WorldWideScience

Sample records for active coated nano-particle

  1. Electromagnetics of active coated nano-particles

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t...

  2. Electromagnetics of active coated nano-particles

    Arslanagic, Samel

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, the...... optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion....

  3. Directive properties of active coated nano-particles

    Arslanagic, Samel; Ziolkowski, W.

    2012-01-01

    The directivities of the fields radiated by a variety of cylindrical and spherical active coated nano-particles, which are excited by their respective sources of illumination at optical frequencies, are investigated. Particular attention is devoted to the influence of the source location and...

  4. Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole — resonance and transparency effects

    Arslanagic, Samel; Ziolkowski, Richard W.

    2010-01-01

    The present work investigates the optical properties of active coated spherical nano-particles excited by an arbitrarily located electric Hertzian dipole. The nano-particles are made of specific dielectric and plasmonic materials. The spatial near-field distribution as well as the normalized radi......-radiating/transparent states of the active coated nano-particle are identified. Implications of both the resonant and non-radiating states on the previously proposed localized sensors based on the active coated nano-particle will also be considered here....

  5. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations are...

  6. Cylindrical active coated nano-particles excited by electric and magnetic line sources

    Arslanagic, Samel; Liu, Y.; Malureanu, Radu;

    2011-01-01

    Cylindrical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be an electric or a magnetic line current, while three different plasmonic...

  7. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  8. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu; Ziolkowski, R. W.

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...... different plasmonic materials are employed for the nano-shells, namely silver, gold and copper....

  9. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Ziolkowski, Richard W.; Radu Malureanu; Samel Arslanagic; Yan Liu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced ...

  10. Coated nano-particle jamming of quantum emitters

    Arslanagic, Samel; Ziolkowski, Richard W.

    2012-01-01

    Spherical active coated nano-particles are examined analytically and numerically in the presence of one, two or four quantum emitters (electric Hertzian dipoles). The ability of the coated nano-particle to effectively cloak the emitters to a far-field observer is reported. This offers an...

  11. Stacked dipole line source excitation of active nano-particles

    Arslanagic, Samel

    This work investigates electromagnetic properties of cylindrical active coated nano-particles excited by a stac- ked electric dipole line source. The nano-particles consist of a silica nano-core, layered by silver, gold, or copper nano-shell. Attention is devoted to the influence of the source...... location and dipole orientation, the gain constant, and the nano-particle material composition on the electromagnetic field distributions and radiated powers. The results are contrasted to those for the magnetic line source illumination of the nano-particles....

  12. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu; Ziolkowski, Richard W.

    2011-01-01

    well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold......, and copper) are employed and compared for the nano-shell layers....

  13. A comparative study of resonant effects in two-dimensional active coated nano-particles of circular, polygonal, and elliptical shapes

    B.-Jørgensen, Mikkel; Kaminski, Piotr Marek; Ziolkowski, Richard W.;

    and plasmonic structures. In regards to the latter, extensive analytical and numerical investigations were conducted on the theoretical designs of nano-antennas by use of passive and active coated nano-particles (CNPs) of various shapes and excitations. It was demonstrated that specifically designed active CNPs...

  14. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    Magnetic nano particles of Fe3O4 coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe2+ and Fe3+ ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe3O4 having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe3O4 particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe3O4 particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm

  15. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S. [Pillai’s Institute of Information Technology, Engineering, Media Studies and Research, Dr. K. M. Vasudevan Pillai’s Campus, New Panvel, 410 206 (India)

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  16. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  17. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field

  18. Jointing of Coated Conductors by Using Nano-particle Metal Pastes

    Nakanishi, Tsuyoshi; Machi, Takato; Izumi, Teruo; Teranishi, Ryo; Kato, Tomohiro; Kato, Takeharu; Hirayama, Tsukasa

    Development of a jointing technique of coated conductors is important for all applications, such as superconducting magnets, cables, etc. Low resistance jointing techniques by means of silver diffusion [1] and for superconducting joints[2] have been reported so far. Since these processes were carried out at higher temperatures than the O2 annealing temperature for appropriate carrier doping to the REBa2Cu3O7-d (REBCO) crystals and resulted in oxygen deficiency in the REBCO crystals, long time O2 annealing was required for compensation of this oxygen deficiency. Because the long time and high temperature post annealing is an inappropriate process as on-site technology, solder jointing technology has been widely accepted, in general, for practical applications. However, the resistance of the solder joint is 50 - 100 nΩ, and then the Joule heat generation in the joint region is a serious problem and must be solved. Consequently, we have studied a new jointing technique by using the pastes containing of silver or gold nano-particles. Because the Ic value of GdBCO was deteriorated with higher temperature heat treatment, we have tried to develop a jointing technology with the low temperature (below 200°C). We used the nano-particle metal pastes (∼5 nm) which contained dispersants around the chemically active surface of nano-particles and dissociates at low temperatures and achieved the low resistance joint (∼ 3nΩ, 10 x 160 mm2, 77 K) as well as no Ic degradation without O2 post annealing.

  19. Microstructure and Oxidation Behaviors of Nano-particles Strengthened NiCoCrAlY Cladded Coatings on Superalloys

    WANG Hongyu; ZUO Dunwen; CHEN Xinfeng; YU Shouxin; GU Yuanzhi

    2010-01-01

    Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.

  20. In vitro biological performance of nano-particles on the surface of hydroxyapatite coatings

    The biocompatibility of a kind of heat-treated bilayer hydroxyapatite (HA) coatings with nano-particles was investigated, mainly in terms of the immersion in simulated body fluid (SBF) and osteoblast adhesion. Scanning electron microscopy (SEM) was used to observe the morphology of coatings and cellular adhesion. The phases present in the coatings were determined by X-ray diffraction (XRD). Calcium ion (Ca2+) concentration in SBF was measured by Atomic absorption spectrophotometer. The results show nano-HA heat-treated at 650 deg. C for 0.5 h (BBCs) is comparatively stable during immersion in SBF and favor of the adhesion of osteoblasts. Cellular filopodia adhere firmly to the nano-particles and stretch in various direction

  1. In vitro biological performance of nano-particles on the surface of hydroxyapatite coatings

    Chen, Y. M.; Xi, T. F.; Lv, Y. P.; Zheng, Y. D.

    2008-11-01

    The biocompatibility of a kind of heat-treated bilayer hydroxyapatite (HA) coatings with nano-particles was investigated, mainly in terms of the immersion in simulated body fluid (SBF) and osteoblast adhesion. Scanning electron microscopy (SEM) was used to observe the morphology of coatings and cellular adhesion. The phases present in the coatings were determined by X-ray diffraction (XRD). Calcium ion (Ca 2+) concentration in SBF was measured by Atomic absorption spectrophotometer. The results show nano-HA heat-treated at 650 °C for 0.5 h (BBCs) is comparatively stable during immersion in SBF and favor of the adhesion of osteoblasts. Cellular filopodia adhere firmly to the nano-particles and stretch in various direction.

  2. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10∼40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  3. Influence of active nano particle size and material composition on multiple quantum emitter enhancements: Their Enhancement and Jamming Effects

    Arslanagic, Samel; Ziolkowski, Richard W.

    2014-01-01

    active coated nano-particles are examined here theoretically with regard to their ability to effectively enhance or jam the responses of quantum emitters, e.g., fluorescing molecules, and nano- antennas to an observer located in their far-field regions. The investigated spherical particles consist of a...... gain-impregnated silica nano-core covered with a nano-shell of a specific plasmonic material. Attention is devoted to the influence of the over-all size of these particles and their material composition on the obtained levels of active enhancement or jamming. Silver, gold and copper are employed as...... their nano- shells. The over-all diameters of the investigated coated nano-particles are taken to be 20 nm, 40 nm, and 60 nm, while maintaining the same ratio of the core radius and shell thickness. It is shown that the jamming levels, particularly when several emitters are present, are significantly...

