WorldWideScience

Sample records for active control system

  1. Manually controlled neutron-activation system

    Johns, R. A.; Carothers, G. A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  2. Control Systems Cyber Security Standards Support Activities

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  3. Actively controlled vibration welding system and method

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  4. Active Thermal Control System Development for Exploration

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  5. Active vibration control of lightweight floor systems

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  6. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    Hassan Elahi; Dr. Riffat Asim Pasha; Dr. Asif Israr; Dr. M. Zubair Khan

    2014-01-01

    In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspens...

  7. Nonlinear Predictive Control of Semi-Active Landing Gear System

    Wu, Dongsu; Gu, Hongbin; Liu, Hui

    2010-01-01

    The application of model predictive control and constructive nonlinear control methodology to semi-active landing gear system is studied in this paper. A unified shock absorber mathematical model incorporates solenoid valve’s electromechanical and magnetic dynamics is built to facilitate simulation and controller design. Then we propose a hierarchical control structure to deal with the high nonlinearity. A dual mode model predictive controller as an outer loop controller is developed to gen...

  8. Active Fault Tolerant Control of Livestock Stable Ventilation System

    Gholami, Mehdi

    2011-01-01

    of the hybrid model are estimated by a recursive estimation algorithm, the Extended Kalman Filter (EKF), using experimental data which was provided by an equipped laboratory. Two methods for active fault diagnosis are proposed. The AFD methods excite the system by injecting a so-called excitation...... degraded performance even in the faulty case. In this thesis, we have designed such controllers for climate control systems for livestock buildings in three steps: Deriving a model for the climate control system of a pig-stable. Designing a active fault diagnosis (AFD) algorithm for different kinds of...... fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...

  9. Vector disparity sensor with vergence control for active vision systems

    Eduardo Ros; Francisco Barranco; Javier Diaz; Sabatini, Silvio P; Agostino Gibaldi

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that ac...

  10. Development of Active Noise Control System for Quieting Transformer Noise

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  11. Perception Neural Networks for Active Noise Control Systems

    Wang Xiaoli

    2012-11-01

    Full Text Available In a response to a growing demand for environments of 70dB or less noise levels, many industrial sectors have focused with some form of noise control system. Active noise control (ANC has proven to be the most effective technology. This paper mainly investigates application of neural network on self-adaptation system in active noise control (ANC. An active silencing control system is made which adopts a motional feedback loudspeaker as not a noise controlling source but a detecting sensor. The working fundamentals and the characteristics of the motional feedback loudspeaker are analyzed in detail. By analyzing each acoustical path, identification based adaptive linear neural network is built. This kind of identifying method can be achieved conveniently. The estimated result of each sound channel matches well with its real sound character, respectively.

  12. A Semi-active Control System for Wind Turbines

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.; Occhiuzzi, A.

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in re...

  13. The Control of Transmitted Power in an Active Isolation System

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.;

    1997-01-01

    more practical control strategy appears to be to minimise the weighted sum of squared forces and velocities below the mounts, which gives near-optimal performance in simulations. These theoretical results are supported by experiments with a real-time control system. The actuator and sensor requirements...... distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which the...... contributions to the transmitted power in the various degrees of freedom can be clearly understood. It has also been found, however, that an active control system which minimises a practical estimate of transmitted power, calculated from the product of the axial forces and velocities under the mounts, can give...

  14. Active flow control systems architectures for civil transport aircraft

    Jabbal, M; Liddle, SC; Crowther, WJ

    2010-01-01

    Copyright @ 2010 American Institute of Aeronautics and Astronautics This paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study applicatio...

  15. A new microcomputer-controlled neutron activation and analysis system

    A microcomputer-controlled irradiation and measurement system and a microprocessor-controlled sample changer have been installed at the SLOWPOKE-2 Facility at the Royal Military College of Canada (RMC). These systems can provide the gamut of instrumental neutron activation analysis (INAA) techniques for the analyst. Custom software has been created for system control, data acquisition, and off-line spectral analysis using programs that incorporate Gaussian peak-fitting methods of analysis. The design and use of the equipment is discussed, and the performance is illustrated with results obtained from the analysis of marine sediment and biological reference materials

  16. Disorder-mediated crowd control in an active matter system

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-03-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.

  17. Control of pneumatic transfer system for neutron activation analysis

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  18. Control of pneumatic transfer system for neutron activation analysis

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  19. Energy management and control of active distribution systems

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  20. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Wissam H. Al-Mutar

    2015-01-01

    The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...

  1. Power system damping - Structural aspects of controlling active power

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  2. Prototype magnetorheological fluid damper for active vibration control system

    S. Duda

    2007-03-01

    Full Text Available Purpose: The paper presents a concept of a system for isolation from external vibration sources with use of a magnetorheological (MR dampers.Design/methodology/approach: Results of experimental studies of a prototype magnetorheological damper at various magnitudes of control current and the manner of modelling electromagnetic phenomena occurring in the damper are presented in this paper. The effect of magnetic field on magnetorheological fluid is modelled by the finite element method. The mathematical model of the system as well as the damper model are outlined along with the relevant control facilities. Numerical simulations were carried out for an exemplary excitation.Findings: The elaborated damper and applied control algorithms substantially influences the values for velocities and accelerations. Incorporation of a controllable damper into the stabilization system significantly decreases displacements of the mass to be stabilized being the results of shocks and bumps caused by excitations w(t as compared to similar displacement of the same mass when only a passive damper was used.Research limitations/implications: For the future research it is necessary to improve characteristics of elaborated damper in order to improve its efficiency.Practical implications: Many mechanical systems should separate from sources of vibrations. The active or semiactive vibration control systems offer a number of advantages as compared with passive systems so that better efficiency of vibration damping is assured.Originality/value: The paper presents new concept of vibration damper with magnetorheological fluids and way of its application in industrial practice.

  3. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    Eduardo Ros

    2012-02-01

    Full Text Available This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  4. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Wissam H. Al-Mutar

    2015-07-01

    Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller

  5. Apparatus and method for gas turbine active combustion control system

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  6. PLC based control system and maintenance activities at NCAR, Bilaspur

    A 3.0 MV high current low energy Pelletron Accelerator facility (Model 9SDH-4, NEC, USA) with TORUIS (ion source for H+ and He2+ beam current H+ ion ∼ 50μA @ 6 MeV, He2+ at ∼ 10μA) and SNICS-II ion source for heavy ions has been commissioned as 'National Centre for Accelerator Based Research' in the Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya. In this paper, we detail out the control system developed and implemented at NCAR. The basic idea of controlling the machine is by providing the output signal through PLC to ACPC of accelerator using user interface points provided by the manufacturer. The PLC based system generates output signal once it receives the feedback signals from search and secure switches, door lock switches and scram switches interlocked with PLC. The output is controlled by ladder logic and is activated only when all the radiation monitors are in healthy state and outside radiations monitor having low radiation level. The details of control system and maintenance activities will be discussed in the paper

  7. Modified active disturbance rejection control for time-delay systems.

    Zhao, Shen; Gao, Zhiqiang

    2014-07-01

    Industrial processes are typically nonlinear, time-varying and uncertain, to which active disturbance rejection control (ADRC) has been shown to be an effective solution. The control design becomes even more challenging in the presence of time delay. In this paper, a novel modification of ADRC is proposed so that good disturbance rejection is achieved while maintaining system stability. The proposed design is shown to be more effective than the standard ADRC design for time-delay systems and is also a unified solution for stable, critical stable and unstable systems with time delay. Simulation and test results show the effectiveness and practicality of the proposed design. Linear matrix inequality (LMI) based stability analysis is provided as well. PMID:24091193

  8. Active control technique of fractional-order chaotic complex systems

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  9. Implementation Considerations for Active Noise Control in Ventilation Systems

    Asteborg, Marcus; Svanberg, Niklas

    2006-01-01

    The most common method to attenuate noise in ventilation systems today is passive silencers. For these to efficiently attenuate frequencies below 400 Hz such silencers need to be large and a more neat solution to attenuate low frequencies is to use active noise control (ANC). The usage of ANC in ventilation systems is well known and there are several commercial products available. ANC is not, however, used on a wide basis due to its often high price and poor performance. Since the price is an...

  10. Orthonormal filters for identification in active control systems

    Mayer, Dirk

    2015-12-01

    Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.

  11. Active disturbance rejection control for hydraulic width control system for rough mill

    2007-01-01

    The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve fast response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation,compared with classic PI controller.

  12. Real Time Vibration Control of Active Suspension System with Active Force Control using Iterative Learning Algorithm

    Kalaivani

    2013-09-01

    Full Text Available This paper presents concurrent vibration control of a laboratory scaled vibration isolator platform with Active Force Control (AFC using Iterative Learning Algorithm (ILA. The work investigates the performance of the traditional Proportional Integral Derivative Controller (PIDC with and without AFC using ILA for vibration suppression. The physical single degree of freedom quarter car has been interfaced with a personal computer using a National Instruments data acquisition card NI USB 6008. The controllers are designed and simulated using LabVIEW simulation software. The results infer that the PIDC with AFC using ILA works superior than the PIDC.

  13. Photo-active collagen systems with controlled triple helix architecture

    Tronci, Giuseppe; Wood, David J

    2013-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of fun...

  14. Active Vibration Control of Rotor-Bearing Systems

    Blanco-Ortega, Andres; Silva-Navaro, Gerardo; Beltran-Carbajal, Francisco; Vela-Valdes, Luis Gerardo

    2010-01-01

    The active vibration control of a Jeffcott-like rotor through dynamic stiffness control and acceleration scheduling is addressed. The control approach consists of a servomechanism able to move one of the supporting bearings in such a way that the effective rotor length is controlled. As a consequence, the rotor stiffness and natural frequency are modified according to an off-line and smooth trajectory planning of the rotor speed/acceleration in order to reduce the unbalance response when pass...

  15. A Decoupling Control Algorithm for Unwinding Tension System Based on Active Disturbance Rejection Control

    Shanhui Liu

    2013-01-01

    Full Text Available This paper presents a new control methodology based on active disturbance rejection control (ADRC for designing the tension decoupling controller of the unwinding system in a gravure printing machine. The dynamic coupling can be actively estimated and compensated in real time, which makes feedback control an ideal approach to designing the decoupling controller of the unwinding system. This feature is unique to ADRC. In this study, a nonlinear mathematical model is established according to the working principle of the unwinding system. A decoupling model is also constructed to determine the order and decoupling plant of the unwinding system. Based on the order and decoupling plant, an ADRC decoupling control methodology is designed to enhance the tension stability in the unwinding system. The effectiveness and capability of the proposed methodology are verified through simulation and experiments. The results show that the proposed strategy not only realises a decoupling control for the unwinding system but also has an effective antidisturbance capability and is robust.

  16. Research on Attitude System of Active Magnetic Control Small Satellite

    Zhaowei, Sun; Di, Yang

    1998-01-01

    When enter orbit, small satellite often tumble as a result of disturbance. How to capture it promptly with finite magnetic torque is an important problem. Because of the coupling of dynamics and control, the small satellite control system is a nonlinear attitude control system with bounds. For high direction and steady precision, an effective method must be found. In this paper, combining with the bound conditions of magnetic torque, two methods are researched. The first is energy method. It ...

  17. Active vibration control of multibody system with quick startup and brake based on active damping

    TANG Hua-ping; TANG Yun-jun; TAO Gong-an

    2006-01-01

    A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.

  18. The virtual microphone technique in active sound field control systems

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  19. Modeling and Control for Islanding Operation of Active Distribution Systems

    Cha, Seung-Tae; Wu, Qiuwei; Saleem, Arshad;

    2011-01-01

    to stabilize the frequency. Different agents are defined to represent different resources in the distribution systems. A test platform with a real time digital simulator (RTDS), an OPen Connectivity (OPC) protocol server and the multi-agent based intelligent controller is established to test the proposed multi-agent...... based frequency controller. The modeling of different DG is discussed in details. Two distribution systems with DG are used to carry out case studies to illustrate the proposed multi-agent controller....... are able to operate in is-landing operation mode intentionally or unintentionally. In order to smooth the transition from grid connected operation to islanding operation for distribution systems with DG, a multi-agent based controller is proposed to utilize different re-sources in the distribution systems...

  20. A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    M. K. Aripin; Yahaya Md Sam; Danapalasingam, Kumeresan A.; Kemao Peng; N. Hamzah; Ismail, M. F.

    2014-01-01

    Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with...

  1. Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    Le Ge

    2014-01-01

    Full Text Available To rely on joint active disturbance rejection control (ADRC and repetitive control (RC, in this paper, a compound control law for active power filter (APF current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result.

  2. A model for signal processing and predictive control of semi-active structural control system

    M-H Shih; W-P Sung; Ching-Jong Wang

    2009-06-01

    The theory for structural control has been well developed and applied to perform excellent energy dissipation using dampers. Both active and semi-active control systems may be used to decide on the optimal switch point of the damper based on the current and past structural responses to the excitation of external forces. However, numerous noises may occur when the control signals are accessed and transported thus causing a delay of the damper. Therefore, a predictive control technique that integrates an improved method of detecting the control signal based on the direction of the structural motion, and a calculator for detecting the velocity using the least-square polynomial regression is proposed in this research. Comparisons of the analytical data and experimental results show that this predictor is effective in switching the moving direction of the semi-active damper. This conclusion is further verified using the component and shaking table test with constant amplitude but various frequencies, and the El Centro earthquake test. All tests confirm that this predictive control technique is effective to alleviate the time delay problem of semi-active dampers. This predictive control technique promotes about 30% to 40% reduction of the structural displacement response and about 35% to 45% reduction of the structural acceleration response.

  3. Fuzzy logic control for active bus suspension system

    In this study an active controller is presented for vibration suppression of a full-bus suspension model that use air spring. Since the air spring on the full-bus model may face different working conditions, auxiliary chambers have been designed. The vibrations, caused by the irregularities of the road surfaces, are tried to be suppressed via a multi input-single output fuzzy logic controller. The effect of changes in the number of auxiliary chambers on the vehicle vibrations is also investigated. The numerical results demonstrate that the presented fuzzy logic controller improves both ride comfort and road holding.

  4. The Active Fractional Order Control for Maglev Suspension System

    Peichang Yu

    2015-01-01

    Full Text Available Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditional PD controller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based on LQR is employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.

  5. Improving the Dynamics of Suspension Bridges using Active Control Systems

    Thoft-Christensen, Palle

    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular to...... the direction of the wind and occur when the bridge is exposed to wind velocity above critical value called the flutter wind velocity Ucr....

  6. Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems

    Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios

    2015-11-01

    We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.

  7. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

    A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas

  8. Control and switching synchronization of fractional order chaotic systems using active control technique

    Radwan, A.G.

    2013-03-13

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  9. Control and switching synchronization of fractional order chaotic systems using active control technique

    A.G. Radwan

    2014-01-01

    Full Text Available This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  10. Active vibration control of spatial flexible multibody systems

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  11. Active vibration control of spatial flexible multibody systems

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  12. Halden Project activities relating to hybrid control room automation systems

    This paper is a high-level presentation of OECD Halden Reactor projects activities that relate to hybrid control room design, implementation and V and V. The Halden Project has a long tradition working on the human factors related aspects influencing the usability of any (hybrid) control room. Yet, the paper start out with a review of experiences on a much broader scale that takes into account many other contributing factors involved in a control room upgrade projects, e.g. change management principles, work procedures and methods, communication and crew interaction as well as crew training. The reported review was implemented back in 2001 but it is deemed of current value to many planned and ongoing control room upgrade projects. The reported project distributed a questionnaire to obtain input from as many industry contracts and members of the HPG as possible. The review is thus a synthesis of experiences and opinions of the persons and organizations participating. Next, the paper presents a selection of human factors issues that should be taken into account when doing control room design and upgrades. Moreover, some methods to implement V and V related to these issues are presented - some of which are based on experiments in a simulator environment. These V and V methods are exemplified by a few real plant upgrades in which HRP staff acted as consultants. The paper ends with a description of an ongoing project that uses virtual reality (VR) technology to enable the study of human factors issues at a very early stage during the design process. Applying VR for this purpose has obvious potential advantages as it can be used to identify costly errors within the design. It has already been proven that VR can be used to improve the communication within the design team, establishing a common reference model that can be understood by all members of the team. It is hoped that functional- and job analysis directly supported by the visualization of planned control room

  13. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  14. Control of Active Axial Magnetic Bearings for Flywheel-based Energy Storage System

    Morís Gómez, Juan

    2014-01-01

    This thesis deals with the design and implementation of the control system for a Flywheel-based Energy Storage System (FESS) with active magnetic bearings. The thesis focuses on the construction of realistic model of the system according to experimental tests. The simulation model will be used to control the thrust magnetic bearings in order to withstand the flywheel in levitation.

  15. Recent Applications of Some Active Control Systems to Civil Engineering Structures

    Cristian Pastia; Septimiu-George Luca; Florentina Chira

    2007-01-01

    The application of control systems to civil engineering structures has been investigated in recent years to demonstrate the efficiency of these systems during exceptional natural events such as earthquakes and severe winds. In this paper, a review of some full-scale implementations of active and hybrid control systems for the protection of the civil structures to dynamic actions is performed.

  16. A new controller for the seni-active suspension system with magnetor heological dampers

    2003-01-01

    A new sliding mode controller for semi-active suspension system with magnetorheological (MR) damper is presented in this paper. In the proposed sliding mode controller, a semi-active suspension based on the skyhook damper system is chosen as the reference model to be followed, and the control law is so determined that the asymptotically stable error dynamics occurs between the controlled state and the reference model state. Numerical simulations are carried out to study the performance of the new sliding mode controller. The results show that the proposed controller yields almost perfect tracking to the reference model and has a high robustness against model parameter uncertainties and disturbances.

  17. A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    M. K. Aripin

    2014-01-01

    Full Text Available Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.

  18. Research of Air-Magnet Active Vibration Isolation System Based on H∞ Control

    Wen Xianglong

    2015-01-01

    Full Text Available Considering the uncertainty of air-magnet active vibration isolation system (AMAVIS, passive vibration isolation was combined with active vibration isolation, which adopted H∞ control strategies. System identification method was used to get the channel model. By adopting mixed sensitivity design strategy, weighting functions were chosen and H∞ controller was designed. Both simulation results and experimental results show AMAVIS based on H∞ control had satisfying effect of vibration reduction in assigned frequency band.

  19. Accurate Wavelet Neural Network for Efficient Controlling of an Active Magnetic Bearing System

    Youssef Harkouss

    2010-01-01

    Full Text Available Problem statement: The synthesis of a command by the neural network has an excellent advantage over the classical one such as PID. This study presented a fast and accurate Wavelet Neural Network (WNN approach for efficient controlling of an Active Magnetic Bearing (AMB system. Approach: The proposed approach combined neural network with the wavelet theory. Wavelet theory may be exploited in deriving a good initialization for the neural network and thus improved convergence of the learning algorithm. Results: We tested two control systems based on three types of neural controllers: Multiplayer Perceptron (MLP controller, RBF Neural Network (RBFNN controller and WNN controller. The simulation results show that the proposed WNN controller provides better performance comparing with standard PID controller, MLP and RBFNN controllers. Conclusion: The proposed WNN approach was shown to be useful in controlling nonlinear dynamic mechanical system, such as the AMB system used in this study.

  20. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    Rongxiang Zhang; Xiaodong Chu; Wen Zhang; Yutian Liu

    2015-01-01

    Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is c...

  1. Active vibration control of a rotor-bearing system based on dynamic stiffness

    Andrés Blanco Ortega; Francisco Beltrán Carbajal; Gerardo Silva Navarro; Marco Antonio Oliver Salazar

    2010-01-01

    This paper presents an active vibration control scheme to reduce unbalance induced synchronous vibration in rotorbearing systems supported on two ball bearings, one of which can be automatically moved to control the effective rotor length and, as an immediate consequence, the rotor stiffness. This dynamic stiffness control scheme, based on frequency analysis, speed control and acceleration scheduling, is used to avoid resonant vibration of a rotor system when it passes (runup or coast down) t...

  2. Wind Tunnel Testing of Active Control System for Bridges

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...

  3. A Blast Shock Isolation System with MRFD and Its Semi-Active Control Analysis

    LIU Jingbo; WANG Libin; DU Yixin; WANG Yan

    2006-01-01

    To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock,a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed.MRFD can provide continuously adjustable Coulomb friction and has many advantages for semi-active control.Numerical simulation of this isolation system is finished using Matlab simulink toolbox.General semi-active control algorithms are consided based on instantaneous optimal active control algorithm.And the results indicate that the shock isolation system can work efficiently,decreasing about 93% of the peak acceleration of the isolation floor.

  4. Experimental Study on Active Control of Surge in a Centrifugal Compression System

    Nie Chaoqun

    2000-01-01

    Full Text Available An experimental study has been carried out on the active control of surge in a centrifugal compression system. With a computerized on-line control scheme, the surge phenomenon is suppressed and the stable operating range of the system is extended. In order to design the active control scheme and choose the desired parameters of the control system inputs, special emphases have been placed on the development of surge inception and the nonlinear interaction between the system and the actuator. By use of the method designed in the present work, the results of active control onsurge have been demonstrated for the different B parameters, different prescribed criteria and different control frequencies.

  5. Modeling and flat control law for a fine pointing system based on semi active magnetic bearings

    Mahout, Vincent; Prats Menéndez, Xavier; Mignot, Jean

    2002-01-01

    In this paper aspects of non linear systems and flat control are studied for a specific application of a satellite fine pointing breadboard based on semi active magnetic bearings actuators. Authors propose a complete 6 degrees of freedom mechanical model which describes the system dynamics. A completely non linear and unstable system is obtained leading to implement non linear control laws. A combination of flat control, which ensures trajectory tracking and path plann...

  6. Active fault tolerant control of piecewise affine systems with reference tracking and input constraints

    Gholami, M.; Cocquempot, V.; Schiøler, H.; Bak, Thomas

    2014-01-01

    An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...

  7. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  8. Contributions to active visual estimation and control of robotic systems

    Spica, Riccardo

    2015-01-01

    As every scientist and engineer knows, running an experiment requires a careful and thorough planning phase. The goal of such a phase is to ensure that the experiment will give the scientist as much information as possible about the process that she/he is observing so as to minimize the experimental effort (in terms of, e.g., number of trials, duration of each experiment and so on) needed to reach a trustworthy conclusion. Similarly, perception is an active process in which the perceiving age...

  9. Structural design and active control of modular tensegrity systems

    Amouri, Sarah; Averseng, Julien; Quirant, Jérôme; Dube, Jean-François

    2015-01-01

    International audience Tensegrity systems are self stressed reticulate structures composed of a set of compressed struts assembled inside a continuum of tendons. This principle is at the origin of lightweight and transparent structures that can cover large spaces and be erected, in particular cases, by deployment. In this paper, we propose a general design and optimization procedure adapted to modular structures following this principle. An application is presented on the case of a curved ...

  10. Active alignment and vibration control system for a large airborne optical system

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  11. HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER

    FENG Yonghui; ZHANG Jianwu

    2007-01-01

    Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.

  12. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  13. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    2008-01-01

    This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite eleme...

  14. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  15. FPGA Based Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems

    Ammar A. Aldair

    2010-10-01

    Full Text Available A Field Programmable Gate Array (FPGA is proposed to build an Adaptive Neuro Fuzzy Inference System (ANFIS for controlling a full vehicle nonlinear active suspension system. A Very High speed integrated circuit Hardware Description Language (VHDL has been used to implement the proposed controller. An optimal Fraction Order PIλ D µ (FOPID controller is designed for a full vehicle nonlinear active suspension system. Evolutionary Algorithm (EA has been applied to modify the five parameters of the FOPID controller (i.e. proportional constant Kp, integral constant Ki , derivative constant Kd, integral order λ and derivative order µ. The data obtained from the FOPID controller are used as a reference to design the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to train the ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIS control parameters obtained from the Matlab program are used to write the VHDL codes. Hardware implementation of the FPGA is dependent on the configuration file obtained from the VHDL program. The experimental results have proved the efficiency and robustness of the hardware implementation for the proposed controller. It provides a novel technique to be used to design NF controller for full vehicle nonlinear active suspension systems with hydraulic actuators.

  16. An LPV Control Approach for Comfort and Suspension Travel Improvements of Semi-Active Suspension Systems

    Do, Anh Lam; Spelta, Cristiano; Savaresi, Sergio,; Sename, Olivier; Dugard, Luc; Delvecchio, Diego

    2010-01-01

    International audience In this paper, we present a new H¥=LPV control method to improve the trade-off between comfort and suspension travel. Firstly, a semi-active automotive suspension uipped with a nonlinear static semi-active damper is presented. Secondly, the semi-active suspension system is reformulated in the LPV framework which can be handled in a polytopic way. Finally, in numerical analysis, to emphasize the performance of the proposed controller, the end-stop event is introduced....

  17. Independent Control of Active and Reactive Powers of a DFIG Based Wind Energy Conversion System by Vector Control

    Ibrahim Ahmad A

    2015-03-01

    Full Text Available The paper deals with a design and implementation of a doubly fed induction generator (DFIG wind energy conversion system (WECS connected to the power grid. A back-to-back AC/DC/AC converter is incorporated between the stator and the rotor windings of a DFIG, in order to obtain variable speed operation. The DFIG can be controlled from sub-synchronous speed to super synchronous speed operation. The main objective of the paper is to control the flow of the Active and Reactive powers produced by the DFIG based wind energy conversion system. A vector control strategy with stator flux orientation is applied to both the grid side converter and the rotor side converter for the independent control of Active and reactive powers produced by the DFIG based wind energy conversion system. The system along with its control circuit were simulated in a Matlab/simulink and the results are presented and discussed.

