WorldWideScience

Sample records for active dispersion tailored

  1. Dispersion-tailored active-fiber solitons

    van Tartwijk, Guido H. M.; Essiambre, René-Jean; Agrawal, Govind P.

    1996-12-01

    We show analytically that tailoring the fiber dispersion appropriately can cause optical solitons to propagate unperturbed, without emission of dispersive waves, in a distributed-gain fiber amplifier with a nonuniform gain profile. We apply our scheme to a bidirectionally pumped fiber amplifier and discuss the importance of higher-order nonlinear and dispersive effects for short solitons.

  2. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyzes, analytical sensitivity analyzes and gradient...... based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...

  3. Tailoring chromatic dispersion in chalcogenide-tellurite microstructured optical fiber

    Kohoutek, Tomas; Duan, Zhongchao; Kawashima, Hiroyasu; Cheng, Tonglei; Suzuki, Takenobu; Matsumoto, Morio; Misumi, Takashi; Ohishi, Yasutake

    2014-08-01

    We report fabrication of a highly nonlinear hybrid microstructured optical fiber composed of chalcogenide glass core and tellurite glass cladding. The flattened chromatic dispersion can be achieved in such an optical fiber with near zero dispersion wavelength at telecommunication wavelengths λ = 1.35-1.7 μm, which cannot be achieved in chalcogenide glass optical fibers due to their high refractive index, i.e. n > 2.1. We demonstrate a hybrid 4-air hole chalcogenide-tellurite optical fiber (Δn = 0.25) with flattened chromatic dispersion around λ = 1.55 μm. In optimized 12-air hole optical fiber composed of the same glasses, the chromatic dispersion values were achieved between -20 and 32 ps/nm/km in a broad wavelength range of 1.5-3.8 μm providing the fiber with extremely high nonlinear coefficient 86,000 km-1W-1. Hybrid chalcogenide/tellurite fibers pumped with the near infrared lasers give good promise for broadband optical amplification, wavelength conversion, and supercontinuum generation in the near- to mid-infrared region.

  4. An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper

    Chen, Z.; Ma, S.; Dutta, N. K.

    2010-08-01

    In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.

  5. TAILORING OF FLATTENED DISPERSION IN TRIANGULAR-LATTICE PHOTONIC CRYSTAL FIBER

    Sandhir Kumar Singh

    2011-12-01

    Full Text Available The interest of researchers and engineers in several laboratories, since the1980s, has been attracted by the ability to structure materials on the scale of the optical wavelength, a fraction of micrometers or less, in order to develop new optical medium, known as photonic crystals . Photonic crystals rely on a regular morphological microstructure of air-holes, incorporated into the material, which radically alters its optical properties. In Photonic Crystal Fiber (PCF it is possible to realize flat dispersion over a wide wavelength range that cannot be realized with a conventional single-mode fiber. In PCFs, the dispersion can be controlled and tailored with unprecedented freedom. In fact, due to the high refractive index difference between silica and air, and to the flexibility of changing air-hole sizes and patterns, the waveguide contribution to the dispersion parameter can be significantly changed, thus obtaining unusual position of the zero dispersion wavelength, as well as particular values of the dispersion curve slope. In particular, by manipulating the air- hole radius or the lattice period of the micro structured cladding, it is possible to control the zero-dispersion wavelength, which can be tuned over a very wide range, or the dispersion curves, which can be engineered to be ultra flattened. In this paper the geometric parameters of triangular PCF have been properly changed to optimize the dispersion compensation over a wide wavelength range.

  6. Supercontinuum generation in dispersion-tailored lead-silicate fiber taper

    Hu, Hongyu; Li, Wenbo; Ma, Shaozhen; Dutta, Niloy K.

    2013-01-01

    In this paper we numerically study the coherence properties of the supercontinuum generated in a lead-silicate microstructured fiber taper, with an increasing core radius along the propagation distance which tailors the dispersion property. Simulations are conducted by adding quantum noise into the input pulse at 1.55 μm, and the complex degree of first-order coherence function and the overall spectral coherence degree are both calculated. Although the spectral broadening is comparable, the coherence degree is shown to vary with different pumping conditions. It decreases with higher peak power and longer duration due to the significant competition between the soliton-fission process and the noise-seeded modulation instability. By controlling the input pulse parameters, it is possible to generate perfectly coherent supercontinuum with a flat broadened spectrum extending to ~5μm in this fiber taper.

  7. Coherence Properties of Supercontinuum Generated in Dispersion-Tailored Lead-Silicate Microstructured Fiber Taper

    Hu, Hongyu; Li, Wenbo; Ma, Shaozhen; Dutta, Niloy K.

    2013-05-01

    This article details the numerically studied coherence properties of the supercontinuum generated in a lead-silicate microstructured fiber taper, with an increasing core radius along the propagation distance that tailors the dispersion property. Simulations are conducted by adding quantum noise into the input pulse at 1.55 μm, and the complex degree of first-order coherence function and the overall spectral coherence degree are both calculated. Although the spectral broadening is comparable, the coherence degree is shown to vary with different pumping conditions. It decreases with higher peak power and longer duration due to the significant competition between the soliton-fission process and the noise-seeded modulation instability. By controlling the input pulse parameters, it is possible to generate a perfectly coherent supercontinuum with a flat broadened spectrum extending from ~1 μm to ~5μm in this fiber taper.

  8. Tailorable chiroptical activity of metallic nanospiral arrays

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-01

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation

  9. Control of millimeter wave propagation by tailoring the dispersive properties of the medium

    Full Text:We have developed a space - frequency model for the propagation of a high frequency signal A an arbitrary dispersive medium. The model can be solved analytically under certain conditions for a Gaussian pulse, revealing the conditions under which pulse compression or expansion occurs. It can also be shown that under appropriate conditions the delay time of the pulse can be stretched almost indefinitely. By studying a Gaussian pulse propagating in air described by the standard dispersion model of Liebe we were able to shoe, that even in a substance as trivial as standard atmospheric air some of the effects that we predict are pronounced especially for carrier frequencies in the vicinity of the 60 GHz O2 absorption line. In this case the calculations were carried both analytically and numerically. We further discuss how materials and wave-guides might be tailored for a certain pulse characteristics in order to achieve an a priori-defined amount of compression and delay

  10. Effectiveness of an online computer-tailored physical activity intervention in a real-life setting

    Spittaels, Heleen; Bourdeaudhuij, de, I.; Brug, Hans; Vandelanotte, C.

    2007-01-01

    textabstractThe aim of this study was to evaluate the effectiveness of a computer-tailored physical activity intervention delivered through the Internet in a real-life setting. Healthy adults (n = 526), recruited in six worksites, between 25 and 55 years of age were randomized to one of three conditions receiving, respectively, (i) online-tailored physical activity advice + stage-based reinforcement e-mails, (ii) online-tailored physical activity advice only, (iii) online non-tailored standar...

  11. Efficacy of tailored-print interventions to promote physical activity: a systematic review of randomised trials

    Plotnikoff Ronald C; James Erica L; Short Camille E; Girgis Afaf

    2011-01-01

    Abstract Objective Computer-tailored physical activity interventions are becoming increasingly popular. Recent reviews have comprehensively synthesised published research on computer-tailored interventions delivered via interactive technology (e.g. web-based programs) but there is a paucity of synthesis for interventions delivered via traditional print-based media in the physical activity domain (i.e. tailored-print interventions). The current study provides a systematic review of the tailore...

  12. Active coatings technologies for tailorable military coating systems

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  13. Tailored dispersion profile in controlling optical solitons in a tapered parabolic index fiber

    Prakash, S. Arun; Malathi, V.; Mani Rajan, M. S.

    2016-03-01

    We investigate the soliton dynamics in tapered parabolic index fibers via symbolic computation for a variety of dispersion profiles to inspect how a specific dispersion profile controls the optical soliton. By means of AKNS procedure, Lax pair is constructed for nonlinear Schrödinger equation with variable coefficients. Using obtained Lax pair, multi-soliton solutions are generated via Darboux transformation technique. Using multi-soliton solutions, soliton dynamics in tapered parabolic index fiber with the hyperbolic, Gaussian, exponential, and linear profiles are discussed. Results obtained in this study will be of certain potential application on construction of the nonlinear optical devices by soliton control. Results obtained in this study will be of certain value to the studies on the propagation and application of the soliton in the tapered parabolic index fiber and dispersion-managed fiber system.

  14. Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications

    Duan, Zhongchao; Liao, Meisong; Yan, Xin; Kito, Chihiro; Suzuki, Takenobu; Ohishi, Yasutake

    2011-07-01

    We report the fabrication of tellurite composite microstructured optical fibers (CMOFs) which consist of a TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) tellurite glass core and TeO2-ZnO-Na2O-La2O3 (TZNL) tellurite glass cladding. Flattened chromatic dispersion and tunable zero dispersion wavelength (ZDW) were realized in the small core diameter (˜1.5 µm) fiber with six surrounding air holes. The optical loss was measured to be about 4.0 dB/m in the spectral range of 1510-1640 nm. Supercontinuum (SC) generation was demonstrated by a femtosecond laser pumping at 1.55 µm. The threshold pump power for this novel tellurite CMOF was the lowest among tellurite microstructured optical fibers (MOFs).

  15. Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma

    Grafting fluorine onto graphene oxide (GO) by CF4 plasma treatment was investigated in this study. An easy, low-cost, and effective synthesis of the high-dispersive fluorinated GO (FGO) with tunable atomic ratio of F/O (RF/O) has been realized and the RF/O can be readily manipulated just by adjusting the reaction time. The influence of plasma treatment time on the microstructure, morphology, and dispersion of graphene nanosheets was systematically analyzed. X-ray photoelectron spectroscopy analysis confirmed that fluorine has been grafted onto graphene, and the RF/O was gradually increased to 3.54 for the FGO treated for 20 min. Morphology investigation indicated that etching on the edge of GO occurred during the fluorination. The dispersion performance of FGO in water reduced continuously, which in N,N-dimethylacetamide (DMAc) increased firstly and then decreased with the increase in plasma time. The zeta potentials of FGO in DMAc reached the lowest at −28.6 mV when GO was treated for 10 min. The dispersion of FGO in water should be attributed to the decrease of C–O group, while there was a same variation trend of FGO zeta potential in DMAc as the value of C–F content, regardless of RF/O, CF2 group content and CF3 group content. The GO film was super-hydrophilic and the film of FGO treated for 20 min was found to be neither hydrophilic nor hydrophobic

  16. The working mechanisms of an environmentally tailored physical activity intervention for older adults: a randomized controlled trial

    Mudde Aart N; de Vries Hein; van Stralen Maartje M; Bolman Catherine; Lechner Lilian

    2009-01-01

    Abstract Background The aim of this study was to explore the working mechanisms of a computer tailored physical activity intervention for older adults with environmental information compared to a basic tailored intervention without environmental information. Method A clustered randomized controlled trial with two computer tailored interventions and a no-intervention control group was conducted among 1971 adults aged ≥ 50. The two tailored interventions were developed using Intervention Mappin...

  17. Smart tailoring of real-time physical activity coaching systems

    Akker, op den, Harm

    2014-01-01

    The lack of physical activity in the general population is recognized internationally as an important societal issue. For apparently healthy adults, inactivity leads to overweight, and increased risk of numerous chronic and acute diseases including coronary heart disease, type 2 diabetes, as well as breast and colon cancers. This Thesis deals with the promotion of daily life physical activity — walking, cycling, gardening, or housework — all the activities regularly performed in everyday life...

  18. Smart tailoring of real-time physical activity coaching systems

    Akker, op den Harm

    2014-01-01

    The lack of physical activity in the general population is recognized internationally as an important societal issue. For apparently healthy adults, inactivity leads to overweight, and increased risk of numerous chronic and acute diseases including coronary heart disease, type 2 diabetes, as well as

  19. Feasibility of Using Computer-Tailored and Internet-Based Interventions to Promote Physical Activity in Underserved Populations

    Pekmezi, Dorothy W.; Williams, David M.; Dunsiger, Shira; Jennings, Ernestine G.; Lewis, Beth A.; Jakicic, John M.; Marcus, Bess H

    2010-01-01

    Objective: Computer-tailored and Internet-based interventions to promote physical activity behavior have shown some promise, but only few have been tested among African Americans. We examined the feasibility and efficacy of three 1-year, multiple contact physical activity interventions (Tailored Internet, Tailored Print, Standard Internet) in a subsample of African American participants (n = 38) enrolled in a randomized controlled trial. Materials and Methods: Participants randomly assigned t...

  20. Efficacy of 'Tailored Physical Activity' in reducing sickness absence among health care workers

    Nygaard Andersen, Lotte; Juul-Kristensen, Birgit; Roessler, Kirsten Kaya; Herborg, Lene Gram; Sørensen, Thomas Lund; Søgaard, Karen

    2013-01-01

    Health care workers have high physical work demands, involving patient handling and manual work tasks. A strategy for prevention of work-related musculoskeletal disorders can enhance the physical capacity of the health care worker. The aim of this study is to evaluate the efficacy of 'Tailored...... Physical Activity' for health care workers in the Sonderborg Municipality....

  1. SOFT MALLEABLE VESICLES TAILORED FOR ENHANCED DELIVERY OF ACTIVE AGENTS THROUGH THE SKIN: AN UPDATE

    Sandeep Kumar Parihar*, Mithun Bhowmick, Rajeev Kumar and Balkrishna Dubey

    2013-01-01

    Ethosomes are noninvasive delivery carriers that enable drugs to reach the deep skin layers and/or the systemic circulation. These are soft, malleable vesicles tailored for enhanced delivery of active agents. They are composed mainly of phospholipids, high concentration of ethanol and water. The high concentration of ethanol makes the ethosomes unique, as ethanol is known for its disturbance of skin lipid bilayer organization; therefore, when integrated into ...

  2. Dispersion relations and sum rules for natural optical activity

    Dispersion relations and sum rules are derived for the complex rotatory power of an arbitrary linear (nonmagnetic) isotropic medium showing natural optical activity. Both previously known dispersion relations and sum rules as well as new ones are obtained. It is shown that the Rosenfeld-Condon dispersion formula is inconsistent with the expected asymptotic behavior at high frequencies. A new dispersion formula based on quantum eletro-dynamics removes this inconsistency; however, it still requires modification in the low-frequency limit. (Author)

  3. Results of a Randomized Trial Testing Messages Tailored to Participant-Selected Topics Among Female College Students: Physical Activity Outcomes

    Quintiliani, Lisa M.; Campbell, Marci K.; Bowling, J. Michael; Steck, Susan; Haines, Pamela S.; DeVellis, Brenda M.

    2016-01-01

    Background A better understanding of identifying tailoring variables would improve message design. Tailoring to a behavior that a participant selects as one they would like to work on may increase message relevance, and thus effectiveness. This trial compared 3 groups: message tailored to physical activity as a participant-selected topic (choice), message tailored to physical activity as an expert-determined topic (expert), or nontailored message (comparison). Methods 408 female college students received web-delivered computer-tailored messages on physical activity. Outcomes were immediate and 1-month follow-up changes in psychosocial, goal-related, and behavioral variables related to physical activity. Results Participants were predominately non-Hispanic White (73.8%). Change in self-efficacy and goal commitment at immediate follow-up and vigorous physical activity at 1-month follow-up was greater in the expert versus comparison group. Change in goal commitment at immediate follow-up was lower in the choice versus expert group. In the expert group, those choosing physical activity as their selected topic perceived the goal to be easier at immediate follow-up compared with those receiving unmatched messages. Conclusions Findings supported tailoring to an expert-determined topic. However, based on the beneficial change in perceived goal difficulty when topics matched, future research should encourage synchrony between participant-selected topics and expert recommendations. PMID:20683094

  4. Towards self-similar propagation in a dispersion tailored and highly nonlinear segmented bandgap fiber at 2.8 micron

    Biswas, Piyali; Biswas, Abhijit; Pal, Bishnu P

    2016-01-01

    We numerically demonstrate self-similar propagation of parabolic optical pulses through a highly nonlinear and passive specialty photonic bandgap fiber at 2.8 micron. In this context, we have proposed a scheme endowed with a rapidly varying, but of nearly-mean-zero longitudinal dispersion and modulated nonlinear profile in order to achieve self-similarity of the formed parabolic pulse propagating over longer distances. To implement the proposed scheme, we have designed a segmented bandgap fiber with suitably tapered counterparts to realize such customized dispersion with chalchogenide glass materials. A self-similar parabolic pulse with full-width-at-half-maxima of 4.12 ps and energy of ~ 39 pJ as been achieved at the output. Along with a linear chirp spanning over the entire pulse duration, 3dB spectral broadening of about 38 nm at the output has been reported.

  5. Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF{sub 4} plasma

    Zhou, Baoming; Qian, Xiaoming; Li, Mingming; Ma, Jilan; Liu, Liangsen, E-mail: 83019163@163.com; Hu, Chuansheng; Xu, Zhiwei; Jiao, Xiaoning [Tianjin Polytechnic University, Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles (China)

    2015-03-15

    Grafting fluorine onto graphene oxide (GO) by CF{sub 4} plasma treatment was investigated in this study. An easy, low-cost, and effective synthesis of the high-dispersive fluorinated GO (FGO) with tunable atomic ratio of F/O (R{sub F/O}) has been realized and the R{sub F/O} can be readily manipulated just by adjusting the reaction time. The influence of plasma treatment time on the microstructure, morphology, and dispersion of graphene nanosheets was systematically analyzed. X-ray photoelectron spectroscopy analysis confirmed that fluorine has been grafted onto graphene, and the R{sub F/O} was gradually increased to 3.54 for the FGO treated for 20 min. Morphology investigation indicated that etching on the edge of GO occurred during the fluorination. The dispersion performance of FGO in water reduced continuously, which in N,N-dimethylacetamide (DMAc) increased firstly and then decreased with the increase in plasma time. The zeta potentials of FGO in DMAc reached the lowest at −28.6 mV when GO was treated for 10 min. The dispersion of FGO in water should be attributed to the decrease of C–O group, while there was a same variation trend of FGO zeta potential in DMAc as the value of C–F content, regardless of R{sub F/O}, CF{sub 2} group content and CF{sub 3} group content. The GO film was super-hydrophilic and the film of FGO treated for 20 min was found to be neither hydrophilic nor hydrophobic.

  6. Generation and Stability Analysis of Self Similar Pulses Through Dispersion Tailored Passive Microstructured Optical Fibers in Mid Infrared Regime

    Biswas, Piyali; Biswas, Abhijit; Ghosh, Somnath

    2015-01-01

    We report a numerical study on generation and stability of a parabolic pulse during its propagation through a highly nonlinear specialty optical fiber. Here, we have generated a parabolic pulse at 2.1 $\\mu$m wavelength from a Gaussian input pulse with 1.9 ps FWHM and 75 W peak power after travelling through only 20 cm length of a chalcogenide glass based microstructured optical fiber (MOF). The stability of such a parabolic pulse has been analyzed by introducing a variable loss profile within the loss window of the MOF. Moreover, three different dispersion regimes of propagation have been considered to achieve most stable propagation of the pulse.

  7. Return dispersion, stock market liquidity and aggregate economic activity

    Stavros Degiannakis; Andreas Andrikopoulos; Timotheos Angelidis; Christos Floros

    2013-01-01

    This paper examines the effect of return dispersion on the dynamics of stock market liquidity, risk and return. Moreover, the importance of return dispersion in forecasting aggregate economic activity is rediscovered in the context of a regime switching model that accounts for stock market fluctuations and their association with the state of the economy. We find that there is a bidirectional, Granger-causal association between illiquidity and return dispersion in the U.S. stock market. The em...

  8. Efficacy of 'Tailored Physical Activity' on reducing sickness absence among health care workers

    Andersen, Lotte Nygaard; Juul-Kristensen, Birgit; Roessler, Kirsten Kaya;

    2015-01-01

    AIM: The aim was to evaluate efficacy of "Tailored Physical Activity" (TPA) versus a reference group (REF) in reducing the number of self-reported days of sickness absence for health care workers in the Sonderborg Municipality. METHODS: In this randomised controlled trial, all participants (n = 54......) received health guidance for 1.5 h and were randomised to TPA or REF. The primary aim was to make a comparison of participants' self-reported sickness absence due to musculoskeletal troubles measured three months after baseline. Secondary outcomes included anthropometric, health-related and physical......), increasing work ability from 7.3 to 8.1 (p = .04) and decreasing kinesiophobia from 26.7 to 22.5 (p < .01). A trend towards a significant improvement was seen for aerobic capacity while no effect of the intervention was found on productivity, BMI or grip strength. CONCLUSION: This physical activity...

  9. Frequency dispersion of electrokinetically activated Janus particles

    Boymelgreen, Alicia; Balli, Tov; Yossifon, Gilad; Miloh, Touvia

    2015-11-01

    We examine the influence of the applied frequency of the electric field on the induced-charge electroosmotic flow around a metallo-dielectric Janus particle. Previously, we have used three dimensional-two component micro-particle-image-velocimetry (3D-2C μ PIV) around a stagnant particle, to illustrate the presence of a number of competing effects including dielectrophoresis and electrohydrodynamic flow which distort both the strength and shape of the frequency dispersion predicted for pure induced-charge effects. Here, we extend this work by examining the frequency dispersion of mobile Janus particles of different sizes (3 - 15 μm in diameter) at different electrolyte concentrations. In all cases, towards the DC limit, and in the frequency domain where previously EHD flow was shown to dominate, the velocity of a mobile particle decays to zero. At the same time significant variations in the frequency dispersion, including its shape and the value for maximum velocity are recorded as a function of both electrolyte concentration and particle size. This work is of both fundamental and practical importance and may be used to further refine non-linear electrokinetic theory and optimize the application of Janus particles as carriers in lab-on-a-chip analysis systems.