  4. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    Sarbjeet Singh Gujral

    2014-12-01

    Full Text Available Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-particles were done using UV-Visible spectroscopy and Fourier- Transform infrared spectroscopy. Antimicrobial activity of silver nano-particles prepared using aqueous neem extract was investigated using disc diffusion method. Result: UV- Vis spectroscopy of prepared nano-particles was done which gave a peak at about 550 nm for gold nano-particles and around 430 nm for silver nano-particles. FTIR of collected nano-particles gave an idea about the type of bio-molecules which helped in the reduction of auric and silver salts into corresponding nano-particles. Anti-microbial activity of silver nano-particles showed that the nano-particles have better anti-microbial activity than 2% silver nitrate solution (kept as standard when experiments were performed under similar conditions. Conclusion: Gold and silver nano-particles were successfully synthesized using greener approach and anti-microbial activity of silver nano-particles prepared using aqueous neem extract was estimated against 2% AgNO3 solution. Nano-particles gave better anti-microbial activity than Silver nitrate solution.

  5. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  6. Experimental Investigation of Bubble Dynamics in Nucleate Pool Boiling for TiO2 nano particle coated surface

    Enhancement of CHF of heater in the nano-fluid or nano-particle coated surface in the fresh water has been intensively studied. It was known that the wettability change and formation of the micro-porous structure on the nano-particle coated heater surface cause CHF enhancement. These changes on the heater surface will affect bubble departure dynamics but studies on the bubble dynamics on the nano-particle coated surface are rare. Therefore, the present study is performed to measure the bubble departure characteristics experimentally and to find one of reasons of CHF enhancement. Zuber correlated the multiplication of the bubble diameter and departure frequency as the drift velocity which appear again in his CHF correlation: fD = 0.092m/ s for the boiling water on the copper heater at atmospheric pressure. However, Ivey categorized three distinguished region based on the dominant physics: fD3/4 = 0.44 for the small bubbles from 0.2 to 0.5cm, fD1/2 = 0.90g1/2 for the mushroom like large bubble (D > 0.5cm) but for the thermal region fD2 = consant . All of these correlations are applicable to the bare heater on the fresh water not for the bare heater in the nano fluid or nano-particle coated heater in the fresh water. Therefore, in the present study, we measured bubble departure diameter and frequency for both bare surface heater and TiO2 nano-particle coated heater to explain partly why CHF of nano-particle coated surface is enhanced in term of macrolayer under the mushroom bubble

  7. Synthesis, in-situ dispersion and characterization of ZrO2 nano-particles coated with pentacene

    Full text: Stable suspensions of pentacene functionalized ZrO2 nano-particles were synthesized using a microwave plasma process. The particles were dispersed in-situ in ethylene glycol. The formation of coated particles with small cores and a well defined size in the range of 3-5 nm was shown by x-ray diffraction. In difference to resublimed pure pentacene, suspensions of the coated nano-particles remained stable for weeks, as confirmed by the observation of a small aggregate size in dynamic light scattering. (author)

  8. To see or not to see: Imaging surfactant coated nano-particles using HIM and SEM

    Nano-particles are of great interest in fundamental and applied research. However, their accurate visualization is often difficult and the interpretation of the obtained images can be complicated. We present a comparative scanning electron microscopy and helium ion microscopy study of cetyltrimethylammonium-bromide (CTAB) coated gold nano-rods. Using both methods we show how the gold core as well as the surrounding thin CTAB shell can selectively be visualized. This allows for a quantitative determination of the dimensions of the gold core or the CTAB shell. The obtained CTAB shell thickness of 1.0 nm–1.5 nm is in excellent agreement with earlier results using more demanding and reciprocal space techniques. - Author-Highlights: • CTAB coated gold nano-rods were imaged using high resolution imaging tools. • Selective imaging of either the gold core or CTAB shell is possible with HIM and SEM. • CTAB shell thickness measured using HIM and SEM agrees well with literature values

  9. Green synthesis, Characterization and anti microbial activity of silver nano particles –Review Paper

    Seeram. Hariprasad

    2015-10-01

    Full Text Available The exploitation of various plant materials for the biosynthesis of silver nano particles is considered a green technology. Because it does not involve any harmful chemicals. Nanotechnology field is one of the most attractive researches. The field of nanotechnology is applied to bio materials. This review focuses on the green synthesis of silver nanoparticles using various plant sources. A detailed study on the reduction of silver ions to silver nanoparticles from medical plant leaves extract were demonstrated with a brief experimental procedure. Characterization of the synthesized nanoparticles performed through UV spectroscopy, Fourier Transform Infra Red spectroscopy analysis, X-Ray Diffraction analysis, Scanning Electron Microscopy and Transmission Electron Microscopy. This review mainly focus on anti microbial activities of synthesized silver nano particles.

  10. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al4C3 and Mg2Si phases. • Al4C3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al4C3 and Mg2Si in the joints. The Al4C3 performed as nucleating agents for α-Mg and the dispersed Mg2Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg17Al12, Mg2Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  11. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl4-C3H6-H2-Ar source. Zirconium tetrachloride (ZrCl4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm3 by Archimedes' principle.

  12. The Design and Simulated Performance of a Coated Nano-Particle Laser

    Gordon, J A; Gordon, Joshua A.; Ziolkowski, Richard W.

    2006-01-01

    The optical properties of a concentric nanometer-sized spherical shell comprised of an (active) 3-level gain medium core and a surrounding plasmonic metal shell are investigated. Current research in optical metamaterials has demonstrated that including lossless plasmonic materials to achieve a negative permittivity in a coated nano-sized spherical shell particle can lead to novel optical properties such as resonant scattering as well as transparency or invisibility. However, in practice, plasmonic materials have high losses at optical frequencies. It is observed that with the introduction of active materials, the intrinsic absorption in the plasmonic shell can be overcome and new optical properties can be observed in the scattering and absorption cross-sections of these coated nano-sized spherical shell particles. In addition, a "super" resonance is observed with a magnitude that is 10^3 greater than that for a tuned, resonant passive nano-sized coated spherical shell. This observation suggests the possibilit...

  13. Green synthesis, Characterization and anti microbial activity of silver nano particles –Review Paper

    Seeram. Hariprasad; Santhosh Kumar. J

    2015-01-01

    The exploitation of various plant materials for the biosynthesis of silver nano particles is considered a green technology. Because it does not involve any harmful chemicals. Nanotechnology field is one of the most attractive researches. The field of nanotechnology is applied to bio materials. This review focuses on the green synthesis of silver nanoparticles using various plant sources. A detailed study on the reduction of silver ions to silver nanoparticles from medical plant le...

  14. Gold nano-particles fixed on glass

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above Tg of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  15. Nano-particles

    Nano-particles (N.P.) are structures comprising from some hundred to some thousand atoms. Owing to their size (1 to 100 nanometers), the physical and chemical properties of these nano-objects differ from those of classical materials. They cover a wide development area, which includes medical research: they can be classified into two major groups, organic N.P. (liposomes, polymers N.P., carbon nano tubes, fullerenes) and inorganic N.P. (quantum dots, magnetic N.P., Raman probes). N.P. can be conceived to act as a drug delivery system (therapeutic), imaging probe (diagnostic) or both (theranostic). We report recent data from scientific literature and describe main N.P. within medical area, their state of development, and the limited knowledge of their toxicity in human being. (author)

  16. First principles study of CO reactivity on metallic nano particles

    Lindberg, Vanja

    2007-01-01

    The activity of a surface is determined by the local electronic structure. When nano particles are adsorbed, the catalytic properties will change. Surfaces with adsorbed nano particles often show a significantly higher chemical reactivity than the clean counterpart. Gold, for instance, shows an extra high activity towards many reactions, such as low-temperature catalytic combustion, partial oxidation of hydrocarbons and CO oxidation when dispersed as ultra-fine particles on metal oxide surfac...