  18. A robust vibration control for a multi-active mount system subjected to broadband excitation

    In this study, a frequency-shaped sliding mode control design is presented for the robust vibration control of a multi-active mount system in the presence of parametric uncertainties whose upper bounds are assumed to be known. The proposed mount system consists of four active mounts supporting vibration-sensitive equipment. Each active mount—constituted of a rubber element, an inertial mass and two piezostack actuators connected in serial configuration—can be modeled as a two-stage vibration isolator. After formulating the governing equations of motions of the mount system, a desired dynamic is specified in the frequency domain, and control laws are then derived to drive the system dynamics to the desired one based on Lyapunov's theorem. Simulations are performed in the frequency range from 100 to 1000 Hz in order to evaluate the effectiveness of the active mount system associated with the frequency-shaped sliding mode controller. It is demonstrated that the dynamic of the active mount system can approach the desired dynamic as the controller is activated. It also shown that robust vibration control performance is achieved in the presence of the parametric uncertainties

  19. Design of the Active Attitude Determination and Control System for the e-st@r cubesat

    Stesina, Fabrizio; Corpino, Sabrina; Mozzillo, Raffaele; Obiols Rabasa, Gerard

    2012-01-01

    One of the most limiting factors which affects pico/nano satellites capabilities is the poor accuracy in attitude control. To improve mission performances of this class of satellites, the capability of controlling satellite's attitude shall be enhanced. The paper presents the design, development and verification of the Active Attitude Determination and Control System (A-ADCS) of the E-ST@R Cubesat developed at Politecnico di Torino. The heart of the system is an ARM9 microcontroller that mana...

  20. Control System Design for Active Lubrication with Theoretical and Experimental Examples

    Santos, Ilmar; Scalabrin, A.

    2003-01-01

    This work focuses on the theoretical and experimental behavior of rigid rotors controlled by tilting-pad journal bearings with active oil injection. Initially the mathematical model of the active bearing is presented: The equations that describe the dynamics of hydraulic actuators are introduced...... the control system of the active bearing based on root locus curves. The active system stability is analyzed by calculating its eigenvalues and frequency response curves. The theoretical and experimental results show that this kind of bearing can significantly reduce the vibration level of rotating...

  1. Development of a microcontrolled bioinstrumentation system for active control of leg prostheses.

    Delis, Alberto Lopez; da Rocha, Adson Ferreira; Dos Santos, Icaro; Sene, Iwens Gervasio; Salomoni, Sauro; Borges, Geovany Araujo

    2008-01-01

    This article describes the design of a microcontrolled bioinstrumentation system for active control of leg prostheses, using 4-channel electromyographic signal (EMG) detection and a single-channel electrogoniometer. The system is part of a control and instrumentation architecture in which a master processor controls the tasks of slave microcontrollers, through a RS-485 interface. Several signal processing methods are integrated in the system, for feature extraction (Recursive Least Squares), feature projection (Self Organizing Maps), and pattern classification (Levenberg-Marquardt Neural Network). The acquisition of EMG signals and additional mechanical information could help improving the precision in the control of leg prostheses. PMID:19163184

  2. Signal frequency based self-tuning fuzzy controller for semi-active suspension system

    孙涛; 黄震宇; 陈大跃; 汤磊

    2003-01-01

    A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration.

  3. The efficiency of active solar systems as a function of the collector-control strategy

    Galanis, N.; Clavet, A.; Legouis, T.

    The active water-circulation solar heating system of an experimental house near the city of Quebec, Canada, is simulated numerically using the TRNSYS program (Klein et al., 1978) to evaluate the effects of various modifications on the efficiency. Configurations modeled are the classic system (CS) with on-off freeze-protection control, CS with an optimized continuous-flow control, a modified system (MS) as proposed by Keller (1981) with on-off control, and MS with the optimized control. The simulation results are presented graphically. The optimized control subprogram is found to eliminate the evening and morning cycling problems encountered with on-off control. Best efficiencies (at given flow rates) were obtained with the CS/optimized-control combination. The economic feasibility of such a control is discussed.

  4. A New Hyperchaotic System and the Synchronization Using Active Variable Universe Adaptive Fuzzy Controller

    Baojie Zhang

    2013-01-01

    Full Text Available This paper presents a new hyperchaotic system by introducing an additional state variable into Lorenz system. The system’s characteristics, including the dissipativity, equilibrium, and Lyapunov exponents, are studied. A controller is developed which consists of an active control term and a variable universe adaptive fuzzy system. By using this controller, the synchronization of the new hyperchaotic systems with uncertain linear part is accomplished according to Lyapunov’s direct method. Simulation results illustrate the effectiveness of the proposed method.

  5. Practical Applications of Semi-active Control Systems to Civil Engineering Structures

    Florentina Chira; Cristian Pastia; Septimiu-George Luca

    2007-01-01

    During the last few years, it has been paid a considerable attention to the searching and developing of some procedures and mechanisms of structural control to mitigate the effects of dynamic environmental hazards on civil engineering structures. In this paper we review some full-scale applications of semi-active control systems for the protection of the civil structures under dynamic actions.

  6. FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    Weiji Wang

    2010-10-01

    Full Text Available A Field Programmable Gate Array (FPGA is proposed to build an Adaptive Neuro Fuzzy Inference System(ANFIS for controlling a full vehicle nonlinear active suspension system. A Very High speed integratedcircuit Hardware Description Language (VHDL has been used to implement the proposed controller. Anoptimal Fraction Order PIlDμ (FOPID controller is designed for a full vehicle nonlinear activesuspension system. Evolutionary Algorithm (EA has been applied to modify the five parameters of theFOPID controller (i.e. proportional constant Kp, integral constant Ki, derivative constant Kd, integralorder l and derivative order μ. The data obtained from the FOPID controller are used as a reference todesign the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to trainthe ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIScontrol parameters obtained from the Matlab program are used to write the VHDL codes. Hardwareimplementation of the FPGA is dependent on the configuration file obtained from the VHDL program. Theexperimental results have proved the efficiency and robustness of the hardware implementation for theproposed controller. It provides a novel technique to be used to design NF controller for full vehiclenonlinear active suspension systems with hydraulic actuators.

  7. ACTIVE CONTROL OF QUARTER-CAR SUSPENSION SYSTEM USING LINEAR QUADRATIC REGULATOR

    V.M. Nandedkar

    2011-06-01

    Full Text Available The automobile is composed of many systems. One of these is the suspension system. The main functions of the automotive suspension system are to provide vehicle support, stability and directional control during handling manoeuvres and to provide effective isolation from road disturbances. The suspension system has to balance the tradeoff between ride comfort and handling performance. This paper analyses the passive suspension system and active suspension system using a Linear Quadratic Regulator (LQR controller. A linear quarter-car model is used for the analysis and simulation. The performance of the LQR controller is compared with the passive suspension system. The simulation results show that the LQR controller improves vehicle ride comfort.

  8. Design of node record for the control system of FAST active reflector

    Background: Active reflector is the one of the crucial innovations of Five-hundred-meter Aperture Spherical radio Telescope (FAST) whose performance touches on that of the overall telescope. Purpose: A real time control system is needed for the active reflector system. Experimental Physics and Industrial Control System (EPICS) is a well-used framework over the world which has good performance in real time control. Methods: Based on Input/Output Controller (IOC) frame of EPICS, a new node record was designed to simplify the node management of IOC and improve the reusability of IOC codes by making full use of the excellent real-time performance of EPICS and large number of controlled nodes (more than 2 000) on FAST reflector. Results: The record type was used in design of active reflector control system of FAST Miyun model. And the new IOC controller was experimentally tested in laboratory together with the real node's hardware board. Conclusion: Experimental results show that this new node record can be adapted to FAST control system to enhance the convenience of code reusability. (authors)

  9. A Research on Active Control to Synchronize a New 3D Chaotic System

    Israr Ahmad

    2015-12-01

    Full Text Available This paper presents the robust synchronization problem of a 3D chaotic system by using the active control technique. Based on the Gershgorin theorem and Routh-Hurwitz criterion, sufficient algebraic conditions are derived to design a linear controller gain matrix. The conditions are then applied for the robust stability of the synchronization error dynamics in the presence of an unknown bounded smooth external disturbance. The proposed active control strategy with a suitable computation of the linear controller gain matrix is simple in design and establishes fast convergence rates of the synchronization error signals. Numerical simulation results further verified the analytical results.

  10. DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM

    2008-01-01

    Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.

  11. Complete Synchronization Of Hyperchaotic Xu And Hyperchaotic Lu Systems Via Active Control

    Sundarapandian Vaidyanathan

    2012-07-01

    Full Text Available This paper deploys active control for achieving complete synchronization of hyperchaotic Xu (2009 andhyperchaotic Lü (2006 systems. Specifically, this paper derives complete synchronization results foridentical hyperchaotic Xu systems, identical hyperchaotic Lü systems and non-identical hyperchaotic Xuand Lü systems. The complete synchronization results have been proved using Lyapunov stability theory.Numerical simulations have been shown to validate and demonstrate the effectiveness of the complete synchronization results derived in this paper.

  12. Global feedback control of Turing patterns in network-organized activator-inhibitor systems

    Hata, S.; Nakao, H.; Mikhailov, A. S.

    2012-06-01

    Results of the first systematic study on feedback control of nonequilibrium pattern formation in networks are reported. Effects of global feedback control on Turing patterns in network-organized activator-inhibitor system have been investigated. The feedback signal was introduced into one of the parameters of the system and was proportional to the amplitude of the developing Turing pattern. Without the control, the Turing instability corresponded to a subcritical bifurcation and hysteresis effects were observed. Sufficiently strong feedback control rendered, however, the bifurcation supercritical and eliminated the hysteresis effects.

  13. Adaptive control of an active magnetic bearing flywheel system using neural networks / Angelique Combrinck

    Combrinck, Angelique

    2010-01-01

    The School of Electrical, Electronic and Computer Engineering at the North-West University in Potchefstroom has established an active magnetic bearing (AMB) research group called McTronX. This group provides extensive knowledge and experience in the theory and application of AMBs. By making use of the expertise contained within McTronX and the rest of the control engineering community, an adaptive controller for an AMB flywheel system is implemented. The adaptive controller is ...

  14. Active Control Of Oscillation Patterns In Nonlinear Dynamical Systems And Their Mathematical Modelling

    Šutová Zuzana; Vrábeľ Róbert

    2014-01-01

    The article deals with the active control of oscillation patterns in nonlinear dynamical systems and its possible use. The purpose of the research is to prove the possibility of oscillations frequency control based on a change of value of singular perturbation parameter placed into a mathematical model of a nonlinear dynamical system at the highest derivative. This parameter is in singular perturbation theory often called small parameter, as ε → 0+. Oscillation frequency change caused by a di...

  15. Design and implement for control system of active magnetic bearings based on DSP

    Cao, Jie; Cao, Lihong

    2005-12-01

    Magnetic-bearings, which support shafts with magnetic levitation rather than mechanical contact, have been in industrial use for decades. Recent technological developments, especially in digital processing and control, have made magnetic bearings a more-robust and cost-effective design solution than ever. The dynamic characteristic of electromagnetic bearing depends upon adopted controller; the active control can makes the electromagnetic bearings to realize complex control and special control. With the development of signal processing technology and modern control theory, the main parts of the control system are the digital signal-processing (DSP) electronics, a power supply, and amplifiers. An Active Magnetic Bearing (AMB) controller is mainly discussed in the paper, which is to be solved to realize this flexible control by hardware design based on DSP using TMS320C32 processor. It is proved by experiment that this kind of controller can optimize for this system, improve its stability and also have a very important referential value on the further study of AMB system.

  16. Design of a modern automatic control system for the activated sludge process in wastewater treatment

    Alexandros D. Kotzapetros; Panayotis A. Paraskevas; Athanasios S. Stasinakis

    2015-01-01

    The Activated Sludge Process (ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a chal enging matter. The proposed control method is an I-P modified controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms, (reference value step increase of 50 mg·L−1) and 0.01 days for the concentration of oxygen (reference value step increase of 0.1 mg·L−1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of 5 × 103m3·d−1 are smal . Changes in the reference values of oxygen and microorganisms (increases by 10%, 20%and 30%) show satisfactory response of the system in al cases. Changes in the value of inlet wastewater flow rate disturbance (increases by 10%, 25%, 50%and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25%which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI control er. This method can substitute optimal control systems in ASP.

  17. MULTI OBJECTIVE OPTIMIZATION OF VEHICLE ACTIVE SUSPENSION SYSTEM USING DEBBO BASED PID CONTROLLER

    Kalaivani Rajagopal

    2014-03-01

    Full Text Available This paper proposes the Multi Objective Optimization (MOO of Vehicle Active Suspension System (VASS with a hybrid Differential Evolution (DE based Biogeography-Based Optimization (BBO (DEBBO for the parameter tuning of Proportional Integral Derivative (PID controller. Initially a conventional PID controller, secondly a BBO, an rising nature enthused global optimization procedure based on the study of the ecological distribution of biological organisms and a hybridized DEBBO algorithm which inherits the behaviours of BBO and DE have been used to find the tuning parameters of the PID controller to improve the performance of VASS by considering a MOO function as the performance index. Simulations of passive system, active system having PID controller with and without optimizations have been performed by considering dual and triple bump kind of road disturbances in MATLAB/Simulink environment. The simulation results show the effectiveness of DEBBO based PID (DEBBOPID in achieving the goal.

  18. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  19. Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

    刘爽; 王进进; 刘金杰; 李雅倩

    2015-01-01

    In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.

  20. Guaranteed Cost Active Fault-tolerant Control of Networked Control System with Packet Dropout and Transmission Delay

    Xiao-Yuan Luo; Mei-Jie Shang; Cai-Lian Chen; Xin-Ping Guan

    2010-01-01

    The problem of guaranteed cost active fault-tolerant controller (AFTC) design for networked control systems (NCSs)with both packet dropout and transmission delay is studied in this paper.Considering the packet dropout and transmission delay,a piecewise constant controller is adopted.With a guaranteed cost function,optimal controllers whose number is equal to the number of actuators are designed,and the design process is formulated as a convex optimal problem that can be solved by existing software.The control strategy is proposed as follows:when actuator failures appear,the fault detection and isolation unit sends out the information to the controller choosing strategy,and then the optimal stabilizing controller with the smallest guaranteed cost value is chosen.Two illustrative examples are given to demonstrate the effectiveness of the proposed approach.By comparing with the existing methods,it can be seen that our method has a better performance.

  1. Integrated Multiobjective Optimal Design for Active Control System Based on Genetic Algorithm

    Ma Yong-Quan

    2014-01-01

    Full Text Available The integrated multiobjective optimal design method for structural active control system is put forward based on improved Pareto multiobjective genetic algorithm, through which the position of actuator is synchronously optimized with active controller. External excitation is simulated by stationary filtered white noise. The root-mean-square (RMS of structural response and active control force can be achieved by solving Lyapunov equation in the state space. The design of active controller adopts linear quadratic regulator (LQR control algorithm. Minimum ratio of the maximum RMS of controlled structural displacement divided by the maximum RMS of uncontrolled structural displacement and minimum ratio of the maximum RMS of controlled structural shear divided by the maximum RMS of uncontrolled structural shear, together with minimization of the sum of RMS of active control force, are used as the three objective functions of multiobjective optimization. The optimization process takes the impact of structure and excitation parameter on the optimized results. An eight-storey six-span plane steel frame was used as an emulational example to demonstrate the validity of this optimization method. Results show that the proposed integrated multiobjective optimal design method is simple, efficient, and practical with good universality.

  2. Effect of bonding on the performance of a piezoactuator-based active control system

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is studied. A Modified Independent Modal Space Control (MIMSC) method is devised to select the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The presented method accounts for the effects that the piezoelectric actuators and the bonding layers have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the MIMSC method and to demonstrate the effect of the physical and geometrical properties of the bonding layer on the dynamic performance of the actively controlled beams. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  3. Availability verification of information for human system interface in automatic SG level control using activity diagram

    Steam Generator (SG) level control system in OPR 1000 is one of representative automatic systems that falls under the Supervisory Control level in Endsley's taxonomy. Supervisory control of automated systems is classified as a form of out of the loop (OOTL) performance due to passive involvement in the systems operation, which could lead to loss of situation awareness (SA). There was a reported event, which was caused by inadequate human automation communication that contributed to an unexpected reactor trip in July 2005. A high SG level trip occurred in Yeonggwang (YGN) Unit 6 Nuclear Power Plant (NPP) due to human operator failure to recognize the need to change the control mode of the economizer valve controller (EVC) to manual mode during swap over (the transition from low power mode to high power mode) after the loss of offsite power (LOOP) event was recovered. This paper models the human system interaction in NPP SG level control system using Unified Modeling Language (UML) Activity Diagram. Then, it identifies the missing information for operators in the OPR1000 Main Control Room (MCR) and suggests some means of improving the human system interaction

  4. Active seat suspension for a small vehicle: considerations for control system including observer

    Katsumata, Hiroyuki; Shiino, Hiroshi; Oshinoya, Yasuo; Ishibashi, Kazuhisa; Ozaki, Koichi; Ogino, Hirohiko

    2007-12-01

    We have examined the improvement of ride quality and the reduction of riding fatigue brought about by the active control of the seat suspension of small vehicles such as one-seater electric automobiles. A small active seat suspension, which is easy to install, was designed and manufactured for one-seater electric automobiles. For the actuator, a maintenance-free voice coil motor used as a direct drive was adopted. For fundamental considerations, we designed a one-degree-of-freedom model for the active seat suspension system. Then, we designed a disturbance cancellation control system that includes the observer for a two-degree-of-freedom model. In an actual driving test, a test road, in which the concavity and convexity of an actual road surface were simulated using hard rubber, was prepared and the control performance of vertical vibrations of the seat surface during driving was examined. As a result, in comparison with the one-degree-of-freedom control system, it was confirmed that the control performance was improved by the two-degree-of-freedom control system that includes the observer.

  5. RESEARCH ON ACTIVE VIBRATION CONTROL BASED ON COMBINED MODEL FOR COUPLED SYSTEMS

    Niu Junchuan; Zhao Guoqun; Song Kongjie

    2004-01-01

    A novel combined model of the vibration control for the coupled flexible system and its general mathematic description are developed. In presented model, active and passive controls as well as force and moment controls are combined into a single unit to achieve the efficient vibration control of the flexible structures by multi-approaches. Considering the complexity of the energy transmission in the vibrating system, the transmission channels of the power flow transmitted into the foundation are discussed, and the general forces and the corresponding velocities are combined into a single function, respectively. Under the control strategy of the minimum power flow, the transmission characteristics of the power flow are investigated. From the presented numerical examples, it is obvious that the analytical model is effective, and both force and moment controls are able to depress vibration energy substantially.

  6. Intelligent H2/H∞ Robust Control of an Active Magnetic Bearings System

    Safanah M.Raafat

    2015-06-01

    Full Text Available Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS. Simulation results reveal that the robust controller design objectives of wide bandwidth and improved performance are satisfied for a wide range of frequency variations. It can be concluded that the intelligent uncertainty weighting functions can precisely compensate for the effects of modelling errors and nonlinearities in the system.

  7. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers

    Wei, Xiukun; Zhu, Ming; Jia, Limin

    2016-07-01

    The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.

  8. An automated microcomputer-controlled system for neutron activation and gamma-ray spectroscopy

    An automated instrumental neutron activation analysis (INAA) system has been constructed at the SLOWPOKE-2 reactor at the Royal Military College of Canada (RMC). Its pneumatic transfer system is controlled by an Apple IIe computer, linked in turn to an MS-DOS-compatible microcomputer which controls data acquisition. Custom software has been created for these computers and for off-line spectral analysis using programs that incorporate either peak boundary or Gaussian peak fitting methods of analysis. This system provides the gamut of INAA techniques for the analyst. The design and performance of the hardware and software are discussed. (orig.)

  9. An automated microcomputer-controlled system for neutron activation and gamma-ray spectroscopy

    Edward, J.B.; Bennett, L.G.I. (Royal Military Coll. of Canada, Kingston, ON (Canada). SLOWPOKE-2 Facility Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Chemistry and Chemical Engineering); Beeley, P.A. (Royal Military Coll. of Canada, Kingston, ON (Canada). SLOWPOKE-2 Facility Queen' s Univ., Kingston, Ontario (Canada). Dept. of Chemistry); Anderson, A.; Burbidge, G.A. (Royal Military Coll. of Canada, Kingston, ON (Canada). SLOWPOKE-2 Facility Nordion International, Inc., Kanata, ON (Canada))

    1990-12-20

    An automated instrumental neutron activation analysis (INAA) system has been constructed at the SLOWPOKE-2 reactor at the Royal Military College of Canada (RMC). Its pneumatic transfer system is controlled by an Apple IIe computer, linked in turn to an MS-DOS-compatible microcomputer which controls data acquisition. Custom software has been created for these computers and for off-line spectral analysis using programs that incorporate either peak boundary or Gaussian peak fitting methods of analysis. This system provides the gamut of INAA techniques for the analyst. The design and performance of the hardware and software are discussed. (orig.).

  10. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  11. Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint

    Wang, Rongrong; Jing, Hui; Karimi, Hamid Reza; Chen, Nan

    2015-10-01

    In this paper, the robust fault-tolerant (FT) H∞ control problem of active suspension systems with finite-frequency constraint is investigated. A full-car model is employed in the controller design such that the heave, pitch and roll motions can be simultaneously controlled. Both the actuator faults and external disturbances are considered in the controller synthesis. As the human body is more sensitive to the vertical vibration in 4-8 Hz, robust H∞ control with this finite-frequency constraint is designed. Other performances such as suspension deflection and actuator saturation are also considered. As some of the states such as the sprung mass pitch and roll angles are hard to measure, a robust H∞ dynamic output-feedback controller with fault tolerant ability is proposed. Simulation results show the performance of the proposed controller.

  12. SIMULATION STUDY OF CUTTING TOOL SYSTEM USING INTELLIGENT ACTIVE FORCE CONTROL

    M.M. Hatifi

    2011-12-01

    Full Text Available This paper presents a study of vibration control through an active force control (AFC scheme. AFCs are used widely in dynamic system control and are highly robust control schemes, although under unknown disturbances and operation conditions. In this study, the AFC was incorporated with a conventional proportional-integral-derivative (PID controller to control an active vibration isolation system. A cutting tool of a turning machine with two degrees of freedom is used in this study. A harmonic force due to an unbalanced rotating mass and a sinusoidal response that represented an internal disturbance were applied to both axes (X and Y of the models, respectively. Generally, the estimated mass (EM is the most significant parameter in an AFC scheme; thus, the interest in this study was to obtain the EM via a conventional crude approximation method and an intelligent fuzzy logic method. A new AFC scheme with fuzzy logic control (FLC was proposed (AFCFLC, which is an AFC combined with a PID and FLC. The main purpose of this scheme was to obtain the optimum EM value via the intelligent method and to suppress vibration. Finally, a demonstration of a comparison study between each control scheme was carried out, which revealed clearly that the proposed AFCFLC scheme was the most superior control method for vibration isolation in both axes of the cutting tool models.

  13. Modeling and Simulation of integrated steering and braking control for vehicle active safety system

    Beibei Zhang

    2011-03-01

    Full Text Available Active chassis systems like braking, steering, suspension and propulsion systems are increasingly entering the market. In addition to their basic functions, these systems may be used for functions of integrated vehicle dynamics control. An experimental platform which aims to study the integration control of steering and braking is designed due to the research requirement of vehicle active safety control strategy in this paper. A test vehicle which is equipped with the systems of steer-by-wire and brake-bywire is provided and the Autobox, combined with Matlab/simulink and MSCCarsim, is used to fulfill the RCP (Rapid Control Prototyping and HIL (Hardware-in-loop. The seven-freedom vehicle model is constructed first and the approach of vehicle parameters estimation based on the Extended Kalman Filter (EKF is proposed. Testing the vehicle state through the sensor has its own disadvantage that the cost is high and easily affected by environment outside. To find a actual method of receiving the vehicle state using the ready-made sensors in vehicle, the researchers put forward various estimation method, of which have advantages and disadvantages. Based on the above, this paper applies the EKF to estimate the vehicle state, making the actual estimation come true. The primary control methods and controller designment is carried out to prove the validation of the platform.

  14. Optimal Active Power Control of A Wind Farm Equipped with Energy Storage System based on Distributed Model Predictive Control

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai;

    2016-01-01

    This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual decomposition. The primary objective of the D-MPC control of the wind farm is...... power reference tracking from system operators. Besides, by optimal distribution of the power references to individual wind turbines and the ESS unit, the wind turbine mechanical loads are alleviated. With the fast gradient method, the convergence rate of the DMPC is significantly improved which leads...... to a reduction of the iteration number. Accordingly, the communication burden is reduced. Case studies demonstrate that the additional ESS unit can lead to a larger wind turbine load reduction, compared to the conventional wind farm control without ESS. Moreover, the efficiency of the developed D...

  15. A Comparative Energetic Analysis of Active and Passive Emission Control Systems Adopting Standard Emission Test Cycles

    Angelo Algieri; Mario Amelio; Pietropaolo Morrone

    2012-01-01

    The present work aims at analysing and comparing the thermal performances of active and passive aftertreatment systems. A one-dimensional transient model has been developed in order to evaluate the heat exchange between the solid and the exhaust gas and to estimate the energy effectiveness of the apparatus. Furthermore, the effect of the engine operating conditions on the performances of emission control systems has been investigated considering standard emission test cycles. The analysis has...

  16. Parallel Processing System for Sensory Information Controlled by Mathematical Activation-Input-Modulation Model

    Mikawa, Masahiko; Tsujimura, Takeshi; Tanaka, Kazuyo

    2008-01-01

    We proposed a new architecture for an intelligent perceptual information processing system that has sleep and wake functions, and applied it to an audition and vision system. Plural perceptual information processes and storing processes run in parallel and these processes are controlled by the mathematical Activation-Input-Modulation (AIM) model. The memory architecture consists of a working memory (WM), a short-term memory (STM) and a longterm memory (LTM), that can store environment informa...

  17. A tunable fuzzy logic controller for the vehicle semi-active suspension system

    方子帆; DENG; Zhaoxiang; 等

    2002-01-01

    On the basis of analyzing the system constitution of vehicle semi-active suspension,a 4-DOF(degree of freedom)dynamic model is established.A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty,nonlinearity and complexity of parameters for a vehicle suspension system.Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road,and the effects of time delay and changes of system parameters on the vehicle suspension system are researched.The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective,stable and reliable.