  10. SOFT MALLEABLE VESICLES TAILORED FOR ENHANCED DELIVERY OF ACTIVE AGENTS THROUGH THE SKIN: AN UPDATE

    Sandeep Kumar Parihar*, Mithun Bhowmick, Rajeev Kumar and Balkrishna Dubey

    2013-01-01

    Full Text Available Ethosomes are noninvasive delivery carriers that enable drugs to reach the deep skin layers and/or the systemic circulation. These are soft, malleable vesicles tailored for enhanced delivery of active agents. They are composed mainly of phospholipids, high concentration of ethanol and water. The high concentration of ethanol makes the ethosomes unique, as ethanol is known for its disturbance of skin lipid bilayer organization; therefore, when integrated into a vesicle membrane, it gives that vesicle the ability to penetrate the stratum corneum. Also, because of their high ethanol concentration, the lipid membrane is packed less tightly than conventional vesicles but has equivalent stability, allowing a more malleable structure and improves drug distribution ability in stratum corneum lipids. The Ethosomes were found to be suitable for various applications within the pharmaceutical, biotechnology, veterinary, cosmetic, and nutraceutical markets. These “soft vesicles” represents novel vesicular carrier for enhanced delivery to/through skin.

  11. A Systematic Review of Randomized Controlled Trials on the Effectiveness of Computer-Tailored Physical Activity and Dietary Behavior Promotion Programs: an Update

    Broekhuizen, Karen; Kroeze, Willemieke; van Poppel, Mireille NM; Oenema, Anke; Brug, Johannes

    2012-01-01

    Background A review update is necessary to document evidence regarding the effectiveness of computer-tailored physical activity and nutrition education. Purpose The purpose of this study was to summarize the latest evidence on the effectiveness of computer-tailored physical activity and nutrition education, and to compare the results to the 2006 review. Methods Databases were searched for randomized controlled trials evaluating computer-tailored physical activity and nutrition education aimed...

  12. Qualitative and quantitative research into the development and feasibility of a video-tailored physical activity intervention

    Mummery W Kerry

    2011-07-01

    Full Text Available Abstract Background Continued low adherence to physical activity recommendations illustrates the need to refine intervention strategies and increase their effectiveness. The purpose of this study was to conduct formative research related to the development of a next generation of computer-tailored interventions that use online tailored video-messages to increase physical activity. Methods Five focus groups (n = 30, aimed at males and females, aged between 35 and 60 years, that do not meet the physical activity recommendation, were conducted to allow in-depth discussion of various elements related to the development of an online video-tailored intervention. In addition, a series of questions were delivered to a random sample (n = 1261 of Australians, using CATI survey technology, to gain more information and add a quantitative assessment of feasibility related to the development of the intervention. Focus group data was transcribed, and summarised using Nvivo software. Descriptive and frequency data of the survey was obtained using SPSS 18.0. Results Nearly all of the focus group participants supported the concept of a video-tailored intervention and 35.8% of survey participants indicated that they would prefer a video-based over a text-based intervention. Participants with a slow internet-connection displayed a lower preference for video-based advice (31.9%; however less than 20% of the survey sample indicated that downloading videos would be slow. The majority of focus group and survey participants did not support the idea of using mobile phones to receive this kind of intervention and indicated that video-tailored messages should be shorter than 5 minutes. Video-delivery of content is very rich in information, which increases the challenge to appropriately tailor content to participant characteristics; focus-group outcomes indicated a large diversity in participant preferences. 52.4% of survey participants indicated that the videos should be

  13. Correlates of the intention to implement a tailored physical activity intervention: perceptions of intermediaries.

    Peels, Denise; Mudde, Aart; Bolman, Catherine; Golsteijn, Rianne; de Vries, Hein; Lechner, Lilian

    2014-02-01

    The public health impact of health behaviour interventions is highly dependent on large-scale implementation. Intermediaries-intervention providers-determine to a large extent whether an intervention reaches the target population, and hence its impact on public health. A cross-sectional study was performed to identify the correlates of intermediaries' intention to implement a computer-tailored physical activity intervention. According to theory, potential correlates are intervention characteristics, organisational characteristics, socio-political characteristics and intermediary characteristics. This study investigated whether intermediary characteristics mediated the association between the intervention, organisational and socio-political characteristics and intention to implement the intervention. Results showed that intervention characteristics (i.e., observability (B = 0.53; p = 0.006); relative advantage (B = 0.79; p = 0.020); complexity (B = 0.80; p responsibility (B = 0.66; p ≤ 0.001); capacity (B = 0.83; p social support received by intermediary organisations (B = 0.81; p strategy. Since self-efficacy and social norms perceived by the intermediary organisations partially mediated the effects of other variables on intention to implement the intervention (varying between 29% and 84%), these factors should be targeted to optimise the effectiveness of the implementation strategy. PMID:24518647

  14. Using online computer tailoring to promote physical activity: a randomized trial of text, video, and combined intervention delivery modes.

    Soetens, Katja C M; Vandelanotte, Corneel; de Vries, Hein; Mummery, Kerry W

    2014-12-01

    Website-delivered interventions are increasingly used to deliver physical activity interventions, yet problems with engagement and retention result in reduced effectiveness. Hence, alternative modes of online intervention delivery need to be explored. Therefore, this study aimed to evaluate the acceptability and effectiveness of a computer-tailored physical activity intervention delivered on the Internet in 3 delivery modes: video, text, or both. Australian adults (N = 803), recruited through e-mail, were randomized into the three delivery modes and received personal physical activity advice. Intervention content was identical across groups. Repeated measures analyses of variance were used to compare the three groups regarding acceptability, website usability, and physical activity. Participants in the video group accepted the content of the physical activity advice significantly better (F = 5.59; p website (F = 21.19; p < .001) compared with the text and combination groups. Total physical activity improved significantly over time in all groups (F = 3.95; p < .01). Although the combination group increased physical activity the most, few significant differences between groups were observed. Providing video-tailored feedback has advantages over the conventional text-tailored interventions; however, this study revealed few behavioral differences. More studies, examining alternative delivery modes, that can overcome the limitations of the present study, are needed. PMID:24749983

  15. Effects of individually tailored physical and daily activities in nursing home residents on activities of daily living, physical performance and physical activity level

    Andresen, Mette; Frändin, Kerstin; Bergland, Astrid;

    2012-01-01

    Background: Nursing home residents are extremely inactive and deterioration in health and an increasing dependence in activities of daily living (ADL) are common. Physical activity and exercise play a major role in the preservation of physical function and quality of life late in life. However......, evidence for the benefit of rehabilitation in nursing home residents is conflicting and inconclusive. Objective: To evaluate the effect of an individually tailored intervention program of 3 months, for nursing home residents, on ADL, balance, physical activity level, mobility and muscle strength. Methods......: In this single-blind randomized clinical trial with parallel groups, nursing home residents 1 64 years of age from three Nordic countries were included. The intervention group (IG) was assigned to individually tailored physical and daily activities, while the control group (CG) received ordinary care...

  16. Individually tailored physical and daily activities for residents in nursing home settings : a Scandinavian multi-centre study

    Grönstedt, Helena

    2013-01-01

    The overall purpose of this thesis was to describe the impact of an individually tailored intervention programme, in nursing home settings, on physical capacity, degree of dependence in activities of daily living (ADL), long-term participation in physical and/or daily activities, and self-rated well-being. The different aims were to present the rationale and design of the study to describe the levels of physical and cognitive func tion, dependence ...

  17. Correlates of the Intention to Implement a Tailored Physical Activity Intervention: Perceptions of Intermediaries

    Denise Peels

    2014-02-01

    Full Text Available The public health impact of health behaviour interventions is highly dependent on large-scale implementation. Intermediaries—intervention providers—determine to a large extent whether an intervention reaches the target population, and hence its impact on public health. A cross-sectional study was performed to identify the correlates of intermediaries’ intention to implement a computer-tailored physical activity intervention. According to theory, potential correlates are intervention characteristics, organisational characteristics, socio-political characteristics and intermediary characteristics. This study investigated whether intermediary characteristics mediated the association between the intervention, organisational and socio-political characteristics and intention to implement the intervention. Results showed that intervention characteristics (i.e., observability (B = 0.53; p = 0.006; relative advantage (B = 0.79; p = 0.020; complexity (B = 0.80; p < 0.001; compatibility (B = 0.70; p < 0.001, organisational characteristics (i.e., type of organization (B = 0.38; p = 0.002; perceived task responsibility (B = 0.66; p ≤ 0.001; capacity (B = 0.83; p < 0.001, and the social support received by intermediary organisations (B = 0.81; p < 0.001 were associated with intention to implement the intervention. These factors should thus be targeted by an implementation strategy. Since self-efficacy and social norms perceived by the intermediary organisations partially mediated the effects of other variables on intention to implement the intervention (varying between 29% and 84%, these factors should be targeted to optimise the effectiveness of the implementation strategy.

  18. Usability and acceptability of a website that provides tailored advice on falls prevention activities for older people.

    Nyman, Samuel R; Yardley, Lucy

    2009-03-01

    This article presents the usability and acceptability of a website that provides older people with tailored advice to help motivate them to undertake physical activities that prevent falls. Views on the website from interviews with 16 older people and 26 sheltered housing wardens were analysed thematically. The website was well received with only one usability difficulty with the action plan calendar. The older people selected balance training activities out of interest or enjoyment, and appeared to carefully add them into their current routine. The wardens were motivated to promote the website to their residents, particularly those who owned a computer, had balance problems, or were physically active. However, the participants noted that currently a minority of older people use the Internet. Also, some older people underestimated how much activity was enough to improve balance, and others perceived themselves as too old for the activities. PMID:19218310

  19. Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters

    Suo, Hongri

    2015-02-25

    © 2015, Springer Science+Business Media New York. A series of ordered hexagonal mesoporous zeolites have been successfully synthesized by the assembly of various preformed aluminosilicates zeolite (MFI, FAU, BEA etc.) with surfactants (cetyltrimethylammonium chloride) under hydrothermal conditions. These unique samples were further characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption, infrared spectroscopy. Characterization results showed that these samples contain primary and secondary structural building units of various zeolites, which may be responsible for their distinguished acidic strength, suggesting that the acidic strength of these mesoporous silicoaluminophosphates could be tailored and controlled. Furthermore, the prepared samples were catalytically active in the cracking of cumene.

  20. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-02-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

  1. Activity pacing for osteoarthritis symptom management: study design and methodology of a randomized trial testing a tailored clinical approach using accelerometers for veterans and non-veterans

    Geisser Michael E

    2011-08-01

    Full Text Available Abstract Background Osteoarthritis (OA is a prevalent chronic disease and a leading cause of disability in adults. For people with knee and hip OA, symptoms (e.g., pain and fatigue can interfere with mobility and physical activity. Whereas symptom management is a cornerstone of treatment for knee and hip OA, limited evidence exists for behavioral interventions delivered by rehabilitation professionals within the context of clinical care that address how symptoms affect participation in daily activities. Activity pacing, a strategy in which people learn to preplan rest breaks to avoid symptom exacerbations, has been effective as part of multi-component interventions, but hasn't been tested as a stand-alone intervention in OA or as a tailored treatment using accelerometers. In a pilot study, we found that participants who underwent a tailored activity pacing intervention had reduced fatigue interference with daily activities. We are now conducting a full-scale trial. Methods/Design This paper provides a description of our methods and rationale for a trial that evaluates a tailored activity pacing intervention led by occupational therapists for adults with knee and hip OA. The intervention uses a wrist accelerometer worn during the baseline home monitoring period to glean recent symptom and physical activity patterns and to tailor activity pacing instruction based on how symptoms relate to physical activity. At 10 weeks and 6 months post baseline, we will examine the effectiveness of a tailored activity pacing intervention on fatigue, pain, and physical function compared to general activity pacing and usual care groups. We will also evaluate the effect of tailored activity pacing on physical activity (PA. Discussion Managing OA symptoms during daily life activity performance can be challenging to people with knee and hip OA, yet few clinical interventions address this issue. The activity pacing intervention tested in this trial is designed to help

  2. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-06-01

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm). PMID:27219645

  3. A tailored treatment strategy

    Lip, G Y H; Potpara, T; Boriani, G; Blomström-Lundqvist, C

    2016-01-01

    hypertension, heart failure, diabetes mellitus and sleep apnoea should be actively looked for and managed in a holistic approach to AF management. The objective of this review is to provide an overview of modern AF stroke prevention with a focus on tailored treatment strategies. Biomarkers and genetic factors...

  4. Fitting Fitness into Women's Lives: Effects of a Gender-tailored Physical Activity Intervention

    Segar, Michelle; Jayaratne, Toby; Hanlon, Jennifer; Richardson, Caroline R

    2002-01-01

    Although regular exercise has important health benefits, women's physical activity participation remains low. Addressing the gender- and generation-specific barriers in an intervention may help women become more physically active. Fifty women (mean age = 45 years) participated in a six-session cognitive-behavioral intervention. Baseline, post-intervention, and follow-up data were collected. Total physical activity levels increased from baseline to post-intervention and were maintained at long...

  5. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1991-09-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

  6. Tailoring group velocity by topology optimization

    Stainko, Roman; Sigmund, Ole

    up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. An example concerning the design of a wide bandwidth, constant low group velocity waveguide demonstrate the e±ciency of the method.......The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyses. The goal of the optimization process is to come...

  7. Room-temperature synthesis of BiOI with tailorable (001) facets and enhanced photocatalytic activity.

    He, Rongan; Zhang, Jinfeng; Yu, Jiaguo; Cao, Shaowen

    2016-09-15

    The photocatalytic activity of bismuth oxyhalides largely depends on their morphologies and microstructures. In this work, hierarchically structured bismuth oxyiodide (BiOI) with tunable ratios of (110) and (001) facets are fabricated through a facile route combining solid-state reaction with subsequent hydrolysis at room temperature. The hierarchical structures endow BiOI with excellent visible-light photocatalytic performance for phenol degradation. Besides, the optimal ratio of (001) and (110) surfaces also plays an important role in enhancing the photocatalytic activity of BiOI. DFT calculation demonstrates that a surface heterojunction formed between (001) and (110) surfaces can improve the separation of electrons and holes on different surfaces and thus enhance the photocatalytic activity. PMID:27295322

  8. Tailored ceramics

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  9. Investigating message-framing effects in the context of a tailored intervention promoting physical activity.

    Riet, van 't J.P.; Ruiter, R.A.C.; Werrij, M.Q.; Vries, de H.

    2010-01-01

    Health-promoting messages can be framed in terms of the gains associated with healthy behaviour or the losses associated with unhealthy behaviour. It has been argued that gain-framed messages promoting physical activity (PA) are more effective than loss-framed messages, but empirical findings are in

  10. Tailoring real-time physical activity coaching systems: a literature survey and model

    Akker, op den Harm; Jones, Valerie M.; Hermens, Hermie J.

    2014-01-01

    Technology mediated healthcare services designed to stimulate patients’ self-efficacy are widely regarded as a promising paradigm to reduce the burden on the healthcare system. The promotion of healthy, active living is a topic of growing interest in research and business. Recent advances in wireles

  11. Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli

    Jahnsen, Rasmus D; Sandberg-Schaal, Anne; Vissing, Karina Juul;

    2014-01-01

    Infections with multidrug-resistant pathogens are an increasing concern for public health. Recently, subtypes of peptide-peptoid hybrids were demonstrated to display potent activity against multidrug-resistant Gram-negative bacteria. Here, structural variation of these antibacterial peptidomimetics...... mammalian cells. Thus, lead compounds with a high selectivity toward killing of clinically important multidrug-resistant E. coli were identified....

  12. Activated Carbon Nanochains with Tailored Micro-Meso Pore Structures and Their Application for Supercapacitors

    Zhang, Miao; He, Chunnian; Liu, Enzuo;

    2015-01-01

    Carbon nanochains (CNCs) were synthesized by a facile chemical vapor deposition process consisting of a 1D chain of interconnected carbon nano-onions for potential application in supercapacitors. In this study, the CNCs were further activated by a chemical method using potassium hydroxide (KOH) a...

  13. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation

    Lu, Yizhong; Jiang, Yuanyuan; Chen, Wei

    2014-02-01

    Here, we demonstrate that graphene oxide (GO) can act as a structure-directing agent for the formation of PtPd alloy concave nanocubes enclosed by high index facets. In the presence of GO, PtPd alloy concave nanocubes could be easily tailored by a simple hydrothermal reaction. In sharp contrast, only cubic PtPd alloy nanocrystals were obtained in the absence of GO. Moreover, compared to the unsupported PtPd nanocubes, the composition ratio of Pt to Pd changed significantly from 1 : 1 to 3 : 1. Due to the exposed high-index facets and the strong interaction between catalysts and graphene support, the as-synthesized PtPd concave nanocubes exhibited enhanced electrocatalytic activity and high durability toward methanol oxidation. The present work highlights the unique role of GO in the formation of metal nanocrystals as not only a catalyst support but also a structure- and/or morphology-directing agent, due to the presence of various functional groups on GO sheets. The present GO-assisted approach provides a new avenue to the synthesis of nanocrystals with high-index facets and initiates new opportunities for the exploration of high-performance graphene-based nanocatalysts.Here, we demonstrate that graphene oxide (GO) can act as a structure-directing agent for the formation of PtPd alloy concave nanocubes enclosed by high index facets. In the presence of GO, PtPd alloy concave nanocubes could be easily tailored by a simple hydrothermal reaction. In sharp contrast, only cubic PtPd alloy nanocrystals were obtained in the absence of GO. Moreover, compared to the unsupported PtPd nanocubes, the composition ratio of Pt to Pd changed significantly from 1 : 1 to 3 : 1. Due to the exposed high-index facets and the strong interaction between catalysts and graphene support, the as-synthesized PtPd concave nanocubes exhibited enhanced electrocatalytic activity and high durability toward methanol oxidation. The present work highlights the unique role of GO in the formation of

  14. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity.

    Keenan, Christine R; Lew, Michael J; Stewart, Alastair G

    2016-07-15

    Recent landmark studies applying analytical pharmacology approaches to the glucocorticoid receptor (GR) have demonstrated that different ligands can cause differential activation of distinct GR-regulated genes. Drawing on concepts of signalling bias from the field of G protein-coupled receptor (GPCR) biology, we speculate that ligand-dependent differences in GR signalling can be considered analogous to GPCR biased signalling, and thus can be quantitatively analysed in a similar way. This type of approach opens up the possibility of using rational structure-based drug optimisation strategies to improve the therapeutic selectivity of glucocorticoid drugs to maximise their efficacy and minimise adverse effects. PMID:26898958

  15. Tailored spectroscopic and optical properties in rare earth-activated glass-ceramics planar waveguides

    Ristic, Davor; Van Tran, Thi Thanh; Dieudonné, Belto; Cristina, Armellini; Berneschi, Simone; Chiappini, Andrea; Chiasera, Alessandro; Varas, Stefano; Carpentiero, Alessandro; Mazzola, Maurizio; Nunzi Conti, Gualtiero; Pelli, Stefano; Speranza, Giorgio; Feron, Patrice; Duverger Arfuso, Claire; Cibiel, Gilles; Turrell, Sylvia; Tran Ngoc, Khiem; Boulard, Brigitte; Righini, Giancarlo C.; Ferrari, Maurizio

    2013-03-01

    Glass ceramic activated by rare earth ions are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing to develop interesting new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. At the state of art the fabrication techniques based on bottom-up and top-down approaches appear to be viable although a specific effort is required to achieve the necessary reliability and reproducibility of the preparation protocols. In particular, the dependence of the final product on the specific parent glass and on the employed synthesis still remain an important task of the research in material science. Glass-ceramic waveguides overcome some of the efficiency problems experienced with conventional waveguides. These two-phase materials are composed of nanocrystals embedded in an amorphous matrix. The respective volume fractions of the crystalline and amorphous phases determine the properties of the glass ceramic. They also represent a valid alternative to widely used glass hosts such as silica as an effective optical medium for light propagation and luminescence enhancement. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters for solar energy exploitation.

  16. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    Visa, Maria, E-mail: maria.visa@unitbv.ro [Transilvania University of Brasov, Department Renewable Energy Systems and Recycling, Eroilor 29, 500036 Brasov (Romania)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The spent adsorbent annealed at 500 Degree-Sign C can be a suggestion for padding in stone blocks. Black-Right-Pointing-Pointer The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite Black-Right-Pointing-Pointer Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. Black-Right-Pointing-Pointer This substrate can be recommended for simultaneous removal of heavy metals and MB. Black-Right-Pointing-Pointer FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 Degree-Sign C can be reused for padding in stone blocks.

  17. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    Highlights: ► The spent adsorbent annealed at 500 °C can be a suggestion for padding in stone blocks. ► The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite ► Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. ► This substrate can be recommended for simultaneous removal of heavy metals and MB. ► FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  18. I Move: Systematic development of a web-based computer tailored physical activity intervention, based on motivational interviewing and self-determination theory

    Friederichs, S.A.; Oenema, A.; Bolman, C.; Guyaux, J.; Keulen, H.M. van; Lechner, L.

    2014-01-01

    Background: This article describes the systematic development of the I Move intervention: a web-based computer tailored physical activity promotion intervention, aimed at increasing and maintaining physical activity among adults. This intervention is based on the theoretical insights and practical applications of self-determination theory and motivational interviewing. Methods/design. Since developing interventions in a systemically planned way increases the likelihood of effectiveness, we us...

  19. Emerging Methods for Producing Monodisperse Graphene Dispersions

    Green, Alexander A.; Hersam, Mark C.

    2010-01-01

    With the recent burst of activity surrounding solution phase production of graphene, comparatively little progress has been made towards the generation of graphene dispersions with tailored thickness, lateral area, and shape. The polydispersity of graphene dispersions, however, can lead to unpredictable or non-ideal behavior once they are incorporated into devices, since the properties of graphene vary as a function of its structural parameters. In this brief perspective, we overview the prob...

  20. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  1. Systematic Development of the YouRAction program, a computer-tailored Physical Activity promotion intervention for Dutch adolescents, targeting personal motivations and environmental opportunities

    Prins Richard G; van Empelen Pepijn; Beenackers Marielle A; Brug Johannes; Oenema Anke

    2010-01-01

    Abstract Background Increasing physical activity (PA) among adolescents is an important health promotion goal. PA has numerous positive health effects, but the majority of Dutch adolescents do not meet PA requirements. The present paper describes the systematic development of a theory-based computer-tailored intervention, YouRAction, which targets individual and environmental factors determining PA among adolescents. Design The intervention development was guided by the Intervention Mapping p...

