Jayashree, B. S.; Unnikrishnan, M. K.

    2014-01-01

    Synthetic 3-hydroxyflavone analogues (JY-1, JY-2, JY-3, JY-4), were tested for antidiabetic activity in high-fructose-diet-fed (66 %, for 6 weeks) insulin-resistant Wistar rats (FD-fed rats). The fasting blood glucose, insulin, creatinine and AGEs were decreased to near normal upon treatment with test compounds. Insulin resistance markers such as HOMA-IR, K-ITT, plasma triglycerides, lipids, endogenous antioxidant defense and glycogen were restored in FD-fed rats after treatment with 3-hydrox...

  7. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Highlights: ► H2O2 activates the insulin signaling pathway and glucose uptake in podocytes. ► H2O2 induces time-dependent changes in AMPK phosphorylation. ► H2O2 enhances insulin signaling pathways via AMPK activation. ► H2O2 stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H2O2) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H2O2-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H2O2 (100 μM) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min (Δ 183%, P 2O2>. Furthermore, H2O2 inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; Δ −32%, P 2O2 on IR phosphorylation by about 40% (from 2.07 ± 0.28 to 1.28 ± 0.12, P 2O2 increased glucose uptake in podocytes (from 0.88 ± 0.04 to 1.29 ± 0.12 nmol/min/mg protein, P 2O2 activated the insulin signaling pathway and glucose uptake via AMPK in cultured rat podocytes. This signaling may play a potential role in the prevention of insulin resistance under conditions associated with oxidative stress.

  8. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-01

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation. PMID:24847884

  9. Aging Exacerbates Depressive-like Behavior in Mice in Response to Activation of the Peripheral Innate Immune System

    Godbout, Jonathan P.; Moreau, Maïté; Lestage, Jacques; Chen, Jing; Sparkman, Nathan L; O’Connor, Jason; Castanon, Nathalie; Kelley, Keith W.; Dantzer, Robert; Johnson, Rodney W.

    2007-01-01

    Exposure to peripheral infections may be permissive to cognitive and behavioral complications in the elderly. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness behavior in aged BALB/c mice. Because LPS also causes depressive behavior, the purpose of this study was to determine whether aging is associated with an exacerbated depressive-like response. We confirmed that LP...

  10. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the Renin Angiotensin system.

    Timmermans, Silke; Bogie, Jeroen; Vanmierlo, Tim; Lütjohann, Dieter; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J.A.

    2014-01-01

    Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND...

  11. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2

    Chibalin, Alexander V; Yu, Mei; Ryder, Jeffrey W.; Song, Xiao Mei; Galuska, Dana; Krook, Anna; Wallberg-Henriksson, Harriet; Juleen R. Zierath

    2000-01-01

    Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen co...

  12. Prolonged treatment of genetically obese mice with conjugated linoleic acid improves glucose tolerance and lowers plasma insulin concentration: possible involvement of PPAR activation

    Einerhand Alexandra WC

    2005-01-01

    Full Text Available Abstract Background Studies in rodents and some studies in humans have shown that conjugated linoleic acid (CLA, especially its trans-10, cis-12 isomer, reduces body fat content. However, some but not all studies in mice and humans (though none in rats have found that CLA promotes insulin resistance. The molecular mechanisms responsible for these effects are unclear, and there are conflicting reports on the effects of CLA on peroxisomal proliferator-activated receptor-γ (PPARγ activation and expression. We have conducted three experiments with CLA in obese mice over three weeks, and one over eleven weeks. We have also investigated the effects of CLA isomers in PPARγ and PPARα reporter gene assays. Results Inclusion of CLA or CLA enriched with its trans-10, cis-12 isomer in the diet of female genetically obese (lepob/lepob mice for up to eleven weeks reduced body weight gain and white fat pad weight. After two weeks, in contrast to beneficial effects obtained with the PPARγ agonist rosiglitazone, CLA or CLA enriched with its trans-10, cis-12 isomer raised fasting blood glucose and plasma insulin concentrations, and exacerbated glucose tolerance. After 10 weeks, however, CLA had beneficial effects on glucose and insulin concentrations. At this time, CLA had no effect on the plasma TNFα concentration, but it markedly reduced the plasma adiponectin concentration. CLA and CLA enriched with either isomer raised the plasma triglyceride concentration during the first three weeks, but not subsequently. CLA enriched with its trans-10, cis-12 isomer, but not with its cis-9, trans-11 isomer, stimulated PPARγ-mediated reporter gene activity; both isomers stimulated PPARα-mediated reporter gene activity. Conclusions CLA initially decreased but subsequently increased insulin sensitivity in lepob/lepob mice. Activation of both PPARγ and PPARα may contribute to the improvement in insulin sensitivity. In the short term, however, another mechanism

  13. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors

    Xiaoyan Sheng; Yuebo Zhang; Zhenwei Gong; Cheng Huang; Ying Qin Zang

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARγ and α, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO) and db/db mice in its water extract form. In vitro studies demonstrate that cinnamon increase...

  14. Plasma phospholipid transfer protein activity is related to insulin resistance : impaired acute lowering by insulin in obese Type II diabetic patients

    Riemens, SC; van Tol, A; Sluiter, WJ; Dullaart, RPF

    1998-01-01

    Cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) have important functions in high density lipoprotein (HDL) metabolism. We determined the association of plasma CETP and PLTP activities (measured with exogenous' substrate assays) with insulin resistance, plasma trigl

  15. Insulin-induced NADPH oxidase activation promotes proliferation and matrix metalloproteinase activation in monocytes/macrophages

    San-Jose, G. (Gorka); Bidegain, J. (J.); Robador, P.A. (Pablo A.); J. Diez; Fortuño, A. (Ana); Zalba, G. (Guillermo)

    2009-01-01

    Insulin stimulates superoxide (O(2)(-)) production in monocytes and macrophages. However, the mechanisms through which insulin induces O(2)(-) production are not completely understood. In this study, we (a) characterized the enzyme and the pathways involved in insulin-stimulated O(2)(-) production in human monocytes and murine macrophages, and (b) analyzed the consequences of insulin-stimulated O(2)(-) production on the cellular phenotype in these cells. We showed that insulin stimulated O(2)...

  16. Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes.

    Thompson, Elizabeth A; Sayers, Brian C; Glista-Baker, Ellen E; Shipkowski, Kelly A; Ihrie, Mark D; Duke, Katherine S; Taylor, Alexia J; Bonner, James C

    2015-11-01

    Asthma is characterized by a T helper type 2 phenotype and by chronic allergen-induced airway inflammation (AAI). Environmental exposure to air pollution ultrafine particles (i.e., nanoparticles) exacerbates AAI, and a concern is possible exacerbation posed by engineered nanoparticles generated by emerging nanotechnologies. Signal transducer and activator of transcription (STAT) 1 is a transcription factor that maintains T helper type 1 cell development. However, the role of STAT1 in regulating AAI or exacerbation by nanoparticles has not been explored. In this study, mice with whole-body knockout of the Stat1 gene (Stat1(-/-)) or wild-type (WT) mice were sensitized to ovalbumin (OVA) allergen and then exposed to multiwalled carbon nanotubes (MWCNTs) by oropharygneal aspiration. In Stat1(-/-) and WT mice, OVA increased eosinophils in bronchoalveolar lavage fluid, whereas MWCNTs increased neutrophils. Interestingly, OVA sensitization prevented MWCNT-induced neutrophilia and caused only eosinophilic inflammation. Stat1(-/-) mice displayed increased IL-13 in bronchoalveolar lavage fluid at 1 day compared with WT mice after treatment with OVA or OVA and MWCNTs. At 21 days, the lungs of OVA-sensitized Stat1(-/-) mice displayed increased eosinophilia, goblet cell hyperplasia, airway fibrosis, and subepithelial apoptosis. MWCNTs further increased OVA-induced goblet cell hyperplasia, airway fibrosis, and apoptosis in Stat1(-/-) mice at 21 days. These changes corresponded to increased levels of profibrogenic mediators (transforming growth factor-β1, TNF-α, osteopontin) but decreased IL-10 in Stat1(-/-) mice. Finally, fibroblasts isolated from the lungs of Stat1(-/-) mice produced significantly more collagen mRNA and protein in response to transforming growth factor-β1 compared with WT lung fibroblasts. Our results support a protective role for STAT1 in chronic AAI and exacerbation of remodeling caused by MWCNTs. PMID:25807359

  17. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa; Mortensen, Ole Hartvig; Olsen, Rasmus H.; Mounier, Remi; Plomgaard, Peter; van Hall, Gerrit; Booth, Frank W; Pedersen, Bente K

    2010-01-01

    US adults take between approximately 2,000 and approximately 12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions in physical activity induce insulin resistance; however, it is uncertain if...... and how low ambulatory activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, nonexercising subjects who went from a normal to a low level of ambulatory activity for 2 wk would display metabolic alterations including reduced peripheral insulin sensitivity. To do this......, ten healthy young men decreased their daily activity level from a mean of 10,501+/-808 to 1,344+/-33 steps/day for 2 wk. Hyperinsulinemic-euglycemic clamps with stable isotopes and muscle biopsies, maximal oxygen consumption (VO2 max) tests, and blood samples were performed pre- and postintervention...

  18. Increased IL-1β activation, the culprit not only for defective insulin secretion but also for insulin resistance?

    Marianne B(o)ni-Schnetzler; Marc Y Donath

    2011-01-01

    @@ Type 2 diabetes is a chronic progressive disease characterized by insufficient insulin secretion to compensate for insulin resistance.The onset of type 2 diabetes and its progression are mainly determined by the progressive failure of the pancreatic islet β-cells to produce sufficient levels of insulin.

  19. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Fluharty Eric

    2003-09-01

    Full Text Available Abstract Background Phospholipase D (PLD is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.

  20. A telehealth program for self-management of COPD exacerbations and promotion of an active lifestyle: a pilot randomized controlled trial

    Tabak M

    2014-09-01

    Full Text Available Monique Tabak,1,2 Marjolein Brusse-Keizer,3 Paul van der Valk,3,4 Hermie Hermens,1,2 Miriam Vollenbroek-Hutten1,2 1Telemedicine Group, Roessingh Research and Development, 2Telemedicine Group, University of Twente, 3Department of Pulmonary Medicine, Medisch Spectrum Twente, 4Medical School Twente, Medisch Spectrum Twente, Enschede, the Netherlands Abstract: The objective of this pilot study was to investigate the use of and satisfaction with a chronic obstructive pulmonary disease (COPD telehealth program applied in both primary and secondary care. The program consisted of four modules: 1 activity coach for ambulant activity monitoring and real-time coaching of daily activity behavior, 2 web-based exercise program for home exercising, 3 self-management of COPD exacerbations via a triage diary on the web portal, including self-treatment of exacerbations, and 4 teleconsultation. Twenty-nine COPD patients were randomly assigned to either the intervention group (telehealth program for 9 months or the control group (usual care. Page hits on the web portal showed the use of the program, and the Client Satisfaction Questionnaire showed satisfaction with received care. The telehealth program with decision support showed good satisfaction (mean 26.4, maximum score 32. The program was accessed on 86% of the treatment days, especially the diary. Patient adherence with the exercise scheme was low (21%. Health care providers seem to play an important role in patients' adherence to telehealth in usual care. Future research should focus on full-scale implementation in daily care and investigating technological advances, like gaming, to increase adherence. Keywords: COPD, physical activity, exacerbations, telehealth, self-management

  1. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    Marcinko, Katarina; Bujak, Adam L.; Lally, James S.V.; Ford, Rebecca J.; Wong, Tammy H.; Smith, Brennan K.; Kemp, Bruce E.; Jenkins, Yonchu; Li, Wei; Kinsella, Todd M.; Hitoshi, Yasumichi; Steinberg, Gregory R.

    2015-01-01

    Objective Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. Methods Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. Results There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. Conclusions Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity. PMID:26413470

  2. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  3. Antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity

    Two site-specific antibodies that immunoprecipitate the human insulin receptor have been prepared by immunizing rabbits with chemically synthesized peptides derived from the cDNA-predicted amino acid sequence of the β subunit of the proreceptor. Antibodies to the carboxyl terminus (AbP5) and to a domain around tyrosine-960 (AbP4) specifically recognize the β subunit of the receptor on immunoblots. Both antibodies immunoprecipitated 125I-labeled insulin-receptor complexes and the autophosphorylated receptor. Although neither antibody inhibited insulin binding to the receptor, both insulin-dependent autophosphorylation and exogenous substrate phosphorylation were inhibited by AbP4. Inhibition by AbP4 was dependent upon the phosphorylation state of the receptor; it was not detected when the receptor was autophosphorylated prior to addition of AbP4. AbP4 did not inhibit activity of the related epidermal growth factor (EGF)-receptor tyrosine protein kinase nor did it inhibit the activity of cAMP-dependent kinase or protein kinase C. The observation that an antibody directed to residues 952-967 of the proreceptor neutralizes the protein kinase activity of the β subunit suggest that this region may play a critical role in the function of the hormone-dependent, protein tyrosine-specific kinase activity of the insulin receptor

  4. Inhaled corticosteroids do not reduce initial high activity of matrix metalloproteinase (MMP)-9 in exhaled breath condensates of children with asthma exacerbation: a proof of concept study

    Grzela, Katarzyna; Zagórska, Wioletta; Krejner, Alicja; Banaszkiewicz, Aleksandra; Litwiniuk, Małgorzata; Kulus, Marek

    2016-01-01

    Inhaled corticosteroids (ICS) are the key component of asthma treatment. However, it is unclear whether they could control the activity and level of matrix metalloproteinase (MMP)-9, which is an important factor in asthma-associated inflammation and airway remodeling. Therefore, the aim of this proof of concept study was to analyze the influence of increased doses of ICS on MMP-9 in exhaled breath condensates (EBC) of patients with allergic asthma exacerbation. Apart from MMP-9, the assessment concerned selected inflammation markers – exhaled nitric oxide (eNO) and cytokines (IL-8 and TNF). The study involved a small group (n = 4) of individuals with asthma exacerbation. The intervention concerned increased doses of ICS with β-mimetics for 4 weeks. In addition to clinical evaluation, eNO measurements and EBC collections were done before and after 4 weeks of intense ICS treatment. The biochemical assessment of EBC concerned MMP-9, IL-8 and TNF. The data were compared to results of healthy controls (n = 6). The initial levels of eNO, MMP-9 and TNF in EBC were higher in the asthma group than in controls. In all subjects IL-8 levels were below the detection limit. After 4 weeks of ICS treatment in all patients we observed improvement of clinical and laboratory parameters. Interestingly, despite reduction of eNO and TNF, the activity of MMP-9/EBC remained on the initial level. Practical relevance of our results is limited by a small group. Nevertheless, our data suggest that ICS, although sufficient to control symptoms and inflammatory markers, may be ineffective to reduce MMP-9/EBC activity in asthma exacerbation and, possibly, airway remodeling. PMID:27536209

  5. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance.

    Moraes-Vieira, Pedro M; Castoldi, Angela; Aryal, Pratik; Wellenstein, Kerry; Peroni, Odile D; Kahn, Barbara B

    2016-05-01

    Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation. PMID:26936962

  6. Insulin receptor activation and down-regulation by cationic lipid transfection reagents

    Renström Ing-Marie

    2004-01-01

    Full Text Available Abstract Background Transfection agents comprised of cationic lipid preparations are widely used to transfect cell lines in culture with specific recombinant complementary DNA molecules. We have found that cells in culture are often resistant to stimulation with insulin subsequent to treatment with transfection agents such as LipofectAMINE 2000™ and FuGENE-6™. This is seen with a variety of different readouts, including insulin receptor signalling, glucose uptake into muscle cells, phosphorylation of protein kinase B and reporter gene activity in a variety of different cell types Results We now show that this is due in part to the fact that cationic lipid agents activate the insulin receptor fully during typical transfection experiments, which is then down-regulated. In attempts to circumvent this problem, we investigated the effects of increasing concentrations of LipofectAMINE 2000™ on insulin receptor phosphorylation in Chinese hamster ovary cells expressing the human insulin receptor. In addition, the efficiency of transfection that is supported by the same concentrations of transfection reagent was studied by using a green fluorescent protein construct. Our data indicate that considerably lower concentrations of LipofectAMINE 2000™ can be used than are recommended by the manufacturers. This is without sacrificing transfection efficiency markedly and avoids the problem of reducing insulin receptor expression in the cells. Conclusion Widely-used cationic lipid transfection reagents cause a state of insulin unresponsiveness in cells in culture due to fully activating and subsequently reducing the expression of the receptor in cells. This phenomenon can be avoided by reducing the concentration of reagent used in the transfection process.

  7. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-07-01

    Full Text Available Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and Methods: Animals were divided into five groups. Normal control and diabetic control group received gum acacia (2% orally for 12days, and normal saline (i.p., dexamethasone (8mg/kg/i.p. from day 7- day12 respectively. Two test groups (Gymnema sylvestre leaf aqueous extract 2 and 4gm/kg/p.o./12days and standard control received metformin (2gm/kg/p.o./12 days. The two test groups, standard control group received dexamethasone (8mg/kg/i.p from day 7- day 12 respectively. The antidiabetic and hypolipidemic activity was estimated by measuring serum glucose, insulin, lipid levels and histopathological evaluation of liver tissue. Results were analyzed by using one way ANOVA followed by Scheffe’s multiple comparison test. Results: Treatment with aqueous extract of Gymnema sylvestre (2 and 4gm/kg/p.o significantly (p<0.01 altered the elevated glucose, lipid, insulin levels and also improved the histopathology of liver in dexamethasone induced insulin resistance rats. Conclusion: Treatment with aqueous extract of Gymnema sylvestre improved the altered glucose, insulin and lipid profile in insulin resistance rats.

  8. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  9. Complement activation capacity in plasma before and during high-dose prednisolone treatment and tapering in exacerbations of Crohn's disease and ulcerative colitis

    Baatrup Gunnar

    2005-09-01

    Full Text Available Abstract Background Ulcerative colitis (UC and Crohn's disease (CD are characterized by intestinal inflammation mainly caused by a disturbance in the balance between cytokines and increased complement (C activation. Our aim was to evaluate possible associations between C activation capacity and prednisolone treatment. Methods Plasma from patients with exacerbations of UC (n = 18 or CD (n = 18 were collected before and during high dose prednisolone treatment (1 mg/kg body weight and tapering. Friedman's two way analysis of variance, Mann-Whitney U test and Wilcoxon signed-rank sum test were used Results Before treatment, plasma from CD patients showed significant elevations in all C-mediated analyses compared to the values obtained from 38 healthy controls (p Conclusion Our findings indicate that C activation capacity is up-regulated significantly in plasma from CD patients. The decreases observed after prednisolone treatment reflect a general down-regulation in immune activation.

  10. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor

    Hua, Qing-Xin; Nakagawa, Satoe H.; Wilken, Jill; Ramos, Rowena R.; Jia, Wenhua; Bass, Joseph; Weiss, Michael A.

    2003-01-01

    Caenorhabditis elegans contains a family of putative insulin-like genes proposed to regulate dauer arrest and senescence. These sequences often lack characteristic sequence features of human insulin essential for its folding, structure, and function. Here, we describe the structure and receptor-binding properties of INS-6, a single-chain polypeptide expressed in specific neurons. Despite multiple nonconservative changes in sequence, INS-6 recapitulates an insulin-like fold. Although lacking c...

  11. Elevated total and central adiposity and low physical activity are associated with insulin resistance in children.

    Krekoukia, Maria; Nassis, George P; Psarra, Glykeria; Skenderi, Katerina; Chrousos, George P; Sidossis, Labros S

    2007-02-01

    The aim of this study was 2-fold: (1) to examine insulin resistance, blood lipid levels, and inflammatory markers in 9- to 11.5-year-old obese and lean children and (2) to identify factors that influence insulin resistance in this cohort of youths. Body mass index, skinfold thickness, waist circumference, physical activity (4-day triaxial accelerometer), cardiorespiratory fitness (submaximal bicycle ergometer test), and dietary intake (3-day food records) were evaluated in 27 obese and 27 lean boys and girls. Fasting blood samples were analyzed for insulin, glucose, lipids and lipoproteins, C-reactive protein (CRP), interleukin 6, soluble intercellular adhesion molecule, and soluble vascular cell adhesion molecule. Homeostasis model assessment (HOMA) was used to evaluate insulin resistance (HOMA-IR). Obese children presented higher HOMA-IR, CRP, and blood lipid levels (all P or = 0.51), HOMA-IR (r > or = 0.56), CRP (r > or = 0.51), and blood triacylglycerol (r > or = 0.38), and were inversely correlated with high-density lipoprotein cholesterol (r > or = -0.39; all P < .01). Cardiorespiratory fitness was inversely associated with HOMA-IR (r = -0.24; P < .05), but this association disappeared when adjusted for age, sex, and fat mass. Waist circumference and total daily physical activity explained 49% of the variance in HOMA-IR in these children. In conclusion, these findings suggest that total and central adiposity are positively associated and physical activity is negatively associated with insulin resistance in children. Interventions to improve glucose metabolism in youth should target at reducing total body and abdominal fat and increasing physical activity. The lack of association between inflammatory markers and HOMA-IR suggests that obesity may precede the elevation of these markers in the evolution of insulin resistance in youth. PMID:17224334

  12. The relationship between vitamin D status, physical activity and insulin resistance in overweight and obese subjects

    Gülis Kavadar

    2015-05-01

    Full Text Available Type 2 diabetes mellitus (T2DM incidence has been increasing worldwide along with the rise of obesity and sedantery lifestyle. Decreased physical activity (PA and obesity have also been associated with the low vitamin D levels. We aimed to determine the association between PA, vitamin D status and insulin resistance in overweight and obese subjects. A total of 294 (186 female, 108 male overweight or obese subjects were included in this cross-sectional study. 25-hydroxy vitamin D (25(OHD, insulin, fasting plasma glucose (FPG and HbA1c levels were measured in blood samples. Body mass index (BMI, HOMA-index and total score of International Physical Activity Questionnaire-long form (IPAQ were calculated. Insulin resistant subjects were compared with the non-resistant group. The mean age of the participants was 45±12.25 and 41.39±10.32; 25(OHD levels were 8.91 ± 4.30 and 17.62 ± 10.47 ng/dL; BMIs were 31.29 ± 4.48  and 28.2 ± 3.16 kg/m², IPAQ total scores were 548.71±382.81 and 998±486.21 in the insulin resistant and nonresistant subjects, respectively. There was a statistically significant difference in terms of 25(OHD, FPG, insulin levels, IPAQ  total score and BMI between the two groups (p = 0.001, p = 0.001, p = 0.001, p = 0.001, p = 0.001.Significantly low 25(OHD levels, high BMI and low PA in insulin resistant subjects confirm the importance of active lifestyle and the maintenance of normal vitamin D levels in overweight and obese subjects in prevention of T2DM.

  13. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenyl...

  14. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Background Insulin-degrading enzyme (IDE) is an allosteric Zn+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. Methodology/Principal Findings In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. Conclusion/Significance This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible. PMID:22355395

  15. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Bilal Çakir

    Full Text Available BACKGROUND: Insulin-degrading enzyme (IDE is an allosteric Zn(+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD and type 2 diabetes mellitus (T2DM, respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. CONCLUSION/SIGNIFICANCE: This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  16. Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia.

    Yamazaki, Y; Ogihara, S; Harada, S; Tokuyama, S

    2015-12-01

    The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post

  17. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond.

    Vinther, Tine N; Kjeldsen, Thomas B; Jensen, Knud J; Hubálek, František

    2015-11-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals. PMID:26382042

  18. Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity.

    Deepa, Sathyaseelan S; Pulliam, Daniel; Hill, Shauna; Shi, Yun; Walsh, Michael E; Salmon, Adam; Sloane, Lauren; Zhang, Ning; Zeviani, Massimo; Viscomi, Carlo; Musi, Nicolas; Van Remmen, Holly

    2013-04-01

    Mice lacking Surf1, a complex IV assembly protein, have ∼50-70% reduction in cytochrome c oxidase activity in all tissues yet a paradoxical increase in lifespan. Here we report that Surf1(-/-) mice have lower body (15%) and fat (20%) mass, in association with reduced lipid storage, smaller adipocytes, and elevated indicators of fatty acid oxidation in white adipose tissue (WAT) compared with control mice. The respiratory quotient in the Surf1(-/-) mice was significantly lower than in the control animals (0.83-0.93 vs. 0.90-0.98), consistent with enhanced fat utilization in Surf1(-/-) mice. Elevated fat utilization was associated with increased insulin sensitivity measured as insulin-stimulated glucose uptake, as well as an increase in insulin receptor levels (∼2-fold) and glucose transporter type 4 (GLUT4; ∼1.3-fold) levels in WAT in the Surf1(-/-) mice. The expression of peroxisome proliferator-activated receptor γ-coactivator 1-α (PGC-1α) mRNA and protein was up-regulated by 2.5- and 1.9-fold, respectively, in WAT from Surf1(-/-) mice, and the expression of PGC-1α target genes and markers of mitochondrial biogenesis was elevated. Together, these findings point to a novel and unexpected link between reduced mitochondrial complex IV activity, enhanced insulin sensitivity, and increased mitochondrial biogenesis that may contribute to the increased longevity in the Surf1(-/-) mice. PMID:23241310

  19. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues

    Jiráček, Jiří; Žáková, Lenka; Antolíková, Emília; Watson, Christopher J.; Turkenburg, Johan P.; Dodson, Guy G.; Brzozowski, Andrzej M.

    2010-01-01

    Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin’s induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200–500%) insulin analogues that are truncated at residue 26 of the B-chain (B26). They show a structural convergence in the form of a new β-turn at B24-B26. We propose that the key element in insulin’s transition, from an inactive to an active state, may be the formation of the β-turn at B24-B26 associated with a trans to cis isomerisation at the B25-B26 peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B25-B26 peptide bond or by the insertion of certain D-amino acids at B26. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes. PMID:20133841

  20. TRPV1 Activation Exacerbates Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cells via Calcium Overload and Mitochondrial Dysfunction

    Zewei Sun

    2014-10-01

    Full Text Available Transient potential receptor vanilloid 1 (TRPV1 channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP and substance P (SP. Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β. In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist and RP67580 (a SP receptor antagonist to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of

  1. Direct Angiotensin II Type 2 Receptor Stimulation Ameliorates Insulin Resistance in Type 2 Diabetes Mice with PPARγ Activation

    Ohshima, Kousei; Mogi, Masaki; Jing, Fei;

    2012-01-01

    The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type...... 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue....

  2. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration

    Longato Lisa

    2010-03-01

    Full Text Available Abstract Background Type 2 diabetes mellitus (T2DM and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM. Hypothesis Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD or low fat (5%; LFD chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF deficiency and resistance in the context of neurodegeneration. Results HFD ± NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT, which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD ± NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3β (reflecting increased GSK-3β activity, glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats. Conclusions Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of

  3. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage

  4. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity.

    Kaliman, P; Baron, V; Alengrin, F; Takata, Y; Webster, N J; Olefsky, J M; Van Obberghen, E

    1993-09-21

    During the insulin receptor activation process, ligand binding and autophosphorylation induce two distinct conformational changes in the C-terminal domain of the receptor beta-subunit. To analyze the role of this domain and the involvement of the C-terminal autophosphorylation sites (Tyr1316 and Tyr1322) in receptor activation, we used (i) antipeptide antibodies against three different C-terminal sequences (1270-1281, 1294-1317, and 1309-1326) and (ii) an insulin receptor mutant (Y/F2) where Tyr1316 and Tyr1322 have been replaced by Phe. We show that the autophosphorylation-induced C-terminal conformational change is preserved in the Y/F2 receptor, indicating that this change is not induced by phosphorylation of the C-terminal sites but most likely by phosphorylation of the major sites in the kinase domain (Tyr1146, Tyr1150, and Tyr1151). Binding of antipeptide antibodies to the C-terminal domain modulated (activated or inhibited) both mutant and wild-type receptor-mediated phosphorylation of poly(Glu/Tyr). In contrast to the wild-type receptor, Y/F2 exhibited the same C-terminal configuration before and after insulin binding, evidencing that mutation of Tyr1316 and Tyr1322 introduced conformational changes in the C-terminus. Finally, the mutant receptor was 2-fold more active than the wild-type receptor for poly(Glu/Tyr) phosphorylation. In conclusion, the whole C-terminal region of the insulin receptor beta-subunit is likely to exert a regulatory influence on the receptor kinase activity. Perturbations of the C-terminal region, such as binding of antipeptides or mutation of Tyr1316 and Tyr1322, provoke alterations at the receptor kinase level, leading to activation or inhibition of the enzymic activity. PMID:7690586

  5. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    Brandt, Nina; De Bock, Katrien; Richter, Erik A.; Hespel, Peter

    2010-01-01

    Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab 299: E215-E224, 2010. First published May 18, 2010; doi:10.1152/ajpendo.00098.2010.-Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptatio...

  6. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  7. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  8. Effect of exogenous insulin on plasma and follicular insulin-like growth factor I, insulin-like growth factor binding protein activity, follicular oestradiol and progesterone, and follicular growth in superovulated Angus and Brahman cows.

    Simpson, R B; Chase, C C; Spicer, L J; Vernon, R K; Hammond, A C; Rae, D O

    1994-11-01

    Angus (n = 14) and Brahman (n = 14) cows were used to evaluate the effects of insulin administered concomitantly with FSH in a superovulation regimen. Cows were allotted to four pen replicates by treatment and breed, and received FSH (i.m.) twice a day for 5 consecutive days (first day of injections = day 0 of study) plus concomitant administration of either saline (control) or long-acting bovine insulin (0.25 iu kg-1 body mass; s.c.). Blood samples were collected at intervals of 6 h during the injection period and analysed for plasma insulin, glucose, insulin-like growth factor I (IGF-I) and IGF-I binding protein (IGFBP) activity. Cows were ovariectomized on day 5. The number and diameter of follicles were recorded. Follicular fluid was aspirated for determination of IGF-I, IGFBP activity, oestradiol and progesterone. Mean plasma concentration of glucose was lower in insulin-treated than in control cows averaged over days 1-5 (56 +/- 3 versus 82 +/- 3 mg dl-1; P 0.10) by treatment, but were higher in Brahman than in Angus cows (IGF-I: 41 +/- 6 versus 19 +/- 6 ng ml-1, P or = 8.0 mm) follicles. Brahman cows had a greater (P Angus cows (7.5 +/- 2.6 and 30.5 +/- 5.6, respectively). Diameter of large follicles was greater in insulin-treated than in control cows (11.4 +/- 0.2 versus 10.6 +/- 0.1 mm; P Brahman cows (60 +/- 2 ng ml-1) than in control Brahman cows (37 +/- 2 ng ml-1), but was lower in insulin-treated Angus cows (31 +/- 3 ng ml-1) than in control Angus cows (38 +/- 2 ng ml-1; treatment x breed interaction, P Brahman cows but was reduced (P Angus cows.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7532225

  9. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities.

    Yibchok-anun, Sirintorn; Adisakwattana, Sirichai; Yao, Cheng Yu; Sangvanich, Polkit; Roengsumran, Sophon; Hsu, Walter Haw

    2006-06-01

    The protein from Thai bitter gourd (Momordica charantia) fruit pulp was extracted and studied for its hypoglycemic effect. Subcutaneous administration of the protein extract (5, 10 mg/kg) significantly and markedly decreased plasma glucose concentrations in both normal and streptozotocin-induced diabetic rats in a dose-dependent manner. The onset of the protein extract-induced antihyperglycemia/hypoglycemia was observed at 4 and 6 h in diabetic and normal rats, respectively. This protein extract also raised plasma insulin concentrations by 2 fold 4 h following subcutaneous administration. In perfused rat pancreas, the protein extract (10 microg/ml) increased insulin secretion, but not glucagon secretion. The increase in insulin secretion was apparent within 5 min of administration and was persistent during 30 min of administration. Furthermore, the protein extract enhanced glucose uptake into C2C12 myocytes and 3T3-L1 adipocytes. Time course experiments performed in rat adipocytes revealed that M. charantia protein extract significantly increased glucose uptake after 4 and 6 h of incubation. Thus, the M. charantia protein extract, a slow acting chemical, exerted both insulin secretagogue and insulinomimetic activities to lower blood glucose concentrations in vivo. PMID:16755004

  10. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation.

    Yuan, Fang; Xu, Zhi-Ming; Lu, Li-Yan; Nie, Hui; Ding, Jun; Ying, Wei-Hai; Tian, Heng-Li

    2016-02-01

    Sirtuin 2 (SIRT2) is a member of the sirtuin family of NAD(+) -dependent protein deacetylases. In recent years, SIRT2 inhibition has emerged as a promising treatment for neurodegenerative diseases. However, to date, there is no evidence of a specific role for SIRT2 in traumatic brain injury (TBI). We investigated the effects of SIRT2 inhibition on experimental TBI using the controlled cortical impact (CCI) injury model. Adult male mice underwent CCI or sham surgery. A selective brain-permeable SIRT2 inhibitor, AK-7, was administrated 30 min before injury. The volume of the brain edema lesion and the water content of the brain were significantly increased in mice treated with AK-7 (20 mg/kg), compared with the vehicle group, following TBI (p aquaporin 4 (AQP4), MMP-9, and pro-inflammatory cytokines. Together, these data demonstrate that SIRT2 inhibition exacerbates TBI by increasing NF-κB p65 acetylation and activation. Our findings provide additional evidence of an anti-inflammatory effect of SIRT2. SIRT2 is a member of the sirtuin family of NAD+-dependent protein deacetylases. Our study suggests that the SIRT2 inhibitor AK-7 exacerbates traumatic brain injury (TBI) via a potential mechanism involving increased acetylation and nuclear translocation of NF-κB p65, resulting in up-regulation of NF-κB target genes, including aquaporin 4 (AQP4), matrix metalloproteinase 9 (MMP-9), and pro-inflammatory cytokines. Our findings provide additional evidence of an anti-inflammatory effect of SIRT2. PMID:26546505

  11. The structural determinants of insulin-like peptide 3 activity

    Ross AD Bathgate

    2012-02-01

    Full Text Available INSL3 is a hormone and/or paracrine factor which is a member of the relaxin peptide family. It has key roles as a fertility regulator in both males and females. The receptor for INSL3 is the leucine rich repeat (LRR containing G-protein coupled receptor 8 (LGR8 which is now known as relaxin family peptide receptor 2 (RXFP2. Receptor activation by INSL3 involves binding to the LRRs in the large ectodomain of RXFP2 by residues within the B-chain of INSL3 as well as an interaction with the transmembrane exoloops of the receptor. Although the binding to the LRRs is well characterized the features of the peptide and receptor involved in the exoloop interaction are currently unknown. This study was designed to determine the key INSL3 determinants for RXFP2 activation. A chimeric peptide approach was first utilized to demonstrate that the A-chain is critical for receptor activation. Replacement of the INSL3 A-chain with that from the related peptides INSL5 and INSL6 resulted in complete loss of activity despite only minor changes in binding affinity. Subsequent replacement of specific A-chain residues with those from the INSL5 peptide highlighted that the N-terminus of the A-chain of INSL3 is critical for its activity. Remarkably, replacement of the entire N-terminus with four or five alanine residues resulted in peptides with near native activity suggesting that specific residues are not necessary for activity. Additionally removal of two amino acids at the C-terminus of the A-chain and mutation of Lys-8 in the B-chain also resulted in minor decreases in peptide activity. Therefore we have demonstrated that the activity of the INSL3 peptide is driven predominantly by residues 5-9 in the A-chain, with minor additional contributions from the two C-terminal A-chain residues and Lys-8 in the B-chain. Using this new knowledge, we were able to produce a truncated INSL3 peptide structure which retained native activity, despite having 14 fewer residues than

  12. Free radical activity during development of insulin-dependent diabetes mellitus in the rat

    Pitkaenen, O.M.; Akerblom, H.K.; Sariola, H.; Andersson, S.M. (Univ. of Helsinki (Finland)); Martin, J.M. (Hospital for Sick Children, Toronto, Ontario (Canada)); Hallman, M. (Univ. of California, Irvine (United States))

    1991-01-01

    Free radical-induced lipid peroxidation was quantified by measuring expired pentane from diabetic prone BB Wistar rats of 45-90 d of age. Insulin-dependent diabetes mellitus was manifest at the age of 71 {plus minus} 8 d. Expired pentane increased from 2.1 {plus minus} 0.7 to 5.0 {plus minus}3.0 pmol/100g/min (p <0.01) at manifestation of the disease and remained high throughout the test period. In healthy age-matched control rats it persisted low. In rats made diabetic with streptozotocin, expired pentane remained low. The changes in expired pentane suggest that the development of endogenous insulin-dependent diabetes mellitus in BB rats is associated with increased free radical activity. This is not due to hyperglycemia or ketosis per se, and reflects a fundamental difference in the free radical activity between the spontaneously diabetic BB rats and the disease produced by streptozotocin. Development of spontaneous insulin-dependent diabetes in BB rats is associated with increased free radical activity that persists after the manifestation of the disease.

  13. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid;

    2005-01-01

    In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms of...... obese subjects and T2D patients. Basal CS activity was lower (14%) in diabetic myotubes compared with myotubes from lean controls (P=0.03). Incubation with insulin (1 microM) for 4 h increased the CS activity (26-33%) in myotubes from both lean (P=0.02) and obese controls (P<0.001), but not from...

  14. Leptin Regulated Insulin Secretion via Stimulating IRS2-associated Phosphoinositide 3-kinase Activity in the isolated Rat Pancreatic Islets

    袁莉; 安汉祥; 李卓娅; 邓秀玲

    2003-01-01

    To investigate the molecular mechanism of leptin regulating insulin secretion through determining the regulation of insulin secretion and the insulin receptor substrate (IRS)-2-associated phosphoinositide 3-kinase (PI3K) activity by leptin in the isolated rat pancreatic islets, pancreatic islets were isolated from male SD rats by the collagenase method. The purified islets were incubated with leptin 2 nmol/L for 1 h in the presence of 5.6 mmol/L or 11.1 mmol/L glucose. Insulin release was measured using radioimmunoassay. IRS-2-associated activity of PI3K was determined by immunoprecipitate assay and Western blot. The results showed that in the presence of 5.6 mmol/L glucose, leptin had no significant effect on both insulin secretion and IRS-2-associated PI3K activity, but in the presence of 11.1 mmol/L glucose, insulin release was significantly inhibited after the islets were exposed to leptin for 1 h (P<0. 01). PI3K inhibitor wortmannin blocked the inhibitory regulation of leptin on insulin release (P<0. 05). Western Blot assay revealed that 2 nmol/L leptin could significantly increase the IRS-2-associated activity of PI3K by 51.5 % (P<0. 05) in the presence of 11.1 mmol/L glucose. It was concluded that Leptin could significantly inhibit insulin secretion in the presence of 11.1 mmol/L glucose by stimulating IRS-2-associated activity of PI3K, which might be the molecular mechanism of leptin regulating insulin secretion.