  18. Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of Elevators

    Rildova

    2005-01-01

    Full Text Available Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.

  19. Importance of tip sensing for active control system of 30-m RIT primary mirror

    Yichun Dai; Zhong Liu; Zhenyu Jin

    2009-01-01

    The active control of 30-m ring interferometric telescope(RIT)needs edge sensing and tip sensing when its primary mirror is composed by trapezoid-shaped segments,and the imaging performance of the RIT is determined by the accuracy of these two detecting approaches.Considering the detecting accuracy available in current segmented telescope active control systems,the effect of these detecting approaches on the surface error of the RIT primary mirror is calculated from the point of error propagation.The corresponding effect on imaging performance(modulation transfer functions(MTFs)and point spread functions(PSFs)at several typical wavelengths)of the RIT primary mirror is also simulated.The results show that tip sensing is very important for increasing the active control quality of the RIT primary mirror under the present techniques.

  20. A Stability Enhancement Method for Centrifugal Compressors using Active Control Casing Treatment System

    Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le

    2015-08-01

    The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.

  1. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)

  2. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  3. New Digital Control System for the JET Alfv'en Eigenmode Active Spectroscopy Diagnostic

    Woskov, P. P.; Stillerman, J.; Porkolab, M.; Fasoli, A.; Testa, D.; Galvao, R.; Pires Dos Resis, A.; Pires de Sa, W.; Ruchko, L.; Blanchard, P.; Figueiredo, J.; Dorling, S.; Farthing, J.; Graham, M.; Dowson, S.; Yu, L.; Concezzi, S.

    2012-10-01

    The state-of-the-art JET Alfv'en active spectroscopy diagnostic with eight internal inductive antennas is being upgraded from a single 5 kW tube amplifier to eight parallel, 10 -- 1000 kHz, 4 kW solid state class D power switching amplifiers. A new digital control system has been designed with arbitrary constant phase controlled frequency sweeps for traveling mode studies, amplifier gain control through a feedback loop referenced to programmed antenna current profiles, and integration with CODAS for synchronization, triggering, gating, and fault tripping. A combination of National Instruments Real Time LabView software and FPGA circuits is used to achieve the multiple control requirements with better than 1 ms response. System specifications and digital-analog design trade offs for sweep rates, response times, frequency resolution, and voltage levels will be presented.

  4. RESEARCH ON CONTROL OF FLYWHEEL SUSPENDED BY ACTIVE MAGNETIC BEARING SYSTEM WITH SIGNIFICANT GYROSCOPIC EFFECTS

    Zhang Kai; Zhao Lei; Zhao Hongbin

    2004-01-01

    Traditional PID controllers are no longer suitable for magnetic-bearing-supported high-speed flywheels with significant gyroscopic effects.Because gyroscopic effects greatly influence the stability of the flywheel rotor,especially at high rotational speeds.Velocity cross feedback and displacement cross feedback are used to overcome harmful effects of nutation and precession modes, and stabilize the rotor at high rotational speeds.Theoretical analysis is given to show their effects.A control platform based on RTLinux and a PC is built to control the active magnetic bearing (AMB) system, and relevant results are reported.Using velocity cross feedback and displacement cross feedback in a closed loop control system, the flywheel successfully runs at over 20 000 r/min.

  5. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. PMID:25776190

  6. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN–8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified

  7. The architecture of the active surface control system of the Large Millimeter Telescope

    Souccar, Kamal; Wallace, Gary; Grosslein, Ron; Schloerb, F. Peter

    2014-07-01

    One of the fundamental design principles of the LMT is that its segmented primary surface must be active: the position and orientation of each of the segments must be moved in order to maintain the precise parabolic surface that is required by the specifications. Consequently, a system of actuators, one at the corner of each segment, is used to move the segments to counteract surface deformations attributed to gravity or thermal effects. A new control system was designed and built within the project to implement an active surface at the LMT. The technical concept for the active surface control system is to provide a set of bus boxes with built-in control and I/O capabilities to run four actuators each. Bus boxes read the LVDT sensor position and limit switch status for each actuator and use this information to drive the actuator's DC motor, closing the position loop. Each bus box contains a DC power supply for the electronics, a second DC power supply for the motors, an embedded controller with I/O to close the position loop, and a custom printed circuit board to condition the LVDT signals and drive the motors. An interface printed circuit board resides in each actuator providing a single connector access to the LVDT, the motor, and the limit switches. During the fall of 2013, 84 bus boxes were commissioned to control the 336 actuators of the inner three rings of the telescope. The surface correction model was determined using holography measurements and the active surface system has been in regular use during the scientific observation at the LMT.

  8. Independent Control of Active and Reactive Powers of a DFIG Based Wind Energy Conversion System by Vector Control

    Ibrahim Ahmad A; Anitha, D.

    2015-01-01

    The paper deals with a design and implementation of a doubly fed induction generator (DFIG) wind energy conversion system (WECS) connected to the power grid. A back-to-back AC/DC/AC converter is incorporated between the stator and the rotor windings of a DFIG, in order to obtain variable speed operation. The DFIG can be controlled from sub-synchronous speed to super synchronous speed operation. The main objective of the paper is to control the flow of the Active and Reactive power...

  9. Active roll control: system design and hardware-in-the-loop test bench

    A. Sorniotti; Morgando, A; Velardocchia, M

    2006-01-01

    The first part of the article describes the targets related to the design of an Active Roll Control (ARC) system, based on the hydraulic actuation of the anti-roll bars of an automobile. Then the basic static and dynamic design principles of the system are commented upon in detail. The second part of the article presents the hardware-in-the-loop test bench implemented to evaluate the designed system. In the end, the main experimental results are summarized and discussed from the point of view...

  10. High-density EMG e-textile systems for the control of active prostheses

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals...... which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing....

  11. Study of active noise control system for a commercial HVAC unit

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  12. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    冯存芳; 汪映海

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a genera./ method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach.%Projective synchronization in modulated time-delayed systems is studied by applying an active control method.Based on the Lyapunov asymptotical stability theorem,the controller and sufficient condition for projective synchronization are calculated analytically.We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems.This method allows us to adjust the desired scaling factor arbitrarily.The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices.Numerical simulations fully support the analytical approach.

  13. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition

    Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

    1982-01-01

    The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

  14. Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

    Liu, Shuang; Wang, Jin-Jin; Liu, Jin-Jie; Li, Ya-Qian

    2015-10-01

    In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  15. A study on transient enhancement for fault diagnosis based on an active noise control system

    Tian, X.; Gu, Fengshou; Zhen, Dong; Tran, Tung; Ball, Andrew

    2012-01-01

    Active noise control (ANC) is a more effective technique used for acoustic noise cancelation in comparison with passive approaches which are difficult and expensive to implement, especially for cancelling the noise in the low frequency range. In the ANC system, an anti-noise signal is introduced to suppress the primary noise to produce a residual which is used for updating the adaptive filter coefficients. In this paper, a method of transient content enhancement for fault detection and diagno...

  16. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  17. Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel

    Cabell, R.H.; Schiller, N.H.; Simon, F.

    2013-01-01

    This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor...

  18. APPLICATION OF IMPROVED PRODUCTION ACTIVITY CONTROL ARCHITECTURE FOR SHOP FLOOR INFORMATION SYSTEM IN DIGITAL MANUFACTURING

    SHAHID Ikramullah Butt; SUN Houfang; GAO Zhengqing

    2006-01-01

    Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producers and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producers and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of internet information services (IIS) and SQL2000 is done along with the ASP. NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.

  19. Design of active disturbance rejection controller for space optical communication coarse tracking system

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  20. Source term control measures for activation/corrosion products in PWR primary system

    Material substitution and primary system water chemistry control are the main measures for the reduction of the activation and corrosion products source term. In this article, the optimization of primary side water chemistry of M310, AP1000 and EPR were introduced, the influence of water chemistry optimization on the reduction of source term were analyzed by comparing the source terms of the activation and corrosion products of three PWRs. Finally, the suggestions of primary side water chemistry optimization for domestic PWR were proposed. (authors)

  1. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  2. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  3. Analysis of Nonlinear Discrete Time Active Control System with Boring Chatter

    Shujing Wu

    2014-03-01

    Full Text Available In this work we study the design and analysis for nonlinear discrete time active control system with boring charter. It is shown that most analysis result for continuous time nonlinear system can be extended to the discrete time case. In previous studies, a method of nonlinear Model Following Control System (MFCS was proposed by Okubo (1985. In this study, the method of nonlinear MFCS will be extended to nonlinear discrete time system with boring charter. Nonlinear systems which are dealt in this study have the property of norm constraints ║ƒ (v (k║&le&alpha+&betaβ║v (k║&gamma, where &alpha&ge0, &beta&ge0, 0&le&gamma&le1. When 0&le&gamma&le1. It is easy to extend the method to discrete time systems. But in the case &gamma = 1 discrete time systems, the proof becomes difficult. In this case, a new criterion is proposed to ensure that internal states are stable. We expect that this method will provide a useful tool in areas related to stability analysis and design for nonlinear discrete time systems as well.

  4. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.;

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately...

  5. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    Wilson, Mark E.; Cole, Harold E.; Rector, Tony; Steele, John; Varsik, Jerry

    2011-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  6. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  7. Activation of the attachment system and mentalization in depressive and healthy individuals: An experimental control study

    Fizke Ella

    2013-01-01

    Full Text Available From a developmental and clinical point of view attachment theory and mentalization are closely connected and have become increasingly important to understand the origins of psychopathological development. However, very little is known about how exactly different inner working models of attachment are related to diverse mentalizing abilities and this is particularly true for adult populations - healthy as well as clinical populations. In the present study we investigated this relation with a sample of inpatients diagnosed with depression and a sample of healthy individuals. In an experimental setting the attachment system was activated using the Adult Attachment Projective Picture System (AAP. Mentalization was assessed during activation and in comparison to a control condition using a modified version of the Reading the Mind in the Eyes Test (RMET. We expected that an activation of the attachment system i diminishes the capacity to take another’s perspective in individuals with unresolved state of mind, ii has no impact in individuals with secure attachment representation and iii is dependent of clinical status in individuals with insecure (but organized working models of attachment. Overall, these hypotheses were confirmed. However, the impact of clinical status on mentalization in insecure attachment has to be further explored. We summarize that attachment state of mind has a mediating influence on mentalization basically in such situations where the attachment system is activated.

  8. Experimental studies on active control of a dynamic system via a time-delayed absorber

    Xu, Jian; Sun, Yixia

    2015-04-01

    The traditional passive absorber is fully effective within a narrow and certain frequency band. To solve this problem, a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one. Both the inherent and the intentional time delays are included. The former mainly comes from signal acquiring and processing, computing, and applying the actuation force, and its value is fixed. The latter is introduced in the controller, and its value is actively adjustable. Firstly, the mechanical model is established and the frequency response equations are obtained. The regions of stability are delineated in the plane of control parameters. Secondly, the design scheme of control para- meters is performed to help select the values of the feedback gain and time delay. Thirdly, the experimental studies are conducted. Effects of both negative and positive feedback control are investigated. Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption. Moreover, the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails. The experimental results are in good agreement with the theoretical predictions and numerical simulations.

  9. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  10. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  11. Bio-Inspired Control of an Arm Exoskeleton Joint with Active-Compliant Actuation System

    Michele Folgheraiter

    2009-01-01

    Full Text Available This paper presents the methodology followed on the design of a multi-contact point haptic interface that uses a bio-inspired control approach and a novel actuation system. The combination of these components aims at creating a system that increases the operability of the target, and, at the same time, enables an intuitive and safe tele-operation of any complex robotic system of any given morphology. The novelty lies on the combination of a thoughtful kinematic structure driven by an active-compliant actuation system and a bio-inspired paradigm for its regulation. Due to the proposed actuation approach, the final system will achieve the condition of wearable system. On that final solution, each joint will be able to change its stiffness depending on the task to be executed, and on the anatomical features of each individual. Moreover, the system provides a variety of safety mechanisms at different levels to prevent causing any harm to the operator. In future, the system should allow the complete virtual immersion of the user within the working scenario.

  12. Novel Algorithm for Active Noise Control Systems Based on Frequency Selective Filters

    Hong-liang ZHAO

    2010-01-01

    A novel algorithm for active noise control systems based on frequency selective filters (FSFANC)is presented in the paper.The FSFANC aims at the m lti-tonal noise attenuation problem.One FSFANC system copes with one of the tonal components,and several FSFANC systems can nun independently in parallel to cancel the selected multiple tones.The proposed algorithm adopts a simple structrue with only two coefficients that can be explained as the real and imaginary parts of the structure to modelthesecondary path,and estimates the secondary path by injecting sinusoidal identification signals.Theoretical analysis and laboratory experiments show that the proposed algorithm possesses some advantages,such as simpler stricture,less computational burden,greater stability,and fast canverging speed.

  13. Prototype test article verification of the Space Station Freedom active thermal control system microgravity performance

    Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.

    1993-01-01

    To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.

  14. Computer-controlled, chemical separation system for use with neutron-activated samples

    Neutron activation analysis has proven to be a sensitive technique for the quantitative determination of metals in the parts-per-billion range. While sodium and potassium salt concentrations in sea water and biological materials are on the order of 10,000 ppm, the levels of trace metals range from 1 ppm to 0.1 ppb. The high concentrations and high activities of the salts in these matrices greatly reduce the ability to measure short half-life isotopes such as 2.3 min. 28Al, 3.8 min. 52V and 5.1 min. 66Cu. Post-irradiation separation is often the method of choice for such samples. However, when performed manually this technique is awkward, slow and unsafe. The Basic Automated Separation System (BASS) is a computer-controlled, chemical separation system for use in post-irradiation separations of neutron activated samples. It allows irradiation and separation of high-activated samples without user-intervention

  15. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  16. Theoretical and experimental research on a new system of semi-active structural control with variable stiffness and damping

    周福霖; 谭平; 阎维明; 魏陆顺

    2002-01-01

    In this paper, a new system of semi active structural control with active variable stiffness and damping (AVSD) issuggested. This new system amplifies the structural displacement to dissipate more energy, and in turn, effectively reduces thestructural response in the case of relatively small story drifts, which occur during earthquakes. A predictive instantaneousoptimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table testsof a 1/4 scale single story structural model with a full scale control device have been conducted. From the experimental andanalytical results, it is shown that when compared to structures without control or with the active variable stiffness control alone,the suggested system exhibits higher efficiency in controlling the structural response, requires less energy input, operates withhigher reliability, and can be manufactured at a lower cost and used in a wider range of engineering applications.

  17. Sliding Mode Control of a Multi-Degree-of-Freedom Structural System With Active Tuned Mass Damper

    YAĞIZ, Nurkan

    2001-01-01

    In this study, a sliding mode control system is designed for a multi-degree-of-freedom structure having an Active Tuned Mass Damper (ATMD) to suppress earthquake or wind induced vibration. Since the model might have uncertainties and/or parameter changes, sliding mode control is preferred because of its robust character and superior performance. In addition this control method can easily be applied to non-linear systems. The simulated system has five degrees of freedom. In this stu...

  18. A Novel Control Algorithm for Integration of Active and Passive Vehicle Safety Systems in Frontal Collisions

    Daniel Wallner

    2010-10-01

    Full Text Available The present paper investigates an approach to integrate active and passive safety systems of passenger cars. Worldwide, the introduction of Integrated Safety Systems and Advanced Driver Assistance Systems (ADAS is considered to continue the today

  19. Capabilities and applications of a computer program system for dynamic loads analyses of flexible airplanes with active controls /DYLOFLEX/

    Perry, B., III; Goetz, R. C.; Kroll, R. I.; Miller, R. D.

    1979-01-01

    This paper describes and illustrates the capabilities of the DYLOFLEX Computer Program System. DYLOFLEX is an integrated system of computer programs for calculating dynamic loads of flexible airplanes with active control systems. A brief discussion of the engineering formulation for each of the nine DYLOFLEX programs is described. The capabilities of the system are illustrated by the analyses of two example configurations.

  20. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  1. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation.

    Izcue, Ana; Coombes, Janine L; Powrie, Fiona

    2006-08-01

    The gastrointestinal (GI) tract is the main interface where the body encounters exogenous antigens. It is crucial that the local response here is tightly regulated to avoid an immune reaction against dietary antigens and commensal flora while still mounting an efficient defense against pathogens. Faults in establishing intestinal tolerance can lead to disease, inducing local and often also systemic inflammation. Studies in human as well as in animal models suggest a role for regulatory T cells (Tregs) in maintaining intestinal homeostasis. Transfer of Tregs can not only prevent the development of colitis in animal models but also cure established disease, acting both systemically and at the site of inflammation. In this review, we discuss the major regulatory pathways, including transforming growth factor-beta (TGF-beta), interleukin-10 (IL-10), and cytotoxic T-lymphocyte antigen-4 (CTLA-4), and their role in Treg-mediated control of systemic and mucosal responses. In addition, we give an overview of the known mechanisms of lymphocyte migration to the intestine and discuss how CD103 expression can influence the balance between regulatory and effector T cells. Further understanding of the factors that control the activity of Tregs in different immune compartments may facilitate the design of strategies to target regulation in a tissue-specific way. PMID:16903919

  2. Activation of the opioidergic descending pain control system underlies placebo analgesia.

    Eippert, Falk; Bingel, Ulrike; Schoell, Eszter D; Yacubian, Juliana; Klinger, Regine; Lorenz, Jürgen; Büchel, Christian

    2009-08-27

    Placebo analgesia involves the endogenous opioid system, as administration of the opioid antagonist naloxone decreases placebo analgesia. To investigate the opioidergic mechanisms that underlie placebo analgesia, we combined naloxone administration with functional magnetic resonance imaging. Naloxone reduced both behavioral and neural placebo effects as well as placebo-induced responses in pain-modulatory cortical structures, such as the rostral anterior cingulate cortex (rACC). In a brainstem-specific analysis, we observed a similar naloxone modulation of placebo-induced responses in key structures of the descending pain control system, including the hypothalamus, the periaqueductal gray (PAG), and the rostral ventromedial medulla (RVM). Most importantly, naloxone abolished placebo-induced coupling between rACC and PAG, which predicted both neural and behavioral placebo effects as well as activation of the RVM. These findings show that opioidergic signaling in pain-modulating areas and the projections to downstream effectors of the descending pain control system are crucially important for placebo analgesia. PMID:19709634

  3. Antibacterial activities and release kinetics of a newly developed recoverable controlled agent-release system.

    Ehara, A; Torii, M; Imazato, S; Ebisu, S

    2000-03-01

    We attempted to develop a resin with a recoverable antibacterial activity based on the desorption/adsorption of a cationic bactericide by the ion-exchange mechanism. The aims of this study were to investigate the release kinetics of the agent and the antibacterial activity of this newly designed resin system. An experimental resin was prepared by the addition of methacrylic acid as a cation-exchanger and a cationic antibacterial agent, cetylpyridinium chloride (CPC), to triethyleneglycol dimethacrylate. The amount of CPC desorbed from the experimental resin into buffer solutions at pH 4-8 was measured. The adsorption of CPC to control resin and re-adsorption of CPC to the experimental resin, which had once desorbed the agent, were also determined. The antibacterial activity of experimental resin against Streptococcus mutans was evaluated, and the relationship between bacterial acid production and antibacterial effect was assessed. The experimental resin desorbed CPC at pH amount of agent desorbed increased with increasing acidity. The control resin adsorbed CPC when immersed in CPC aqueous solution at a rate determined by the concentration of the agent and immersion time. The experimental resin, once desorbed CPC, could re-adsorb the bactericide by being exposed to a solution of the agent. Less plaque formed on the experimental resin, and the growth and survival of S. mutans was inhibited in the condition in which acid was produced. These results demonstrate that the resin system proposed was able to desorb and re-adsorb the cationic bactericide by an ion-exchange mechanism and could show an inhibitory effect on S. mutans growth and plaque formation. PMID:10765955

  4. Active pitch control in larger scale fixed speed horizontal axis wind turbine systems. Part 1: Linear controller design

    Nengsheng Bao; Zhiquan Ye [Shantou Univ., Inst. of the Energy and Environmental Science, Gongdong Province (China)

    2001-07-01

    This paper reviews and addresses the principles of linear controller design of the fixed speed wind turbine system in above rated wind speed, using pitch angle control of the blades and applying modern control theory. First, the non-linear equations of the system are built in under some reasonable suppositions. Then, the non-linear equations are linearized at set operating point and digital simulation results are shown in this paper. Finally, a linear quadratic optimal feedback controller is designed and the dynamics of the closed circle system are simulated with digital calculation. The advantages and disadvantages of the assumptions and design method are also discussed. Because of the inherent characteristics of the linear system control theory, the performance of the linear controller is not sufficient for operating wind turbines, as is discussed. (Author)

  5. Variable Parameters PD Control and Stability of a High Rate Rigid Rotor-Journal Active Magnetic Bearing System

    LUO Kai

    2005-01-01

    Stability is a key problem that means whether a high rate rotor-active magnetic bearings system works reliably or not. Aiming at a bearings system described with nonlinear equations, this paper built a linear model according to the system behavior. Considering realization of the control system and behavior of a high rate rotor system (magnetic force is far smaller than input force produced by mass eccentricity) this paper proposes a design method of variable parameters PD control algorithm that can be used universally. The control system was simplified and a mass of adjusting work of control parameters was reduced. Analysis and simulation indicated that the bearings system could get a wider stable region of harmonic motion, and proved that the algorithm is robust and advanced. The control system can be realized because the winding electric currents are positive. The method is convenient for operation and can easily be used for engineering practice.

  6. Reducing energy consumption and leakage by active pressure control in a water supply system

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J. H. G.; L. C. Rietveld

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Poznań, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was developed and installed. This model is a hybrid form of a predictive controller and a feedback controller: The model predicts the pressure at the off-line measuring points, based on the adaptively learned ...

  7. Active binder content as a factor of the control system of the moulding sand quality

    J. Jakubski

    2011-01-01

    Full Text Available One of the modern methods of the production optimisation are artificial neural networks. Neural networks are gaining broader and broaderapplication in the foundry industry, among others for controlling melting processes in cupolas and in arc furnaces, for designing castingsand supply systems, for controlling moulding sand processing, for predicting properties of cast alloys or selecting parameters of pressurecastings. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is theassessment method of sands suitability by means of detecting correlations between their individual parameters. The presentedinvestigations were obtained by using the Statistica 9.0 program. The presented investigations were aimed at the selection of the neuralnetwork able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability,compactibility and the compressive strength. An application of the Statistica program allowed to select automatically the type of networkproper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageousconditions were obtained for the uni-directional multi-layer perception (MLP network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.

  8. An Active Gain-control System for Avalanche Photo-Diodes under Moderate Temperature Variations

    Kataoka, J; Ikagawa, T; Kotoku, J; Kuramoto, Y; Tsubuku, Y; Saitô, T; Yatsu, Y; Kawai, N; Ishikawa, Y; Kawabata, N

    2006-01-01

    Avalanche photodiodes (APDs) are promising light sensor for various fields of experimental physics. It has been argued, however, that variation of APD gain with temperature could be a serious problem preventing APDs from replacing traditional photomultiplier tubes (PMTs) in some applications. Here we develop an active gain-control system to keep the APD gain stable under moderate temperature variations. As a performance demonstration of the proposed system, we have tested the response of a scintillation photon detector consisting of a 5x5 mm^2 reverse-type APD optically coupled with a CsI(Tl) crystal. We show that the APD gain was successfully controlled under a temperature variation of DT = 20deg, within a time-cycle of 6000 sec. The best FWHM energy resolution of 6.1+-0.2 % was obtained for 662 keV gamma-rays, and the energy threshold was as low as 6.5 keV, by integrating data from +20deg - 0deg cycles. The corresponding values for -20deg - 0deg cycles were 6.9+-0.2 % and 5.2 keV, respectively. These result...

  9. Control and Information Systems

    Jiri Zahradnik

    2003-01-01

    Full Text Available The article deals with main tends of scientific research activities of Department of Control and Information Systems at the Faculty of Electrical Engineering of University of Zilina and its perspectives in this area.

  10. Improving Vehicle Ride and Handling Using LQG CNF Fusion Control Strategy for an Active Antiroll Bar System

    Zulkarnain, N.; H. Zamzuri; Y. M. Sam; Mazlan, S. A.; S. M. H. F. Zainal

    2014-01-01

    This paper analyses a comparison of performance for an active antiroll bar (ARB) system using two types of control strategy. First of all, the LQG control strategy is investigated and then a novel LQG CNF fusion control method is developed to improve the performances on vehicle ride and handling for an active antiroll bar system. However, the ARB system has to balance the trade-off between ride and handling performance, where the CNF consists of a linear feedback law and a nonlinear feedback ...

  11. Theoretical and Numerical Experiences on a Test Rig for Active Vibration Control of Mechanical Systems with Moving Constraints

    M. Rinchi; Gambini, E.

    2004-01-01

    Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw,...

  12. Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control

    This paper aims at synchronization and anti-synchronization between Lu chaotic system, a member of unified chaotic system, and recently developed Bhalekar–Gejji chaotic system, a system which cannot be derived from the member of unified chaotic system. These synchronization and anti-synchronization have been achieved by using nonlinear active control since the parameters of both the systems are known. Lyapunov stability theory is used and required condition is derived to ensure the stability of error dynamics. Controller is designed by using the sum of relevant variables in chaotic systems. Simulation results suggest that proposed scheme is working satisfactorily

  13. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  14. The design of an active support control system for a thin 1.2m primary mirror

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  15. Strategies of design, development and activation of the Nova control system

    Nova and Novette are large complex experimental laser facilities which require extensive and sophisticated control systems for their successful operation. Often, in major controls projects, certain invisible aspects of the project, such as overall strategy, management, resources and historical constraints, have a more profound effect upon success than any specific hardware/software design. The design and performance of the Nova/Novette laser control system will be presented with special emphasis upon these often controversial aspects

  16. Adaptive Control of Active Balancing System for a Fast Speed-varying Jeffcott Rotor with Actuator Time Delay

    HU Bing; FANG Zhi-chu

    2008-01-01

    Due to actuator time delay existing in an adaptive control of the active balancing system for a fastspeed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system,it may lead to degradation in control efficiency and instability of the control system. In order to avoid theseshortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuatortime delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. Afteradding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator timedelay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controllersatisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposedworks very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator timedelay.