  2. The positive effect on determinants of physical activity of a tailored, general practice-based physical activity intervention

    Sluijs, van der, E.; Poppel - Bruinvels, van, M.N.M.; Twisk, J.W.R.; Brug, J.; Mechelen, Van

    2005-01-01

    PACE (Physician-based Assessment and Counseling for Exercise) is an individualized theory-based minimal intervention strategy aimed at the enhancement of regular physical activity. The aim of this study was to evaluate the effectiveness of a PACE intervention applied by general practitioners (GPs) on potential determinants of physical activity. A randomized controlled trial was conducted in 29 general practices with the following inclusion criteria for patients: aged between 18 and 70 years, ...

  3. Egg retention and dispersal activity in the parasitoid wasp, Trichogramma principium.

    Reznik, S Ya; Klyueva, N Z

    2006-01-01

    Abstract Effects of egg retention on movement and dispersal activity of Trichogramma principium (Hymenoptera, Trichogrammatidae) females were investigated under laboratory conditions. Individual females were observed during one minute in the absence of hosts. Movement activity and dispersal rate were estimated by the length of the track and by the distance from the start point, respectively. Before the test, all wasps during 2 - 4 days were presented with a possibility to parasitize a factitious laboratory host, Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae). Wasps that had parasitized before the test show significant reduction of spontaneous walking activity and dispersal rate when compared with females that refused to parasitize the non-preferred host (i.e. manifested egg retention). This effect cannot be considered as a direct arrestment reaction to the host because during the test period, no hosts were provided. Thus, egg retention results not only in temporal spread, but also in more intensive spatial dispersal of a group of simultaneously emerged females. PMID:19537969

  4. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  5. Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems

    Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios

    2015-11-01

    We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.

  6. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  7. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  8. Research on giving antibacteria activity of tailored dental materials; Gin ion ni yoru shikayo zairyo no kokinsei fuyo ni kansuru kenkyu

    NONE

    1997-03-01

    The secondary dental caries easily occur by breeding of bacteria in cavities between living body and composite resin, false tooth or root of tailored tooth as tooth repairing materials. The antibacteria activity of tailored dental materials was thus studied by implanting Ag ion. The antibacteria effect with time after culture of caries bacteria was studied by implanting Ag ion into SiO2 powder, PMMA samples and Ti alloy samples at 20 and 200keV in energy of ion. In addition, the antibacteria activity of SiO2 powder as composite material was found at 25keV which was previously effective for the antibacteria activity. This SiO2 filler (Ag{sup +} filler) showed the antibacteria activity on every bacteria sample after 2h, and in particular, could kill all of 3 kinds of bacteria obtained from a composite resin surface after 12h. The number of living S. salivarius was reduced by half after 12h. The application of the composite resin filler implanted with Ag{sup +} is significant to prevent recurrence of caries. 5 refs., 27 figs., 7 tabs.

  9. Efficacy of Tailored Physical Activity or Chronic Pain Self-Management Programme on return to work for sick-listed citizens

    Andersen, Lotte Nygaard; Juul-Kristensen, Birgit; Sørensen, Thomas Lund;

    2015-01-01

    OBJECTIVES: The aim was to evaluate the efficacy of 'Tailored Physical Activity' (TPA) and a 'Chronic Pain Self-management Programme' (CPSMP) compared with a reference group (REF) on return to work after 3 months as sick-listed citizens with pain related to the back or the upper body. METHODS...... the municipality and the co-primary endpoint was duration of the sickness absence period. Secondary outcomes consisted of pain, body mass index, aerobic capacity, grip strength, work ability and kinesiophobia. The trial was conducted in Sonderborg Municipality from March 2011 to October 2013. RESULTS...

  10. Entanglement Induced by Tailored Environments

    Cirone, Markus A

    2009-01-01

    We analyze a system consisting of two spatially separated quantum objects, here modeled as two pseudo-spins, coupled with a mesoscopic environment modeled as a bosonic bath. We show that by engineering either the dispersion of the spin boson coupling or the environment dimensionality or both one can in principle tailor the spatial dependence of the induced entanglement on the spatial separation between the two spins. In particular we consider one, two and three dimensional reservoirs and we find that while for a two or three dimensional reservoir the induced entanglement shows an inverse power law dependence on the spin separation, the induced entanglement becomes separation independent for a one dimensional reservoir.

  11. Metal dispersion and transportational activities using food crops as biomonitors.

    Ward, N I; Savage, J M

    1994-05-23

    The multielement (Al, Ca, Cd, Ce, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Si, and Zn) levels of various common vegetables (bean, broccoli, cabbage, cauliflower, lettuce, marrow, onion, parsnip, spinach, sprouts, sweet corn, and tomato); fruits (grape and strawberry); herbs (garlic, lemon balm, marjoram, mint, rosemary and tarragon); local pasture species and surface soils collected from a commercial garden centre located within a distance of 30 m of the London Orbital Motorway (M25) is presented. Comparative values are given from a background area, namely a domestic garden located in the North Yorkshire Dales National Park area. Analysis was undertaken by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma-source mass spectrometry (ICP-MS) with quality control assessment using four international biological reference materials; BCR:CRM 62 Olive Leaves, NIST 1575 Pine Needles, NIST 1573 Tomato Leaves, and NIST 1572 Citrus Leaves. Inter-analytical method comparison is given using two methods of ICP-MS; namely conventional pneumatic nebulisation of sample solution, and direct solids analysis by laser ablation; and neutron activation analysis methods (NAA). For the elements listed there is a good precision obtained by ICP-MS and NAA. In particular levels of herbs > vegetables > cereals > fruits. Measured values are in good agreement with reported literature values. The lowest Pb values are for marrow, lettuce, tomato and sweet corn samples (approximately 0.001-0.021 microgram/g). 'Green' leaf material levels were approximately 0.02-0.10 microgram/g (i.e. sprouts and cabbage). Root vegetables contain higher levels, approximately 0.02-0.125 microgram/g (especially carrot), reflecting possible metal uptake from soil. The highest vegetable Pb values are for leek and onion (approximately 0.35 microgram/g). Background values are also provided for nineteen elements (Al, As, B, Ba, Br, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, V, and Zn

  12. Influence of nano-dispersive modified additive on cement activity

    Sazonova, Natalya; Badenikov, Artem; Skripnikova, Nelli; Ivanova, Elizaveta

    2016-01-01

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4-6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C3S and β-C2S.

  13. Influence of nano-dispersive modified additive on cement activity

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  14. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  15. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent. PMID:26040724

  16. Structural features of bionanocomposite derived from novel designed poly(ester-imide) based on natural amino acids with hydroxyl segments tailored for better dispersion of TiO2 nanofiller

    Shadpour Mallakpour; Parvin Asadi

    2013-04-01

    Deliberately inorganic nanoparticles (NP)s in polymer matrices significantly affect their characteristics and therefore their applications, but key factor to achieve the expected efficiency is well dispersion of the NPs in polymer matrix. The work presented here deals with the polymerization of amino acid-based monomer to synthesize optically active poly(ester-imide) (PEI) with hydroxyl terminated groups, using tosyl chloride/pyridine/,-dimethylformamide system as a condensing agent. The synthesized polymer was used for the preparation of bionanocomposite (BNC) containing modified titanium dioxide (TiO2) NPs using ultrasonic irradiation. With the aim of -amidopropyl-triethoxylsilicane as a coupling agent, the surface of nanoscale TiO2 was modified to decrease aggregation of the NPs in polymer matrix. The obtained PEI/TiO2 BNCs were characterized with fourier transfer infrared (FT–IR), thermogravimetric analysis, field emission scanning electron microscopy (FE–SEM), X-ray diffraction and transmission electron microscopy (TEM) techniques. Morphology study of resulting PEI/TiO2 BNCs by FE–SEM and TEM analyses demonstrated that the hydroxyl-terminated polymer chains reduced aggregation of the NPs and thus lead to better dispersion of the NPs in the polymer matrix.

  17. The (cost-effectiveness of an individually tailored long-term worksite health promotion programme on physical activity and nutrition: design of a pragmatic cluster randomised controlled trial

    Burdorf Alex

    2007-09-01

    Full Text Available Abstract Background Cardiovascular disease is the leading cause of disability and mortality in most Western countries. The prevalence of several risk factors, most notably low physical activity and poor nutrition, is very high. Therefore, lifestyle behaviour changes are of great importance. The worksite offers an efficient structure to reach large groups and to make use of a natural social network. This study investigates a worksite health promotion programme with individually tailored advice in physical activity and nutrition and individual counselling to increase compliance with lifestyle recommendations and sustainability of a healthy lifestyle. Methods/Design The study is a pragmatic cluster randomised controlled trial with the worksite as the unit of randomisation. All workers will receive a standard worksite health promotion program. Additionally, the intervention group will receive access to an individual Health Portal consisting of four critical features: a computer-tailored advice, a monitoring function, a personal coach, and opportunities to contact professionals at request. Participants are employees working for companies in the Netherlands, being literate enough to read and understand simple Internet-based messages in the Dutch language. A questionnaire to assess primary outcomes (compliance with national recommendations on physical activity and on fruit and vegetable intake will take place at baseline and after 12 and 24 months. This questionnaire also assesses secondary outcomes including fat intake, self-efficacy and self-perceived barriers on physical activity and fruit and vegetable intake. Other secondary outcomes, including a cardiovascular risk profile and physical fitness, will be measured at baseline and after 24 months. Apart from the effect evaluation, a process evaluation will be carried out to gain insight into participation and adherence to the worksite health promotion programme. A cost-effectiveness analysis and

  18. Nanocapsular Dispersion of Cinnamaldehyde for Enhanced Inhibitory Activity against Aflatoxin Production by Aspergillus flavus

    Hongbo Li

    2015-04-01

    Full Text Available Cinnamaldehyde (CA is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.

  19. Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions

    E Günıster; S İşçı; A Alemdar; N Güngör

    2004-06-01

    The present study reports the effect of anionic surfactant sodium dodecyl sulfate (SDS, C12H25 OSO3Na) upon the electrokinetic (electrophoretic mobility, zeta potential) and rheological (viscosity, yield value) properties of the Ca-bentonitic clay found in Turkey and its Na-activated form. The SDS dispersant was added in different concentrations in the range of 1 × 10-5-5 × 10-2 mol/l. The results show that the viscosity and zeta potential values of bentonite dispersion are affected by the addition of anionic surfactant. The obtained data are analysed by considering the kind of exchangeable cations. Thixotropic property effect was observed in bentonite dispersions.

  20. Effectiveness of a Web-Based, Computer-Tailored, Pedometer-Based Physical Activity Intervention for Adults: A Cluster Randomized Controlled Trial

    Vandelanotte, Corneel; Cardon, Greet; De Bourdeaudhuij, Ilse; De Cocker, Katrien

    2015-01-01

    Background Computer-tailored physical activity (PA) interventions delivered through the Internet represent a promising and appealing method to promote PA at a population level. However, personalized advice is mostly provided based on subjectively measured PA, which is not very accurate and might result in the delivery of advice that is not credible or effective. Therefore, an innovative computer-tailored PA advice was developed, based on objectively pedometer-measured PA. Objective The study aim was to evaluate the effectiveness of a computer-tailored, pedometer-based PA intervention in working adults. Methods Participants (≥18 years) were recruited between May and December 2012 from eight Flemish workplaces. These workplaces were allocated randomly to an intervention or control group. Intervention group participants (n=137) received (1) a booklet with information on how to increase their steps, (2) a non-blinded pedometer, and (3) an Internet link to request computer-tailored step advice. Control group participants (n=137) did not receive any of the intervention components. Self-reported and pedometer-based PA were assessed at baseline (T0), and 1 month (T1) and 3 months (T2) months post baseline. Repeated measures analyses of covariance were used to examine intervention effects for both the total sample and the at-risk sample (ie, adults not reaching 10,000 steps a day at baseline). Results The recruitment process resulted in 274 respondents (response rate of 15.1%) who agreed to participate, of whom 190 (69.3%) belonged to the at-risk sample. Between T0 and T1 (1-month post baseline), significant intervention effects were found for participants’ daily step counts in both the total sample (P=.004) and the at-risk sample (P=.001). In the at-risk sample, the intervention effects showed a daily step count increase of 1056 steps in the intervention group, compared to a decrease of 258 steps in the control group. Comparison of participants’ self-reported PA

  1. Tailored Porous Materials

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  2. WATER DISPERSIBLE METAL OXIDE NANOBIOCOMPOSITE AS A POTENTIATOR OF THE ANTIMICROBIAL ACTIVITY OF KANAMYCIN

    Coralia Bleotu

    2012-12-01

    Full Text Available This study reports the evaluation of a water dispersible metal oxide nanobiocomposite based CS and magnetite as a potential drug delivery system and its cytotoxicity. The results proved that loading kanamycin sulfate into the water dispersible metal oxide nanobiocomposite improve the delivery of this drug in active form reducing minimum inhibitory concentration of kanamycin by two (in case of S. aureus to four folds (in case of E. coli, as compared with the kanamycin control. Furthermore, cytotoxicity test revealed that the nanobiocomposite has a very low toxic effect on eukaryotic cells. Our data suggest that water soluble metal oxide nanobiocomposite derivative is a good candidate for developing alternative strategies for enhancing the activity of antimicrobial drugs, without increasing the amount of the loaded active compound.

  3. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  4. Tailored Barium Swallow Study

    ... View Denver Pollen Count You are here: Programs & Services > Tests We Offer > Imaging Tests Tailored Barium Swallow Study The TBS is a special study that is completed in radiology. The test evaluates the mouth and the throat ...

  5. Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation

    Qin, Yuan-Hang; Yue-Jiang; Yang, Hou-Hua; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2011-05-01

    Highly dispersed and active palladium/carbon nanofiber (Pd/CNF) catalyst is synthesized by NaBH4 reduction with trisodium citrate as the stabilizing agent. The obtained Pd/CNF catalyst is characterized by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the Pd nanoparticles with an average particle size of ca. 3.8 nm are highly dispersed on the CNF support even with a small ratio of citrate to Pd precursor, which is believed to be due to the pH adjustment of citrate stabilized colloidal Pd nanoparticles. The cyclic voltammetry and chronoamperometry techniques show that the obtained Pd/CNF catalyst exhibits good catalytic activity and stability for the electrooxidation of formic acid.

  6. Antimicrobial activity of clove oil dispersed in a concentrated sugar solution.

    Briozzo, J; Núñez, L; Chirife, J; Herszage, L; D'Aquino, M

    1989-01-01

    Essential oil of clove, dispersed (0.4% v/v) in a concentrated sugar solution, had a marked germicidal effect against various bacteria and Candida albicans. Staphylococcus aureus (five strains), Klebsiella pneumoniae, Pseudomonas aeruginosa, Clostridium perfringens, and Escherichia coli inoculated at a level of 10(7) cfu/ml, and C. albicans (inoculum 4.0 x 10(5) cfu/ml) were killed (greater than 99.999%) after 2-7 min in a laboratory broth supplemented with 63% (v/w) of sugar, and containing 0.4% (v/w) of essential oil of clove. Added organic matter (i.e. human or bovine serum) did not impair its antimicrobial activity. Sugar was not necessary for the antimicrobial activity of clove oil, but the concentrated sugar solution provided a good vehicle for obtaining an oil dispersion that is relatively stable for certain practical applications. PMID:2542213

  7. Disperse Dyes Based on Thiazole, Their Dyeing Application on Polyester Fiber and Their Antimicrobial Activity

    Zadafiya, S. K.; J. H. Tailor; Malik, G. M.

    2013-01-01

    Various diazotized aryl amines were coupled with N-(4-nitrophenyl)-2-[(4-phenyl-1,3-thiazol-2-yl)amino]acetamide to give the corresponding various azo disperse dyes (D1-D13). These dyes were applied to polyester fiber by HTHP method and their fastness properties were evaluated. Dyes were characterized by IR, elemental analysis, and NMR spectral studies. These dyes showed very good antibacterial and antifungal activities.

  8. Disperse Dyes Based on Thiazole, Their Dyeing Application on Polyester Fiber and Their Antimicrobial Activity

    S. K. Zadafiya

    2013-01-01

    Full Text Available Various diazotized aryl amines were coupled with N-(4-nitrophenyl-2-[(4-phenyl-1,3-thiazol-2-ylamino]acetamide to give the corresponding various azo disperse dyes (D1-D13. These dyes were applied to polyester fiber by HTHP method and their fastness properties were evaluated. Dyes were characterized by IR, elemental analysis, and NMR spectral studies. These dyes showed very good antibacterial and antifungal activities.

  9. Concentration and Dispersion in Global Industries: Remote Electronic Access and the Location of Economic Activities

    Srilata Zaheer; Shalini Manrakhan

    2001-01-01

    We explore how the possibility of remote electronic access to markets, resources and knowledge, enabled by the new information and communication technologies (ICTs), might change the motivations of firms to locate activities internationally, and in turn affect worldwide dispersion and concentration in an industry. Preliminary results from an exploratory analysis of the spatial distribution of firms in financial services suggest that the introduction of a business-to-business (B2B) trading net...

  10. Systematic Development of the YouRAction program, a computer-tailored Physical Activity promotion intervention for Dutch adolescents, targeting personal motivations and environmental opportunities

    Prins Richard G

    2010-08-01

    Full Text Available Abstract Background Increasing physical activity (PA among adolescents is an important health promotion goal. PA has numerous positive health effects, but the majority of Dutch adolescents do not meet PA requirements. The present paper describes the systematic development of a theory-based computer-tailored intervention, YouRAction, which targets individual and environmental factors determining PA among adolescents. Design The intervention development was guided by the Intervention Mapping protocol, in order to define clear program objectives, theoretical methods and practical strategies, ensure systematic program planning and pilot-testing, and anticipate on implementation and evaluation. Two versions of YouRAction were developed: one that targets individual determinants and an extended version that also provides feedback on opportunities to be active in the neighbourhood. Key determinants that were targeted included: knowledge and awareness, attitudes, self-efficacy and subjective norms. The extended version also addressed perceived availability of neighbourhood PA facilities. Both versions aimed to increase levels of moderate-to-vigorous PA among adolescents. The intervention structure was based on self-regulation theory, comprising of five steps in the process of successful goal pursuit. Monitoring of PA behaviour and behavioural and normative feedback were used to increase awareness of PA behaviour; motivation was enhanced by targeting self-efficacy and attitudes, by means of various interactive strategies, such as web movies; the perceived environment was targeted by visualizing opportunities to be active in an interactive geographical map of the home environment; in the goal setting phase, the adolescents were guided in setting a goal and developing an action plan to achieve this goal; in the phase of active goal pursuit adolescents try to achieve their goal and in the evaluation phase the achievements are evaluated. Based on the results

  11. The Differentiated Effectiveness of a Printed versus a Web-Based Tailored Physical Activity Intervention among Adults Aged over 50

    Peels, D. A.; van Stralen, M. M.; Bolman, C.; Golsteijn, R. H. J.; de Vries, H.; Mudde, A. N.; Lechner, L.

    2014-01-01

    This study provides insight in the effectiveness of a print-delivered and a Web-based physical activity (PA) intervention (with or without additional environmental information on local PA possibilities) among people aged over 50. Intervention groups (print-delivered basic [PB; n = 439], print-delivered environmental [PE; n = 435], Web-based basic…

  12. Can a Website-Delivered Computer-Tailored Physical Activity Intervention Be Acceptable, Usable, and Effective for Older People?

    Ammann, Rahel; Vandelanotte, Corneel; de Vries, Hein; Mummery, W. Kerry

    2013-01-01

    Despite the numerous health benefits, population physical activity levels are low and declining with age. A continued increase of Internet access allows for website-delivered interventions to be implemented across age-groups, though older people have typically not been considered for this type of intervention. Therefore, the purpose of this study…

  13. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and

  14. Coordination of atmospheric dispersion activities for the real-time decision support system RODOS

    This projects task has been to coordinate activities among the RODOS Atmospheric Dispersion sub-group A participants, with the overall objective of developing and integrating an atmospheric transport and dispersion module for the joint European Real-time On-line DecisiOn Support system RODOS headed by FZK (formerly KfK), Germany. The project's final goal is the establishment of a fully operational, system-integrated atmospheric transport module for the RODOS system by year 2000, capable of consistent now- and forecasting of radioactive airborne spread over all types of terrain and on all scales of interest, including in particular complex terrain and the different scales of operation, such as the local, the national and the European scale. (au)

  15. Highly water-dispersible silver sulfadiazine decorated with polyvinyl pyrrolidone and its antibacterial activities.

    Li, Ping; Wu, Longlong; Li, Binjie; Zhao, Yanbao; Qu, Peng

    2016-03-01

    Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). PMID:26706506

  16. Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution

    Garcia-Mota, Monica; Vojvodic, Aleksandra; Metiu, Horia;

    2011-01-01

    The oxygen evolution reaction (OER) on the rutile M-TiO2(110) (M = V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Ir, Ni) surfaces was investigated by using density functional theory calculations. The stability of different doped TiO2 systems was analyzed. The scaling relationship between the binding energies...... of OER intermediates (HOO* versus HO*) is found to follow essentially the same trend as for undoped oxides. Our theoretical analysis shows a lower overpotential associated with OER on the doped M-TiO2(110) than on the undoped TiO2(110). The theoretical activity of Cr-, Mo-, Mn-, and Ir-doped TiO2 is...

  17. The generalized Tailor Problem

    Roerdink, J.B.T.M.; Maragos, P; Schafer, RW; Butt, MA

    1996-01-01

    The so-called 'Tailor Problem' concerns putting a number of sets within another set by translation, such that the translated sets do not overlap. In this paper we consider a generalization of this problem in which also rotations of the sets are allowed.