  15. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo

  16. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Liu, Zhi-Qin [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Liu, Ting; Chen, Chuan [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi [College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Luo, Du-Qiang, E-mail: duqiangluo999@126.com [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China)

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.

  17. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Piwkowska, Agnieszka, E-mail: apiwkowska@cmdik.pan.pl [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Rogacka, Dorota; Angielski, Stefan [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Jankowski, Maciej [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Medical University of Gdansk, Department of Therapy Monitoring and Pharmacogenetics (Poland)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  18. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice

    Jeong, Sunhyo; Yoon, Michung

    2009-01-01

    Peroxisome proliferator-activated receptor α (PPARα) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a PPARα agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly i...

  19. Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Gary W Cline

    2011-01-01

    The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak ...

  20. COPD exacerbations · 3: Pathophysiology

    O'Donnell, D. E.; Parker, C M

    2006-01-01

    Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with increased morbidity and mortality. The effective management of COPD exacerbations awaits a better understanding of the underlying pathophysiological mechanisms that shape its clinical expression. The clinical presentation of exacerbations of COPD is highly variable and ranges from episodic symptomatic deterioration that is poorly responsive to usual treatment, to devastating life threatening events. This undersc...

  1. Tyrosine kinase activity of a chimeric insulin-like-growth-factor-1 receptor containing the insulin receptor C-terminal domain. Comparison with the tyrosine kinase activities of the insulin and insulin-like-growth-factor-1 receptors using a cell-free system.

    Mothe, I; Tartare, S; Kowalski-Chauvel, A; Kaliman, P; Van Obberghen, E; Ballotti, R

    1995-03-15

    In a previous study, we showed that a chimeric insulin-like-growth-factor-1 (IGF-1) receptor, with the beta subunit C-terminal part of the insulin receptor was more efficient in stimulating glycogen synthesis and p44mapk activity compared to the wild-type IFG-1 receptor [Tartare, S., Mothe, I., Kowalski-Chauvel, A., Breittmayer, J.-P., Ballotti, R. & Van Obberghen, E. (1994) J. Biol. Chem. 269, 11449-11455]. These data indicate that the receptor C-terminal domain plays an important role in the transmission of biological effects. To understand the molecular basis of the differences in receptor specificity, we studied the characteristics of insulin, IGF-1 and chimeric receptor tyrosine kinase activities in a cell-free system. We found that, compared to wild-type insulin and IGF-1 receptors, the chimeric receptor showed a decrease in (a) autophosphorylation, (b) tyrosine kinase activity towards insulin receptor substrate-1 and the insulin receptor-(1142-1158)-peptide, and (c) the ability to activate phosphatidylinositol 3-kinase. However, for all the effects measured in a cell-free system, the chimeric receptor displayed an increased response to IGF-1 compared to the native IGF-1 receptor. Concerning the cation dependence of the tyrosine kinase activity, we showed that, at 10 mM Mg2+, the ligand-stimulated phosphorylation of poly(Glu80Tyr20) by both insulin receptor and chimeric receptor was increased by Mn2+. Conversely at 50 mM Mg2+, the chimeric receptor behaved like the IGF-1 receptor, since the presence of Mn2+ decreased the stimulatory effect of IGF-1 on their kinase activity. Furthermore, the Km of the chimeric receptor for ATP was increased compared to the wild-type receptors. These data demonstrate that the replacement of the C-terminal tail of the IGF-1 receptor by that of the insulin receptor has changed the receptor characteristics studied in a cell-free system. Our findings indicate that the C-terminal domain of the insulin receptor beta subunit plays a

  2. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  3. CHANGES IN LEVELS OF SOLUBLE T-CELL ACTIVATION MARKERS, SIL-2R, SCD4 AND SCD8, IN RELATION TO DISEASE EXACERBATIONS IN PATIENTS WITH SYSTEMIC LUPUS-ERYTHEMATOSUS - A PROSPECTIVE-STUDY

    SPRONK, P.E.; TERBORG, E.J.; HUITEMA, M.G.; Limburg, Piet; Kallenberg, Cees

    1994-01-01

    Objectives-To assess serial activation of T-cell subsets in relation to auto-antibody production and the occurrence of disease exacerbations in patients with systemic lupus erythematosus (SLE). Methods-To study the possible role of T-cells in the pathophysiology of the disease, 16 consecutive exacer

  4. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the β-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 220C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the β-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the β-subunit (αPep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the β-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the β-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the β-subunit of human insulin rare in the receptor

  5. Preparation of biologically active monomeric ferritin-insulin and its use as a high resolution electron microscopic marker of occupied insulin receptors

    A rapid, reproducible method for preparing monomeric ferritin-insulin conjugate is described using porcine insulin and horse spleen ferritin as starting materials. The standard protocol includes superactivation of ferritin, conjugation of insulin, neutralization of unreacted aldehyde group, concentration of ferritin and ferritin-insulin, and purification of monomeric ferritin-insulin. Characterization was performed by radioimmunoassay, radioreceptor assay, and bioassay

  6. c-Jun represses the human insulin promoter activity that depends on multiple cAMP response elements

    Inagaki, Nobuya; Seino, Yutaka; Imura, Hiroo (Kyoto Univ. (Japan)); Maekawa, Toshio; Sudo, Tatsuhiko; Ishii, Shunsuke (Inst. of Physical and Chemical Research (RIKEN), Tsukuba (Japan))

    1992-02-01

    Glucose is known to increase the cAMP concentration in pancreatic {beta} cells. To determine the mechanism by which cAMP augments insulin gene expression, the authors first identified the cAMP response elements (CREs) of human insulin gene. In DNase I footprint analysis, the bacterially synthesized CRE-binding protein, CRE-BP1, protected four sites: two sites in the region upstream from the insulin core promoter, one site in the first exon, and one site in the first intron. To examine the roles of those four sites, they constructed a series of DNA plasmids in which the wild-type and mutant insulin promoters were linked to the chloramphenicol acetyltransferase gene. Studies of the transcriptional activity of these plasmids after transfection into hamster insulinoma (HIT) cells showed that these four sites contributed additively to the cAMP inducibility of the insulin promoter. Surprisingly, the c-jun protooncogene product (c-Jun) repressed the cAMP-induced activity of the insulin promoter in a cotransfection assay with the c-Jun expression plasmic. Northern blot analysis demonstrated that the level of c-jun mRNA was dramatically increased by glucose deprivation in HIT cells. These results suggest that glucose deprivation in HIT cells. These results suggest that glucose may regulate expression of the human insulin gene through multiple CREs and c-Jun.

  7. Subthreshold α2-Adrenergic Activation Counteracts Glucagon-Like Peptide-1 Potentiation of Glucose-Stimulated Insulin Secretion

    Minglin Pan

    2011-01-01

    Full Text Available The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1 receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX- sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  8. Biosynthetic 20-kilodalton methionyl-human growth hormone has diabetogenic and insulin-like activities.

    Kostyo, J L; Cameron, C M; Olson, K.C.; Jones, A J; Pai, R C

    1985-01-01

    The anterior pituitary gland produces a 20-kilodalton (kDa) variant of human growth hormone (hGH) that differs from the predominant 22-kDa form of hGH in that amino acid residues 32-46 are deleted. Previous work has suggested that the 20-kDa variant possesses the full growth-promoting and lactogenic activities of 22-kDa hGH but lacks its intrinsic diabetogenic and insulin-like activities. In the present study, recombinant DNA techniques were used to prepare biosynthetic 20-kDa hGH, and some o...

  9. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus;

    2013-01-01

    receptor (IL-18R(-/-)), fed a standard chow or high fat diet (HFD). We next performed gain of function experiments in skeletal muscle, in vitro, ex vivo and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation and insulin resistance via mechanisms involving the activation of......-18 into skeletal muscle activated AMPK and concomitantly inhibited high fat diet-induced weight gain. In summary IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis....

  10. Comparison of In Vivo Effects of Insulin on SREBP-1c Activation and INSIG-1/2 in Rat Liver and Human and Rat Adipose Tissue

    Boden, Guenther; Salehi, Sajad; Cheung, Peter; Homko, Carol; Song, Weiwei; Loveland-Jones, Catherine; Jayarajan, Senthil

    2013-01-01

    The stimulatory effects of insulin on de novo lipogenesis (DNL) in the liver, where it is an important contributor to non-alcoholic fatty liver disease (NAFLD), hepatic and systemic insulin resistance, is strong and well established. In contrast, insulin plays only a minor role in DNL in adipose tissue. The reason why insulin stimulates DNL more in liver than in fat is not known but may be due to differential regulation of the transcription and post-translational activation of sterol regulato...

  11. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    Highlights: ► G protein coupled receptor TGR5 is expressed in mouse and human islets. ► TGR5 is coupled to activation of Gs and Ca2+ release via cAMP/Epac/PLC-ε pathway. ► Activation of TGR5 by bile salts and selective ligands causes insulin secretion. ► TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gαs and caused an increase in intracellular cAMP and Ca2+. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gαs inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on Gs/cAMP/Ca2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  12. Dairy Consumption and Insulin Resistance: The Role of Body Fat, Physical Activity, and Energy Intake

    Larry A. Tucker

    2015-01-01

    Full Text Available The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA. The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53 than those in the middle-two quartiles (0.22 ± 0.55 or the lowest quartile (0.19 ± 0.58 (F = 6.90, P = 0.0091. The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.

  13. Inhibition of human insulin gene transcription by peroxisome proliferator-activated receptor γ and thiazolidinedione oral antidiabetic drugs

    Schinner, S; Krätzner, R; Baun, D; Dickel, C; Blume, R; Oetjen, E

    2009-01-01

    Background and purpose: The transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is essential for glucose homeostasis. PPARγ ligands reducing insulin levels in vivo are used as drugs to treat type 2 diabetes mellitus. Genes regulated by PPARγ have been found in several tissues including insulin-producing pancreatic islet β-cells. However, the role of PPARγ at the insulin gene was unknown. Therefore, the effect of PPARγ and PPARγ ligands like rosiglitazone on insulin gene transcription was investigated. Experimental approach: Reporter gene assays were used in the β-cell line HIT and in primary mature pancreatic islets of transgenic mice. Mapping studies and internal mutations were carried out to locate PPARγ-responsive promoter regions. Key results: Rosiglitazone caused a PPARγ-dependent inhibition of insulin gene transcription in a β-cell line. This inhibition was concentration-dependent and had an EC50 similar to that for the activation of a reporter gene under the control of multimerized PPAR binding sites. Also in normal primary pancreatic islets of transgenic mice, known to express high levels of PPARγ, rosiglitazone inhibited glucose-stimulated insulin gene transcription. Transactivation and mapping experiments suggest that, in contrast to the rat glucagon gene, the inhibition of the human insulin gene promoter by PPARγ/rosiglitazone does not depend on promoter-bound Pax6 and is attributable to the proximal insulin gene promoter region around the transcription start site from −56 to +18. Conclusions and implications: The human insulin gene represents a novel PPARγ target that may contribute to the action of thiazolidinediones in type 2 diabetes mellitus. PMID:19338578

  14. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. PMID:27016579

  15. Deletion of Asn{sup 281} in the {alpha}-subunit of the human insulin receptor causes constitutive activation of the receptor and insulin desensitization

    Desbois-Mouthon, C.; Sert-Langeron, C.; Magre, J.; Blivet, M.J. [INSERM, Paris (France)] [and others

    1996-02-01

    We studied the structure and function of the insulin receptor (IR) in two sisters with leprechaunism. The patients had inherited alterations in the IR gene and were compound heterozygotes. Their paternal IR allele carried a major deletion, including exons 10-13, which shifted the reading frame and introduced a premature chain termination codon in the IR sequence. This allele was expressed at a very low level in cultured fibroblasts (<10% of total IR messenger ribonucleic acid content) and encoded a truncated protein lacking transmembrane and tyrosine kinase domains. The maternal IR allele was deleted of 3 bp in exon 3, causing the loss of Asn{sup 281} in the {alpha}-subunit. This allele generated levels of IR messenger ribonucleic acid and cell surface receptors similar to those seen in control fibroblasts. However, IRs from patients` cells had impaired insulin binding and exhibited in vivo and in vitro constitutive activation of autophosphorylation and tyrosine kinase activity. As a result of this IR-preactivated state, the cells were desensitized to insulin stimulation of glycogen and DNA syntheses. These findings strongly suggest that Asn{sup 281} of the IR {alpha}-subunit plays a critical role in the inhibitory constraint exerted by the extracellular {alpha}-subunit over the intracellular kinase activity. 59 refs., 6 figs.

  16. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

    DU, XUELIANG; Edelstein, Diane; Obici, Silvana; Higham, Ninon; Zou, Ming-Hui; Brownlee, Michael

    2006-01-01

    Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals...

  17. Analysis of Phosphatidylinositol 3-kinase Activation in the Adipose Tissue of Gestational Diabetes Mellitus Patients and Insulin Resistance

    初永丽; 刘文娟; 崔青; 冯桂姣; 王彦; 姜学强

    2010-01-01

    The P85 regulatory subunit protein and gene expression and P110 catalylic subunit activity of phosphatidylinositol 3-kinase (PI-3K) were investigated in adipose tissue of patients with gestational diabetes mellitus (GDM) in order to explore the molecular mechanisms of insulin resistance (IR) of GDM. Samples from patients with GDM (n=50), and controls (n=50) were collected. Fasting insulin (FIN) was determined by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Western blot techn...

  18. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes

    Mackenzie RWA; Elliott BT

    2014-01-01

    Richard WA Mackenzie, Bradley T Elliott Department of Human and Health Sciences, Facility of Science and Technology, University of Westminster, London, UK Abstract: Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose tr...

  19. The influence of thyroid function and bone turnover on lipoprotein profile in young physically active men with different insulin sensitivity.

    Kęska, A; Lutosławska, G; Czajkowska, A; Tkaczyk, J; Mazurek, K; Tomaszewski, P

    2014-06-01

    Physical activity induces changes in the endocrine system. Previous data indicated that changes in insulin secretion and the tissue response to this hormone are very important for energy metabolism. It is believed that they are accompanied by changes in lipid metabolism, but factors contributing to this process are still disputed. The aim of this study was to assess interactions among insulin sensitivity, thyroid function, a bone turnover marker and serum lipid profile in young physically active men. Eighty-seven physical education students, aged 18-23 years, participated in the study. We measured serum levels of glucose, lipids, insulin, thyroid-stimulating hormone (TSH), osteocalcin and anthropometric parameters. Insulin sensitivity was determined using homeostatic model assessment for insulin resistance (HOMA-IR). The median value of HOMA-IR (1.344) was used to divide the study population into Group A (above the median) and Group B (below the median). Men from both groups did not differ in anthropometric parameters or in daily physical activity. Triglycerides (TG), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels were higher in Group A (P lipid profile at a certain level of insulin sensitivity. PMID:24899778

  20. New Target Genes for the Peroxisome Proliferator-Activated Receptor-γ (PPARγ Antitumour Activity: Perspectives from the Insulin Receptor

    Daniela P. Foti

    2009-01-01

    Full Text Available The insulin receptor (IR plays a crucial role in mediating the metabolic and proliferative functions triggered by the peptide hormone insulin. There is considerable evidence that abnormalities in both IR expression and function may account for malignant transformation and tumour progression in some human neoplasias, including breast cancer. PPARγ is a ligand-activated, nuclear hormone receptor implicated in many pleiotropic biological functions related to cell survival and proliferation. In the last decade, PPARγ agonists—besides their known action and clinical use as insulin sensitizers—have proved to display a wide range of antineoplastic effects in cells and tissues expressing PPARγ, leading to intensive preclinical research in oncology. PPARγ and activators affect tumours by different mechanisms, involving cell proliferation and differentiation, apoptosis, antiinflammatory, and antiangiogenic effects. We recently provided evidence that PPARγ and agonists inhibit IR by non canonical, DNA-independent mechanisms affecting IR gene transcription. We conclude that IR may be considered a new PPARγ “target” gene, supporting a potential use of PPARγ agonists as antiproliferative agents in selected neoplastic tissues that overexpress the IR.

  1. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2014-09-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  2. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    Bilal Çakir; Onur Dağliyan; Ezgi Dağyildiz; İbrahim Bariş; Ibrahim Halil Kavakli; Seda Kizilel; Metin Türkay

    2012-01-01

    Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme Bilal C¸ akir1, Onur Dag˘ liyan1, Ezgi Dag˘ yildiz1, I˙brahim Baris¸1, Ibrahim Halil Kavakli1,2*, Seda Kizilel1*, Metin Tu¨ rkay3* 1 Department of Chemical and Biological Engineering, Koc¸ University, Sariyer, Istanbul, Turkey, 2 Department of Molecular Biology and Genetics, Koc¸ University, Sariyer, Istanbul, Turkey, 3 Department of Industrial Engineering, Koc¸ University...

  3. Work-related exacerbation of asthma.

    Henneberger, Paul K; Hoffman, Christopher D; Magid, David J; Lyons, Ella E

    2002-01-01

    Adults with asthma who had been enrolled in an HMO for at least a year were requested to complete a questionnaire about their health status. Approximately 25% of the 1,461 participants responded positively to "Does your current work environment make your asthma worse?" and were classified as having workplace exacerbation of asthma. Those with workplace exacerbation were more likely to have never attended college, be current or former smokers, have a history of other respiratory diseases, have missed work or usual activities at least one day in the past for weeks, and report their asthma was moderate, severe, or very severe. Percentages with workplace exacerbation of asthma were highest for mining and construction (36%), wholesale and retail trade (33%), and public administration (33%), and lowest for educational services (22%), finance, insurance, and real estate (22%), and non-medical and non-educational services (18%). Future studies are needed for objective validation of self-reported workplace exacerbation, and to follow subjects prospectively to clarify the temporal sequence of workplace exacerbation and asthma severity, and how other respiratory conditions and smoking might contribute to work-related worsening of asthma. PMID:12412844

  4. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    Grazia Tundo

    Full Text Available The deposition of β-amyloid (Aβ into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD. Insulin-degrading-enzyme (IDE is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  5. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Highlights: ► siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. ► siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. ► Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (−325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  6. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States); Edelman, Jeffrey L.; Brooks, Patricia A. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  7. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance.

    Murdoch, S J; Carr, M C; Hokanson, J E; Brunzell, J D; Albers, J J

    2000-02-01

    Plasma phospholipid transfer protein (PLTP) is thought to play a major role in the facilitated transfer of phospholipids between lipoproteins and in the modulation of high density lipoprotein (HDL) particle size and composition. However, little has been reported concerning the relationships of PLTP with plasma lipoprotein parameters, lipolytic enzymes, body fat distribution, insulin, and glucose in normolipidemic individuals, particularly females. In the present study, 50 normolipidemic healthy premenopausal females were investigated. The relationships between the plasma PLTP activity and selected variables were assessed. PLTP activity was significantly and positively correlated with low density lipoprotein (LDL) cholesterol (r(s) = 0.53), apoB (r(s) = 0.44), glucose (r(s) = 0.40), HDL cholesterol (r(s) = 0.38), HDL(3) cholesterol (r(s) = 0.37), lipoprotein lipase activity (r(s) = 0.36), insulin (r(s) = 0.33), subcutaneous abdominal fat (r(s) = 0.36), intra-abdominal fat (r(s) = 0.29), and body mass index (r(s) = 0.29). HDL(2) cholesterol, triglyceride, and hepatic lipase were not significantly related to PLTP activity. As HDL(2) can be decreased by hepatic lipase and hepatic lipase is increased in obesity with increasing intra-abdominal fat, the participants were divided into sub-groups of non-obese (n = 35) and obese (n = 15) individuals and the correlation of PLTP with HDL(2) cholesterol was re-examined. In the non-obese subjects, HDL(2) cholesterol was found to be significantly and positively related to PLTP activity (r(s) = 0.44). Adjustment of the HDL(2) values for the effect of hepatic lipase activity resulted in a significant positive correlation between PLTP and HDL(2) (r(s) = 0.41), indicating that the strength of the relationship between PLTP activity and HDL(2) can be reduced by the opposing effect of hepatic lipase on HDL(2) concentrations. We conclude that PLTP-facilitated lipid transfer activity is related to HDL and LDL metabolism, as well as

  8. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors

    Xiaoyan Sheng

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARγ and α, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO and db/db mice in its water extract form. In vitro studies demonstrate that cinnamon increases the expression of peroxisome proliferator-activated receptors γ and α (PPARγ/α and their target genes such as LPL, CD36, GLUT4, and ACO in 3T3-L1 adipocyte. The transactivities of both full length and ligand-binding domain (LBD of PPARγ and PPARα are activated by cinnamon as evidenced by reporter gene assays. These data suggest that cinnamon in its water extract form can act as a dual activator of PPARγ and α, and may be an alternative to PPARγ activator in managing obesity-related diabetes and hyperlipidemia.

  9. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    Eamruthai Wisetmuen

    2013-01-01

    Full Text Available Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ. Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively. Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively. Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF for control and HS-EE treated group, respectively and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively. Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion.

  10. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity.

    Caro, J F; Ittoop, O; Pories, W J; Meelheim, D; Flickinger, E G; F. Thomas; Jenquin, M; Silverman, J F; Khazanie, P G; Sinha, M K

    1986-01-01

    We have developed a method to isolate insulin-responsive human hepatocytes from an intraoperative liver biopsy to study insulin action and resistance in man. Hepatocytes from obese patients with noninsulin-dependent diabetes were resistant to maximal insulin concentration, and those from obese controls to submaximal insulin concentration in comparison to nonobese controls. Insulin binding per cell number was similar in all groups. However, insulin binding per surface area was decreased in the...

  11. THE ROLE OF PHYSICAL ACTIVITY IN THE PRIMARY PREVENTION OF TYPE 2 DIABETES VIA THE AMELIORATION OF INSULIN RESISTANCE

    Ash C. Routen

    2010-08-01

    Full Text Available Type 2 diabetes is the most common endocrine disease in our society, affecting around 5% of Western populations, whilst showing a steady rise in prevalence. The complications that arise from the disease are known to cause morbidity and mortality, and are associated with long-term damage, dysfunction, and failure of variousorgans. These complications include atherosclerosis in the micro and macro vasculature, kidney dysfunction, nerve problems, hypertension; and eye problems such as retinopathy. Epidemiological evidence suggests regular physical activity improves insulin sensitivity. This review presents the case for physical activity as a tool ofprimary prevention, in the population of non-diabetics and high risk individuals (IFG & IGT, in reference to obesity related insulin resistance. Cross-sectional, prospective cohort and randomised control trials clearly show that moderate-intensity physical activity can improve insulin sensitivity; this can be improved further byundertaking vigorous-intensity physical activity.

  12. Analysis of IRS-1-mediated phosphatidylinositol 3-kinase activation in the adipose tissue of polycystic ovary syndrome patients complicated with insulin resistance

    Objective: To investigate the insulin receptor substance-1 (IRS-1)-mediated phosphatidylinositol-3 (PI-3) kinase activity in adipose tissue of polycystic ovary syndrome (PCOS) patients, and to explore molecular mechanisms of insulin resistance of PCOS. Methods: Blood and adipose tissue samples from patients with PCOS with insulin resistance (n=19), PCOS without insulin resistance (n=10) and controls (n=15) were collected. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) were measured by chemiluminescence assay. Fasting insulin (FIN) was measured by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Insulin resistance index (IR) was calculated using homeostasis model assessment (HOMA) to analyze the relationship between these markers and insulin resistance. The tyrosine phosphorylation of IRS-1 was measured by immunoprecipitation and enhanced chemiluminescent immunoblotting technique. PI-3 kinase activity was detected by immunoprecipitation, thin-layer chromatography and gamma scintillation counting. The results were analyzed by statistical methods. Results: 1) The levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS without insulin resistance were significantly higher than those of control group (all P<0.05); the levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS with insulin resistance were significantly higher than those of PCOS without insulin resistance (all P<0.05). 2) The tyrosine phosphorylation analysis of IRS-1 showed that IRS-1 tyrosine phosphorylation was significantly decreased in PCOS with insulin resistance compared to that of PCOS without insulin resistance and control groups (P<0.01). 3) PI-3 kinase activity was significantly decreased (P<0.01) and negatively correlated with HOMA-IR. Conclusion: In consequence of the weaker signal caused by the change of upper stream signal molecule IRS-1 tyrosine phosphorylation, PI-3 kinase activity decreased, it affects the insulin signal

  13. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-01-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (−40%) through reduced glucose tr...

  14. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice

    Keung, Wendy; Ussher, John R.; Jaswal, Jagdip S.; Raubenheimer, Monique; Lam, Victoria H.M.; Wagg, Cory S.; Lopaschuk, Gary D

    2013-01-01

    Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-f...

  15. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor.

    Kasuga, M.; Fujita-Yamaguchi, Y; Blithe, D L; Kahn, C. R.

    1983-01-01

    Highly purified human placental insulin receptors were obtained by sequential affinity chromatography on wheat germ agglutinin and insulin-agarose. The preparation had an insulin binding capacity of 4,700 pmol/mg of protein approaching theoretical purity. The purified receptor revealed three major bands of Mr 135,000, 95,000, and 52,000 in NaDodSO4/polyacrylamide gel electrophoresis after reduction by dithiothreitol. All three bands were immunoprecipitated by anti-insulin-receptor antibodies....

  16. Insulin activation of mouse diaphragm glycogen synthase (GS) involves generation of electrophoretically distinct subunit species

    Glycogen synthase, the rate limiting enzyme for glycogen synthesis, was analyzed in mouse diaphragm extracts both by immunoprecipitation and immunoblotting using specific antibodies raised to the rabbit muscle enzyme. Diaphragms, with the supporting ribs attached, were incubated either with or without [32P]P/sub i/ in the medium. In extracts from unincubated, rapidly frozen diaphragms, immunoblotting indicated the presence of 3 distinct species, separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). In addition, phosphorylation of immunoprecipitated GS with the kinase F/sub A//GSK-3 converted the higher mobility forms into the low mobility species. In diaphragms incubated with [32P]P/sub i/, 32P was incorporated only into one of the GS species, that of lowest mobility, indicating differential labelling among the multiple subunit forms. Insulin action, which increased the -/+ glucose-6-P activity ratio from 0.2 to 0.4, converted the low mobility species to the two higher mobility forms. The authors propose that this effect of insulin can be explained by dephosphorylation in the proline/serine rich site 3 region of GS, which has potent influence on both mobility on SDS-PAGE and activity

  17. Insulin analog with additional disulfide bond has increased stability and preserved activity

    Vinther, Tine N.; Norrman, Mathias; Ribel, Ulla;

    2013-01-01

    bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin...

  18. 25-hydroxyvitamin D deficiency, exacerbation frequency and human rhinovirus exacerbations in chronic obstructive pulmonary disease

    Quint Jennifer K

    2012-06-01

    Full Text Available Abstract Background 25-hydroxyvitamin D deficiency is associated with COPD and increased susceptibility to infection in the general population. Methods We investigated whether COPD patients deficient in 25-hydroxyvitamin D were more likely to be frequent exacerbators, had reduced outdoor activity and were more susceptible to human rhinovirus (HRV exacerbations than those with insufficient and normal levels. We also investigated whether the frequency of FokI, BsmI and TaqIα 25-hydroxyvitamin D receptor (VDR polymorphisms differed between frequent and infrequent exacerbators. Results There was no difference in 25-hydroxyvitamin D levels between frequent and infrequent exacerbators in the summer; medians 44.1nmol/L (29.1 – 68.0 and 39.4nmol/L (22.3 – 59.2 or winter; medians 24.9nmol/L (14.3 – 43.1 and 27.1nmol/L (19.9 – 37.6. Patients who spent less time outdoors in the 14 days prior to sampling had lower 25-hydroxyvitamin D levels (p = 0.02. Day length was independently associated with 25-hydroxyvitamin D levels (p = 0.02. There was no difference in 25-hydroxyvitamin D levels between baseline and exacerbation; medians 36.2nmol/L (IQR 22.4-59.4 and 33.3nmol/L (23.0-49.7; p = 0.43. HRV positive exacerbations were not associated with lower 25-hydroxyvitamin D levels at exacerbation than exacerbations that did not test positive for HRV; medians 30.0nmol/L (20.4 – 57.8 and 30.6nmol/L (19.4 – 48.7. There was no relationship between exacerbation frequency and any VDR polymorphisms (all p > 0.05. Conclusions Low 25-hydroxyvitamin D levels in COPD are not associated with frequent exacerbations and do not increase susceptibility to HRV exacerbations. Independent of day length, patients who spend less time outdoors have lower 25-hydroxyvitamin D concentration.

  19. Total and free insulin-like growth factor I, insulin-like growth factor binding protein 3 and acid-labile subunit reflect clinical activity in acromegaly

    Sneppen, S B; Lange, Merete Wolder; Pedersen, L M; Kristensen L, L Ø; Main, K M; Juul, A; Skakkebaek, N E; Feldt-Rasmussen, U

    2001-01-01

    insulin-like growth factor binding protein-3 (IGFBP-3) with PV(pos) of 0.69 and 0.71 and PV(neg) of 0.91 and 0.92 respectively. We conclude that free IGF-I is more closely related than total IGF-I to perceived disease activity and is as such useful when evaluating previously treated acromegaly for disease...... the inactive and the active groups, we found that positive and negative predictive values (PV(pos), PV(neg)) for clinical disease activity of total and free insulin-like growth factor-I (IGF-I) were 0.59, 0.90 and 1.00, 0.82 respectively. Acid-labile subunit (ALS) showed diagnostic merit similar to...... activity. Total IGF-I, IGFBP-3 and ALS possess a higher PV(neg) for the clinical disease activity. None of the parameters can at present be claimed to be superior to the others and thus all the measured parameters are recommended to be part of the evaluation of acromegalic patients....

  20. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  1. The effects of two-week program of individually measured physical activity on insulin resistance in obese non-insulin-dependent diabetes mellitus

    Čizmić Milica

    2003-01-01

    Full Text Available It is well known that under the influence of regular, individually measured aerobic physical activity, it is possible to raise the biological efficiency of insulin by several mechanisms: by increasing the number of insulin receptors, their sensitivity and efficiency, as well as by increasing glucose transporters GLUT-4 on the level of cell membrane. The aim of this research was to examine whether decreased insulin resistance could be achieved under the influence of the program of individually measured aerobic physical activity in the 2-week period, in the obese type 2 diabetes patients with the increased aerobic capacity (VO2max. In 10 type 2 diabetes patients 47.6 ± 4.6 years of age (group E, in the 14-days period, program of aerobic training was applied (10 sessions - 35 min session of walking on treadmill, intensity 60.8 ± 5.7% (VO2max, frequency 5 times a week , as well as 1 600 kcal diet. At the same time, other 10 type 2 diabetes patients 45.9 ± 5.5 years of age (group C were on 1 600 kcal diet. Before and after this period the following was measured in both groups: insulin sensitivity (M/I by the method of hyperinsulin euglycemic clamp, and (VO2max by Astrand test on ergocycle. In contrast to the group C, in the second testing of E group subjects a significant increase was obtained in M/I (1.23 ± 0.78 vs. 2.42 ± 0.95 mg/kg/min/mU p<0.001, 96.75% as well as the increase of (VO2max (26.34 ± 4.26 vs. 29.16 ± 5.01 ml/kg/min p<0.05, 10.7%. The results had shown that 2-week program of aerobic training had had significant influence on the increased aerobic capacity and insulin sensitivity in the tested patients.

  2. Insulin Secretagogues

    ... Your Body in Balance › Insulin Secretagogues Fact Sheet Insulin Secretagogues March, 2012 Download PDFs English Espanol Editors ... medicines can help you stay healthy. What are insulin secretagogues? Insulin secretagogues (pronounced seh-KREET-ah-gogs) ...

  3. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways.

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-12-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  4. Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway.

    Yang, Min; Ren, Yan; Lin, Zhimin; Tang, Chenchen; Jia, Yanjun; Lai, Yerui; Zhou, Tingting; Wu, Shaobo; Liu, Hua; Yang, Gangyi; Li, Ling

    2015-11-01

    Genome-wide association studies (GWAS) have shown that Krüppel-like factor 14 (KLF14) is associated with type 2 diabetes mellitus (T2DM). However, no report has demonstrated a relationship between KLF14 and glucose metabolism. The aim of this study was to determine whether KLF14 is associated with glucose metabolism and insulin signaling in vitro. The mRNA and protein expressions of KLF14 were determined by Real-time PCR and Western blotting. Glucose uptake was assessed by 2-[(3)H]-deoxyglucose (2-DG) uptake. Western blotting was used to identify the activation of insulin signaling proteins. KLF14 mRNA and protein in fat and muscle were significantly decreased in HFD-fed mice, db/db mice and T2DM patients. Overexpression of KLF14 enhanced insulin-stimulated glucose uptake and the activation of Akt kinase in Hepa1-6 cells. The phosphorylation of insulin receptor (InsR), insulin receptor substrate-1(IRS-1), glycogen synthase kinase-3β (GSK-3β) and Akt also elevated significantly by up-regulation of KLF14. KLF14 overexpression in Hepa1-6 cells prevented the inhibition of glucose uptake and Akt phosphorylation induced by high glucose and/or high insulin, or T2DM serum. However, KLF14's ability to increase glucose uptake and Akt activation was significantly attenuated by LY294002, a PI3-kinase inhibitor. These data suggested that KLF14 could increase insulin sensitivity probably through the PI3K/Akt pathway. PMID:26226221

  5. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    Klein, H H; Müller, R; Vestergaard, H;

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in situ...... receptors to become insulin-dependently activated. The mother carries a point mutation at the last base pair in exon 17 which, due to abnormal alternative splicing, could lead to normally transcribed receptor or truncated receptor lacking the kinase region. Kinase activation was normal in the mother...... receptors in the mother's skeletal muscle are transcribed almost exclusively from the non-mutated allele. The mutation in exon 17 could lead to reduced transcription or rapid degradation of a predominantly transcribed truncated gene product or both....

  6. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  7. COPD exacerbations · 1: Epidemiology

    Donaldson, G C; Wedzicha, J A

    2006-01-01

    The epidemiology of exacerbations of chronic obstructive pulmonary disease (COPD) is reviewed with particular reference to the definition, frequency, time course, natural history and seasonality, and their relationship with decline in lung function, disease severity and mortality. The importance of distinguishing between recurrent and relapsed exacerbations is discussed.

  8. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling

    Chai, Biaoxin; Li, Ji-Yao; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W.

    2009-01-01

    The melanocortin system is crucial to regulation of energy homeostasis. The melanocortin receptor type 4 (MC4R) modulates insulin signaling via effects on c-Jun N-terminal kinase (JNK). The melanocortin agonist NDP-MSH dose-dependently inhibited JNK activity in HEK293 cells stably expressing the human MC4R; effects were reversed by melanocortin receptor antagonist. NDP-MSH time- and dose-dependently inhibited IRS-1ser307 phosphorylation, effects also reversed by a specific melanocortin recept...

  9. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.

    Wable, G S; Chen, Y-W; Rashid, S; Aoki, C

    2015-12-01

    Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance

  10. The association of intensity and overall level of physical activity energy expenditure with a marker of insulin resistance

    Assah, F. K.; Brage, S.; Wareham, N. J.

    2008-01-01

    Aims/hypothesis Physical activity is important in preventing insulin resistance, but it is unclear which dimension of activity confers this benefit. We examined the association of overall level and intensity of physical activity with fasting insulin level, a marker of insulin resistance. Methods This was a cross-sectional analysis of the Medical Research Council Ely population-based cohort study (2000–2002). Physical activity energy expenditure (PAEE) in kJ kg−1 min−1 was measured by heart rate monitoring with individual calibration over a period of 4 days. The percentage of time spent above 1.5, 1.75 and 2 times resting heart rate (RHR) represented all light-to-vigorous, moderate-to-vigorous and vigorous activity, respectively. Results Data from a total of 643 non-diabetic individuals (319 men, 324 women) aged 50 to 75 years were analysed. In multivariate linear regression analyses, adjusting for age, sex and body fat percentage, PAEE was significantly associated with fasting insulin (pmol/l) (β = −0.875, p = 0.006). Time (% of total) spent above 1.75 × RHR and also time spent above 2 × RHR were both significantly associated with fasting insulin (β = −0.0109, p = 0.007 and β = −0.0365, p = 0.001 respectively), after adjusting for PAEE, age, sex and body fat percentage. Time spent above 1.5 × RHR was not significantly associated with fasting insulin in a similar model (β = −0.0026, p = 0.137). Conclusions/interpretation The association between PAEE and fasting insulin level, a marker of insulin resistance, may be attributable to the time spent in moderate-to-vigorous and vigorous activity, but not to time spent in light-intensity physical activity. PMID:18488189

  11. Triterpenoid Saponins from Stauntonia chinensis Ameliorate Insulin Resistance via the AMP-Activated Protein Kinase and IR/IRS-1/PI3K/Akt Pathways in Insulin-Resistant HepG2 Cells

    Xin Hu; Sha Wang; Jing Xu; De-Bing Wang; Yu Chen; Guang-Zhong Yang

    2014-01-01

    Inflammation and oxidative stress play crucial roles in the etiology of type 2 diabetes mellitus. In this study, we examined the anti-diabetic effects of triterpenoid saponins extracted from Stauntonia chinensis on stimulating glucose uptake by insulin-resistant human HepG2 cells. The results showed that saponin 6 significantly increased glucose uptake and glucose catabolism. Saponin 6 also enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and activated the insulin receptor...