  17. Implementation Of A Battery Storage System Of An Individual Active Power Control Based On A Cascaded Multilevel Pwm Converter

    RAJASEKHARACHARI K, G.BALASUNDARAM, KUMAR K

    2013-01-01

    For The Smart Grid Arrangement A Battery Energy Storage System Is Important Equipment Of Renewable Energy Resources. In This Paper We Will Have A Discussion On Active Power Control In A Battery Storage System With A Topology Of Cascaded Multi Level Inverter With Pulse Width Modulation Switching Technique. Multilevel Inverters Have Been Attracting In Favor Of Academia As Well As Industry In The Recent Decade For High-Power And Medium-Voltage Energy Control. A Battery Energy Storage System (BES...

  18. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  19. Control system design for flexible rotors supported by actively lubricated bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are...... displacement and velocity of the shaft at the bearing positions....

  20. Adaptive Control with SSNN of UPFC System for the Compensation of Active and Reactive Power

    A. Bouanane

    2013-06-01

    Full Text Available The focus of this study is the effectiveness of the controller’s Unified Power Flow Controller UPFC with the choice of a control strategy. This Unified Power Flow Controller (UPFC is used to control the power flow in the transmission systems by controlling the impedance, voltage magnitude and phase angle. This controller offers advantages in terms of static and dynamic operation of the power system. It also brings in new challenges in power electronics and power system design. To evaluate the performance and robustness of the system, we proposed a hybrid control combining the concept of identification neural networks with conventional regulators and with the changes in characteristics of the transmission line in order to improve the stability of the electrical power network. With its unique capability to control simultaneously real and reactive power flows on a transmission line as well as to regulate voltage at the bus where it is connected, this device creates a tremendous quality impact on power system stability. The result which has been obtained from using MATLAB and SIMULINK software showed a good agreement with the simulation result.

  1. Active Control of Suspension Bridges

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps are...

  2. Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB

    Wang, Xiao-Yen J.; Yuko, James

    2010-01-01

    This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.

  3. Active control of acoustic field-of-view in a biosonar system.

    Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum

    2011-09-01

    Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized. PMID:21931535

  4. Control And Configuration Of The ATLAS Trigger And Data Acquisition System During Data Taking Activities

    Bianchi, R M; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data at unprecedented energy and rates. The control and configuration (CC) system is responsible for all the software required to configure and control the ATLAS data taking. This ranges from high level applications, such as the graphical user interfaces and the desktops used within the ATLAS control room, to low level packages, such as access, process and resource management. Currently the CC system is required to supervise more than 15000 processes running on more than 1500 computers. At these scales, issues such as access, process and resource management, distribution of configuration data and access to them, run control, diagnostic and especially error recovery become predominant to guarantee a high availability of the TDAQ system and minimize the dead time of the experiment. And it is indeed during the data taking activitie...

  5. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  6. Phase and Antiphase Synchronization between 3-Cell CNN and Volta Fractional-Order Chaotic Systems via Active Control

    Hassan Zarabadipour; Zahra Yaghoubi

    2012-01-01

    Synchronization of fractional-order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this paper, a drive-response synchronization method is studied for “phase and antiphase synchronization” of a class of fractional-order chaotic systems via active control method, using the 3-cell and Volta systems as an example. These examples are used to illustrate the effecti...

  7. Microbiological Characterization and Concerns of the International Space Station Internal Active Thermal Control System

    Roman, Monsi C.; Wieland, Paul O.

    2005-01-01

    Since January 1999, the chemical the International Space Station Thermal Control System (IATCS) and microbial state of (ISS) Internal Active fluid has been monitored by analysis of samples returned to Earth. Key chemical parameters have changed over time, including a drop in pH from the specified 9.5 +/- 0.5 ta = 58.4, an increase in the level of total inorganic carbon (TIC), total organic carbon (TOC) and dissolved nickel (Ni) in the fluid, and a decrease in the phosphate (PO,) level. In addition, silver (AS) ion levels in the fluid decreased rapidly as Ag deposited on internal metallic surfaces of the system. The lack of available Ag ions coupled with changes in the fluid chemistry has resulted in a favorable environment for microbial growth. Counts of heterotrophic bacteria have increased from less than 10 colony-forming units (CFUs)/l00 mL to l0(exp 6) to l0(exp 7) CFUs/100 mL. The increase of the microbial population is of concern because uncontrolled microbiological growth in the IATCS can contribute to deterioration in the performance of critical components within the system and potentially impact human health if opportunistic pathogens become established and escape into the cabin atmosphere. Micro-organisms can potentially degrade the coolant chemistry; attach to surfaces and form biofilms; lead to biofouling of filters, tubing, and pumps; decrease flow rates; reduce heat transfer; initiate and accelerate corrosion; and enhance mineral scale formation. The micro- biological data from the ISS IATCS fluid, and approaches to addressing the concerns, are summarized in this paper.

  8. Distributed Active Traction Control System Applied to the RoboCup Middle Size League

    José Almeida

    2013-10-01

    Full Text Available This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL. The slip control problem is formulated using simple friction models for ISePorto Team Robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies on local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto Robots and was used to control and detect loss of traction. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.

  9. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  10. An Analysis of an Automatic Coolant Bypass in the International Space Station Node 2 Internal Active Thermal Control System

    Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.

  11. Reactor limit control system

    The very extensive use of limitations in the operational field between protection system and closed-loop controls is an important feature of German understanding of operational safety. The design of limitations is based on very large activities in the computational field but mostly on the high level of the plant-wide own commissioning experience of a turnkey contractor. Limitations combine intelligence features of closed-loop controls with the high availability of protection systems. (orig.)

  12. Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex.

    Unichenko, Petr; Yang, Jeng-Wei; Luhmann, Heiko J; Kirischuk, Sergei

    2015-07-01

    Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation. PMID:25163767

  13. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control

    Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2016-01-01

    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20–49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors. PMID:27533112

  14. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control.

    Kim, Yejin; Jeong, Jo-Eun; Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2016-01-01

    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors. PMID:27533112

  15. NASA activities and plans. [on satellite tracking, data acquisition, communication and mission control systems and capabilities

    Smylie, R. E.

    1981-01-01

    An overview is provided of the NASA tracking, data acquisition, communications, and mission control systems and capabilities. These systems include the NASA Spaceflight Tracking and Data Network (STDN) which supports earth-orbital spacecraft, the Deep Space Network (DSN) which supports the planetary exploration and deep space missions, and the Tracking and Data Relay Satellite System (TDRSS) currently under development and scheduled to come into service in 1983. TDRSS will then displace STDN for support of low earth orbital spacecraft. A description is presented of the current status of the considered systems, and plans are discussed for future developments and new capabilities.

  16. Genetic algorithm to optimize two-echelon inventory control system for perishable goods in terms of active packaging

    Babak Yousefi Yegane

    2012-01-01

    Full Text Available This paper considers an inventory control policy for a two-echelon inventory control system with one supplier-one buyer. We consider the case of deteriorating items which lead to shortage in supply chain. Therefore, it is necessary to decrease the deterioration rate by adding some specification to the packaging of these items that is known as active packaging. Although this packaging can reduce the deteriorating rate of products, but may be increases the cost of both supplier and buyer. Because of the complexity of the mathematical model, a genetic algorithm has been developed to determine the best policy of this inventory control system.

  17. Application of Model Predictive Control for Active Load Management in a Distributed Power System with High Wind Penetration

    Zong, Yi; Kullmann, Daniel; Thavlov, Anders;

    2012-01-01

    This paper introduces an experimental platform (SYSLAB) for the research on advanced control and power system communication in distributed power systems and one of its components-an intelligent office building (PowerFlexHouse), which is used to investigate the technical potential for active load...... management. It also presents in detail how to implement a thermal model predictive controller (MPC) for the heaters' power consumption prediction in the PowerFlexHouse. It demonstrates that this MPC strategy can realize load shifting, and using good predictions in MPC-based control, a better matching of...

  18. Active trajectory control for a heavy ion beam probe on the compact helical system

    A 200 keV heavy ion beam probe (HIBP) on the Compact Helical System torsatron/heliotron uses a newly proposed method in order to control complicated beam trajectories in non-axisymmetrical devices. As a result, the HIBP has successfully measured potential profiles of the toroidal helical plasma. The article will describe the results of the potential profile measurements, together with the HIBP hardware system and procedures to realize the method. (author)

  19. Status of modernization and refurbishment (M and R) activities of the IRT - research reactor - Sofia / instrumentation and control system

    The research reactor IRT-Sofia is in process of reconstruction into a reactor of 200 kW whose U235 enrichment will be 20 per cent. Short technical description of the future IRT-200 research reactor is presented in the paper. The main fulfilled activities from the reconstruction are shown. The old instrumentation and control system that dates back to the sixties and is based on a relay-contact scheme, will be replaced by a new one. The functions of the main subsystems of the future, new instrumentation and control system are described, according to the technical project for reconstruction and technical specifications. The most important parameters in the instrumentation and control system are the reliability and the fast response, determining the safety and failure-free operation of the reactor, so the instrumentation and control system will be built on an independent channels based technology

  20. Status of modernization and refurbishment (M and R) activities of the IRT - research reactor - Sofia / instrumentation and control system

    Apostolov, T.; Drenski, D.; Dimitrov, I. [Nuclear Scientific Experimental Centre, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2007-07-01

    The research reactor IRT-Sofia is in process of reconstruction into a reactor of 200 kW whose U{sup 235} enrichment will be 20 per cent. Short technical description of the future IRT-200 research reactor is presented in the paper. The main fulfilled activities from the reconstruction are shown. The old instrumentation and control system that dates back to the sixties and is based on a relay-contact scheme, will be replaced by a new one. The functions of the main subsystems of the future, new instrumentation and control system are described, according to the technical project for reconstruction and technical specifications. The most important parameters in the instrumentation and control system are the reliability and the fast response, determining the safety and failure-free operation of the reactor, so the instrumentation and control system will be built on an independent channels based technology.

  1. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  2. Controls of maglev suspension systems

    Cai, Y.; Zhu, S.; Chen, S.S.; Rote, D.M.

    1993-06-01

    This study investigates alternative control designs of maglev vehicle suspension systems. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. A one-dimensional vehicle with two degrees of freedom, to simulate the German Transrapid Maglev System, is used for suspension control designs. The transient and frequency responses of suspension systems and PSDs of vehicle accelerations are calculated to evaluate different control designs. The results show that active and semi-active control designs indeed improve the response of vehicle and provide an acceptable ride comfort for maglev systems.

  3. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  4. Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish

    Garm, Anders Lydik; Mori, S.

    2009-01-01

    Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each with a...

  5. System control and communication

    Rapid and ongoing development in the energy sector has consequences for system control at all levels. In relation to system control and communication the control system is challenged in five important ways: 1) Expectations for security of supply, robustness and vulnerability are becoming more stringent, and the control system plays a big part in meeting these expectations. 2) Services are becoming increasingly based on markets that involve the transmission system operators (TSOs), generators and distribution companies. Timely, accurate and secure communication is essential to the smooth running of the markets. 3) Adding large amounts of renewable energy (RE) to the mix is a challenge for control systems because of the intermittent availability of many RE sources. 4) Increasing the number of active components in the system, such as small CHP plants, micro-CHP and intelligent loads, means that the system control will be much more complex. 5) In the future it is likely that power, heat, gas, transport and communication systems will be tighter coupled and interact much more. (au)

  6. Recursive models of psychodynamics for prognosis of active control systems with memory

    Володимир Олександрович Касьянов

    2014-09-01

    Full Text Available Abstracts of the articles are devoted to the scientific explanation of the phenomenon of managerial decision-making in the so-called active systems. Proposed functionals allow to model dynamic processes with "memory". This approach is applicable to a quasi-closed by information systems that are able to reduce its own entropy, being closed by the energy and substance. We construct the corresponding diagrams.

  7. High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control

    Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.

    2007-01-01

    Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.

  8. The CEBAF control system

    CEBAF has recently upgraded its accelerator control system to use EPICS, a control system toolkit being developed by a collaboration among laboratories in the US and Europe. The migration to EPICS has taken place during a year of intense commissioning activity, with new and old control systems operating concurrently. Existing CAMAC hardware was preserved by adding a CAMAC serial highway link to VME; newer hardware developments are now primarily in VME. Software is distributed among three tiers of computers: first, workstations and X terminals for operator interfaces and high level applications; second, VME single board computers for distributed access to hardware and for local control processing; third, embedded processors where needed for faster closed loop operation. This system has demonstrated the ability to scale EPICS to controlling thousands of devices, including hundreds of embedded processors, with control distributed among dozens of VME processors executing more than 125,000 EPICS database records. To deal with the large size of the control system, CEBAF has integrated an object oriented database, providing data management capabilities for both low level I/O and high level machine modeling. A new callable interface which is control system independent permits access to live EPICS data, data in other Unix processes, and data contained in the object oriented database

  9. Efficiency in Controlling Activities

    Van Nguyen, Tuyen

    2015-01-01

    Controlling is essential for financial success of corporations. An efficient controlling system should be implemented in order to manage financial performance from income, expense to profitability. The purpose of the thesis is to provide insight knowledge towards corporate accounting management as well as to propose potential improvement for the existing controlling system of the case company, which is Bosch Rexroth Japan. The theoretical framework creates the knowledge foundation for re...

  10. Heave control of amphibious hovercraft by means of an active-fan system

    Christopher, P. A. T.; Man, K. F.; Osbourn, E. W.; Cheng, Y. N.

    This paper describes the development of a heave control system for amphibious hovercraft, the central element in the system being an axial flow, lift-fan whose blade angles are continuously varied by means of feedback signals from a pressure transducer located in the front end of the hovercraft cushion and from an accelerometer measuring the heave acceleration. Transfer functions associated with the cushion dynamics were obtained by means of parameter identification using coefficient-plane models in which the coefficients were estimated by means of a nonlinear optimization algorithm. Results from experiments, conducted on the Cranfield, Whirling-Arm facility, have shown that the system provides a rapid and effective means of controlling the heave acceleration and, in addition, produces a valuable reduction in craft drag whilst traversing waves.

  11. Load Control System Reliability

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  12. Toward a visual cognitive system using active top-down saccadic control

    J. LaCroix; E. Postma; J. van den Herik; J. Murre

    2008-01-01

    The saccadic selection of relevant visual input for preferential processing allows the efficient use of computational resources. Based on saccadic active human vision, we aim to develop a plausible saccade-based visual cognitive system for a humanoid robot. This paper presents two initial steps towa

  13. Autonomous Active Power Control for Islanded AC Microgrids with Photovoltaic Generation and Energy Storage System

    Wu, Dan; Tang, Fen; Dragicevic, Tomislav; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    In an islanded AC microgrid with distributed energy storage system (ESS), photovoltaic (PV) generation and loads, a coordinated active power regulation is required to ensure efficient utilization of renewable energy, while keeping the ESS from overcharge and over discharge conditions. In this pap...

  14. Optimum PI Controllers of Active Power Filters for Harmonic Voltage Mitigation in Multibus Industrial Power Systems

    Tlustý, J.; Valouch, Viktor

    Palma de Mallorca: EA4EPQ, 2006, s. 1-5. ISBN 84-609-6604-6. [nternational Conference on Renewable Energies and Power Quality (ICREPQ'06). Palma de Mallorca (ES), 05.04.2006-07.04.2006] Institutional research plan: CEZ:AV0Z20570509 Keywords : active power filter * industrial power system * harmonic voltage mitigation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Design maneuver loads for an airplane with an active control system

    Ramsey, H. D.; Lewolt, J. G.

    1979-01-01

    This paper discusses the results of utilizing a maneuver load control (MLC) system to provide relief from the loads induced by an increase in wing span on a long range version of the Lockheed L-1011 TriStar. The MLC system deflects the outboard aileron symmetrically, in response to accelerometer signals, to redistribute wing airloads during maneuvers. The process of establishing the MLC system requirements, which involves determining the effects on wing loads of the extended wing span and extended aileron, is discussed. Effects of the MLC system and the extended span on the wing loads for symmetric and asymmetric design maneuvers are reviewed. Flight test results are compared with analytical load predictions. Some potential impacts on design requirements due to finite in-flight availability of the MLC system are illustrated.

  16. Implementation Of A Battery Storage System Of An Individual Active Power Control Based On A Cascaded Multilevel Pwm Converter

    RAJASEKHARACHARI K, G.BALASUNDARAM, KUMAR K

    2013-07-01

    Full Text Available For The Smart Grid Arrangement A Battery Energy Storage System Is Important Equipment Of Renewable Energy Resources. In This Paper We Will Have A Discussion On Active Power Control In A Battery Storage System With A Topology Of Cascaded Multi Level Inverter With Pulse Width Modulation Switching Technique. Multilevel Inverters Have Been Attracting In Favor Of Academia As Well As Industry In The Recent Decade For High-Power And Medium-Voltage Energy Control. A Battery Energy Storage System (BESS, Combining Battery Packs With A Power Converter And Control, Should Be Installed In The Vicinity Of An Intermittent Energy Source. Here We Can Control The Active Power As Individually In A Converter Cell Battery Arrangement Unit, By This We Can Have A Advantage Of Charging And Discharging Of A Battery Units At Different Power Levels. The Charging/Discharging Of The Battery In A Dc Form Can Be Shown In This Paper. From The Controlling Of Active Power As In A Individual Converter Cells We Will Get Maximum Utilization Of Battery Power To The Load As Required. If We Will Get A Less Harmonic Content In The Output Voltage Definitely We Can Improve The Utilization Part, So This Can Be Obtain By Getting The Multiple Level Of Voltage As Approximately Sinusoidal With Maximum Reduction Of Harmonics. The Simulation Results For This Proposed System Have Been Shown In This And Also Multiple Levels Of Voltages In Output Can Be Shown In This Paper.

  17. Design of a one-chip board microcontrol unit for active vibration control of a naval ship mounting system

    This work presents an experimental implementation of a user-tunable one-chip board microcontrol unit which is specifically designed for vibration control of the active mounting system for naval ships. The proposed mounting system consists of four active mounts supporting vibration-sensitive equipment. Each active mount constitutes a rubber element, an inertial mass and the piezostack actuator. It is designed for particular applications that require effective isolation performance against wide frequency ranges, such as naval ship equipment. After describing the configuration of the active mount, dynamic characteristics of the rubber element and the piezostack actuator are experimentally identified. Accordingly, the proposed mounting system is constructed and the governing equations of motion are formulated. In order to attenuate the unwanted vibrations transferred from the upper mass, a feedforward controller with fast Fourier algorithm is designed and experimentally realized using the one-chip microcontrol board which is specially made for this practical application. In order to evaluate the performance of the one-chip microcontrol unit, vibration control results of the proposed active mounting system are presented in the frequency domain. (technical note)

  18. A Fast Series Active Filter using Sliding Mode Control to Correct and Regulate Unbalance Voltage in Three-Phase System

    Theerayuth Chatchanayuenyong

    2009-01-01

    Full Text Available Problem statement: A Sliding Mode Controller (SMC with fast reference voltage generation to correct and regulate unbalance voltage in three-phase system was proposed. Approach: The compensation algorithm was not based on three-symmetrical component decomposition so the controller can yield a fast response that was essential in such a critical real time control work. The reference voltages were fed to the SMC, which was a robust closed loop controller. Results: The proposed algorithm and control scheme of series active filter could correct and regulate unbalance voltage in three-phase system under arbitrary fault conditions of the utility supply. Conclusion: A design example and its simulation results proved the concept and validated the proposed algorithm.

  19. Thermally activated building systems in office buildings: impact of control strategy on energy performance and thermal comfort

    Sourbron, Maarten; Helsen, Lieve

    2010-01-01

    At the Science Park Arenberg site in Leuven (Belgium) two new office buildings equipped with thermally activated building systems (TABS) to cover the cooling load and the base heating load, are constructed. A ground coupled heat pump/direct cooling (HP/DC) system supplies heat and cold to the TABS, while a gas boiler/chiller combination feeds the air handling units. This paper evaluates the impact of the TABS control strategy on both energy consumption and thermal comfort. Furthermore, con...

  20. The Real-Time system for MHD activity control in the FTU tokamak

    Minelli D.

    2012-09-01

    Full Text Available The Real-Time system for the control of the magnetohydrodynamics instabilities in FTU tokamak is presented. It is based on both a-priori information derived from statistical treatment of a database and Real-Time elaboration of live diagnostics data. The analysis codes are executed in different time threads based on multi-processors machines. The actuator is the 2×0.4MW 140 GHz ECRH system equipped with the new fast quasi-optical steerable launcher.

  1. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-03-01

    We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.

  2. Instrumentation and control activities at the Electric Power Research Institute to support operator support systems

    Most nuclear power plants in the United States continue to operate with analog instrumentation and control (I and C) technology designed 20 to 40 years ago. This equipment is approaching or exceeding its life expectancy, resulting in increasing maintenance efforts to sustain system performance. Decreasing availability of replacement parts and the accelerating deterioration of the infrastructure of manufacturers that support analog technology exacerbate obsolescence problems and resultant operation and maintenance (O and M) cost increases. Modern digital technology holds a significant potential to improve the safety, cost-effectiveness, productivity, and, therefore, competitiveness of nuclear power plants. Operator support systems provide the tools to help achieve this potential. Reliable, integrated information is a critical element for protecting the utility's capital investment and increasing availability, reliability, and productivity. Integrated operator support systems with integrated information can perform more effectively to increase productivity, to enhance safety, and to reduce O and M costs. The plant communications and computing architecture is the infrastructure needed to allow the implementation of I and C systems and associated operator support systems in an integrated manner. Current technology for distributed digital systems, plant process computers, and plant communications and computing networks support the integration of systems and information. (author). 16 refs

  3. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  4. TMX magnet control system

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  5. A method for calculating active feedback system to provide vertical position control of plasma in a tokamak

    Nizami Gasilov

    2007-04-01

    In designing tokamaks, the maintenance of vertical stability of plasma is one of the most important problems. Systems of the passive and active feedbacks are applied for this purpose. Role of the passive system consisting of a vacuum vessel and passive coils is to suppress fast MHD (magnetohydrodynamic) instabilities. The active feedback system is applied to control slow motions of plasma. The objective of the paper is to investigate two successive problems, solution of which allows to determine the possibility of controlling plasma motions. One of these is the problem of vertical stability under the assumption of ideal conductivity of plasma and passive stabilizing elements. The problem is solved analytically and on the basis of the obtained solution a criterion of MHD-stability is formulated. The other problem is connected with the control of plasma vertical position with active feedback system. Calculation of feedback control parameters is formulated as an optimization problem and an approximate method to solve the problem is suggested. Numerical simulations are performed with parameters of the T-15M tokamak in order to justify the suggested method.

  6. Cooperative Control of Active Power Filters in Power Systems without Mutual Communication

    Tlustý, J.; Škramlík, Jiří; Švec, J.; Valouch, Viktor

    2010-01-01

    Roč. 2010, č. 517184 (2010), s. 1-13. ISSN 1024-123X R&D Projects: GA AV ČR IAA200760703 Institutional research plan: CEZ:AV0Z20570509 Keywords : active power filter * power system * wireless cooperation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.689, year: 2010 http://www.hindawi.com/journals/mpe/2010/517184.html

  7. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  8. Next-Generation Maneuvering System with Control-Moment Gyroscopes for Extravehicular Activities Near Low-Gravity Objects

    Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina; RochlisZumbado, Jennifer

    2013-01-01

    Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.

  9. Active control system for a rotor blade trailing-edge flap

    Duvernier, Marc; Reithler, Livier; Guerrero, Jean Y.; Rossi, Rinaldo A.

    2000-06-01

    Reducing the external noise is becoming a major issue for helicopter manufacturers. The idea beyond this goal is to reduce or even avoid the blade vortex interaction (BVI), especially during descent and flights over inhabited areas. This can be achieved by changing locally the lift of the blade. Several strategies to reach this goal are under investigation at EUROCOPTER such as the control of the local incidence of the blade by a direct lift flap. AEROSPATIALE MATRA Corporate Research Centre and AEROSPATIALE MATRA MISSILES proposed an actuator system able to answer EUROCOPTER's needs for moving a direct lift flap. The present paper describes the definition, manufacturing and testing of this new actuator system. This actuator is based on an electromagnetic patented actuation system developed by AEROSPATIALE MATRA MISSILES for missile and aeronautic applications. The particularity of this actuator is its ability to produce the desired force on its whole range of stroke. The flap is designed to be fitted on a DAUPHIN type blade produced by EUROCOPTER and the actuator system was designed to fit the room available within the blade and to produce the right amount of stroke and force within the required frequency range. Other constraints such as centrifugal loading were also taken into account. This paper describes briefly the specifications and the major characteristics of the actuating system and presents some results of its behavior on a representative composite test-bed manufactured by EUROCOPTER when subjected to realistic mechanical loads.

  10. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  11. Design, construction, and operation of an actively controlled deep-sea CO2 enrichment experiment using a cabled observatory system

    Kirkwood, William J.; Walz, Peter M.; Peltzer, Edward T.; Barry, James P.; Herlien, Robert A.; Headley, Kent L.; Kecy, Chad; Matsumoto, George I.; Maughan, Thom; O'Reilly, Thomas C.; Salamy, Karen A.; Shane, Farley; Brewer, Peter G.