  18. Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy.

    Zhang, Lingyu; Chen, Yinyin; Li, Zilu; Li, Lu; Saint-Cricq, Philippe; Li, Chunxia; Lin, Jun; Wang, Chungang; Su, Zhongmin; Zink, Jeffrey I

    2016-02-01

    A facile, reproducible, and scalable method was explored to construct uniform Au@poly(acrylic acid) (PAA) Janus nanoparticles (JNPs). The as-prepared JNPs were used as templates to preferentially grow a mesoporous silica (mSiO2 ) shell and Au branches separately modified with methoxy-poly(ethylene glycol)-thiol (PEG) to improve their stability, and lactobionic acid (LA) for tumor-specific targeting. The obtained octopus-type PEG-Au-PAA/mSiO2 -LA Janus NPs (PEG-OJNP-LA) possess pH and NIR dual-responsive release properties. Moreover, DOX-loaded PEG-OJNP-LA, upon 808 nm NIR light irradiation, exhibit obviously higher toxicity at the cellular and animal levels compared with chemotherapy or photothermal therapy alone, indicating the PEG-OJNP-LA could be utilized as a multifunctional nanoplatform for in vitro and in vivo actively-targeted and chemo-photothermal cancer therapy. PMID:26732130

  19. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  20. Tailoring of onboard system software

    彭俊杰; 洪炳镕; 魏振华; 乔永强

    2003-01-01

    Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system.

  1. Active-passive measurements and CFD based modelling for indoor radon dispersion study

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. - Highlights: • The distribution of radon gas in indoor environment was simulated using CFD modelling. • The distribution of radon was found to be more homogenous in open room condition. • The radon concentration level in open room was low as compare to closed room due to enhanced ventilation rate. • Simulation results are in agreement with active and passive measurements results

  2. Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires

    Sumeet Kumar

    2013-05-01

    Full Text Available We present a simple, efficient, low cost and template free method for preparation of well dispersed ultra-long (1 μm CdO nanowires. The CdO nanowires were characterized by x-ray diffraction (XRD, Transmission electron microscopy (TEM, UV-visible spectroscopy and Raman measurements. The direct and indirect band gaps were calculated to be 3.5 eV and 2.6 eV, respectively. In the Raman spectra only second order features were observed. The CdO nanowires were used to study antimicrobial activities against B.subtilis and E.coli microbes. It shows antimicrobial activity against B.subtilis and E.coli. However, the antimicrobial activities are better against B.subtilis than that of E.coli.

  3. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    Songtipya, Ponusa

    In the first part of the thesis, polyethylene/layered silicate nanocomposites that exhibit an antimicrobial activity were synthesized and studied. Their antimicrobial activity was designed to originate from non-leaching, novel cationic modifiers---amine-based surfactants---used as the organic-modification of the fillers. Specifically, PE/organically-modified montmorillonite ( mmt) nanocomposites were prepared via melt-processing, and simultaneous dispersion and antimicrobial activity was designed by proper choice of the fillers' organic modification. The antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum ). Various mmt-based organofillers, which only differ in the type or amount of their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the fillers themselves and the respective nanocomposites. A comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants. An attempt to improve the thermomechanical reinforcement of PE/mmt nanocomposites while maintaining their antimicrobial activity, was also carried out by combining two different organically modified montmorillonites. However, a uniform microscopic dispersion could not be achieved through this approach. In the second part of this thesis, a number of fundamental studies relating to structure-property relations in nanocomposites were carried out, towards unveiling strategies that can concurrently optimize selected properties of polymers by the addition of nanofillers. Specifically, the dispersion-crystallinity-reinforcement relations in HDPE/mmt nanocomposites was investigated. The influence of a functional HDPE compatibilizer

  4. Measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer (137Cs)

    The energetic cost of activity is an important component of the bioenergetic budget of fish, yet this parameter has rarely been quantified for wild populations. Using a 137Cs mass balance approach, we estimated the annual bioenergetic budgets for individual age-classes of 19 species of North American freshwater fish. Immature fish have low activity-related metabolic costs that agree with estimates based on swimming speed or integer multipliers. Mature fish have 2- to 4-fold higher activity than immature fish and 2- to 4-fold higher activity than estimates based on swimming speed or integer multipliers. The higher activity in mature fish may be due to reproductive efforts. Underestimation of activity in conventional bioenergetics models leads to underestimation of consumption rates. Thus, our in situ and age-specific estimates of activity costs provide a means to improve bioenergetic predictions. Although our analysis was done on an annual basis, it is possible to use the 137Cs technique over shorter intervals (weeks). The 137Cs method has general applicability to aquatic systems because 137Cs is globally dispersed and can be accurately measured in all aquatic organisms using gamma spectrometry. (author). 62 refs., 4 tabs., 4 figs

  5. Active dispersal in loggerhead sea turtles (Caretta caretta) during the 'lost years'.

    Briscoe, D K; Parker, D M; Balazs, G H; Kurita, M; Saito, T; Okamoto, H; Rice, M; Polovina, J J; Crowder, L B

    2016-06-15

    Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their 'lost years' at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1-3 year old turtles released off Japan (29.7-37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population. PMID:27252021

  6. Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber

    Liu, Lai; Kang, Zhe; Li, Qing; Gao, Xuejian; Qin, Guanshi, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn; Qin, Weiping, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Liao, Meisong; Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2014-11-03

    We report the generation of multiple soliton self-frequency shift cancellations in a temporally tailored tellurite photonic crystal fiber (PCF). The temporally regulated group velocity dispersion (GVD) is generated in the fiber by soliton induced optical Kerr effect. Two red-shifted dispersive waves spring up when two Raman solitons meet their own second zero-dispersion-wavelengths in the PCF. These results show how, through temporally tailored GVD, nonlinearities can be harnessed to generate unexpected effects.

  7. Towards tailored superplasticizers

    Houst, Y.F.; Bowen, P; Perche, F

    2005-01-01

    Superplasticizers (SP) of the “new generation” are essentially polycarboxylate polymers. Polymers of this family can be produced with almost infinite variations in their chemical structure, which allow the fulfilment of specific (tailored) properties. These polymers are more efficient for water reduction and for keeping concrete workability for longer periods. Another class of superplasticizer also available essentially for extreme specifications, is poly(oxyethylen) phosphonates. A few years...

  8. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-02-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

  9. Surface active stabilizer Tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells

    Solid lipid nanoparticles (SLN) have been praised for their advantageous drug delivery properties such as biocompatibility, controlled release and passive drug targeting. However, the cytotoxicity of SLN and their ingredients, especially over a longer time period, has not been investigated in detail. We examined the critical issues regarding the use of a surface active stabilizer Tyloxapol (Tyl) for the preparation of solid lipid particles (SLP) and their effects on cellular functions and viability. SLP composed of behenate, phospholipids and a stabilizer, Tyloxapol or Lutrol (Lut), were prepared by the lipid melt method, labeled with a fluorescent dye and tested on Jurkat or HEK293 cells. The nano-sized particles were rapidly internalized and exhibited cytoplasmic localization. Incubation of cells with SLP-Tyl resulted in a dose- and time-dependent cytostatic effect, and also caused moderate and delayed cytotoxicity. Tyloxapol solution or SLP-Tyl dispersion caused the detachment of HEK293 cells, a decrease in cell proliferation and alterations in cellular morphology. Cell cycle analysis revealed that, while the unfavourable effects of SLP-Tyl and Tyloxapol solution are similar initially, longer incubation results in partial recovery of cells incubated with the dispersion of SLP-Tyl, whereas the presence of Tyloxapol solution induces apoptotic cell death. These findings indicate that Tyloxapol is an unfavourable stabilizer of SLP used for intracellular delivery and reinforce the role of stabilizers in a design of SLP with minimal cytotoxic properties

  10. Comparison of Theory and Observations of the Chirality of Filaments within a Dispersing Activity Complex

    Mackay, D. H.; Gaizauskas, V.; van Ballegooijen, A. A.

    2000-12-01

    We investigate the origin of the hemispheric pattern of filaments and filament channels by comparing theoretical predictions with observations of the chirality of filament channels within a dispersing activity complex. Our aim is to determine how the chirality of each specific channel arises so that general principles underlying the hemispheric pattern can be recognized. We simulate the field lines representing the filaments in the activity complex by applying a model of global flux transport to an initial magnetic configuration. The model combines the surface effects of differential rotation, meridional flows, and supergranular diffusion along with a magnetofrictional relaxation method in the overlying corona. The simulations are run with and without injecting axial magnetic fields at polarity inversion lines in the dispersing activity complex for four successive solar rotations. When the initial magnetic configuration, based on synoptic magnetic maps, is set to a potential field at the beginning of each rotation, the simulations poorly predict the chirality of the filament channels and filaments. The cases that predict the correct chirality correspond to an initial polarity inversion line, which is north-south the wrong chirality arises when the initial polarity inversion lines lie east-west. Results improve when field-line connectivities at low latitudes are retained and allowed to propagate to higher latitudes without resetting the field to a potential configuration between each rotation. When axial flux emergence exceeding 1×1019 Mx day-1 is included at the location of each filament, an excellent agreement is obtained between the theory and observations. In additon to predicting the correct chirality in all cases, axial flux emergence allows more readily the production of inverse-polarity dipped field lines needed to support filamentary mass. An origin for the hemispheric pattern as a result of the combined effects of flux transport, axial flux emergence, and

  11. Component-based Groupware Tailorability using Monitoring Facilities

    Guareis de Farias, C.R.; Diakov, N.K.

    2000-01-01

    Tailorability has long been recognised as a key issue concerning groupware applications in general and component-based groupware applications in particular. Tailoring activities are usually classified according to three levels, viz., customisation, integration and extension. This paper presents an approach to component-based tailoring based on the use of monitoring extensions. Our approach allows the extension and integration of new components into a legacy groupware application without the n...

  12. Tailor-made Au-Ag core–shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    Water-dispersible two-dimensional (2D) assemblies of Au-Ag core–shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO-Au nanosheets (namely GO-Au-Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au-Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au-Ag nanoparticles. The antibacterial efficacy of GO-Au-Ag is less sensitive to the existence of Cl−, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO-Au-Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials. (paper)

  13. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  14. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  15. My Activity Coach – Using video-coaching to assist a web-based computer-tailored physical activity intervention: a randomised controlled trial protocol

    Alley, Stephanie; Jennings, Cally; Ronald C Plotnikoff; Vandelanotte, Corneel

    2014-01-01

    Background There is a need for effective population-based physical activity interventions. The internet provides a good platform to deliver physical activity interventions and reach large numbers of people at low cost. Personalised advice in web-based physical activity interventions has shown to improve engagement and behavioural outcomes, though it is unclear if the effectiveness of such interventions may further be improved when providing brief video-based coaching sessions with participant...

  16. Diesel exhaust particulate material expression of in vitro genotoxic activities when dispersed into a phospholipid component of lung surfactant

    Bacterial mutagenicity and mammalian cell chromosomal and DNA damage in vitro assays were performed on a diesel exhaust particulate material (DPM) standard in two preparations: as an organic solvent extract, and as an aqueous dispersion in a simulated pulmonary surfactant. U.S. National Institute for Standards and Technology DPM SRM 2975 expressed mutagenic activity in the Salmonella reversion assay, and for in vitro genotoxicity to mammalian cells as micronucleus induction and as DNA damage in both preparations: as an acetone extract of the DPM mixed into dimethylsulfoxide, and as a mixture of whole DPM in a dispersion of dipalmitoyl phosphatidyl choline. Dispersion in surfactant was used to model the conditioning of DPM depositing on the deep respiratory airways of the lung. DPM solid residue after acetone extraction was inactive when assayed as a surfactant dispersion in the micronucleus induction assay, as was surfactant dispersion of a respirable particulate carbon black. In general, a given mass of the DPM in surfactant dispersion expressed greater activity than the solvent extract of an equal mass of DPM.

  17. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  18. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators

    Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-01-01

    The nonlinear propagation of optical pulses in dielectric waveguides and resonators provides a laboratory to investigate a wide range of remarkable interactions. Many of the resulting phenomena find applications in optical systems. One example is dispersive wave generation, the optical analog of Cherenkov radiation. These waves have an essential role in fiber spectral broadeners that are routinely used in spectrocopy and metrology. Dispersive waves form when a soliton pulse begins to radiate power as a result of higher-order dispersion. Recently, dispersive wave generation in microcavities has been reported by phase matching the waves to dissipative Kerr cavity (DKC) solitons. Here, it is shown that spatial mode interactions within a microcavity can also be used to induce dispersive waves. These interactions are normally avoided altogether in DKC soliton generation. The soliton self frequency shift is also shown to induce fine tuning control of the dispersive wave frequency. Both this mechanism and spatial mo...

  19. Recruitment of a mast-fruiting, bird-dispersed tree: Bridging frugivore activity and seedling establishment

    HERRERA, CARLOS M.; Jordano, Pedro; López-Soria, L.; Amat, Juan A.

    1994-01-01

    The recruitment of Phillyrea latifolia L. (Oleaceae), a bird-dispersed tree of Mediterranean forest, is described. Fruit removal by birds, seed rain, post-dispersal seed predation, seed germination, and seedling emergence, survival, and establishment were studied. The main objective was testing whether seed dispersal by birds produced a predictable seedling shadow as a result of coupled patterns of seed rain, seedling emergence, and seedling establishment. P. latifolia is a mast-fruiting spec...

  20. Black howler monkey (Alouatta pigra) activity, foraging and seed dispersal patterns in shaded cocoa plantations versus rainforest in southern Mexico.

    Zárate, Diego A; Andresen, Ellen; Estrada, Alejandro; Serio-Silva, Juan Carlos

    2014-09-01

    Recent evidence has shown that primates worldwide use agroecosystems as temporary or permanent habitats. Detailed information on how these primates are using these systems is scant, and yet their role as seed dispersers is often implied. The main objective of this study was to compare the activity, foraging patterns and seed dispersal role of black howler monkeys (Alouatta pigra) inhabiting shaded cocoa plantations and rainforest in southern Chiapas, Mexico. We gathered data on three monkey groups living in shaded cocoa plantations and three groups living in rainforest, using focal sampling, and collecting fecal samples. General activity and foraging patterns were similar in both habitats, with the exception that monkeys in the cocoa habitat spent more time feeding on petioles. Monkeys in shaded cocoa plantations dispersed 51,369 seeds (4% were seeds ≥3 mm width) of 16 plant species. Monkeys in the rainforest dispersed 6,536 seeds (78% were seeds ≥3 mm width) of 13 plant species. Our data suggest that the difference between habitats in the proportion of large versus small seeds dispersed reflects differences in fruit species abundance and availability in cocoa versus forest. Mean seed dispersal distances were statistically similar in both habitats (cocoa = 149 m, forest = 86 m). We conclude that the studied cocoa plantations provide all elements necessary to constitute a long-term permanent habitat for black howler monkeys. In turn, howler monkeys living in these plantations are able to maintain their functional role as seed dispersers for those native tree and liana species present within their areas of activities. PMID:24668557

  1. Tailoring of the local environment of active ions in rare-earth- and transition-metal-doped optical fibres, and potential applications

    Dussardier, B.; Blanc, W.; Peterka, Pavel

    Rijeka: InTech - Open Access Publisher, 2012 - (Yasin, M.; Harun, S.; Arof, H.), s. 95-120 ISBN 978-953-51-0091-1 R&D Projects: GA MŠk(CZ) ME10119 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.intechopen.com/books/selected-topics-on-optical-fiber-technology/tailoring-of-the-luminescent-ions-local-environment-in-optical-fibers- and -applications

  2. USE OF PLUME DISPERSION MODELLING FOR VIABLE AEROSOLS FROM AN ACTIVATED SLUDGE SEWAGE TREATMENT PLANT

    Predictions of the emissions of airborne total viable particle (TVP) concentrations from sewage are of concern due to possible adverse human health effects. Two types of modelling approaches were explored: dispersion modelling such as the Gaussian plume dispersion model and stati...

  3. Effect of polydimethylsiloxane viscosity on the electrorheological activity of dispersions based on it

    Davydova, O. I.; Kraev, A. S.; Redozubov, A. A.; Trusova, T. A.; Agafonov, A. V.

    2016-06-01

    The effect the viscosity of a dispersion medium of a polymethylsiloxane fluid (PMS) with a kinematic viscosity over a wide range of values from 5 to 300 cSt has on the electrorheological properties of suspensions based on nanosized titanium dioxide obtained via the sol-gel method is investigated. The investigations are conducted in a wide range of concentrations of suspensions: from 30 to 60 wt % (from 15 to 38 vol %) of the dispersed phase. The role the dispersion medium in two-phase disperse systems plays in the formation of structures of dispersed phase in the presence of an electric field is determined from the dependence of yield points of TiO2 in PMS with different viscosities on the applied electric field strength.

  4. Multiwavelength Dispersion-Tuned Actively Mode-Locked Erbium-Doped Fibre Ring Laser with Gain Competition Suppression

    PAN Shi-Long; LOU Cai-Yun

    2006-01-01

    Multiwavelength dispersion-tuned actively mode-locked erbium-doped fibre ring laser is demonstrated by incorporating a section of highly nonlinear fibre (HNLF) in the laser cavity. The HNLF and the time gate element (modulator) in the fibre laser successfully suppress the gain competition in the erbium-doped fibre, and thus enable multiwavelength operation. Simultaneous generation of 10 GHz pulses up to eight different wavelengths is achieved. Wavelength, spacing and modes number tuning are investigated by changing fibre cavity length, dispersion, and erbium-doped fibre amplifier power, respectively.

  5. Synthesis of Some Novel 2-Amino-5-arylazothiazole Disperse Dyes for Dyeing Polyester Fabrics and Their Antimicrobial Activity

    Hatem E. Gaffer

    2016-01-01

    Full Text Available The present work describes the synthesis of a series of four novel biologically active 2-amino-5-arylazothiazole disperse dyes containing the sulfa drug nucleus. The structures of the synthesized thiazole derivatives are confirmed using UV-spectrophotometry, infrared and nuclear magnetic resonance techniques and elemental analysis. The synthesized dyes are applied to polyester fabrics as disperse dyes and their fastness properties to washing, perspiration, rubbing, sublimation, and light are evaluated. The synthesized compounds exhibit promising biological efficiency against selected Gram-positive and Gram-negative pathogenic bacteria as well as fungi.

  6. Influence of Physical and Chemical Modification on the Optical Rotatory Dispersion and Biological Activity of Chitosan Films

    A. B. Shipovskaya

    2013-01-01

    Full Text Available The optical and bactericidal properties of acetic and basic chitosan films were studied. By the ORD technique, we found that these films differed in the values of their specific optical rotation and of their rotary and dispersive constants. A sign inversion of was observed when the acetic chitosan films were heat-treated. The bactericidal activity of the initial and dehydrated acetic films was analyzed, and their moisture content and optical and biological activities were compared.

  7. Modeling emissions and dispersion of contaminants from cleanup activities at a mixed waste site to estimate air impacts and risks

    The transport and dispersion of contaminants via the air pathway is a major concern during cleanup of contaminated sites. Impacts to air quality and human health during cleanup were evaluated for the Weldon Spring site by using site-specific information for source areas, activities, and receptor locations. In order to ensure protection of human health and the environment, results are being used to focus on those cleanup activities for which release controls should be emphasized

  8. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity

    Baskaran R

    2014-06-01

    Full Text Available Rengarajan Baskaran,1 Thiagarajan Madheswaran,2 Pasupathi Sundaramoorthy,1 Hwan Mook Kim,1 Bong Kyu Yoo1 1College of Pharmacy, Gachon University, Incheon, South Korea; 2College of Pharmacy Yeungnam University, Gyeongsan, South Korea Abstract: Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO-based liquid crystalline nanoparticles (LCNs and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C, and the in vitro release of curcumin was sustained (10% or less over 15 days. Fluorescence-activated cell sorting (FACS analysis using a human colon cancer cell line (HCT116 exhibited 99.1% fluorescence gating for 5 µM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO, indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. Keywords: liquid

  9. Towards tailored radiopeptide therapy

    Somatostatin receptor-targeted radiopeptide therapy is commonly performed using single radioisotopes. We evaluated the benefits and harms of combining radioisotopes in radiopeptide therapy in patients with neuroendocrine tumor. Using multivariable-adjusted survival analyses and competing risk analyses we evaluated outcomes in patients with neuroendocrine tumor receiving 90Y-DOTATOC, 177Lu-DOTATOC or their combination. 90Y-DOTATOC plus 177Lu-DOTATOC treatment was associated with longer survival than 90Y-DOTATOC (66.1 vs. 47.5 months; n = 1,358; p < 0.001) or 177Lu-DOTATOC alone (66.1 vs. 45.5 months; n = 390; p < 0.001). 177Lu-DOTATOC was associated with longer survival than 90Y-DOTATOC in patients with solitary lesions (HR 0.3, range 0.1 - 0.7; n = 153; p = 0.005), extrahepatic metastases (HR 0.5, range 0.3 - 0.9; n = 256; p = 0.029) and metastases with low uptake (HR 0.1, range 0.05 - 0.4; n = 113; p = 0.001). 90Y-DOTATOC induced higher hematotoxicity rates than combined treatment (9.5 % vs. 4.0 %, p = 0.005) or 177Lu-DOTATOC (9.5 % vs. 1.4 %, p = 0.002). Renal toxicity was similar among the treatments. Using 90Y and 177Lu might facilitate tailoring radiopeptide therapy and improve survival in patients with neuroendocrine tumors. (orig.)