  12. Insulin glulisine: insulin receptor signaling characteristics in vivo.

    Hennige, Anita M; Lehmann, Rainer; Weigert, Cora; Moeschel, Klaus; Schäuble, Myriam; Metzinger, Elisabeth; Lammers, Reiner; Häring, Hans-Ulrich

    2005-02-01

    In recent years, recombinant DNA technology has been used to design insulin molecules that overcome the limitations of regular insulin in mealtime supplementation. However, safety issues have been raised with these alternatives, as the alteration of the three-dimensional structure may alter the interaction with the insulin and/or IGF-I receptors and therefore lead to the activation of alternate metabolic as well as mitogenic signaling pathways. It is therefore essential to carefully study acute and long-term effects in a preclinical state, as insulin therapy is meant to be a lifelong treatment. In this study, we determined in vivo the insulin receptor signaling characteristics activated by insulin glulisine (Lys(B3), Glu(B29)) at the level of insulin receptor phosphorylation, insulin receptor substrate phosphorylation, and downstream signaling elements such as phosphatidylinositol (PI) 3-kinase, AKT, and mitogen-activated protein kinase. C57BL/6 mice were injected with insulin glulisine or regular insulin and Western blot analysis was performed for liver and muscle tissue. The extent and time course of insulin receptor phosphorylation and activation of downstream signaling elements after insulin glulisine treatment was similar to that of human regular insulin in vivo. Moreover, insulin signaling in hypothalamic tissue determined by PI 3-kinase activity was comparable. Therefore, insulin glulisine may be a useful tool for diabetes treatment. PMID:15677493

  13. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 μg/ml) permeabilized rat adipocytes. Incorporation of 3H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10-9M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different

  14. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    Mooney, R.A.; Wisniewski, J.L.

    1986-05-01

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 ..mu..g/ml) permeabilized rat adipocytes. Incorporation of /sup 3/H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10/sup -9/M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different.

  15. Electroacupuncture-Induced Cholinergic Nerve Activation Enhances the Hypoglycemic Effect of Exogenous Insulin in a Rat Model of Streptozotocin-Induced Diabetes

    Yu-Chen Lee

    2011-01-01

    Full Text Available The aim of this study is to explore the mechanisms by which electroacupuncture (EA enhances the hypoglycemic effect of exogenous insulin in a streptozotocin- (STZ- diabetic rats. Animals in the EA group were anesthetized and subjected to the insulin challenge test (ICT and EA for 60 minutes. In the control group, rats were subjected to the same treatment with the exception of EA stimulation. Blood samples were drawn to measure changes in plasma glucose, free fatty acids (FFA, and insulin levels. Western blot was used to assay proteins involved in insulin signaling. Furthermore, atropine, hemicholinium-3 (HC-3, and Eserine were used to explore the relationship between EA and cholinergic nerve activation during ICT. EA augmented the blood glucose-lowering effects of EA by activating the cholinergic nerves in STZ rats that had been exposed to exogenous insulin. This phenomenon may be related to enhancement of insulin signaling rather than to changes in FFA concentration.

  16. TRPV1 Activation Exacerbates Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cells via Calcium Overload and Mitochondrial Dysfunction

    Zewei Sun; Jie Han; Wenting Zhao; Yuanyuan Zhang; Shuai Wang; Lifang Ye; Tingting Liu; Liangrong Zheng

    2014-01-01

    Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death a...

  17. Total and free insulin-like growth factor I, insulin-like growth factor binding protein 3 and acid-labile subunit reflect clinical activity in acromegaly

    Sneppen, S B; Lange, Merete Wolder; Pedersen, L M;

    2001-01-01

    insulin-like growth factor binding protein-3 (IGFBP-3) with PV(pos) of 0.69 and 0.71 and PV(neg) of 0.91 and 0.92 respectively. We conclude that free IGF-I is more closely related than total IGF-I to perceived disease activity and is as such useful when evaluating previously treated acromegaly for disease...... activity. Total IGF-I, IGFBP-3 and ALS possess a higher PV(neg) for the clinical disease activity. None of the parameters can at present be claimed to be superior to the others and thus all the measured parameters are recommended to be part of the evaluation of acromegalic patients....

  18. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    Mehmet Bilgehan Pektas; Halit Bugra Koca; Gokhan Sadi; Fatma Akar

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin ...

  19. Cyanidin-3-O-β-Glucoside and Protocatechuic Acid Exert Insulin-Like Effects by Upregulating PPARγ Activity in Human Omental Adipocytes

    Scazzocchio, Beatrice; Varì, Rosaria; Filesi, Carmelina; D’Archivio, Massimo; Santangelo, Carmela; Giovannini, Claudio; Iacovelli, Annunziata; Silecchia, Gianfranco; Volti, Giovanni Li; Galvano, Fabio; Masella, Roberta

    2011-01-01

    OBJECTIVE Insulin resistance (IR) represents an independent risk factor for metabolic, cardiovascular, and neoplastic disorders. Preventing/attenuating IR is a major objective to be reached to preserve population health. Because many insulin-sensitizing drugs have shown unwanted side effects, active harmless compounds are sought after. Dietary anthocyanins have been demonstrated to ameliorate hyperglycemia and insulin sensitivity. This study aimed at investigating whether cyanidin-3-O-β-gluco...

  20. NKX3.1 activates expression of insulin-like growth factor binding protein-3 to mediate insulin-like growth factor-I signaling and cell proliferation.

    Muhlbradt, Erin; Asatiani, Ekaterina; Ortner, Elizabeth; Wang, Antai; Gelmann, Edward P

    2009-03-15

    NKX3.1 is a homeobox gene that codes for a haploinsufficient prostate cancer tumor suppressor. NKX3.1 protein levels are down-regulated in the majority of primary prostate cancer tissues. NKX3.1 expression in PC-3 cells increased insulin-like growth factor binding protein-3 (IGFBP-3) mRNA expression 10-fold as determined by expression microarray analysis. In both stably and transiently transfected PC-3 cells and in LNCaP cells, NKX3.1 expression increased IGFBP-3 mRNA and protein expression. In prostates of Nkx3.1 gene-targeted mice Igfbp-3 mRNA levels correlated with Nkx3.1 copy number. NKX3.1 expression in PC-3 cells attenuated the ability of insulin-like growth factor-I (IGF-I) to induce phosphorylation of type I IGF receptor (IGF-IR), insulin receptor substrate 1, phosphatidylinositol 3-kinase, and AKT. The effect of NKX3.1 on IGF-I signaling was not seen when cells were exposed to long-R3-IGF-I, an IGF-I variant peptide that does not bind to IGFBP-3. Additionally, small interfering RNA-induced knockdown of IGFBP-3 expression partially reversed the attenuation of IGF-IR signaling by NKX3.1 and abrogated NKX3.1 suppression of PC-3 cell proliferation. Thus, there is a close relationship in vitro and in vivo between NKX3.1 and IGFBP-3. The growth-suppressive effects of NKX3.1 in prostate cells are mediated, in part, by activation of IGFBP-3 expression. PMID:19258508

  1. A superactive insulin: [B10-aspartic acid]insulin(human).

    Schwartz, G P; Burke, G. T.; Katsoyannis, P G

    1987-01-01

    The genetic basis for a case of familial hyperproinsulinemia has been elucidated recently. It involves a single point mutation in the proinsulin gene resulting in the substitution of aspartic acid for histidine-10 of the B chain of insulin. We have synthesized a human insulin analogue, [AspB10]insulin, corresponding to the mutant proinsulin and evaluated its biological activity. [AspB10]Insulin displayed a binding affinity to insulin receptors in rat liver plasma membranes that was 534 +/- 14...

  2. Intravenous tissue plasminogen activator in patients with stroke increases the bioavailability of insulin-like growth factor-1

    Wilczak, Nadine; Elting, Jan Willem; Chesik, Daniel; Kema, Ido P.; De Keyser, Jacques

    2006-01-01

    Background and Purpose-Insulin-like growth factor (IGF)-1 has potent neuroprotective properties. We investigated the effects of intravenous administration of tissue plasminogen activator (tPA) on serum levels of IGF-1 and IGF-binding protein (IGFBP)-3 in patients with acute ischemic stroke. Methods-

  3. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla; Pedersen, Bente Klarlund; Green, Charlotte Jane

    2013-01-01

    significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact...

  4. COPD exacerbations, inflammation and treatment

    Bathoorn, Derk

    2007-01-01

    This thesis describes investigations into the inflammation in COPD, and its treatment. Inflammation in COPD is a central factor in the onset of the disease and its progression. During acute deteriorations of the disease, exacerbations, the inflammation is more severe, and depending on the cause of the exacerbation, it has a different pattern. To date, it has been difficult to efficiently suppress this inflammation, and the anti-inflammatory treatment currently so far has considerable side eff...

  5. Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance.

    Mohamad, Mashani; Mitchell, Sarah Jayne; Wu, Lindsay Edward; White, Melanie Yvonne; Cordwell, Stuart James; Mach, John; Solon-Biet, Samantha Marie; Boyer, Dawn; Nines, Dawn; Das, Abhirup; Catherine Li, Shi-Yun; Warren, Alessandra; Hilmer, Sarah Nicole; Fraser, Robin; Sinclair, David Andrew; Simpson, Stephen James; de Cabo, Rafael; Le Couteur, David George; Cogger, Victoria Carroll

    2016-08-01

    While age-related insulin resistance and hyperinsulinemia are usually considered to be secondary to changes in muscle, the liver also plays a key role in whole-body insulin handling and its role in age-related changes in insulin homeostasis is largely unknown. Here, we show that patent pores called 'fenestrations' are essential for insulin transfer across the liver sinusoidal endothelium and that age-related loss of fenestrations causes an impaired insulin clearance and hyperinsulinemia, induces hepatic insulin resistance, impairs hepatic insulin signaling, and deranges glucose homeostasis. To further define the role of fenestrations in hepatic insulin signaling without any of the long-term adaptive responses that occur with aging, we induced acute defenestration using poloxamer 407 (P407), and this replicated many of the age-related changes in hepatic glucose and insulin handling. Loss of fenestrations in the liver sinusoidal endothelium is a hallmark of aging that has previously been shown to cause deficits in hepatic drug and lipoprotein metabolism and now insulin. Liver defenestration thus provides a new mechanism that potentially contributes to age-related insulin resistance. PMID:27095270

  6. Signal Transducer and Activator of Transcription (Stat)-Induced Stat Inhibitor 1 (Ssi-1)/Suppressor of Cytokine Signaling 1 (Socs1) Inhibits Insulin Signal Transduction Pathway through Modulating Insulin Receptor Substrate 1 (Irs-1) Phosphorylation

    Kawazoe, Yoshinori; Naka, Tetsuji; Fujimoto, Minoru; Kohzaki, Hidetsugu; Morita, Yoshiaki; Narazaki, Masashi; Okumura, Kohichi; Saitoh, Hiroshi; Nakagawa, Reiko; Uchiyama, Yasuo; Akira, Shizuo; Kishimoto, Tadamitsu

    2001-01-01

    Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin ...

  7. Structure, antihyperglycemic activity and cellular actions of a novel diglycated human insulin

    O'Harte, F P; Boyd, A C; McKillop, A M;

    2000-01-01

    Human insulin was glycated under hyperglycemic reducing conditions and a novel diglycated form (M(r) 6135.1 Da) was purified by RP-HPLC. Endoproteinase Glu-C digestion combined with mass spectrometry and automated Edman degradation localized glycation to Gly(1) and Phe(1) of the insulin A- and B...

  8. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...

  9. Acute exacerbations of chronic obstructive pulmonary disease: causes and impacts.

    Chhabra, Sunil K; Dash, Devi Jyoti

    2014-01-01

    Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are recognised clinically as episodes of increased breathlessness and productive cough requiring a more intensive treatment. A subset of patients with this disease is especially prone to such exacerbations. These patients are labelled as 'frequent exacerbators'. Though yet poorly characterised in terms of host characteristics, including any genetic basis, these patients are believed to represent a distinct phenotype as they have a different natural history with a more progressive disease and a poorer prognosis than those who get exacerbations infrequently. Most exacerbations appear to be associated with infective triggers, either bacterial or viral, although 'non-infective' agents, such as air pollution and other irritants may also be important. Susceptibility to exacerbations is determined by multiple factors. Several risk factors have been identified, some of which are modifiable. Chronic obstructive pulmonary disease (COPD) exacerbations are major drivers of health status and patient-centered outcomes, and are a major reason for health care utilisation including hospitalisations and intensive care admissions. These are associated with considerable morbidity and mortality, both immediate and long-term. These episodes have a negative impact on the patient and the disease including high economic burden, increased mortality, worsening of health status, limitation of activity, and aggravation of comorbidities including cardiovascular disease, osteoporosis and neuro-psychiatric complications. Exacerbations also increase the rate of progression of disease, increasing the annual decline in lung function and leading to a poorer prognosis. Evaluation of risk of exacerbations is now included as a major component of the initial assessment of a patient with COPD in addition to the traditionally used lung function parameter, forced expiratory volume in one second (FEV1). Decreasing the risk of exacerbations

  10. Insulin Test

    ... especially as a result of taking non-human (animal or synthetic) insulin, these can interfere with insulin testing. In this case, a C-peptide may be performed as an alternative way to evaluate insulin production. Note also that ...

  11. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK

    Chiou Shih-Hwa

    2010-07-01

    Full Text Available Abstract Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs offer renewable cells for generating insulin-producing cells (IPCs. Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM such as fibronectin (FN or laminin (LAM enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor, PD98059 (MEK specific inhibitor or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.

  12. Endoplasmic Reticulum Stress-Induced Activation of Activating Transcription Factor 6 Decreases Insulin Gene Expression via Up-Regulation of Orphan Nuclear Receptor Small Heterodimer Partner

    Seo, Hye-Young; Kim, Yong Deuk; Lee, Kyeong-Min; Min, Ae-Kyung; Kim, Mi-Kyung; Kim, Hye-Soon; Won, Kyu-Chang; Park, Joong-Yeol; Lee, Ki-Up; Choi, Hueng-Sik; Park, Keun-Gyu; Lee, In-Kyu

    2008-01-01

    The highly developed endoplasmic reticulum (ER) structure of pancreatic β-cells is a key factor in β-cell function. Here we examined whether ER stress-induced activation of activating transcription factor (ATF)-6 impairs insulin gene expression via up-regulation of the orphan nuclear receptor small heterodimer partner (SHP; NR0B2), which has been shown to play a role in β-cell dysfunction. We examined whether ER stress decreases insulin gene expression, and this process is mediated by ATF6. A...

  13. Objectively Measured Sedentary Time May Predict Insulin Resistance Independent of Moderate- and Vigorous-Intensity Physical Activity

    Helmerhorst, Hendrik J. F.; Wijndaele, Katrien; Brage, Søren; Wareham, Nicholas J.; Ekelund, Ulf

    2009-01-01

    OBJECTIVE To examine the prospective association between objectively measured time spent sedentary and insulin resistance and whether this association is independent of moderate- and vigorous-intensity physical activity (MVPA) and other relevant confounders. RESEARCH DESIGN AND METHODS This was a population-based study (Medical Research Council Ely study) in 376 middle-aged adults (166 men; 210 women) over 5.6 years of follow-up. Physical activity and sedentary time were measured objectively ...

  14. INSULIN ANALOGUES: ANALYSIS OF PROLIFERATIVE POTENCY AND CHARACTERIZATION OF RECEPTORS AND SIGNALLING PATHWAYS ACTIVATED IN HUMAN MAMMARY EPITHELIAL CELLS

    Shukla, Ashish

    2009-01-01

    Insulin analogues have been developed with the aim to provide better glycaemic control to diabetic patients. They are generated by modifying the insulin backbone which, however, may alter relevant biochemical characteristics such as the affinity to insulin receptor and type I insulin-like growth factor receptor (IGF-IR), and the insulin receptor dissociation rate. As a result insulin analogues may exhibit stronger mitogenic potency than regular insulin. Normal mammary epithelial cells show hi...

  15. Insulin analogs and cancer

    Laura eSciacca

    2012-02-01

    Full Text Available Today, insulin analogs are used in millions of diabetic patients. Insulin analogs have been developed to achieve more physiological insulin replacement in terms of time course of the effect. Modifications in the amino acid sequence of the insulin molecule change the pharmacokinetics and pharmacodynamics of the analogs in respect to human insulin. However, these changes can also modify the molecular and biological effects of the analogs. The rapid-acting insulin analogs, lispro, aspart and glulisine, have a rapid onset and shorter duration of action. The long-acting insulin analogs glargine and detemir have a protracted duration of action and a relatively smooth serum concentration profile. Insulin and its analogs may function as growth factors and therefore have a theoretical potential to promote tumor proliferation. A major question is whether analogs have an increased mitogenic activity in respect to insulin. These ligands can promote cell proliferation through many mechanisms like the prolonged stimulation of the insulin receptor, stimulation of the IGF-1 receptor (IGF-1R, prevalent activation of the ERK rather than the AKT intracellular post-receptor pathways. Studies on in vitro models indicate that short-acting analogs elicit molecular and biological effects that are similar to those of insulin. In contrast, long-acting analogs behave differently. Although not all data are homogeneous, both glargine and detemir have been found to have a decreased binding to IR but an increased binding to IGF-1R, a prevalent activation of the ERK pathway, and an increased mitogenic effect in respect to insulin. Recent retrospective epidemiological clinical studies have suggested that treatment with long-acting analogs (specifically glargine may increase the relative risk for cancer. Results are controversial and methodologically weak. Therefore prospective clinical studies are needed to evaluate the possible tumor growth-promoting effects of these insulin

  16. Effect of Insulin Analogues on Insulin/IGF1 Hybrid Receptors: Increased Activation by Glargine but Not by Its Metabolites M1 and M2

    Cécile Pierre-Eugene; Patrick Pagesy; Tuyet Thu Nguyen; Marion Neuillé; Georg Tschank; Norbert Tennagels; Cornelia Hampe; Tarik Issad

    2012-01-01

    BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presenc...

  17. Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways.

    Kral, Julia Barbara; Kuttke, Mario; Schrottmaier, Waltraud Cornelia; Birnecker, Birgit; Warszawska, Joanna; Wernig, Christina; Paar, Hannah; Salzmann, Manuel; Sahin, Emine; Brunner, Julia Stefanie; Österreicher, Christoph; Knapp, Sylvia; Assinger, Alice; Schabbauer, Gernot

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with limited treatment options. Additionally, the lack of a complete understanding of underlying immunological mechanisms underscores the importance of discovering novel options for therapeutic intervention. Since the PI3K/PTEN pathway in myeloid cells influences their effector functions, we wanted to elucidate how sustained PI3K activity induced by cell-type specific genetic deficiency of its antagonist PTEN modulates IPF, in a murine model of bleomycin-induced pulmonary fibrosis (BIPF). We found that myeloid PTEN deficient mice (PTEN(MyKO)), after induction of BIPF, exhibit increased TGF-β1 activation, mRNA expression of pro-collagens and lysyl oxidase as well as augmented collagen deposition compared to wild-type littermates, leading to enhanced morbidity and decreased survival. Analysis of alveolar lavage and lung cell composition revealed that PTEN(MyKO) mice exhibit reduced numbers of macrophages and T-cells in response to bleomycin, indicating an impaired recruitment function. Interestingly, we found dysregulated macrophage polarization as well as elevated expression and release of the pro-fibrotic cytokines IL-6 and TNF-α in PTEN(MyKO) mice during BIPF. This might point to an uncontrolled wound healing response in which the inflammatory as well as tissue repair mechanisms proceed in parallel, thereby preventing resolution and at the same time promoting extensive fibrosis. PMID:26971883

  18. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen;

    2008-01-01

    CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We...... investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were...... metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P < 0.05) was associated with a lower insulin-stimulated GS activity in PCOS patients (P < 0.05), compared with controls. This was, in part, explained by absent insulin...

  19. Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila.

    Yesser Hadj Belgacem

    Full Text Available The insulin signaling pathway has been implicated in several physiological and developmental processes. In mammals, it controls expression of 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR, a key enzyme in cholesterol biosynthesis. In insects, which can not synthesize cholesterol de novo, the HMGCR is implicated in the biosynthesis of juvenile hormone (JH. However, the link between the insulin pathway and JH has not been established. In Drosophila, mutations in the insulin receptor (InR decrease the rate of JH synthesis. It is also known that both the insulin pathway and JH play a role in the control of sexual dimorphism in locomotor activity. In studies here, to demonstrate that the insulin pathway and HMGCR are functionally linked in Drosophila, we first show that hmgcr mutation also disrupts the sexual dimorphism. Similarly to the InR, HMGCR is expressed in the corpus allatum (ca, which is the gland where JH biosynthesis occurs. Two p[hmgcr-GAL4] lines were therefore generated where RNAi was targeted specifically against the HMGCR or the InR in the ca. We found that RNAi-HMGCR blocked HMGCR expression, while the RNAi-InR blocked both InR and HMGCR expression. Each RNAi caused disruption of sexual dimorphism and produced dwarf flies at specific rearing temperatures. These results provide evidence: (i that HMGCR expression is controlled by the InR and (ii that InR and HMGCR specifically in the ca, are involved in the control of body size and sexual dimorphism of locomotor activity.

  20. Exacerbations of asthma during pregnancy

    Ali, Zarqa; Hansen, A V; Ulrik, C S

    2016-01-01

    Asthma is common among pregnant women, and the incidence of asthma exacerbations during pregnancy is high. This literature review provides an overview of the impact of exacerbations of asthma during pregnancy on pregnancy-related complications. The majority of published retrospective studies reveal...... that asthma exacerbations during pregnancy increase the risk of pre-eclampsia, gestational diabetes, placental abruption and placenta praevia. Furthermore, these women also have higher risk for breech presentation, haemorrhage, pulmonary embolism, caesarean delivery, maternal admission to the intensive...... care unit and longer postpartum hospital stay. Asthma has been associated with increased risk of intrauterine growth retardation, small-for-gestational age, low birth weight, infant hypoglycaemia and preterm birth, but more recent prospective studies have not revealed significant associations with...

  1. The importance of apoptotic activity and plasma NT-proBNP levels in patients with acute exacerbation of decompensated heart failure and their relation to different drugs and comorbidities

    Objective: To demonstrate the presence and importance of apoptotic activity in heart failure during acute exacerbations and to investigate the effects of different drugs used and co-morbidities on levels of N-Terminal pro-Brain Natriuretic Peptide and apoptotic activity on admission and during hospitalisation. Methods: The descriptive study was conducted at the emergency department of Istanbul University Cardiology Institute between October 2010 and May 2011 and comprised patients with complaints of shortness of breath, and who were evaluated as acutely exacerbated decompensated heart failure with an aetiology of ischaemic or dilated cardiomyopathy. Apoptotic activity and N-Terminal pro-Brain Natriuretic Peptide levels were measured on admission and on the seventh day of treatment. SPSS 15 was used for statistical analysis. Results: Of the 89 patients in the study, 67(75%) were males. Overall mean age of the study sample was 61+-12 years. Patients who had N-Terminal pro-Brain Natriuretic Peptide levels higher than 6000 pg/ml on admission had greater in-patient mortality rate (p<0.001). N-Terminal pro-Brain Natriuretic Peptide levels decreased significantly on the seventh day of treatment compared to the admission values (p<0.012). Apoptotic activity levels, although not statistically significant, increased on the seventh day compared with admission values (p<0.12). Apoptotic activity levels on the 7th day were associated with in-patient deaths (p<0.002). Dopamine infusion in the treatment group during hospitalisation significantly increased apoptotic activity (p<0.035), whereas there was a trend towards decreased apoptotic activity levels with spironolactone (p<0.07). Treatment with beta-blockers did not change apoptotic activity levels (p<0.751), whereas lack of beta-blocker therapy increased apoptotic activity (p<0.02). Conclusion: N-Terminal pro-Brain Natriuretic Peptide may be an important risk predictor in decompensated heart failure exacerbations during

  2. Glucosamine induces REDD1 to suppress insulin action in retinal Müller cells.

    Moore, Joshua A; Miller, William P; Dennis, Michael D

    2016-05-01

    Resistance to insulin action is a key cause of diabetic complications, yet much remains unknown about the molecular mechanisms that contribute to the defect. Glucose-induced insulin resistance in peripheral tissues such as the retina is mediated in part by the hexosamine biosynthetic pathway (HBP). Glucosamine (GAM), a leading dietary supplement marketed to relieve the discomfort of osteoarthritis, is metabolized by the HBP, and in doing so bypasses the rate-limiting enzyme of the pathway. Thus, exogenous GAM consumption potentially exacerbates the resistance to insulin action observed with diabetes-induced hyperglycemia. In the present study, we evaluated the effect of GAM on insulin action in retinal Müller cells in culture. Addition of GAM to Müller cell culture repressed insulin-induced activation of the Akt/mTORC1 signaling pathway. However, the effect was not recapitulated by chemical inhibition to promote protein O-GlcNAcylation, nor was blockade of O-GlcNAcylation sufficient to prevent the effects of GAM. Instead, GAM induced ER stress and subsequent expression of the protein Regulated in DNA Damage and Development (REDD1), which was necessary for GAM to repress insulin-stimulated phosphorylation of Akt on Thr308. Overall, the findings support a model whereby GAM promotes ER stress in retinal Müller cells, resulting in elevated REDD1 expression and thus resistance to insulin action. PMID:26852666

  3. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  4. Activity restriction, impaired capillary function, and the development of insulin resistance in lean primates

    Chadderdon, Scott M.; Belcik, J. Todd; Smith, Elise; Pranger, Lindsay; Kievit, Paul; Grove, Kevin L.; Lindner, Jonathan R

    2012-01-01

    Insulin produces capillary recruitment in skeletal muscle through a nitric oxide (NO)-dependent mechanism. Capillary recruitment is blunted in obese and diabetic subjects and contributes to impaired glucose uptake. This study's objective was to define whether inactivity, in the absence of obesity, leads to impaired capillary recruitment and contributes to insulin resistance (IR). A comprehensive metabolic and vascular assessment was performed on 19 adult male rhesus macaques (Macaca mulatta) ...

  5. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  6. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  7. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    Brandt, Nina; De Bock, Katrien; Richter, Erik;

    2010-01-01

    counteracted by training. In the perfused hindlimb, insulin-stimulated glucose transport in red gastrocnemius muscle was completely abolished in CAF and rescued by exercise training. Apart from a tendency toward an approximately 20% reduction in both basal and insulin-stimulated Akt Ser(473) phosphorylation (P......) among the groups. In conclusion, surplus energy intake of a palatable but low-fat cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK......Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned to...

  8. Rat liver insulin receptor

    Using insulin affinity chromatography, the authors have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the M/sub r/ 125,000 α-subunit, the M/sub r/ 90,000 β-subunit, and varying proportions of the M/sub r/ 45,000 β'-subunit. The specific insulin binding of the purified receptor was 25-30 μg of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the β-subunit to β' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors. In summary, rat liver and human placental receptors differ functionally in both α- and β-subunits. Insulin binding to the α-subunit of the purified rat liver receptor communicates a signal that activates the β-subunit; however, major proteolytic destruction of the β-subunit does not affect insulin binding to the α-subunit

  9. Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice.

    Kang, Xia; Hou, Along; Wang, Rui; Liu, Da; Xiang, Wei; Xie, Qingyun; Zhang, Bo; Gan, Lixia; Zheng, Wei; Miao, Hongming

    2016-07-01

    Transcription factor 4 (TCF-4) was recently identified as a candidate gene for the cause of type 2 diabetes, although the mechanisms have not been fully elucidated. In the present study, we demonstrated that the TCF-4 transgene in macrophages aggravated high-fat diet (HFD)-induced insulin resistance and chronic inflammation, characterized by the elevation of proinflammatory cytokines in the blood, liver and white adipose tissue, as well as a proinflammatory profile of immune cells in visceral fats in mice. Mechanistically, TCF-4 functioned as a co-activator of p65 to amplify the saturated free fatty acid (FFA)-stimulated promoter activity, mRNA transcription and secretion of proinflammatory cytokines in primary macrophages. Blockage of p65 with a specific interfering RNA or inhibitor could prevent TCF-4-enhanced expression of proinflammatory cytokines in FFA/lipopolysaccharide-treated primary macrophages. The p65 inhibitor could abolish macrophage TCF-4 transgene-aggravated systemic inflammation, glucose intolerance and insulin resistance in HFD-treated mice. In addition, we demonstrated that the mRNA expression of TCF-4 in the peripheral blood monocytes from humans was positively correlated to the levels of interleukin (IL)-1β, tumour necrosis factor α, IL-6 and fasting plasma glucose. In summary, we identified TCF-4 as a co-activator of p65 in the potentiation of proinflammatory cytokine production in macrophages and aggravation of HFD-induced chronic inflammation and insulin resistance in mice. PMID:27129186

  10. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway

    Scott, Pamela H; Brunn, Gregory J.; Kohn, Aimee D; Roth, Richard A.; Lawrence, John C.

    1998-01-01

    The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP...

  11. [Transaminase activity of the cortical layer of the kidney of rats of different ages and sex after administration of hydrocortisone and insulin].

    Poletaeva, K A

    1971-01-01

    Response of cortical layer of rat kidney to separate and combined administration of hydrocortisone and insulin, as manifested by the activity of aspartate-alpha-ketoglutarate transaminase (Asp-T) and alanine-alpha-ketoglutarate transaminase (Ala-T), varied in males and females of different age. Prolonged administration of insulin to normal preadolescent rats and to adult males and females did not affect the activity of Asp-T and Ala-T in the cortical layer of kidney. During simultaneous prolonged administration of hydrocortisone and insulin to preadolescent male rats, there occurred no increase in the activity of Asp-T induced by administration of hydrocortisone alone. During simultaneous prolonged administration of hydrocortisone and insulin to adult male rats, activity of Asp-T of the cortical layer of kidney remained at the same level at after administration of hydrocortisone alone. PMID:5317624

  12. The role of mitogen-activated protein kinase in insulin and insulin-like growth factor I (IGF-I) signaling cascades for progesterone and IGF-binding protein-1 production in human granulosa cells.

    Seto-Young, Donna; Zajac, Jacek; Liu, Hung-Ching; Rosenwaks, Zev; Poretsky, Leonid

    2003-07-01

    Insulin and IGF-I participate in the regulation of ovulation, steroidogenesis, and IGF-binding protein (IGFBP) production in the ovary. Insulin and IGF-I actions in the ovary are closely related. For example, insulin may amplify IGF-I action in the ovary by up-regulating type I IGF receptors and inhibiting IGFBP-1 production, thus increasing the bioavailability of IGF-I. It is hypothesized that ovarian effects of insulin in insulin-resistant states are mediated via an insulin action pathway(s) distinct from those involved in glucose transport. We previously reported that insulin-induced stimulation of progesterone and inhibition of IGFBP-1 production in the human ovary are mediated by signaling pathways that are independent of phosphatidylinositol 3-kinase, the enzyme whose activation is crucial for glucose transport. We now examined whether activation of MAPK is necessary to mediate insulin-induced or IGF-I-induced stimulation of progesterone or inhibition of IGFBP-1 production in human granulosa cells. Human granulosa cells were obtained during in vitro fertilization. Cells (0.5-1 x 10(5)) were incubated for 24 h in the presence of 0, 10, 10(2), or 10(3) ng/ml insulin or 0, 0.5, 1, 2.5, or 5 ng/ml IGF-I and in the presence or absence of 1 micro M PD98059, a specific inhibitor of ERK1/2 MAPK. The progesterone concentration in the tissue culture medium was measured by RIA (Pantex, Santa Monica, CA), and the IGFBP-1 concentration was measured by immunoradiometric assay (DSL-7800, Diagnostic Systems Laboratories, Inc., Webster, TX). MAPK activity was assessed using the MAPK IP-Kinase assay kit (Upstate Biotechnology, Inc., Lake Placid, NY). ANOVA was used to compare mean values of progesterone or IGFBP-1 concentrations. MAPK was stimulated by insulin up to 350% of the baseline value. Progesterone production in human granulosa cells was stimulated by insulin in a dose-related manner to 123% of the control value (P < 0.001), and IGFBP-1 production was inhibited to 25

  13. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways.

    Lee, Chae Eun; Hur, Haeng Jeon; Hwang, Jin-Taek; Sung, Mi Jeong; Yang, Hye Jeong; Kim, Hyun-Jin; Park, Jae Ho; Kwon, Dae Young; Kim, Myung-Sunny

    2012-01-01

    This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda) H. Hara) on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG), T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP)-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation. PMID:22829857

  14. Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Gary W. Cline

    2011-10-01

    Full Text Available The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak and mediated by UCP2, and by alkalinization to utilize the pH gradient to drive substrate and ion transport. Converging lines of evidence support the hypothesis that substrate cycles driven by rates of Kreb's cycle flux and by anaplerosis play an integral role in coupling responsive changes in mitochondrial metabolism with insulin secretion. The components and mechanisms that account for the integrated signal of ATP production, substrate cycling, the regulation of cellular redox state, and the production of other secondary signaling intermediates are operative in both rodent and human islet β-cells.

  15. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways

    Chae Eun Lee

    2012-01-01

    Full Text Available This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda H. Hara on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG, T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.

  16. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  17. Microgravity alters basal and insulin-mediated metabolic activity of normal and neoplastic cells.

    Coinu, Rita; Galleri, Grazia; Pippia, Proto; Tilocca, Maria Giovanna; Meloni, Mariantonia; Covelli, Bianca; Chiaviello, Angela; Palumbo, Giuseppe

    2004-07-01

    In this paper we report the behaviour of normal vascular smooth muscle cells and transformed breast cancer cells under normal versus simulated microgravity conditions by comparing cell proliferation, Glucose transport, Methionine uptake and protein synthesis. Modeled microgravity profoundly affects cell growth (especially in normal cells) and Glucose or Methionine metabolism (although to different extent in the two cell lines). Since both cells own responsive insulin receptors, the comparison was extended to insulin-stimulated versus unstimulated conditions. We report that the detected metabolic changes were strongly enhanced when the cells were simultaneously stimulated with insulin and subjected to modeled microgravity stress. Such observations may have important returns for human health in space; they deserve further attention. PMID:16237830

  18. Predicting an asthma exacerbation in children 2 to 5 years of age

    Swern, A.S.; Tozzi, C.A.; Knorr, B.;

    2008-01-01

    an exacerbation. Caregiver-reported information (daytime cough, breathing difficulties, limitation of activity, nighttime cough or awakening, daytime and nighttime beta2-agonist use) were analyzed using general estimating equations with an exchangeable within-subject log odds ratio regression...... structure to identify predictors of an exacerbation. RESULTS: Average symptom scores and beta2-agonist use increased significantly before exacerbation but at different rates. A combination of daytime cough and wheeze and nighttime beta2-agonist use 1 day before the exacerbation was identified as strongly...... predictive of an exacerbation. These methods predicted 149 (66.8%) of the exacerbations with a very low false-positive rate of 14.2%. CONCLUSIONS: No individual symptom was predictive of an imminent asthma exacerbation, but a combination of increased daytime cough, daytime wheeze, and nighttime beta2-agonist...

  19. Insulin sensitizes FGF21 in glucose and lipid metabolisms via activating common AKT pathway.

    Yu, Dan; Ye, Xianlong; Wu, Qiang; Li, Shujie; Yang, Yongbi; He, Jinjiao; Liu, Yunye; Zhang, Xiaoyu; Yuan, Qingyan; Liu, Mingyao; Li, Deshan; Ren, Guiping

    2016-06-01

    Previous studies reveal that fibroblast growth factor 21 (FGF21) sensitizes insulin to achieve a synergy in regulating glucose metabolism. Here, we report that insulin sensitizes FGF21 in regulating both glucose and lipid metabolisms. db/db diabetic mice were subcutaneously administrated once a day for 6 weeks. Effective dose of insulin (1 U) could control blood glucose level of the db/db mice for maximum of 2 h, increased the body weight of the db/db mice and did not improve serum lipid parameters. In contrast, effective dose of FGF21 (0.5 mg/kg) could maintain blood glucose of the db/db mice at normal level for at least 24 h, repressed the weight gain of the mice and significantly improved lipid parameters. Ineffective doses of FGF21 (0.125 mg/kg) and insulin had no effect on blood glucose level of the db/db mice after 24 h administration, body weight or lipid parameters. However, combination of the two ineffective doses could maintain blood glucose level of the db/db mice for at least 24 h, suppressed weight gain and significantly improved lipid parameters. These results suggest that insulin sensitizes FGF21 in regulating both glucose and lipid metabolism. The results aimed to study the molecular basis of FGF21 sensitization indicates that combination of the two ineffective doses increased the mRNA expression of glut1, glut4, β-Klotho, sirt1, pgc-1α, ucp-1 and AKT phosphorylation, decreased fasn. The results demonstrate that insulin sensitizes FGF21 through elevating the phosphorylation of common gene Akt and amplifying FGF21 downstream signaling, including increasing expression of glut1 sirt1, pgc-1α, ucp-1, and decreasing fasn expression. In summary, we reports herein for the first time that insulin sensitizes FGF21 to achieve a synergy in regulating glucose and lipid metabolism. Along with previous studies, we conclude that the synergistic effect between FGF21 and insulin is realized through mutual sensitization. PMID:26607153

  20. Defective insulin response of cyclic adenosine monophosphate-dependent protein kinase in insulin-resistant humans.

    Kida, Y; Nyomba, B L; Bogardus, C; Mott, D M

    1991-01-01

    Insulin-stimulated glycogen synthase activity in human muscle correlates with insulin-mediated glucose disposal and is reduced in insulin-resistant subjects. Inhibition of the cyclic AMP-dependent protein kinase (A-kinase) is considered as a possible mechanism of insulin action for glycogen synthase activation. In this study, we investigated the time course of insulin action on human muscle A-kinase activity during a 2-h insulin infusion in 13 insulin-sensitive (group S) and 7 insulin-resista...

  1. Adipokines and Hepatic Insulin Resistance

    Yu Li; Lin Ding; Waseem Hassan; Daoud Abdelkader; Jing Shang

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarificatio...

  2. Barbiturates inhibit ATP-K+ channels and voltage-activated currents in CRI-G1 insulin-secreting cells.

    Kozlowski, R. Z.; Ashford, M. L.