    2015-03-01

    We describe the design, testing, and performance of an actively controlled deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system for the execution of seafloor experiments relating to the impacts of ocean acidification on natural ecosystems. We used the 880 m deep MARS (Monterey Accelerated Research System) cable site offshore Monterey Bay, California for this work, but the Free Ocean CO2 Enrichment (FOCE) system concept is designed to be scalable and can be modified to be used in a wide variety of ocean depths and locations. The main frame is based on a flume design with active thruster control of flow and a central experimental chamber. The unit was allowed to free fall to the seafloor and connected to the cable node by remotely operated vehicle (ROV) manipulation. For operation at depth we designed a liquid CO2 containment reservoir which provided the CO2 enriched working fluid as ambient seawater was drawn through the reservoir beneath the more buoyant liquid CO2. Our design allowed for the significant lag time associated with the hydration of the dissolved CO2 molecule, resulting in an e-folding time, τ, of 97 s between fluid injection and pH sensing at the mean local T=4.31±0.14 °C and pHT of 7.625±0.011. The system maintained a pH offset of ~0.4 pH units compared to the surrounding ocean for a period of ~1 month. The unit allows for the emplacement of deep-sea animals for testing. We describe the components and software used for system operation and show examples of each. The demonstrated ability for active control of experimental systems opens new possibilities for deep-sea biogeochemical perturbation experiments of several kinds and our developments in open source control systems software and hardware described here are applicable to this end.

  12. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.

  13. Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds

    If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed

  14. Instrumentation control system

    This book explains instrumentation control system, which mentions summary, basic theory, kinds, control device, and design of each instrumentation system. The contents of this book are introduction of instrumentation system, temperature detector, pressure sensor, flow detector, level detector, ingredient detector, signal convert and transmission, instructions, record and control of instrumentation system, PID controller control valve of instrumentation system, instrumentation equipment of water system, instrumentation facility of thermal power plant, examples of advance instrumentation facility and install and design of instrumentation system.

  15. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya;

    2016-01-01

    Countries with considerable PhotoVoltaic (PV) installations are facing a challenge of overloading their power grid during peak-power production hours if the power infrastructure remains the same. To address this, regulations have been imposed on PV systems, where more active power control should...... be flexibly performed. As an advanced control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability due to the reduction in the thermal...... loading of the power devices. However, its feasibility is challenged by the associated energy losses. An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost...

  16. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya;

    2015-01-01

    Several countries with considerable PhotoVoltaic (PV) installations are facing a challenge of overloading the power infrastructure during peak-power production hours. Regulations have been imposed on the PV systems, where more active power control should be flexibly performed. As an advanced...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss....... An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...

  17. Adaptive feedback active noise control

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  18. System-Level Design of a Shape Memory Alloy Actuator for Active Clearance Control in the High-Pressure Turbine

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.

    2005-01-01

    This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  19. Fractional active disturbance rejection control.

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme. PMID:26928516

  20. Different Types of Projective Synchronization in a Class of Time-Delayed Chaotic Systems Using Active Control Approach

    We study different types of projective synchronization (projective-anticipating, projective, and projective-lag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices. We relax some limitations of previous work, where the scaling factor α can not be any desired value. In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of α. A suitable controller is chosen using active control approach. Based on the Lyapunov stability theory, we derive the sufficient stability condition through theoretical analysis. The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model. (general)

  1. Novel implementations of optical switch control module and 3D-CSP for 10 Gbps active optical access system

    Wakayama, Koji; Okuno, Michitaka; Matsuoka, Yasunobu; Hosomi, Kazuhiko; Sagawa, Misuzu; Sugawara, Toshiki

    2009-11-01

    We propose an optical switch control procedure for high-performance and cost-effective 10 Gbps Active Optical Access System (AOAS) in which optical switches are used instead of optical splitters in PON (Passive Optical Network). We demonstrate the implemented optical switch control module on Optical Switching Unit (OSW) with logic circuits works effectively. We also propose a compact optical 3D-CSP (Chip Scale Package) to achieve the high performance of AOAS without losing cost advantage of PON. We demonstrate the implemented 3D-CSP works effectively.

  2. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Maitraye Sen

    2014-05-01

    Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.

  3. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  4. Active weld control

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  5. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    is possible at modal frequencies. For that reason the modal frequencies in the source room will also have big impact on the transmission to neighbour rooms. These low frequency resonance frequencies are very audible in the source room but also in neighbour rooms as a booming bass. CABS (Controlled...... Acoustic Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms...

  6. Precision digital control systems

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  7. Control system design method

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  8. Investigation of the behavior of a three phase grid-connected photovoltaic system to control active and reactive power

    Tsengenes, Georgios; Adamidis, Georgios [Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 67100 Xanthi (Greece)

    2011-01-15

    In this paper, a photovoltaic (PV) system, with maximum power point tracking (MPPT), connected to a three phase grid is presented. The connection of photovoltaic system on the grid takes place in one stage using voltage source inverter (VSI). For a better utilization of the photovoltaic system, the control strategy applied is based on p-q theory. According to this strategy during sunlight the system sends active power to the grid and at the same time compensates the reactive power of the load. In case there is no sunlight (during the night for instance), the inverter only compensates the reactive power of the load. In this paper the use of p-q theory to supply the grid with active power and compensate the reactive power of the load is investigated. The advantage of this control strategy is that the photovoltaic system is operated the whole day. Furthermore, the p-q theory uses simple algebraic calculations without demanding the use of PLL to synchronize the inverter with the grid. (author)

  9. GCFR plant control system

    A plant control system is being designed for a gas-cooled fast breeder reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. The load control portion of the plant control system provides stable automatic (closed-loop) control of the plant over the 25% to 100% load range. Simulation results are presented to demonstrate load control system performance. The results show that the plant is controllable at full load with the control system structure selected, but gain scheduling is required to achieve desired performance over the load range

  10. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    Goswami, Chandreyee; Mukhopadhyay, Dhruba; Poddar, Bikash Chandra

    2012-03-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River. Two distinct E-Wlineaments passing through this area had been identified by Nakata (1972, 1989) as active faults. The northern lineament manifested as Matiali scarp and the southern one manifested as Chalsa scarp represent the ramp anticlines over two blind faults, probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT), respectively. The fan surface is folded into two antiforms with a synform in between. These folds are interpreted as fault propagation folds over the two north dipping blind thrusts. Two lineaments trending NNE-SSW and nearly N-S, respectively, are identified, and parts of present day courses of the Murti and Neora Rivers follow them. These lineaments are named as Murti and Neora lineaments and are interpreted to represent a conjugate set of normal faults. The rivers have changed their courses by the influence of these normal faults along the Murti and Neora lineaments and their profiles show knick points where they cross E-W thrusts. The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults. The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults. Four major terraces and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers. The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above. But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  11. Control of complex systems

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  12. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  13. Cooperative Control Method of Active and Semiactive Control: New Framework for Vibration Control

    Kazuhiko Hiramoto

    2014-01-01

    A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with th...

  14. Active control: Wind turbine model

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch...

  15. New active control nano-system to use in composites structure

    The present abstract, is a brief description about our project (NEDEA). We considered this project as very important, because it reunites in his development, several basic technologies: electronics, communications, software and new materials, all very interesting in the European industry. The project is developed in the CSIC (Spanish Researcher Center). We are involved. Across the project, in the development of nano-sensors, specialized in detecting defects, difficulties or problems in structures of composed materials. These materials are being used, and in the future more, in applications where a high degree of security is necessary. Some fields in the system usage are Aeronautical and military applications whit a necessary high security degree. The development proposed, is based in nano-sensors and active devices. They are installed into the material structure. The information from sensors is transmitted by optical fibers, to a radio transmitter, equally installed into the material. An external receptor picks up those data and transmits them to an external device. This external device presents/displays all the information across an interface GUI, in real time, to the supervisor. He can see than is happening in the material, in real time. Alarms can be programmed, by the supervisor. Is possible a tracking for the problem. All the devices and software are in develop in our laboratories. We think that this development will be used by the industry of materials, and that gradually, it will have other applications in the transport area (like new vehicles, wagons of train and metro, etc.).

  16. New active control nano-system to use in composites structure

    Arche, M. R.

    2012-09-01

    The present abstract, is a brief description about our project (NEDEA). We considered this project as very important, because it reunites in his development, several basic technologies: electronics, communications, software and new materials, all very interesting in the European industry. The project is developed in the CSIC (Spanish Researcher Center). We are involved. Across the project, in the development of nano-sensors, specialized in detecting defects, difficulties or problems in structures of composed materials. These materials are being used, and in the future more, in applications where a high degree of security is necessary. Some fields in the system usage are Aeronautical and military applications whit a necessary high security degree. The development proposed, is based in nano-sensors and active devices. They are installed into the material structure. The information from sensors is transmitted by optical fibers, to a radio transmitter, equally installed into the material. An external receptor picks up those data and transmits them to an external device. This external device presents/displays all the information across an interface GUI, in real time, to the supervisor. He can see than is happening in the material, in real time. Alarms can be programmed, by the supervisor. Is possible a tracking for the problem. All the devices and software are in develop in our laboratories. We think that this development will be used by the industry of materials, and that gradually, it will have other applications in the transport area (like new vehicles, wagons of train and metro, etc.).

  17. Internal Control System

    Pavésková, Ivana

    2009-01-01

    This thesis is focused on internal control system. The aim of this thesis is to analyse the development and elements of internal control system, and then demonstrate the possible form of the internal control system in practice. The thesis is divided into two parts -- theoretical and practical. The beginning of the theoretical part is devoted to characteristics of internal controls and their relation to internal control, attention is also paid to economic crimes which the internal control syst...

  18. ABOUT CONTROLLING OF SCIENTIFIC ACTIVITY

    Mukhin V. V.

    2014-06-01

    Full Text Available We have selected the new area of controlling - scientific activity controlling. We consider some problems of development in this field, primarily the problem of selection of key performance indicators. It’s been founded that administrative measures stimulated the pursuit of a number of articles published in scientific journals hinders the development of science. Methodological errors - emphasis on citation indexes, impact factors, etc. - lead to wrong management decisions. As the experience of the UK, an expertise should be applied in the management of science. The article briefly discusses some of the drawbacks of the system of scientific specialties. It is proposed to expand research on the science of science and scientific activity controlling. We have also discussed the problems of controlling in applied research organizations

  19. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    Chandreyee GOSWAMI; Dhruba MUKHOPADHYAY; Bikash Chandra PODDAR

    2012-01-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River.Two distinct E-W lineaments passing through this area had been identified by Nakata (1972,1989) as active faults.The northern lineament manifested as Matiali scarp and the southem one manifested as Chalsa scarp represent the ramp anticlines over two blind faults,probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT),respectively.The fan surface is folded into two antiforms with a synform in between.These folds are interpreted as fault propagation folds over the two north dipping blind thrusts.Two lineaments trending NNE-SSW and nearly N-S,respectively,are identified,and parts of present day courses of the Mufti and Neora Rivers follow them.These lineaments are named as Mufti and Neora lineaments and are interpreted to represent a conjugate set of normal faults.The rivers have changed their courses by the influence of these normal faults along the Mufti and Neora lineaments and their profiles show knick points where they cross E-W thrusts.The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults.The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults.Four major terraccs and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers.The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above.But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  20. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  1. Study of plate-fin heat exchanger and cold plate for the active thermal control system of Space Station

    Chyu, MING-C.

    1992-01-01

    Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.

  2. Adaptive shared control system

    Sanders, David

    2009-01-01

    A control system to aid mobility is presented that is intended to assist living independently and that provides physical guidance. The system has two levels: a human machine interface and an adaptive shared controller.

  3. On Controlled P Systems

    Krithivasan, Kamala; Paun, Gheorghe; Ramanujan, Ajeesh; Research Group on Natural Computing (Universidad de Sevilla) (Coordinador)

    2013-01-01

    We introduce and brie y investigate P systems with controlled computations. First, P systems with label restricted transitions are considered (in each step, all rules used have either the same label, or, possibly, the empty label, ), then P systems with the computations controlled by languages (as in context-free controlled grammars). The relationships between the families of sets of numbers computed by the various classes of controlled P systems are investigated, also comp...

  4. Instrumentation and control activities at the electric power research institute to support computerized support systems

    Most nuclear power plants in the United States are operating with their original analog I and C equipment. This equipment requires increasing maintenance efforts to sustain systems performance. Decreasing availability of replacement parts and support organization for analog technology accentuate obsolescence problems and resultant O and M cost increases. Modern technology, especially digital systems, offers improved functionality, performance, and reliability; solutions to obsolescence of equipment; reduction in O and M costs; and the potential to enhance safety. Digital systems, including computerized support systems, with their inherent advantages will be implemented only if reliable and cost-effective implementation and licensing acceptance is achieved and if the upgraded systems supports reduced power production costs. EPRI and its member utilities are working together under the Integrated I and C Upgrade Initiative to address I and C issues. (author). 23 refs

  5. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  6. Study on active control methods. Part 3. ; Absolute vibration control system'' by modern control theory. Active seishin gijutsu ni kansuru kenkyu. 3. ; Gendai seigyo wo mochiita zettai seishin ni tsuite

    Kageyama, M.; Nohata, A.; Teramura, A.; Yasui, Y.; Okada, H. (Obayashi Corp., Tokyo (Japan))

    1991-08-10

    The absolute vibration control method by advanced optimal regulator theory was studied in order to reduce the acceleration response of a base-isolated building by active control at the base to hold the building in absolute space. The optimal regulator theory is originally a control method based on the feedback control theory. In the present study, however, application of the feedforward control theory, which is indispensable to the absolute vibration control, was also investigated. The performance by using this control method, in which large conventional actuators were applied to an actual base-isolated building, was analytically compared with that by the classic control method used from the past. As a result, it was found that this control method had a better effect compared with the classic control method. It is considered that absolute vibration control by a generally-used type of large-sized actuator is possible even at the time of a major earthquake. 5 refs., 19 figs.

  7. Development and validation of an electromagnetic model of the active control system of MHD modes in RFX-mod

    The active control system of MHD modes in RFX-mod consists of 192 saddle coils mounted on the outer surface of the stainless steel supporting structure, which surrounds the thin copper shell and the vacuum vessel. An equal number of saddle probes and pickup coils provide measures of the magnetic field average radial component on the vessel surface and the toroidal and poloidal components on the shell inner surface, respectively. Different control strategies have been successfully tested, such as the '' virtual shell '' and the '' mode control '', the former aims at vanishing the total field across the saddle probes, the latter at controlling the evolution of selectable set of MHD modes. In order to optimize the design of the corresponding digital control systems, a plasma response model integrated with an accurate model of actuators and sensors is necessary. Due to the presence of highly conducting passive structures, coupling between coils and between coils and sensors depends on frequency. An extensive campaign was carried out to get the experimental open loop frequency response of the system made up by power-supply, coils and sensors at different toroidal locations. '' Standard '' and poloidal gap regions were analysed; inductance matrices as a function of frequency were then completed by replicating '' standard '' terms. A satisfactory approximation of the coil current response to voltage inputs could be attained building the matrices of a state-space model with values at zero frequency and considering only the coupling between each coil and the 4 surrounding ones. On the contrary, due to the presence of the shell, the coupling between coils and sensors exhibited a much stronger dependence on frequency and position. In order to reproduce the response of the sensors to variations in the coil current input, first transfer functions of different orders according to the coil-sensor couple had to be calculated to best fit the frequency data. Then a state space

  8. Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.

    1985-01-01

    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.

  9. Development of an advanced pitch active control system for a wide body jet aircraft

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  10. Reduction of structural weight, costs and complexity of a control system in the active vibration reduction of flexible structures

    This paper concerns the active vibration reduction of a flexible structure with discrete piezoelectric sensors and actuators in collocated pairs bonded to its surface. In this study, a new fitness and objective function is proposed to determine the optimal number of actuators, based on variations in the average closed loop dB gain margin reduction for all of the optimal piezoelectric pairs and on the modes that are required to be attenuated using the optimal linear quadratic control scheme. The aim of this study is to find the minimum number of optimally located sensor/actuator pairs, which can achieve the same vibration reduction as a greater number, in order to reduce the cost, complexity and power requirement of the control system. This optimization was done using a genetic algorithm. The technique may be applied to any lightly damped structure, and is demonstrated here by attenuating the first six vibration modes of a flat cantilever plate. It is shown that two sensor/actuator pairs, located and controlled optimally, give almost the same vibration reduction as ten pairs. These results are validated by comparing the open and closed loop time responses and actuator feedback voltages for various numbers of piezoelectric pairs using the ANSYS finite element package and a proportional differential control scheme. (paper)

  11. A minimax stochastic optimal semi-active control strategy for uncertain quasi-integrable Hamiltonian systems using magneto-rheological dampers

    Feng, Ju; Ying, Zu-Guang; Zhu, Wei-Qiu; Wang, Yong

    2012-01-01

    A minimax stochastic optimal semi-active control strategy for stochastically excited quasi-integrable Hamiltonian systems with parametric uncertainty by using magneto-rheological (MR) dampers is proposed. Firstly, the control problem is formulated as an n-degree-of-freedom (DOF) controlled...

  12. Statistical properties of signals of a system for neutron activity control in the 'Ukryttya' object

    The statistics of neutron flux density over a period of a few days has been analyzed. It was shown, that this statistics do not comes to Gauss or Poisson functions. It was discovered, that values of neutron flux density do not form a continuous series of values, and this can not be the work of electronics. It was suggested to establish two types of control levels of neutron flux density: the first - for fixing of instant excess of maximal values, and the second - for tracking of slow changing of a mean value

  13. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity the...

  14. Parameters of Active Power Filter Controllers in an Industrial Power System

    Sýkora, T.; Tlustý, J.; Valouch, Viktor

    Setúbal : Escola Superior de Tecnologia - IEEE, 2007, s. 48-53. ISBN 1-4244-0895-4. [International Conference on Power Engineering, Energy and Electrical Drives. Setúbal (PT), 12.04.2007-14.04.2007] R&D Projects: GA AV ČR IAA200760703 Institutional research plan: CEZ:AV0Z20570509 Keywords : multiple APF * multiple harmonic problem * industrial power system Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Controlling activated processes of nonadiabatically, periodically driven dynamical systems: a multiple scale perturbation approach.

    Shit, Anindita; Chattopadhyay, Sudip; Ray Chaudhuri, Jyotipratim

    2012-06-21

    We arrive at the escape rate from a metastable state for a system of Brownian particles driven periodically by a space dependent, rapidly oscillating external perturbation (with frequency ω) in one dimension (one of the most important class of nonequilibrium system). Though the problem may seem to be time-dependent, and is poised on the extreme opposite side of adiabaticity, there exists a multiple scale perturbation theory ("Kapitza window") by means of which the dynamics can be treated in terms of an effective time-independent potential that is derived as an expansion in orders of 1/ω to the order ω(-3). The resulting time-independent equation is then used to calculate the escape rate of physical systems from a metastable state induced by external monochromatic field in the moderate-to-large damping limit and to investigate the effect of ω on the resulting rate in conjunction with the thermal energy. With large value of ω, we find that the environment with moderate-to-large damping impedes the escape process of the particle while high amplitude of the periodic driving force allows the particle to cross the barrier with a large escape rate. A comparison of our theoretical expression with numerical simulation gives a satisfactory agreement. PMID:22779605

  16. ALFA Detector Control System

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  17. ALFA Detector Control System

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  18. Tethered satellite system dynamics and control review panel and related activities, phase 3

    1991-01-01

    Two major tests of the Tethered Satellite System (TSS) engineering and flight units were conducted to demonstrate the functionality of the hardware and software. Deficiencies in the hardware/software integration tests (HSIT) led to a recommendation for more testing to be performed. Selected problem areas of tether dynamics were analyzed, including verification of the severity of skip rope oscillations, verification or comparison runs to explore dynamic phenomena observed in other simulations, and data generation runs to explore the performance of the time domain and frequency domain skip rope observers.

  19. System data communication structures for active-control transport aircraft, volume 1

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  20. A modular control system

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author)

  1. Motion control systems

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  2. Applied Control Systems Design

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  3. Control and optimization system

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  4. The ILC control system

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R and D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  5. Step Motor Control System

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  6. Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

    Chien-Ching Ma

    2011-12-01

    Full Text Available In this work, a fiber Bragg grating (FBG sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution.

  7. An Enhanced Droop Control Scheme for Resilient Active Power Sharing in Paralleled Two-Stage PV Inverter Systems

    Liu, Hongpeng; Yang, Yongheng; Wang, Xiongfei;

    2016-01-01

    Traditional droop-controlled systems assume that the generators are able to provide sufficient power as required. This is however not always true, especially in renewable systems, where the energy sources (e.g., photovoltaic source) may not be able to provide enough power (or even loss of power...... strategy is carried out. Experiments have verified the effectiveness of the proposed droop control scheme....

  8. Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System

    Aman Abdulla Tanvir; Adel Merabet; Rachid Beguenane

    2015-01-01

    This paper presents the modeling, rapid control prototyping, and hardware-in-the-loop testing for real-time simulation and control of a grid-connected doubly fed induction generator (DFIG) in a laboratory-size wind turbine emulator for wind energy conversation systems. The generator is modeled using the direct-quadrature rotating reference frame circuit along with the aligned stator flux, and the field-oriented control approach is applied for independent control of the active and reactive pow...

  9. On the muscle activity control in the hierarchy motor systems. Hierarchy undo system ni okeru kin no kassei seigyo ni tsuite

    Akiba, M.; Miyamoto, Y. (Osaka Industrial University, Osaka (Japan). Faculty of Engineering)

    1991-10-31

    Excitory impulses for motor systems are controlled by the psychophysiological nervous systems in the body either autonomically or voluntarily. Involved in the voluntary control loop are motor cortex, basal gangalia, thalamus, cerebellum, etc. The purpose of this study is to confirm whether it is possible to reduce or emphasize the muscle contraction voluntarily through electromyogram (EMG) feedback training. EMG can indicate the excitory impulses of motor units. In the experiments, electrodes were placed on the skin above muscles. A significant reduction effect was observed for subjects trained in relaxation of the forehead musculature through EMG feedback. Results of the experiments suggested that biofeedback training for relaxation of the forehead tensional muscle might be effective in eliminating muscle contraction, and that feedback training for activation of damaged muscles might be effective in emphasizing muscle contraction. 4 refs., 9 figs.

  10. Torque control system

    Studenick, D. K.; Tyler, A. L.; Squillari, W.

    1975-01-01

    System stabilizes aximuth of gondolas which are carried by high-altitude balloons as platforms for tracking telescopes. When telescopes must be constantly aimed at specific targets, control system stabilizes gondola to within 5 arc-seconds.

  11. Discrete control systems

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  12. Creation of a reversible on/off system for site-specific in vivo control of exogenous gene activity in the renal glomerulus.

    Kitamura, M

    1996-01-01

    Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcripti...

  13. Control system design guide

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  14. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation.

    Xi, M; Fung, S J; Yamuy, J; Chase, M H

    2015-07-01

    Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS

  15. Spacecraft momentum control systems

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  16. Control system of ATF

    A computer control system of Accelerator Test Facility(ATF) is described in detail. The ATF presently consists of 60MeV electron injector linac and two klystron Lest stands, and is controlled by a workstation computer with CAMAC interfaces. For its nature of R and D accelerator aimed to realize TeV region linear collider, the control system also should have a flexibility in both hardware and software. Programmable sequence controllers are introduced in the electron gun system and klystron modulator systems and their performances are tested. The control software which is coded using FORTRAN consists in many independent programs. Each program can access to full functions of a specified device or can control the function which is common to many devices

  17. Mead photovoltaic system controller

    Millner, A.R.

    1979-01-31

    A system controller has been designed, built, tested, and in operation for one year at MIT/Lincoln Laboratory's 25-kW-peak Solar Photovoltaic Power System located at Mead, Nebraska. The controller allows the site to operate without human intervention, and has brought to light some of the problems of charge-control algorithms in a deep-discharge environment.

  18. Control System Segmentation

    Over the past seven years, the Jefferson Lab's control system has grown to include more than two hundred distributed computers running over a complex segmented network, controlling a number of semi-independent operational plants. Several of the plants, including that used for running beam for physics users, operate around the clock with only brief, scheduled interruptions for machine repairs. Because of this, high control system availability is critical. Dividing computing resources into distinct sections, called fiefdoms, improves availability of the control system for each plant while facilitating periodic maintenance. In order to maximize uptime, each fiefdom operates as a completely independent control system consisting of a file server machine with a complete set of control system software and files, a local network, operator consoles and computers to execute high and low level control programs. The fiefdoms are isolated using network hardware, while still allowing limited communication between them. By segmenting the control system in this manner, the effect of a computer failure is minimized and machines can be taken down for periodic maintenance and upgrades without disabling other controls capabilities for the site

  19. Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    Gentz, Steven J.; Rotter, Hank A.; Easton, Myriam; Lince, Jeffrey; Park, Woonsup; Stewart, Thomas; Speckman, Donna; Dexter, Stephen; Kelly, Robert

    2005-01-01

    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life.

  20. Dynamically controlled crystal growth system

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  1. Common Control System Vulnerability

    Trent Nelson

    2005-12-01

    The Control Systems Security Program and other programs within the Idaho National Laboratory have discovered a vulnerability common to control systems in all sectors that allows an attacker to penetrate most control systems, spoof the operator, and gain full control of targeted system elements. This vulnerability has been identified on several systems that have been evaluated at INL, and in each case a 100% success rate of completing the attack paths that lead to full system compromise was observed. Since these systems are employed in multiple critical infrastructure sectors, this vulnerability is deemed common to control systems in all sectors. Modern control systems architectures can be considered analogous to today's information networks, and as such are usually approached by attackers using a common attack methodology to penetrate deeper and deeper into the network. This approach often is composed of several phases, including gaining access to the control network, reconnaissance, profiling of vulnerabilities, launching attacks, escalating privilege, maintaining access, and obscuring or removing information that indicates that an intruder was on the system. With irrefutable proof that an external attack can lead to a compromise of a computing resource on the organization's business local area network (LAN), access to the control network is usually considered the first phase in the attack plan. Once the attacker gains access to the control network through direct connections and/or the business LAN, the second phase of reconnaissance begins with traffic analysis within the control domain. Thus, the communications between the workstations and the field device controllers can be monitored and evaluated, allowing an attacker to capture, analyze, and evaluate the commands sent among the control equipment. Through manipulation of the communication protocols of control systems (a process generally referred to as ''reverse engineering''), an

  2. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  3. Drone Control System

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  4. Magnetic spectrometer control system

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  5. Active control of convection

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  6. Active Combustion Control Valve Project

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  7. The control system

    The present control system has matured both in terms of age and capacity. Thus a new system based on a local area network (LAN) is being developed. A pilot project has been started but, owing to difficulties encountered with the present operating system used with the microprocessors, it has become necessary to reconsider the choice of operating system. A recently-released multi-tasking operating system that runs on the existing hardware has been chosen. 1 fig

  8. ISTTOK control system upgrade

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel® Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators

  9. ISTTOK control system upgrade

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-10-15

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel{sup ®} Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators.