  17. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    Highlights: → The influence of Al2O3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al2O3 is studied on the DC and PC coating thicknesses. → The influence of Al2O3 is studied on wear resistance. → The effect of Al2O3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al2O3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  18. Study on the Mechanical Properties of Heat-Treated Electroless NiP Coatings Reinforced with Al2O3 Nano Particles

    Karthikeyan, S.; Vijayaraghavan, L.; Madhavan, S.; Almeida, A.

    2016-05-01

    This work reports the effects of electroless co-deposition of Al2O3 nanoparticles and NiP to obtain a NiP-Al2O3 coating on the structure and mechanical properties of the composite coatings. The effects of annealing heat treatments at 373 K, 473 K, 573 K, and 673 K (100 °C, 200 °C, 300 °C, and 400 °C) on the structure and properties of the coatings were evaluated. The as-deposited coatings are a mixture of crystalline and amorphous phases that tend to crystallize during heat treatment. Heat treatment at higher temperatures causes the precipitation of the Ni3P phase. The mechanical properties of as-deposited and heat-treated NiP-Al2O3 coatings were evaluated using depth-sensing indentation tests performed at loads of 200 mN. The incorporation of Al2O3 nanoparticles induces strengthening of the NiP coating by dispersion. Heat treatment of the NiP-Al2O3 coatings induced crystallization of the amorphous phase with the formation of nanosized grains and the precipitation of Ni3P. Consequently, there is an increase in the hardness and Young's modulus of the coatings to 15.4 ± 0.5 and 227 ± 2.8 GPa, respectively, in a combined hardening effect induced by dispersion of the Al2O3 nanoparticles and crystallization and precipitation during heat treatment.

  19. ADSORPTION OF NANO-PARTICLES ON BUBBLE SURFACE IN NANO-PARTICLE SUSPENSION

    Buxuan Wang; Chunhui Li; Xiaofeng Peng

    2005-01-01

    The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between "water particles" and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.

  20. Nano-particles;Les nanoparticules

    Chuto, G. [Institut Paoli-Calmettes, Service de medecine nucleaire, 13 - Marseille (France); Chaumet-Riffaud, P. [CHU de Bicetre, Service de medecine nucleaire, 94 - Le Kremlin Bicetre (France)

    2010-06-15

    Nano-particles (N.P.) are structures comprising from some hundred to some thousand atoms. Owing to their size (1 to 100 nanometers), the physical and chemical properties of these nano-objects differ from those of classical materials. They cover a wide development area, which includes medical research: they can be classified into two major groups, organic N.P. (liposomes, polymers N.P., carbon nano tubes, fullerenes) and inorganic N.P. (quantum dots, magnetic N.P., Raman probes). N.P. can be conceived to act as a drug delivery system (therapeutic), imaging probe (diagnostic) or both (theranostic). We report recent data from scientific literature and describe main N.P. within medical area, their state of development, and the limited knowledge of their toxicity in human being. (author)

  1. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  2. Silicon nano-particles: on Route to a Sustainable Mobility

    Munao, D.

    2012-01-01

    The area of nanotechnology is one of the most active fields in science today. It is often seen as the area that could lead to substantial progress in terms of finding new materials with new properties. In this respect, silicon nano-particles are found to be greatly attractive because of their signif

  3. Silicon nano-particles: on Route to a Sustainable Mobility

    Munao, D.

    2012-01-01

    The area of nanotechnology is one of the most active fields in science today. It is often seen as the area that could lead to substantial progress in terms of finding new materials with new properties. In this respect, silicon nano-particles are found to be greatly attractive because of their significant technological implications. Considering different areas of research, the energy production, conversion and storage processes are definitely among the most important topics to be studied by sc...

  4. Stable Poly(methacrylic acid Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation

    Marcello Iacono

    2015-08-01

    Full Text Available The synthesis of polymer brush decorated silica nano-particles is demonstrated by activator regeneration by electron transfer atom transfer radical polymerization (ARGET ATRP grafting of poly(tert-butyl methacrylate. ATRP initiator decorated silica nano-particles were obtained using a novel trimethylsiloxane derivatised ATRP initiator obtained by click chemistry. Comparison of de-grafted polymers with polymer obtained from a sacrificial initiator demonstrated good agreement up to 55% monomer conversion. Subsequent mild deprotection of the tert-butyl ester groups using phosphoric acid yielded highly colloidal and pH stable hydrophilic nano-particles comprising approximately 50% methacrylic acid groups. The successful bio-conjugation was achieved by immobilization of Horseradish Peroxidase to the polymer brush decorated nano-particles and the enzyme activity demonstrated in a conversion of o-phenylene diamine dihydrochloride assay.

  5. Synthesis and characterization of struvite nano particles

    Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.

    2015-06-01

    Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.

  6. Optimization of surface coating condition using vapor form of alkanethiol on Cu nano powders for the application of oxidation prevention

    There has been a growing interest in metal nano powders recently, and researches on Copper (Cu) nano particles are actively pursued due to its good electrical conductivity and its low prices. However, its easiness to oxidation and corrosion has delayed its research progress in Cu nano particles to be applied in inkjet printed electronics and other related research area. To overcome these problems, new surface coating method on Cu nano particles has been developed using dry process instead of conventional wet coating method. Octanethiol was used as a dry coating material because it has sulfur at the end of monolayer to chemically bond to the surface of fresh non-oxidized Cu nano particles to prevent oxidation. Octanethiol does not bond to oxidized surface of Cu nano particles. Previously, bonding between octanethiol and Cu nano particles, more specifically bonding between Cu surface and Sulfur (S) was analyzed using X-ray Photoelectron Spectroscopy (XPS). As a result, S peak was detected on the coated Cu nano particles, indicating that octanethiol chain has been successfully coated on the surface of Cu nano particles. In this study, optimization of dry coating condition was studied by varying coating time and cycles. XPS was used to analyze the composition of coated material to monitor the change in amount of S and O peaks for each condition. It was found that as the amount of Sulfur increased, the amount of Oxygen decreased and vice versa. This finding indicates that dry coating has suppressed the formation of oxygen on the surface of Cu nano powders by surrounding Cu surface with Sulfur end of octanethiol chain. Based on these experiments, the optimum coating condition for suppressing Cu oxidation was found to be 5 min and 6 cycles. For future work, the lifetime of octanethiol layer on the surface of Cu surface needs to be studied.