    1991-01-01

    1. Patch-clamp recording techniques were used to examine the effects of barbiturates upon the ATP-K+ channel, and voltage-activated channels present in the plasma membrane of CRI-G1 insulin-secreting cells. 2. Thiopentone inhibited ATP-K+ channel activity when applied to cell-attached patches or the intracellular or extracellular surface of cell-free patches. Secobarbitone and pentobarbitone were also effective inhibitors of ATP-K+ channels in cell-free patches, whereas phenobarbitone was ine...

  3. The monomeric alpha beta form of the insulin receptor exhibits much higher insulin-dependent tyrosine-specific protein kinase activity than the intact alpha 2 beta 2 form of the receptor.

    Fujita-Yamaguchi, Y; Kathuria, S.

    1985-01-01

    The relationship between the structure of the insulin receptor and its kinase activity was studied on the purified receptor treated with different concentrations of dithiothreitol. An enhanced autophosphorylation of the beta subunit (Mr, 90,000) was observed on NaDodSO4/PAGE under reducing conditions when the receptor was treated with 0.1-0.75 mM dithiothreitol in the presence of 1 microM insulin. Since we have previously observed (unpublished data) that incubation of the purified receptor wi...

  4. Accelerated extracellular matrix turnover during exacerbations of COPD

    Sand, Jannie M B; Knox, Alan J; Lange, Peter;

    2015-01-01

    BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD) contribute significantly to disease progression. However, the effect on tissue structure and turnover is not well described. There is an urgent clinical need for biomarkers of disease activity associated with disease...... progression. Extracellular matrix (ECM) turnover reflects activity in tissues and consequently assessment of ECM turnover may serve as biomarkers of disease activity. We hypothesized that the turnover of lung ECM proteins were altered during exacerbations of COPD. METHODS: 69 patients with COPD hospitalised...... elevated levels of circulating fragments of structural proteins, which may serve as markers of disease activity. This suggests that patients with COPD have accelerated ECM turnover during exacerbations which may be related to disease progression....

  5. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats.

    Zhang, Qing-Yu; Pan, Ying; Wang, Rong; Kang, Lin-Lin; Xue, Qiao-Chu; Wang, Xiao-Ning; Kong, Ling-Dong

    2014-04-01

    Fructose is a nutritional composition of fruits and honey. Its excess consumption induces insulin resistance-associated metabolic diseases. Hypothalamic insulin signaling plays a pivotal role in controlling whole-body insulin sensitivity and energy homeostasis. Quercetin, a natural flavonoid, has been reported to ameliorate high fructose-induced rat insulin resistance and hyperlipidemia. In this study, we investigated its regulatory effects on the hypothalamus of high fructose-fed rats. Rats were fed 10% fructose in drinking water for 10 weeks. After 4 weeks, these animals were orally treated with quercetin (50 and 100 mg/kg), allopurinol (5 mg/kg) and water daily for the next 6 weeks, respectively. Quercetin effectively restored high fructose-induced hypothalamic insulin signaling defect by up-regulating the phosphorylation of insulin receptor and protein kinase B. Furthermore, quercetin was found to reduce metabolic nutrient sensors adenosine monophosphate-activated protein kinase (AMPK) activation and thioredoxin-interacting protein (TXNIP) overexpression, as well as the glutamine-glutamate cycle dysfunction in the hypothalamus of high fructose-fed rats. Subsequently, it ameliorated high fructose-caused hypothalamic inflammatory lesions in rats by suppressing the activation of hypothalamic nuclear factor κB (NF-κB) pathway and NOD-like receptor 3 (NLRP3) inflammasome with interleukin 1β maturation. Allopurinol had similar effects. These results provide in vivo evidence that quercetin-mediated down-regulation of AMPK/TXNIP and subsequent inhibition of NF-κB pathway/NLRP3 inflammasome activation in the hypothalamus of rats may be associated with the reduction of hypothalamic inflammatory lesions, contributing to the improvement of hypothalamic insulin signaling defect in this model. Thus, quercetin with the central activity may be a therapeutic for high fructose-induced insulin resistance and hyperlipidemia in humans. PMID:24491314

  6. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  7. Drosophila insulin and target of rapamycin (TOR pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo

    Parisi Federica

    2011-09-01

    Full Text Available Abstract Background Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Results Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Conclusions Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At

  8. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  9. Compliance with behavioral guidelines for diet, physical activity and sedentary behaviors is related to insulin resistance among overweight and obese youth

    Sallis James F

    2011-02-01

    Full Text Available Abstract Background Overweight and obesity are established risk factors for insulin resistance in youth. A number of behavioral recommendations have been publicized with the goal of improving glycemic control. However, there is limited information about whether meeting these behavioral recommendations actually reduces insulin resistance. Findings 92 youths 11 - 16 years with BMI ≥ 85% underwent oral glucose tolerance testing. HOMA-IR and AUCInsulin/AUCGlucose were calculated as measures of insulin resistance. Dietary and physical activity (PA measures were performed. Assessments included whether or not participants met recommended levels of diet, PA and sedentary behaviors. 62% youths met criteria for insulin resistance. 82% (75/92 met at least one behavioral recommendation. Participants who met ≥ 1 dietary, sedentary, or PA recommendations had significantly reduced insulin resistance as compared with youth who did not. This relationship remained significant in multivariate modeling of insulin resistance adjusting for age, sex, and BMI. Conclusions Even relatively minor behavior change may reduce insulin resistance in youth at risk for diabetes. Our findings support the relevance of current behavioral interventions for glycemic control. Trials Registration Clinical Trials #NCT00412165.

  10. Insulin increases sympathetic nerve activity in part by suppression of tonic inhibitory neuropeptide Y inputs into the paraventricular nucleus in female rats.

    Cassaglia, Priscila A; Shi, Zhigang; Brooks, Virginia L

    2016-07-01

    Following binding to receptors in the arcuate nucleus (ArcN), insulin increases sympathetic nerve activity (SNA) and baroreflex control of SNA via a pathway that includes the paraventricular nucleus of the hypothalamus (PVN). Previous studies in males indicate that the sympathoexcitatory response is mediated by α-melanocyte stimulating hormone (α-MSH), which binds to PVN melanocortin type 3/4 receptors (MC3/4R). The present study was conducted in α-chloralose-anesthetized female rats to test the hypothesis that suppression of inhibitory neuropeptide Y (NPY) inputs to the PVN is also involved. In support of this, blockade of PVN NPY Y1 receptors with BIBO 3304 (NPY1x), ArcN insulin nanoinjections, and PVN NPY1x followed by ArcN insulin each increased lumbar SNA (LSNA) and its baroreflex regulation similarly. Moreover, prior PVN injections of NPY blocked the sympathoexcitatory effects of ArcN insulin. Finally, PVN nanoinjections of the MC3/4R inhibitor SHU9119 prevented both the acute (15 min) and longer, more slowly developing (60 min), increases in LSNA in response to ArcN insulin. In conclusion, in females, ArcN insulin increases LSNA, in part, by suppressing tonic PVN NPY inhibition, which unmasks excitatory α-MSH drive of LSNA. Moreover, the steadily increasing rise in LSNA induced by ArcN insulin is also dependent on PVN MC3/4R. PMID:27122366

  11. Insulin Injection

    ... placed in dosing pens. Be sure you know what type of container your insulin comes in and what other supplies, such as needles, syringes, or pens, ... name and letter on your insulin are exactly what your doctor prescribed.If ... a syringe marked for that type of insulin. Always use the same brand and ...

  12. Oral Insulin

    Kalra Sanjay; Kalra Bharti; Agrawal Navneet

    2010-01-01

    Abstract Oral insulin is an exciting area of research and development in the field of diabetology. This brief review covers the various approaches used in the development of oral insulin, and highlights some of the recent data related to novel oral insulin preparation.

  13. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  14. Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice

    Bing-Qing Xu

    2015-12-01

    Full Text Available Background: Diabetes mellitus is a serious disease affecting about 5% of people worldwide. Although several studies have indicated hypoglycemic activities of Gynura divaricata (GD, the mechanisms by which GD improves the symptoms of diabetes remain unclear. Objective: The aim of this study was to investigate the potential hypoglycemic effects of GD. Design: The leaves and stems of GD were prepared and lyophilized into a powder, which was added to the diet of mice with type 2 diabetes induced by a high-fat diet in combination with streptozotocin for 4 weeks. During this period, fasting blood glucose (FBG levels and body weight of mice were measured. In addition, at the end of the experiment, a series of assays was performed. Results: GD administration effectively alleviates insulin resistance and induces a decrease in FBG by 59.54% in 1.2% (L GD-treated diabetic group and 56.13% in 4.8% (H GD-treated diabetic group after 4 weeks, respectively, relative to diabetic model mice. The antioxidant capacity was improved by increasing the activities of glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD by 64.87% and 53.42% in treatment group H, compared to diabetic model mice, while GD treatment induced a significant decrease in malondialdehyde (MDA level by 50% in treatment group L, compared to the level in diabetic model mice. Furthermore, glucose metabolism was ameliorated by the increased glycogen synthesis in the livers of diabetic mice. In addition, we also demonstrated that the messenger RNA (mRNA and protein expression levels of AKT, PI3K and PDK-1, which are involved in insulin signaling, were significantly increased. Conclusions: Oral administration of the GD-lyophilized powder has been effectively hypoglycemic, which is done by activating insulin signaling and improving antioxidant capacity in mice with type 2 diabetes.

  15. Is it dietary insulin?

    Vaarala, Outi

    2006-10-01

    In humans the primary trigger of insulin-specific immunity is a modified self-antigen, that is, dietary bovine insulin, which breaks neonatal tolerance to self-insulin. The immune response induced by bovine insulin spreads to react with human insulin. This primary immune response induced in the gut immune system is regulated by the mechanisms of oral tolerance. Genetic factors and environmental factors, such as the gut microflora, breast milk-derived factors, and enteral infections, control the development of oral tolerance. The age of host modifies the immune response to oral antigens because the permeability of the gut decreases with age and mucosal immune response, such as IgA response, develops with age. The factors that control the function of the gut immune system may either be protective from autoimmunity by supporting tolerance, or they may induce autoimmunity by abating tolerance to dietary insulin. There is accumulating evidence that the intestinal immune system is aberrant in children with type 1 diabetes (T1D). Intestinal immune activation and increased gut permeability are associated with T1D. These aberrancies may be responsible for the impaired control of tolerance to dietary insulin. Later in life, factors that activate insulin-specific immune cells derived from the gut may switch the response toward cytotoxic immunity. Viruses, which infect beta cells, may release autoantigens and potentiate their presentation by an infection-associated "danger signal." This kind of secondary immunization may cause functional changes in the dietary insulin primed immune cells, and lead to the infiltration of insulin-reactive T cells to the pancreatic islets. PMID:17130578

  16. Radiation inactivation experiments predict that a large aggregate form of the insulin receptor is a highly active tyrosine-specific protein kinase

    The technique of radiation inactivation has been used on a highly purified insulin receptor in order to determine the functional molecular size responsible for tyrosine-specific protein kinase activity. When both insulin binding and kinase activities were analyzed with the same receptor preparations, the functional size for kinase activity was found to be larger than that for insulin binding activity. The radiation inactivation curve for kinase activity was multiphasic. This indicates that at least two components contribute to total kinase activity. The average minimal functional size for the kinase was 370,000 +/- 60,000 daltons (n = 7) which corresponds to the alpha 2 beta 2 form of the insulin receptor. The average functional size for larger forms was estimated to be approximately 4 X 10(6) daltons. (To minimize the complexity of the model used in this analysis, we have analyzed the radiation inactivation curves of the insulin receptor kinase activity with a two-component model. However, we believe that the larger component, greater than 1 X 10(6) daltons, is probably not a single molecular weight species but rather represents a continuum of sizes or aggregates of the alpha 2 beta 2 form of the receptor.) These larger forms contributed 93% of the total activity. Mild reduction of the insulin receptor preparation with dithiothreitol (DTT) activated the total kinase activity by 3.5-fold. Under this condition, the minimal functional kinase size was 380,000 +/- 30,000 daltons (n = 6) while the average functional size for the larger forms was approximately 3 X 10(6) daltons

  17. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  18. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin

    Gorbunov, E A; Nicoll, J; Kachaeva, E. V.; Tarasov, S A; Epstein, O. I.

    2015-01-01

    It has been previously shown that Subetta (a drug containing released-active forms of antibodies to the insulin receptor β-subunit and antibodies to endothelial nitric oxide synthase) stimulated insulin-induced adiponectin production by mature human adipocytes in the absence of insulin. Therefore, it was assumed that Subetta could activate the insulin receptor. To confirm this hypothesis, the capacity of Subetta to activate the insulin receptor in mature human adipocytes in the absence or pre...

  19. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues

    Jiráček, Jiří; Žáková, Lenka; Antolíková, Emília; Watson, C. J.; Turkenburg, J. P.; Dodson, G. G.; Brzozowski, A. M.

    2010-01-01

    Roč. 107, č. 5 (2010), s. 1966-1970. ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LC06077; GA AV ČR KJB400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : insulin * analogue * conformation * beta-turn * N- methylation Subject RIV: CC - Organic Chemistry Impact factor: 9.771, year: 2010

  20. Mathematical modeling and analysis of insulin clearance in vivo

    Koschorreck, Markus; Gilles, Ernst Dieter

    2008-01-01

    Background Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. ...

  1. Mathematical modeling and analysis of insulin clearance in vivo

    Koschorreck, M.; Gilles, E.

    2008-01-01

    Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes...

  2. Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation

    Grisouard Jean

    2011-07-01

    Full Text Available Abstract Background Adipokines, e.g. TNFα, IL-6 and leptin increase insulin resistance, and consequent hyperinsulinaemia influences breast cancer progression. Beside its mitogenic effects, insulin may influence adipokine production from adipocyte stromal cells and paracrine enhancement of breast cancer cell growth. In contrast, adiponectin, another adipokine is protective against breast cancer cell proliferation and insulin resistance. AMP-activated protein kinase (AMPK activity has been found decreased in visceral adipose tissue of insulin-resistant patients. Lipopolysaccharides (LPS link systemic inflammation to high fat diet-induced insulin resistance. Modulation of LPS-induced adipokine production by metformin and AMPK activation might represent an alternative way to treat both, insulin resistance and breast cancer. Methods Human preadipocytes obtained from surgical biopsies were expanded and differentiated in vitro into adipocytes, and incubated with siRNA targeting AMPKalpha1 (72 h, LPS (24 h, 100 μg/ml and/or metformin (24 h, 1 mM followed by mRNA extraction and analyses. Additionally, the supernatant of preadipocytes or derived-adipocytes in culture for 24 h was used as conditioned media to evaluate MCF-7 breast cancer cell proliferation. Results Conditioned media from preadipocyte-derived adipocytes, but not from undifferentiated preadipocytes, increased MCF-7 cell proliferation (p Conclusions Adipocyte-secreted factors enhance breast cancer cell proliferation, while AMPK and metformin improve the LPS-induced adipokine imbalance. Possibly, AMPK activation may provide a new way not only to improve the obesity-related adipokine profile and insulin resistance, but also to prevent obesity-related breast cancer development and progression.

  3. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  4. Antihyperglycemic Activity of Eucalyptus tereticornis in Insulin-Resistant Cells and a Nutritional Model of Diabetic Mice

    Alis Guillén

    2015-01-01

    Full Text Available Eucalyptus tereticornis is a plant used in traditional medicine to control diabetes, but this effect has not been proved scientifically. Here, we demonstrated through in vitro assays that E. tereticornis extracts increase glucose uptake and inhibit their production in insulin-resistant C2C12 and HepG2 cells, respectively. Furthermore, in a nutritional model using diabetic mice, the administration of ethyl acetate extract of E. tereticornis reduced fasting glycaemia, improved tolerance to glucose, and reduced resistance to insulin. Likewise, this extract had anti-inflammatory effects in adipose tissue when compared to control diabetic mice. Via bioguided assays and sequential purification of the crude extract, a triterpenoid-rich fraction from ethyl acetate extracts was shown to be responsible for the biological activity. Similarly, we identified the main compound responsible for the antihyperglycemic activity in this extract. This study shows that triterpenes found in E. tereticornis extracts act as hypoglycemic/antidiabetic compounds and contribute to the understanding of their use in traditional medicine.

  5. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    Kim, Suyeon [University of Tennessee, Knoxville (UTK); Soltani-Bejnood, Morvarid [University of Tennessee, Knoxville (UTK); Quignard-Boulange, Annie [Centre Biomedical des Cordeliers, Paris, France; Massiera, Florence [Centre de Biochimie, Nice, France; Teboul, Michele [Centre de Biochimie, Nice, France; Ailhaud, Gerard [Centre de Biochimie, Nice, France; Kim, Jung [University of Tennessee, Knoxville (UTK); Moustaid-Moussa, Naima [University of Tennessee, Knoxville (UTK); Voy, Brynn H [ORNL

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  6. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals

    Sourris, Karly C; Lyons, Jasmine G; de Courten, Maximilian;

    2009-01-01

    Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) pathways-two pathways proposed as the link betwe...... CLAIS and insulin resistance.......Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) pathways-two pathways proposed as the link between...

  7. Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4.

    Wang, Yiming; Wang, Jingfeng; Zhao, Yanlei; Hu, Shiwei; Shi, Di; Xue, Changhu

    2016-01-01

    The present study investigated the anti-hyperglycemic properties and mechanisms of fucoidan, isolated from Cucumaria frondosa (Cf-FUC), in insulin resistant mice. Male C57BL/6J mice were fed regular diet or high-fat/high-sucrose diet for 19 weeks. Model animals were dietary administrated either rosiglitazone (RSG, 1 mg/kg·bw), fucoidan (Cf-FUC, 80 mg/kg·bw) or their combinations. Results showed that Cf-FUC significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance and insulin tolerance in insulin-resistant mice. Quantitative real-time PCR analysis showed that Cf-FUC increased the mRNA expressions of insulin receptors (IR), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3 kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4). Western blot assays demonstrated that Cf-FUC showed no effect on total protein expression but nevertheless enhanced the phosphorylation of proteins listed above and increased translocation of GLUT4 to the cell membrane. Furthermore, Cf-FUC enhanced the effects of RSG. These results indicated that Cf-FUC exhibited significant anti-hyperglycemic effects via activating PI3K/PKB pathway and GLUT4 in skeletal muscle and adipose tissue. PMID:26194305

  8. Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1α in Skeletal Muscle

    Fengxia Liang

    2011-01-01

    Full Text Available Electroacupuncture (EA has been observed to reduce insulin resistance in obesity and diabetes. However, the biochemical mechanism underlying this effect remains unclear. This study investigated the effects of low-frequency EA on metabolic action in genetically obese and type 2 diabetic db/db mice. Nine-week-old db/m and db/db mice were randomly divided into four groups, namely, db/m, db/m + EA, db/db, and db/db + EA. db/m + EA and db/db + EA mice received 3-Hz electroacupuncture five times weekly for eight consecutive weeks. In db/db mice, EA tempered the increase in fasting blood glucose, food intake, and body mass and maintained insulin levels. In EA-treated db/db mice, improved insulin sensitivity was established through intraperitoneal insulin tolerance test. EA was likewise observed to decrease free fatty acid levels in db/db mice; it increased protein expression in skeletal muscle Sirtuin 1 (SIRT1 and induced gene expression of peroxisome proliferator-activated receptor coactivator (PGC-, nuclear respiratory factor 1 (NRF1, and acyl-CoA oxidase (ACOX. These results indicated that EA offers a beneficial effect on insulin resistance in obese and diabetic db/db mice, at least partly, via stimulation of SIRT1/PGC-, thus resulting in improved insulin signal.

  9. COPD exacerbations: an evidence-based review

    Robbins RA

    2012-07-01

    Full Text Available COPD exacerbations are a major source of COPD morbidity, mortality and cost. Exacerbations tend to become more frequent as COPD progresses with the cause assumed to be infectious in about 80% of patients. The mainstay of management is inhaled bronchodilators with judicious use of oxygen, antibiotics, corticosteroids and assisted ventilation. Recent studies have examined strategies to prevent exacerbations of COPD including use of macrolide antibiotics and self-management education.

  10. COPD exacerbations: an evidence-based review

    Robbins RA

    2012-01-01

    COPD exacerbations are a major source of COPD morbidity, mortality and cost. Exacerbations tend to become more frequent as COPD progresses with the cause assumed to be infectious in about 80% of patients. The mainstay of management is inhaled bronchodilators with judicious use of oxygen, antibiotics, corticosteroids and assisted ventilation. Recent studies have examined strategies to prevent exacerbations of COPD including use of macrolide antibiotics and self-management education.

  11. Transcriptome and Proteome Expressions Involved in Insulin Resistance in Muscle and Activated T-Lymphocytes of Patients with Type 2 Diabetes

    Frankie; B.; Stentz; Abbas; E.; Kitabchi

    2007-01-01

    We analyzed the genes expressed (transcriptomes) and the proteins translated (pro- teomes) in muscle tissues and activated CD4+ and CD8+ T-lymphocytes (T-cells) of five Type 2 diabetes (T2DM) subjects using Affymetrix microarrays and mass spectrometry, and compared them with matched non-diabetic controls. Gene ex- pressions of insulin receptor (INSR), vitamin D receptor, insulin degrading enzyme, Akt, insulin receptor substrate-1 (IRS-1), IRS-2, glucose transporter 4 (GLUT4), and enzymes of the glycolytic pathway were decreased at least 50% in T2DM than in controls. However, there was greater than two-fold gene upregulation of plasma cell glycoprotein-1, tumor necrosis factor α (TNFα), and gluconeogenic enzymes in T2DM than in controls. The gene silencing for INSR or TNFα resulted in the inhibition or stimulation of GLUT4, respectively. Proteome profiles correspond- ing to molecular weights of the above translated transcriptomes showed different patterns of changes between T2DM and controls. Meanwhile, changes in tran- scriptomes and proteomes between muscle and activated T-cells of T2DM were comparable. Activated T-cells, analogous to muscle cells, expressed insulin sig- naling and glucose metabolism genes and gene products. In conclusion, T-cells and muscle in T2DM exhibited differences in expression of certain genes and gene products relative to non-diabetic controls. These alterations in transcriptomes and proteomes in T2DM may be involved in insulin resistance.

  12. Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation

    Ng, Chee Meng; Loh, Hwei-San; Muthoosamy, Kasturi; Sridewi, Nanthini; Manickam, Sivakumar

    2016-01-01

    Purpose The high aspect ratio of carbon nanotubes (CNTs) allows the attachment of compounds that enhance the functionality of the drug vehicle. Considering this, use of CNTs as a multifunctional insulin carrier may be an interesting prospect to explore. Materials and methods The carboxylic acid groups were functionalized on the sidewalls of single-walled CNTs (SWCNTs) followed by diimidation to form amide bonds with the amine groups of the insulin. Results Scanning transmission electron microscopy and transmission electron microscopy establish clear conjugation of insulin onto the surface of nanotube sidewalls. The incorporation of insulin further increased the solubility of SWCNTs in biological solution for the tested period of 5 months. Bicinchoninic acid assay confirms that 0.42 mg of insulin could be attached to every 1 mg of carboxylated SWCNTs. Conclusion With the successful conjugation of insulin to SWCNTs, it opens up the potential use of SWCNTs as an insulin carrier which in need of further biological studies.

  13. Infective Exacerbation of Pasteurella multocida

    Hamada, Mayumi; Elshimy, Noha; Abusriwil, Hatem

    2016-01-01

    An 89-year-old lady presented with a one-day history of shortness of breath as well as a cough productive of brown sputum. Her medical history was significant for chronic obstructive pulmonary disease (COPD). She was in severe type one respiratory failure and blood tests revealed markedly raised inflammatory markers; however her chest X-ray was clear. On examination there was bronchial breathing with widespread crepitations and wheeze. She was treated as per an infective exacerbation of COPD. Subsequent blood cultures grew Pasteurella multocida, a common commensal in the oropharynx of domesticated animals. The patient was then asked about any contact with animals, after which she revealed she had a dog and was bitten on her left hand the day before admission. We should not forget to enquire about recent history of injuries or animal bites when patients present acutely unwell. She made a complete recovery after treatment with penicillin. PMID:26942025

  14. The Adipose Renin-Angiotensin System Modulates Systemic Markers of Insulin Sensitivity and Activates the Intrarenal Renin-Angiotensin System

    Suyeon Kim

    2006-01-01

    Full Text Available Background. The adipose tissue renin-angiotensin system (RAS contributes to regulation of fat mass and may also impact systemic functions such as blood pressure and metabolism. Methods and results. A panel of mouse models including mice lacking angiotensinogen, Agt (Agt-KO, mice expressing Agt solely in adipose tissue (aP2-Agt/Agt-KO, and mice overexpressing Agt in adipose tissue (aP2-Agt was studied. Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin, and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. aP2-Agt mice exhibited increased adiposity and plasma leptin and insulin levels compared to wild type (WT controls. Angiotensinogen and type I Ang II receptor protein levels were also elevated in kidney of aP2-Agt mice. Conclusion. These findings demonstrate that alterations in adipose RAS activity significantly impact both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  15. Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling

    Hanselman Keaton B

    2006-10-01

    Full Text Available Abstract Background In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109 animals. Results This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C phenotype of age-1(mg109. Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109;akt-1(mg247 animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109;pdk-1(mg261 animals was dependent on akt-1. However, reproductive development in age-1(mg109; mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109 animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247 and pdk-1(mg261 did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these

  16. Insulin and insulin mutants stimulate glucose uptake in rat adipocytes

    姚矢音; 张新堂; 许英镐; 张信娜; 朱尚权

    1999-01-01

    A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.

  17. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells

    Han Yunkyung

    2012-09-01

    Full Text Available Abstract Background Type 2 diabetes (T2D is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiation, glucose metabolism and insulin signal transduction. Methods In this study, the effects of the root extract of Atractylodes japonica Koidzumi (Atractylodis Rhizoma Alba, ARA on the differentiation of 3T3-L1 preadipocytes and the possible mechanism of glucose transport were investigated. 3T3-L1 cells were cultured with insulin and ARA extract. Results In 3T3-L1 cells, ARA extract significantly enhanced adipogenic differentiation and upregulated the expression of PPARγ genes and protein in a dose-dependent manner. ARA also promoted glucose transport by increasing the glucose transporter 4 (GLUT-4, phosphatidylinositol 3-kinase (PI3K and insulin receptor substrates-1 (IRS-1 levels. Conclusion Our results suggest that ARA extract may be an attractive therapeutic agent for managing T2D via promoting the differentiation of adipocytes with the upregulation of PPARγ levels and the activation of the insulin signaling pathway.

  18. Linoleic Acid Activates GPR40/FFA1 and Phospholipase C to Increase [Ca2+]i Release and Insulin Secretion in Islet Beta-Cells

    Yi-jun Zhou; Yu-ling Song; Hui Zhou; Yan Li

    2012-01-01

    To elucidate GPR40/FFA 1 and its downstream signaling pathways in regulating insulin secretion.Methods GPR40/FFA 1 expression was detected by immunofluorescence imaging.We employed linoleic acid (LA),a free fatty acid that has a high affinity to the rat GPR40,and examined its effect on cytosolic free calcium concentration ([Ca2+]i) in primary rat β-cells by Fluo-3 intensity under confocal microscopy recording.Downregulation of GPR40/FFA1 expression by antisense oligonucleotides was performed in pancreatic β-cells,and insulin secretion was assessed by enzyme-linked immunosorbent assay.Results LA acutely stimulated insulin secretion from primary cultured rat pancreatic islets.LA induced significant increase of [Ca2+]i in the presence of 5.6 mmol/L and 11.1 mmol/L glucose,which was reflected by increased Fluo-3 intensity under confocal microscopy recording.LA-stimulated increase in [Ca2+]i and insulin secretion were blocked by inhibition of GPR40/FFA1 expression in β-cells after GPR40/FFA1-specific antisense treatment.In addition,the inhibition of phospholipase C (PLC) activity by U73122,PLC inhibitor,also markedly inhibited the LA-induced [Ca2+]i increase.Conclusion LA activates GPR40/FFA1 and PLC to stimulate Ca2+ release,resulting in an increase in [Ca2+]i and insulin secretion in rat islet β-cells.

  19. Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity.

    Ma, Gary S; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Kalogriopoulos, Nicholas; Pedram, Shabnam; Midde, Krishna; Ciaraldi, Theodore P; Henry, Robert R; Ghosh, Pradipta

    2015-11-15

    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles. PMID:26378251

  20. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    Ek, J; Andersen, G; Urhammer, S A; Hansen, L; Carstensen, B; Borch-Johnsen, K; Drivsholm, T; Berglund, Lars Erik; Hansen, T; Lithell, H; Pedersen, O

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......-insulin-dependent) diabetes mellitus among Scandinavian Caucasians.......We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non...

  1. Conformational Dynamics of Insulin

    Qing-xin eHua

    2011-10-01

    Full Text Available We have exploited a prandial insulin analogue (insulin lispro, the active component of Humalog®; Eli Lilly and Co. to elucidate the underlying structure and dynamics of insulin as a monomer in solution. Whereas NMR-based modeling recapitulates structural relationships of insulin crystals (T-state protomers, dynamic anomalies are revealed by amide-proton exchange kinetics in D2O. Surprisingly, the majority of hydrogen bonds observed in crystal structures are only transiently maintained in solution, including key T-state-specific inter-chain contacts. Long-lived hydrogen bonds (as defined by global exchange kinetics exist only at a subset of four -helical sites (two per chain flanking an internal disulfide bridge (cystine A20-B19; these sites map within the proposed folding nucleus of proinsulin. The anomalous flexibility of insulin otherwise spans its active surface and may facilitate receptor binding. Because conformational fluctuations promote the degradation of pharmaceutical formulations, we envisage that dynamic re-engineering of insulin may enable design of ultra-stable formulations for humanitarian use in the developing world.

  2. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation.

    Tillmann, V; Shalet, S M; Price, D A; Wales, J K; Pennells, L; Soden, J; Gill, M S; Whatmore, A J; Clayton, P E

    1998-01-01

    The relationship between peak growth hormone (GH), insulin-like growth factor I (IGF-I), IGF-I binding protein 3 (IGFBP-3) and IGFBP-3 protease activity was studied in 28 children and adolescents undergoing investigation of pituitary function 0.4-14.2 years after cranial or craniospinal irradiation for the treatment of CNS tumours distant from the hypothalamic-pituitary axis (n = 16) or prophylaxis against CNS leukaemia (n = 12). Seven out of 15 patients with GH deficiency (GHD) (defined as a peak GH concentration Western ligand blot (WLB) (r = 0.71; p < 0.0001). IGFBP-3 protease activity was negatively correlated to IGFBP-3 by RIA (r = -0.55; p < 0.01) and to IGFBP-3 by WLB (r = -0.51; p < 0.01). Twenty-two patients had normal IGFBP-3 protease activity (<30% of the activity in pregnancy serum) indicating that serum IGFBP-3 protease activity does not account for the normal levels of IGFBP-3 in RIA. Low serum IGF-I but normal IGFBP-3 concentrations and in the majority normal IGFBP-3 protease activity was found in patients in the years after CNS irradiation. Neither serum IGF-I nor IGFBP-3 can be used as a reliable index of the development of radiation-induced GHD. PMID:9701699

  3. Superactive insulin: [B10-aspartic acid]insulin(human)

    The genetic basis for a case of familial hyperproinsulinemia has been elucidated recently. It involves a single point mutation in the proinsulin gene resulting in the substitution of aspartic acid for histidine-10 of the B chain of insulin. The authors have synthesized a human insulin analogue, [Asp/sup B10/] insulin, corresponding to the mutant proinsulin and evaluated its biological activity. [Asp/sup B10/] Insulin displayed a binding affinity to insulin receptors in rat liver plasma membranes that was 534 +- 146% relative to the natural hormone. In lipogenesis assays, the synthetic analogue exhibited a potency that was 435 +- 144% relative to insulin, which is statistically not different from its binding affinity. Reversed-phase HPLC indicated that the synthetic analogue is more apolar than natural insulin. They suggest that the observed properties reflect changes in the conformation of the analogue relative to natural insulin, which results in a stronger interaction with the insulin receptor. Thus, a single substitution of an amino acid residue of human insulin has resulted in a superactive hormone

  4. Superactive insulin: (B10-aspartic acid)insulin(human)

    Schwartz, G.P.; Burke, G.T.; Katsoyannis, P.G.

    1987-09-01

    The genetic basis for a case of familial hyperproinsulinemia has been elucidated recently. It involves a single point mutation in the proinsulin gene resulting in the substitution of aspartic acid for histidine-10 of the B chain of insulin. The authors have synthesized a human insulin analogue, (Asp/sup B10/) insulin, corresponding to the mutant proinsulin and evaluated its biological activity. (Asp/sup B10/) Insulin displayed a binding affinity to insulin receptors in rat liver plasma membranes that was 534 +- 146% relative to the natural hormone. In lipogenesis assays, the synthetic analogue exhibited a potency that was 435 +- 144% relative to insulin, which is statistically not different from its binding affinity. Reversed-phase HPLC indicated that the synthetic analogue is more apolar than natural insulin. They suggest that the observed properties reflect changes in the conformation of the analogue relative to natural insulin, which results in a stronger interaction with the insulin receptor. Thus, a single substitution of an amino acid residue of human insulin has resulted in a superactive hormone.

  5. Nutritional Modulation of Insulin Resistance

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss i...

  6. Epigallocatechin gallate exacerbates fluoride-induced oxidative stress mediated testicular toxicity in rats through the activation of Nrf2 signaling pathway

    S. Thangapandiyan; S. Miltonprabu

    2015-01-01

    Objective:To explore the ameliorative potential of epigallocatechin gallate (EGCG) by evaluating markers of oxidative stress, apoptosis, and inflammation and antioxidant competence in Fl intoxicated rats.Methods:The animals were divided in to four groups that is control, EGCG alone, NaF, and EGCG with NaF. Group III animal were exposed to Fl as sodium Fluoride (NaF) (25 mg/kg BW) for 4 weeks. After the completion of the treatment, the testis tissues has been removed and used for the experimental observations.Results:Pre-administration of EGCG to Fl intoxicated rats showed a significant normalization in the levels of steroidogenic enzymes, testosterone, sperm functions, oxidative stress markers and antioxidant status. The altered levels of proinflammatory cytokines and apoptotic markers were also relapsed in close proximity to control. In addition, EGCG significantly improved antioxidant status and reduced the oxidative stress and pathological changes in testes. The mRNA and protein analysis also substantiated that EGCG pre-treatment markedly enhanced the expression of Nrf2 and its target genes HO-1, NQO1 andγGCS and suppressed the expression of Keap1 in testis.Conclusion: Altogether, our findings supports that EGCG attenuates Fl toxicity in testis through Nrf2 activation.

  7. Blood Eosinophils and Exacerbations in COPD

    Vedel-Krogh, Signe; Nielsen, Sune F; Lange, Peter; Vestbo, Jørgen; Nordestgaard, Børge G

    2015-01-01

    RATIONALE: Whether high blood eosinophils are associated with COPD exacerbations among individuals with COPD in the general population is largely unknown. OBJECTIVES: To test the hypothesis that high blood eosinophils predict COPD exacerbations. METHODS: Among 81,668 individuals from the Copenhagen...... General Population Study, we examined 7,225 with COPD based on spirometry. We recorded blood eosinophils at baseline and future COPD exacerbations longitudinally, defined as moderate (short-course treatment of systemic corticosteroids) or severe (hospitalization). We also assessed exacerbation risk in a...... subgroup of 203 COPD individuals with clinical COPD, defined as participants with ≥ 10 pack-years, FEV1 < 70% of predicted value and ≥ 1 moderate or severe exacerbation in the year prior to baseline. MEASUREMENTS AND MAIN RESULTS: During a median of 3.3 years of follow-up (range 0.03-8.1), 1,439 severe and...

  8. [Insulin therapy for type 1 diabetes mellitus: past and present].

    Pires, Antonio Carlos; Chacra, Antonio Roberto

    2008-03-01

    The discovery of insulin can be considered the milestone of diabetes mellitus history and a great achievement for its treatment. The first insulin available was the regular. Afterwards, Hagedorn added the protamine to the insulin, thus, creating the NPH insulin. In the 1950s an insulin free of protamine was synthesized: the lente insulin. With the advent of molecular biology, synthetic human insulin was synthesized using recombinant DNA technology. Most recently several types of insulin analogues were available, providing the patients with better metabolic control. Type 1 diabetes mellitus treatment includes plain substitution and individualization for short-acting plus long-acting insulin according to the physician's assistance, besides regular practice of physical activities and diet orientations. In type 1 diabetes mellitus the insulin of low variability is the best choice since basal/bolus insulin therapy or continuous subcutaneous insulin infusion pump can mimetize the physiological release of insulin by beta cells. PMID:18438537

  9. Increased hypothalamic-pituitary-adrenal axis activity and hepatic insulin resistance in low-birth-weight rats.

    Buhl, Esben,; Neschen, Susanne; Yonemitsu, Shin; Rossbacher, Joerg; Zhang, Dongyan; Morino, Katsutaro; Flyvbjerg, Allan; Perret, Pascale; Samuel, Varman; Kim, Jung; Cline, Gary,; Falk Petersen, Kitt

    2007-01-01

    Individuals born with a low birth weight (LBW) have an increased prevalence of type 2 diabetes, but the mechanisms responsible for this association are unknown. Given the important role of insulin resistance in the pathogenesis of type 2 diabetes, we examined insulin sensitivity in a rat model of LBW due to intrauterine fetal stress. During the last 7 days of gestation, rat dams were treated with dexamethasone and insulin sensitivity was assessed in the LBW offspring by a hyperinsulinemic eug...