  10. Towards tailored radiopeptide therapy

    Radojewski, Piotr [University Hospital Bern, Institute of Nuclear Medicine, Bern (Switzerland); Dumont, Rebecca [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); UCLA, Department of Radiology, David Geffen School of Medicine, Los Angeles, CA (United States); Marincek, Nicolas; Walter, Martin A. [University Hospital Bern, Institute of Nuclear Medicine, Bern (Switzerland); University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Brunner, Philippe; Mueller-Brand, Jan [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Briel, Matthias [University Hospital Basel, Basel Institute for Clinical Epidemiology and Biostatistics, Basel (Switzerland)

    2015-07-15

    Somatostatin receptor-targeted radiopeptide therapy is commonly performed using single radioisotopes. We evaluated the benefits and harms of combining radioisotopes in radiopeptide therapy in patients with neuroendocrine tumor. Using multivariable-adjusted survival analyses and competing risk analyses we evaluated outcomes in patients with neuroendocrine tumor receiving {sup 90}Y-DOTATOC, {sup 177}Lu-DOTATOC or their combination. {sup 90}Y-DOTATOC plus {sup 177}Lu-DOTATOC treatment was associated with longer survival than {sup 90}Y-DOTATOC (66.1 vs. 47.5 months; n = 1,358; p < 0.001) or {sup 177}Lu-DOTATOC alone (66.1 vs. 45.5 months; n = 390; p < 0.001). {sup 177}Lu-DOTATOC was associated with longer survival than {sup 90}Y-DOTATOC in patients with solitary lesions (HR 0.3, range 0.1 - 0.7; n = 153; p = 0.005), extrahepatic metastases (HR 0.5, range 0.3 - 0.9; n = 256; p = 0.029) and metastases with low uptake (HR 0.1, range 0.05 - 0.4; n = 113; p = 0.001). {sup 90}Y-DOTATOC induced higher hematotoxicity rates than combined treatment (9.5 % vs. 4.0 %, p = 0.005) or {sup 177}Lu-DOTATOC (9.5 % vs. 1.4 %, p = 0.002). Renal toxicity was similar among the treatments. Using {sup 90}Y and {sup 177}Lu might facilitate tailoring radiopeptide therapy and improve survival in patients with neuroendocrine tumors. (orig.)

  11. Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling

    Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ∼2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells. (paper)

  12. Effectiveness of Computer Tailoring Versus Peer Support Web-Based Interventions in Promoting Physical Activity Among Insufficiently Active Canadian Adults With Type 2 Diabetes: Protocol for a Randomized Controlled Trial

    Côté, José

    2016-01-01

    Background Type 2 diabetes is a major challenge for Canadian public health authorities, and regular physical activity is a key factor in the management of this disease. Given that less than half of people with type 2 diabetes in Canada are sufficiently active to meet the Canadian Diabetes Association's guidelines, effective programs targeting the adoption of regular physical activity are in demand for this population. Many researchers have argued that Web-based interventions targeting physical activity are a promising avenue for insufficiently active populations; however, it remains unclear if this type of intervention is effective among people with type 2 diabetes. Objective This research project aims to evaluate the effectiveness of two Web-based interventions targeting the adoption of regular aerobic physical activity among insufficiently active adult Canadian Francophones with type 2 diabetes. Methods A 3-arm, parallel randomized controlled trial with 2 experimental groups and 1 control group was conducted in the province of Quebec, Canada. A total of 234 participants were randomized at a 1:1:1 ratio to receive an 8-week, fully automated, computer-tailored, Web-based intervention (experimental group 1); an 8-week peer support (ie, Facebook group) Web-based intervention (experimental group 2); or no intervention (control group) during the study period. Results The primary outcome of this study is self-reported physical activity level (total min/week of moderate-intensity aerobic physical activity). Secondary outcomes are attitude, social influence, self-efficacy, type of motivation, and intention. All outcomes are assessed at baseline and 3 and 9 months after baseline with a self-reported questionnaire filled directly on the study websites. Conclusions By evaluating and comparing the effectiveness of 2 Web-based interventions characterized by different behavior change perspectives, findings of this study will contribute to advances in the field of physical

  13. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment.

    Haule, Kamila; Freda, Włodzimierz

    2016-04-01

    Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance E d , remote sensing reflectance R rs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d 0  = 0.3 μm causing a maximum E d increase of 40 % within 0.5-m depth, and the maximum E d decrease of 100 % at depths below 5 m. Moreover, we showed that the impact of size distribution on the "blue to green" ratios of R rs and R varies from 24 % increase to 27 % decrease at the same crude oil concentration. PMID:26635218

  14. Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity

    We present a novel approach to prepare highly dispersive nano-TiO2 by in situ growth on functional graphene (FG) via impregnation-hydrothermal method. The functional graphene was obtained by means of triethanolamine to modify graphene oxide. The characterization results collected by Fourier-transform infrared spectra, transmission electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy showed that nano-TiO2 particles with anatase phase and a narrow size distribution (the average particle size is 5 nm) were dispersed on the surface of FG uniformly. Then, the photocatalytic activity of as-prepared catalyst under UV light was evaluated, and the results showed that it possessed better photocatalytic activity than pure TiO2 and TiO2 on GO prepared by similar method. In addition, the as-prepared photocatalyst revealed considerable photocatalytic ability under visible light.

  15. Highly dispersive nano-TiO{sub 2} in situ growing on functional graphene with high photocatalytic activity

    Liu, Gonggang; Wang, Ruimeng; Liu, Hui, E-mail: liuhui@csu.edu.cn; Han, Kai; Cui, Huanqing; Ye, Hongqi [Central South University, Department of Chemistry and Chemical Engineering (China)

    2016-01-15

    We present a novel approach to prepare highly dispersive nano-TiO{sub 2} by in situ growth on functional graphene (FG) via impregnation-hydrothermal method. The functional graphene was obtained by means of triethanolamine to modify graphene oxide. The characterization results collected by Fourier-transform infrared spectra, transmission electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy showed that nano-TiO{sub 2} particles with anatase phase and a narrow size distribution (the average particle size is 5 nm) were dispersed on the surface of FG uniformly. Then, the photocatalytic activity of as-prepared catalyst under UV light was evaluated, and the results showed that it possessed better photocatalytic activity than pure TiO{sub 2} and TiO{sub 2} on GO prepared by similar method. In addition, the as-prepared photocatalyst revealed considerable photocatalytic ability under visible light.

  16. Relation between the structure and catalytic activity for automotive emissions. Use of x-ray anomalous dispersion effect

    Mizuki, J; Tanaka, H

    2003-01-01

    The employment of the X-ray anomalous dispersion effect allows us to detect the change in structure of catalytic converters with the environment exposed. Here we show that palladium atoms in a perovskite crystal move into and out of the crystal by anomalous X-ray diffraction and absorption techniques. This movement of the precious metal plays an important role to keep the catalytic activity long-lived. (author)

  17. Optimal Allocation of Dispersed Energy Storage Systems in Active Distribution Networks for Energy Balance and Grid Support

    Nick, Mostafa; Cherkaoui, Rachid; Paolone, Mario

    2014-01-01

    Dispersed storage systems (DSSs) can represent an important near-term solution for supporting the operation and control of active distribution networks (ADNs). Indeed, they have the capability to support ADNs by providing ancillary services in addition to energy balance capabilities. Within this context, this paper focuses on the optimal allocation of DSSs in ADNs by defining a multi-objective optimization problem aiming at finding the optimal trade-off between technical and economical goals....

  18. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei

    Onken, Christopher A.; Ferrarese, Laura; Merritt, David;

    2004-01-01

    We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...

  19. Tailoring thermal interfaces with nanomaterials

    Seshadri, Indira

    Thermal interfaces are key to ensure the reliable performance of many semiconductor, energy and electronic systems. High thermal conductivity (k), low elastic modulus (E) interface materials are required to dissipate heat and relieve thermo-mechanical stresses. The aim of this thesis is to develop compliant, high k nanocomposite materials for thermal interface applications utilizing nanostructured networks. Realizing high k nanocomposites is a challenge because of difficulties in incorporating high fractions of uniformly dispersed nanofillers and countering low filler-matrix interfacial conductance, while retaining a low elastic modulus. In this thesis, it is demonstrated that these issues are obviated by using mechanical softening of polymer matrices. It is demonstrated that silver nanowire fillers result in a three-fold decrease in viscoelastic storage modulus of polydimethylsiloxane composites above a low critical filler fraction of ~0.5%, contrary to theoretical predictions presaging a modulus increase. Similar fractions of silver nanocube fillers result in no such observable effects. Rheology measurements and calorimetric kinetics analyses reveal that high surface area nanowire filler percolation networks curtail macromolecular mobility via pre-cure gelation, and hinder crosslinking. This thesis also demonstrates novel techniques to create tailored nanowires and networks for high k nanocomposites. Branched Ag nanowires are synthesized via controlled interruptions to microwave-stimulated polyvinylpyrrolidone-directed polyol-reduction of silver nitrate. Microwave exposure results in micrometer-long nanowires passivated with polyvinylpyrrolidone. Cooling the reaction mixture by interrupting microwave exposure promotes nanocrystal nucleation at low-surfactant coverage sites. The nascent nuclei grow into nanowire branches upon further microwave exposure. Dispersions of low fractions of the branched nanowires in polydimethylsiloxane yield up to 60 % higher thermal

  20. Ultrasound assisted dispersal of a copper nanopowder for electroless copper activation.

    Graves, John E; Sugden, Mark; Litchfield, Robert E; Hutt, David A; Mason, Timothy J; Cobley, Andrew J

    2016-03-01

    This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing. PMID:26585024

  1. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample. PMID:26897472

  2. A family based tailored counselling to increase non-exercise physical activity in adults with a sedentary job and physical activity in their young children: design and methods of a year-long randomized controlled trial

    Finni Taija

    2011-12-01

    Full Text Available Abstract Background Epidemiological evidence suggests that decrease in sedentary behaviour is beneficial for health. This family based randomized controlled trial examines whether face-to-face delivered counselling is effective in reducing sedentary time and improving health in adults and increasing moderate-to-vigorous activities in children. Methods The families are randomized after balancing socioeconomic and environmental factors in the Jyväskylä region, Finland. Inclusion criteria are: healthy men and women with children 3-8 years old, and having an occupation where they self-reportedly sit more than 50% of their work time and children in all-day day-care in kindergarten or in the first grade in primary school. Exclusion criteria are: body mass index > 35 kg/m2, self-reported chronic, long-term diseases, families with pregnant mother at baseline and children with disorders delaying motor development. From both adults and children accelerometer data is collected five times a year in one week periods. In addition, fasting blood samples for whole blood count and serum metabonomics, and diurnal heart rate variability for 3 days are assessed at baseline, 3, 6, 9, and 12 months follow-up from adults. Quadriceps and hamstring muscle activities providing detailed information on muscle inactivity will be used to realize the maximum potential effect of the intervention. Fundamental motor skills from children and body composition from adults will be measured at baseline, and at 6 and 12 months follow-up. Questionnaires of family-influence-model, health and physical activity, and dietary records are assessed. After the baseline measurements the intervention group will receive tailored counselling targeted to decrease sitting time by focusing on commute and work time. The counselling regarding leisure time is especially targeted to encourage toward family physical activities such as visiting playgrounds and non-built environments, where children can

  3. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO2) as photocatalyst. TiO2 was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO2 dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO2. The synthesized TiO2 dispersions and commercially available TiO2 particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO2 in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO2 as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO2 incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO2 via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology

  4. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    Zydziak, Nicolas, E-mail: nicolas.zydziak@kit.edu [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany); Zanin, Maria-Helena Ambrosio [Laboratory of Chemical Processes and Particle Technology Bionanomanufacturing, Institute for Technological Research of the State of São Paulo – IPT, Av. Prof. Almeida Prado 532, Cidade Universitária, CEP 05508-901 São Paulo, SP (Brazil); Trick, Iris [Environmental Biotechnology and Bioprocess Engineering Department, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstrasse 12, 70569 Stuttgart (Germany); Hübner, Christof [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany)

    2015-03-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO{sub 2}) as photocatalyst. TiO{sub 2} was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO{sub 2} dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO{sub 2}. The synthesized TiO{sub 2} dispersions and commercially available TiO{sub 2} particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO{sub 2} in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO{sub 2} as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO{sub 2} incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO{sub 2} via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology.

  5. Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light

    Diana Di Gioia

    2013-08-01

    Full Text Available The photocatalytic effect of TiO2 has great potential for the disinfection of surfaces. Most studies reported in the literature use UV activation of TiO2, while visible light has been used only in a few applications. In these studies, high concentrations of TiO2, which can compromise surface properties, have been used. In this work, we have developed an acrylic-water paint dispersion containing low TiO2 content (2 vol % for the inactivation of microorganisms involved in hospital-acquired infections. The nanoparticles and the coating have been characterized using spectroscopic techniques and transmission electron microscopy, showing their homogenous dispersion in the acrylic urethane coating. A common fluorescent light source was used to activate the photocatalytic activity of TiO2. The paint dispersion showed antimicrobial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The coating containing the TiO2 nanoparticles maintained good UV stability, strong adhesion to the substrate and high hardness. Therefore, the approach used is feasible for paint formulation aimed at disinfection of healthcare surfaces.

  6. Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum

    Iskhakov, T Sh; Perez, A; Boyd, R W; Leuchs, G; Chekhova, M

    2015-01-01

    We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster dispersive spreading of higher-order Schmidt modes, the spectral width of the radiation at the output is reduced as the length of the dispersive medium is increased. Preliminary results show 30\\% spectral narrowing.

  7. Highly Dispersed and Active ReOx on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration

    SBA-15 silica supported rhenium catalysts were synthesized using solution-based atomic layer deposition method, and their activity and stability were studied in the acid-catalyzed 2-butanol dehydration. We find that ReOx/SBA-15 exhibited an extremely high initial activity but a fast deactivation for 2-butanol dehydration at 90-105 C. Fast deactivation was likely due to the sintering, sublimation, and reduction of rhenia as confirmed by TEM, elemental analysis, and in situ UV vis (DRS) measurements. To overcome these issues, ReOx/AlOx/SBA-15 catalysts with significantly improved stability were prepared by first modifying the surface identity of SBA-15 with alumina followed by dispersion of rhenia using atomic layer deposition. The AlOx phase stabilizes the dispersion of small and uniform rhenia clusters (<2 nm) as as confirmed by TEM, STEM and UV-vis (DRS) characterizations. Additional 27Al MAS NMR characterization revealed that modification of the SBA-15 surface with alumina introduces a strong interaction between rhenia and alumina, which consequently improves the stability of supported rhenia catalysts by suppressing the sintering, sublimation, and reduction of rhenia albeit at a moderately reduced initial catalytic dehydration activity

  8. TAILOR-APL: An Interactive Computer Program for Individual Tailored Testing

    McCormick, Douglas J.; Cliff, Norman

    1977-01-01

    An interactive computer program for tailored testing, called TAILOR, is presented. The program runs on the APL system. A cumulative file for each examinee is established and tests are then tailored to each examinee; extensive pretesting is not necessary. (JKS)

  9. The Coach2Move approach : Development and acceptability of an individually tailored physical therapy strategy to increase activity levels in older adults with mobility problems

    Vries, Nienke M. de; Ravensberg, C. Dorine van; Hobbelen, Johannes S.M.; Wees, Philip J. van der; Olde Rikkert, Marcel G.M.; Staal, J. Bart; Nijhuis-van der Sanden, Maria W.G.

    2015-01-01

    Background and Purpose: Despite the positive effects of physical activity on numerous aspects of health, many older adults remain sedentary even after participating in physical activity interventions. Standardized exercise programs do not necessarily bring about the behavioral change that is neces

  10. The Coach2Move Approach: Development and Acceptability of an Individually Tailored Physical Therapy Strategy to Increase Activity Levels in Older Adults With Mobility Problems

    Vries, N.M. de; Ravensberg, C.D. van; Hobbelen, J.S.; Wees, P.J. van der; Olde Rikkert, M.G.M.; Staal, J.B.; Nijhuis-Van der Sanden, M.W.G.

    2015-01-01

    BACKGROUND AND PURPOSE: Despite the positive effects of physical activity on numerous aspects of health, many older adults remain sedentary even after participating in physical activity interventions. Standardized exercise programs do not necessarily bring about the behavioral change that is necessa

  11. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Technical progress report, October--December 1991

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-02-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

  12. Catalyst dispersion and activity under conditions of temperature- staged liquefaction. Technical progress report, July--September 1991

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-02-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

  13. Tailoring the Spacer Arm for Covalent Immobilization of Candida antarctica Lipase B-Thermal Stabilization by Bisepoxide-Activated Aminoalkyl Resins in Continuous-Flow Reactors.

    Abaházi, Emese; Lestál, Dávid; Boros, Zoltán; Poppe, László

    2016-01-01

    An efficient and easy-to-perform method was developed for immobilization of CaLB on mesoporous aminoalkyl polymer supports by bisepoxide activation. Polyacrylate resins (100-300 µm; ~50 nm pores) with different aminoalkyl functional groups (ethylamine: EA and hexylamine: HA) were modified with bisepoxides differing in the length, rigidity and hydrophobicity of the units linking the two epoxy functions. After immobilization, the different CaLB preparations were evaluated using the lipase-catalyzed kinetic resolution (KR) of racemic 1-phenylethanol (rac-1) in batch mode and in a continuous-flow reactor as well. Catalytic activity, enantiomer selectivity, recyclability, and the mechanical and long-term stability of CaLB immobilized on the various supports were tested. The most active CaLB preparation (on HA-resin activated with 1,6-hexanediol diglycidyl ether-HDGE) retained 90% of its initial activity after 13 consecutive reaction cycles or after 12 month of storage at 4 °C. The specific rate (rflow), enantiomer selectivity (E) and enantiomeric excess (ee) achievable with the best immobilized CaLB preparations were studied as a function of temperature in kinetic resolution of rac-1 performed in continuous-flow packed-bed bioreactors. The optimum temperature of the most active HA-HDGE CaLB in continuous-flow mode was 60 °C. Although CaLB immobilized on the glycerol diglycidyl ether (GDGE)-activated EA-resin was less active and less selective, a much higher optimum temperature (80 °C) was observed with this form in continuous-flow mode KR of rac-1. PMID:27304947

  14. Towards tailor-made participation

    Agger, Annika

    2012-01-01

    Public participation has become an important element of governance in many Western European countries. However, among scholars and practitioners there is a recognition that participatory governance processes tend to produce systematic exclusions. Knowledge about 'who' participates and 'how......' they participate can enhance our understanding of participatory processes. This paper presents some characterisations of citizens based on a review of the literature on participation. In addition, examples of how to tailor participation for different type of citizens are provided based on studies of urban...... regeneration programmes and local environmental initiatives in Denmark. The paper concludes that in order to broaden the inclusion of affected citizens, public authorities need to be tailor participation processes by applying distinct approaches to different types of citizens...

  15. Systematic development of the YouRAction program, a computer-tailored physical activity promotion intervention for Dutch adolescents, targeting personal motivations and environmental opportunities

    R.G. Prins (Richard); P. van Empelen (Pepijn); M.A. Beenackers (Marielle); J. Brug (Hans); A. Oenema (Anke)

    2010-01-01

    textabstractBackground. Increasing physical activity (PA) among adolescents is an important health promotion goal. PA has numerous positive health effects, but the majority of Dutch adolescents do not meet PA requirements. The present paper describes the systematic development of a theory-based comp

  16. Rationale, design, and baseline findings from HIPP: A randomized controlled trial testing a home-based, individually-tailored physical activity print intervention for African American women in the Deep South.

    Pekmezi, Dori; Ainsworth, Cole; Joseph, Rodney; Bray, Molly S; Kvale, Elizabeth; Isaac, Shiney; Desmond, Renee; Meneses, Karen; Marcus, Bess; Demark-Wahnefried, Wendy

    2016-03-01

    African American women report high rates of physical inactivity and related health disparities. In our previous formative research, we conducted a series of qualitative assessments to examine physical activity barriers and intervention preferences among African American women in the Deep South. These data were used to inform a 12-month Home-based, Individually-tailored Physical activity Print (HIPP) intervention, which is currently being evaluated against a wellness contact control condition among 84 post-menopausal African American women residing in the metropolitan area of Birmingham, Alabama. This paper reports the rationale, design and baseline findings of the HIPP trial. The accrued participants had an average age of 57 (SD=4.7), a BMI of 32.1kg/m(2) (SD=5.16) with more than half (55%) having a college education and an annual household income under $50,000 (53.6%). At baseline, participants reported an average of 41.5min/week (SD=49.7) of moderate intensity physical activity, and 94.1% were in the contemplation or preparation stages of readiness for physical activity. While social support for exercise from friends and family was low, baseline levels of self-efficacy, cognitive and behavioral processes of change, decisional balance, outcome expectations, and enjoyment appeared promising. Baseline data indicated high rates of obesity and low levels of physical activity, providing strong evidence of need for intervention. Moreover, scores on psychosocial measures suggested that such efforts may be well received. This line of research in technology-based approaches for promoting physical activity in African American women in the Deep South has great potential to address health disparities and impact public health. PMID:26944022

  17. Citrem Modulates Internal Nanostructure of Glyceryl Monooleate Dispersions and Bypasses Complement Activation

    Wibroe, Peter P; Mat Azmi, Intan Diana Binti; Nilsson, Christa;

    2015-01-01

    Lyotropic non-lamellar liquid crystalline (LLC) aqueous nanodispersions hold a great promise in drug solubilization and delivery, but these nanosystems often induce severe hemolysis and complement activation, which limit their applications for safe intravenous administration. Here, we engineer an...

  18. Tailoring the parametric gain in large mode area hybrid photonic crystal fibers

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    The spectral width of parametric gain peaks due to degenerate four-wave mixing is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is varied for a maintained pump wavelength and gain maximum position by tailoring the dispersion.......The spectral width of parametric gain peaks due to degenerate four-wave mixing is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is varied for a maintained pump wavelength and gain maximum position by tailoring the dispersion....

  19. Reducing neuropsychiatric symptoms in persons with dementia and associated burden in family caregivers using tailored activities: Design and methods of a randomized clinical trial.