  7. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications

    Iron oxide magnetic nano-particles (MNPs) have been prepared in aqueous solution by a modified co-precipitation method. Surface modifications have been carried out using tetraethoxysilane (TEOS), triethoxysilane (TES) and 3-aminopropyltrimethoxysilane (APTMS). The uncoated and coated particle products have been characterized with transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, infrared (IR) and Raman spectroscopy, and thermal gravimetric analysis (TGA). The particle sizes were determined from TEM images and found to have mean diameters of 13, 16 and 14 nm for Fe3O4, TES/Fe3O4 and APTMS/Fe3O4, respectively. IR and Raman spectroscopy has been applied to study the effect of thermal annealing on the uncoated and coated particles. The results have shown that magnetite nano-particles are converted to maghemite at 109 °C and then to hematite by 500 °C. In contrast, the study of the effect of thermal annealing of micro-crystalline magnetite by IR spectroscopy revealed that the conversion to hematite began by 300 °C and that no maghemite could be identified as an intermediate phase. IR spectra and TGA measurements revealed that the Si–H and 3-aminopropyl functional groups in TES and APTMS coated magnetite nano-particles decomposed below 500 °C while the silica layer around the iron oxide core remained unchanged. The molecular ratio of APTMS coating to iron oxide core was determined to be 1:7 from the TGA data. Raman scattering signals have indicated that MNPs could be converted to maghemite and then to hematite using increasing power of laser irradiation in a manner similar to that observed for thermal annealing. - Highlights: ► A modified co-precipitation method to prepare dispersive iron oxide magnetic nano-particles. ► Coating the nano-particle with different silicas. ► Estimating the numbers of iron oxide and 3-aminopropylsilica in the coated particles. ► Silica coating may help to protect iron oxide nano-particles from

  8. Subcooled boiling of nano-particle suspensions on Pt wires

    LI Chunhui; WANG Buxuan; PENG Xiaofeng

    2004-01-01

    An experimental investigation is conducted to explore the subcooled boiling characteristics of nano-particle suspensions on Pt wires. Some phenomena are observed for the boiling of water-SiO2 nano-particle suspensions on Pt wires. The experiments show that there exist not any evident differences for boiling of pure water and of nano-particle suspensions at high heat fluxes. However, bubble overlap phenomenon can be easily found for nano-particle suspensions at low heat fluxes, which probably results from the increase of the attracter force between bubbles and of the bubble mass.

  9. Effect of gold nano-particle layers on ablative acceleration of plastic foil targets

    Dhareshwar, L.J.; Gupta, N.K.; Chaurasia, S.; Ayyub, P.; Kulkarni, N.; Badziak, J.; Pisarczyk, T.; Kasperczuk, A.; Parys, P.; Rosinski, M.; Wolowski, J.; Krouský, Eduard; Krása, Josef; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Velyhan, Andriy; Margarone, Daniele; Mezzasalma, A.; Pisarczyk, P.

    2010-01-01

    Roč. 244, č. 2 (2010), 022018/1-022018/8. ISSN 1742-6588 R&D Projects: GA MŠk(CZ) LC528; GA MŠk(CZ) 7E08094 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser pulse absorption * nano-particle coating * lateral thermal conduction Subject RIV: BL - Plasma and Gas Discharge Physics

  10. Spectroscopic characterization of the effect of gamma radiation on the physical parameters of biosynthesized silver/chitosan nano-particles and their antimicrobial activity

    Osman, Mohamed E.; Eid, May M.; Khattab, Om kolthoum H.; El-Hallouty, Salwa M.; El-Marakby, Seham M.; Mahmoud, Doaa A.

    2015-09-01

    Studying the effect of pH on the biosynthesis of silver/chitosan nanoparticles (Ag/CS NPs) using Aspergillus deflectus and Penicillium pinophilum as reducing agents, showed very weak surface plasmon resonance (SPR) of Ag/CS NPs at certain pH. In this paper, the effect of irradiation on the synthesis of Ag/CS at non-optimum pH was evaluated and thereby, the antimicrobial effect of the biosynthesized Ag/CS NPs. The SPR of the AgNPs was analyzed by UV-visible spectroscopy. The active groups responsible for the reduction and capping of the AgNPs were analyzed by Fourier transform infrared (FTIR), and their shape and size were determined via high resolution transmission electron microscopy (HRTEM) and the dynamic light scattering (DLS) technique. UV/Visible spectroscopy confirmed the appearance of AgNPs’ SPR. Additionally, the FTIR spectroscopy confirmed the Ag/CS NP formation. Data also revealed that increasing both the pH and irradiation dose resulted in a decrease of the Ag/CS NPs’ size. DLS and HRTEM results showed that the best pH for biosynthesis of Ag/Cs is 7.5 at 50 kGy considering the particle size and crystallinity. Also, pH 8.5 gave the best antimicrobial activity of the Ag/CS NPs from Penicillium against both S. aureus and E. coli, while 8.5 and 7.5 were the best in the same order, for Ag/CS from Aspergillus.

  11. 纳米SiO_2改性输电铁塔防腐蚀涂料%Transmission Tower Anti-corrosion Coatings Modified by SiO2 Nano-particles

    刘江; 谢凤龙; 陈颖敏; 俞立

    2012-01-01

    The agglomeration of nano-SiO2 particles was improved by ultrasonic dispersion and adding dispersing agents to protect the newborn nano-particles.The dispersed nano-SiO2 particles can improve the fluorocarbon finish property.The experimental results indicate that the best time of ultrasonic dispersion was about 30 minutes,and KH570,CH hyper-dispersant and BYK-163 were selected as dispering agents,the performance of KH570 was the best.Both the mechanical properties and the ability to resist chemical reagent of modified fluorocarbon finish were improved and could meet the national standard.%采用超声分散纳米SiO2,同时添加分散剂保护新生纳米SiO2粒子,在一定程度上改善了纳米SiO2团聚的现象,并将分散好的纳米SiO2加入氟碳面漆,用以改性氟碳面漆的性能。选用硅烷偶联剂KH570、CH超分散剂、BYK-163三种分散剂。结果表明,超声分散时间为30min左右,硅烷偶联剂KH570分散纳米SiO2的效果最好;纳米SiO2改性后的氟碳面漆,机械性能与耐化学试剂性能均有了较大改善,各项性能均达到国家标准。

  12. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Highlights: • Nanofaceted surfaces are prepared by a low current density (2) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl3 nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (−2) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents

  13. Adsorption of nuclease p1 on chitosan nano-particles

    Lu-E Shi

    2009-06-01

    Full Text Available The sorption of nuclease P1 onto chitosan nano-particles is studied in this paper. The effect of some adsorption kinetics factors such as nuclease P1 concentration, chitosan nano-particles solution concentration, adsorption temperature, chitosan nano-particles size, solution pH, etc. is investigated. Adsorption of nuclease P1 onto chitosan nano-particles is fitted into Lagergren first-order equation at initial nuclease P1 concentration of 3.0 mg/mL. The first-order constant for nuclease P1 is 22.98 h-1. When nuclease P1 concentration is controlled into certain region, the adsorption fits into Freundlich isothermal linear equation. A mechanism of adsorption for nuclease P1 is proposed by analyzing IR spectra. The IR spectra shows that the hydrogen bond might be the main force between the hydroxyl group, the NH2 group and the nuclease P1.

  14. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation.

    Khan, Naeem; Bano, Asghari

    2016-01-01

    The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals. PMID:26507686

  15. The anomalous physical and chemical properties of gold nano-particles

    Full text: Although gold is the most inert of all metallic elements, it has been discovered during the last two decades that it has interesting properties as a nano-particle. Some of the properties of interest include its activity as a heterogeneous catalyst, particularly at low temperatures, its optical properties, and the tendency of its nano-particles to adopt non-crystallographic structures. There are a number of curious aspects to catalysis by gold that are attracting academic and industrial investigation and much is still not understood about the mechanism by which they work. For example, apparently similar preparation techniques result in activities of hugely varying magnitude. In the present talk I assess the what is known about gold nano-particles, with particular reference to their physical, electronic, crystallographic and catalytic properties. It is shown that there is much evidence in favour of the belief that it is the unique electronic structure of these particles that imbues them with catalytic activity. If this is true then tighter control of the electronic structure would allow for the design of more specific and more active catalysts

  16. Thermal performance of heat pipe with suspended nano-particles

    Shukla, K.N. [Gurgaon College of Engineering, Gurgaon (India); Solomon, A.B.; Pillai, B.C.; Ruba Singh, B.J.; Saravana Kumar, S. [Karunya University, Centre for Research in Thermal Management, Coimbatore (India)

    2012-11-15

    Nanofluids are employed as the working medium for a conventional cylindrical heat pipe. A cylindrical copper heat pipe of 19.5 mm outer diameter and 400 mm length was fabricated and tested with two different working fluids. The working fluids used in this study are DI-water and Nano-particles suspension (mixture of copper nano particle and DI-water). The overall heat transfer coefficient of the heat pipe was calculated based on the lumped thermal resistance network and compared with the heat transfer coefficient of base fluid filled heat pipe. There is a quantitative improvement in the heat transfer coefficient using nano-particles suspension as the working medium. A heat transfer correlation was also developed based on multiple regression least square method and the results were compared with that obtained by the experiment. (orig.)