  10. Optimizing antibiotic selection in treating COPD exacerbations

    Attiya Siddiqi

    2008-03-01

    Full Text Available Attiya Siddiqi, Sanjay SethiDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Veterans Affairs Western New York Health Care System and University of Buffalo, State University of New York, Buffalo, New York, USAAbstract: Our understanding of the etiology, pathogenesis and consequences of acute exacerbations of chronic obstructive pulmonary disease (COPD has increased substantially in the last decade. Several new lines of evidence demonstrate that bacterial isolation from sputum during acute exacerbation in many instances reflects a cause-effect relationship. Placebo-controlled antibiotic trials in exacerbations of COPD demonstrate significant clinical benefits of antibiotic treatment in moderate and severe episodes. However, in the multitude of antibiotic comparison trials, the choice of antibiotics does not appear to affect the clinical outcome, which can be explained by several methodological limitations of these trials. Recently, comparison trials with nontraditional end-points have shown differences among antibiotics in the treatment of exacerbations of COPD. Observational studies that have examined clinical outcome of exacerbations have repeatedly demonstrated certain clinical characteristics to be associated with treatment failure or early relapse. Optimal antibiotic selection for exacerbations has therefore incorporated quantifying the risk for a poor outcome of the exacerbation and choosing antibiotics differently for low risk and high risk patients, reserving the broader spectrum drugs for the high risk patients. Though improved outcomes in exacerbations with antibiotic choice based on such risk stratification has not yet been demonstrated in prospective controlled trials, this approach takes into account concerns of disease heterogeneity, antibiotic resistance and judicious antibiotic use in exacerbations.Keywords: COPD, exacerbation, bronchitis, antibiotics

  11. Frequency and perceived burden of diabetes self-management activities in employees with insulin-treated diabetes : relationships with health outcomes

    Weijman, [No Value; Ros, WJG; Rutten, GEHM; Schaufeli, WB; Schabracq, MJ; Winnubst, JAM

    2005-01-01

    We explored the relationship between frequency and perceived burden of different self-management activities and HbA(1c)%, symptoms of diabetes, fatigue, depression, and quality of life in 292 employees between 30 and 60 years of age with insulin-treated diabetes. Participants completed questionnaire

  12. Identification of plant extracts with potential antidiabetic properties: Effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake

    Christensen, Kathrine Bisgaard; Minet, Ariane; Svenstrup, Henrik;

    2009-01-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and...

  13. Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study

    Corpeleijn, E.; Feskens, E.J.M.; Jansen, E.H.J.M.; Mensink, M.R.; Saris, W.H.M.; Bruin, de T.W.A.; Blaak, E.E.

    2006-01-01

    AIMS/HYPOTHESIS: The aim of this study was to investigate whether lifestyle intervention-induced changes in serum fatty acid profile of cholesteryl esters and estimated desaturase activities are related to improvements in insulin sensitivity in subjects at risk of type 2 diabetes. MATERIALS AND METH

  14. Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities : the SLIM study

    Corpeleijn, E.; Feskens, E. J. M.; Jansen, E. H. J. M.; Mensink, M.; Saris, W. H. M.; de Bruin, T. W. A.; Blaak, E. E.

    2006-01-01

    Aims/hypothesis: The aim of this study was to investigate whether lifestyle intervention-induced changes in serum fatty acid profile of cholesteryl esters and estimated desaturase activities are related to improvements in insulin sensitivity in subjects at risk of type 2 diabetes. Materials and meth

  15. Insulin receptor in Drosophila melanogaster

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  16. Insulin receptor in Drosophila melanogaster

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  17. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  18. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats.

    Sato, Daisuke; Oda, Kanako; Kusunoki, Masataka; Nishina, Atsuyoshi; Takahashi, Kazuaki; Feng, Zhonggang; Tsutsumi, Kazuhiko; Nakamura, Takao

    2016-02-15

    It was reported that adipocyte size is potentially correlated in part to amount of long chain polyunsaturated fatty acids (PUFAs) and insulin resistance because several long chain PUFAs can be ligands of peroxisome proliferator-activated receptors (PPARs). In our previous study, marked reduction of PUFAs was observed in insulin-resistant high-fat fed rats, which may indicate that PUFAs are consumed to improve insulin resistance. Although PPARγ agonist, well known as an insulin sensitizer, proliferates small adipocytes, the effects of PPARγ agonist on FA composition in adipose tissue have not been clarified yet. In the present study, we administered pioglitazone, a PPARγ agonist, to high-fat fed rats, and measured their FA composition of triglyceride fraction in adipose tissue and adipocyte diameters in pioglitazone-treated (PIO) and non-treated (control) rats. Insulin sensitivity was obtained with hyperinsulinemic euglycemic clamp. Average adipocyte diameter in the PIO group were smaller than that in the control one without change in tissue weight. In monounsaturated FAs (MUFAs), 14:1n-5, 16:1n-7, and 18:1n-9 contents in the PIO group were lower than those, respectively, in the control group. In contrast, 22:6n-3, 20:3n-6, 20:4n-6, and 22:4n-6 contents in the PIO group were higher than those, respectively, in the control group. Insulin sensitivity was higher in the PIO group than in the control one. These findings suggest that PPARγ activation lowered MUFAs whereas suppressed most of C20 or C22 PUFAs reduction, and that the change of fatty acid composition may be relevant with increase in small adipocytes. PMID:26825545

  19. Protein engineering of insulin: Two novel fast-acting insulins [B16Ala]insulin and [B26Ala]insulin

    ZHANG; Zhou; (张舟); TANG; Yuehua; (唐月华); YAO; Shiyin; (姚矢音); ZHU; Shangquan; (朱尚权); FENG; Youmin; (冯佑民)

    2003-01-01

    Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast- acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively. In vivo biological assay showed that the two fast-acting insulins have full or nearly full biological activity. So both [B16Ala]insulin and [B26Ala]insulin can be well developed as fast-acting insulin for clinic use.

  20. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. PMID:27094035

  1. Newer insulin analogues and inhaled insulin

    Girish C; Manikandan S; Jayanthi M

    2006-01-01

    Diabetes is a metabolic disease with high prevalence worldwide. Exogenous insulin is used in the management of this condition. The development of human insulin has provided tighter control of glycaemia in diabetic patients. Insulin analogues like insulin lispro and aspart were developed to closely match its profile with physiological secretion. The newer additions to this armamentarium are insulin glulisine, insulin detemir and albulin.Insulin glulisine is a short acting analogue with a rapid...

  2. Improved insulin sensitivity after exercise: focus on insulin signaling

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part of the ...

  3. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  4. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan)

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  5. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-14C-pyruvate to 14CO2 in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P 125I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group

  6. Insulin Injection

    ... not use any type of insulin after the expiration date printed on the bottle has passed.Some ... or itching over the whole body shortness of breath wheezing dizziness blurred vision fast heartbeat sweating difficulty ...

  7. Thiazolidinediones are associated with a reduced risk of COPD exacerbations

    Rinne ST

    2015-08-01

    Full Text Available Seppo T Rinne,1,2 Chuan-Fen Liu,3,4 Laura C Feemster,3,5 Bridget F Collins,3,5 Christopher L Bryson,3,6 Thomas G O’Riordan,7 David H Au3,4 1Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, 2Division of Pulmonary and Critical Care, Yale University, New Haven, CT, USA; 3VA Puget Sound Health Care System, Department of Veterans Affairs, 4Department of Health Services, University of Washington, 5Division of Pulmonary and Critical Care, University of Washington, 6Division of General Internal Medicine, University of Washington, 7Gilead Sciences, Inc., Seattle, WA, USA Background: Thiazolidinediones (TZDs are oral antihyperglycemic medications that are selective agonists to peroxisome proliferator-activated receptor gamma and have been shown to have potent anti-inflammatory effects in the lung.Objective: The purpose of this study was to assess whether exposure to TZDs is associated with a decreased risk of chronic obstructive pulmonary disease (COPD exacerbation.Methods: A cohort study was performed by collecting data on all US veterans with diabetes and COPD who were prescribed oral antihyperglycemic medications during from period of October 1, 2005 to September 30, 2007. Patients who had two or more prescriptions for TZDs were compared with patients who had two or more prescriptions for an alternative oral antihyperglycemic medication. Multivariable negative binomial regression was performed with adjustment for potential confounding factors. The primary outcome was COPD exacerbations, including both inpatient and outpatient exacerbations.Results: We identified 7,887 veterans who were exposed to TZD and 42,347 veterans who were exposed to non-TZD oral diabetes medications. COPD exacerbations occurred in 1,258 (16% of the TZD group and 7,789 (18% of the non-TZD group. In multivariable negative binomial regression, there was a significant reduction in the expected number of COPD exacerbations among patients who were

  8. Liquid fructose in pregnancy exacerbates fructose-induced dyslipidemia in adult female offspring.

    Rodríguez, Lourdes; Panadero, María I; Rodrigo, Silvia; Roglans, Núria; Otero, Paola; Álvarez-Millán, Juan J; Laguna, Juan C; Bocos, Carlos

    2016-06-01

    Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and related events. Nevertheless, consumption of beverages sweetened with fructose is not regulated in gestation. Previously, we found that maternal fructose intake produces in the progeny, when fetuses, impaired leptin signaling and hepatic steatosis and then impaired insulin signaling and hypoadiponectinemia in adult male rats. Interestingly, adult females from fructose-fed mothers did not exhibit any of these disturbances. However, we think that, actually, these animals keep a programmed phenotype hidden. Fed 240-day-old female progeny from control, fructose- and glucose-fed mothers were subjected for 3weeks to a fructose supplementation period (10% wt/vol in drinking water). Fructose intake provoked elevations in insulinemia and adiponectinemia in the female progeny independently of their maternal diet. In accordance, the hepatic mRNA levels of several insulin-responsive genes were similarly affected in the progeny after fructose intake. Interestingly, adult progeny of fructose-fed mothers displayed, in response to the fructose feeding, augmented plasma triglyceride and NEFA levels and hepatic steatosis versus the other two groups. In agreement, the expression and activity for carbohydrate response element binding protein (ChREBP), a lipogenic transcription factor, were higher after the fructose period in female descendants from fructose-fed mothers than in the other groups. Furthermore, liver fructokinase expression that has been indicated as one of those responsible for the deleterious effects of fructose ingestion was preferentially augmented in that group. Maternal fructose intake does influence the adult female offspring's response to liquid fructose and so exacerbates fructose-induced dyslipidemia and hepatic steatosis. PMID:27142744

  9. Update on work-exacerbated asthma

    Tarlo, Susan M

    2016-01-01

    Work-exacerbated asthma (WEA) is the term used to describe the worsening of asthma related to work but not the causation of asthma by work. It is common and has been reported to occur for 21.5% of working asthmatics on average. The frequency and severity may range from a single mild exacerbation that may lead to no time lost at work up to daily or severe exacerbations that may require a permanent change in work. Reports from general population surveys and primary care settings include more pa...

  10. Cardiac Insulin Resistance and MicroRNA Modulators

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  11. Activation of insulin-like growth factor 1 receptor in patients with non-small cell lung cancer.

    Kim, Jin-Soo; Kim, Edward S; Liu, Diane; Lee, J Jack; Behrens, Carmen; Lippman, Scott M; Hong, Waun Ki; Wistuba, Ignacio I; Lee, Euni; Lee, Ho-Young

    2015-06-30

    According to previous reports demonstrating the implication of insulin-like growth factor receptor (IGF-1R) signaling in non-small cell lung cancer (NSCLC), in this study, the potential prognostic values of IGF-1R expression/activation were analyzed. The expression and activation of IGF-1R were evaluated in two tissue microarray (TMA) sets from NSCLC patients (N = 352 for TMA I, and N = 353 for TMA II). Alterations in IGF-1R protein or mRNA expression in NSCLC patients were evaluated using publicly available data from The Cancer Genome Atlas (TCGA). We found that membranous and cytoplasmic IGF-1R expressions were significantly associated with squamous cell carcinoma (SCC) in both of the TMAs. Analysis of the TCGA data revealed increased mRNA levels in NSCLC patients, which was significantly associated with reductions in overall survival (OS) (median survival 26.51 vs. 47.77 months, P = 0.017) and disease-free survival (median survival 17.44 vs. 37.65 months, P = 0.045) only in NSCLC patients with adenocarcinoma (ADC). These data suggest that IGF-1R is activated in patients with NSCLC, particularly those with SCC. IGF-1R mRNA expression is a potential prognostic factor in patients with NSCLC, especially those with ADC. Further studies are warranted to investigate the prognostic value of IGF-1R in NSCLC patients. PMID:25944691

  12. Protein-free cell culture on an artificial substrate with covalently immobilized insulin.

    Ito, Y.; Zheng, J.; Imanishi, Y.; Yonezawa, K; Kasuga, M.

    1996-01-01

    Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin ...

  13. Human insulin: DNA technology's first drug.

    The, M J

    1989-11-01

    The history, biologic activity, and immunogenicity of human insulin are described. Recombinant human insulin first entered clinical trials in humans in 1980. At that time, the A and B chains of the insulin molecule were produced separately and then combined by chemical techniques. Since 1986, a different recombinant process has been used. The human genetic coding for proinsulin is inserted into Escherichia coli cells, which are then grown by fermentation to produce proinsulin. The connecting peptide is cleaved enzymatically from proinsulin to produce human insulin. Studies indicate that there are no important differences between pork insulin and human insulin in terms of therapeutic efficacy and disposition after intravenous administration. Recombinant human insulin has a faster onset of action and lower immunogenicity than pork or beef insulin. Diabetic patients may have an improvement in glucose concentrations when their therapy is switched from animal-source insulin to human insulin. Such a change usually requires a dosage adjustment, which must be determined by a physician. Pharmacists are responsible for educating patients concerning all insulin products and for preventing patients from interchanging insulin products. The availability of human insulin as the first pharmaceutical product manufactured through recombinant DNA technology, however, has had little effect on the pharmacist's role in the care of such patients. The production of human insulin through recombinant DNA technology represents an important advance in the treatment of patients with diabetes. PMID:2690608

  14. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  15. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    Frödin, M; Sekine, N; Roche, E; Filloux, C; Prentki, M; Wollheim, C B; Van Obberghen, E

    1995-01-01

    of this kinase is not sufficient for secretion. In the presence of glucose, however, nerve growth factor potentiated insulin secretion. In INS-1 cells, activation of 44-kDa MAP kinase was partially correlated with the induction of early response genes junB, nur77, and zif268 but not with stimulation......The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK...

  16. Molecular Characterisation of Long-Acting Insulin Analogues in Comparison with Human Insulin, IGF-1 and Insulin X10

    Bo F Hansen; Glendorf, Tine; Hegelund, Anne C.; Lundby, Anders; Lützen, Anne; Slaaby, Rita; Stidsen, Carsten Enggaard

    2012-01-01

    Aims/Hypothesis There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. Methods We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. Results Detemir and glargine each ...

  17. Treatment with insulin inhibits poly(ADP-ribose)polymerase activation in a rat model of endotoxemia

    Horváth, Eszter M; Benk, Rita; Ger, Domonkos; Kiss, Levente; Szabó, Csaba

    2007-01-01

    In critically ill patients various conditions may lead to the activation of poly(ADP-ribose) polymerase (PARP). By promoting cellular energetic dysfunction, and by enhancing pro-inflammatory gene expression, PARP activation significantly contributes to the pathogenesis of shock. PARP activation is usually triggered by DNA strand breakage, which is typically the result of the overproduction of various reactive oxidant species. One of the pathophysiological conditions associated with PARP activ...

  18. Dexrazoxane exacerbates doxorubicin-induced testicular toxicity.

    Levi, Mattan; Tzabari, Moran; Savion, Naphtali; Stemmer, Salomon M; Shalgi, Ruth; Ben-Aharon, Irit

    2015-10-01

    Infertility induced by anti-cancer treatments pose a major concern for cancer survivors. Doxorubicin (DXR) has been previously shown to exert toxic effects on the testicular germinal epithelium. Based upon the cardioprotective traits of dexrazoxane (DEX), we studied its potential effect in reducing DXR-induced testicular toxicity. Male mice were injected with 5  mg/kg DXR, 100  mg/kg DEX, combination of both or saline (control) and sacrificed either 1, 3 or 6 months later. Testes were excised and further processed. Glutathione and apoptosis assays were performed to determine oxidative stress. Immunohistochemistry and confocal microscopy were used to study the effects of the drugs on testicular histology and on spermatogonial reserve. DXR and the combined treatment induced a striking decline in testicular weight. DEX prevented DXR-induced oxidative stress, but enhanced DXR-induced apoptosis within the testes. Furthermore, the combined treatment depleted the spermatogonial reserve after 1 month, with impaired recovery at 3 and 6 months post-treatment. This resulted in compromised sperm parameters, testicular and epididymal weights as well as significantly reduced sperm motility, all of which were more severe than those observed in DXR-treated mice. The activity of DEX in the testis may differ from its activity in cardiomyocytes. Adding DEX to DXR exacerbates DXR-induced testicular toxicity. PMID:26329125

  19. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  20. Predicting asthma exacerbations employing remotely monitored adherence.

    Killane, Isabelle; Sulaiman, Imran; MacHale, Elaine; Breathnach, Aoife; Taylor, Terence E; Holmes, Martin S; Reilly, Richard B; Costello, Richard W

    2016-03-01

    This Letter investigated the efficacy of a decision-support system, designed for respiratory medicine, at predicting asthma exacerbations in a multi-site longitudinal randomised control trial. Adherence to inhaler medication was acquired over 3 months from patients with asthma employing a dose counter and a remote monitoring adherence device which recorded participant's inhaler use: n = 184 (23,656 audio files), 61% women, age (mean ± sd) 49.3 ± 16.4. Data on occurrence of exacerbations was collected at three clinical visits, 1 month apart. The relative risk of an asthma exacerbation for those with good and poor adherence was examined employing a univariate and multivariate modified Poisson regression approach; adjusting for age, gender and body mass index. For all months dose counter adherence was significantly (p research should focus on refining adherence and exacerbation measures. Decision-support systems based on remote monitoring may enhance patient-physician communication, possibly reducing preventable adverse events. PMID:27222733

  1. B22 Glu Des-B30 Insulin: A Novel Monomeric Insulin

    Hai-Juan DU; Jia-Hao SHI; Da-Fu CUI; You-Shang ZHANG

    2006-01-01

    Studies on monomeric insulin with reduced self-association are important in the development of insulin pharmaceutical preparations with rapid hypoglycemic action on patients with diabetes. Here we report a novel monomeric insulin, B22 Glu des-B30 insulin, prepared from a single chain insulin precursor with B22 Arg mutated to Glu, which was expressed in Pichia pastoris and converted to B22 Glu des-B30 insulin by tryptic digestion. It still retains 50% of the in vivo biological activity of porcine insulin and does not form a dimer even at a concentration of 10 mg/ml, showing that B22 Glu plays a key role in reducing the selfassociation of the insulin molecule without greatly reducing its biological activity. This novel monomeric insulin might have potential applications in the clinic.

  2. Acute exacerbation of airspace enlargement with fibrosis

    Tomoyuki Kakugawa; Kazuhiro Tabata; Daiki Ogawara; Tomoshi Tsuchiya; Shintaro Hara; Noriho Sakamoto; Yuji Ishimatsu; Kazuto Ashizawa; Takeshi Nagayasu; Junya Fukuoka; Shigeru Kohno

    2014-01-01

    In 2008, Kawabata et al. described a lesion which they termed “airspace enlargement with fibrosis” that could be included on the spectrum of smoking-related interstitial lung diseases. This group also reported that patients with airspace enlargement with fibrosis but without coexisting interstitial pneumonia of another type had no acute exacerbations and favorable prognoses on clinical follow-up. Here we describe the first case, to our knowledge, of acute exacerbation of airspace enlargement ...

  3. COPD exacerbations by disease severity in England

    Merinopoulou E; Raluy-Callado M; Ramagopalan S; MacLachlan S; Khalid JM

    2016-01-01

    Evie Merinopoulou,1 Mireia Raluy-Callado,1 Sreeram Ramagopalan,1 Sharon MacLachlan,1 Javaria Mona Khalid2 1Real-World Evidence, Evidera, 2Takeda Development Centre Europe Ltd, London, UK Objectives: Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with accelerated disease progression and are important drivers of health care resource utilization. The study aimed to quantify the rates of COPD exacerbations in England and assess health care resource utilization by ...

  4. Management of acute exacerbations in multiple sclerosis

    Ontaneda Daniel

    2009-01-01

    Full Text Available A key component of multiple sclerosis is the occurrence of episodes of clinical worsening with either new symptoms or an increase in older symptoms over a few days or weeks. These are known as exacerbations of multiple sclerosis. In this review, we summarize the pathophysiology and treatment of exacerbations and describe how they are related to the overall management of this disease.

  5. Exacerbations in cystic fibrosis: 2 · Prevention

    Bell, Scott C; Robinson, Philip J

    2007-01-01

    The life span of people with cystic fibrosis (CF) has increased dramatically over the past 50 years. Many factors have contributed to this improvement. Respiratory exacerbations of CF lung disease are associated with the need for hospitalisation and antibiotic treatment, reduction in the quality of life, fragmented sleep and mortality. A number of preventive treatment strategies have been developed to reduce the frequency and severity of respiratory exacerbations in CF including mucolytic age...

  6. Exacerbations of Chronic Obstructive Pulmonary Disease

    Garvey, Christine; Ortiz, Gabriel

    2012-01-01

    Epidemiologic data indicate that chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality. Patients with poorly managed COPD are likely to experience exacerbations that require emergency department visits or hospitalization—two important drivers contributing to escalating healthcare resource use and costs associated with the disease. Exacerbations also contribute to worsening lung function and negative outcomes in COPD. The aim of this review is to present th...

  7. The Effects of Bronchiectasis on Asthma Exacerbation

    Kang, Hye Ran; Choi, Gyu-Sik; Park, Sun Jin; Song, Yoon Kyung; Kim, Jeong Min; Ha, Junghoon; Lee, Yung Hee; Lee, Byoung Hoon; Kim, Sang-Hoon; Lee, Jae Hyung

    2014-01-01

    Background Bronchiectasis and asthma are different in many respects, but some patients have both conditions. Studies assessing the effect of bronchiectasis on asthma exacerbation are rare. The aim of this study is to investigate the effect of bronchiectasis on asthma exacerbation. Methods We enrolled 2,270 asthma patients who were followed up in our hospital. Fifty patients had bronchiectasis and asthma. We selected fifty age- and sex-matched controls from the 2,220 asthma patients without br...

  8. The Activation of ERK1/2 and JNK MAPK Signaling by Insulin/IGF-1 Is Responsible for the Development of Colon Cancer with Type 2 Diabetes Mellitus

    Li, Qiang; Peng, Fang; Zhu, Zhou; Qin, Jian; He, Zhen-Yu

    2016-01-01

    Previous studies showed that type 2 diabetes mellitus (T2DM) is linked to increased risk of developing colon cancer. Insulin and insulin-like growth factor 1 (IGF-1) are increased in patients with T2DM. The increased insulin and IGF-1 may be responsible for the developing of colon cancer. In this study, we investigated the effects and mechanisms of insulin and IGF-1 in colon cancer development in vitro and in vivo. Insulin and IGF-1 alone or together elevated proliferation and reduced apoptosis in colon cancer MC38 cells. Meanwhile, insulin and IGF-1 promoted the phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Treatment with ERK1/2 or JNK inhibitor in the presence of insulin and IGF-1 significantly decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) expression and finally increased apoptosis and inhibited the proliferation. Accelerative colon tumor growth was found in a mouse model of T2DM with db/db mice which got high level of endogenous insulin and IGF-1. Furthermore, the inhibition of ERK1/2 or JNK suppressed the development of colon tumor in vivo. These results suggest that the activation of ERK1/2 and JNK signaling by insulin and IGF-1, at least in part, is responsible for the development of colon cancer with T2DM. PMID:26901856

  9. Predicting an asthma exacerbation in children 2 to 5 years of age

    Swern, Arlene S; Tozzi, Carol A; Knorr, Barbara;

    2008-01-01

    an exacerbation. Caregiver-reported information (daytime cough, breathing difficulties, limitation of activity, nighttime cough or awakening, daytime and nighttime beta2-agonist use) were analyzed using general estimating equations with an exchangeable within-subject log odds ratio regression...

  10. Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury

    Bohacek Ivan

    2012-08-01

    Full Text Available Abstract Background Using a live imaging approach, we have previously shown that microglia activation after stroke is characterized by marked and long-term induction of the Toll-like receptor (TLR 2 biophotonic signals. However, the role of TLR2 (and potentially other TLRs beyond the acute innate immune response and as early neuroprotection against ischemic injury is not well understood. Methods TLR2−/− mice were subjected to transient middle cerebral artery occlusion followed by different reperfusion times. Analyses assessing microglial activation profile/innate immune response were performed using in situ hybridization, immunohistochemistry analysis, flow cytometry and inflammatory cytokine array. The effects of the TLR2 deficiency on the evolution of ischemic brain injury were analyzed using a cresyl violet staining of brain sections with appropriate lesion size estimation. Results Here we report that TLR2 deficiency markedly affects post-stroke immune response resulting in delayed exacerbation of the ischemic injury. The temporal analysis of the microglia/macrophage activation profiles in TLR2−/− mice and age-matched controls revealed reduced microglia/macrophage activation after stroke, reduced capacity of resident microglia to proliferate as well as decreased levels of monocyte chemotactic protein-1 (MCP-1 and consequently lower levels of CD45high/CD11b+ expressing cells as shown by flow cytometry analysis. Importantly, although acute ischemic lesions (24 to 72 h were smaller in TLR2−/− mice, the observed alterations in innate immune response were more pronounced at later time points (at day 7 after initial stroke, which finally resulted in delayed exacerbation of ischemic lesion leading to larger chronic infarctions as compared with wild-type mice. Moreover, our results revealed that TLR2 deficiency is associated with significant decrease in the levels of neurotrophic/anti-apoptotic factor Insulin-like growth factor-1 (IGF-1

  11. Dietary Lycium barbarum Polysaccharide Induces Nrf2/ARE Pathway and Ameliorates Insulin Resistance Induced by High-Fat via Activation of PI3K/AKT Signaling

    Yi Yang

    2014-01-01

    Full Text Available Lycium barbarum polysaccharide (LBP, an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated phosphatidylinositol 3-kinase (PI3K/AKT/Nrf2 axis against high-fat-induced insulin resistance. HepG2 cells were incubated with LBP for 12 hrs in the presence of palmitate. C57BL/6J mice were fed a high-fat diet supplemented with LBP for 24 weeks. We analyzed the expression of nuclear factor-E2-related factor 2 (Nrf2, Jun N-terminal kinases (JNK, and glycogen synthase kinase 3β (GSK3β involved in insulin signaling pathway in vivo and in vitro. First, LBP significantly induced phosphorylation of Nrf2 through PI3K/AKT signaling. Second, LBP obviously increased detoxification and antioxidant enzymes expression and reduced reactive oxygen species (ROS levels via PI3K/AKT/Nrf2 axis. Third, LBP also regulated phosphorylation levels of GSK3β and JNK through PI3K/AKT signaling. Finally, LBP significantly reversed glycolytic and gluconeogenic genes expression via the activation of Nrf2-mediated cytoprotective effects. In summary, LBP is novel antioxidant against insulin resistance induced by high-fat diet via activation of PI3K/AKT/Nrf2 pathway.

  12. Alzheimer's Disease: An Exacerbation of Senile Phenoptosis.

    Isaev, N K; Stelmashook, E V; Genrikhs, E E; Oborina, M V; Kapkaeva, M R; Skulachev, V P

    2015-12-01

    Alzheimer's disease is characterized by progressive memory loss and cognitive decline accompanied by degeneration of neuronal synapses, massive loss of neurons in the brain, eventually resulting in complete degradation of personality and death. Currently, the cause of the disease is not fully understood, but it is believed that the person's age is the major risk factor for development of Alzheimer's disease. People who have survived after cerebral stroke or traumatic brain injury have substantially increased risk of developing Alzheimer's disease. Social exclusion, low social activity, physical inactivity, poor mental performance, and low level of education are among risk factors for development of this neurodegenerative disease, which is consistent with the concept of phenoptosis (Skulachev, V. P., et al. (1999) Biochemistry (Moscow), 64, 1418-1426; Skulachev, M. V., and Skulachev, V. P. (2014) Biochemistry (Moscow), 79, 977-993) stating that rate of aging is related to psychological and social aspects in human behavior. Here we assumed that Alzheimer's disease might be considered as an exacerbation of senile phenoptosis. If so, then development of this disease could be slowed using mitochondria-targeted antioxidants due to the accumulated data demonstrating a link between mitochondrial dysfunction and oxidative stress both with normal aging and Alzheimer's disease. PMID:26638682

  13. Low dose rapamycin exacerbates autoimmune experimental uveitis.

    Zili Zhang

    Full Text Available BACKGROUND: Rapamycin, a potent immune modulator, is used to treat transplant rejection and some autoimmune diseases. Uveitis is a potentially severe inflammatory eye disease, and 2 clinical trials of treating uveitis with rapamycin are under way. Unexpectedly, recent research has demonstrated that low dose rapamycin enhances the memory T cell population and function. However, it is unclear how low dose rapamycin influences the immune response in the setting of uveitis. DESIGN AND METHODS: B10.RIII mice were immunized to induce experimental autoimmune uveitis (EAU. Ocular inflammation of control and rapamycin-treated mice was compared based on histological change. ELISPOT and T cell proliferation assays were performed to assess splenocyte response to ocular antigen. In addition, we examined the effect of rapamycin on activation-induced cell death (AICD using the MitoCapture assay and Annexin V staining. RESULTS: Administration of low dose rapamycin exacerbated EAU, whereas treating mice with high dose rapamycin attenuated ocular inflammation. The progression of EAU by low dose rapamycin coincided with the increased frequency of antigen-reactive lymphocytes. Lastly, fewer rapamycin-treated T cells underwent AICD, which might contribute to exaggerated ocular inflammation and the uveitogenic immune response. CONCLUSION: These data reveal a paradoxical role for rapamycin in uveitis in a dose-dependent manner. This study has a potentially important clinical implication as rapamycin might cause unwanted consequences dependent on dosing and pharmacokinetics. Thus, more research is needed to further define the mechanism by which low dose rapamycin augments the immune response.

  14. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients

    Brown, Audrey E; Palsgaard, Jane; Borup, Rehannah; Avery, Peter; Gunn, David A; De Meyts, Pierre; Yeaman, Stephen J; Walker, Mark

    2015-01-01

    Skeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic cultured myotubes, which is in keeping with a retained genetic/epigenetic defect of insulin action. We investigated differences in gene...... expression during differentiation between diabetic and control muscle cell cultures. Microarray analysis was performed using skeletal muscle cell cultures established from type 2 diabetic patients with a family history of type 2 diabetes and clinical evidence of marked insulin resistance and nondiabetic...... control subjects with no family history of diabetes. Genes and pathways upregulated with differentiation in the diabetic cultures, compared with controls, were identified using Gene Spring and Gene Set Enrichment Analysis. Gene sets upregulated in diabetic myotubes were associated predominantly with...

  15. Insulin and carbohydrate dysregulation.

    Gelato, Marie C

    2003-04-01

    Patients with human immunodeficiency virus receiving highly active antiretroviral therapy (HAART) may experience abnormal body composition changes as well as metabolic abnormalities, including dyslipidemia, increases in triglycerides, low high-density lipoprotein cholesterol levels, and abnormal carbohydrate metabolism, ranging from insulin resistance with and without glucose intolerance to frank diabetes. Whether the body composition changes (i.e., increased visceral adiposity and fat wasting in the peripheral tissues) are linked to abnormalities in carbohydrate metabolism is unclear. The use of HAART with and without therapy with protease inhibitors (PIs) is related to carbohydrate abnormalities and changes in body composition. Regimens that include PIs appear to have a higher incidence of insulin resistance (up to 90%) and diabetes mellitus (up to 40%). The etiology of these abnormalities is not well understood; what is known about insulin and carbohydrate dysregulation with HAART is discussed. PMID:12652377

  16. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  17. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  18. Human interleukin 1β stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca2+ handling

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1β in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca2+ handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (2+ concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a 32P-labelled substrate for this enzyme, was not altered by interleukin 1β. Separation of 32P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1β are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca2+ handling of the B-cells. (author)

  19. SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells.

    Arora, Amita; Dey, Chinmoy Sankar

    2016-06-10

    Insulin resistance in brain is well-associated with pathophysiology of deficits in whole-body energy metabolism, neurodegenerative diseases etc. Among the seven sirtuins, SIRT2 is the major deacetylase expressed in brain. Inhibition of SIRT2 confers neuroprotection in case of Parkinson's disease (PD) and Huntington's disease (HD). However, the role of this sirtuin in neuronal insulin resistance is not known. In this study, we report the role of SIRT2 in regulating insulin-sensitivity in neuronal cells in vitro. Using approaches like pharmacological inhibition of SIRT2, siRNA mediated SIRT2 knockdown and over-expression of wild-type and catalytically-mutated SIRT2, we observed that downregulation of SIRT2 ameliorated the reduced activity of AKT and increased insulin-stimulated glucose uptake in insulin resistant neuro-2a cells. The data was supported by over expression of catalytically-inactive SIRT2 in insulin-resistant human SH-SY5Y neuronal cells. Data highlights a crucial role of SIRT2 in regulation of neuronal insulin sensitivity under insulin resistant condition. PMID:27163642

  20. Association of β3 Adrenergic Receptor and Peroxisome Proliferator-activated Receptor Gamma 2 Polymorphisms With Insulin Sensitivity: A Twin Study

    TIAN-JIAO CHEN; CHENG-YE JI; XIAO-YING ZHENG; YONG-HUA HU

    2007-01-01

    Objective To study the effect of β3 adrenergic receptor (β3AR) Trp64Arg and peroxisome proliferator activated receptor gamma 2 (PPARγ2) Pro12Ala polymorphisms on insulin resistance. Methods One hundred and eight dizygotic twin pairs were enrolled in this study. Microsatellite polymorphism was used to diagnose zygosity of twins. Insulin sensitivity was estimated with logarithm transformed homeostasis model assessment (HOMA). PCR-RFLP analysis was performed to detect the variants. As a supplement to the sib-pair method, identity by state (IBS) was used to analyze the association of polymorphisms with insulin sensitivity. Results The genotype frequencies of Trp64Trg, Trp64Arg, and Arg64Arg were 72.3%, 23.8%, and 3.9%, respectively, while the genotype frequencies of Pro12Pro, Pro12Ala, and Ala12Ala were 89.9%, 9.6%,and 0.5%, respectively. For β3AR Trp64Arg the interclass co-twin correlations of Waist-to-hip ratio (WHR), blood glucose (GLU), and insulin (INS), homeostasis model assessment insulin resistance index (HOMA-IR) of the twin pairs sharing 2alleles of IBS were greater than those sharing 0-1 allele of IBS, and HOMA-IR had statistic significance. For PPARγ2 Pro12Ala most traits of twin pairs sharing 2 alleles of IBS had greater correlations and statistic significance in body mass index (BMI),WHR, percent of body fat (PBF) and GLU, but there were low correlations of either insulin or HOMA-IR of twin pairs sharing 1 or 2 alleles of IBS. The combined effects of the two variations showed less squared significant twin-pair differences of INS and HOMA-IR among twins sharing 4 alleles of IBS. Conclusions β3AR Trp64Arg and PPARγ2 Pro12Ala polymorphisms might be associated with insulin resistance and obesity, and there might be slight synergistic effects between this two gene loci,and further studies are necessary to confirm this finding.

  1. Do females behave differently in COPD exacerbation?

    Kilic H

    2015-04-01

    Full Text Available Hatice Kilic,1 Nurdan Kokturk,2 Gulcin Sari,3 Mustafa Cakir41Department of Pulmonary Medicine, Ankara Atatürk Training and Research Hospital, 2Department of Pulmonary Medicine, School of Medicine, Gazi University School of Medicine, 3Department of Pulmonary Medicine, Dr. Nafiz Körez Sincan Devlet Hastanesi, 4Department of Public Health, School of Medicine, Gazi University, Ankara, TurkeyIntroduction: Little is known about whether there is any sex effect on chronic obstructive lung disease (COPD exacerbations. This study is intended to describe the possible sex-associated differences in exacerbation profile in COPD patients.Methods: A total of 384 COPD patients who were hospitalized due to exacerbation were evaluated retrospectively for their demographics and previous and current exacerbation characteristics.Results: The study was conducted on 109 (28% female patients and 275 (72% male patients. The mean age was 68.30±10.46 years. Although females had better forced expiratory volume in 1 second and near-normal forced vital capacity, they had much impaired arterial blood gas levels (partial oxygen pressure [PO2] was 36.28 mmHg vs 57.93 mmHg; partial carbon dioxide pressure [PCO2] was 45.97 mmHg vs 42.49 mmHg; P=0.001, indicating severe exacerbation with respiratory failure. More females had two exacerbations and two hospitalizations, while more men had one exacerbation and one hospitalization. Low adherence to treatment and pulmonary embolism were more frequent in females. Females had longer time from the onset of symptoms till the admission and longer hospitalization duration than males. Comorbidities were less in number and different in women (P<0.05. Women were undertreated and using more oral corticosteroids.Conclusion: Current data showed that female COPD patients might be more prone to have severe exacerbations, a higher number of hospitalizations, and prolonged length of stay for hospitalization. They have a different comorbidity

  2. Insulin-like growth factor I stimulates telomerase activity in prostate cancer cells.

    Wetterau, Lawrence A; Francis, Malik J; Ma, Liqun; Cohen, Pinchas

    2003-07-01

    IGF-I has been implicated in the pathogenesis of human cancer. We sought to establish a role for IGF-I in the regulation of telomerase, an enzyme critically involved in cancer cell immortalization. Telomerase activity was assayed in LAPC-4, PC-3, and DU-145 prostate cancer cell lines treated with and without IGF-I/IGF-I analogs. Relative expression of human telomerase reverse transcriptase (hTERT) mRNA and protein was determined by quantitative RT-PCR and Western immunoblot, respectively. IGF-I stimulated baseline telomerase activity in all three cell lines, ranging from 2- to 10-fold (P IGF concentrations as low as 10 ng/ml and was maximal at 100 ng/ml. Stimulation was noted by 0.5 h, was maximal by 8 h, and persisted to 48 h. A similar 3-fold enhancement (P Long-R3 IGF-I, but not in response to [Ala(31),Leu(60)]IGF-I. Pretreatment with the Akt kinase inhibitor wortmannin abolished the stimulatory IGF effect, whereas blockade of MAPK activity did not. Lastly, IGF-I provoked a 2-fold increase in hTERT mRNA and protein expression (P IGF-I clearly stimulates telomerase activity in prostate cancer cells through a dual mode of action, including early rapid effects probably involving phosphorylation of hTERT by Akt and later up-regulation of hTERT expression. PMID:12843187

  3. A highly potent insulin: des-(B26-B30)-[AspB10,TyrB25-NH2]insulin(human).

    Schwartz, G P; Burke, G. T.; Katsoyannis, P G

    1989-01-01

    An insulin analogue that embodies two distinct structural modifications, each of which independently increases insulin activity, has been synthesized and evaluated for biological activity. The analogue, des-(B26-B30)-[AspB10,TyrB25-NH2]insulin is the most potent insulin analogue yet described; it displays an 11- to 13-fold higher activity than natural insulin. The findings are discussed with regard to the receptor-binding domains of insulin.