    Gitlin, Laura N; Piersol, Catherine Verrier; Hodgson, Nancy; Marx, Katherine; Roth, David L; Johnston, Deidre; Samus, Quincy; Pizzi, Laura; Jutkowitz, Eric; Lyketsos, Constantine G

    2016-07-01

    Among over 5million people in the USA with dementia, neuropsychiatric symptoms (NPS) are almost universal, occurring across disease etiology and stage. If untreated, NPS can lead to significant morbidity and mortality including increased cost, distress, depression, and faster disease progression, as well as heightened burden on families. With few pharmacological solutions, identifying nonpharmacologic strategies is critical. We describe a randomized clinical trial, the Dementia Behavior Study, to test the efficacy of an activity program to reduce significant existing NPS and associated caregiver burden at 3 and 6months compared to a control group intervention. Occupational therapists deliver 8 in-home sessions over 3months to assess capabilities and interests of persons with dementia, home environments, and caregiver knowledge, and readiness from which activities are developed and families trained in their use. Families learn to modify activities for future declines and use strategies to address care challenges. The comparison group controls for time and attention and involves 8 in-home sessions delivered by health educators who provide dementia education, home safety recommendations, and advanced care planning. We are randomizing 250 racially diverse families (person with dementia and primary caregiver dyads) recruited from community-based social services, conferences and media announcements. The primary outcome is change in agitation/aggression at 3 and 6months. Secondary outcomes assess quality of life of persons with dementia, other behaviors, burden and confidence of caregivers, and cost and cost effectiveness. If benefits are supported, this activity intervention will provide a clinically meaningful approach to prevent, reduce, and manage NPS. PMID:27339865

  20. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [(188)Re(H(2)O)(3)(CO)(3)](+) and synthesis of tailor-made bifunctional ligand systems.

    Schibli, Roger; Schwarzbach, Rolf; Alberto, Roger; Ortner, Kirstin; Schmalle, Helmut; Dumas, Cécile; Egli, André; Schubiger, P August

    2002-01-01

    Two kit preparations of the organometallic precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in aqueous media are presented. Method A uses gaseous carbon monoxide and amine borane (BH(3).NH(3)) as the reducing agent. In method B CO(g) is replaced by K(2)[H(3)BCO(2)] that releases carbon monoxide during hydrolysis. Both procedures afford the desired precursor in yields >85% after 10 min at 60 degrees C. HPLC and TLC analyses revealed 7 +/- 3% of unreacted (188)ReO(4)(-) and 95% with [(188)Re(H(2)O)(3)(CO)(3)](+) under mild reaction conditions (PBS buffer, 60 degrees C, 60 min) at ligand concentrations between 5 x 10(-4) M and 5 x 10(-5) M. Thus, specific activities of 22-220 GBq pe micromol of ligand could be achieved. Incubation of the corresponding Re-188 complexes in human serum at 37 degrees C revealed stabilities between 80 +/- 4% and 45 +/- 10% at 24 h, respectively, and 63 +/- 3% and 34 +/- 3% at 48 h postincubation in human serum depending on the chelating system. Decomposition product was mainly (188)ReO(4)(-). The routine kit-preparation of the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in combination with tailor-made ligand systems enables the organometallic labeling of biomolecules with unprecedented high specific activities. PMID:12121130

  1. Superdiffusion in dispersions of active colloids driven by an external field and their sedimentation equilibrium

    Chen, Yen-Fu; Wei, Hsien-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-04-01

    The diffusive behaviors of active colloids with run-and-tumble movement are explored by dissipative particle dynamics simulations for self-propelled particles (force dipole) and external field-driven particles (point force). The self-diffusion of tracers (solvent) is investigated as well. The influences of the active force, run time, and concentration associated with active particles are studied. For the system of self-propelled particles, the normal diffusion is observed for both active particles and tracers. The diffusivity of the former is significantly greater than that of the latter. For the system of field-driven particles, the superdiffusion is seen for both active particles and tracers. In contrast, it is found that the anomalous diffusion exponent of the former is slightly less than that of the latter. The anomalous diffusion is caused by the many-body, long-range hydrodynamic interactions. In spite of the superdiffusion, the sedimentation equilibrium of field-driven particles can be acquired and the density profile is still exponentially decayed. The sedimentation length of field-driven particles is always greater than that of self-propelled particles.

  2. Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities

    Zhang, Yu; Zhu, Pengli; Li, Gang; Wang, Wenzhao; Chen, Liang; Lu, Daoqiang Daniel; Sun, Rong; Zhou, Feng; Wong, Chingping

    2015-08-01

    Highly stable monodispersed nano Cu hydrosols were facilely prepared by an aqueous chemical reduction method through selecting copper hydroxide (Cu(OH)2) as the copper precursor, poly(acrylic acid) (PAA) and ethanol amine (EA) as the complexing agents, and hydrazine hydrate as the reducing agent. The size of the obtained Cu colloidal nanoparticles was controlled from 0.96 to 26.26 nm by adjusting the dosage of the copper precursor. Moreover, the highly stable nano Cu hydrosols could be easily concentrated and re-dispersed in water meanwhile maintaining good dispersibility. A model catalytic reaction of reducing p-nitrophenol with NaBH4 in the presence of nano Cu hydrosols with different sizes was performed to set up the relationship between the apparent kinetic rate constant (kapp) and the particle size of Cu catalysts. The experimental results indicate that the corresponding kapp showed an obvious size-dependency. Calculations revealed that kapp was directly proportional to the surface area of Cu catalyst nanoparticles, and also proportional to the reciprocal of the particle size based on the same mass of Cu catalysts. This relationship might be a universal principle for predicting and assessing the catalytic efficiency of Cu nanoparticles. The activation energy (Ea) of this catalytic reaction when using 0.96 nm Cu hydrosol as a catalyst was calculated to be 9.37 kJ mol-1, which is considered an extremely low potential barrier. In addition, the synthesized nano Cu hydrosols showed size-dependent antibacterial activities against Pseudomonas aeruginosa (P. aeruginosa) and the minimal inhibitory concentration of the optimal sample was lower than 5.82 μg L-1.Highly stable monodispersed nano Cu hydrosols were facilely prepared by an aqueous chemical reduction method through selecting copper hydroxide (Cu(OH)2) as the copper precursor, poly(acrylic acid) (PAA) and ethanol amine (EA) as the complexing agents, and hydrazine hydrate as the reducing agent. The size of the

  3. A Switchable and Tunable Dual-Wavelength Actively Mode-Locked Fiber Laser Based on Dispersion Tuning

    A switchable and tunable dual-wavelength actively mode-locked fiber laser based on a dispersion tuning technique is proposed and demonstrated. Synchronous wavelength tuning of dual-wavelength operation with wavelength spacing of 22.9 nm can be achieved up to 23.2 nm by changing the modulation frequency. The proposed laser can operate in dual-wavelength or single-wavelength by simple adjustment of the polarization controller. Moreover, wavelength spacing can also be varied from 22 to 45 nm at the cost of a reduced tuning range by changing the harmonic order, which is determined by the modulation frequency. These experimental observations agree well with the theoretical analysis

  4. Invited: Tailoring Platinum Group Metals Towards Optimal Activity for Oxygen Electroreduction to H2o and H2O2: From Extended Surfaces to Nanoparticles

    Stephens, Ifan

    2014-01-01

    fuel cell technology could be scaled up.(1) The most widely used strategy towards decreasing the Pt loading is to alloy Pt with other late transition metals, in particular Ni or Co. (2-5) However, when tested in a fuel cell, these alloys are often susceptible towards degradation via dealloying.(6, 7......) At our laboratory, we have developed a different class of Pt alloy for oxygen electroreduction: alloys of Pt with rare earths, such as Y or Gd.(1, 8, 9) The strong interaction between Pt and the rare earth elements should make these compounds inherently less prone towards dealloying. We first...... demonstrated the very high activity of Pt3Y and Pt5Gd on extended polycrystalline surfaces. However, we have more recently shown that model, size-selected nanoparticles of PtxY exhibit up to 3 Ag-1at 0.9 V. These promising results provide a strong impetus towards the large scale synthesis of these catalysts...

  5. Visualizing Dispersion Interactions

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  6. Engineering tailored nanoparticles with microbes: quo vadis?

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-03-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies. WIREs Nanomed Nanobiotechnol 2016, 8:316-330. doi: 10.1002/wnan.1363 For further resources related to this article, please visit the WIREs website. PMID:26271947

  7. Time Series with Tailored Nonlinearities

    Raeth, C

    2015-01-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well- defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncor- related Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for e.g. turbulence and financial data can thus be explained in terms of phase correlations.

  8. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management. PMID:26636180

  9. Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein

    Brockelbank Jane A

    2007-01-01

    Full Text Available Abstract Background Fluorescence activated cell sorting (FACS is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluorescently labelled using secondary antibodies. As the individual suspension bead passes through the sensing region of the FACS machine, fluorescent signals are acquired and analysed. Currently, antigens are tediously purified and chemically cross-linked to preformed beads. Purification and coupling of proteins often renders them inactive and they will not be displayed in its native configuration. As an alternative, we genetically engineered Escherichia coli to produce biopolyester (polyhdroxyalkanoate=PHA granules displaying diagnostically relevant antigens in their native conformation and suitable for FACS analysis. Results Hybrid genes were constructed, which encode either the mouse interleukin-2 (IL2 or the myelin oligodendrocyte glycoprotein (MOG fused via an enterokinase site providing linker region to the C terminus of the PHA granule associated protein PhaP, respectively. The hybrid genes were expressed in PHA-accumulating recombinant E. coli. MOG and IL2 fusion proteins were abundantly attached to PHA granules and were identified by MALDI-TOF/MS analysis and N terminal sequencing. A more abundant second fusion protein of either MOG or IL2 resulted from an additional N terminal fusion, which did surprisingly not interfere with attachment to PHA granule. PHA granules displaying either IL2 or MOG were used for FACS using monoclonal anti-IL2 or anti-MOG antibodies conjugated to a fluorescent dye. FACS analysis showed significant and specific binding of respective antibodies. Enterokinase treatment of IL2 displaying PHA granules enabled removal of IL2 as monitored by FACS analysis. Mice were immunized with either MOG or OVA (ovalbumin and the

  10. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  11. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  12. Tailoring supercontinuum generation using highly nonlinear photonic crystal fiber

    Hossain, M. A.; Namihira, Y.; Islam, M. A.; Razzak, S. M. A.; Hirako, Y.; Miyagi, K.; Kaijage, S. F.; Higa, H.

    2012-09-01

    This paper discusses about the tailoring supercontinuum (SC) generation based on a highly nonlinear germanium (Ge) doped photonic crystal fiber (HNL-GePCF) with all normal group velocity dispersion (GVD). Using finite element method (FEM) with a circular perfectly matched boundary layer (PML), it is shown through simulations that how simply the center wavelength can be shifted from one center point to another after optimizing at a particular wavelength using the proposed HNL-GePCF. Moreover, SC spectra at 1.06, 1.31 and 1.55 μm have been generated using picosecond optical pulses produced from relatively less expensive laser sources.

  13. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.

    Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M

    2016-01-01

    Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site. PMID:26687090

  14. Tailorable Trimethyl chitosans as adjuvant for intranasal immunization

    Verheul, R.J.

    2010-01-01

    Tailorable Trimethyl Chitosans as Adjuvant for Intranasal Immunization Active vaccination has proven to be the most (cost) effective tool in the fight against infectious diseases. Nowadays, most vaccines are administered via parenteral injection. However, the risk of contaminated needles and need fo

  15. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides.

    Shaki, Hanieh; Gharanjig, Kamaladin; Khosravi, Alireza

    2015-01-01

    A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4-amino-N-2-aminomethylpyridine-1,8-naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N-diethylaniline, N,N-dihydroxyethylaniline, 8-hydroxyquinoline, and 2-methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance ((1) H NMR), carbon nuclear magnetic resonance ((13) C NMR), elemental analysis, and ultraviolet-visible (UV-visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate-to-good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N-dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. PMID:25967675

  16. A New Class of Highly Dispersed VOx Catalysts on Mesoporous Silica: Synthesis, Characterization, and Catalytic Activity in the Partial Oxidation of Ethanol

    Kwak, Ja Hun; Herrera, Jose E.; Hu, Jian Zhi; Wang, Yong; Peden, Charles HF

    2006-01-26

    The morphology of vanadium oxide supported on a titania-modified mesoporous silica (MCM-41), obtained by means of a careful grafting process through atomic layer deposition, was studied using a variety of characterization techniques. The XRD together with TEM, 51V-NMR, Raman, FTIR and DRS-UV-Vis results showed that the vanadia species are extremely well dispersed onto the surface of the mesoporous support; the dispersion being stable upon thermal treatments up to 400 °C. Studies of the catalytic activity of these materials were performed using the partial oxidation of ethanol as a probe reaction. The results indicate an intrinsic relationship between dispersion, the presence of a TiO2-VOx phase, and catalytic activity for oxidation and dehydration.

  17. Targeted therapy: tailoring cancer treatment

    Min Yan; Quentin Qiang Liu

    2013-01-01

    Targeted therapies include small-molecule inhibitors and monoclonal antibodies,have made treatment more tumor-specific and less toxic,and have opened new possibilities for tailoring cancer treatment.Nevertheless,there remain several challenges to targeted therapies,including molecular identification,drug resistance,and exploring reliable biomarkers.Here,we present several selected signaling pathways and molecular targets involved in human cancers including Aurora kinases,PI3K/mTOR signaling,FOXO-FOXM1 axis,and MDM2/MDM4-p53 interaction.Understanding the molecular mechanisms for tumorigenesis and development of drug resistance will provide new insights into drug discovery and design of therapeutic strategies for targeted therapies.

  18. Molecular tailoring of solid surfaces

    Evenson, S A

    1997-01-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were t...

  19. Tailored logistics: the next advantage.

    Fuller, J B; O'Conor, J; Rawlinson, R

    1993-01-01

    How many top executives have ever visited with managers who move materials from the factory to the store? How many still reduce the costs of logistics to the rent of warehouses and the fees charged by common carriers? To judge by hours of senior management attention, logistics problems do not rank high. But logistics have the potential to become the next governing element of strategy. Whether they know it or not, senior managers of every retail store and diversified manufacturing company compete in logistically distinct businesses. Customer needs vary, and companies can tailor their logistics systems to serve their customers better and more profitably. Companies do not create value for customers and sustainable advantage for themselves merely by offering varieties of goods. Rather, they offer goods in distinct ways. A particular can of Coca-Cola, for example, might be a can of Coca-Cola going to a vending machine, or a can of Coca-Cola that comes with billing services. There is a fortune buried in this distinction. The goal of logistics strategy is building distinct approaches to distinct groups of customers. The first step is organizing a cross-functional team to proceed through the following steps: segmenting customers according to purchase criteria, establishing different standards of service for different customer segments, tailoring logistics pipelines to support each segment, and creating economics of scale to determine which assets can be shared among various pipelines. The goal of establishing logistically distinct businesses is familiar: improved knowledge of customers and improved means of satisfying them. PMID:10126157

  20. Facile synthesis of well-dispersed Bi2S3 nanoparticles on reduced graphene oxide and enhanced photocatalytic activity

    Chen, Yajie; Tian, Guohui; Mao, Guijie; Li, Rong; Xiao, Yuting; Han, Taoran

    2016-08-01

    Here we present a facile method for the synthesis of highly dispersed Bi2S3 nanoparticles (Bi2S3 NPs) with an average diameter of ca. 25 ± 3 nm on the surface of reduced graphene oxide (RGO) via a poly(sodium-p-styrenesul-fonate) (PSS) asisted hydrothermal process. Such synthetic strategy can avoid excess aggregates of Bi2S3 nanoparticles, meanwhile from effective interfacial contact between Bi2S3 nanoparticles and RGO nanosheets, and inhibit the recombination of photogenerated charges. The enhanced charge transfer properties were proved by photoluminescence (PL) measurement. The obtained Bi2S3 NPs/RGO composites showed more significant visible light photoactivity for the degradation of 2,4-dichlorophenol and Rhodamine B than that pure Bi2S3 and the control sample prepared in the absence of PSS. The enhanced photocatalytic performance could be attributed to the synergistic effect of efficient separation of photogenerated electron-hole pairs, increased catalytic active sites and visible light utilization.

  1. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay.

    Younker, Jessica M; Walsh, Margaret E

    2015-12-15

    Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions. PMID:26259095

  2. Formability of stainless steel tailored blanks

    Bagger, Claus; Gong, Hui; Olsen, Flemming Ove

    2004-01-01

    In a number of systematic tests, the formability of tailored blanks consisting of even and different combinations of AISI304 and AISI316 in thickness of 0.8 mm and 1.5 mm have been investigated. In order to analyse the formability of tailored blanks with different sheet thickness, a method based ...

  3. Hydrogen Peroxide Linked to Lysine Oxidase Activity Facilitates Biofilm Differentiation and Dispersal in Several Gram-Negative Bacteria▿

    Mai-Prochnow, Anne; Lucas-Elio, Patricia; Egan, Suhelen; Thomas, Torsten; Webb, Jeremy S.; Sanchez-Amat, Antonio; Kjelleberg, Staffan

    2008-01-01

    The marine bacterium Pseudoalteromonas tunicata produces an antibacterial and autolytic protein, AlpP, which causes death of a subpopulation of cells during biofilm formation and mediates differentiation, dispersal, and phenotypic variation among dispersal cells. The AlpP homologue (LodA) in the marine bacterium Marinomonas mediterranea was recently identified as a lysine oxidase which mediates cell death through the production of hydrogen peroxide. Here we show that AlpP in P. tunicata also ...

  4. Invasion speeds with active dispersers in highly variable landscapes: Multiple scales, homogenization, and the migration of trees.

    Neupane, Ram C; Powell, James A

    2015-12-21

    The distribution of many tree species is strongly determined by the behavior and range of vertebrate dispersers, particularly birds. Many models for seed dispersal exist, and are built around the assumption that seeds undergo a random walk while they are being carried by vertebrates, either in the digestive tract or during the process of seed storage (caching). We use a PDF of seed handling (caching and digesting) times to model non-constant seed settling during dispersal, and model the random component of seed movement using ecological diffusion, in which animals make movement choices based purely on local habitat type instead of population gradients. Spatial variability in habitat directly affects the movement of dispersers and leads to anisotropic dispersal kernels. For birds, which can easily move many kilometers, habitat changes on the scale of tens of meters can viewed as rapidly varying. We introduce multiple scales and apply the method of homogenization to determine leading order solutions for the seed digestion kernel (SDK). Using an integrodifference equation (IDE) model for adult trees, we investigate the rate of forest migration. The existing theory for predicting spread rates in IDE does not apply when dispersal kernels are anisotropic. However, the homogenized SDK is isotropic on large scales and depends only on harmonically averaged motilities and modal rates of digestion. We show that speeds calculated using the harmonic average motility accurately predict rates of invasion for the spatially variable system. PMID:26453975

  5. Dispersion Forces

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  6. 纳米TiO2的分散及光催化活性%Dispersion and photocatalytic activity of titanium dioxide nanoparticles

    张小强; 尹立红; 浦跃朴

    2011-01-01

    To investigate the dispersion state and photocatalytic activity of TiO2nanoparticles under ultraviolet irradiation, a variety of approaches for suspension of TiO2 nanoparticles were conducted with different dispersion stabilizers, dosage, pH value and various working parameter of ultrasound vibration. The average size of dispersed TiO2 nanoparticles was measured by dynamic light scattering device. The photocatalytic activity for degradation of methylene blue was determined by detecting the absorbance with the help of UV-visible spectrophotometry. The results show that the optimum dispersion stabilizer is 100% fetal bovine serum (FBS) which can provide TiO2 nanoparticles dispersion with the smallest particle size and the highest photocatalytic activity. The TiO2 nanoparticles dispersion prepared by 100% FBS is well-dispersed at the concentration of 0.50 mg/mL (1:100) or 1. 0 mg/mL (1:50). In our experiments the dispersion state and photocatalytic activity of TiO2 nanoparticles are not influenced by different pH values. The dispersion state and photocatalytic activity of TiO2 nanoparticles are promoted sufficiently with ultrasound energy of 33 W for 5 min. It is shown that the photocatalytic activity of titanium dioxide nanoparticles is promoted by the well-dispersed state.%为了研究纳米TiO2的分散及其紫外光催化活性,采用不同的分散剂、用量、pH条件及不同的超声波工作参数制备纳米TiO2分散体系.采用动态光散射法分析纳米颗粒的分散状态,采用分光光度法分析不同分散体系的纳米TiO2在紫外光照射下对亚甲基蓝降解率.采用100%FBS作为分散剂可以获得最小粒径的TiO2分散体系且有最大的光催化活性,使用时以制备终质量浓度为0.50 mg/mL(1∶100)或1.0 mg/mL (1∶50)的TiO2分散体系为最佳使用量.在该实验条件下不同pH值对纳米TiO2分散水平和光催化活性均未产生显著性影响.超声波33 W振荡5min即可明显提高纳米TiO2分散

  7. An experimental indoor phasing system based on active optics using dispersed Hartmann sensing technology in the visible waveband

    A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror, and so the larger version is always pursued by astronomers and astronomical technicians. Instead of using a monolithic primary mirror, more and more large telescopes, which are currently being planned or in construction, have adopted a segmented primary mirror design. Therefore, how to sense and phase such a primary mirror is a key issue for the future of extremely large optical/infrared telescopes. The Dispersed Fringe Sensor (DFS), or Dispersed Hartmann Sensor (DHS), is a non-contact method using broadband point light sources and it can estimate the piston by the two-directional spectrum formed by the transmissive grating's dispersion and lenslet array. Thus it can implement the combination of co-focusing by Shack-Hartmann technology and phasing by dispersed fringe sensing technologies such as the template-mapping method and the Hartmann method. We introduce the successful design, construction and alignment of our dispersed Hartmann sensor together with its design principles and simulations. We also conduct many successful real phasing tests and phasing corrections in the visible waveband using our existing indoor segmented mirror optics platform. Finally, some conclusions are reached based on the test and correction of experimental results.