  10. ADASY (Active Daylighting System)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  11. IGISOL control system modernization

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  12. Buildings as solar heat stores. Heating system control and room activation; Das Gebaeude als Solarspeicher. Heizungsregelung mit Raumaktivierung

    Heckmeier, J. [Orange Energy, Schweitenkirchen (Germany); SHK-Betrieb Josef Heckmeier Haustechnik (Germany)

    2007-08-15

    When solar heating systems are used as auxiliary heating systems, there is often a gap between heat production and heat demand, especially with large collector surfaces. An intelligent control concept (innovative room bus system) is presented which narrows this gap and makes a significant contribution to energy conservation and CO2 reduction. The newly developed system also offers high comfort and user-friendliness. (orig.)

  13. Sharing control system software

    Building a custom accelerator control system requires effort in the range of 30-100 person-years. This represents a significant investment of time, effort, and risk, as well as challenges for management. Even when the system is successful, the software has not yet been applied to the particular project; no custom control algorithms, either engineering or physics-based, have been implemented; and the system has not been documented for long-term maintenance and use. This paper reviews the requirements for sharing software between accelerator control system projects. It also reviews the three mechanisms by which control system software has been shared in the past and is being shared now, as well as some of the experiences. After reviewing the mechanisms and experiences, one can conclude there is no one best solution. The right software sharing mechanism depends upon the needs of the client site, the client resources available, and the services the provider can give

  14. ROV Motion Control Systems

    Dukan, Fredrik

    2014-01-01

    This thesis is about automatic motion control systems for remotely operated vehicles (ROV). The work has focused on topics within guidance and navigation. In addition, a motion control system has been developed, implemented, tested and used on two ROVs in sea trials.The main motivation for the work has been the need to automate ROV tasks in order to make the ROV a more efficient tool for exploring the ocean space. Many parts of a motion control system for a ROV is similar to that of surface v...

  15. Control system integration

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  16. Design and development of a model free robust controller for active control of dominant flexural modes of vibrations in a smart system

    Parameswaran, Arun P.; Ananthakrishnan, B.; Gangadharan, K. V.

    2015-10-01

    Real physical vibrating smart systems exhibit a lot of nonlinearities in their dynamics. Undesirable vibrations, particularly in the regions of first as well as second resonance, play a very important role in deteriorating the stability of the system as well as its operational efficiency. The work presented in the paper focuses on an analytical technique of mathematical modeling of a vibrating piezoelectric laminate cantilever beam which is considered to be the smart system. The natural frequencies of the vibrating smart system are determined from the ANSYS simulation studies and experimentally, it is found that the vibrations induced voltage is maximum at the first followed by the second natural frequencies. Hence, the smart system is modeled analytically through finite element technique using the Euler-Bernoulli beam theory for the first two flexural modes of vibrations. To account for the possible nonlinearities, a suitable robust controller is designed based on sliding mode technique. Simulation studies on the developed analytical model indicated a high performance of the designed controller in controlling the vibrations at first and second resonance regions. Also, the designed controller was found to be effective in its operations when the excitation varied over a large range covering the first two natural frequencies. In the final stage, the designed robust controller was successfully prototyped on a Field Programmable Gate Array (FPGA) platform using LabVIEW coupled with Compact Reconfigurable Input Output (cRIO-9022) controller configured in its FPGA interface mode and the resulting robust FPGA controller successfully controlled the occurring system vibrations.

  17. Improved Active Vibration Isolation Systems

    2007-01-01

    The control force, feedback gain, and actuator stroke of several active vibration isolation systems were analyzed based on a single-layer active vibration isolation system. The analysis shows that the feedback gain and actuator stroke cannot be selected independently and the active isolation system design must make a compromise between the feedback gain and actuator stroke. The performance of active isolation systems can be improved by the joint vibration reduction using an active vibration isolation system with an adaptive dynamic vibration absorber. The results show that the joint vibration reduction method can successfully avoid the compromise between the feedback gain and actuator stroke. The control force and the object vibration amplitude are also greatly reduced.

  18. Control systems integration for enhanced vehicle dynamics

    Vigliani, Alessandro; Velardocchia, Mauro

    2013-01-01

    This paper deals with improving comfort and handling for a ground vehicle through the coordinated control of different active systems available in passenger cars, e.g., electronic stability control, active roll control and engine torque control. The authors first describe separate control systems, each with its logic, showing advantages and limits, then propose various possible integrations, aiming at exploiting the benefits of a coordinated approach. Finally, the proposed control logics are ...

  19. Control systems under attack?

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  20. Reset Control Systems

    Baños, Alfonso

    2012-01-01

    Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given comprehensive coverage. The text opens with an historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material dealing with notation, basic definitions and results, and with the definition of the control problem under study is also included. The fo...

  1. Advanced access control system

    A prototype voice verification system has been installed which provides the required positive identification at the main site access control point. This system compares an individual's file voice print with a sample voice print obtained from the individual when an attempt is made to enter the site. The voice system transmits the individual's identify to a central processor. The system installed at the Barnwell Nuclear Fuel Plant is described

  2. The Epicure Control System

    The Epicure Control System supports the Fermilab fixed target physics program. The system is distributed across a network of many different types of components. The use of multiple layers on interfaces for communication between logical tasks fits the client-server model. Physical devices are read and controlled using symbolic references entered into a database with an editor utility. The database system consists of a central portion containing all device information and optimized portions distributed among many nodes. Updates to the database are available throughout the system within minutes after being requested

  3. Active mass damper system for high-rise buildings using neural oscillator and position controller considering stroke limitation of the auxiliary mass

    Hongu, J.; Iba, D.; Nakamura, M.; Moriwaki, I.

    2016-04-01

    This paper proposes a problem-solving method for the stroke limitation problem, which is related to auxiliary masses of active mass damper systems for high-rise buildings. The proposed method is used in a new simple control system for the active mass dampers mimicking the motion of bipedal mammals, which has a neural oscillator synchronizing with the acceleration response of structures and a position controller. In the system, the travel distance and direction of the auxiliary mass of the active mass damper is determined by reference to the output of the neural oscillator, and then, the auxiliary mass is transferred to the decided location by using a PID controller. The one of the purpose of the previouslyproposed system is stroke restriction problem avoidance of the auxiliary mass during large earthquakes by the determination of the desired value within the stroke limitation of the auxiliary mass. However, only applying the limited desired value could not rigorously restrict the auxiliary mass within the limitation, because the excessive inertia force except for the control force produced by the position controller affected on the motion of the auxiliary mass. In order to eliminate the effect on the auxiliary mass by the structural absolute acceleration, a cancellation method is introduced by adding a term to the control force of the position controller. We first develop the previously-proposed system for the active mass damper and the additional term for cancellation, and verity through numerical experiments that the new system is able to operate the auxiliary mass within the restriction during large earthquakes. Based on the comparison of the proposed system with the LQ system, a conclusion was drawn regarding which the proposed neuronal system with the additional term appears to be able to limit the stroke of the auxiliary mass of the AMD.

  4. Automaticity or active control

    Tudoran, Ana Alina; Olsen, Svein Ottar

    This study addresses the quasi-moderating role of habit strength in explaining action loyalty. A model of loyalty behaviour is proposed that extends the traditional satisfaction–intention–action loyalty network. Habit strength is conceptualised as a cognitive construct to refer to the psychologic......, respectively, between intended loyalty and action loyalty. At high levels of habit strength, consumers are more likely to free up cognitive resources and incline the balance from controlled to routine and automatic-like responses....

  5. Analysis of Control Policies and Dynamic Response of a Q-Car 2-DOF Semi Active System

    S.I. Ihsan

    2008-01-01

    Full Text Available Several control policies of Q-car 2-DOF semiactive system, namely skyhook, groundhook and hybrid controls are presented. Their ride comfort, suspension displacement and road-holding performances are analyzed and compared with passive system. The analysis covers both transient and steady state responses in time domain and transmissibility response in frequency domain. The results show that the hybrid control policy yields better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The hybrid control policy is also shown to be a better compromise between comfort, road-holding and suspension displacement than the skyhook and groundhook control policies.

  6. Controllability of nilpotent systems

    The purpose of this paper is to investigate algebraic conditions which give information about the controllability of invariant control systems on nilpotent Lie groups. With the same purpose, the authors use the co-adjoint representation and define the concept of symplectic vectors. We study the existence of these objects to analyze the controllability. In particular, we obtain a characterization when G is simply connected. (author). 9 refs

  7. Adaptive Inflow Control System

    Volkov, Vasily Y; Zhuravlev, Oleg N; Nukhaev, Marat T; Shchelushkin, Roman V

    2014-01-01

    This article presents the idea and realization for the unique Adaptive Inflow Control System being a part of well completion, able to adjust to the changing in time production conditions. This system allows to limit the flow rate from each interval at a certain level, which solves the problem of water and gas breakthroughs. We present the results of laboratory tests and numerical calculations obtaining the characteristics of the experimental setup with dual-in-position valves as parts of adaptive inflow control system, depending on the operating conditions. The flow distribution in the system was also studied with the help of three-dimensional computer model. The control ranges dependences are determined, an influence of the individual elements on the entire system is revealed.

  8. Active figure maintenance control using an optical truss laser metrology system for a space-based far-IR segmented telescope

    Lau, Kenneth; Breckenridge, Bill; Nerheim, Noble; Redding, David

    1992-01-01

    A two-stage active control approach was developed addressing the figure control problem for a spaceborne FIR telescope, the Precision Segmented Reflectors Focus Moderate Mission Telescope (FMMT). The first active control stage aligns the optical segments based on images; attention is here given to the second stage, active figure maintenance control system, which maintains the alignment of the optical elements between initializations to hold the mirror figure steady while obtaining data and fixes translational and rotational changes of the optical segments induced by long-term thermal drifts of the support structure. Errors are expected to be 10-100 microns at the nodes of the primary backup structure over the course of an orbit. An rms performance of 0.8 microns of wavefront error can be expected during the maintenance function based on specified nominal sensor noises, actuator accuracies, and system environments. A performance of less than 0.3 microns rms can be expected, based on advanced components.

  9. Control Structure Design of an Innovative Enhanced Biological Nutrient Recovery Activated Sludge System Coupled with a Photobioreactor

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier;

    2015-01-01

    The TRENS system is a train of biological units designed for resource recovery from wastewater. It is a sequence of a modified enhanced biological phosphorus removal and recovery system (EBP2R) coupled with a photobioreactor (PBR). The bacteria-based system constructs an optimal culture media for...... needed in order to assess the controllability of the PBR and the possible impact on the upstream operation conditions....

  10. International Space Station Active Thermal Control Sub-System On-Orbit Pump Performance and Reliability Using Liquid Ammonia as a Coolant

    Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.

    2011-01-01

    The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.

  11. The ISOLDE control system

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  12. MFTF supervisory control system

    A computerized supervisory control system is being developed for the Mirror Fusion Test Facility. The system includes nine Perkin-Elmer 7/32 and 8/32 computers connected by a block of common core memory (128 kilobytes). The network is a disk designed for reliability and redundancy. If one computer goes down, the local-control micro-processors that it controls are switched to another computer in a matter of seconds. The control consoles permit operators to open and close valves, start or stop pumps, and adjust operating levels. The experiment is controlled by two superconsoles and five satellite consoles. The software, written in PASCAL, contains such subsystems as organizing the computers into a network, operating the consoles and accessing the data base

  13. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Chih-Lung Shen; Jye-Chau Su

    2012-01-01

    A half-bridge photovoltaic (PV) system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cos...

  14. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel;

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...

  15. FMIT facility control system

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility, under construction at Richland, Washington, uses current techniques in distributed processing to achieve responsiveness, maintainability and reliability. Developmental experience with the system on the FMIT Prototype Accelerator (FPA) being designed at the Los Alamos National Laboratory is described as a function of the system's design goals and details. The functional requirements of the FMIT control system dictated the use of a highly operator-responsive, display-oriented structure, using state-of-the-art console devices for man-machine communications. Further, current technology has allowed the movement of device-dependent tasks into the area traditionally occupied by remote input-output equipment; the system's dual central process computers communicate with remote communications nodes containing microcomputers that are architecturally similar to the top-level machines. The system has been designed to take advantage of commercially available hardware and software

  16. CNEOST Control Software System

    Wang, Xin; Zhao, Hai-bin; Xia, Yan; Lu, Hao; Li, Bin

    2016-01-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the messaging mechanism based on the WebSocket protocol, and possesses good flexibility and expansibility. The user interface based on the responsive web design has realized the remote observations under both desktop and mobile devices. The stable operation of the software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  17. Wind Turbine Rotors with Active Vibration Control

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system...... system. As in the method for non-rotating systems, an explicit procedure for optimal calibration of the controller gains is established. The control system is applied to an 86m wind turbine rotor by means of active strut actuator mechanisms. The prescribed additional damping ratios are reproduced almost...

  18. COST CONTROL SYSTEM

    S. V. Маrtseva

    2014-01-01

    The paper considers methodology for formation of product cost while applying «direct-costing» system. It has been shown that the application of the given system permits economically to justify and accurately to determine financial results of an enterprise activity which is planned for the future.

  19. Asynchronous interactive control systems

    Vuskovic, M. I.; Heer, E.

    1980-01-01

    A class of interactive control systems is derived by generalizing interactive manipulator control systems. The general structural properties of such systems are discussed and an appropriate general software implementation is proposed. This is based on the fact that tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm into a set of subalgorithms, called subcontrollers, which can operate simultaneously and asynchronously. Coordinate transformations of sensor feedback data and actuator set-points have enabled the further simplification of the subcontrollers and have reduced their conflicting resource requirements. The modules of the decomposed control system are implemented as parallel processes with disjoint memory space communicating only by I/O. The synchronization mechanisms for dynamic resource allocation among subcontrollers and other synchronization mechanisms are also discussed in this paper. Such a software organization is suitable for the general form of multiprocessing using computer networks with distributed storage.

  20. Control Systems with Friction

    Olsson, Henrik

    1996-01-01

    Friction-related problems are frequently encountered in control systems. This thesis treats three aspects of such problems: modeling, analysis, and friction compensation. A new dynamic friction model is presented and investigated. The model is described by a first order nonlinear differential equation with a reasonable number of parameters, yet it captures most of the experimentally observed friction phenomena. The model is suitable both for simulation purposes and control design. Analysis of...

  1. neural control system

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  2. Experience and regulatory activities on advanced instrumentation and control systems applied to nuclear power plants in Korea

    This paper describes the status for applying microprocessor-based systems to nuclear power plants in Korea and the regulatory activities performed by Korea Institute of Nuclear Safety (KINS). And this presents the development of safety and regulatory technology for advanced I and C systems that has been carried out as a part of the next generation reactor development program in Korea. (author). 3 refs, 4 figs, 1 tab

  3. Development of an active vertical vibration control system for high speed railway vehicles; Jogekei active seishin seigyo sochi no kaihatsu (300X Shinkansen shiken sharyo deno soko shiken kekka)

    Shirai, S.; Otsuka, T. [Central Japan Railway Company, Nagoya (Japan); Nishi, Y.; Matsushima, H.; Danbata, K. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1999-09-15

    With an objective to improve riding comfort in the 300X system Shinkansen vehicle, development has been made on an active vibration control system which gives force to the vehicle body forcibly by a hydraulic actuator to suppress vertical vibration. The H {infinity} control was used in designing the controller. The controller to control vertical translation and pitch vibration in the vehicle body controls frequency in the vicinity of about 1 Hz being resonant frequency of a suspension system. However, it does not control frequency band of 8 to 9 Hz being resonant frequency of the vehicle bending vibration. In turn, the controller to control the vehicle bending vibration controls frequency band of 8 to 9 Hz only. This allows the interference to be ignored nearly completely. As a result of the stationary test, it was verified that the vibration can be reduced by the active vibration control system also on the vehicle bending vibration, which had conventionally been handled by improving rigidity of the vehicle or by turning the bogie spring and damper systems. Good result has also been obtained from a driving test using test vehicles. (NEDO)

  4. Proton beam therapy control system

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  5. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    Lior Lobel; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was c...

  6. Active pCO2-Control of Seawater Culture Systems for Laboratory-Based Biogeochemical Experimentation Investigating Global Ocean Acidification

    Hintz, C. J.; Chandler, G. T.; Shaw, T. J.; McCorkle, D. C.

    2007-12-01

    The large-scale effects of anthropogenic CO2 rise and global ocean acidification on calcifying and photosynthetic organisms are not well understood. This ongoing uncertainty fundamentally limits our ability to fully understand global carbon cycling. Field-based studies are limited to the current environmental chemistries observed throughout the world's oceans - a prohibitively resource-intensive platform for manipulative experimentation. Moreover, complex carbonate system equilibria decoupled from the atmosphere are difficult to poise and maintain in laboratory seawater-based experiments lasting longer than a few hours or days. This severely limits the scope of biogeochemical experimentation for simulating past or future ocean chemistries. To address these experimental shortcomings we developed a novel system for the stringent control of pCO2 in culture aeration and seawater. A custom CO2 scrubbing system was designed which removes > 99.8% of atmospheric CO2 at 3-4 L min-1 aeration rate. High precision mass flow controllers integrated with a modular programmable process controller precisely mix high-purity (99.95%) compressed CO2 with the preconditioned CO2-free air stream for aeration into the culture system. Long-term maintenance of experimental CO2 is within ± 2 μatm when operating between 150- 2000 μatm pCO2. The system, in its current configuration, has the ability to simultaneously manipulate and maintain 3 separate carbonate chemistries using aeration pCO2 and seawater alkalinity in independent 400-L seawater reservoirs. Future system expansion can easily maintain 5 or more separate chemistries. The goal of this research is to develop stringent control of seawater carbonate system chemistries for the deep- sea benthic foraminifera cultures housed at the University of South Carolina Arnold School of Public Health. Current experiments are investigating trace metal foraminiferal paleoproxy signatures that appear correlated with [CO32-] very near calcite

  7. Active Noise Control in Propeller Aircraft

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  8. Electric turbocompound control system

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  9. Telerobot control system

    Backes, Paul G.; Tso, Kam S.

    1993-07-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  10. Neural Network Based Active Disturbance Rejection Control of a Novel Electrohydraulic Servo System for Simultaneously Balancing and Positioning by Isoactuation Configuration

    Qiang Gao

    2016-01-01

    Full Text Available To satisfy the lightweight requirements of large pipe weapons, a novel electrohydraulic servo (EHS system where the hydraulic cylinder possesses three cavities is developed and investigated in the present study. In the EHS system, the balancing cavity of the EHS is especially designed for active compensation for the unbalancing force of the system, whereas the two driving cavities are employed for positioning and disturbance rejection of the large pipe. Aiming at simultaneously balancing and positioning of the EHS system, a novel neural network based active disturbance rejection control (NNADRC strategy is developed. In the NNADRC, the radial basis function (RBF neural network is employed for online updating of parameters of the extended state observer (ESO. Thereby, the nonlinear behavior and external disturbance of the system can be accurately estimated and compensated in real time. The efficiency and superiority of the system are critically investigated by conducting numerical simulations, showing that much higher steady accuracy as well as system robustness is achieved when comparing with conventional ADRC control system. It indicates that the NNADRC is a very promising technique for achieving fast, stable, smooth, and accurate control of the novel EHS system.

  11. Evolving Systems and Adaptive Key Component Control

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  12. Advanced access control system

    A prototype voice verification system has been installed which provides the required positive identification at the main site access control point. This system compares an individual's file voice print with a sample voice print obtained from the individual when an attempt is made to enter the site. The voice system transmits the individual's identity to a central processor. The central processor associates that individual's authorization file with a card-key obtained at the access point. The system generates a record of personnel movement, provides a personnel inventory on a real-time basis, and it can retrieve a record of all prior events. The system installed at the Barnwell Nuclear Fuel Plant is described

  13. Optical control of antibacterial activity

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  14. A Dynamic Absorber With Active Vibration Control

    Huang, S.-J.; Lian, R.-J.

    1994-12-01

    The design and construction of a dynamic absorber incorporating active vibration control is described. The absorber is a two-degrees-of-freedom spring — lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass are acted on by DC servo motors, respectively, to suppress the vibration amplitude. The state variable technique is used to model this dynamic system and a decoupling PID control method is used. First, the discrete time state space model is identified by using the commercial software MATLAB. Then the decoupling controller of this multi-input/multi-output system is derived from the identified model. Finally the results of some experiments are presented. The experimental results show that the system is effective in suppressing vibration. Also, the performance of this control strategy for position tracking control is evaluated based on experimental data.

  15. Adaptive Piezoelectric Absorber for Active Vibration Control

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  16. Fault Tolerant Control Systems

    Bøgh, S.A.

    from this study highlights requirements for a dedicated software environment for fault tolerant control systems design. The second detailed study addressed the detection of a fault event and determination of the failed component. A variety of algorithms were compared, based on two fault scenarios in...... faults, but also that the research field still misses a systematic approach to handle realistic problems such as low sampling rate and nonlinear characteristics of the system. The thesis contributed with methods to detect both faults and specifically with a novel algorithm for the actuator fault...... detection that is superior in terms of performance and complexity to the other algorithms in the comparative study....

  17. Life extension activities and modernization strategies for instrumentation ampersand control systems of research and power reactors in India

    Based on three and half decades of experience gained in the operation and maintenance of Instrumentation and Control Systems of nuclear reactors in India, specific investigations were made to understand various aspects of aging. The analysis of the failure rates of various instruments, plant outage figures and obsolescence of components have necessitated the replacement of instrumentation to improve the reliability and performance. The aging models available were used to determine the extent of performance degradation and to formulate maintenance strategies. The nuclear instrumentation of the aging research reactors at Bhabha Atomic Research Centre (BARC) has been replaced with high reliability equipment using modern integrated circuits. This has resulted in an improvement in the mean time between failure (MTBF) by a factor of five. The neutronic instrumentation of Fast Breeder Test Reactor (FBTR) at Madras is currently being upgraded with the introduction of microprocessor based safety units for reactivity computation and online testing of safety logic with Fine Impulse Technique. The operating experience has also indicated the necessity of developing online surveillance methods and status monitoring of various systems to detect aging. Online cable insulation measurement technique and noise analysis methods for vibration monitoring have been developed. Campbell method of signal processing has been successfully used in extending the useful life of Local Power Range monitors in the Boiling Water Reactor at Tarapur. In order to improve reliability, accuracy and provide efficient man machine interface, microprocessor based systems with online testing features have been installed in power reactors. These include the high performance reactor regulating system and centralised radiation monitoring systems commissioned at Kakrapara power station. The paper describes the above systems and the modernization strategies for nuclear instrumentation and control

  18. Incoherent control of locally controllable quantum systems

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  19. Modular thyristor controlled series capacitor control system

    Clark, K.; Larsen, E.V.; Wegner, C.A.; Piwko, R.J.

    1995-06-13

    A modular thyristor controlled series capacitor (TCSC) system, including a method and apparatus, uses phase controlled firing based on monitored capacitor voltage and line current. For vernier operation, the TCSC system predicts an upcoming firing angle for switching a thyristor controlled commutating circuit to bypass line current around a series capacitor. Each bypass current pulse changes the capacitor voltage proportionally to the integrated value of the current pulse. The TCSC system promptly responds to an offset command from a higher-level controller to control bypass thyristor duty to minimize thyristor damage, and to prevent capacitor voltage drift during line current disturbances. In a multi-module TCSC system, the higher level controller accommodates competing objectives of various system demands, including minimizing losses in scheduling control, stabilizing transients, damping subsynchronous resonance (SSR) oscillations, damping direct current (DC) offset, and damping power-swings. 67 figs.

  20. Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG-Based Wind Energy Conversion System

    Aman Abdulla Tanvir

    2015-09-01

    Full Text Available This paper presents the modeling, rapid control prototyping, and hardware-in-the-loop testing for real-time simulation and control of a grid-connected doubly fed induction generator (DFIG in a laboratory-size wind turbine emulator for wind energy conversation systems. The generator is modeled using the direct-quadrature rotating reference frame circuit along with the aligned stator flux, and the field-oriented control approach is applied for independent control of the active and reactive power and the DC-link voltage at the grid side. The control of the active, reactive power and the DC-link voltage are performed using a back-to-back converter at sub- and super-synchronous as well as at variable speeds. The control strategy is experimentally validated on an emulated wind turbine driven by the Opal-RT real-time simulator (OP5600 for simultaneous control of the DC-link voltage, active and reactive power.

  1. Telerobotic virtual control system

    Zhai, Shumin; Milgram, Paul

    1992-03-01

    A project to develop a telerobotic `virtual control' capability, currently underway at the University of Toronto, is described. The project centers on a new mode of interactive telerobotic control based on the technology of combining computer generated stereographic images with remotely transmitted stereoscopic video images. A virtual measurement technique, in conjunction with a basic level of digital image processing, comprising zooming, parallax adjustment, edge enhancement, and edge detection has been developed to assist the human operator in visualization of the remote environment and in spatial reasoning. The aim is to maintain target recognition, tactical planning, and high-level control functions in the hands of the human operator with the computer performing low-level computation and control. Control commands initiated by the operator are implemented through manipulation of a virtual image of the robot system, merged with a live video image of the remote scene. This paper discusses the philosophy and objectives of the project, with emphasis on the underlying human factor considerations in the design, and reports the progress made to date in this effort.