  4. Additional disulfide bonds in insulin

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper;

    2015-01-01

    -chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar...... predicts four additional four disulfide insulin analogues which could be expressed. Although the location of the additional disulfide bonds is only slightly shifted, this shift impacts both stability and activity of the resulting insulin analogues....

  5. How do COPD patients respond to exacerbations?

    Verheij Theo JM

    2011-08-01

    Full Text Available Abstract Background Although timely treatment of COPD exacerbations seems clinically important, nearly half of these exacerbations remain unreported and subsequently untreated. Recent studies have investigated incidence and impact of failure to seek medical treatment during exacerbations. Yet, little is known about type and timing of other self-management actions in periods of symptom deterioration. The current prospective study aims at determining the relative incidence, timing and determinants of three types of patient responses. Methods In a multicentre observational study, 121 patients (age 67 ± 11 years, FEV1pred. 48 ± 19 were followed for 6 weeks by daily diary symptom recording. Three types of action were assessed daily: planning periods of rest, breathing techniques and/or sputum clearing (type-A, increased bronchodilator use (type-B and contacting a healthcare provider (type-C. Results Type-A action was taken in 70.7%, type-B in 62.7% and type C in 17.3% of exacerbations (n = 75. Smokers were less likely to take type-A and B actions. Type-C actions were associated with more severe airflow limitation and increased number of hospital admissions in the last year. Conclusions Our study shows that most patients are willing to take timely self-management actions during exacerbations. Future research is needed to determine whether the low incidence of contacting a healthcare provider is due to a lack of self-management or healthcare accessibility.

  6. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  7. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I.

    Park, E A; Mynatt, R L; Cook, G A; Kashfi, K

    1995-01-01

    The regulation of hepatic mitochondrial carnitine palmitoyltransferase-I (CPT-I) was studied in rats during starvation and insulin-dependent diabetes and in rat H4IIE cells. The Vmax. for CPT-I in hepatic mitochondrial outer membranes isolated from starved and diabetic rats increased 2- and 3-fold respectively over fed control values with no change in Km values for substrates. Regulation of malonyl-CoA sensitivity of CPT-I in isolated mitochondrial outer membranes was indicated by an 8-fold increase in Ki during starvation and by a 50-fold increase in Ki in the diabetic state. Peroxisomal and microsomal CPT also had decreased sensitivity to inhibition by malonyl-CoA during starvation. CPT-I mRNA abundance was 7.5 times greater in livers of 48-h-starved rats and 14.6 times greater in livers of insulin-dependent diabetic rats compared with livers of fed rats. In H4IIE cells, insulin increased CPT-I sensitivity to inhibition by malonyl-CoA in 4 h, and sensitivity continued to increase up to 24 h after insulin addition. CPT-I mRNA levels in H4IIE cells were decreased by insulin after 4 h and continued to decrease so that at 24 h there was a 10-fold difference. The half-life of CPT-I mRNA was 4 h in the presence of actinomycin D or with actinomycin D plus insulin. These results suggest that insulin regulates CPT-I by inhibiting transcription of the CPT-I gene. Images Figure 2 Figure 4 PMID:7575418

  8. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode.

    Teodorescu, Florina; Rolland, Laure; Ramarao, Viswanatha; Abderrahmani, Amar; Mandler, Daniel; Boukherroub, Rabah; Szunerits, Sabine

    2015-09-28

    An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described. Upon application of a potential pulse of -0.8 V for 30 min, up to 70 ± 4% of human insulin was released into a physiological medium while preserving its biological activity. PMID:26257079

  9. Peroxisome proliferator-activated receptor gamma agonism reduces the insulin-stimulated increase in circulating interleukin-6 in growth hormone (GH) replaced GH-deficient adults

    Krag, Morten B; Rasmussen, Lars M; Hansen, Troels K;

    2008-01-01

    SUMMARY Context: Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists modify cardiovascular risk factors and inflammatory markers in patients with type 2 diabetes. Growth hormone (GH) treatment in GH-deficient (GHD) patients may cause insulin resistance and exerts ambiguous effects...... on inflammatory markers. Objective: To investigate circulating markers of inflammation and endothelial function in GH replaced GHD patients before and after 12 weeks administration of either pioglitazone 30 mg/day (N=10) or placebo (N=10) in a randomized double-blind parallel design. Methods...... significantly abrogated this insulin-stimulated increment in IL-6 levels compared to placebo (P = 0.01). Furthermore PPARgamma agonist treatment significantly lowered basal IL-4 levels (P<0.05). Conclusions: 1) IL-6 levels increase during a hyperinsulinemic clamp in GH replaced patients, 2) This increase in IL...

  10. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  11. Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: Effect of insulin

    The conversion of dihomogamma linolenic acid (DHLA) into arachidonic acid (AA) was compared in normal subjects and diabetic patients before and after treatment with insulin. The kinetics of the incorporation of deuterium-labeled DHLA and its conversion product, deuterium-labeled AA, was determined in plasma triglycerides, plasma phospholipids, and platelet lipids of subjects after ingestion of 2 g of the labeled precursor. Analysis was performed by gas liquid chromatography-mass spectrometry using multiple ion detection. In normal subjects, the deuterium-labeled DHLA concentration rose to 24 to 69 mg/L in plasma triglycerides four to nine hours after ingestion and to 20 to 34 mg/L in plasma phospholipids about four hours later. Deuterium-labeled AA appeared at 12 hours, rose to 2.4 to 3.8 mg/L between 48 and 72 hours in plasma phospholipids, but remained at the limit of detection in plasma triglycerides and was undetectable in platelet lipids. In diabetic patients both before and after insulin treatment, the deuterium-labeled DHLA concentration in plasma triglycerides and in plasma phospholipids followed the same pattern as in normal subjects. However, the deuterium-labeled arachidonic acid concentration was below 1 mg/L in plasma phospholipids before insulin. After insulin treatment the patients recovered normal DHLA metabolism because deuterium-labeled AA rose in phospholipids to a mean value of 3.5 mg/L, which is in the same range as that observed in normal subjects (3.2 mg/L). The present data provide direct evidence for the conversion of DHLA into AA in humans. The effect of insulin and the data from the literature of animal studies suggest insulin dependence of delta 5 desaturase in humans

  12. Cardiovascular effects of basal insulins

    Mannucci E

    2015-07-01

    Full Text Available Edoardo Mannucci,1 Stefano Giannini,2 Ilaria Dicembrini1 1Diabetes Agency, Careggi Teaching Hospital, Florence, 2Section of Endocrinology, Department of Biomedical Clinical and Experimental Sciences, University of Florence and Careggi University Hospital, Florence, Italy Abstract: Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane and basal insulin analogs (glargine, detemir, and the more recent degludec differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with

  13. Mathematical modeling and analysis of insulin clearance in vivo

    Gilles Ernst; Koschorreck Markus

    2008-01-01

    Abstract Background Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepa...

  14. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  15. Acute exacerbation of airspace enlargement with fibrosis

    Tomoyuki Kakugawa

    2014-01-01

    Full Text Available In 2008, Kawabata et al. described a lesion which they termed “airspace enlargement with fibrosis” that could be included on the spectrum of smoking-related interstitial lung diseases. This group also reported that patients with airspace enlargement with fibrosis but without coexisting interstitial pneumonia of another type had no acute exacerbations and favorable prognoses on clinical follow-up. Here we describe the first case, to our knowledge, of acute exacerbation of airspace enlargement with fibrosis without coexisting interstitial pneumonia of another type. An 82-year-old man was referred to our department for worsening dyspnea and new alveolar opacities on chest radiograph following left pulmonary segmentectomy (S6 for cancer. A diagnosis of acute exacerbation of airspace enlargement with fibrosis without coexisting interstitial pneumonia of other types was made, based on pathological evidence of airspace enlargement with fibrosis and organizing diffuse alveolar damage. Treatment with high-dose methylprednisolone followed by tapered oral prednisolone resulted in gradual improvement of the clinical condition and chest radiographic findings. Clinicians should be aware that patients with airspace enlargement with fibrosis may experience acute exacerbation.

  16. Alteration in insulin action

    Tanti, J F; Gual, P; Grémeaux, T;

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IR...

  17. Redox Regulation of Insulin Degradation by Insulin-Degrading Enzyme

    Cordes, Crystal M.; Bennett, Robert G.; Siford, Gerri L.; Hamel, Frederick G.

    2011-01-01

    Insulin-degrading enzyme (IDE) is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat ...

  18. Insulin-like substance and insulin-degrading complex of hemolysate of human erythrocytes

    A lysate of human erythrocytes was fractionated on gel-filtration resins of different types and immunoreactive insulin, the insulinase activity and the effect of individual fractions on the insulinase activity was determined in the fractions obtained. It was established that the hemolysate contains a complex of insulin-metabolizing compounds, including an insulin-like substance, insulinase, and an inhibitor and activator of the insulinase activity. The insulin-like substance coincided with native insulin in site of elution from a column of Sephadex G-50 and its concentration in the lysate exceeded that of insulin in the blood plasma. Insulinase, which has a molecular weight of about 100,000, cleaved [125I] insulin to fragments soluble in trichloroacetic acid, but had no effect on hypophyseal proteins and glycoprotein hormones. The insulinase activity was inhibited by low temperatures, atropine, and a newly discovered intraerythrocytic proteinase inhibitor, which also inhibits the serine proteinases trypsin and chymotrypsin. A substance eluted from a column of Sephadex G-100 in the region of low-molecular-weight substances increased the insulinase activity. The elution curve of substances with proteinase-inhibiting and insulinase-activating activities indicates that there is more than one inhibitory and activating factor. The results of the studies suggest that the insulin-degrading complex in human erythrocytes acts as a regulator of the insulin level in the blood plasma. It is also possible that the insulin-like substance is produced in the cytosol of the erythrocytes

  19. Potentiation of Growth Factor Signaling by Insulin-like Growth Factor-binding Protein-3 in Breast Epithelial Cells Requires Sphingosine Kinase Activity*

    Martin, Janet L; Mike Z. Lin; Eileen M. McGowan; Baxter, Robert C.

    2009-01-01

    We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1...

  20. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L;

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la......+) ionophore A23187, or exposure to thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, all caused an amplification of IL-1beta-induced JNK activation in INS-1 cells. Finally, a chelator of intracellular free Ca(2+) [bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid...

  1. Prevention of Acute Exacerbations of COPD

    Bourbeau, Jean; Diekemper, Rebecca L.; Ouellette, Daniel R.; Goodridge, Donna; Hernandez, Paul; Curren, Kristen; Balter, Meyer S.; Bhutani, Mohit; Camp, Pat G.; Celli, Bartolome R.; Dechman, Gail; Dransfield, Mark T.; Fiel, Stanley B.; Foreman, Marilyn G.; Hanania, Nicola A.; Ireland, Belinda K.; Marchetti, Nathaniel; Marciniuk, Darcy D.; Mularski, Richard A.; Ornelas, Joseph; Stickland, Michael K.

    2015-01-01

    BACKGROUND: COPD is a major cause of morbidity and mortality in the United States as well as throughout the rest of the world. An exacerbation of COPD (periodic escalations of symptoms of cough, dyspnea, and sputum production) is a major contributor to worsening lung function, impairment in quality of life, need for urgent care or hospitalization, and cost of care in COPD. Research conducted over the past decade has contributed much to our current understanding of the pathogenesis and treatment of COPD. Additionally, an evolving literature has accumulated about the prevention of acute exacerbations. METHODS: In recognition of the importance of preventing exacerbations in patients with COPD, the American College of Chest Physicians (CHEST) and Canadian Thoracic Society (CTS) joint evidence-based guideline (AECOPD Guideline) was developed to provide a practical, clinically useful document to describe the current state of knowledge regarding the prevention of acute exacerbations according to major categories of prevention therapies. Three key clinical questions developed using the PICO (population, intervention, comparator, and outcome) format addressed the prevention of acute exacerbations of COPD: nonpharmacologic therapies, inhaled therapies, and oral therapies. We used recognized document evaluation tools to assess and choose the most appropriate studies and to extract meaningful data and grade the level of evidence to support the recommendations in each PICO question in a balanced and unbiased fashion. RESULTS: The AECOPD Guideline is unique not only for its topic, the prevention of acute exacerbations of COPD, but also for the first-in-kind partnership between two of the largest thoracic societies in North America. The CHEST Guidelines Oversight Committee in partnership with the CTS COPD Clinical Assembly launched this project with the objective that a systematic review and critical evaluation of the published literature by clinical experts and researchers in

  2. Polyethyleneglycol RIA (radioimmunoassay) insulin

    Insulin is a polypeptide hormone of M.W. 6,000 composed of two peptide chains, A and B, jointed by two cross-linked disulphide bonds and synthesized by the beta-cells of the islets of Langerhans of the pancreas. Insulin influences most of the metabolic functions of the body. Its best known action is to lower the blood glucose concentration by increasing the rate at which glucose is converted to glycogen in the liver and muscles and to fat in adipose tissue, by stimulating the rate of glucose metabolism and by depressing gluconeogenesis. Insulin stimulates the synthesis of proteins, DNA and RNA in cells generally, and promotes the uptake of aminoacids and their incorporation into muscle protein. It increases the uptake of glucose in adipose tissue and its conversion into fat and inhibits lipolysis. Insulin primary action is on the cell membrane, where it probably facilitates the transport of glucose and aminoacids into the cells. At the same time it may activate intracellular enzymes such as glycogen synthetase, concerned with glycogen synthesis. (Author)

  3. A simple, economical method of converting gene expression products of insulin into recombinant insulin and its application

    ZHANG Zhou; CHEN Hui; TANG Yuehua; FENG Youmin

    2003-01-01

    A method, by which the gene expression product of recombinant single chain insulin can be converted into insulin by directly digesting with trypsin, has been established. This method has been used in process of porcine insulin precursor (PIP), [B16Ala]PIP and [B26Ala]PIP into (desB30)insulin, (desB30)[B16Ala]insulin and (desB30)[B26Ala]insulin, respectively, and all of them retain full biological activity of that of their corresponding parent, recombinant human insulin, [B16Ala]insulin and [B26Ala]insulin. The results further demonstrate that the C-terminal residue of B chain is not necessary for insulin's biological activity. Compared with the method of transpeptidation, this method is simple, with a high yield, and avoids the use of organic reagents, and in comparison with the trypsin/carboxypeptidase method, it omits the use of carboxylpeptidase. Besides, (desB30)[B16Ala]insulin and (desB30)[B26Ala]insulin still remained without self-association property as that of their parents, which demonstrate that they are monomeric insulin. So they can be used for substituting for monomeric insulin, [B16Ala]insulin and [B26Ala]insulin, in clinical applications.

  4. Distinct Roles for JNK and IKK Activation in Agouti-Related Peptide Neurons in the Development of Obesity and Insulin Resistance

    Eva Tsaousidou

    2014-11-01

    Full Text Available Activation of c-Jun N-terminal kinase 1 (JNK1- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.

  5. Newer insulin analogues and inhaled insulin

    Girish C

    2006-03-01

    Full Text Available Diabetes is a metabolic disease with high prevalence worldwide. Exogenous insulin is used in the management of this condition. The development of human insulin has provided tighter control of glycaemia in diabetic patients. Insulin analogues like insulin lispro and aspart were developed to closely match its profile with physiological secretion. The newer additions to this armamentarium are insulin glulisine, insulin detemir and albulin.Insulin glulisine is a short acting analogue with a rapid onset of action. The antiapoptotic property, mediated through insulin substrate receptor-2 has a favourable protective action on beta cells. Insulin detemir is a long acting analogue, soluble at neutral pH, which reversibly binds to albumin in plasma, prolonging its action. Its lower affinity for insulin receptors necessitates higher doses compared to human insulin. The reduction in body weight is an additional advantage of detemir. A major concern about all newer insulin analogues is their altered mitogenic properties and resultant risk of carcinogenicity on long term use. Albulin is a latest addition of insulin analogue which is under various in vitro and in vivo studies. Inhaled insulin in powder form (Exubera is recently approved by FDA and appears promising.

  6. The activation by glucose of liver membrane nitric oxide synthase in the synthesis and translocation of glucose transporter-4 in the production of insulin in the mice hepatocytes.

    Suman Bhattacharya

    Full Text Available INTRODUCTION: Glucose has been reported to have an essential role in the synthesis and secretion of insulin in hepatocytes. As the efflux of glucose is facilitated from the liver cells into the circulation, the mechanism of transportation of glucose into the hepatocytes for the synthesis of insulin was investigated. METHODS: Grated liver suspension (GLS was prepared by grating intact liver from adult mice by using a grater. Nitric oxide (NO was measured by methemoglobin method. Glucose transporter-4 (Glut-4 was measured by immunoblot technique using Glut-4 antibody. RESULTS: Incubation of GLS with different amounts of glucose resulted in the uptake of glucose by the suspension with increased NO synthesis due to the stimulation of a glucose activated nitric oxide synthase that was present in the liver membrane. The inhibition of glucose induced NO synthesis resulted in the inhibition of glucose uptake. Glucose at 0.02M that maximally increased NO synthesis in the hepatocytes led to the translocation and increased synthesis of Glut-4 by 3.3 fold over the control that was inhibited by the inhibition of NO synthesis. The glucose induced NO synthesis was also found to result in the synthesis of insulin, in the presence of glucose due to the expression of both proinsulin genes I and II in the liver cells. CONCLUSION: It was concluded that glucose itself facilitated its own transportation in the liver cells both via Glut-4 and by the synthesis of NO which had an essential role for insulin synthesis in the presence of glucose in these cells.

  7. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. PMID:26632606

  8. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion

    Yi Ma; Tianjie Luo; Wenna Xu; Zulu Ye; An Hong

    2012-01-01

    The recombinant peptide,DBAYL,a promising therapeutic peptide for type 2 diabetes,is a new,potent,and highly selective agonist for VPAC2 generated through sitedirected mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP),vasoactive intestinal peptide (VIP),and related analogs.The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization.As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 I of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q,V18L,N29Q,and M added to the N-terminal)were much more stable than BAY55-9837.The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro.The bioactivity assay of DBAYL showed that it displaced [125I]PACAP38 and [125I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM,respectively,which were significantly lower than that of BAY55-9837,one established VPAC2 agonists.DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC5o) of 0.68 nM,whereas the receptor potency of DBAYL at human VPAC1 (ECso of 737 nM) was only 1/1083of that at human VPAC2,and DBAYL had no activity toward human PAC1 receptor.Western blot analysis of the key proteins of insulin receptor signaling pathway:insulin receptor substrate 1 (IRS-1) and glucose transporter 4(GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes.Compared with BAY55-9837 and PACAP38,the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice.These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin

  9. Insulin Resistance and Prediabetes

    ... Disease Organizations (PDF, 293 KB). Alternate Language URL Insulin Resistance and Prediabetes Page Content On this page: ... Nutrition Points to Remember Clinical Trials What is insulin? Insulin is a hormone made in the pancreas, ...

  10. Insulin Human Inhalation

    ... is a short-acting, man-made version of human insulin. Insulin inhalation works by replacing the insulin ... and selegiline (Eldepryl, Emsam, Zelapar); niacin; oral contraceptives (birth control pills); oral medications for diabetes such as pioglitazone ( ...

  11. Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation

    Incubation of intact rat fat cells with maximally effective concentrations of insulin (1 nM, 12 min) or isoprenaline (300 nM, 3 min) increased particulate cGMP- and cilostamide-inhibited, low-Km cAMP phosphodiesterase (cAMP-PDE) activity by about 50% and 100%, respectively. In 32P-labeled cells, these agents induced serine 32P-phosphorylation of a 135-kDa particulate protein and, to a variable and lesser extent, a 44-kDa protein, which were selectively immunoprecipitated by anti-cAMP-PDE, as analyzed by SDS/PAGE and autoradiography. In the absence of hormonal stimulation, little phosphorylation was detected (less than 10% of that with the hormones). The two phosphoproteins were identified as cAMP-PDE or a closely related molecule (in the case of the 44-kDa species, perhaps a proteolytic fragment) since (i) amounts of 32P in the immunoprecipitated 135-kDa protein paralleled enzyme inactivation, (ii) prior incubation of the anti-cAMP-PDE with the pure rat or bovine enzyme selectively blocked the immunoprecipitation of the phosphoproteins, (iii) 135- and 44-kDa proteins reacted with the anti-cAMP-PDE on Western immunoblots, and (iv) the two phosphoproteins copurified with cAMP-PDE activity through DEAE-Sephacel chromatography and were isolated by highly selective affinity chromatography on cilostamide-agarose. Thus, in fat cells, catecholamine- and insulin-induced activation of the cAMP-PDE may be mediated via phosphorylation by cAMP-dependent protein kinase and an insulin-activated serine protein kinase, respectively

  12. Subcutaneous insulin substitution in insulin-dependent diabetes mellitus. Pharmacokinetic and pharmacodynamic studies.

    Olsson, P O

    1987-01-01

    infusion pump at a constant rate. No early morning glucose rise was demonstrated. Dose-related free insulin profiles were shown after bolus doses with an infusion pump, although they were retarded compared to the physiological postprandial response. The postprandial hyperinsulinaemia was aggravated by continuous subcutaneous insulin infusion. Glucose consumption during euglycaemic clamp corresponded to the free insulin profiles, indicating that free insulin represents the biologically active hormone. PMID:3321929

  13. Insulin secretion: mechanisms of regulation

    Radosavljević Tatjana

    2004-01-01

    Full Text Available Regulation of insulin secretion Beta cells are unique endocrine cells. They respond positively, in terms of insulin secretion, not only to changes in the extracellular glucose concentration, but also to activators of the phospholipase C (cholecystokinin or acetylcholine, and to activators of adenylate cyclase (glucagon, glucagon-like peptide-1, or gastric inhibitory polypeptide. Major messengers which mediate glucose action for insulin release are Ca2%, adenosine triphosphate (ATP and diacylglycerol (DAG. Major pathways of insulin release stimulation There are four major pathways involved in stimulation of insulin release. The first pathway is KATP channel-dependent pathway in which increased blood glucose concentrations and increased b-cell metabolism result in a change in intracellular ATP/ADP ratio. This is a contributory factor in closure of ATP-dependent K% channels, depolarization of b-cell membrane, in increased voltage-dependent L-type Ca2%channel activity. Increased Ca2% influx results in increased intracellular Ca2% and stimulated insulin release. KATP channel-independent pathway augments Ca2%-stimulated insulun secretion of KATP channel-dependent pathway. Major potentiation of release results from hormonal and peptidergic activation of receptors linked to adenylyl cyclase. Adenylyl cyclase activity is stimulated by hormones such as vasoactive intestinal peptide (VIP, glucagon-like peptide-1 (GLP-1, and so on. These hormones, acting via G protein, stimulate adenylyl cyclase, thus causing a rise in cyclic adenosine monophosphate (cAMP and activation of protein kinase A (PKA. Increased activity of PKA results in potentiation of insulin secretion.

  14. Concentrated insulins: the new basal insulins

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  15. uPA deficiency exacerbates muscular dystrophy in MDX mice

    Suelves, Mònica; Vidal, Berta; Serrano, Antonio L.; Tjwa, Marc; Roma, Josep; López-Alemany, Roser; Luttun, Aernout; de Lagrán, María Martínez; Díaz, Maria Àngels; Jardí, Mercè; Roig, Manuel; Dierssen, Mara; Dewerchin, Mieke; Carmeliet, Peter; Muñoz-Cánoves, Pura

    2007-01-01

    Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (...

  16. Changes in Cystic Fibrosis Airway Microbiota at Pulmonary Exacerbation

    Carmody, Lisa A.; Zhao, Jiangchao; Schloss, Patrick D.; Petrosino, Joseph F; Murray, Susan; Young, Vincent B.; Li, Jun Z.; LiPuma, John J.

    2013-01-01

    Rationale: In persons with cystic fibrosis (CF), repeated exacerbations of pulmonary symptoms are associated with a progressive decline in lung function. Changes in the airway microbiota around the time of exacerbations are not well understood.

  17. Comparison of Acarbose and Voglibose in Diabetes Patients Who Are Inadequately Controlled with Basal Insulin Treatment: Randomized, Parallel, Open-Label, Active-Controlled Study

    Lee, Mi Young; Choi, Dong Seop; Lee, Moon Kyu; Lee, Hyoung Woo; Park, Tae Sun; Kim, Doo Man; Chung, Choon Hee; Kim, Duk Kyu; Kim, In Joo; Jang, Hak Chul; Park, Yong Soo; Kwon, Hyuk Sang; Lee, Seung Hun; Shin, Hee Kang

    2013-01-01

    We studied the efficacy and safety of acarbose in comparison with voglibose in type 2 diabetes patients whose blood glucose levels were inadequately controlled with basal insulin alone or in combination with metformin (or a sulfonylurea). This study was a 24-week prospective, open-label, randomized, active-controlled multi-center study. Participants were randomized to receive either acarbose (n=59, 300 mg/day) or voglibose (n=62, 0.9 mg/day). The mean HbA1c at week 24 was significantly decrea...

  18. Histone Deacetylase Inhibitors Enhance the Apoptotic Activity of Insulin-Like Growth Factor Binding Protein-3 by Blocking PKC-Induced IGFBP-3 Degradation

    Oh, Seung Hyun; Whang, Young Mi; Min, Hye-Young; Han, Seung Ho; Kang, Ju-Hee; Song, Ki-Hoon; Glisson, Bonnie S.; Kim, Yeul Hong; Lee, Ho-Young

    2012-01-01

    Overexpression of insulin-like growth factor binding protein (IGFBP)-3 induces apoptosis of cancer cells. However, preexisting resistance to IGFBP-3 could limit its antitumor activities. This study characterizes the efficacy and mechanism of the combination of recombinant IGFBP-3 (rIGFBP-3) and HDAC inhibitors to overcome IGFBP-3 resistance in a subset of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cells. The effects of the combination of rIGFBP-3 and ...

  19. Effect of englitazone on KATP and calcium-activated non-selective cation channels in CRI-G1 insulin-secreting cells

    Rowe, I C M; Lee, K.; Khan, R.N.; Ashford, M L J

    1997-01-01

    The effects of englitazone sodium, an antidiabetic agent, on ion channel activity in the CRI-G1 insulin secreting cell line was examined by use of the patch clamp technique.Application of englitazone to the outside of CRI-G1 cells in the whole-cell recording configuration produced concentration-dependent inhibition of KATP currents with an IC50 value of 8 μM. The inhibition of the K+ current was not affected by the removal of Mg2+ ions from or the addition of trypsin to the solution bathing t...

  20. Optimizing antibiotic selection in treating COPD exacerbations

    Attiya Siddiqi; Sanjay Sethi

    2008-01-01

    Attiya Siddiqi, Sanjay SethiDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Veterans Affairs Western New York Health Care System and University of Buffalo, State University of New York, Buffalo, New York, USAAbstract: Our understanding of the etiology, pathogenesis and consequences of acute exacerbations of chronic obstructive pulmonary disease (COPD) has increased substantially in the last decade. Several new lines of evidence demonstrate that bacterial isola...

  1. Comparative study of adenosine deaminase activity, insulin resistance and lipoprotein(a) among smokers and healthy non-smokers

    Ramesh Ramasamy; Sathish Babu Murugaiyan; Arulkumaran U.; Sathiya R.; Kuzhandai Velu V.; Niranjan Gopal

    2016-01-01

    Background: Adenosine deaminase also known as adenosine aminohydrolase involved in purine metabolism. Its primary function is development and maintenance of immune system. The main objective of the study was to estimate adenosine deaminase (ADA) enzyme and find its correlation with lipoprotein(a) and insulin resistance among smokers and healthy non-smokers. Methods: Fifty smokers and fifty healthy non-smokers were selected based on WHO definition. ADA, lipid profile and glucose was estimat...

  2. Bile Acids Acutely Stimulate Insulin Secretion of Mouse β-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition

    Düfer, Martina; Hörth, Katrin; Wagner, Rebecca; Schittenhelm, Björn; Prowald, Susanne; Wagner, Thomas F. J.; Oberwinkler, Johannes; Lukowski, Robert; Gonzalez, Frank J.; Krippeit-Drews, Peter; Drews, Gisela

    2012-01-01

    Type 2 diabetes mellitus is associated with alterations in bile acid (BA) signaling. The aim of our study was to test whether pancreatic β-cells contribute to BA-dependent regulation of glucose homeostasis. Experiments were performed with islets from wild-type, farnesoid X receptor (FXR) knockout (KO), and β-cell ATP-dependent K+ (KATP) channel gene SUR1 (ABCC8) KO mice, respectively. Sodium taurochenodeoxycholate (TCDC) increased glucose-induced insulin secretion. This effect was mimicked by...

  3. Effects of octreotide and insulin on colon cancer cellular proliferation and correlation with hTERT activity

    Ayiomamitis, Georgios D.; Notas, George; Zaravinos, Apostolos; Drygiannakis, Ioannis; Georgiadou, Maria; Sfakianaki, Ourania; Mastrodimou, Niki; Thermos, Kyriaki; Kouroumalis, Elias

    2014-01-01

    Peptide hormone somatostatin and its receptors have a wide range of physiological functions and play a role in the treatment of numerous human diseases, including colorectal cancer. Octreotide, a synthetic somatostatin-analog peptide, inhibits growth of colonic cancer cells primarily by binding to G-protein coupled receptors and elicits cellular responses through second-messenger systems. Insulin also initiates mitogenic signals in certain cell types. The objective of the present study was to...

  4. Virus Infection-Induced Bronchial Asthma Exacerbation

    Mutsuo Yamaya

    2012-01-01

    Full Text Available Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs, leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.

  5. Treatment of pulmonary exacerbations in cystic fibrosis - could do better?

    Smyth, Alan

    2016-08-01

    This article describes the nature and significance of pulmonary exacerbations in cystic fibrosis (CF). The effectiveness and safety of current exacerbation treatment are explored. The article concludes with a summary of clinical trials (completed and ongoing) which aim to improve the efficacy and safety of exacerbation treatment. PMID:27349725

  6. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit (INSRM-France); (UC); (IP-France)

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  7. New ways of insulin delivery.

    Heinemann, L

    2010-02-01

    , especially on clinical studies. However, it is fascinating to see that the imagination about improvements in existing ways to deliver insulin (e.g. insulin pens) and also about novel ways to improve insulin absorption (e.g. local heating of the injection site) is still there. At the same time the above-mentioned considerations (coming more from the viewpoint of pharmaceutical companies and more market oriented) appear not to be the focus of many scientists in pharmacological research institutes. Otherwise it is difficult to understand why every year a number of new oral insulin formulations are published in pharmacological journals, reporting impressive data from animal studies (mainly performed on rats), but only a very limited number of these are transferred to the clinical development process. It is well known that most drugs fail during the clinical development process and the resources of pharmaceutical companies that are willing to invest in, for example, oral insulin are very limited. Small companies tend to make a lot of smoke out of a little fire to gain access to these resources. Unfortunately, the limited financial resources also hamper the design and performance of pre-clinical experiments and clinical studies. The consequence is that many of the study results presented are inconclusive (to phrase it carefully). One good study that proves that a given approach works - or shows convincingly that it does not work - would be much better than a number of small studies. Sometimes one has the impression that this is done on purpose to show some activity and keep the company alive. Without a more stringent approach there is a high risk that many of the current developments will never make it into an available clinical product. These comments are not intended to be destructive but to strengthen a thorough scientific approach and to induce a more realistic view of the prospects: most probably an oral insulin pill will not be on the market next year! Nevertheless, this is

  8. [Insulin resistance - its causes and therapy possibilities].

    Pelikánová, Terezie

    2014-09-01

    Insulin resistance (IR) is defined as a condition where normal plasma free insuconcentrations induce a reduced response of the body. In the narrower sense we understand IR as the impairment of insulin action in the target structure which may arise at any level of the insulin signalling cascade. In the clinical conditions we usually define it as the impairment of insulin action in glucose metabolism, although it is true that the impairment may concern different effects of insulin and different cell structures. The characteristic feature of IR linked to the metabolic syndrome or Type 2 diabetes is defective signalling which affects PI3-kinase branch of insulin signalling cascade. Other insulin actions depending on the signalling through the Ras complex and MAP-kinase, may not be affected. Due to compensatory hyperinsulinemia they may be even increased. The article summarizes some recent findings regarding the structure and regulation of insulin signalling cascade and analyses selected primary and secondary causes of IR which include genetic and epigenetic factors, the microRNA regulation role, metabolic, humoral and immunological factors. The detailed knowledge of the causes of IR opens possibilities of its rational treatment. This is currently based on the treatment of curable causes of IR, i.e. consistent compensation of diabetes, weight reduction, regimen arrangements (diet, physical activity), re-assessment of the need to use corticosteroids in therapy, treatment of coexisting conditions and possibly administration of metformin or pioglitazone.Key words: cytokines - insulin resistance - insulin signalling cascade. PMID:25294764

  9. Management of chronic obstructive pulmonary disease exacerbations in Internal Medicine

    Gelorma Belmonte

    2013-03-01

    Full Text Available Introduction: Chronic obstructive pulmonary disease (COPD is the second leading cause of hospitalization in Internal Medicine departments in Italy and the fourth leading cause of death all over the word. By 2020, COPD will be the third leading cause of death and the fifth leading cause of disability. It is — along with chronic congestive heart failure — one of the most common causes of unscheduled hospital readmissions, and as such it represents a significant economic burden for the health-care system. Exacerbations of COPD are important events in the natural history of this prevalent condition. Discussion: This review provides a comprehensive state-of-the-art look at prevention and management of COPD exacerbations. Treatment of these episodes has to be tailored to the severity of the clinical presentation. We now have a wide range of therapeutic available options, based on the results of clinical trials. Management of the acute event should include the necessary measures (mainly the administration of inhaled short-acting bronchodilators, inhaled or oral corticosteroids, and antibiotics, with or without oxygen and ventilator support. Conclusions: To improve the management of COPD exacerbations, the focus of care must be shifted from the episodic acute complications to their systematic prevention. The management of COPD, which is often associated with multiple co-morbidities, is complex and requires a tailored, multifaceted and multidisciplinary approach. Integrated care for COPD also requires that patients be informed about their condition, that they participate actively in their care, and that they have easy access to the necessary health-care services.

  10. Diabetes, insulin and cancer risk

    Xi-Lin Yang

    2012-01-01

    Full Text Available There is a consensus that both type 1 and type 2 diabetes are associated with a spectrum of cancers but the underlying mechanisms are largely unknown. On the other hand, there are ongoing debates about the risk association of insulin use with cancer. We have briefly reviewed recent related research on exploration of risk factors for cancer and pharmacoepidemiological investigations into drug use in diabetes on the risk of cancer, as well as the current understanding of metabolic pathways implicated in intermediary metabolism and cellular growth. Based on the novel findings from the Hong Kong Diabetes Registry and consistent experimental evidence, we argue that use of insulin to control hyperglycemia is unlikely to contribute to increased cancer risk and that dysregulations in the AMP-activated protein kinase pathway due to reduced insulin action and insulin resistance, the insulin-like growth factor-1 (IGF-1-cholesterol synthesis pathway and renin-angiotensin system, presumably due to reduced insulin secretion and hyperglycemia, may play causal roles in the increased risk of cancer in diabetes. Further exploration into the possible causal relationships between abnormalities of these pathways and the risk of cancer in diabetes is warranted.

  11. Cardiovascular effects of basal insulins.

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  12. Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people

    Fabre, Odile Martine Julie; Breuker, C; Amouzou, C;

    2014-01-01

    Obesity is associated with chronic low-grade inflammation and oxidative stress that blunt insulin response in its target tissues, leading to insulin resistance (IR). IR is a characteristic feature of type 2 diabetes. Skeletal muscle is responsible for 75% of total insulin-dependent glucose uptake...

  13. Detection of IgE insulin antibody with radioallergosorbent test

    An in vitro method for detecting IgE insulin antibody using the principle of the radioallergosorbent test (RAST) is described. In six patients with insulin allergy, the RAST values were higher than in normal persons or insulin-treated diabetics without insulin allergy. No differences were observed between normal persons and insulin-treated diabetics without insulin allergy. Moreover, it was observed that in one patient treated with highly purified insulin, there was a gradual decrease of RAST value parallel to the radioinsulin binding activity and clinical allergic symptoms. The RAST value of insulin is slightly inhibited by non-IgE antibodies and is, therefore, a semiquantitative value. However, the RAST is simple to perform and reproducible; it is therefore very useful in the detection of IgE insulin antibodies. (orig.)

  14. Silica-Coated Liposomes for Insulin Delivery

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  15. Effect of dehydroepiandrosterone on insulin action and development of insulin-induced resistance in C2C12 muscle cells

    2003-01-01

    Dehydroepiandrosterone (DHEA), a precursor of androgens and estrogens, has been demonstrated to have effect of preventing insulin resistance and development of diabetes mellitus. Administration of testosterone appears to induce a marked insulin resistance. How these two hormones affect insulin resistance through regulation of sensitivity of tissues to insulin deserves further studies. Here, the effects of DHEA and testosterone on response to insulin in C2C12 muscle cells are analyzed. After 24 h of DHEA (10-6 mol/L) treatment, C2C12 cells showed an increased insulin- stimulated glucose uptake and enhanced activities of glycogen synthase (GS), phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), whereas testosterone gave the opposite effects. Incubation of C2C12 cells with high-dose insulin (5×10-7 mol/L) for 24 hours decreased their sensitivity to insulin and led to a state of resistance as assessed on insulin-stimulated glucose uptake and activities of GS, PFK and PDH. Addition of DHEA to insulin-resistant C2C12 cells could reverse the response of these cells to high-dose insulin, but testosterone could further impair insulin sensitivity in insulin-resistant C2C12 cells. These results suggest that the two hormones may influence the development or inhibition of insulin-resistance in type 2 diabetes through regulating glucose uptake, glycogenesis and glycolysis to some extent.