  8. An experimental indoor phasing system based on active optics using dispersed Hartmann sensing technology in the visible waveband

    Yong Zhang; Gen-Rong Liu; Yue-Fei Wang; Ye-Ping Li; Ya-Jun Zhang; Liang Zhang; Yi-Zhong Zeng; Jie Zhang

    2011-01-01

    A telescope with a larger primary mirror can collect much more light and resolve objects much better than one with a smaller mirror,and so the larger version is always pursued by astronomers and astronomical technicians.Instead of using a monolithic primary mirror,more and more large telescopes,which are currently being planned or in construction,have adopted a segmented primary mirror design.Therefore,how to sense and phase such a primary mirror is a key issue for the future of extremely large optical/infrared telescopes.The Dispersed Fringe Sensor (DFS),or Dispersed Hartmann Sensor (DHS),is a non-contact method using broadband point light sources and it can estimate the piston by the two-directional spectrum formed by the transmissive grating's dispersion and lenslet array.Thus it can implement the combination of co-focusing by Shack-Hartmann technology and phasing by dispersed fringe sensing technologies such as the template-mapping method and the Hartmann method.We introduce the successful design,construction and alignment of our dispersed Hartmann sensor together with its design principles and simulations.We also conduct many successful real phasing tests and phasing corrections in the visible waveband using our existing indoor segmented mirror optics platform.Finally,some conclusions are reached based on the test and correction of experimental results.

  9. Evaluating the biodegradability and effects of dispersed oil using Arctic test species and conditions : phase 1 activities

    McFarlin, K.M.; Perkins, R.A. [Alaska Univ., Fairbanks, AK (United States); Gardiner, G.; Word, J.D [NewFields Northwest, Port Gamble, WA (United States)

    2009-07-01

    Spill prevention techniques and response options are important considerations of exploration and production operations within the Arctic Circle, where much of the world's undiscovered oil and gas is located. In the event of a marine oil spill, response teams must decide on actions such as natural recovery, mechanical recovery, in situ burning or chemical dispersion. A Net Environmental Benefit Analysis (NEBA) involves an examination of various spill response actions and their net environmental effects of key resources and habitats. Performing a NEBA requires information about the sensitivity of relevant species under conditions following various spill response techniques. This paper reported on a research project that investigated the toxic effects and biodegradation rates of dispersed oil under Arctic open water conditions. The 2 key objectives were to determine the toxicity of dispersed Alaska North Slope (ANS) crude oil to indigenous copepods and Arctic cod compared to non-dispersed oil and to compare those results to temperate species; and to determine the biodegradation rates of dispersed oil compared to non-dispersed oil. The data acquired from the study is intended to help optimize response options to minimize negative ecological effects. Natural Arctic conditions were simulated in the laboratory. All water used in this study was fresh seawater collected from the Beaufort and Chukchi Seas. Temperature, dissolved oxygen, salinity, pH and light intensities were measured when collecting indigenous test species for simulation in the laboratory. The research is ongoing and will continue until the summer of 2010, at which time a technical report with results will be prepared. 19 refs.

  10. A tailorable infrastructure to enhance mobile seamless learning

    Malandrino, Delfina; Manno, Ilaria; Palmieri, Giuseppina;

    2015-01-01

    The widespread use of mobile devices is leading towards their adoption in the learning process, even if some pedagogical challenges are still not fully addressed when integrating mobile-assisted activities into regular curricula activities. In this paper, we first define some guidelines to design a...... general, tailorable, and platform-independent mobile learning system. Second, we present the aCME system, a mobile infrastructure, developed by adhering to the defined guidelines, to provide a general-purpose system, easy to start up with and friendly to user, and finally, tailorable, i.e., that can be...... easily adapted to the needs of different learning environments. The aCME system has been implemented as a Web-based architecture, to provide content and functionalities for different contexts, accessible from any location and by using any communication device. Finally, we describe a tool, deployed into a...

  11. Aeroelastic Tailoring via Tow Steered Composites

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  12. Welding of tailored blanks of different materials

    Suban, Marjan; Tušek, Janez; Kampuš, Zlatko

    2015-01-01

    This paper treats welding of tailored blanks made of different materials. In general, fusion welding and welding with pressure, practically without fusion, are described. Fusion welding may be carried out with or without the addition of filler material. In Section 3, general characteristics of tailored blanks are described. In Section 4, MIG welding and laser welding of austenitic stainless steel with ferrite non-stainless steel are described. After welding, hardness of the welded joints was ...

  13. Tailored displays to compensate for visual aberrations

    Pamplona, Vitor F.; Oliveira, Manuel M.; Aliaga, Daniel G.; Raskar, Ramesh

    2012-01-01

    We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject's focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object's light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integrati...

  14. Chemical dispersants

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  15. Generalized uniform formulae for atmospheric dispersion of activities released from a ventilation stack or from a leaky reactor building

    Relations are given for the calculation of the atmospheric transport and dispersion of industrial gaseous wastes released from the stacks of factories, power plants and nuclear power plants. Modified formulae are derived for stack disposal from a small stack, also applicable in calculating the gaseous waste release from a leaky reactor. Uniform generalized formulae are presented serving the calculation of both high and short stack disposals as well as of reactor building leakages. (L.O.)

  16. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth. This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.

  17. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    Hao, Qiang; Guo, Zhengru; Zhang, Qingshan [Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China); Liu, Yang; Li, Wenxue [State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062 (China); Zeng, Heping, E-mail: hpzeng@phy.ecnu.edu.cn [Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China); State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062 (China)

    2014-05-19

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth. This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.

  18. Dry particle coating of polymer particles for tailor-made product properties

    Blümel, C.; Schmidt, Jochen; Dielesen, A.; Sachs, Marius; Winzer, B.; Peukert, Wolfgang; Wirth, Karl-Ernst

    2014-01-01

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass f...

  19. A family based tailored counselling to increase non-exercise physical activity in adults with a sedentary job and physical activity in their young children: design and methods of a year-long randomized controlled trial

    Finni Taija; Sääkslahti Arja; Laukkanen Arto; Pesola Arto; Sipilä Sarianna

    2011-01-01

    Abstract Background Epidemiological evidence suggests that decrease in sedentary behaviour is beneficial for health. This family based randomized controlled trial examines whether face-to-face delivered counselling is effective in reducing sedentary time and improving health in adults and increasing moderate-to-vigorous activities in children. Methods The families are randomized after balancing socioeconomic and environmental factors in the Jyväskylä region, Finland. Inclusion criteria are: h...

  20. Water-in-oil emulsions prepared by peptide-silicone hybrid polymers as active interfacial modifier: effects of silicone oil species on dispersion stability of emulsions.

    Sakai, Kenichi; Iijima, Satoshi; Ikeda, Ryosuke; Endo, Takeshi; Yamazaki, Takahiro; Yamashita, Yuji; Natsuisaka, Makoto; Sakai, Hideki; Abe, Masahiko; Sakamoto, Kazutami

    2013-01-01

    We have recently proposed a new general concept regarding amphiphilic materials that have been named as "active interfacial modifier (AIM)." In emulsion systems, an AIM is essentially insoluble in both water and organic solvents; however, it possesses moieties that are attracted to each of these immiscible liquid phases. Hence, an AIM practically stays just at the interface between the two phases and makes the resulting emulsion stable. In this study, the effects of silicone oil species on the dispersion stability of water-in-oil (W/O) emulsions in the presence of an AIM sample were evaluated in order to understand the destabilization mechanism in such emulsion systems. The AIM sample used in this study is an amphiphilic polymer consisting of a silicone backbone modified with hydrocarbon chains and hydrolyzed silk peptides. The Stokes equation predicts that the sedimentation velocity of water droplets dispersed in a continuous silicone oil phase simply depends on the expression (ρ - ρ₀)/η assuming that the droplet size is constant (where ρ is the density of the dispersed water phase, ρ₀ is the density of the continuous silicone oil phase, and η is the viscosity of the oil phase). The experimental results shown in this paper are consistent with the Stokes prediction: i.e., in the low-viscous genuine or quasi-Newtonian fluid region, the dispersion stability increases in the following order: dodecamethylpentasiloxane (DPS) D₅ > D₆. This indicates that our emulsion system experiences destabilization through sedimentation, but hardly any coalescence occurs owing to the presence of an additional third phase consisting of the AIM that stabilizes the silicone oil/water interface in the emulsions. PMID:23823917

  1. Quantifying the impact of relativity and of dispersion interactions on the activation of molecular oxygen promoted by noble metal nanoparticles

    Kanoun, Mohammed

    2014-06-26

    We compared the mechanism of O2 dissociation catalyzed by Cu38, Ag38, and Au38 nanoparticles. Overall, our results indicate that O2 dissociation is extremely easy on Cu38, with an almost negligible barrier for the O-O breaking step. It presents an energy barrier close to 20 kcal/mol on Ag38, which decreases to slightly more than 10 kcal/mol on Au38. This behavior is analyzed to quantify the impact of relativity and of dispersion interactions through a comparison of nonrelativistic, scalar-relativistic, and dispersioncorrected DFT methods. Nonrelativistic calculations show a clear trend down the triad, with larger in size nanoparticle (NP), weaker O2 adsorption energy, and higher O2 dissociation barrier, which is so high for Au38 to be in sharp contrast with the mild conditions used experimentally. Inclusion of relativity has no impact on the O2 adsorption energy, but it reduces the energy barrier for O2 dissociation on Au38 from 30.1 to 11.4 kcal/mol, making it even lower than that on Ag38 and consistent with the mild conditions used experimentally. Dispersion interactions have a remarkable role in improving the adsorption ability of O2 on the heavier Ag38 and especially Au38 NPs, contributing roughly 50% of the total adsorption energy, while they have much less impact on O2 adsorption on Cu38.

  2. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity.

    Powell, Jonathan J; Bruggraber, Sylvaine F A; Faria, Nuno; Poots, Lynsey K; Hondow, Nicole; Pennycook, Timothy J; Latunde-Dada, Gladys O; Simpson, Robert J; Brown, Andy P; Pereira, Dora I A

    2014-10-01

    The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~2.7Å for the main Bragg peak versus 2.6Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the clinical editor: Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation. PMID:24394211

  3. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density

  4. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  5. In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells

    A new water-dispersible nanostructure based on magnetite (Fe3O4) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe3O4@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcusaureus (S.aureus),Enterococcus faecalis (E.faecalis) and Gram-negative Escherichia coli (E.coli),Pseudomonasaeruginosa (P.aeruginosa) reference strains. Concerning the influence of Fe3O4@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E.faecalis and E.coli, as compared with the Fe3O4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S.aureus and E.faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E.coli biofilm development, only at high concentrations, while for P.aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe3O4@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains

  6. In vitro activity of the new water-dispersible Fe{sub 3}O{sub 4}@usnic acid nanostructure against planktonic and sessile bacterial cells

    Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Department of Science and Engineering of Oxidic Materials and Nanomaterials (Romania); Cotar, Ani Ioana [Faculty of Biology, University of Bucharest, Department of Microbiology Immunology (Romania); Andronescu, Ecaterina; Ficai, Anton; Ghitulica, Cristina Daniela; Grumezescu, Valentina; Vasile, Bogdan Stefan [Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Department of Science and Engineering of Oxidic Materials and Nanomaterials (Romania); Chifiriuc, Mariana Carmen [Faculty of Biology, University of Bucharest, Department of Microbiology Immunology (Romania)

    2013-07-15

    A new water-dispersible nanostructure based on magnetite (Fe{sub 3}O{sub 4}) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe{sub 3}O{sub 4}@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcusaureus (S.aureus),Enterococcus faecalis (E.faecalis) and Gram-negative Escherichia coli (E.coli),Pseudomonasaeruginosa (P.aeruginosa) reference strains. Concerning the influence of Fe{sub 3}O{sub 4}@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E.faecalis and E.coli, as compared with the Fe{sub 3}O{sub 4} control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S.aureus and E.faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E.coli biofilm development, only at high concentrations, while for P.aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe{sub 3}O{sub 4}@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.

  7. Colloidal Dispersions

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  8. Dispersed Indeterminacy

    Fayngold, Moses

    2013-01-01

    A state of a single particle can be represented by a quantum blob in the corresponding phase space, or a patch (granule) in its 2-D subspace. Its area is frequently stated to be no less than, implying that such a granule is an indivisible quantum of the 2-D phase space. But this is generally not true, as is evident, for instance, from representation of some states in the basis of innately discrete observables like angular momentum. Here we consider some dispersed states involving the evanescent waves different from that in the total internal reflection. Such states are represented by a set of separated granules with individual areas, but with the total indeterminacy . An idealized model has a discrete Wigner function and is described by a superposition of eigenstates with eigenvalues and forming an infinite periodic array of dots on the phase plane. The question about the total indeterminacy in such state is discussed. We argue that the eigenstates corresponding to the considered EW cannot be singled out by a...

  9. Tailored Trustworthy Spaces: Solutions for the Smart Grid

    Networking and Information Technology Research and Development, Executive Office of the President — The NITRD workshop on Tailored Trustworthy Spaces: Solutions for the Smart Grid was conceived by the Federal government to probe deeper into how Tailored...

  10. FT-IR, dispersive Raman, NMR, DFT and antimicrobial activity studies on 2-(Thiophen-2-yl)-1H-benzo[d]imidazole.

    Unal, Arslan; Eren, Bilge

    2013-10-01

    2-(Thiophen-2-yl)-1H-benzo[d]imidazole (TBI) was synthesized under microwave conditions and was characterized by FT-IR, dispersive Raman, (1)H-, (13)C-, DEPT-, HETCOR-NMR spectroscopies and density functional theory (DFT) computations. The FT-IR and dispersive Raman spectra of TBI were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1). The experimental vibrational spectra were interpreted with the help of normal coordinate analysis based on DFT/B3LYP/6-311++G(d,p) theory level for the more stable tautomeric form (Tautomer 1). The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. A satisfactory consistency between the experimental and theoretical findings was obtained. The frontier molecular orbitals (FMOs), atomic charges and NMR shifts of the two stable tautomeric forms were also obtained at the same theory level without any symmetry restrictions. In addition, the title compound was screened for its antimicrobial activity and was found to be exhibit antifungal and antibacterial effects. PMID:23756262

  11. Laser cutting of sheets for Tailored Blanks

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    Over the past few years there has been an enormous increase in the use of tailored blanks, especially in the automotive industry. Often the sheets for tailored blanks are shear cut, but results have been reported that the allowable sheet gap distance should not exceed 0.1 mm in order to obtain...... the squareness, the surface roughness and the burr height. Mild steel as well as high strength steel with and with out galvanisation with thickness' of 0.7(5) and 1.25 were used.In the tests the difference in cut quality between a 5" and a 7.5" focusing lens were tested and the effect of using pulsed...... mode laser cutting instead of continuous wave cutting at average power settings of approximately 500, 1000, 1500 and 2000 W were analysed. Furthermore the optimum assist gas pressure and optimum cutting speeds were identified. The results showed that the highest qualities are obtained with a 7...

  12. All-optical bandwidth-tailorable radar

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  13. Tailored Security and Safety for Pervasive Computing

    Blass, Erik-Oliver; Zitterbart, Martina

    Pervasive computing makes high demands on security: devices are seriously resource-restricted, communication takes place spontaneously, and adversaries might control some of the devices. We claim that 1.) today’s research, studying traditional security properties for pervasive computing, leads to inefficient, expensive, and unnecessary strong and unwanted security solutions. Instead, security solutions tailored to the demands of a user, the scenario, or the expected adversary are more promising. 2.) Today’s research for security in pervasive computing makes naive, inefficient, and unrealistic assumptions regarding safety properties, in particular the quality of basic communication. Therefore, future security research has to consider safety characteristics and has to jointly investigate security and safety for efficient, tailored solutions.

  14. Dissolution of tailored ceramic nuclear waste forms

    Dissolution experiments on polyphase, high alumina tailored ceramic nuclear waste forms developed for the chemical immobilization of Savannah River Plant nuclear waste are described. Three forms of leach tests have been adopted; bulk samples conforming to the Materials Characterization Center Static Leach Test (MCC-1), a powdered sample leach test, and a leach test performed on transmission electron microscope thin foil samples. From analysis of these tests the crystalline phases that preferentially dissolve on leaching and the product phases formed are identified and related to the tailoring and processing schemes used in forming the ceramics. The thin foil sample leaching enables the role of intergranular amorphous phases as short-circuit leaching paths in polyphase ceramics to be investigated

  15. Different approaches to tailoring chemical pulp fibres

    El-Sharkawy, Khalil

    2008-01-01

    The objective of this thesis work was to examine different approaches to tailor chemical fibres of different raw materials. The focus in searching for new approaches was on pressure screen fractionation, selective treatment of each fraction, mechanical pre-treatment before refining, refiner loadability and its link to fibre properties and filling design, and on-line quality control of fibre properties. The evaluation is based on the impacts on fibre properties, filtration, refining and the re...

  16. A Propulsion System Tailored to Cubesat Applications

    Platt, Donald

    2007-01-01

    Cubesats and other nano- and pico-satellite platforms have traditionally not had the capability of on-board propulsion. A complete propulsion system tailored to cubesat and other nano-picosat applications is presented in this paper. This system has been demonstrated and is ready for use in cubesat missions. A diaphragm positive expulsion tank or integral structure/bladder tank has been developed for propellant storage and feed to the thrusters. Propellant systems available include hydrogen pe...

  17. A Tailor Made Concrete Solution for Tunneling

    Río, Olga; Arciniegas, Carlos

    2010-01-01

    Thc develoment of tailor made materials by using a performance based approach are attracting research interest in different construction areas due to the advantages of having solutions that should perform according to the specified needs. If focus is put on concrete and on the fitness of Its functional requirements. the rational procedure would be to state the required main structural, durability and executíon indicators (PI) and subindicators (PSI). i.e. mechanical strength al different age ...

  18. Tailoring the hardware to your control system

    In the very early days of computerized accelerator control systems the entire control system, from the operator interface to the front-end data acquisition hardware, was custom designed and built for that one machine. This was expensive, but the resulting product was a control system seamlessly integrated (mostly) with the machine it was to control. Later, the advent of standardized bus systems such as CAMAC, VME, and CANBUS, made it practical and attractive to purchase commercially available data acquisition and control hardware. This greatly simplified the design but required that the control system be tailored to accommodate the features and eccentricities of the available hardware. Today we have standardized control systems (Tango, EPICS, DOOCS) using commercial hardware on standardized busses. With the advent of FPGA technology and programmable automation controllers (PACs and PLCs) it now becomes possible to tailor commercial hardware to the needs of a standardized control system and the target machine. In this paper, we will discuss our experiences with tailoring a commercial industrial I/O system to meet the needs of the EPICS control system and the LANSCE accelerator. We took the National Instruments Compact RIO platform, embedded an EPICS IOC in its processor, and used its FPGA back-plane to create a 'standardized' industrial I/O system (analog in/out, binary in/out, counters, and stepper motors) that meets the specific needs of the LANSCE accelerator. (authors)

  19. THE MASSIVE-BLACK-HOLE-VELOCITY-DISPERSION RELATION AND THE HALO BARYON FRACTION: A CASE FOR POSITIVE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Force balance considerations put a limit on the rate of active galactic nucleus radiation momentum output, L/c, capable of driving galactic superwinds and reproducing the observed MBH-σ relation between black hole mass and spheroid velocity dispersion. We show that black holes cannot supply enough momentum in radiation to drive the gas out by pressure alone. Energy-driven winds give a MBH-σ scaling favored by a recent analysis but also fall short energetically once cooling is incorporated. We propose that outflow triggering of star formation by enhancing the intercloud medium turbulent pressure and squeezing clouds can supply the necessary boost and suggest possible tests of this hypothesis. Our hypothesis simultaneously can account for the observed halo baryon fraction.

  20. Biofilm dispersion in Pseudomonas aeruginosa.

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  1. Development of etofenamate-loaded semisolid sln dispersions and evaluation of anti-inflammatory activity for topical application.

    Badilli, Ulya; Sengel-Turk, C Tuba; Onay-Besikci, Arzu; Tarimci, Nilufer

    2015-01-01

    Dermal application of various active substances is widely preferred for topical or systemic delivery. SLNs consist of biocompatible and non-toxic lipids and have a great potential for topical application in drugs. In this study, semisolid SLN formulations were successfully prepared by a novel one-step production method as a topical delivery system of etofenamate, an anti-inflammatory drug. Compritol 888 ATO and Precirol ATO 5 were chosen as lipid materials for the fabrication of the formulations. In-vitro evaluation of the formulations was performed in terms of encapsulation efficiency, particle size, surface charge, thermal behavior, rheological characteristics, in vitro drug release profile, kinetics, mechanisms, stability, and anti-inflammatory activity. The colloidal size and spherical shape of the particles were proved. According to the results of the rheological analysis, it was demonstrated that the semisolid SLN formulations have a gel-like structure. Stability studies showed that semisolid SLNs were stable at 4°C for a six month period. Zero order release was obtained with Precirol ATO 5, while Compritol 888 ATO followed the square root of time (Higuchi's pattern) dependent release. Semisolid SLNs showed higher inhibitory activity of COX in comparison with pure etofenamate. In conclusion, etofenamate-loaded semisolid SLN formulations can be successfully prepared in a novel one-step production method and useful for topical application. PMID:24925321

  2. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, 13C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated

  3. Radiative properties tailoring of grating by comb-drive microactuator

    Micro-scale grating structures are widely researched in recent years. Although micro-scale fabrication technology is highly advanced today, with grating aspect ratio greater than 25:1 being achievable some fabrication requirements, such as fine groove processing, are still challenging. Comb-drive microactuator is proposed in this paper to be utilized on simple binary grating structures for tailoring or modulating spectral radiation properties by active adjustment. The rigorous coupled-wave analysis (RCWA) is used to calculate the absorptance of proposed structures and to investigate the impacts brought by the geometry and displacement of comb-drive microactuator. The results show that the utilization of comb-drive microactuator on grating improves the absorptance of simple binary grating while avoiding the difficulty fine groove processing. Spectral radiation property tailoring after gratings are fabricated becomes possible with the comb-drive microactuator structure. - Highlights: • A microscale grating structure with comb-driven microactuator is proposed. • The movement of microactuator changes peak absorptance resonance wavelength. • Geometric and displacement effects of comb finger on absorptance are investigated. • Both RCWA and LC circuit models are developed to predict the resonance wavelength. • Resonance frequency equations of LC circuits allow quick design analysis

  4. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-02-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.