  17. Thermal performance of heat pipe with suspended nano-particles

    Shukla, K. N.; Solomon, A. Brusly; Pillai, B. C.; Ruba Singh, B. Jacob; Saravana Kumar, S.

    2012-11-01

    Nanofluids are employed as the working medium for a conventional cylindrical heat pipe. A cylindrical copper heat pipe of 19.5 mm outer diameter and 400 mm length was fabricated and tested with two different working fluids. The working fluids used in this study are DI-water and Nano-particles suspension (mixture of copper nano particle and DI-water). The overall heat transfer coefficient of the heat pipe was calculated based on the lumped thermal resistance network and compared with the heat transfer coefficient of base fluid filled heat pipe. There is a quantitative improvement in the heat transfer coefficient using nano-particles suspension as the working medium. A heat transfer correlation was also developed based on multiple regression least square method and the results were compared with that obtained by the experiment.

  18. Nano particles@Calix arenas via aqueous solution

    Sahar Dehghani

    2016-05-01

    Full Text Available The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8 COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8 COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8 COOH nano particles can be controlled by the aqueous. The electrical properties such as NMR Shielding, electron densities, energy densities, potential energy densities, ELF, LOL, ellipticity of electron density, eta index and ECP for nano particles@ Calix (8COOH have been calculated.

  19. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. PMID:26826319

  20. Level Statistics and Specific Heat of Metallic Nano-Particles

    程南璞; 陈志谦; 陈洪

    2003-01-01

    The thermodynamic properties of an ensemble of metallic nano-particles are affected by the level distribution and the level correlation between the discrete electronic energy levels. We numerically calculate the specific heat of metallic nano-particles in the canonical ensemble with an odd or even number of electrons by considering the effects of the level distribution and the level correlation. The behaviour of the specific heat at low and high temperatures, compared with the average nearest-neighbour level spacing, is also investigated.

  1. Femtosecond dynamics of electronic populations in silver nano-particles

    This work deals with the dynamic of relaxation of hot electrons in silver nano-particles in a transparency matrix. Using laser impulses of a few hundred femtosecond, out equilibrium electronic populations are created and their relaxation is studied by the energy transfer to the crystalline network. The size and the geometry of these nano-particles lead to great optical non-linearities and electric confinement effects. This confinement leads then to a collective mode, named surface plasmon. Thanks to its structure, the silver owns a surface plasmon resonance far from the interband transitions, which allows the study of this collective mode. Differential measures, in degenerated pump-probe configuration and on silver nano-particles, show a slowing of the dynamic at the surface plasmon resonance. In a non degenerated pump-probe configuration, the differential transmission spectra show an asymmetrical first derivative behavior of the absorption ray. The author shows also that the relaxation dynamics depends of the nano-particles size and of the host matrix. (A.L.B.)

  2. Ni-Pd纳米涂层整体式催化剂加氢性能研究%Study of Hydrogenation Performance for Ni-Pd Monolithic Catalyst with Nano-particle Washcoat

    侯宁; 付瑶; 朱秋锋; 文利雄; 陈建峰

    2011-01-01

    A novel cordierite monolithic catalyst with porous hollow silica nano-particles as washcoat was prepared by a dip-coating method and the Pd active component and Ni promoter were loaded by a microwave method. The performance of the prepared catalysts for selective hydrogenation of acetylene was investigated at varying space velocity, the porous hollow silica nano-particles coating amount and Ni loading amount It was found that the coating of porous hollow silica nano-particles on the cordierite substrate could significantly promote the catalytic performance. When the space velocity was 3 800 h1, the mass fraction of coating on porous hollow silica nano-particles was 6%, the molar ratio of Ni and Pd was 4 I 1, the reaction pressure was 0.1 Mpa and reaction temperature was 54 t, theethylene selectivity of the novel catalyst still remained 40.9% when theacetylene was nearly completely converted.%采用浸涂法将自制的介孔空心Si02纳米粉体涂覆到堇青石基体上,然后采用微波法负载活性组分Pd和助剂 Ni制备了纳米涂层整体式加氢催化剂,并考察空速、涂层增重、Ni助剂添加量等因素对其乙炔选择性加氢催化性能的影响.结果表明:经过涂覆后的堇青石整体式催化剂加氢性能与未涂覆时相比有了显著提高,且添加适量的助剂Ni有助于催化性能的进一步改进.在反应温度为54℃、压力为0.1 MPa、空速为3 800h-1的条件下,使用涂层增量质量分数为6%、Ni与Pd物质的量比为4:1的催化剂,当乙炔接近完全转化时,乙烯选择性能够到达40.9%.

  3. Synthesis and spectroscopic investigations of iron oxide nano-particles for biomedical applications in the treatment of cancer cells

    Atta, Aly H.; El-ghamry, Mosad A.; Hamzaoui, Adel; Refat, Moamen S.

    2015-04-01

    Recently, upon the great importance of synthesized nano-particles especially ferric oxides on medicinal applications, these nano-particles have been prepared here using friendly and low cost biological precursors moieties via a thermal decomposition method. The Fe2O3 nano-particles preparation method is based on thermal degradation of ferric complexes of hippuric acid, itaconic acid, or tyrosine amino acid at 600 °C. The used precursors were characterized by several characterization techniques such as microanalysis, conductance, infrared spectra, electronic spectra, and thermogravimetric (TG/DTG). The calcinations stages were identified from the thermogravimetric analyses of ferric complexes. The narrow size distribution in nano-scale range for the Fe2O3 crystals have been studied using X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray energy dispersive spectrometer (EDX) and transmission electron microscopy (TEM) analyzer. XRD data indicate that a single phase Fe2O3 nano-particles are obtained with particle size ranging from 20 to 60 nm. The cytotoxic activity of the Fe2O3 nanoparticles was tested against the breast carcinoma cells (MCF-7 cell line). The results of inhibitory concentration fifty (IC50) were existed within the 3.10-3.81 μg limit.