  16. Vitamin D inadequacy is widespread in Tunisian active boys and is related to diet but not to adiposity or insulin resistance

    Ikram Bezrati

    2016-04-01

    Full Text Available Background: Vitamin D inadequacy is widespread in children and adolescents worldwide. The present study was undertaken to assess the vitamin D status in active children living in a sunny climate and to identify the main determinants of the serum concentration of 25-hydroxyvitamin D (25-OHD. Methods: This cross-sectional study included 225 children aged 7–15 years practicing sports in a football academy. Anthropometric measures were performed to calculate body mass index (BMI, fat mass, and maturity status. A nutritional enquiry was performed including 3-day food records and food frequency questionnaire. Plasma 25-OHD and insulin were assessed by immunoenzymatic methods ensuring categorization of vitamin D status and calculation of insulin sensitivity/resistance indexes. A logistic regression model was applied to identify predictors for vitamin D inadequacy. Results: Vitamin D deficiency (25-OHD<12 µg/L was observed in 40.9% of children and insufficiency (12<25-OHD<20 µg/L was observed in 44% of children. In a multivariate analysis, vitamin D deficiency and insufficiency were associated with a lower dietary intake of vitamin D, proteins, milk, red meat, fish, and eggs. However, no significant relationship was observed with maturation status, adiposity, or insulin resistance. Conclusions: Tunisian children and adolescents are exposed to a high risk of vitamin D inadequacy despite living in a sunny climate. Circulating 25-OHD concentrations are related to the intake of vitamin D food sources but not to maturation status or body composition. Ensuring sufficient and safe sun exposure and adequate vitamin D intake may prevent vitamin D inadequacy in children from sunny environments.

  17. Activation of GPR119 by fatty acid agonists augments insulin release from clonal β-cells and isolated pancreatic islets and improves glucose tolerance in mice.

    Moran, Brian M; Abdel-Wahab, Yasser H A; Flatt, Peter R; McKillop, Aine M

    2014-04-01

    G-protein coupled receptor 119 (GPR119) is emerging as a potential target for the treatment of type 2 diabetes with beneficial effects on glucose homeostasis. This study assessed the insulin-secreting properties of various GPR119 agonists and the distribution of GPR119 in pancreatic islets. Endogenous ligands [oleoylethanolamide (OEA), palmitoylethanolamine (PEA)] and chemically synthetic analogues (AS-1269574, PSN-375963) were investigated in clonal BRIN-BD11 cells and mouse pancreatic islets. Secondary messenger assays such as intracellular Ca²⁺ and cAMP in response to agonists at normoglycaemic and hyperglycaemic conditions were assessed. Cytotoxicity was assessed by LDH release. AS-1269574 was the most potent and selective agonist tested in isolated islets, with an EC₅₀ value of 9.7×10⁻⁷ mol/l, enhancing insulin release maximally by 63.2%. Stimulation was also observed with GPR119 ligands; OEA (3.0×10⁻⁶ mol/l; 37.5%), PSN-375963 (2.4×10⁻⁶ mol/l; 28.7%) and PEA (1.2×10⁻⁶ mol/l; 22.2%). Results were corroborated by studies using BRIN-BD11 cells, which revealed augmentation of intracellular Ca²⁺ and cAMP. Both OEA and AS-1269574 enhanced insulin release and improved glucose tolerance in vivo in NIH Swiss mice. These results demonstrate the cellular localisation of GPR119 on islet cells (β and pancreatic polypeptide cells), its activation of the β-cell stimulus-secretion coupling pathway and glucose lowering effects in vivo. PMID:24323890

  18. NEWER STRATEGIES FOR INSULIN DELIVERY

    Singh Nisha; Lokwani Priyanka; Kaushik Avinash Yogendraji; Sharma Ritu

    2011-01-01

    Insulin is a proteinaceous hormone produced in the islets of Langerhans in the pancreas and used as a treatment in the diabetes mellitus. Successful oral insulin delivery involves overcoming the enzymatic and physical barriers and taking steps to conserve bioactivity during formulation processing. Newer strategies for insulin delivery include insulin pen injector, Refillable insulin injection pen, Insulin Syringe, Transfersome and Implantable insulin pumps.

  19. Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus.

    Forst, T; Kunt, T; Pohlmann, T.; Goitom, K; Engelbach, M; Beyer, J.; Pfützner, A.

    1998-01-01

    19 insulin-dependent diabetes mellitus (IDDM) patients participated in a randomized double-blind crossover investigation to investigate the impact of human C-peptide on skin microvascular blood flow. The investigation was also carried out with 10 healthy volunteers. Blood pressure, heart rate, blood sugar, and C-peptide levels were monitored during a 60-min intravenous infusion period of C-peptide (8 pmol kg-1 min-1) or saline solution (154 mmol liter-1 NaCl), and 30 min after stopping the in...

  20. Insulin Resistance and Hyperinsulinemia

    Kim, Sun H.; Reaven, Gerald M

    2008-01-01

    OBJECTIVE—Recently, it has been suggested that insulin resistance and hyperinsulinemia can exist in isolation and have differential impacts on cardiovascular disease (CVD). To evaluate this suggestion, we assessed the degree of discordance between insulin sensitivity and insulin response in a healthy, nondiabetic population. RESEARCH DESIGN AND METHODS—Insulin sensitivity was quantified by determining the steady-state plasma glucose (SSPG) concentration during an insulin suppression test in 4...

  1. Autoantibodies against human insulin.

    Wilkin, T J; Nicholson, S.

    1984-01-01

    Sera from 680 non-diabetic subjects with suspected autoimmune disease were screened for 13 different antibodies. Of the 582 sera found to contain these antibodies, nine bound insulin in an IgG specific enzyme linked immunosorbent assay (micro ELISA). Four of the sera bound human, porcine, and bovine insulins and five bound exclusively human insulin. "Cold" human, porcine, and bovine insulins each displaced, in a dose dependent manner, the four sera which bound all three insulins, but only hum...

  2. Variations in insulin responsiveness in rat fat cells are due to metabolic differences rather than insulin binding

    Hansen, Finn Mølgård; Nilsson, Poul; Sonne, Ole;

    1983-01-01

    Insulin resistance was studied by comparing insulin response and insulin binding in four groups of rats. Glucose metabolism in isolated fat cells from male Wistar rats weighing 340 g was less responsive to a supramaximal dose of insulin than glucose metabolism in fat cells from rats weighing 200 g...... to fat cells. Insulin binding was not correlated to the plasma insulin level which however was reflected in the lipoprotein lipase activity in the adipose tissue. In conclusion, these results indicate that variations in insulin responsiveness in fat cells are due to alterations in cellular metabolism....... Induction of streptozotocin-diabetes in rats weighing 200 g resulted in a marked decrease in the insulin responsiveness of fat cells. Ventromedial hypothalamic lesions of 340 g rats had the opposite effect and restored the insulin responsiveness of fat cells. The responsiveness in the four groups was...

  3. Insulin, concanavalin A, EGF, IFG-I and vanadate activate de novo phosphatidic acid and diacylglycerol synthesis, C-kinase, and glucose transport in BC3H-1 myocytes

    The authors have reported that insulin stimulates de novo synthesis of phosphatidic acid (PA) which is metabolized directly to diacylglycerol (DG) in BS3H-1 myocytes; this is accompanied by increases in C-kinase activity in membrane and cytosolic extracts. This pathway may be involved in stimulating glucose transport and other metabolic processes. In this study, the authors have compared the effects of concanavalin A, EGF, IGF-I and sodium orthovanadate to insulin on PA/DG synthesis, C-kinase activity and glucose transport. All were found to be effective in stimulating glucose transport. Additionally, all activators rapidly increased the incorporation of [3H]glycerol into DG and total glycerolipids, although none were as effective as insulin, which increased [3H]DG 400% in 1 minute. Increased incorporation into phospholipids and triacylglycerols and to a lesser extent monoacylglycerol was also noted. They examined effects of concanavalin A and EGF on C-kinase activity and found that both agonists, like insulin, increase C-kinase activity in cytosolic and/or membrane fractions. Their findings raise the possibility that activation of receptors having associated tyrosine kinase activity may provoke some cellular responses through de novo PA/GD synthesis and C-kinase activation

  4. Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes

    Choi, Kangduk; Kim, Young-Bum

    2010-01-01

    Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to...

  5. Insulin and insulin-like growth factor receptors and responses

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  6. Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Han, Kyungreem; Kang, Hyuk; Choi, M. Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-10-01

    A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  7. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period.

    De Koster, J; Van den Broeck, W; Hulpio, L; Claeys, E; Van Eetvelde, M; Hermans, K; Hostens, M; Fievez, V; Opsomer, G

    2016-03-01

    The aim of the present research was to describe characteristics of adipose tissue lipolysis in dairy cows with a variable body condition score (BCS). Ten clinically healthy Holstein Friesian cows were selected based on BCS and euthanized 10 to 13 d before the expected parturition date. Immediately after euthanasia, adipose tissue samples were collected from subcutaneous and omental fat depots. In both depots, we observed an increase in adipocyte size with increasing BCS. Using an in vitro explant culture of subcutaneous and omental adipose tissue, we aimed to determine the influence of adipocyte size and localization of adipose depot on the lipolytic activity in basal conditions and after addition of isoproterenol (nonselective β-agonist) and insulin in different concentrations. Glycerol release in the medium was used as a measure for lipolytic activity. We observed that the basal lipolytic activity of subcutaneous and omental adipose tissue increased with adipocyte volume, meaning that larger fat cells have higher basal lipolytic activity independent of the location of the adipose depot. Dose-response curves were created between the concentration of isoproterenol or insulin and the amount of glycerol released. The shape of the dose-response curves is determined by the concentration of isoproterenol and insulin needed to elicit the half-maximal effect and the maximal amount of stimulated glycerol release or the maximal inhibitory effect of insulin. We observed that larger fat cells released more glycerol upon maximal stimulation with isoproterenol and this was more pronounced in subcutaneous adipose tissue. Additionally, larger fat cells had a higher sensitivity toward lipolytic signals. We observed a trend for larger adipocytes to be more resistant to the maximal antilipolytic effect of insulin. The insulin concentration needed to elicit the half-maximal inhibitory effect of insulin was within the physiological range of insulin and was not influenced by adipocyte

  8. Small Interfering RNA-mediated Caveolin-1 Knockout on Plasminogen Activator Inhibitor-1 Expression in Insulin-stimulated Human Vascular Endothelial Cells

    Huiling YANG; Gebo WEN; Weixin HU; Shuya HE; Zhihua QUAN; Weixia PENG; Bin YAN; Jianghua LIU; Fang WEN; Renxian CAO; Yangyan XU

    2007-01-01

    Using human vascular endothelial cells (ECV304) as the target,we studied the effect of caveolin(CAV)-1 in the course of insulin-stimulated expression of plasminogen activator inhibitor(PAI)-1.The appropriate single-stranded oligonucleotides representing the RNAi CAV-1 gene were analyzed by Ambion software.After annealing to generate double-stranded oligonucleotides (ds oligo),it was cloned into the pENTR/U6 entry vector containing RNA polymerase Ⅲ expression element by T4 DNA ligase.The short hairpin (shRNA) sequences transferred from the pENTR/U6 entry were cloned into the pLenti6/BLOCK-iTDEST vector with an LR recombination reaction.After identification by sequencing,we successfully constructed the CAV-1 RNAi lentiviral expression system using Gateway technology.Silencing efficiency was assayed by real-time reverse transcription-polymerase chain reaction,immunofluorescence staining and Western blotting.ECV304 cells were cultured in the medium containing different concentrations of insulin(1×10-9 to 1×10-7M)with the CAV-1 gene silenced or not.The expression level and subcellular localization of PAI-1 and CAV-1 were compared using reverse transcription-polymerase chain reaction,immunofluorescence staining and Western blot assay.The results showed that the potent inhibition of CAV-1 expression could reach 85%,and it was specific to the CAV-1-derived shRNA,not the S100A13-derived shRNA.There was no dramatic difference in PAI-1 expression between the RNAi+ and RNAi-ECV304 cells incubated with physiological insulin,but PAI-1 protein did accumulate under the cell membrane.As the concentration of insulin increased,the expression of PAI-1 was up-regulated,whereas the expression of CAV-1 attenuated.Furthermore,PAl-1 clearly augmented after CAV-1 knockdown.These results indicated that hyperinsulinism could promote PAI-1 expression by inhibiting CAV-1,and stabilizing or up-regulating CAV-1 expression in endothelial cells might reduce complications of the great vessels

  9. The role of mean platelet volume predicting acute exacerbations of cystic fibrosis in children

    Pinar Uysal

    2011-01-01

    Full Text Available Objective: The aim of this study is to evaluate the relationship between acute exacerbations and the mean platelet volume (MPV trend in children with cystic fibrosis (CF, to predict the exacerbations. Methods: A total of 46 children with CF and 37 healthy children were enrolled in the study. White blood cell count (WBC, hemoglobin level, platelet count, mean platelet volume (MPV, and mean corpuscular volume (MCV were retrospectively recorded. Results: Our study population consisted of 25 (54.3% males and 21 (45.7% females with CF and 20 (54.0% males and 17 (46.0% females in the healthy control group. The mean age of the CF patients was 6.32 ± 4.9 years and that of the healthy subjects was 7.02 ± 3.15 years. In the acute exacerbation period of CF, the MPV values were lower and WBC and platelet counts were higher than those in the healthy controls (P = 0.00, P = 0.00, P = 0.00, respectively. Besides, in acute exacerbation, the MPV values were lower and the WBC count was higher than the values in the non-exacerbation period (P 0= 0.01, P = 0.00, respectively. In the non-exacerbation period MPV was lower and platelet count was higher when compared to healthy subjects (P = 0.02, P = 0.04, respectively. Conclusion: This study suggests that MPV might be used as a simple, cost effective, diagnostic, predictive indicator for platelet activation in pediatric CF patients related to chronic inflammation, which might be helpful to discriminate or estimate exacerbations.

  10. The role of mean platelet volume predicting acute exacerbations of cystic fibrosis in children

    Uysal, Pιnar; Tuncel, Tuba; Olmez, Duygu; Babayigit, Arzu; Karaman, Ozkan; Uzuner, Nevin

    2011-01-01

    OBJECTIVE: The aim of this study is to evaluate the relationship between acute exacerbations and the mean platelet volume (MPV) trend in children with cystic fibrosis (CF), to predict the exacerbations. METHODS: A total of 46 children with CF and 37 healthy children were enrolled in the study. White blood cell count (WBC), hemoglobin level, platelet count, mean platelet volume (MPV), and mean corpuscular volume (MCV) were retrospectively recorded. RESULTS: Our study population consisted of 25 (54.3%) males and 21 (45.7%) females with CF and 20 (54.0%) males and 17 (46.0%) females in the healthy control group. The mean age of the CF patients was 6.32 ± 4.9 years and that of the healthy subjects was 7.02 ± 3.15 years. In the acute exacerbation period of CF, the MPV values were lower and WBC and platelet counts were higher than those in the healthy controls (P = 0.00, P = 0.00, P = 0.00, respectively). Besides, in acute exacerbation, the MPV values were lower and the WBC count was higher than the values in the non-exacerbation period (P 0= 0.01, P = 0.00, respectively). In the non-exacerbation period MPV was lower and platelet count was higher when compared to healthy subjects (P = 0.02, P = 0.04, respectively). CONCLUSION: This study suggests that MPV might be used as a simple, cost effective, diagnostic, predictive indicator for platelet activation in pediatric CF patients related to chronic inflammation, which might be helpful to discriminate or estimate exacerbations. PMID:21977069

  11. Determining the diagnostic value of endogenous carbon monoxide in Chronic Obstructive Pulmonary Disease exacerbations

    Objective: To determine whether endogenous carbon monoxide levels in exacerbations of Chronic Obstructive Pulmonary Disease patients were higher compared to healthy individuals and to investigate alteration of carbon monoxide levels across the three different severity stages of Global Initiative for Chronic Obstructive Lung Disease criteria related to Chronic Obstructive Pulmonary Disease exacerbations. Methods: The prospective study was conducted from January to March 2011 at two medical institutions in Ankara, Turkey, and comprised patients of acute Chronic Obstructive Pulmonary Disease exacerbations. The severity of the exacerbations was based on the Global Initiative for Chronic Obstructive Lung Disease criteria. Patients with active tobacco smoking, suspicious carbon monoxide poisoning and uncertain diagnosis were excluded. healthy control subjects who did not have any comorbid diseases and smoking habitus were also enrolled to compare the differences between carboxyhaemoglobin levels A two-tailed Mann-Whitney U test with Bonferroni correction was done following a Kruskal-Wallis test for statistical purposes. Results: There were 90 patients and 81 controls in the study. Carboxyhaemoglobin levels were higher in the patients than the controls (p<0.001). As for the three severity stages, Group 1 had a median carboxyhaemoglobin of 1.6 (0.95-2.00). The corresponding levels in Group 2 (1.8 (1.38-2.20)) and Group 3 (1.9 (1.5-3.0)) were higher than the controls (p<0.001 and p<0.005 respectively). No statistically significant difference between Group 1 and the controls (1.30 (1.10-1.55)) was observed (p<0.434). Conclusion: Carboxyhaemoglobin levels were significantly higher in exacerbations compared with the normal population. Also, in more serious exacerbations, carboxyhaemoglobin levels were significantly increased compared with healthy individuals and mild exacerbations. (author)

  12. Can Insulin Production Suppress β Cell Growth?

    De Vas, Matias; Ferrer, Jorge

    2016-01-12

    While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation. PMID:26771111

  13. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    RobertRoot-Bernstein

    2014-01-01

    Rationale: Insulin resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome and obesity. The mechanism by which insulin and estrogen interact is unknown. We hypothesize that estrogen binds directly to insulin and the insulin receptor producing insulin resistance. Objectives: To determine the binding constants of steroid hormones to insulin, the insulin recepto...

  14. Insulin pumps.

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing to see more research on the psychosocial aspects of CSII during the year, both from the point of view of how psychological beliefs influence outcomes on CSII (is there a type of patient who does particularly well or poorly on CSII?) and how CSII affects psychological factors like mood, behaviour and quality of life. Quality of

  15. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.;

    2004-01-01

    cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after the...... oleic acid, MCT fat unfavorably affected lipid profiles in healthy young men by increasing plasma LDL cholesterol and triacylglycerol. No changes in the activities of phospholipid transfer protein and cholesterol ester transfer protein were evident....

  16. Chronic Hepatitis B with Spontaneous Severe Acute Exacerbation

    Wei-Lun Tsai

    2015-11-01

    Full Text Available Chronic hepatitis B virus (HBV infection is a major global health problem with an estimated 400 million HBV carriers worldwide. In the natural history of chronic hepatitis B (CHB, spontaneous acute exacerbation (AE is not uncommon, with a cumulative incidence of 10%–30% every year. While exacerbations can be mild, some patients may develop hepatic decompensation and even die. The underlying pathogenesis is possibly related to the activation of cytotoxic T lymphocyte-mediated immune response against HBV. An upsurge of serum HBV DNA usually precedes the rise of alanine aminotransferase (ALT and bilirubin. Whether antiviral treatment can benefit CHB with severe AE remains controversial, but early nucleos(tide analogues treatment seemed to be associated with an improved outcome. There has been no randomized study that compared the effects of different nucleos(tide analogues (NA in the setting of CHB with severe AE. However, potent NAs with good resistance profiles are recommended. In this review, we summarized current knowledge regarding the natural history, pathogenetic mechanisms, and therapeutic options of CHB with severe AE.

  17. Acute exacerbation of autoimmune hepatitis induced by Twinrix

    Antal Csepregi; Gerhard Treiber; Christoph R(o)cken; Peter Malfertheiner

    2005-01-01

    We report on a 26-year-old man who presented with severe jaundice and elevated serum liver enzyme activities after having received a dose of Twinrix(○R). In his past medical history, jaundice or abnormal liver function tests were never recorded. Following admission, an elevated immunoglobulin G level and antinuclear antibodies at a titer of 320 with a homogenous pattern were found. Histology of a liver biopsy showed marked bridging liver fibrosis and a chronic inflammation, compatible with autoimmune hepatitis. Treatment was started with budesonide and ursodeoxycholic acid,and led to complete normalization of the pathological liver function tests. We believe that Twinrix(○R) led to an acute exacerbation of an unrecognized autoimmune hepatitis in our patient. The pathogenesis remains to be clarified. It is tempting to speculate that inactivated hepatitis A virus and/or recombinant surface antigen of the hepatitis B virus -as seen in patients with chronic hepatitis C and unrecognized autoimmune hepatitis who were treated with interferon alpha-might have been responsible for disease exacerbation.

  18. Intranasal insulin therapy

    Hilsted, J; Madsbad, S; Hvidberg, A;

    1995-01-01

    To evaluate metabolic control and safety parameters (hypoglycaemia frequency and nasal mucosa physiology), 31 insulin-dependent diabetic patients were treated with intranasal insulin at mealtimes for 1 month and with subcutaneous fast-acting insulin at meals for another month in an open, crossover...... randomized trial. During both treatment periods the patients were treated with intermediate-acting insulin at bedtime. Six of the patients were withdrawn from the study during intranasal insulin therapy due to metabolic dysregulation. Serum insulin concentrations increased more rapidly and decreased more...... quickly during intranasal as compared with subcutaneous insulin administration. Metabolic control deteriorated, as assessed by haemoglobin A1c concentrations, slightly but significantly after intranasal as compared with subcutaneous insulin therapy. The bioavailability of intranasally applied insulin was...

  19. Monitoring asthma in childhood: symptoms, exacerbations and quality of life.

    Brand, Paul L P; Mäkelä, Mika J; Szefler, Stanley J; Frischer, Thomas; Price, David

    2015-06-01

    Monitoring asthma in children in clinical practice is primarily performed by reviewing disease activity (daytime and night-time symptoms, use of reliever medication, exacerbations requiring frequent use of reliever medication and urgent visits to the healthcare professional) and the impact of the disease on children's daily activities, including sports and play, in a clinical interview. In such an interview, most task force members also discuss adherence to maintenance therapy and the patients' (and parents') views and beliefs on the goals of treatment and the amount of treatment required to achieve those goals. Composite asthma control and quality of life measures, although potentially useful in research, have limited value in clinical practice because they have a short recall window and do not cover the entire spectrum of asthma control. Telemonitoring of children with asthma cannot replace face-to-face follow-up and monitoring because there is no evidence that it is associated with improved health outcomes. PMID:26028631

  20. A rare case of ulcerative colitis exacerbated by VZV infection.

    Nishimura, Satoshi; Yoshino, Takuya; Fujikawa, Yoshiki; Watanabe, Masaki; Yazumi, Shujiro

    2015-12-01

    A 16-years old man with severe ulcerative colitis (UC) was admitted to our hospital. After initiating treatment with corticosteroid for UC, chicken pox appeared. At the same time of appearance of chicken pox, the disease activity of UC was exacerbated. After initiating the treatment with acyclovir, both chicken pox and UC improved. Because colonoscopic findings revealed the remaining of moderately active UC, initiating the treatment with infliximab could induce clinical remission of UC without relapse of varicella-zoster virus (VZV) infection. This is a very rare case of UC with concomitant VZV infection. According to our report, the vaccination for VZV prior to immunosuppressive treatments would be necessary for VZV naïve patients with UC. PMID:26552918

  1. [The polycystic ovary syndrome and insulin resistance].

    Kreze, A; Hrnciar, J; Dobáková, M; Pekarová, E

    1997-10-01

    The insulin resistance syndrome and the polycystic ovary syndrome (PCOS) appear to have some following coincidences: the existence of subclinical acanthosis nigricans in PCOS hyperinsulinemic women, correlation of insulin levels and free testosterone, insulin-like growth factor I binding protein (IGFIBP), and sex-hormone binding globulin. Insulin and IGFI act synergically with luteinizing hormone increasing the activity of cytochrome P450c17 and its enzymatic activity in the adrenals. The decrease in IGFI level and IGFI receptors in the ovarian granulosa cells reduce the steroids aromatisation. The increased expression of IGFI receptors in the theca cells favours the androgens' synthesis. Long-term insulin therapy results in an increase in ovary volume and the blood androgens levels. The deterioration of insulin resistance in PSOC women progresses also by the reduction of type I of skeletal muscle fibres which are sensitive to insulin, and the increase of type II fibres which are resistant to insulin in hyperandrogenemia. Testosterone deteriorates the skeletal as well as hepatic insulin sensitivity by both its facilitating effect on lipolysis and the increase of free fatty acids. Abdominal obesity seen in PCOS and insulin resistance is composed by adipocytes with glucocorticoid receptors, which after cortisol stimulation activate the lipoprotein lipase and fat accumulation. Gynoid obesity with the preferential aromatisation of steroids is not evolved because of the low estrogens and progesterone levels in PCOS. Low progesterone levels (with anticortisol effect) support the development of abdominal obesity. Ultimately, the early peak of insulin secretion (4-8 min) in PCOS is higher. This fact should testify a certain diabetic disposition. (Ref. 37.) PMID:9490171

  2. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle

    Sylow, Lykke; Jensen, Thomas Elbenhardt; Kleinert, Maximilian;

    2013-01-01

    fed mice. In humans, insulin-stimulated PAK-activation was decreased in both acute insulin resistant (intralipid infusion) and in chronic insulin resistant states (obesity and diabetes). These findings show that Rac1 is a regulator of insulin-stimulated glucose uptake and a novel candidate involved in...

  3. Potentiation of insulin-mediated glucose lowering without elevated hypoglycemia risk by a small molecule insulin receptor modulator.

    Margaret Wu

    Full Text Available Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1, was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin's effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin's effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.

  4. Characterisation and prevention of exacerbations in frequently exacerbating patienst with COPD

    S. Uzun (Sevim)

    2014-01-01

    markdownabstract__Abstract__ Chronic obstructive pulmonary disease (COPD) is a disease which is characterised by airway inflammation and progressive airflow limitation with poor reversibility. Periods of acute deterioration lie in the natural course of the disease and are called exacerbations. In l

  5. Generalised insulin oedema after intensification of treatment with insulin analogues

    Adamo, Luigi; Thoelke, Mark

    2013-01-01

    We report a case of generalised insulin oedema after intensification of treatment with genetically modified insulin. This is the first case of generalised oedema in response to treatment with insulin analogues in a patient not insulin naive.

  6. Human insulin genome sequence map, biochemical structure of insulin for recombinant DNA insulin.

    Chakraborty, Chiranjib; Mungantiwar, Ashish A

    2003-08-01

    Insulin is a essential molecule for type I diabetes that is marketed by very few companies. It is the first molecule, which was made by recombinant technology; but the commercialization process is very difficult. Knowledge about biochemical structure of insulin and human insulin genome sequence map is pivotal to large scale manufacturing of recombinant DNA Insulin. This paper reviews human insulin genome sequence map, the amino acid sequence of porcine insulin, crystal structure of porcine insulin, insulin monomer, aggregation surfaces of insulin, conformational variation in the insulin monomer, insulin X-ray structures for recombinant DNA technology in the synthesis of human insulin in Escherichia coli. PMID:12769691

  7. Insulin signaling pathways in lepidopteran steroidogenesis

    WendySmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  8. Advanced Glycation End Products Impair Glucose-Stimulated Insulin Secretion of a Pancreatic β-Cell Line INS-1-3 by Disturbance of Microtubule Cytoskeleton via p38/MAPK Activation

    You, Jia; Xu, Shiqing; Zhang, Wenjian; Fang, Qing; Liu, Honglin; Peng, Liang; Deng, Tingting

    2016-01-01

    Advanced glycation end products (AGEs) are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation. Exposed to large dose of AGEs, even though more insulin was synthesized, its secretion was significantly reduced from INS-1-3 cells. Further, AGEs treatment led to a time-dependent increase of depolymerized microtubules, which was accompanied by an increase of activated p38/MAPK in INS-1-3 cells. Pharmacological inhibition of p38/MAPK by SB202190 reversed microtubule depolymerization to a stabilized polymerization status but could not rescue the reduction of insulin release caused by AGEs. Taken together, these results suggest a novel role of AGEs-induced impairment of insulin secretion, which is partially due to a disturbance of microtubule dynamics that resulted from an activation of the p38/MAPK pathway.

  9. Pulmonary rehabilitation and severe exacerbations of COPD: solution or white elephant?

    William D-C. Man

    2015-10-01

    Full Text Available Hospitalisations for severe exacerbations of chronic obstructive pulmonary disease are associated with significant physical and psychological consequences including an increase in symptom severity, severe reductions in physical activity, a deleterious effect on skeletal muscle, impaired exercise tolerance/ability to self-care, decline in quality of life, and increased anxiety and depression. As these consequences are potentially amenable to exercise training, there is a clear rationale for pulmonary rehabilitation in the peri/post-exacerbation setting. Although a 2011 Cochrane review was overwhelmingly positive, subsequent trials have shown less benefit and real-life observational studies have revealed poor acceptability. Qualitative studies have demonstrated that the patient experience is a determining factor while the presence of comorbidities may influence referral, adherence and response to pulmonary rehabilitation. Systematic reviews of less supervised interventions, such as self-management, have shown limited benefits in the post-exacerbation setting. The recent update of the Cochrane review of peri-exacerbation pulmonary rehabilitation showed that benefits were associated with the “comprehensive” nature of the intervention (the number of sessions received, the intensity of exercise training and education delivered, and the degree of supervision but implementation is demanding. The challenge is to develop interventions that are deliverable and acceptable around the time of an acute exacerbation but also deliver the desired clinical impact.

  10. Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion.

    Hribal, Marta L.; Tornei, F; Pujol, A.; Menghini, R.; Barcaroli, D; Lauro, D; Amoruso, R; Lauro, R.; Bosch, F.; Sesti, G; Federici, M

    2008-01-01

    Molecular scanning of human insulin receptor substrate (Irs) genes revealed a single lrs1 prevalent variant, a glycine to arginine change at codon 972 (G972R); previous in vitro studies had demonstrated that the presence of this variant results in an impaired activation of the insulin signalling pathway, while human studies gave controversial results regarding its role in the pathogenesis of insulin resistance and related diseases. To address in vivo impact of this IRS-1 variant on whole body...

  11. Chronic obstructive pulmonary disease exacerbation frequency and severity

    Stafyla E

    2013-11-01

    Full Text Available Eirini Stafyla, Theodora Kerenidi, Konstantinos I Gourgoulianis Respiratory Medicine Department, University of Thessaly Medical School, University Hospital of Larissa, Larissa, GreeceWe read with great interest the original work by Motegi et al1 comparing three multidimensional assessment systems – BODE (body mass index, obstruction, dyspnea, and exercise capacity index, DOSE (dyspnea, obstruction, smoking, exacerbations index and ADO (age, dyspnea, obstruction index – for predicting COPD (chronic obstructive pulmonary disease exacerbations. In this study, exacerbation rates for the first and second year were 0.57 and 0.48 per patient-year respectively, while previous exacerbations, DOSE index, FEV1% (% forced expiratory volume in 1 second predicted and long-term oxygen therapy (LTOT use were shown to be predictors of COPD exacerbations. However, this study seems to have quite different results from our own study that focused on exacerbation frequency and severity.View original paper by Motegi and colleagues.

  12. Association of airborne Aspergillus with asthma exacerbation in Southern Pakistan

    Zubairi, Ali Bin Sarwar; Azam, Iqbal; Awan, Safia; Zafar, Afia; Imam, Asif Ali

    2014-01-01

    Background Exposure to airborne fungi has been related with exacerbation of asthma in adults and children leading to increased outpatient, emergency room visits, and hospitalizations. Hypersensitivity to these airborne fungi may be an important initial predisposing factor in the development and exacerbation of asthma. Objective This study was conducted to determine an association between fungal types and spore concentrations with the risk of asthma exacerbation in adults. Methods This cross-s...

  13. Insulin Protects against Hepatic Damage Postburn

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  14. Effects of insulin detemir and NPH insulin on body weight and appetite-regulating brain regions in human type 1 diabetes: a randomized controlled trial.

    Larissa W van Golen

    Full Text Available Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference, while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula. Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003. Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli.ClinicalTrials.gov NCT00626080.

  15. Antibody against the insulin receptor causes disappearance of insulin receptors in 3T3-L1 cells: a possible explanation of antibody-induced insulin resistance.

    Grunfeld, C.

    1984-01-01

    The effect of a rabbit antibody induced against the rat insulin receptor (RAR) was tested using cultured 3T3-L1 fat cells. As previously seen with antibodies against the insulin receptor from patients with the type B syndrome of insulin resistance and acanthosis nigricans, RAR acutely mimicked the action of insulin by stimulating deoxyglucose uptake. After prolonged exposure of 3T3-L1 cells to RAR, insulinomimetic activity was lost and the cells became resistant to the action of insulin. This...

  16. Giving an insulin injection

    ... medlineplus.gov/ency/patientinstructions/000660.htm Giving an insulin injection To use the sharing features on this ... and syringes. Filling the Syringe - One Type of Insulin Wash your hands with soap and water. Dry ...

  17. Insulin pump (image)

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  18. Insulin Lispro Injection

    ... not use any type of insulin after the expiration date printed on the bottle has passed.Insulin ... sweating weakness muscle cramps abnormal heartbeat shortness of breath large weight gain in a short period of ...

  19. Fecal Microbial Composition of Ulcerative Colitis and Crohn’s Disease Patients in Remission and Subsequent Exacerbation

    Edgar S Wills; Jonkers, Daisy M. A. E.; Paul H Savelkoul; Masclee, Ad A.; Pierik, Marieke J.; John Penders

    2014-01-01

    BACKGROUND: Limited studies have examined the intestinal microbiota composition in relation to changes in disease course of IBD over time. We aimed to study prospectively the fecal microbiota in IBD patients developing an exacerbation during follow-up. DESIGN: Fecal samples from 10 Crohn's disease (CD) and 9 ulcerative colitis (UC) patients during remission and subsequent exacerbation were included. Active disease was determined by colonoscopy and/or fecal calprotectine levels. Exclusion crit...

  20. Microvascular Recruitment in Insulin Resistance

    Sjøberg, Kim Anker

    hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...... the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...

  1. Complement activation pathways associated with islet cell surface antibody (ICSA derived from child patients with insulin-dependent diabetes mellitus (IDDM.

    Okada,Soji

    1991-06-01

    Full Text Available We studied the pathways of complement activation associated with the islet cell surface antibody (ICSA obtained from sera of 7 patients (age less than 15 years with insulin dependent diabetes mellitus (IDDM. The target cells were 51CR labelled rat islet cells and the complement source was human AB serum. Complement-dependent antibody mediated cytotoxicity (CAMC activity was obtained using the percentage of cytotoxicity. CAMC activity of untreated sera was significantly inhibited by treating with EGTA or EDTA (p less than 0.001. The CAMC activity of EDTA-treated sera was significantly lower than that of EGTA-treated sera (p less than 0.001. In the inactivated human AB serum, it was lower than that of EGTA-treated sera (p less than 0.05, but not different from that of EDTA-treated sera. These results show that the complement activation associated with ICSA in patients occurred not only via the classical pathway but also via the alternative pathway.

  2. Adrenocortical tumors and insulin resistance: What is the first step?

    Altieri, Barbara; Tirabassi, Giacomo; Casa, Silvia Della; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors. PMID:26637955

  3. Redox regulation of insulin degradation by insulin-degrading enzyme.

    Crystal M Cordes

    Full Text Available Insulin-degrading enzyme (IDE is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat recombinant enzyme. We confirm that nitric oxide inhibits the degrading activity of IDE, and that it affects proteasome activity through this interaction with IDE, but does not affect the proteasome directly. Oxidized glutathione inhibits IDE through glutathionylation, which was reversible by dithiothreitol but not by ascorbic acid. Reduced glutathione had no effect on IDE, but reacted with partially degraded insulin to disrupt its disulfide bonds and accelerate its breakdown to trichloroacetic acid soluble fragments. Our results demonstrate the sensitivity of insulin degradation by IDE to the redox environment and suggest another mechanism by which the cell's oxidation state may contribute to the development of, and the link between, type 2 diabetes and Alzheimer's disease.

  4. The Insulin Pump

    Toews, C. J.

    1985-01-01

    Subcutaneous continuous insulin infusion systems deliver insulin at a basal rate designed to keep blood glucose levels normal in the non-fed state. Additional insulin is delivered at meal time. Pumps can provide near optimal control of blood glucose concentrations in selected, highly motivated patients. The pump provides better diabetic control than once daily insulin injections, although several daily injections can provide comparable control. Optimal control with the pump causes some short-...

  5. Effect of iodination site on binding of radiolabeled ligand by insulin antibodies and insulin autoantibodies

    Four human insulins and four porcine insulins, each monoiodinated to the same specific activity at one of the four tyrosine residues (A14, A19, B16, B26) and purified by reversed-phase liquid chromatography, were tested in a radiobinding assay against a panel of insulin-antibody (IA)-positive sera from 10 insulin-treated diabetics and insulin-autoantibody-positive (IAA) sera from 10 nondiabetics. Of the 10 IAA-positive sera, five were fully cross reactive with both insulin species, and five were specific for human insulin. The rank order of binding of sera with the four ligands from each species was random for IA (mean rank values of 1.9 for A14, 2.0 for A19, 2.5 for B16, and 3.6 for B26 from a possible ranking range of 1 to 4), but more consistent for non-human-insulin-specific IAA (mean rank values 1.3 for A14, 3.8 for A19, 1.7 for B16, and 3.2 for B26 for labeled human insulins; 1.2 for A14, 4.0 for A19, 1.8 for B16, and 3.0 for B26 for labeled porcine insulins). The rank order of binding was virtually uniform for human-insulin-specific IAA (mean values 1.2 for A14, 3.0 for A19, 1.8 for B16, and 4.0 for B26). The influence of iodination site on the binding of labeled insulin appears to be dependent on the proximity of the labeled tyrosine to the antibody binding site and the clonal diversity, or restriction, of insulin-binding antibodies in the test serum. When IA and IAA are measured, the implications of this study regarding the choice of assay ligand may be important

  6. Insulin aspart pharmacokinetics

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin;

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between and...