  2. Control rod drive system

    The present invention concerns an electromotive driving-type control rod driving system of a BWR type reactor, for which sliding resistance (friction) test can be performed of a movable portion of the control rod driving mechanisms. Namely, a hydraulic pressure control unit has following constitutions in addition to a conventional constitution as a sliding resistance test performing function. (1) A restricting valve is disposed downstream of the scram valve of scram pipelines to control flow rate and pressure of pressurized water flown in the pipelines. (2) A pressure gauge detects a pressure between the scram valve and the restricting valve. (3) A flow meter detects the flow rate of pipelines controlled by the restricting valve. (4) A recording pressure detector detects the pressure at the downstream of the restricting valve. (5) The recording device is attached when the sliding resistant test is performed for tracing the pressure measured by the pressure detection device. Further, the scram valve sends electric signals to a central operation chamber when it is fully closed. The central operation chamber has a function of fully opening the restricting valve by way of the electric signals. (I.S.)

  3. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes.

    Lobel, Lior; Herskovits, Anat A

    2016-02-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  4. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes.

    Lior Lobel

    2016-02-01

    Full Text Available Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes, integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner.

  5. Computer system development to support TMI-2 [Three Mile Island Unit 2] radiological controls, operations, and records management activities

    The regulations pertaining to the reporting and keeping of records pertaining to occupational radiation exposure of workers employed at US Nuclear Regulatory Commission (MRC) licensed facilities (licensees) are contained in 10CFR19 and 10CFR20, respectively. These regulations provide specific guidance concerning the types of occupational radiation exposure data that must be generated, tracked, reported, and preserved for individuals working at US nuclear power facilities. Certain forms, such as Form NRC-4 Occupational Radiation Exposure History and Form NRC-5 Current Occupational Radiation Exposure, are required to be maintained by the licensee, and specific guidance is provided as to the format and content of data to be documented on these forms. At the time of the accident, Metropolitan Edison Company (the operator of TMI-2), had in place a fairly comprehensive computerized radiation exposure control and record keeping system. The radiation exposure management (REM) system was maintained on the corporate mainframe computer and employed industry-accepted EDP standards for data entry and retrieval. It soon became apparent that the best approach would be to completely redesign the REM system to best meet the special requirements imposed by the accident situation, and the decision was made to design and develop a totally new REM computer system employing on-line transaction processing and an integrated data base management system

  6. A Comparison of Behavioral Inhibition/ Activation System, Type D and Optimism in the Breast Cancer Patients and Healthy Controls

    A Alipoor

    2015-04-01

    Full Text Available Background & aim: Nowadays, the role and importance of psychosocial factors on physical health, as well as the influence of personality characteristics in having psychosomatic diseases such as cancer are of interest to many researchers. In spite of increase in breast cancer in Iran, very few studies have been carried out on risk factors of breast cancer. The aim of this study was to evaluate the comparative Behavioral inhibition / Activation System, type D and optimism in the breast cancer patients and healthy individuals. Methods: In the present casual-comparative study, 190 people (95 Patients and 95 Normal Subjects were selected in Rasht, Iran. Moreover, the groups were matched for demographic characteristics (age, gender and education. All individuals diagnosed with Breast Cancer and Normal Subjects received a Gary-Wilson Personality Questionnaire, Life Orientation Test and Type D Personality Scale. Collected data were analyzed using multivariate analysis of variance and regression. Results: The findings revealed that there were significant differences between cancer and normal groups in behavioral inhibition/activation system, type D Personality and optimism. In this regard, the Breast Cancer group had higher scores subscales of negative affect, social inhibition, passive avoidance, extinction and fight-flight than normal group. In addition, subscales of approach, active avoidance and optimism in the normal group were more than the Breast Cancer group. Conclusion: The present study supported the role of psychological variables in breast cancer patients which is essential for improving patients’ health and quality of life.

  7. NSLS control system upgrade

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans

  8. Controlled Quantum Open Systems

    Alicki, R

    2003-01-01

    The theory of controlled quantum open systems describes quantum systems interacting with quantum environments and influenced by external forces varying according to given algorithms. It is aimed, for instance, to model quantum devices which can find applications in the future technology based on quantum information processing. One of the main problems making difficult the practical implementations of quantum information theory is the fragility of quantum states under external perturbations. The aim of this note is to present the relevant results concerning ergodic properties of open quantum systems which are useful for the optimization of quantum devices and noise (errors) reduction. In particular we present mathematical characterization of the so-called "decoherence-free subspaces" for discrete and continuous-time quantum dynamical semigroups in terms of $C^*$-algebras and group representations. We analyze the non-Markovian models also, presenting the formulas for errors in the Born approximation. The obtain...

  9. Active load control techniques for wind turbines.

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  10. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans

  11. Application of a self-tuning fuzzy PI-PD controller in an active anti-roll bar system for a passenger car

    Muniandy, V.; Samin, P. M.; Jamaluddin, H.

    2015-11-01

    A fuzzy proportional-integral-derivative (PID) controller has not been widely investigated for active anti-roll bar (AARB) application due to its unspecific mathematical analysis and the derivative kick problem. This paper briefly explains how the derivative kick problem arises due to the nature of the PID controller as well as the conventional fuzzy PID controller in association with an AARB. There are two types of controllers proposed in this paper: self-tuning fuzzy proportional-integral-proportional-derivative (STF PI-PD) and PI-PD-type fuzzy controller. Literature reveals that the PI-PD configuration can avoid the derivative kick, unlike the standard PID configuration used in fuzzy PID controllers. STF PI-PD is a new controller proposed and presented in this paper, while the PI-PD-type fuzzy controller was developed by other researchers for robotics and automation applications. Some modifications were made on these controllers in order to make them work with an AARB system. The performances of these controllers were evaluated through a series of handling tests using a full car model simulated in MATLAB Simulink. The simulation results were compared with the performance of a passive anti-roll bar and the conventional fuzzy PID controller in order to show improvements and practicality of the proposed controllers. Roll angle signal was used as input for all the controllers. It is found that the STF PI-PD controller is able to suppress the derivative kick problem but could not reduce the roll motion as much as the conventional fuzzy PID would. However, the PI-PD-type fuzzy controller outperforms the rest by improving ride and handling of a simulated passenger car significantly.

  12. Crawling the Control System

    Theodore Larrieu

    2009-10-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google "mini" search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  13. Crawling the Control System

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google 'mini' search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  14. Control of the Tevatron Satellite Refrigeration system

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  15. Re-thinking global health sector efforts for HIV and tuberculosis epidemic control: promoting integration of programme activities within a strengthened health system

    Maher Dermot

    2010-07-01

    Full Text Available Abstract Background The global financial crisis threatens global health, particularly exacerbating diseases of inequality, e.g. HIV/AIDS, and diseases of poverty, e.g. tuberculosis. The aim of this paper is to reconsider established practices and policies for HIV and tuberculosis epidemic control, aiming at delivering better results and value for money. This may be achieved by promoting greater integration of HIV and tuberculosis control programme activities within a strengthened health system. Discussion HIV and tuberculosis share many similarities in terms of their disease burden and the recommended stratagems for their control. HIV and tuberculosis programmes implement similar sorts of control activities, e.g. case finding and treatment, which depend for success on generic health system issues, including vital registration, drug procurement and supply, laboratory network, human resources, and financing. However, the current health system approach to HIV and tuberculosis control often involves separate specialised services. Despite some recent progress, collaboration between the programmes remains inadequate, progress in obtaining synergies has been slow, and results remain far below those needed to achieve universal access to key interventions. A fundamental re-think of the current strategic approach involves promoting integrated delivery of HIV and tuberculosis programme activities as part of strengthened general health services: epidemiological surveillance, programme monitoring and evaluation, community awareness of health-seeking behavior, risk behaviour modification, infection control, treatment scale-up (first-line treatment regimens, drug-resistance surveillance, containing and countering drug-resistance (second-line treatment regimens, research and development, global advocacy and global partnership. Health agencies should review policies and progress in HIV and tuberculosis epidemic control, learn mutual lessons for policy

  16. Active control of ionized boundary layers

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  17. Vibration active control of tilting pad journal bearing rotor system based on the active lubrication%基于主动润滑可倾瓦轴承转子系统的振动主动控制

    刘宏; 宫晓春; 王晋麟

    2011-01-01

    研究一类可倾瓦支承的单盘非对称转子系统的振动主动控制问题.首先建立了系统的非线性动力学方程,针对主动润滑控制系统设计了BP神经网络PID控制器对转子系统进行振动主动控制.通过计算分析可知,采用基于BP-PID的主动润滑系统能够很好的抑制系统的振幅,使系统在很高的转速时才发生油膜失稳,拓宽转子系统稳定运转的转速范围,在转子系统发生油膜失稳时系统的振幅也能够得到极大程度的控制.%The vibration active control of an unsymmetrical rotor supported by two tilting pad journal bearings is investigated in this paper. Firstly, the nonlinear governing equation of the rotor system is formulated. Then the BP neural network PID controller is designed with regard to the active lubricated control system is applied to suppress the vibration of the concerning rotor system. After calculation and analysis the persuasive results are obtained. The vibration amplitude of the rotor system is greatly reduced by means of the active lubricated control system through the BP neural network PID controller. The whip instability of the controlled system occurs at a very high rotational speed and the stable operation range is greatly broadened. The vibration amplitude can be significantly suppressed by the active lubricated control system when the rotor runs up against the whip instability.

  18. PEP instrumentation and control system

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  19. Matlab control systems engineering

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Control Systems Engineering introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an in

  20. BLTC control system software

    Logan, J.B., Fluor Daniel Hanford

    1997-02-10

    This is a direct revision to Rev. 0 of the BLTC Control System Software. The entire document is being revised and released as HNF-SD-FF-CSWD-025, Rev 1. The changes incorporated by this revision include addition of a feature to automate the sodium drain when removing assemblies from sodium wetted facilities. Other changes eliminate locked in alarms during cold operation and improve the function of the Oxygen Analyzer. See FCN-620498 for further details regarding these changes. Note the change in the document number prefix, in accordance with HNF-MD-003.

  1. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip.

    Murillo, I; Martinez-Argudo, I; Blocker, A J

    2016-01-01

    Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB's role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction. PMID:27277624

  2. The ascidian prophenoloxidase activating system

    M Cammarata

    2009-03-01

    Full Text Available Phenoloxidases/tyrosinases initiate melanin synthesis in almost all organisms, and are involved in different biological activities such as the colour change of human hair and the browning or blackening of fruit skin etc. In many invertebrates, defence reactions are linked to phenoloxidase activity and/or melanization. Contacts with foreign molecules are able to trigger the prophenoloxidase (proPO system that requires serine protease cleavage for activating the zymogen to phenoloxidase (PO. It is generally accepted that the proPO system is fully expressed in arthropods, and, recently, progress in the regulation of crustacean and insect proPO activation steps have been achieved. After cells were stimulated by components of pathogen associated molecular pattern (PAMP, proPO activation takes place via zimogenic serine proteinase in turn activated by PAMPs followed by cascade, spatial and temporal control.The proPO activating system plays a defensive role in arthropods, molluscs, annelids, ascidians and the cephalochordate Branchiostoma belcheri.In the present paper, we report on ascidian proPO system and related molecules, with particular focus on the biochemical, cellular and molecular aspects of the Ciona intestinalis, proPO system of circulating hemocytes from naïve ascidians as well as of body wall following LPS inflammatory challenge.

  3. Automatically controlled training systems

    This paper reports that the computer system for NPP personnel training was developed for training centers in the Soviet Union. The system should be considered as the first step in training, taking into account that further steps are to be devoted to part-task and full scope simulator training. The training room consists of 8-12 IBM PC/AT personal computers combined into a network. A trainee accesses the system in a dialor manner. Software enables the instructor to determine the trainee's progress in different subjects of the program. The quality of any trainee preparedness may be evaluated by Knowledge Control operation. Simplified dynamic models are adopted for separate areas of the program. For example, the system of neutron flux monitoring has a dedicated model. Currently, training, requalification and support of professional qualifications of nuclear power plant operators is being emphasized. A significant number of emergency situations during work are occurring due to operator errors. Based on data from September-October 1989, more than half of all unplanned drops in power and stoppages of power plants were due to operator error. As a comparison, problems due to equipment malfunction accounted for no more than a third of the total. The role of personnel, especially of the operators, is significant during normal operations, since energy production costs as well as losses are influenced by the capability of the staff. These facts all point to the importance of quality training of personnel

  4. LINAC control automation system

    A 7 MeV Electron Beam Linear Accelerator (LINAC) being used for pulse radiolysis experiments at RC and CDD, B.A.R.C. has been automated with a PLC based control panel designed and developed by Computer Division, B.A.R.C.. The control panel after power on switches ON various units in a pre-defined sequence and intervals on a single turn of START key from OFF to ON position. The control panel also generates various ramp signals in a pre-defined sequence and rate and steady values and feeds to the LINAC bringing it to the ready for experiment condition. Similarly on a single turn of STOP key from OFF to ON position, the panel ramps down the various signals in pre-defined manners and makes OFF the various units in predefined sequence and timing providing safety to the machine. The steady values for various signals are on line settable as and when required so. This automation system relieves the operator from fatigue of time consuming manual ramping up or down of various signals and running around in four rooms for switching ON or OFF the various units enhancing efficiency and safety. This also facilitates the user scientist to do start up and shutdown operation in the absence of skilled operators and thus adds flexibility for working up to extended timing. This unit has been working satisfactorily since August 2002. For extraordinary condition automation to manual or vice versa change over has been provided. (author)

  5. Lighting control system of PEFP

    In this paper, we described lighting control system for effective management of lighting system according to the size and use of each building of the Proton Accelerator Research Center of PEFP. By introducing lighting control system, it helps work environment enhancement, work efficiency increases and electric power consumption reduction. We also described the organization and function of the lighting control system of PEFP

  6. Lighting control system of PEFP

    Jung, Hoi Won; Mun, Kyeong Jun; Han, Yung Gu; Park, Sung Sik; Song, In Teak; Kim, Jun Yeon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    In this paper, we described lighting control system for effective management of lighting system according to the size and use of each building of the Proton Accelerator Research Center of PEFP. By introducing lighting control system, it helps work environment enhancement, work efficiency increases and electric power consumption reduction. We also described the organization and function of the lighting control system of PEFP.

  7. Strategy and technologies for the air pollution active control: The MONIQA system; Estrategia y tecnologias para el control activo de la contaminacion del aire: El sistema MONIQA

    Sozzi, Roberto; Favaron, Maurizio [Servizi Territorio, Cinisello Balsamo, (Italy)

    1996-12-31

    What all the environmental laws of the various nations manifest is to permit a harmonic economical development without creating problems to the environment. This paper states that in order to achieve the former it is needed first to know the air pollution, second, the understanding of the transport phenomena and the dispersion of the pollutants in the air, and third the air pollution control. To confront in an effective manner the air pollution problems it is proposed the use of the MONIQA System. This system will aid the designer, the authorities and the population to respond to their questions in a fast and quick manner [Espanol] Lo que expresan todas las leyes ambientales de las diferentes naciones es permitir un desarrollo economico armonico sin crear problemas al medio ambiente. Esta ponencia propone que para lograr lo anterior es necesario primero el conocimiento de la contaminacion atmosferica, segundo la comprension de los fenomenos del transporte y de la dispersion de los contaminantes en el aire y tercero, el control de la contaminacion del aire. Para confrontar de manera eficaz los problemas de contaminacion atmosferica se propone el uso del sistema MONIQA. Este sistema ayudara a los proyectistas, autoridades y a la poblacion a responder sus preguntas de manera rapida y veloz

  8. Novel Active Combustion Control Valve

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  9. Encyclopedia of systems and control

    Samad, Tariq

    2015-01-01

    The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 200 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks...

  10. Coordination control of distributed systems

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  11. Introduction to control system performance measurements

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  12. On Restructurable Control System Theory

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  13. Active control of the noise

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  14. Concept and System of Personification Control System

    Bai,Fengshuang; Yin,Yixin; Tu,Xuyan; Zhang,Ying

    2006-01-01

    This paper provides the system and conception of the Personification Control System (PCS) on the basis of Intelligent Control System based on Artificial life (ICS/AL), Artificial Emotion, Humanoid Control, and Intelligent Control System based on Field bus. According to system science and deciding of organize of biology, the Pyramid System of PCS are created. Then Pyramid System of PCS which is made up of PCS1/H, PCS1/S, PCS1/O, PCS1/C and PCS1/G is described.

  15. Living Together in Space: The International Space Station Internal Active Thermal Control System Issues and Solutions-Sustaining Engineering Activities at the Marshall Space Flight Center From 1998 to 2005

    Wieland, P. O.; Roman, M. C.; Miller, L.

    2007-01-01

    On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.

  16. System of Volcanic activity

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  17. Thermal control system technology discipline

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  18. Force Feedback Control of a Semi-Active Shock Absorber

    Svennerbrandt, Per

    2014-01-01

    Semi-active suspension systems promise to significantly reduce the necessary trade-off be-tween handling and passenger comfort present in conventional suspension systems by enabling active chassis and wheel control. Öhlins Racing AB have developed a semi-active suspension technology known as CES, Continuously controlled Electronic Suspension, based on solenoid control valves which are integrated into specially designed hydraulic dampers, and are currently developing control and estimation sys...

  19. Cyber Incidents Involving Control Systems

    Robert J. Turk

    2005-10-01

    The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Management Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this

  20. Active Control of Long Bridges Using Flaps

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap is...... different flap configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  1. R&D Project Control System.

    Wilkinson, Gene L.

    The recurrence of problems in connection with research and development (R and D) activities supported by the Audio-Visual Center of Indiana University led to the development of a proposed control system. This paper lists those problems and examines the assumptions which must be met by the control system--that the Center will support all types of R…

  2. Control system for HIMAC injector

    A control system for HIMAC injector has been designed. The system consists of three mini-computers and many intelligent device controllers. The device controller is a single-board computer with a real time monitor and is installed in each device. Almost man-machine interactions for an operation of the injector system are performed by touch panels and rotary encoders. (author)

  3. Active Flow Control (AFC) and Insect Accretion and Mitigation (IAM) System Design and Integration on the Boeing 757 ecoDemonstrator

    Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.

    2016-01-01

    This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.

  4. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent

    Kura AU

    2013-03-01

    Full Text Available Aminu Umar Kura,1 Samer Hasan Hussein Al Ali,2 Mohd Zobir Hussein,3 Sharida Fakurazi,1,4 Palanisamy Arulselvan11Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 4Faculty of Medicine and Health Science, Pharmacology Unit, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: A new layered organic–inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl alanine (levodopa, intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nanocomposite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w. A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.Keywords: levodopa, layered double hydroxides, coprecipitation, sustained release

  5. A Digital Controller for Active Aeroelastic Controls

    Ueda, Tetsuhiko; MUROTA, Katsuichi; 上田, 哲彦; 室田, 勝一

    1989-01-01

    A high-speed digital controller for aeroelastic controls was designed and made. The purpose was to minimize adverse phase lag which is inevitably produced by the CPU time of digital processing. The delay deteriorates control performances on rather rapid phenomena like aircraft flutter. With fix-point operation the controller realized 417 microseconds of throughput time including the A/D and D/A conversion. This corresponds to a high sampling rate of 2.4kHz. The controller furnishes two channe...

  6. An adaptive active control for the modified Chua's circuit

    In this Letter, it is shown that a couple of the modified Chua's systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand. Furthermore, an adaptive active control approach is proposed based on Lyapunov stability theory to make the states of two identical Chua's systems with unknown constant parameters be asymptotically synchronized. In addition, the proposed adaptive active control method guarantees that the designed controller is independent to those uncertain parameters. Simulation results by using both active control and adaptive active control are provided, and the feasibility and effectiveness of the proposed adaptive active control are demonstrated

  7. Jefferson Lab Data Acquisition Run Control System

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes

  8. Improving industrial process control systems security

    Epting, U; CERN. Geneva. TS Department

    2004-01-01

    System providers are today creating process control systems based on remote connectivity using internet technology, effectively exposing these systems to the same threats as corporate computers. It is becoming increasingly difficult and costly to patch/maintain the technical infrastructure monitoring and control systems to remove these vulnerabilities. A strategy including risk assessment, security policy issues, service level agreements between the IT department and the controls engineering groups must be defined. In addition an increased awareness of IT security in the controls system engineering domain is needed. As consequence of these new factors the control system architectures have to take into account security requirements, that often have an impact on both operational aspects as well as on the project and maintenance cost. Manufacturers of industrial control system equipment do however also propose progressively security related solutions that can be used for our active projects. The paper discusses ...

  9. The development of the DAST I remotely piloted research vehicle for flight testing an active flutter suppression control system. Ph.D. Thesis. Final Report

    Grose, D. L.

    1979-01-01

    The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.

  10. Active control for performance enhancement of electrically controlled rotor

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  11. Active control for performance enhancement of electrically controlled rotor

    Lu Yang

    2015-10-01

    Full Text Available Electrically controlled rotor (ECR system has the potential to enhance the rotor performance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  12. DNA-based control of protein activity.

    Engelen, W; Janssen, B M G; Merkx, M

    2016-03-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  13. Networked control of microgrid system of systems

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  14. SPS : the control system

    CERN Neyrac Films

    1975-01-01

    English version. Part of the series of films produced by CERN about the SPS. "More than 10.000 things to control, 7,00 things to measure and 30,000 ? to survey, distributed over more than 10 square km. That was the problem which faced the controls group." Comments: images of control room, computer screens, and computer centre rather dark

  15. SRS control system upgrade requirements

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document

  16. Cooperatively active sensing system

    Aiming at development of a strong and flexible sensing system, a study on a sensing technology prepared with cooperativity, activity, and real time workability has been promoted. In the former period, together with preparation of plural moving robot group with real time processing capacity of a lot of sensor informations composing of platform, a parallel object direction language Eus Lisp effectively capable of describing and executing cooperative processing and action therewith was developed. And, it was also shown that capacity to adaptively act even at dynamic environment could be learnt experientially. And, on processing of individual sensor information, application of a photographing system with multiple resolution property similar to human visual sense property was attempted. In the latter period, together with intending of upgrading on adaptability of sensing function, by using moving robot group in center of a moving robot loaded with active visual sense, a cooperative active sensing prototype system was constructed to show effectiveness of this study through evaluation experiment of patrolling inspection at plant simulating environment. (G.K.)

  17. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  18. Refurbishment program of HANARO control computer system

    HANARO, an open-tank-in-pool type research reactor with 30 MW thermal power, achieved its first criticality in 1995. The programmable controller system MLC (Multi Loop Controller) manufactured by MOORE has been used to control and regulate HANARO since 1995. We made a plan to replace the control computer because the system supplier no longer provided technical support and thus no spare parts were available. Aged and obsolete equipment and the shortage of spare parts supply could have caused great problems. The first consideration for a replacement of the control computer dates back to 2007. The supplier did not produce the components of MLC so that this system would no longer be guaranteed. We established the upgrade and refurbishment program in 2009 so as to keep HANARO up to date in terms of safety. We designed the new control computer system that would replace MLC. The new computer system is HCCS (HANARO Control Computer System). The refurbishing activity is in progress and will finish in 2013. The goal of the refurbishment program is a functional replacement of the reactor control system in consideration of suitable interfaces, compliance with no special outage for installation and commissioning, and no change of the well-proved operation philosophy. HCCS is a DCS (Discrete Control System) using PLC manufactured by RTP. To enhance the reliability, we adapt a triple processor system, double I/O system and hot swapping function. This paper describes the refurbishment program of the HANARO control system including the design requirements of HCCS. (authors)

  19. Upgrading the BEPC control system

    The BEPC control system has been put into operation and operated normally since the end of 1987. Three years's experience shows this system can satisfy basically the operation requirements, also exhibits some disadvantages araised from the original centralized system architecture based on the VAX-VCC-CAMAC, such as slow response, bottle neck of VCC, less CPU power for control etc.. This paper describes the method and procedure for upgrading the BEPC control system which will be based on DEC net and DEC-WS, and thus intend to upgrade the control system architecture from the centralized to the distributed and improve the integral system performance. (author)

  20. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent. PMID:25052409

  1. Control of self-organizing nonlinear systems

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  2. Analytical Assessment of a Gross Leakage Event Within the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS)

    Holt, James M.; Clanton, Stephen E.

    2001-01-01

    Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.

  3. System calibration for air control of radioactive gases [contamination control

    Testing of the system for air contamination control at the RA reactor was done and calibrated by Ar41. This report contains the report on testing and calibration. This activity was necessary in order to achieve its performance with existing dosimetry system in the RA reactor building

  4. Jacket Substructure Fatigue Mitigation through Active Control

    Hanis, Tomas; Natarajan, Anand

    As offshore wind farms are being installed farther and in deeper waters offshore, new, and more sophisticated marine substructures such as jackets need to be used. Herein, a 10MW wind turbine mounted on a jacket sub structure at a mean water depth of 50 meters is investigated with regards to the...... fatigue design loads on the braces of the jacket. Since large wind turbines of 10MW rating have low rotor speeds (p), the modal frequencies of the sub structures approach 3p at low wind speeds, which leads to a modal coupling and resonance. Therefore an active control system is developed which provides...... sufficient structural damping and consequently a fatigue reduction at the substructure. The resulting reduction in fatigue design loads on the jacket structure based on the active control system is presented....

  5. Three axis attitude control system

    Studer, Philip A. (Inventor)

    1988-01-01

    A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.