  4. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  5. First Synthesis of Uranyl Aluminate nano-particles

    Chave, T.; Nikitenko, S. I. [UMII, ICSM, CEA, CNRS, ENSCM, Ctr Marcoule, UMR 5257, F-30207 Bagnols Sur Ceze (France); Scheinost, A. C. [European Synchrotron Radiat Facil, Rossendorf Beamline CRG BM20, F-38043 Grenoble (France); Scheinost, A. C. [FZD, Inst Radiochem, D-01314 Dresden (Germany); Berthon, C.; Arab-Chapelet, B.; Moisy, Ph. [CEA Marcoule, DEN, DRCP, Ctr Marcoule, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    This paper describes, for the first time, a simple method for the synthesis of uranyl aluminate (URAL) nano-particles. URAL was prepared by U(VI) hydrolytic precipitation with ammonia at pH = 11 in the presence of meso-porous alumina MSU-X under 20 kHz of sonication followed by annealing of the obtained solids at 800 C. TEM, XAFS, powder XRD, and {sup 27}Al MAS NMR studies revealed that the speciation of uranium in this system strongly depends on uranium concentration. The sample with 5 wt % of uranium yields air-stable nano-particles (similar to 5 nm) of URAL. Presumably, UO{sub 2}{sup 2+} cations in this compound are coordinated with bidentate AlO{sub 2}{sup -} groups. The increase of uranium concentration to 30 wt % causes mostly formation of U{sub 3}O{sub 8} fine particles (similar to 50 nm) and small amounts of URAL. (authors)

  6. First Synthesis of Uranyl Aluminate nano-particles

    This paper describes, for the first time, a simple method for the synthesis of uranyl aluminate (URAL) nano-particles. URAL was prepared by U(VI) hydrolytic precipitation with ammonia at pH = 11 in the presence of meso-porous alumina MSU-X under 20 kHz of sonication followed by annealing of the obtained solids at 800 C. TEM, XAFS, powder XRD, and 27Al MAS NMR studies revealed that the speciation of uranium in this system strongly depends on uranium concentration. The sample with 5 wt % of uranium yields air-stable nano-particles (similar to 5 nm) of URAL. Presumably, UO22+ cations in this compound are coordinated with bidentate AlO2- groups. The increase of uranium concentration to 30 wt % causes mostly formation of U3O8 fine particles (similar to 50 nm) and small amounts of URAL. (authors)

  7. Making PMMA, PMA, PVAc and PSt nano particles using radiation

    Full text: During the last decade considerable research effort has been directed to making very small (10-50 nm diam.) nano size polymer particles. Most of the techniques described used more than one surfactant at high concentrations and resulted in relatively low polymer concentration. We have developed methods to make nano size polymer particles from methyl methacrylate (MMA), methyl acrylate (MA), vinyl acetat (Vac) and styrene (St) with a single anionic surfactant and gamma radiation. We succeeded in making nano particles in up to 15% concentration and with much higher polymer/ surfactant ratio than the earlier methods. With the radiation technique we can obtain high yield of polymer and can control the particle size of the polymer in the 2S208) instead of gamma irradiation. At present we prefer gamma initiation, because we have much better control and reproducibility of the exothermic polymerisation reaction, hence the critical parameters can be evaluated more accurately. We have started to use the different nano particles prepared for adsorption studies, as seeds for polymerisation and for making transparent gels with nano structure. We are also looking for other applications of the nano particles. It should be noted that the surface area of 1 gram of 20 nm diameter spheres is 300m2

  8. Deposition of Flame-generated Al2O3 Nano-particles on a Porous Surface

    Andersen, Sune Klint; Johannessen, Jens Tue; Wedel, Stig;

    1998-01-01

    When particles of catalytic materials become less than 50 nm they start toexhibit a stronger catalytic activity compared to their bulk counterparts. Nano-particles are thus good candidates for manufacture of highly activecatalysts. Nanometer sized particles of catalytic materials may be generated...... athigh temperatures in flames. The direct deposition from gas phase on a ceramicsubstrate tube of flame-generated particles leads to a uniform, porous layer ofsmall particles, masking the coarser structure of the substrate tube. The methodlooks promising for manufacture of catalytic filters and membranes....

  9. Active coatings technologies for tailorable military coating systems

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  10. Nano particles@Calix arenas via aqueous solution

    Sahar Dehghani

    2016-01-01

    The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8) COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8) COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8) C...

  11. Rapid laser sintering of metal nano-particles inks

    Ermak, Oleg; Zenou, Michael; Bernstein Toker, Gil; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-01

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  12. A NOVEL SEPARATION TECHNOLOGY FOR NANO PARTICLES AT DISCHARGE OF COMBUSTION AND INCINERATION EQUIPMENT

    Daniele Accornero

    2012-07-01

    Full Text Available Still today, the issue of safely and efficiently avoiding the atmospheric release of the nano-particles produced by combustion and incineration processes is a critical and open challenge. This study addresses the conception, the technological realization and the first experimental testing of a new device suitable for in-duct filtration and separation of nano particles dispersed into flue-gas streams. The active filtering material is a membrane made from ptfe foil, in origin impermeable but suitable to allow creation, once properly stretched, of an inner texture of permeable micro- and nano-tubes, thus inducing activation of van der Waals effects to the advantage of improved particles’ sticking. The experimental tests confirm attainment of a remarkable filtration capacity, way better than the so-called ‘absolute filters’. Moreover, the filtration material allows to undergo a simple and safe “regeneration cleaning”  process by which the particles can be re-collected off-duct without any filter dismantling.

  13. Bio-hydrogen: immobilization of enzymes on electrodes modified by clayey nano-particles

    In this work, has been studied the immobilization of enzymes inside micro-films constituted of clayey nano-particles and layer by layer nano-assembling of clayey nano-particles and enzyme. Natural clays have very great specific surface areas, very strong ions exchange capacities and a swelling lamellar structure particularly well adapted to the non denaturing adsorption of proteins and charged enzymes. In this study, the enzymes have been extracted of sulfate-reducing bacteria. The immobilization of this system in clayey films has been studied by micro-gravimetry/electrochemistry coupling and the catalytic activity towards the production and the consumption of hydrogen quantified. At first, the clay is deposited in layer of thickness of the micron on the gold or graphite electrode. When the hydrogenase is immobilized in the clayey film, the electro-enzymatic oxidation of hydrogen occurs inside the clayey structure. An electrode able to measure either the hydrogen consumption or its production on a wide pH range as thus been prepared, by co-immobilization of hydrogenase and of MV2+ in montmorillonite films. The catalytic efficiencies obtained by immobilization in the clayey matrix of the two physiological partners, cytochrome c3 and hydrogenase, are strongly improved. Then, this process has been still improved, and three cytochrome c3/clay bilayers have been superposed without loss of the enzymatic activity. (O.M.)

  14. Size dependent fluorescence tuning of naturally occurring betacyanin with silver nano particles

    Sarkar, Arindam; Thankappan, Aparna; Nampoori, V. P. N.

    2014-10-01

    Light absorption and scattering of metal nano partilces occur in very narrow range of wavelengths. This is also dependent on the geometry and shape of metal nano particles. It is also known that scattering is related to (volume)2 and absorption is related to the volume of the spherical metal nano particles. In our work we show that using this principle metal nano particles enable fluorescence tuning of dyes. In our experiment we show such tuning in naturally occurring betacyanin extracted from red beetroot. We also show that such tuning is dependent on the size variation of the silver nano particles.

  15. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: ► Reusable chemical sensor. ► Green environmental and eco-friendly chemi-sensor. ► High sensitivity. ► Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb2O6) are well crystalline nano-particles with an average particles size of 26 ± 10 nm. UV–visible absorption spectra (∼286 nm) were used to investigate the optical properties of CoSb2O6. The chemical sensing of CoSb2O6 NPs have been primarily investigated by I–V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 μA cm−2 mM−1) and a large linear dynamic range (1.0 μM–0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb2O6 nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb2O6 nano-particles can play an excellent research impact in the environmental field.