  7. Glycosphingolipids and insulin resistance

    M. Langeveld; J.F.M.G. Aerts

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple sphingol

  8. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  9. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  10. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  11. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  12. Incidence and risk factors for exacerbations of asthma during pregnancy

    Ali Z

    2013-05-01

    Full Text Available Zarqa Ali, Charlotte Suppli UlrikDepartment of Pulmonary Medicine, Hvidovre Hospital and University of Copenhagen, Copenhagen, DenmarkBackground: Asthma is one of the most common chronic diseases among pregnant women. Acute exacerbations of asthma during pregnancy have an unfavorable impact on pregnancy outcome. This review provides an overview of current knowledge of incidence, mechanisms, and risk factors for acute exacerbations of asthma during pregnancy.Methods: A narrative literature review was carried out using the PubMed database.Results: During pregnancy, up to 6% of women with asthma are hospitalized for an acute exacerbation. The maternal immune system is characterized by a very high T-helper-2:T-helper-1 cytokine ratio during pregnancy and thereby provides an environment essential for fetal survival but one that may aggravate asthma. Cells of the innate immune system such as monocytes and neutrophils are also increased during pregnancy, and this too can exacerbate maternal asthma. Severe or difficult-to-control asthma appears to be the major risk factor for exacerbations during pregnancy, but studies also suggest that nonadherence with controller medication and viral infections are important triggers of exacerbations during pregnancy. So far, inconsistent findings have been reported regarding the effect of fetal sex on exacerbations during pregnancy. Other risk factors for exacerbation during pregnancy include obesity, ethnicity, and reflux, whereas atopy does not appear to be a risk factor.Discussion: The incidence of asthma exacerbations during pregnancy is disturbingly high. Severe asthma – better described as difficult-to-control asthma – nonadherence with controller therapy, viral infections, obesity, and ethnicity are likely to be important risk factors for exacerbations of asthma during pregnancy, whereas inconsistent findings have been reported with regard to the importance of sex of the fetus.Keywords: acute exacerbations

  13. Localization and synthesis of an insulin-binding region on human insulin receptor

    Seven regions of the alpha subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues alpha 655-670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of 125I-labeled insulin to adsorbents of peptide alpha 655-670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide alpha 661-670) or longer (peptide alpha 651-670) than the region alpha 655-670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR alpha subunit resides within residues alpha 655-670. The results do not rule out the possibility that other regions of the alpha subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site

  14. Localization and synthesis of an insulin-binding region on human insulin receptor

    Nakamura, S.; Sakata, S.; Atassi, M.Z. (Baylor College of Medicine, Houston, TX (USA))

    1990-04-01

    Seven regions of the alpha subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues alpha 655-670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of {sup 125}I-labeled insulin to adsorbents of peptide alpha 655-670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide alpha 661-670) or longer (peptide alpha 651-670) than the region alpha 655-670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR alpha subunit resides within residues alpha 655-670. The results do not rule out the possibility that other regions of the alpha subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site.

  15. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    Celia Maria Vieira Vendrame

    2014-01-01

    Full Text Available Leishmania (Leishmania amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF-I on interactions between L. (L. amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L. amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.

  16. Differential responsiveness of luteinized human granulosa cells to gonadotropins and insulin-like growth factor I for induction of aromatase activity

    The objective of this study was to examine the in vitro responsiveness of cultured luteinized human granulosa cells over time to insulin-like growth factor 1 (IGF-1), human follicle-stimulating hormone (FSH), and human chorionic gonadotropin (hCG) for the induction of aromatase activity. Granulosa cells were retrieved from preovulatory follicles in patients undergoing in vitro fertilization. Cells were cultured for a period of 72 hours or 10 days. The ability of hCG, human FSH, and/or IGF-I to induce aromatase activity was assayed by the stereospecific release of tritium from [1B-3H]androstenedione. Short-term cultures (72 hours) demonstrated a marked rise in aromatase activity in response to human FSH and IGF-I, whereas a smaller response to hCG was observed. In contrast, 10-day cultures demonstrated responsiveness predominantly to hCG rather than human FSH for the induction of aromatase activity with no remarkable effect of IGF-I. Luteinized human granulosa cells undergo a transformation from an initial human FSH and IGF-I responsive state to an hCG responsive state in long-term cultures

  17. Effects of Somatic Mutations in the C-Terminus of Insulin-Like Growth Factor 1 Receptor on Activity and Signaling

    Barbara P. Craddock

    2012-01-01

    Full Text Available The insulin-like growth factor I receptor (IGF1R is overexpressed in several forms of human cancer, and it has emerged as an important target for anticancer drug design. Cancer genome sequencing efforts have recently identified three somatic mutations in IGF1R: A1374V, a deletion of S1278 in the C-terminal tail region of the receptor, and M1255I in the C-terminal lobe of the kinase catalytic domain. The possible effects of these mutations on IGF1R activity and biological function have not previously been tested. Here, we tested the effects of the mutations on the in vitro biochemical activity of IGF1R and on major IGF1R signaling pathways in mammalian cells. While the mutations do not affect the intrinsic tyrosine kinase activity of the receptor, we demonstrate that the basal (unstimulated levels of MAP kinase and Akt activation are increased in the mutants (relative to wild-type IGF1R. We hypothesize that the enhanced signaling potential of these mutants is due to changes in protein-protein interactions between the IGF1R C-terminus and cellular substrates or modulators.

  18. Cinnamon extract exhibits insulin-like and independent effects on gene expression in adipocytes

    Cinnamon is beneficial to people with insulin resistance due in part to the insulin-like activity of the cinnamon extract (CE). Molecular effects of CE are limited. This study tested the hypothesis that CE has insulin-like and insulin-independent effects at the molecular level. Quantitative real-tim...

  19. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  20. Insulin resistance and diabetes in HIV infection.

    Das, Satyajit

    2011-09-01

    Insulin resistance is an important and under recognized consequence of HIV treatment. Different studies have yielded widely varying estimates of the prevalence of impaired glucose metabolism in people on highly active antiretroviral therapy (HAART). The risk increases further with hepatitis C co infection. Although Protease inhibitors (PIs) are the main drug class implicated in insulin resistance, some studies have shown an association of increased risk of diabetes with cumulative exposure of nucleoside reverse transcriptase inhibitors (NRTIs). The effect of switching to other antiretrovirals has not been fully determined and the long-term consequences of insulin resistance in this population are not known. Treatment of established diabetes mellitus should generally follow existing guidelines. It is therefore reasonable to recommend general measures to increase insulin sensitivity in all patients infected with HIV, such as regular aerobic exercise and weight reduction for overweight persons. The present review article has the information of some recent patents regarding the insulin resistance in HIV infection. PMID:21824074

  1. In Vivo and In Vitro Characterization of Basal Insulin Peglispro: A Novel Insulin Analog.

    Owens, Rebecca A; Hansen, Ryan J; Kahl, Steven D; Zhang, Chen; Ruan, Xiaoping; Koester, Anja; Li, Shun; Qian, Hui-Rong; Farmen, Mark W; Michael, M Dodson; Moyers, Julie S; Cutler, Gordon B; Vick, Andrew; Beals, John M

    2016-06-01

    The aim of this research was to characterize the in vivo and in vitro properties of basal insulin peglispro (BIL), a new basal insulin, wherein insulin lispro was derivatized through the covalent and site-specific attachment of a 20-kDa polyethylene-glycol (PEG; specifically, methoxy-terminated) moiety to lysine B28. Addition of the PEG moiety increased the hydrodynamic size of the insulin lispro molecule. Studies show there is a prolonged duration of action and a reduction in clearance. Given the different physical properties of BIL, it was also important to assess the metabolic and mitogenic activity of the molecule. Streptozotocin (STZ)-treated diabetic rats were used to study the pharmacokinetic and pharmacodynamic characteristics of BIL. Binding affinity and functional characterization of BIL were compared with those of several therapeutic insulins, insulin AspB10, and insulin-like growth factor 1 (IGF-1). BIL exhibited a markedly longer time to maximum concentration after subcutaneous injection, a greater area under the concentration-time curve, and a longer duration of action in the STZ-treated diabetic rat than insulin lispro. BIL exhibited reduced binding affinity and functional potency as compared with insulin lispro and demonstrated greater selectivity for the human insulin receptor (hIR) as compared with the human insulin-like growth factor 1 receptor. Furthermore, BIL showed a more rapid rate of dephosphorylation following maximal hIR stimulation, and reduced mitogenic potential in an IGF-1 receptor-dominant cellular model. PEGylation of insulin lispro with a 20-kDa PEG moiety at lysine B28 alters the absorption, clearance, distribution, and activity profile receptor, but does not alter its selectivity and full agonist receptor properties. PMID:27026683

  2. Phosphorylation of receptors for insulin and insulin-like growth factor I

    Jacobs, S.; Cuatrecasas, P.

    1986-01-15

    The phosphorylation of receptors for insulin and insulin-like growth factor I was studied by phosphoamino acid analysis and tryptic phosphopeptide maps in an attempt to determine if protein kinase C is involved in their phosphorylation in response to insulin and insulin-like growth factor I, respectively. Two cell lines were utilized, Hep G2 and IM-9 cells. sn-1,2-Dioctanoylglycerol and 12-O-tetradecanoylphorbol 13-acetate (TPA), agents known to activate protein kinase C, stimulated the phosphorylation of the ..beta.. subunits of both receptors, as did their hormones. In unstimulated cells, phosphorylation of the insulin receptor occurred on seryl and to a lesser extent on threonyl residues. TPA stimulated seryl and threonyl phosphorylation that resulted in the appearance of four major phosphoserine-containing phosphopeptides which were not detected in the basal state and an increase in phosphorylation of a phosphothreonine-containing peptide which was present in the basal state. Insulin treatment resulted in the appearance of three major phosphotyrosine-containing tryptic peptides. In IM-9 cells, insulin also increased the phosphoserine and possibly the phosphothreonine content of the ..beta.. subunit. In both cells, the major phosphoserine-containing peptides that were stimulated by TPA were not detected following treatment with insulin. Very similar results, including similar peptide maps, were obtained for the insulin-like growth factor I receptor from cells treated with TPA and insulin-like growth factor I. Although not entirely conclusive, these results suggest that the insulin- and insulin-like growth factor I-stimulated phosphorylation of their receptors does not result from activation of protein kinase C.

  3. p70 S6 kinase activation is not required for insulin-like growth factor-induced differentiation of rat, mouse, or human skeletal muscle cells.

    Canicio, J; Gallardo, E; Illa, I; Testar, X; Palacín, M; Zorzano, A; Kaliman, P

    1998-12-01

    Insulin-like growth factors (IGFs) are potent stimulators of muscle differentiation, and phosphatidylinositol 3-kinase (PI 3-kinase) is an essential second messenger in this process. Little is known about the downstream effectors of the IGF/PI 3-kinase myogenic cascade, and contradictory observations have been reported concerning the involvement of p70 S6 kinase. In an attempt to clarify the role of p70 S6 kinase in myogenesis, here we have studied the effect of rapamycin on rat, mouse, and human skeletal muscle cell differentiation. Both insulin and IGF-II activated p70 S6 kinase in rat L6E9 and mouse Sol8 myoblasts, which was markedly inhibited at 1 ng/ml rapamycin concentrations. Consistent with previous observations in a variety of cell lines, rapamycin exerted a potent inhibitory effect on L6E9 and Sol8 serum-induced myoblast proliferation. In contrast, even at high concentrations (20 ng/ml), rapamycin had no effect on IGF-II-induced proliferation or differentiation. Indeed, neither the morphological differentiation, as assessed by myotube formation, nor the expression of muscle-specific markers such as myogenin, myosin heavy chain, or GLUT4 (glucose transporter-4) glucose carriers was altered by rapamycin. Moreover, here we extended our studies on IGF-II-induced myogenesis to human myoblasts derived from skeletal muscle biopsies. We show that, as observed for rat and mouse muscle cells, human myoblasts can be induced to form multinucleated myotubes in the presence of exogenous IGF-II. Moreover, IGF-II-induced human myotube formation was totally blocked by LY294002, a specific PI 3-kinase inhibitor, but remained unaffected in the presence of rapamycin. PMID:9832443

  4. Effect of insulin on human erythrocyte metabolism

    Insulin effects on the metabolism of human erythrocytes have been demonstrated. Under hypoxic conditions, glucose utilization was increased in insulin treated red cell suspensions at pH 7.32 and pH 7.66, but not at pH 7.48. A dose-response study at pH 7.31 revealed that glucose utilization was inhibited at lower insulin concentrations, i.e., 0.2 nM, whereas the simulatory effects were seen at relatively higher levels, i.e., 5.8-6.3 nM. Lactate production, and cellular content of 2,3-bisphosphoglycerate, fructose 1,6-biphosphate and triose 3-phosphate were unchanged in the presence of this hormone. Hexose monophosphate shunt activity was increased, but the amount of change was too small to account for the additional glucose used by the insulin-treated cells. Under ambient air conditions, insulin inhibited glucose utilization by dibutyryl-adenosine 3'-5'-cyclic monophosphate-treated red cells but lactate to production was unchanged. Insulin appeared to inhibit 32P incorporation into some, but not all, of the membrane proteins phosphorylated in intact cells incubated in the presence of dibutyryl-adenosine 3',5'-cyclic monophosphate. Insulin did not alter the rate or distribution of 32P incorporation into membrane proteins in the absence of this nucleotide. This studies suggest that the erythrocyte may be a useful model for future investigations into the molecular mechanism of insulin action

  5. Insulin enhances glucose-stimulated insulin secretion in healthy humans

    Bouche, Clara; Lopez, Ximena; Fleischman, Amy; Cypess, Aaron M.; O'Shea, Sheila; Stefanovski, Darko; Bergman, Richard N.; Rogatsky, Eduard; Stein, Daniel T.; Kahn, C. Ronald; Kulkarni, Rohit N.; Goldfine, Allison B.

    2010-01-01

    Islet β-cells express both insulin receptors and insulin-signaling proteins. Recent evidence from rodents in vivo and from islets isolated from rodents or humans suggests that the insulin signaling pathway is physiologically important for glucose sensing. We evaluated whether insulin regulates β-cell function in healthy humans in vivo. Glucose-induced insulin secretion was assessed in healthy humans following 4-h saline (low insulin/sham clamp) or isoglycemic-hyperinsulinemic (high insulin) c...

  6. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis.

    Judge, Eoin P

    2012-07-01

    The aim of this study was to evaluate the risk factors for and outcomes of acute exacerbations in patients with advanced idiopathic pulmonary fibrosis (IPF), and to examine the relationship between disease severity and neovascularisation in explanted IPF lung tissue. 55 IPF patients assessed for lung transplantation were divided into acute (n=27) and non-acute exacerbation (n=28) groups. Haemodynamic data was collected at baseline, at the time of acute exacerbation and at lung transplantation. Histological analysis and CD31 immunostaining to quantify microvessel density (MVD) was performed on the explanted lung tissue of 13 transplanted patients. Acute exacerbations were associated with increased mortality (p=0.0015). Pulmonary hypertension (PH) at baseline and acute exacerbations were associated with poor survival (p<0.01). PH at baseline was associated with a significant risk of acute exacerbations (HR 2.217, p=0.041). Neovascularisation (MVD) was significantly increased in areas of cellular fibrosis and significantly decreased in areas of honeycombing. There was a significant inverse correlation between mean pulmonary artery pressure and MVD in areas of honeycombing. Acute exacerbations were associated with significantly increased mortality in patients with advanced IPF. PH was associated with the subsequent development of an acute exacerbation and with poor survival. Neovascularisation was significantly decreased in areas of honeycombing, and was significantly inversely correlated with mean pulmonary arterial pressure in areas of honeycombing.

  7. Susceptibility to exacerbation in chronic obstructive pulmonary disease

    Hurst, John R; Vestbo, Jørgen; Anzueto, Antonio; Locantore, Nicholas; Müllerova, Hana; Tal-Singer, Ruth; Miller, Bruce; Lomas, David A; Agusti, Alvar; Macnee, William; Calverley, Peter; Rennard, Stephen; Wouters, Emiel F M; Wedzicha, Jadwiga A; NN, NN

    2010-01-01

    COPD that is independent of disease severity. METHODS: We analyzed the frequency and associations of exacerbation in 2138 patients enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study. Exacerbations were defined as events that led a care provider...

  8. Factors associated with change in exacerbation frequency in COPD

    Donaldson, Gavin C; Müllerova, Hanna; Locantore, Nicholas;

    2013-01-01

    Patients with chronic obstructive pulmonary disease (COPD) can be categorized as having frequent (FE) or infrequent (IE) exacerbations depending on whether they respectively experience two or more, or one or zero exacerbations per year. Although most patients do not change category from year to...

  9. Incidence and risk factors for exacerbations of asthma during pregnancy

    Ali, Zarqa; Ulrik, Charlotte Suppli

    2013-01-01

    Asthma is one of the most common chronic diseases among pregnant women. Acute exacerbations of asthma during pregnancy have an unfavorable impact on pregnancy outcome. This review provides an overview of current knowledge of incidence, mechanisms, and risk factors for acute exacerbations of asthma...

  10. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells.

    Redmon, J B; Olson, L K; Armstrong, M B; Greene, M J; Robertson, R. P.

    1996-01-01

    FK506 (tacrolimus) is an immunosuppressive drug which interrupts Ca2+-calmodulin-calcineurin signaling pathways in T lymphocytes, thereby blocking antigen activation of T cell early activation genes. Regulation of insulin gene expression in the beta cell may also involve Ca2+-signaling pathways and FK506 has been associated with insulin-requiring diabetes mellitus during clinical use. The purpose of this study was to characterize the effects of FK506 on human insulin gene transcription, insul...

  11. Insulin inhalation--Pfizer/Nektar Therapeutics: HMR 4006, inhaled PEG-insulin--Nektar, PEGylated insulin--Nektar.

    2004-01-01

    type 1 and type 2 diabetes mellitus in 120 centres worldwide, and will use a fourth prototype inhaler device that is half the size of the first prototype, and has reduced manufacturing costs. Pfizer and its partner, Aventis Pharma, are conducting additional long-term pulmonary safety data studies in patients with type 1 and type 2 diabetes. Pfizer is also conducting phase III clinical trials with inhaled insulin in paediatric patients aged 6-17 years. Nektar Therapeutics is using its Advanced PEGylation technology to develop a dry powder-inhaled polyethylene glycol (PEG) formulation for delivering peptides efficiently across the lungs and to promote prolonged serum concentration of the peptide. PEG is a neutral, water-soluble, nontoxic polymer comprising any number of repeating units of ethylene oxide. PEGylation is designed to increase the size of the active molecule and ultimately improve drug performance by optimising pharmacokinetics, increasing bioavailability, and decreasing immunogenicity and dosing frequency. The investigation has begun with inhaled, long-acting (PEGylated) insulin [inhaled PEG-insulin, PEGylated insulin--Nektar], and is funded by Pfizer. Preclinical results of a dry powder formulation of inhaled PEG-insulin presented at the 63rd Scientific Sessions of the American Diabetes Association (ADA-2003) [June 2003, New Orleans, LA, USA] demonstrated prolonged systemic activity of insulin in dogs. Nektar Therapeutics was granted US patent 5,997,848 on a method for delivering inhalable insulin. The patent covers a method for delivering of 0.5-15 mg of aerosol dry powder insulin per dosing session in 1-4 individual dosages into the deep lung for systemic absorption. The patent does not specify the formulation of insulin or aerosol delivery device. Nektar Therapeutics estimated in June 2002 that Exubera could earn the company potential revenues of >200 million US dollars. PMID:15139780

  12. Mathematical model of the glucose–insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    A theoretical approach to the glucose–insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose–insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination. -- Highlights: ► We present a mathematical model for the glucose–insulin regulatory system. ► This model combines the microscopic insulin secretion mechanism in a pancreatic β-cell and macroscopic glucose dynamics at the whole-body level. ► This work is expected to provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  13. Mathematical model of the glucose–insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Han, Kyungreem [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Hyuk [National Institute for Mathematical Sciences, Daejeon 305-340 (Korea, Republic of); Choi, M.Y., E-mail: mychoi@snu.ac.kr [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Jinwoong, E-mail: jwkim@snu.ac.kr [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Myung-Shik [Department of Medicine, Samsung Medical Center, and School of Medicine, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2012-10-01

    A theoretical approach to the glucose–insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca{sup 2+} concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose–insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination. -- Highlights: ► We present a mathematical model for the glucose–insulin regulatory system. ► This model combines the microscopic insulin secretion mechanism in a pancreatic β-cell and macroscopic glucose dynamics at the whole-body level. ► This work is expected to provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  14. Metformin and insulin receptors

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  15. Nature and regulation of the insulin receptor: structure and function

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  16. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site.

    K. Suzuki; Kono, T.

    1980-01-01

    The glucose transport activity of fat cells was assayed in a cell-free system. The activity was solubilized and incorporated into egg-lecithin liposomes. The carrier-mediated glucose transport activity was estimated by subtracting the cytochalasin B-insensitive component from the total glucose uptake activity of the modified liposomes. When a crude microsomal preparation from fat cells was fractionated by sucrose density gradient centrifugation, two transport activities (peaks A and B) were s...

  17. Medically treated exacerbations in COPD by GOLD 1-4

    Ingebrigtsen, Truls S; Marott, Jacob L; Lange, Peter;

    2015-01-01

    AIM: We hypothesized that medically treated exacerbations in COPD defined as treatments with oral corticosteroids alone or in combination with antibiotics by register linkage with a nationwide prescription registry is a valid, robust and low-biased measure of exacerbations. METHODS: A total of 13......,591 individuals with COPD in the Copenhagen General Population Study (2003-2013) were linked to the Danish prescription registry. Exacerbations were defined as dispensing of oral corticosteroids alone or in combination with antibiotics, dispensed less than four weeks apart during three years of follow......-up. Construct validity of this definition of medically treated exacerbations was assessed by studying baseline determinants as well as by studying the association between GOLD 1 through 4 grades and time to first exacerbation during follow-up. RESULTS: Among individuals with COPD, 964 individuals (7.1%) had at...

  18. Mepolizumab for the reduction of exacerbations in severe eosinophilic asthma.

    Russell, Richard; Brightling, Christopher

    2016-06-01

    Asthma affects over 300 million people worldwide and is severe in 10% of sufferers. Severe asthma is associated with greater morbidity and mortality particularly as a consequence of frequent exacerbations. Advances in approaches to phenotype the heterogeneity of severe asthma has established the importance of eosinophilic inflammation and emerging new therapies are broadly designed to target T2-mediated eosinophilic inflammation with the aim to reduce exacerbation frequency. Here, we summarize the evidence that eosinophilic asthma is an important pheno(endo)type and identifies a group at risk of exacerbations; that established therapies reduce exacerbations, particularly in eosinophilic severe asthma; and discuss the role of mepolizumab, an IL-5 neutralising monoclonal antibody therapy, in reducing exacerbations in severe eosinophilic asthma compared to established and other emerging therapies. PMID:27058452

  19. Insulin Receptor Substrate-1 Activation Mediated p53 Downregulation Protects Against Hypoxic-Ischemia in the Neonatal Brain.

    Tu, Yi-Fang; Jiang, Si-Tse; Chow, Yen-Hung; Huang, Chao-Ching; Ho, Chien-Jung; Chou, Ya-Ping

    2016-08-01

    This study determined if dietary restriction (DR) protects against hypoxic-ischemia (HI) in the neonatal brain via insulin receptor substrate-1 (IRS-1)/Akt pathway-mediated downregulation of p53 in the neurovascular unit. On postnatal (P) day 7, HI was induced in rat pups grouped from P1 into normal litter size (NL, 12 pups/dam) and increased litter size (DR, 18 pups/dam). In vivo IRS-1 anti-sense oligonucleotide and IRS-1 overexpressed recombinant adenovirus were given, and neurovascular damage was assessed. In vitro models of oxygen-glucose deprivation (OGD) examined the inhibition and overexpression of IRS-1 on p53 and cell death in neurons and endothelial cells. Compared to NL pups, DR pups had significantly higher IRS-1, p-IRS-1, and pAkt levels, decreased p53, more tight junction proteins, reduced blood-brain barrier (BBB) damage after HI, and less infarct volumes at P21. Immunofluorescence revealed that IRS-1 was upregulated in the endothelial cells and neurons of DR pups. IRS-1 downregulation in DR pups reduced p-Akt, increased p53, worsened BBB damage, and increased brain injury, whereas IRS-1 overexpression in NL pups upregulated p-Akt, decreased p53, attenuated BBB damage, and decreased brain injury. In vitro, IRS-1 downregulation aggravated cell death in neurons and endothelial cells and is associated with decreased p-Akt and increased p53. In contrast, IRS-1 overexpression reduced cell death in endothelial cells with increased p-Akt and decreased p53. In conclusion, DR reduces neurovascular damage after HI in the neonatal brain through an IRS-1/Akt-mediated p53 downregulation, suggesting that IRS-1 signaling is a therapeutic target for hypoxic brain injury in neonates. PMID:26111627

  20. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity.

    Martin, Janet L; Lin, Mike Z; McGowan, Eileen M; Baxter, Robert C

    2009-09-18

    We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 approximately 2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the "missing link" mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3. PMID:19633297

  1. Cyproheptadine metabolites inhibit proinsulin and insulin biosynthesis and insulin release in isolated rat pancreatic islets

    Chow, S.A.; Falany, J.L.; Fischer, L.J. (Univ. of Iowa, Iowa City (USA))

    1989-06-01

    The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic beta-cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals.

  2. Cyproheptadine metabolites inhibit proinsulin and insulin biosynthesis and insulin release in isolated rat pancreatic islets

    The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic beta-cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals

  3. Exacerbation of lupus erythematodes visceralis as a result of UV irradiation - a hypothesis

    In the culture medium of human fibroblasts a proteolytic activity is evident after UV irradiation (290 - 320 nm). The effect of this proteolytic activity on human serum results in an electrophoretic mobility towards the anode of the C3 component of complement, which thus proves to be activated. In discussing recent and former results, a hypothesis on the exacerbation of lupus erythematodes visceralis is presented: UV irradiation causes peroxydation of lipids resulting in the release of proteolytic enzymes from lysosomal membranes and activation of the complemental system. Thus the reactivity of the immune system is increased and the disease becomes exacerbated. Further the following hypothetic aspects are discussed: porphyrins cause enhanced peroxydation of lipids, increased synthesis rate of porphyrins by drugs, decrease of lipid peroxydation by antioxidants, e.g. vitamin E, in relation to possible therapeutic effects

  4. Insulin receptors in isolated human adipocytes. Characterization by photoaffinity labeling and evidence for internalization and cellular processing.

    Berhanu, P; Kolterman, O G; Baron, A; Tsai, P; Olefsky, J M; Brandenburg, D.

    1983-01-01

    We photolabeled and characterized insulin receptors in isolated adipocytes from normal human subjects and then studied the cellular fate of the labeled insulin-receptor complexes at physiologic temperatures. The biologically active photosensitive insulin derivative, B2(2-nitro-4-azidophenylacetyl)des-PheB1-insulin (NAPA-DP-insulin) was used to photoaffinity label the insulin receptors, and the specifically labeled cellular proteins were identified by sodium dodecyl sulfate-polyacrylamide gel ...

  5. A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes.

    Alghamdi, Farah; Guo, Merry; Abdulkhalek, Samar; Crawford, Nicola; Amith, Schammim Ray; Szewczuk, Myron R

    2014-06-01

    Insulin-induced insulin receptor (IR) tyrosine kinase activation and insulin cell survival responses have been reported to be under the regulation of a membrane associated mammalian neuraminidase-1 (Neu1). The molecular mechanism(s) behind this process is unknown. Here, we uncover a novel Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B G-protein coupled receptor (GPCR), which is essential for insulin-induced IR activation and cellular signaling. Neu1, MMP-9 and neuromedin B GPCR form a complex with IRβ subunit on the cell surface. Oseltamivir phosphate (Tamiflu®), anti-Neu1 antibodies, broad range MMP inhibitors piperazine and galardin (GM6001), MMP-9 specific inhibitor (MMP-9i), and GPCR neuromedin B specific antagonist BIM-23127 dose-dependently inhibited Neu1 activity associated with insulin stimulated rat hepatoma cells (HTCs) that overly express human IRs (HTC-IR). Tamiflu, anti-Neu1 antibodies and MMP-9i attenuated phosphorylation of IRβ and insulin receptor substrate-1 (IRS1) associated with insulin-stimulated cells. Olanzapine, an antipsychotic agent associated with insulin resistance, induced Neu3 sialidase activity in WG544 or 1140F01 human sialidosis fibroblast cells genetically defective in Neu1. Neu3 antagonist 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and anti-Neu3 antibodies inhibited sialidase activity associated with olanzapine treated murine Neu4 knockout macrophage cells. Olanzapine attenuated phosphorylation of IGF-R and IRS1 associated with insulin-stimulated human wild-type fibroblast cells. Our findings identify a novel insulin receptor-signaling platform that is critically essential for insulin-induced IRβ tyrosine kinase activation and cellular signaling. Olanzapine-induced Neu3 sialidase activity attenuated insulin-induced IGF-R and IRS1 phosphorylation contributing to insulin resistance. PMID:24583283

  6. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu; Cao, Wenhong

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative s...

  7. Allergy reactions to insulin: effects of continuous subcutaneous insulin infusion and insulin analogues.

    RADERMECKER, Régis; Scheen, André

    2007-01-01

    The purification of animal insulin preparations and the use of human recombinant insulin have markedly reduced the incidence but not completely suppressed the occurrence of insulin allergy manifestations. Advances in technologies concerning the mode of delivery of insulin, i.e. continuous subcutaneous insulin infusion (CSII), and the use of insulin analogues, resulting from the alteration in the amino acid sequence of the native insulin molecule, may influence the immunogenicity and antigenic...

  8. Mild electrical stimulation with heat shock ameliorates insulin resistance via enhanced insulin signaling.

    Saori Morino

    Full Text Available Low-intensity electrical current (or mild electrical stimulation; MES influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72 alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration together with HS at 42 degrees C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor beta subunit (IRbeta and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12-15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.

  9. Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation

    Ng CM

    2016-04-01

    Full Text Available Chee Meng Ng,1 Hwei-San Loh,2 Kasturi Muthoosamy,1 Nanthini Sridewi,3 Sivakumar Manickam1 1Manufacturing and Industrial Processes Research Division, Faculty of Engineering, 2Faculty of Science, School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, Selangor, 3Faculty of Science and Defence Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia Purpose: The high aspect ratio of carbon nanotubes (CNTs allows the attachment of compounds that enhance the functionality of the drug vehicle. Considering this, use of CNTs as a multifunctional insulin carrier may be an interesting prospect to explore.Materials and methods: The carboxylic acid groups were functionalized on the sidewalls of single-walled CNTs (SWCNTs followed by diimidation to form amide bonds with the amine groups of the insulin.Results: Scanning transmission electron microscopy and transmission electron microscopy establish clear conjugation of insulin onto the surface of nanotube sidewalls. The incorporation of insulin further increased the solubility of SWCNTs in biological solution for the tested period of 5 months. Bicinchoninic acid assay confirms that 0.42 mg of insulin could be attached to every 1 mg of carboxylated SWCNTs.Conclusion: With the successful conjugation of insulin to SWCNTs, it opens up the potential use of SWCNTs as an insulin carrier which in need of further biological studies.Keywords: diimidation, CNT, SWCNT, increased solubility, carboxylation, drug carrier 

  10. Concentrated insulins: the new basal insulins

    Lamos EM; Younk LM; Davis SN

    2016-01-01

    Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with in...

  11. Virus-induced exacerbations in asthma and COPD

    Daisuke eKurai

    2013-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses.COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage.In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections.

  12. A common variation of the PTEN gene is associated with peripheral insulin resistance

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, Jørgen;

    2016-01-01

    ). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities....... RESULTS: The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single...

  13. Modulation of de novo purine biosynthesis leads to activation of AMPK and results in improved glucose handling and insulin sensitivity

    Sadasivan, Satish Kumar; Vasamsetti, Balamuralikrishna; Singh, Jaideep; Siddaraju, Nethra; Khan, Khaiser Mehdi; Oommen, Anup Mammen; Jagannath, Madanalli R; Rao, Raghavendra Pralhada

    2014-01-01

    Background AMP activated protein kinase (AMPK) regulates key metabolic reactions and plays a major role in glucose homeostasis. Activating the AMPK is considered as one of the potential therapeutic strategies in treating type-2 diabetes. However, targeting AMPK by small molecule mediated approach can be challenging owing to diverse isoforms of the enzyme and their varied combination in different tissues. In the current study we employ a novel strategy of achieving AMPK activation through incr...

  14. Acute kidney injury in stable COPD and at exacerbation

    Barakat MF

    2015-09-01

    Full Text Available MF Barakat,1 HI McDonald,1 TJ Collier,1 L Smeeth,1 D Nitsch,1 JK Quint1,2 1Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, 2Department of Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, UK Background: While acute kidney injury (AKI alone is associated with increased mortality, the incidence of hospital admission with AKI among stable and exacerbating COPD patients and the effect of concurrent AKI at COPD exacerbation on mortality is not known.Methods: A total of 189,561 individuals with COPD were identified from the Clinical Practice Research Datalink. Using Poisson and logistic regressions, we explored which factors predicted admission for AKI (identified in Hospital Episode Statistics in this COPD cohort and concomitant AKI at a hospitalization for COPD exacerbation. Using survival analysis, we investigated the effect of concurrent AKI at exacerbation on mortality (n=36,107 and identified confounding factors.Results: The incidence of AKI in the total COPD cohort was 128/100,000 person-years. The prevalence of concomitant AKI at exacerbation was 1.9%, and the mortality rate in patients with AKI at exacerbation was 521/1,000 person-years. Male sex, older age, and lower glomerular filtration rate predicted higher risk of AKI or death. There was a 1.80 fold (95% confidence interval: 1.61, 2.03 increase in adjusted mortality within the first 6 months post COPD exacerbation in patients suffering from AKI and COPD exacerbation compared to those who were AKI free.Conclusion: In comparison to previous studies on general populations and hospitalizations, the incidence and prevalence of AKI is relatively high in COPD patients. Coexisting AKI at exacerbation is prognostic of poor outcome. Keywords: acute renal failure, mortality, emphysema, chronic bronchitis, prognosis

  15. Treatment of patients with COPD and recurrent exacerbations: the role of infection and inflammation

    Santos, Salud; Marin, Alicia; Serra-Batlles, Joan; de la Rosa, David; Solanes, Ingrid; Pomares, Xavier; López-Sánchez, Marta; Muñoz-Esquerre, Mariana; Miravitlles, Marc

    2016-01-01

    Exacerbations of COPD represent an important medical and health care problem. Certain susceptible patients suffer recurrent exacerbations and as a consequence have a poorer prognosis. The effects of bronchial infection, either acute or chronic, and of the inflammation characteristic of the disease itself raise the question of the possible role of antibiotics and anti-inflammatory agents in modulating the course of the disease. However, clinical guidelines base their recommendations on clinical trials that usually exclude more severe patients and patients with more comorbidities, and thus often fail to reflect the reality of clinicians attending more severe patients. In order to discuss aspects of clinical practice of relevance to pulmonologists in the treatment and prevention of recurrent exacerbations in patients with severe COPD, a panel discussion was organized involving expert pulmonologists who devote most of their professional activity to day hospital care. This article summarizes the scientific evidence currently available and the debate generated in relation to the following aspects: bacterial and viral infections, chronic bronchial infection and its treatment with cyclic oral or inhaled antibiotics, inflammatory mechanisms and their treatment, and the role of computerized tomography as a diagnostic tool in patients with severe COPD and frequent exacerbations. PMID:27042040

  16. Nutritional Modulation of Insulin Resistance

    Martin O. Weickert

    2012-01-01

    Full Text Available Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM. Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts.

  17. Insulin degradation by adipose tissue is increased in human obesity

    Rafecas Jorba, Immaculada; Fernández López, José Antonio; Salinas, Isabel; X. Formiguera Sala; Remesar Betlloch, Xavier; Foz Sala, M. (Màrius); Alemany, Marià

    1995-01-01

    White adipose tissue samples from obese and lean patients were used for the estimation ofinsulin protease and insulin:glutathione transhydrogenase using 1251-labeled insulin. There was no activity detected in the absence of reduced glutathione, which indicates that insulin is cleaved in human adipose "tissue through reduction of the disulfide bridge between the chains. O bese patients showed higher transhydrogenase activity (per U tissue protein wt, per U tissue wt, and in the total adipose t...

  18. Exercise, pregnancy, and insulin sensitivity--what is new?

    Damm, Peter; Breitowicz, Bettina; Hegaard, Hanne

    2007-01-01

    Pregnancy is characterized by a marked physiological insulin resistance. Overweight and obesity or lack of physical activity can aggravate this reduced insulin sensitivity further. Increased insulin resistance has been associated with serious pregnancy complications, such as gestational diabetes...... mellitus (GDM) and pre-eclampsia. Recent studies clearly indicate that physical activity before and during pregnancy can reduce the risk of GDM and pre-eclampsia....

  19. Experimental study of the hexosamine biosynthesis pathway and insulin resistance

    FeiYE; JiangLI; Jin-ying; TIAN

    2004-01-01

    AIM: To set up the GDH method and the insulin resistance cell model for screening the glutamine:fructose-6-phosphate amidotransferase (GFAT) inhibitors. METHODS: Glutamine can be converted to glutamate by GFAT, then, affected with APAD to produce APADH by GDH. APADH showed a peak at the 360 nm wavelength. Each factor of the active system was regulated. After the insulin administration in HIRc cells, the GFAT activity and the insulin-induced glucose uptake were

  20. Classifying insulin regimens

    Neu, A; Lange, K; Barrett, T;

    2015-01-01

    Modern insulin regimens for the treatment of type 1 diabetes are highly individualized. The concept of an individually tailored medicine accounts for a broad variety of different insulin regimens applied. Despite clear recommendations for insulin management in children and adolescents with type 1...... diabetes there is little distinctiveness about concepts and the nomenclature is confusing. Even among experts similar terms are used for different strategies. The aim of our review--based on the experiences of the Hvidoere Study Group (HSG)--is to propose comprehensive definitions for current insulin...... variety of insulin regimens applied in each center, respectively. Furthermore, the understanding of insulin regimens has been persistently different between the centers since more than 20 yr. Not even the terms 'conventional' and 'intensified therapy' were used consistently among all members. Besides the...