  6. Active control of transmitted sound in buildings

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  7. The ATLAS Detector Control System

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  8. Control integral systems; Sistemas integrales de control

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  9. Framework for control system development

    Control systems being developed for the present generation of accelerators will need to adapt to changing machine and operating state conditions. Such systems must also be capable of evolving over the life of the accelerator operation. In this paper we present a framework for the development of adaptive control systems

  10. Control of a robotic hand using a tongue control system

    Johansen, Daniel; Cipriani, Christian; Popovic, Dejan B.;

    2016-01-01

    OBJECTIVE: The aim of this study was to investigate the feasibility of using an inductive tongue control system (ITCS) for controlling robotic/prosthetic hands and arms. METHODS: This work presents a novel dual modal control scheme for multi-grasp robotic hands combining standard EMG with the ITCS....... The performance of the ITCS control scheme was evaluated in a comparative study. Ten healthy subjects used both the ITCS control scheme and a conventional EMG control scheme to complete grasping exercises with the IH1 Azzurra robotic hand implementing five grasps. Time to activate a desired function...... or grasp was used as the performance metric. RESULTS: Statistically significant differences were found when comparing the performance of the two control schemes. On average, the ITCS control scheme was 1.15 seconds faster than the EMG control scheme, corresponding to a 35.4 % reduction in the...

  11. A telerobotic digital controller system

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  12. The GSI control system

    The GSI accelerator facility consists of an old linac and two modern machines, a synchrotron and a storage ring. It is operated from one control room. Only three operators at a time have to keep it running with only little assistance from machine specialists in daytime. So the control tools must provide a high degree of abstraction and modeling to relieve the operators from details on the device level. The program structures to achieve this are described in this paper. A coarse overview of the control architecture is given. (author)

  13. D0 Cryo System Control System Autodialer

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  14. Intelligent control-III: fuzzy control system

    During the last decade or so, fuzzy logic control (FLC) has emerged as one of the most active and fruitful areas of research and development. The applications include industrial process control to medical diagnostic and financial markets. Many consumer products using this technology are available in the market place. FLC is best suited to complex ill-defined processes that can be controlled by a skilled human operator without much knowledge of their underlying dynamics. This lecture will cover the basic architecture and the design methodology of fuzzy logic controllers. FLC will be strongly based on the concepts of fuzzy set theory, introduced in first lecture. Some practical applications will also be discussed and presented. (author)

  15. Active Spacecraft Potential Control Investigation

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  16. Asynchronous control for networked systems

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  17. Delays and networked control systems

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  18. Software for Embedded Control Systems

    Broenink, Jan F.; Hilderink, Gerald H.; Jovanovic, Dusko S.

    2001-01-01

    The research of our team deals with the realization of control schemes on digital computers. As such the emphasis is on embedded control software implementation. Applications are in the field of mechatronic devices, using a mechatronic design approach (the integrated and optimal design of a mechanical system and its embedded control system). The ultimate goal is to support the application developer (i.e. mechatronic design engineer) such that implementing control software according to ðo it t...

  19. Judicial control of administrative activity and advantages of reorganization of the juridical system in the Republic of Kosovo

    Florent Muçaj

    2016-01-01

    In the last part of the paper there are clear and consistent conclusions and significant recommendations relating to general views about judicial control, with particular emphasis on their practical implementation in the Republic of Kosovo and the way of adjustment with the reforms in the field of administrative justice which are at the beginnings of the implementation.

  20. Standardization of detector control systems

    Current and future detectors for high-energy and/or nuclear physics experiments require highly intelligent detector control systems. In order to reduce resources, the construction of a standardized template for the control systems based on the commercially available superviser control and data acquisition (SCADA) system has been proposed. The possibility of constructing this template is discussed and several key issues for evaluation of SCADA as the basis for such a template are presented. (author)

  1. Distributed control system for LEHIPA

    Accelerator Driven System (ADS) has spurred tremendous interest in developing high intensity proton accelerator and set challenging demands in terms of developing high current and high intensity proton accelerator. LEHIPA is the the first stage in the development of ADS purpose and portable (MS/ Windows and LINUX) Operator Interface for Low Energy High Intensity Proton Accelerator (LEHIPA) is designed and developed. This operator interface is already deployed in the field for control of Low Energy Beam Tube section of the LEHIPA. This paper discusses the salient points and features of the operator interface for LEHIPA. LEHIPA will have several subsystems. All subsystems will have their respective control and instrumentation system with required protection. All subsystems will be connected to a centralized control system. To meet the the requirement of phased development and various sub system integration the control system is a distributed system. The paper will describe the distributed control systems features and selected architecture for LEHIPA. (author)

  2. ON COMPLEX DYNAMIC CONTROL SYSTEMS

    CHENG Daizhan

    2003-01-01

    This paper presents some recent works on the control of dynamic systems, which have certain complex properties caused by singularity of the nonlinear structures, structure-varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.

  3. BWR startup and shutdown activity transport control

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 oF (

  4. The APS control system network

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the open-quotes Standard Model.close quotes The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions

  5. Different Predictive Control Strategies for Active Load Management in Distributed Power Systems with High Penetration of Renewable Energy Sources

    Zong, Yi; Bindner, Henrik W.; Gehrke, Oliver

    2013-01-01

    In order to achieve a Danish energy supply based on 100% renewable energy from combinations of wind, biomass, wave and solar power in 2050 and to cover 50% of the Danish electricity consumption by wind power in 2020, it requires more renewable energy in buildings and industries (e.g. cold stores...... strategies are able to achieve load shifting and enable end users to participate in market-based power systems, and thus profit from optimal consumption of energy in relation to price and supply of ancillary services in the power system, as well as improve grids with integration of high penetration of...

  6. Evaluating Multi-Input/Multi-Output Digital Control Systems

    Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek

    1994-01-01

    Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.

  7. Structural Control Systems Implemented in Civil Engineering

    Cristian Pastia

    2005-01-01

    Full Text Available Over the past three decades, a great interest has been generated by the use of protection systems to mitigate the effects of dynamic environmental hazards on civil engineering structures, such as earthquakes and strong wind. These control systems develop controllable forces to add or dissipate energy in a structure, or both, due to specific devices integrated with sensors, controllers and real – time process to operate. The paper includes the advantages of these technologies consisting of the following sections: 1 represents an introduction, 2 deals with passive control system, 3 regards some control techniques, 4 concerns hybrid control techniques, 5 contains semi – active control techniques, and 6 is dedicated to general conclusions.

  8. Hyperbaric Pressure Control System

    Berg, Brian; Skjørten, Anders; Nicolaysen, Jonas; Skarseth, Thor Ove; Carlstedt, Jonas

    2015-01-01

    The requirement specification for the project where changed from delivery of a fully working product to contain only the design of this system due to long lead times on some of the high-pressure hydraulic parts. Three of the students where already working for FMC before project start, where two of them had experience with hydraulic Subsea Systems. Our project model where changed during the project. We started out with a Waterfall model and ended up with an Evolutionary model

  9. Intelligent house control system

    Stražišar, Rok

    2008-01-01

    The thesis describes a smart house and the system that empowers it with intelligence. The goal of the thesis is to present the hardware and software involved and debate about the usability, pros and cons of such a system. The work addresses the smart house from several viewpoints: safety, comfort, economy, accessibility for people with special needs and affordability. Using smart house makes every day´s life more secure and comfortable, while it also enables independency to the people with sp...

  10. Robust power system frequency control

    Bevrani, Hassan

    2008-01-01

    Emphasizes the physical and engineering aspects of the power system frequency control design problem while providing a conceptual understanding of frequency regulation and application of robust control techniques. This book summarizes the author's research outcomes, contributions and experiences with power system frequency regulation.

  11. Classifications of Linear Controlled Systems

    Li, Jing

    2008-01-01

    This paper is devoted to a study of linear, differential and topological classifications for linear controlled systems governed by ordinary differential equations. The necessary and sufficient conditions for the linear and topological equivalence are given. It is also shown that the differential equivalence is the same as the linear equivalence for the linear controlled systems.

  12. Controlling systems of cogeneration blocks

    In this article the main parts of cogeneration unit control system are described. Article is aimed on electric power measurement with electricity protection as with temperature system regulation. In conclusion of the article, the control algorithm with perspective of cogeneration solve is indicated. (authors)

  13. Optimal Control of Mechanical Systems

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  14. Performance of Networked Control Systems

    Yingwei Zhang

    2013-01-01

    Full Text Available Data packet dropout is a special kind of time delay problem. In this paper, predictive controllers for networked control systems (NCSs with dual-network are designed by model predictive control method. The contributions are as follows. (1 The predictive control problem of the dual-network is considered. (2 The predictive performance of the dual-network is evaluated. (3 Compared to the popular networked control systems, the optimal controller of the new NCSs with data packets dropout is designed, which can minimize infinite performance index at each sampling time and guarantee the closed-loop system stability. Finally, the simulation results show the feasibility and effectiveness of the controllers designed.

  15. Active control of electric potential of spacecraft

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  16. Decentralized control of complex systems

    Siljak, Dragoslav D

    2011-01-01

    Complex systems require fast control action in response to local input, and perturbations dictate the use of decentralized information and control structures. This much-cited reference book explores the approaches to synthesizing control laws under decentralized information structure constraints.Starting with a graph-theoretic framework for structural modeling of complex systems, the text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and t

  17. Data Acquisition and Control Systems Laboratory

    Holland, Randy; Jensen, Scott; Burrel, Terrence; Spooner, Richard

    2002-01-01

    The Data Acquisition and Control Systems (DACS) Laboratory is a facility at Stennis Space Center that provides an off test-stand capability to develop data-acquisition and control systems for rocket-engine test stands. It is also used to train new employees in state-of-the-art systems, and provides a controlled environment for troubleshooting existing systems, as well as the ability to evaluate the application of new technologies and process improvements. With the SSC propulsion testing schedules, without the DACS Laboratory, it would have been necessary to perform most of the development work on actual test systems, thereby subjecting both the rocket-engine testing and development programs to substantial interference in the form of delays, restrictions on modifications of equipment, and potentially compromising software configuration control. The DACS Laboratory contains a versatile assortment of computer hardware and software, digital and analog electronic control and data-acquisition equipment, and standard electronic bench test equipment and tools. Recently completed Control System development and software verification projects include support to the joint NASA/Air Force Integrated Powerhead Demonstration (IPD) LOX & LH2 PreBurner and Turbopump ground testing programs. In other recent activities, the DACS Laboratory equipment and expertise have supported the off-stand operation of high-pressure control valves to correct valve leak problems prior to installation on the test stand. Future plans include expanding the Laboratory's capabilities to provide cryogenic control valve characterization prior to installation, thereby reducing test stand activation time.

  18. ITER prototype fast plant system controller

    ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.

  19. ITER prototype fast plant system controller

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Rodrigues, A.P.; Correia, M.; Batista, A. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Vega, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Ruiz, M.; Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Wallander, A.; Utzel, N.; Makijarvi, P.; Simrock, S. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Neto, A.; Alves, D.; Valcarcel, D.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Lousa, P.; Piedade, F.; Fernandes, L. [INOV, Lisbon (Portugal)

    2011-10-15

    ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.

  20. Integrated control system for LEHIPA

    The Low Energy High Intensity Proton Accelerator (LEHIPA) is a 20 MeV 30 mA proton accelerator which will be achieved in multiple stages. LEHIPA consists of several sub systems/devices located at different positions of the beam path which includes ION source, RF Power, RF Protection Interlock System, Low Conductivity Water plant, Low Level RF Control Systems, Vacuum System, Beam Diagnostics and Beam Line Devices. All these subsystems have their own local control systems (LCS) which will coordinate the operation of the corresponding subsystem. The control system for LEHIPA is thus being designed as a Distributed Control System with different teams developing each LCS. The control system will assist the operator to achieve a beam of desired characteristics by interacting with various sub systems of the accelerator in a seamless manner, protect the various parts of machine by generating the necessary interlocks, keep track of various parameters monitored periodically by suitably archiving them, alarms annunciation and trouble shoot from the control room. This paper describes approach to system design of ICS. (author)

  1. Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

    Roman, Monsi C.; Weir, Natalee E.; Wilson, Mark E.; Pyle, Barry H.

    2006-01-01

    A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUS) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 +/- 0.5. Chemical changes occurred after on-orbit implementation including a decrease to pH 8.4 due to the diffusion of carbon dioxide through the Teflon hoses, an increase in nickel ions due to general corrosion of heat exchanger braze coatings, a decrease in phosphate concentration due to precipitation of nickel phosphate, and the rapid disappearance of silver ions due to deposition on hardware surfaces. Also associated with the coolant chemistry changes was an increase in planktonic microorganisms from less than 100 colony forming units (CFU) per 100 ml to approximately 1 million CFU per 100 ml. Attachment and growth of microorganisms to the system surfaces (biofilm) was suspected due to the levels of planktonic microorganisms in the coolant. Biofilms can reduce coolant flow, reduce heat transfer, amplify degradation of system materials initiated by chemical corrosion, and enhance mineral scale formation.

  2. Active Control of Fan Noise

    Nobuhiko YAMASAKI; Hirotoshi TAJIMA

    2008-01-01

    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF)and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  3. Development of Arduino based wireless control system

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  4. Mobile robot control system

    Jiruška, Jiří

    2015-01-01

    This thesis deals with differential drive wheeled mobile robot which is running under a real-time operating system. Introductory part is focused on theoretical description of robot and its original firmware. Practical part deals with creating software and implementation several methods that allow following the line by robot using reflectance sensor array. Significant part of this thesis is focused on design and implementation of communication protocol, based on IEEE 802.15.4 which provides co...

  5. Active interaction control for civil structures

    Wang, Luo-Jia

    1997-01-01

    This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing th...

  6. JT-60 plasma control system

    JT-60 plasma control can be performed by the supervisory controller, the measurement system and actuators such as the poloidal field coil power supplies, gas injectors, neutral beam injection (NBI) heating system and radio frequency (RF) heating system. One of the most important characteristics of this system is a perfect digital control one composed of mini-computers, fast array processors and CAMAC modules, and it has large flexibility and few troubles to adjust the system. This system started to be operated in April 1985, after the six-year-long design, construction and testing, and have been operated and improved many times for two years. In this paper, the final system specification and its performance are presented aiming at the technological aspect of hardware and software. In addition, and experienced troubles are also presented. (author)

  7. Control of Solar Energy Systems

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  8. A design study of a trigger-less signal reconstruction, an active mirror control and a light collecting system in the framework of the Cherenkov Telescope Array (CTA)

    Full text: The Physics Institute at the University of Zuerich is involved in the general design study of the future Cherenkov Telescope Array (CTA). The feasibility studies include the prototyping of Active Mirror Control (AMC) devices, which are used to align the single mirror segments of a Cherenkov telescope. Together with our colleagues from the ETH Zuerich, a light collecting system for the telescope camera, composed of solid Plexiglas cones, is designed and investigated in detail. Furthermore, our efforts are dedicated to a trigger-less signal reconstruction method using cross-correlation algorithms. Detailed software-based testing has already been performed and hardware implementation is part of the future plans. This talk will present the basics and current results of the different topics. (author)

  9. Brain-Activity-Driven Real-Time Music Emotive Control

    Giraldo, Sergio; Ramirez, Rafael

    2013-01-01

    Active music listening has emerged as a study field that aims to enable listeners to interactively control music. Most of active music listening systems aim to control music aspects such as playback, equalization, browsing, and retrieval, but few of them aim to control expressive aspects of music to convey emotions. In this study our aim is to enrich the music listening experience by allowing listeners to control expressive parameters in music performances using their perceived emotional stat...

  10. Self-Tuning Active Vibration Control of Flexible Beam Structures

    M.O. Tokhi; Hossain, M A

    1994-01-01

    This paper presents the design and performance evaluation of an adaptive active control mechanism for vibration suppression in flexible beam structures. A cantilever beam system in transverse vibration is considered. First order control finite difference methods are used to study the behaviour of the beam and develop a suitable test and verification platform. An active vibration control algorithm is developed within an adaptive control framework for broadband cancellation of vibration along t...

  11. Upgrading the ATLAS control system

    Heavy-ion accelerators are tools used in the research of nuclear and atomic physics. The ATLAS facility at the Argonne National Laboratory is one such tool. The ATLAS control system serves as the primary operator interface to the accelerator. A project to upgrade the control system is presently in progress. Since this is an upgrade project and not a new installation, it was imperative that the development work proceed without interference to normal operations. An additional criteria for the development work was that the writing of additional ''in-house'' software should be kept to a minimum. This paper briefly describes the control system being upgraded, and explains some of the reasons for the decision to upgrade the control system. Design considerations and goals for the new system are described, and the present status of the upgrade is discussed

  12. ISABELLE control system: design concepts

    ISABELLE is a Department of Energy funded proton accelerator/storage ring being built at Brookhaven National Laboratory (Upton, Long Island, New York). It is large (3.8 km circumference) and complicated (approx. 30,000 monitor and control variables). It is based on superconducting technology. Following the example of previous accelerators, ISABELLE will be operated from a single control center. The control system will be distributed and will incorporate a local computer network. An overview of the conceptual design of the ISABELLE control system will be presented

  13. Traction Control System for Motorcycles

    Massimo Conti

    2009-01-01

    Full Text Available Traction control is a widely used control system to increase stability and safety of four wheel vehicles. Automatic stability control is used in the BMW K1200R motorcycle and in motoGP competition, but not in other motorcycles. This paper presents an algorithm and a low-cost real-time hardware implementation for motorcycles. A prototype has been developed, applied on a commercial motorcycle, and tested in a real track. The control system that can be tuned by the driver during the race has been appreciated by the test driver.

  14. Assessment of the transcription levels for the complement activation control system in eutopic endometrium in women with two or more consecutive miscarriages of unknown etiology.

    Mateusz Mikołajczyk

    2010-11-01

    Full Text Available Human endometrium, deciuda and placenta have been shown to express factors that inhibit the complement activation cascade - decay-accelerating factor (DAF, membrane cofactor protein (MCP and the C3 complement component. In the following study we have analyzed the transcripts levels for DAF, MCP and heparin-binding epidermal growth factor-like growth factor (HB-EGF, the C3 complement component and receptor for vascular endothelial growth factor (VEGFR1 as markers of endometrial unbalance between factors activating the complement system in women with consecutive miscarriages. Study enrolled 30 women with at least two consecutive miscarriages, and 19 healthly women, that comprised the control group. RNA was isolated from endometrial samples. Transcripts levels of DAF and MCP was higher in women with consecutive miscarriages compared to controls, 0.78 vs 5.08 (p<0.001 and 0.25 vs 0.17 (p=0.001 respectively. In consecutive miscarriages group, DAF and MCP expression was correlated with the C3 expression, with r=0.60; p<0.001 and r= 0.40; p=0.03 respectively. Correlation between DAF and C3 was also noted in controls, 0.70; p=0.001. In women with two or more consecutive miscarriages the analysis proved higher expression of genes that encode proteins that inhibit the complement cascade. Further studies are needed to confirm that this might be a reaction to increased presence of the complement factors, which like C3 that are synthesized in the endometrium.

  15. Emission control system

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  16. Structural interaction with control systems

    Noll, R. B.; Zvara, J.

    1971-01-01

    A monograph which assesses the state of the art of space vehicle design and development is presented. The monograph presents criteria and recommended practices for determining the structural data and a mathematical structural model of the vehicle needed for accurate prediction of structure and control-system interaction; for design to minimize undesirable interactions between the structure and the control system; and for determining techniques to achieve the maximum desirable interactions and associated structural design benefits. All space vehicles are treated, including launch vehicles, spacecraft, and entry vehicles. Important structural characteristics which affect the structural model used for structural and control-system interaction analysis are given.

  17. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  18. A reduced energy supply strategy in active vibration control

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  19. Linux in Industrial Control Systems

    Riesco, T

    2001-01-01

    Today the Linux operating system has become a real alternative for industrial control systems. Linux supports all layers in control systems starting with Real-Time or embedded systems for data acquisition, following with treatment, storage, communication and data adaptation, and finally, with supervision and user interfaces. In the last years the Linux development has grown being incorporated in several industrial systems demonstrating high performance, availability and stability for complex processes in chemical, automobile or petrol industries. In many of these industries Linux architectures have been tested and validated successfully. The new CERN policy supporting Linux, as well as the emergence of cheap and robust Linux solutions, motivates its implementation in our safety control and supervision systems in the near future.

  20. Microglial control of neuronal activity

    Catherine eBéchade

    2013-03-01

    Full Text Available Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

  1. Documenting control system functionality for digital control implementations

    In past CANDU designs, plant control was accomplished by a combination of digital control computers, analogue controllers, and hardwired relay logic. Functionality for these various control systems, each using different hardware, was documented in varied formats such as text based program specifications, relay logic diagrams, and other various specification documents. The choice of formats was influenced by the hardware used and often required different specialized skills for different applications. The programmable electronic systems in new CANDU designs are realized in a manner consistent with latest international standards (e.g., the IEC 61513 standard). New CANDU designs make extensive use of modern digital control technology, with the benefit that functionality can be implemented on a limited number of control platforms, reducing development and maintenance cost. This approach can take advantage of tools that allow the plant control system functional and performance requirements to be documented using graphical representations. Modern graphical methods supplemented by information databases can be used to provide a clear and comprehensive set of requirements for software and system development. Overview diagrams of system functionality provide a common understanding of the system boundaries and interfaces. Important requirements are readily traced through the development process. This improved reviewability helps to ensure consistency with the safety and and production design requirements of the system. Encapsulation of commonly used functions into custom-defined function blocks, such as typical motor control centre interfaces, process interlocks, median selects etc, eases the burden on designers to understand and analyze the detailed functionality of each instance of use of this logic. A library of encapsulated functions will be established for complex functions that are reused in the control logic development. By encapsulation and standardisation of such

  2. Integrated control system and method

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  3. System Identification and Robust Control

    Tøffner-Clausen, S.

    uncertainty structures permitted by m is definitely much more flexible than those used in H inifity. Unfortunately m synthesis is a very difficult mathematical problem which is only well developed for purely complex perturbation sets. In order to develop our main result we will unfortunately need to...... these uncertainty ellipses may be represented or, more correct, approximated with a mixed complex and real perturbation set. This is the link needed to combine the results in robust control and system identification into a step-by-step design philosophy for synthesis of robust control systems for scalar......The main purpose of this work is to develop a coherent system identification based robust control design methodology by combining recent results from system identification and robust control. In order to accomplish this task new theoretical results will be given in both fields. Firstly, however, an...

  4. Hybrid systems controller design methodology

    Pluska, Michal; Sinclair, David

    2010-01-01

    peer-reviewed Around ninety percent of vehicle innovations are driven mainly by electronics. The software implementing control algorithms combines the sensor values and calculates some meaningful actuator signals. On the other hand software in the vehicle can be seen as a part of a hybrid system. The hybrid system is a dynamic system that can have both continuous and discrete dynamic behaviour, its mean a system is described by both a differential equation and a difference equation. Moreov...

  5. Certifying controls and systems software

    Feron, Eric; Roozbehani, Mardavij

    2007-01-01

    Software system certification presents itself with many challenges, including the necessity to certify the system at the level of functional requirements, code and binary levels, the need to chase down run-time errors, and the need for proving timing properties of the eventual, compiled system. This paper illustrates possible approaches for certifying code that arises from control systems requirements as far as stability properties are concerned. The relative simplicity of the certification p...

  6. Vibration control of active structures an introduction

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  7. Computer control system in RIBLL

    The Computer Control System applied in the Radioactive Ion Beam Line Lanzhou (RIBLL) is introduced. Accurate motion and position of ion beam diagnosing devices and detecting elements controlled by computer are emphatically described. It consists of the characteristics and working principle of step motor model 86BYG450B-02. Its computer interface circuit, and controlling program flow coded in Microsoft Visual C++ based on Windows NT or Windows 95 are introduced as well

  8. Robust power system frequency control

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  9. Developing Internal Controls through Activities

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  10. The ILC global control system

    The scale and performance parameters of the ILC require new thinking in regards to control system design. This design work has begun quite early in comparison to most accelerator projects, with the goal of uniquely high overall accelerator availability. Among the design challenges are high control system availability, precision timing and rf phase reference distribution, standardizing of interfaces, operability, and maintainability. We present the current state of the design and take a prospective look at ongoing research and development projects.

  11. NPL superconducting Linac control system

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  12. Contamination Control: a systems approach

    Donck, J.C.J. van der

    2010-01-01

    Contamination influences a wide variety of industrial processes. For complex systems, contamination control, the collective effort to control contamination to such a level that it guarantees or even improves process or product functionality, offers a way for finding workable solutions. Central in th

  13. Controller modification applied for active fault detection

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... modify the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  14. The ATLAS Detector Control System

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  15. Upgrade plan for HANARO control computer system

    A microprocessor based digital control system, the Multi-Loop Controller (MLC), which was chosen to control HANARO, was introduced to the market in early '80s and it had been used to control petrochemical plant, paper mill and Slowpoke reactor in Canada. Due to the development in computer technology, it has become so outdated model and the production of this model was discontinued a few years ago. Hence difficulty in acquiring the spare parts is expected. To achieve stable reactor control during its lifetime and to avoid possible technical dependency to the manufacturer, a long-term replacement plan for HANARO control computer system is on its way. The plan will include a few steps in its process. This paper briefly introduces the methods of implementation of the process and discusses the engineering activities of the plan

  16. Control and Estimation of Distributed Parameter Systems

    Kappel, F; Kunisch, K

    1998-01-01

    Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.

  17. Magnetic Levitation Technique for Active Vibration Control

    Hoque, Emdadul; Mizuno, Takeshi

    2010-01-01

    A zero-power controlled magnetic levitation system has been presented in this chapter. The unique characteristic of the zero-power control system is that it can generate negative stiffness with zero control current in the steady-state which is realized in this chapter. The detail characteristics of the levitation system are investigated. Moreover, two major contributions, the stiffness adjustment and nonlinear compensation of the suspension system have been introduced elaborately. Often, ther...

  18. SYSTEMIC BLOOD ACTIVATION DURING AND AFTER AUTOTRANSFUSION

    SCHONBERGER, JPAM; VANOEVEREN, W; BREDEE, JJ; EVERTS, PAM; DEHAAN, J; WILDEVUUR, CRH

    1994-01-01

    To evaluate the extent of shed blood activation in two autotransfusion systems and the effect of circulating blood activation upon autotransfusion, we performed a prospective study in 18 patients undergoing internal mammary artery bypass operation and a control group of 10 patients. The autotransfus

  19. Nova laser alignment control system

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  20. Electromechanical propellant control system actuator

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.