  5. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy.

    Lee, Sie Huey; Teo, Jeanette; Heng, Desmond; Ng, Wai Kiong; Zhao, Yanli; Tan, Reginald B H

    2016-04-01

    Respiratory lung infections due to multidrug-resistant (MDR) superbugs are on a global upsurge and have very grim clinical outcomes. Their MDR profile makes therapeutic options extremely limited. Although a highly toxic antibiotic, colistin, is favored today as a "last-line" therapeutic against these hard-to-treat MDR pathogens, it is fast losing its effectiveness. This work therefore seeks to identify and tailor-make useful combination regimens (that are potentially rotatable and synergistic) as attractive alternative strategies to address the rising rates of drug resistance. Three potentially rotatable ternary dry powder inhaler constructs (each involving colistin and 2 other different-classed antibiotics chosen from rifampicin, meropenem, and tigecycline) were identified (with distinct complementary killing mechanisms), coformulated via spray drying, evaluated on their aerosol performance using a Next-Generation Impactor and tested for their efficacies against a number of MDR pathogens. The powder particles were of respirable size (d50, 3.1 ± 0.3 μm-3.4 ± 0.1 μm) and predominantly crumpled in morphology. When dispersed via a model dry powder inhaler (Aerolizer(®)) at 60 L/min, the powders showed concomitant in vitro deposition with fine particle fractions of ∼53%-70%. All formulations were successfully tested in the laboratory to be highly effective against the MDR pathogens. In addition, a favorable synergistic interaction was detected across all 3 formulations when tested against MDR Pseudomonas aeruginosa. PMID:27019964

  6. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. PMID:27393888

  7. Study by thermal neutron activation of element dispersion and transfer in metallurgical materials during iron making process

    In the present paper we applied neutron activation analysis to study the elemental distribution in some materials and related finite products from Iron Steel Works SIDEX Galati involved in the iron making process: sinter, pellets, coke, cast iron, slag and blast-furnace flue dust. We also sought for the transfer of Mn, Al, V, Na and K from the auxiliary materials to the cast iron during the same process. Their behaviour is dictated by the prevailing chemical characteristics of this process: reduction. So, these elements are transferred in large proportions in cast iron because of their oxides' reduction. We noticed that alkali content of sinter and pellets exceeded the allowed limit (0.5 kg / t). (author)

  8. Tailored antireflective biomimetic nanostructures for UV applications

    Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Lehr, Dennis; Brunner, Robert; Helgert, Michael [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany); Sundermann, Michael, E-mail: Pacholski@mf.mpg.de [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany)

    2010-10-22

    Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

  9. Fracture initiation using tailored-pulse loading

    Kusubov, A.S.; Swift, R.P.

    1981-06-01

    Conditions to produce multiple fracturing of boreholes are examined for sandstone samples having a dry density of 2.42 Mg/m/sup 3/ and 8.9 percent porosity. Tailored-pulse loading experiments are performed with borehole pressures ranging from 10 to 100 MPa, loading rates from 10/sup -4/ to 10/sup 2/ MPa/ms and pulse durations from 10 to 50 ms. Samples are tested for initial states of dry, quasi-dry, and total saturation with confinement pressure varying from 0.1 to 50 MPa. Data show sensitivity of multiple fracture initiation on loading rate, water content, and confinement pressure.

  10. In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity

    Graphical abstract: We describe a route to synthesize TiO2/ZnO/Au three-way synergistic heterostructure nanofibers with high efficiency photocatalysts. Highlights: ► Synthesis of tri-component TiO2/ZnO/Au nanofibers. ► TiO2/ZnO/Au nanofibers showed excellent photocatalytic activity. ► Easy photocatalyst separation and reuse. - Abstract: The TiO2/ZnO nanofibers embedded by Au nanoparticles (TiO2/ZnO/Au NFs) were fabricated by combining the electrospinning technique (for TiO2/ZnO nanofibers) and an in situ reduction approach (for Au nanoparticles). X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electronmicroscopy, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy, were used to characterize the as-synthesized nanofibers. The results showed that small Au nanoparticles (Au NPs) were well dispersed on the TiO2/ZnO nanofibers (TiO2/ZnO NFs). And, the TiO2/ZnO/Au nanofibers showed high charge separation efficiency under ultraviolet excitation, as evidenced by photoluminescence spectra. The photocatalytic studies revealed that the TiO2/ZnO/Au NFs exhibited enhanced photocatalytic efficiency of photodegradation of Methyl orange (MO) and 4-nitrophenol (4-NP) compared with the pure TiO2 nanofibers, ZnO nanofibers and TiO2/ZnO NFs under ultraviolet excitation, which might be attributed to the high separation efficiency of photogenerated electron–hole pairs based on the photosynergistic effect among the three components of TiO2, ZnO and Au. And, the TiO2/ZnO/Au NFs could be easily separated and recycled due to their one-dimensional nanostructural property.

  11. Edaphics, active tectonics and animal movements in the Kenyan Rift - implications for early human evolution and dispersal

    Kübler, Simon; Owenga, Peter; Rucina, Stephen; King, Geoffrey C. P.

    2014-05-01

    The quality of soils (edaphics) and the associated vegetation strongly controls the health of grazing animals. Until now, this has hardly been appreciated by paleo-anthropologists who only take into account the availability of water and vegetation in landscape reconstruction attempts. A lack of understanding the importance of the edaphics of a region greatly limits interpretations of the relation between our ancestors and animals over the last few million years. If a region lacks vital trace elements then wild grazing and browsing animals will avoid it and go to considerable length and take major risks to seek out better pasture. As a consequence animals must move around the landscape at different times of the year. In complex landscapes, such as tectonically active rifts, hominins can use advanced group behaviour to gain strategic advantage for hunting. Our study in the southern Kenya rift in the Lake Magadi region shows that the edaphics and active rift structures play a key role in present day animal movements as well as the for the location of an early hominin site at Mt. Olorgesailie. We carried out field analysis based on studying the relationship between the geology and soil development as well as the tectonic geomorphology to identify 'good' and 'bad' regions both in terms of edaphics and accessibility for grazing animals. We further sampled different soils that developed on the volcanic bedrock and sediment sources of the region and interviewed the local Maasai shepherds to learn about present-day good and bad grazing sites. At the Olorgesailie site the rift valley floor is covered with flood trachytes; basalts only occur at Mt. Olorgesailie and farther east up the rift flank. The hominin site is located in lacustrine sediments at the southern edge of a playa that extends north and northwest of Mt. Olorgesailie. The lakebeds are now tilted and eroded by motion on two north-south striking faults. The lake was trapped by basalt flows from Mt. Olorgesailie

  12. Effect of Gold Dispersion on the Photocatalytic Activity of Mesoporous Titania for the Vapor-Phase Oxidation of Acetone

    S. V. Awate

    2008-01-01

    Full Text Available Mesostructured titanium dioxide photocatalyst, having uniform crystallite size (6–12 nm and average pore diameter of ∼4.2 nm, was synthesized by using a low-temperature nonsurfactant hydrothermal route, employing tartaric acid as a templating agent. Gold additions from 0.5 to 2 wt% were incorporated, either during the hydrothermal process or by postsynthesis wet impregnation. Compared to the impregnation-prepared samples, the samples synthesized hydrothermally contained smaller-size (≤1 nm gold clusters occluded in the pores of the host matrix. Whereas CO2 and H2O were the main reaction products in UV-assisted vapor-phase oxidation of acetone using these catalysts, C2H6 and HCO2CH3 were also produced for higher acetone concentrations in air. The conversion of acetone was found to increase with decrease in the size of both TiO2 and gold particles. In situ IR spectroscopy revealed that titania and gold particles serve as independent adsorption and reaction sites for acetone and oxygen molecules. Acetone molecules adsorb exclusively at TiO2 surface, giving rise to a strongly adsorbed (condensed state as well as to the formation of formate- and methyl formate-type surface species. Hydroxyl groups at titania surface participate directly in these adsorption steps. Nanosize gold particles, on the other hand, were primarily responsible for the adsorption and activation of oxygen molecules. Mechanistic aspects of the photochemical processes are discussed on the basis of these observations.

  13. Studying the cytolytic activity of gas plasma with self-signalling phospholipid vesicles dispersed within a gelatin matrix

    A synthetic biological sensor was developed to monitor the interaction of plasma with soft, hydrated biological material. It comprises phospholipid vesicles in a hydrated proteinaceous environment comprising 5% (w/v) gelatin. The vesicles contained a self-quenched dye, which was activated by vesicle destruction giving a clear fluorescent switch on. The interaction of bacterial toxins with the sensor was measured in a proof of principle experiment, then the effect of atmospheric plasma jets with the sensor, was studied in order to assess the cytolytic effect of plasma jets in biological systems. When the plasma contacted the gelatin surface perpendicular to the surface, the treatment resulted in the formation of a star-shaped pattern of microchannels that radiated out from the centre of the treatment area within the gelatin matrix, and locally damaged vesicles within the microchannels at a depth of 150 µm below the gelatin surface. Plasma jets applied in parallel to the surface of the matrix resulted in the formation of a single microchannel with damage to the vesicles only evident at the walls of the channel, and a much reduced penetration depth within the gelatin. Our data show that the effects of plasma can be deep in the gelatin material and that the angle of treatment significantly influenced the nature and level of damage to the gelatin and vesicles. Potentially this gelatin model can be used to unravel the roles of different plasma species and the direct effect of whole plasma contact, from those of primary and secondary species—i.e. primary, those emanating directly from the plasma and secondary, those species created in the ‘target’ tissue. This type of insight could be useful in the future development of safe and effective plasma medical technologies. (paper)

  14. Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo : Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen

    A.M. Temkin; R.R. Bowers; M.E. Magaletta; S. Holshouser; Maggi, A; Ciana, P.; Guillette, L.J.; J.A. Bowden; J.R. Kucklick; Baatz, J E; Spyropoulos, D D

    2016-01-01

    Background The obesity pandemic is associated with multiple major health concerns. In addition to diet and lifestyle, there is increasing evidence that environmental exposures to chemicals known as obesogens also may promote obesity. Objectives We investigated the massive environmental contamination resulting from the Deepwater Horizon (DWH) oil spill, including the use of the oil dispersant COREXIT in remediation efforts, to determine whether obesogens were released into the environment duri...

  15. Tailor-Made Ruthenium-Triphos Catalysts for the Selective Homogeneous Hydrogenation of Lactams.

    Meuresch, Markus; Westhues, Stefan; Leitner, Walter; Klankermayer, Jürgen

    2016-01-22

    The development of a tailored tridentate ligand enabled the synthesis of a molecular ruthenium-triphos catalyst, eliminating dimerization as the major deactivation pathway. The novel catalyst design showed strongly increased performance and facilitated the hydrogenation of highly challenging lactam substrates with unprecedented activity and selectivity. PMID:26661531

  16. An online tailored self-management program for patients with rheumatoid arthritis: a developmental study.

    Zuidema, R.M.; Gaal, B.G.I.; Dulmen, S. van; Repping-Wuts, H.; Schoonhoven, L.

    2015-01-01

    Background: Every day rheumatoid arthritis (RA) patients make many decisions about managing their disease. An online, computer-tailored, self-management program can support this decision making, but development of such a program requires the active participation of patients. Objective: To develop an

  17. An Online Tailored Self-Management Program for Patients With Rheumatoid Arthritis: A Developmental Study

    Zuidema, R.M.; Gaal, B.G. van; Dulmen, S. van; Repping-Wuts, H.; Schoonhoven, L.

    2015-01-01

    BACKGROUND: Every day rheumatoid arthritis (RA) patients make many decisions about managing their disease. An online, computer-tailored, self-management program can support this decision making, but development of such a program requires the active participation of patients. OBJECTIVE: To develop an

  18. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian;

    2015-01-01

    . We also introduce the concept of 'tailored molecular photonic coupling' while highlighting the role of interferences for the design of optically active media by adjusting the photonic response of the medium with the real and imaginary refractive index of photoswitchable molecules in the 'ON' state...

  19. Gridcole: A Tailorable Grid Service Based System that Supports Scripted Collaborative Learning

    Bote-Lorenzo, Miguel L.; Gomez-Sanchez, Eduardo; Vega-Gorgojo, Guillermo; Dimitriadis, Yannis A.; Asensio-Perez, Juan I.; Jorrin-Abellan, Ivan M.

    2008-01-01

    This paper introduces Gridcole, a new system that can be easily tailored by educators in order to support the realization of scripted collaborative learning situations. To do so, educators can provide a script specifying the sequence of activities to be performed by learners as well as the tools and documents required to support them. Gridcole can…

  20. Deep Drawing of High-Strength Tailored Blanks by Using Tailored Tools

    Thomas Mennecart

    2016-01-01

    Full Text Available In most forming processes based on tailored blanks, the tool material remains the same as that of sheet metal blanks without tailored properties. A novel concept of lightweight construction for deep drawing tools is presented in this work to improve the forming behavior of tailored blanks. The investigations presented here deal with the forming of tailored blanks of dissimilar strengths using tailored dies made of two different materials. In the area of the steel blank with higher strength, typical tool steel is used. In the area of the low-strength steel, a hybrid tool made out of a polymer and a fiber-reinforced surface replaces the steel half. Cylindrical cups of DP600/HX300LAD are formed and analyzed regarding their formability. The use of two different halves of tool materials shows improved blank thickness distribution, weld-line movement and pressure distribution compared to the use of two steel halves. An improvement in strain distribution is also observed by the inclusion of springs in the polymer side of tools, which is implemented to control the material flow in the die. Furthermore, a reduction in tool weight of approximately 75% can be achieved by using this technique. An accurate finite element modeling strategy is developed to analyze the problem numerically and is verified experimentally for the cylindrical cup. This strategy is then applied to investigate the thickness distribution and weld-line movement for a complex geometry, and its transferability is validated. The inclusion of springs in the hybrid tool leads to better material flow, which results in reduction of weld-line movement by around 60%, leading to more uniform thickness distribution.

  1. Long-term health outcomes and cost-effectiveness of a computer-tailored physical activity intervention among people aged over fifty : modelling the results of a randomized controlled trial

    Peels, Denise A.; Hoogenveen, Rudolf R.; Feenstra, Talitha L.; Golsteijn, Rianne H. J.; Bolman, Catherine; Mudde, Aart N.; Wendel-Vos, Gerrie C. W.; de Vries, Hein; Lechner, Lilian

    2014-01-01

    Background: Physical inactivity is a significant predictor of several chronic diseases, becoming more prevalent as people age. Since the aging population increases demands on healthcare budgets, effectively stimulating physical activity (PA) against acceptable costs is of major relevance. This study

  2. Site-Selective Acylations with Tailor-Made Catalysts.

    Huber, Florian; Kirsch, Stefan F

    2016-04-18

    The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  3. Optimizing hereditary angioedema management through tailored treatment approaches.

    Nasr, Iman H; Manson, Ania L; Al Wahshi, Humaid A; Longhurst, Hilary J

    2016-01-01

    Hereditary angioedema (HAE) is a rare but serious and potentially life threatening autosomal dominant condition caused by low or dysfunctional C1 esterase inhibitor (C1-INH) or uncontrolled contact pathway activation. Symptoms are characterized by spontaneous, recurrent attacks of subcutaneous or submucosal swellings typically involving the face, tongue, larynx, extremities, genitalia or bowel. The prevalence of HAE is estimated to be 1:50,000 without known racial differences. It causes psychological stress as well as significant socioeconomic burden. Early treatment and prevention of attacks are associated with better patient outcome and lower socioeconomic burden. New treatments and a better evidence base for management are emerging which, together with a move from hospital-centered to patient-centered care, will enable individualized, tailored treatment approaches. PMID:26496459

  4. White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins

    Wang, Hao; Lee, Kyu-Seung; Ryu, Jae-Hyoung; Hong, Chang-Hee; Cho, Yong-Hoon

    2008-04-01

    White light emitting diodes (LEDs) have been realized using the active packaging (AP) method. The starting materials were bare InGaN LED chips and CdSe/ZnS core-shell quantum dots (QDs) dispersed in photosensitive epoxy resins. Such hybrid LED devices were fabricated using QD mixtures with one ('single'), two ('dual') or four ('multi') emission wavelengths. The AP method allows for convenient adjustment of multiple parameters such as the CIE-1931 coordinate (x, y), color temperature, and color rending index (CRI). All samples show good white balance, and under a 20 mA working current the luminous efficacies of the single, dual, and multi hybrid devices were 8.1 lm W-1, 5.1 lm W-1, and 6.4 lm W-1, respectively. The corresponding quantum efficiencies were 4.1%, 3.1%, and 3.1%; the CRIs were 21.46, 43.76, and 66.20; and the color temperatures were 12 000, 8190, and 7740 K. This shows that the CRI of the samples can be enhanced by broadening the QD emission band, as is exemplified by the 21.46 CRI of the single hybrid LED compared to the 66.20 value for the multi hybrid LED. In addition, we were able to increase the CRI of the single hybrid LED from 15.31 to 32.50 by increasing the working currents from 1 to 50 mA.

  5. The remarkable activity and stability of a highly dispersive beta-brass Cu-Zn catalyst for the production of ethylene glycol

    Li, Molly Meng-Jung; Zheng, Jianwei; Qu, Jin; Liao, Fenglin; Raine, Elizabeth; Kuo, Winson C. H.; Su, Shei Sia; Po, Pang; Yuan, Youzhu; Tsang, Shik Chi Edman

    2016-02-01

    Incorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga3+, can dramatically enhance their stability against metal sintering. As a result, the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol, an important reaction well known for deactivation from copper nanoparticle sintering, can show greatly enhanced activity and stability with the CuZn alloy catalysts due to no noticeable sintering. HRTEM, nano-diffraction and EXAFS characterization reveal the presence of a small beta-brass CuZn alloy phase (body-centred cubic, bcc) which appears to greatly stabilise Cu atoms from aggregation in accelerated deactivation tests. DFT calculations also indicate that the small bcc CuZn phase is more stable against Cu adatom migration than the fcc CuZn phase with the ability to maintain a higher Cu dispersion on its surface.

  6. The remarkable activity and stability of a highly dispersive beta-brass Cu-Zn catalyst for the production of ethylene glycol

    Li, Molly Meng-Jung; Zheng, Jianwei; Qu, Jin; Liao, Fenglin; Raine, Elizabeth; Kuo, Winson C. H.; Su, Shei Sia; Po, Pang; Yuan, Youzhu; Tsang, Shik Chi Edman

    2016-01-01

    Incorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga3+, can dramatically enhance their stability against metal sintering. As a result, the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol, an important reaction well known for deactivation from copper nanoparticle sintering, can show greatly enhanced activity and stability with the CuZn alloy catalysts due to no noticeable sintering. HRTEM, nano-diffraction and EXAFS characterization reveal the presence of a small beta-brass CuZn alloy phase (body-centred cubic, bcc) which appears to greatly stabilise Cu atoms from aggregation in accelerated deactivation tests. DFT calculations also indicate that the small bcc CuZn phase is more stable against Cu adatom migration than the fcc CuZn phase with the ability to maintain a higher Cu dispersion on its surface. PMID:26856760

  7. A study on an actively mode-locked picosecond pulsed ytterbium-doped fibre laser with dispersion controlled by a photonic crystal fibre

    We report on the generation of picosecond pulses in a modulator-based actively mode-locked ring cavity ytterbium-doped fibre laser by means of numerical simulation. A photonic crystal fibre (PCF) with large anomalous group velocity dispersion (GVD) and small nonlinearity can compensate the large normal GVD in the cavity accumulated by the ytterbium-doped fibre and the single mode fibre. Numerical models of the laser are established and solved by a simulation program. We study the laser behaviour and simulate the forming of the mode-locked pulses. The laser can easily produce stable pulses with 11.5 ps pulse width, 0.73 nJ pulse energy and 2.67 GHz repetition rate at 1 μm, which indicates that this laser can perfectly meet the demands of smaller pulse width and higher pulse energy as a seed laser. More numerical simulations are performed to test several key parameters, such as the small signal gain, the mode-locking order and the GVD coefficient of the PCF. The results show how these parameters affect the output pulses and help us to optimize the laser performance. The numerical simulation plays a guiding role in optimal design for later experiments. (paper)

  8. Tailoring superradiance to design artificial quantum systems

    Longo, Paolo; Keitel, Christoph H.; Evers, Jörg

    2016-03-01

    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.

  9. Tailored vacuum chambers for ac magnets

    The proposed LAMPF-II accelerator has a 60-Hz booster synchrotron and a 3-Hz main ring. To provide a vacuum enclosure inside the magnets with low eddy-current losses and minimal field distortion, yet capable of carrying rf image currents and providing beam stabilization, we propose an innovative combination pipe. Structurally, the enclosure is high-purity alumina ceramic, which is strong, radiation resistant, and has good vacuum properties. Applied to the chamber are thin, spaced, silver conductors using adapted thick-film technology. The conductor design can be tailored to the stabilization requirements, for example, longitudinal conductors for image currents, circumferential for transverse stabilization. The inside of the chamber has a thin, resistive coating to avoid charge build-up. The overall 60-Hz power loss is less than 100 W/m

  10. Tailored Patient Information Some Issues and Questions

    Reiter, E R; Reiter, Ehud; Osman, Liesl

    1997-01-01

    Tailored patient information (TPI) systems are computer programs which produce personalised heath-information material for patients. TPI systems are of growing interest to the natural-language generation (NLG) community; many TPI systems have also been developed in the medical community, usually with mail-merge technology. No matter what technology is used, experience shows that it is not easy to field a TPI system, even if it is shown to be effective in clinical trials. In this paper we discuss some of the difficulties in fielding TPI systems. This is based on our experiences with 2 TPI systems, one for generating asthma-information booklets and one for generating smoking-cessation letters.