  16. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  17. Microstructure and Behaviors of Nano Composite Coating

    ZHOU Xi-ying; QIAN Shi-qiang; LI Wei-hong; LI Pei-yao; LI Man-ping

    2004-01-01

    Nano composite coatings are fabricated by electro brush plating containing various nano particles (Al2O3, SiO2and ZrO2). Its surface morphology and microstructure are observed by means of S-2700 scanning electron microscopy (SEM). And the mechanical behaviors of nano composite coating are analyzed. The results show that microstructure of nano composite coating is obviously fine because of nano particles. Micro hardness at room temperature increases with the increase of nano particles content. The wear resistance and hardness at high temperature are also improved. The strengthening effect is differentiated by the type and content of nano particles. This is due to the combination of dispersion strengthening and grain size strengthening.Key Words: Nano particles, composite coating, electro brush plating, behaviors

  18. ON THE EFFECT OF NANO-PARTICLE CLUSTERING ON TOUGHENING OF NANO-COMPOSITE CERAMICS

    董照旭; 方岱宁; 苏爱嘉

    2002-01-01

    In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles,leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data.

  19. Biosynthesis of Silver Nano Particles from Fusarium oxysporum Culture

    Rita Singh Majumdara

    2015-12-01

    Full Text Available From a very long time inhibitory effect of silver has been recognized and used towards many bacterial strains and microorganisms commonly present in medical and industrial processes. The most useful and important characteristic of silver is its antimicrobial property. In the current study silver nano particles with uniform size distribution of 10-20nm with stability and promising increase in yield were obtained and effect of cultural and physical conditions on biological synthesis of SNPs was studied. SNPs (Silver Nanoparticles synthesis was first analysed out by visual observation of colour change of the fungal filtrate after treatment with silver nitrate (AgNO3 solution within 24hrs. Formation of dark brown colour of fungal cell filtrate indicated the presence of SNPs (Silver Nanoparticles.

  20. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    2016-04-01

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  1. Development of a method to lower recontamination after chemical decontamination by depositing Pt nano particles

    The Pt coating (Pt-C) process has been developed to lower recontamination by radioactive elements after chemical decontamination of piping surfaces. In this process, a layer of fine Pt nano particles is formed in aqueous solution on the base metal of the piping following the chemical decontamination. In this study, we confirmed the suppression effect by the Pt-C toward 60Co deposition on type 316 stainless steel using a 60Co deposition test under hydrogen water chemistry. The deposition amounts of 60Co which were incorporated in oxides after 1000 h with and without the Pt-C process were about 90 and 10.2 Bq/cm2, respectively. The amount of 60Co deposition with Pt-C is about 10% that of non-coated specimens. The 60Co incorporation for the Pt-C specimen was suppressed by decreasing the formation of oxides. We considered this phenomenon from experimental results and concluded that oxides were chemically reduced by the effect of Pt and hydrogen radicals which were produced in the reaction between H2 and Pt, and then oxides were dissolved into the water. (author)

  2. Agglomeration Evolution of Nano-Particles Aluminium in Normal Incident Shock Wave

    YAN Zheng-Xin; WU Jing-He; HU Dong; YANG Xiang-Dong

    2006-01-01

    Agglomeration behaviour of nano-particle aluminium (nano-Al) in normal incident shock waves is investigated by our devised shock tube technology. The morphology, particle size, agglomeration process of nano-Al studied in normal incident shock waves are comprehensible evaluated by x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The above-mentioned techniques show that the high strength and temperature of incident shock wave give a chance for activity of nano-Al in the reactions and decrease the agglomeration, and the morphology of agglomeration is affected by the temperature of nano-Al reaction region. The dynamic temperature of reaction region determined by the intensity ratio of two AlO bands is 2602K, which is closer to nano-Al actual reacted temperature than the determined temperature of ordinary methods (i.e. six channel instantaneous optical pyrometer; plank black body radiation law, etc.)

  3. Protective effects of orally applied fullerenol nano particles in rats after a single dose of doxorubicin

    Ičević Ivana Đ.

    2011-01-01

    Full Text Available Polyhydroxylated, water soluble, fullerenol C60(OH24 nano particles (FNP in vitro and in vivo models, showed an expressive biological activity. The goal of this work was to investigate the potential protective effects of orally applied FNP on rats after a single dose of doxorubicin (DOX (8 mg/kg (i.p. 6 h after the last application of FNP. After the last drug administration, the rats were sacrificed, and the blood and tissues were taken for the analysis. Biochemical and pathological results obtained in this study indicate that fullerenol (FNP, in H2O:DMSO (80:20, w/w solution given orally in final doses of 10, 14.4, and 21.2 mg/kg three days successively, has the protective (hepatoprotective and nephroprotective effect against doxorubicin-induced cytotoxicity via its antioxidant properties.

  4. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach.

    Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732

  5. 18F-radiolabeled RGD-A7R-conjugated nano-particles for integrin and VEGF-targeted tumor imaging

    Radiolabeled RGD-A7R has been extensively investigated for tumor integrin avb3 and VEGF imaging. In this paper, we designed and synthesized a radiolabeled nano-particle that coated with RGD-A7R. The aim of this study was to evaluate if nano-particles has an advantage in vivo kinetics comparing with RGD-A7R monomers. The targeting properties of 18F-n-BSA-RGD-A7R were tested in U87MG tumor models. The tumor uptake of 18F-n-BSARGD-A7R was high compared with background. The improved pharmacokinetics of 18F-n-BSA-RGD-A7R confirmed that the application of nano-technology is effective to develop promising imaging agents for the no-invasive detection. (author)

  6. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  7. Nano-lens diffraction around a single heated nano particle

    Markus, Selmke; Frank, Cichos

    2011-01-01

    The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [1, 2], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic (EM) scattering treatment was established [3] during the emergence of this new technique. Our recent study extended [4] this EM-approach into a full ab-initio model describing the reality of the situation encountered and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin,...

  8. Nucleation and dissociation of nano-particles in gas phase

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Nan and heterogeneous NanX particles (X = (NaOH)2 or (Na2O)2). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na+(NaOH)p et Na+(NaF)p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na+ Na+ (NaOH)p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  9. Fabrication of composite nano-particles by radiations

    Realization of composite nano-materials using radiation technology is reported to demonstrate one of the author's experimental results on noble-metallic nano-particles having the diameter less than 10 nm which are dispersed homogeneously with high density on a catalyst-supporting particle. Keeping away as such from coagulation of noble metals, thus keeping its high specific surface, functional materials, for example, magnetic materials can be used as a supporting particle. The method is to irradiate the solutions containing starting materials. Since water containing 2-propanol is decomposed by radiolysis to produce the reducing and oxidizing species, metallic ions will be reduced to metals and sometimes in the presence of polyvinyl alcohol to noble-metal colloidal solutions which has been further applied to synthesis of Au/γ-Fe2O3 composite particle. Moreover, other metals as Ag, Pt, Pd, Rh, with other supporting materials as Al2O3, TiO2, Fe3O4, ZnO, ZrO2, and CeO2 were found to be realized. Au/iron oxides magnetic composite particles were also synthesized by γ- or electron irradiation to be used magnetically separate the mixture of amino acids and DNA. (S. Ohno)

  10. Enhanced dielectric breakdown performances of propylene carbonate modified by nano-particles under microsecond pulses

    Hou, Yanpan; Zhang, Jiande; Zhang, Zicheng

    2016-06-01

    Propylene carbonate shows appealing prospects as an energy storage medium in the compact pulsed power sources because of its large permittivity, high dielectric strength, and broad operating temperature range. In this paper, TiO2 nano-particles coated with γ-aminopropyltriethoxylsilane coupling agent are homogeneously dispersed into propylene carbonate and these nano-fluids (NFs) exhibit substantially larger breakdown voltages than those of pure propylene carbonate. It is proposed that interfaces between nano-fillers and propylene carbonate matrix may provide myriad trap sites for charge carriers. The charge carriers can be easily captured at the interfaces between NFs and the electrode, resulting in an increased barrier height and suppressed charge carriers injection, and in the bulk of NFs, the charge carriers' mean free path can be greatly shortened by the scattering effect. As a result, in order for charge carriers acquiring enough energy to generate a region of low density (the bubble) and initiate breakdown in NFs, much higher applied field is needed.

  11. Synthesis of supported metallic nano-particles and their use in air depollution

    The main objectives of the 'NACACOMO' Consortium ('Nano-materials: Catalysts for the Conversion of organic Molecules. Uses in fine chemicals and environment protection ') consisted in generating novel catalysts composed of nanoparticles of metals (Pt, Pd, Ag...) and/or oxides (TiO2...) stabilized and well distributed over the surface of a support (foams, ceramics), by monitoring both the particle size and the 'coating' process itself, using new technologies: CVD, plasma-spray, laser pyrolysis, supercritical preparation, which were compared to conventional soft chemistry recipes. The most accurate characterization of particle morphology, local structure, texture, spatial arrangement but also of their reactivity, were achieved by privileging the utilization of various in situ methods. Details on formation mechanisms of a solid nano-particle at the atomic level (nucleation, growth and particle (re)distribution over the support...) could be obtained in selected cases, with opportunities for scaling up and shaping. The (chemical) nature of the so-obtained nano-materials was monitored for selected catalytic applications involving the development of environmental friendly processes, such as oxidation of VOC, with a priority for aromatics and chlorinated compounds. (authors)

  12. Nonaqueous preparation of stable silver nano particles dispersions from organic sulfonic acids.

    Valentina Glushko

    2016-05-01

    Full Text Available The conditions for stable silver nano particles dispersions synthesis from organic sulfonic acids in an anhydrous medium of ethylene glycol and its methyl ester were studied. Ascorbic acid and potassium citrate were used as reducing agents.

  13. MR Relaxivity Measurement of Iron Oxide Nano-Particles for MR Lymphography Applications

    K. Firouznia

    2008-01-01

    Full Text Available The aim of this study was to assess the T1, T2 and T2* relaxivity of Ultrasmall Super Paramagnetic Iron Oxide (USPIO nano-particles in vitro and in vivo in rat models with magnetic resonance imaging at 1.5T. First, relaxation properties of USPIO nano-particles at different doses were measured using related SE and GRE MR imaging protocols. The relation between dose and relaxation were observed which is linear; Higher dose of the nano-particles means higher relaxivity. Based on this relation, an optimum protocol can be proposed for obtaining the best image contrast at each situation. Then detection ability of MRI protocols was studied for USPIO nano-particles with injection of the particles in the rat. The optimum MR protocols were used to observe the signal change of lymph nodes in rat.

  14. Determination of Size Distribution of Nano-particles by Capillary Zone Electrophoresis

    Yan XUE; Hai Ying YANG; Yong Tan YANG

    2005-01-01

    A new method was developed for the determination of the size distribution of nano-particles by capillary zone electrophoresis (CZE). Scattering effect of nanoparticles was studied. This method for the determination of size distribution was statistical.

  15. Effects of Gamma Irradiation and Silver Nano Particles on Microbiological Characteristics of Saffron, Using Hurdle Technology

    Hamid Sales, E.; Motamedi Sedeh, F.; Rajabifar, S.

    2011-01-01

    Saffron, a plant from the Iridaceae family, is the world’s most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron...

  16. Ultraviolet spectra of CeO2 nano-particles

    Full text: Quantum size effect is generally expected in nanometer size materials. The effect has been observed in many metal clusters and semiconducting nano-particles, but seldom in oxides, because the size control of crystalline oxides is generally difficult due to the ionic bond character. CeO2 (ceria) is one of the rare-earth oxides and the size effect is worth studying from the viewpoint of an ultraviolet (u.v.) spectroscopy and applications. This report describes the first observation of a blue shift of u.v. spectra in ceria nano-particles of 2-5 nm in diameter with its deviation within 20%. A ceria aqueous sol (pH ≅ 2.5) having particle sizes under 6 nm in diameter was produced by ultrafiltration with a polyether sulfone membrane (SIP-1013, Asahi Chemical Industry Co.) from an original ceria aqueous sol (pH ≅ 1.5) having particle sizes extending over a wide range. Obtained sol contains a high concentration of Ce3+ ions because of the high acidity. In order to separate ceria particles from Ce3+ ions and fractionate the particle size, two kinds of anion-type surfactants were used in microemulsification process with toluene and water. One is sodium dodecylbenzene sulfonate (SD-BS) which is 2 nm in length and another is sodium octyl sulfonate (SOS) which is 1.2 nm in length. U.v. spectroscopic measurements and high resolution transmission electron microscopic (HRTEM) observations were performed for (SOS)t , (SOS+SOS)t , and (SDBS+SOS+SDBS)t , where (SOS)t is a ceria suspension in toluene obtained by an emulsification with SOS surfactant, (SOS+SOS)t indicates the same product obtained by the further emulsification with SOS for an aqueous phase of the emulsion with SOS, and (SDBS+SOS+SDBS)t means that obtained by an additional emulsification with SDBS for an aqueous phase obtained by two successive emulsifications with SDBS and SOS. Optical density data for (SOS)t , (SOS+SOS)t , and (SDBS+SOS+SDBS)t show absorption edges at 4076 Angstroms, 3997 Angstroms, and

  17. Flame spray synthesis of ZrO2 nano-particles using liquid precursors

    This paper studies the feasibility of using flame spray to produce ZrO2 nano-particles using a liquid precursor. The effects of varying precursor concentrations and ratio of diluting medium on the phase composition, size and morphology of ZrO2 nano-particles are discussed. The morphology and size of the ZrO2 nano-particles was very much dependent on the precursor concentration. The solvent ratio of H2O:ethanol also played a part in determining the characteristics of the ZrO2 nano-particles. The nano-particles had the best characteristics when the precursor concentration was low and ethanol (added as solvent) content was high. In particular, the best characteristics were obtained using precursor concentration of 0.25 M, H2O:ethanol ratio of 0:1. The nano-particles had very small particle size (∼50 nm), relatively high specific surface area (28.6 m2/g) and high degree of crystallinity. However, particles synthesized tend to be agglomerated

  18. Preclinical spectral computed tomography of gold nano-particles

    Today's state-of the art clinical computed tomography (CT) scanners exclusively use energy-integrating, scintillation detector technology, despite the fact that a part of the information carried by the transmitted X-ray photons is lost during the detection process. Room-temperature semiconductors, like CdTe or CZT, operated in energy-sensitive photon-counting mode provide information about the energy of every single X-ray detection event. This capability allows novel, promising approaches to selectively image abnormal tissue types like cancerous tissue or atherosclerotic plaque with the CT modality. In this article we report on recent dual K-edge imaging results obtained in the domain of pre-clinical, energy-sensitive photon-counting CT. In this approach, the tuning of threshold levels in the detector electronics to the K-edge energy in the attenuation of contrast agents (CA) offers highly specific, quantitative imaging of the distribution of the CA on top of the conventional, morphological image information. The combination of the high specificity of the K-edge imaging technique together with the powerful tool of targeting specific diseases in the human body by dedicated contrast materials might enrich the CT modality with capabilities of functional imaging known from the nuclear medicine imaging modalities, e.g., positron-emission-tomography but with the additional advantage of high spatial and temporal resolution. We also discuss briefly the technological difficulties to be overcome when translating the technique to human CT imaging and present the results of simulations indicating the feasibility of the K-edge imaging of vulnerable plaque using targeted gold nano-particles as contrast materials. Our experiments in the pre-clinical domain show that dual-K edge imaging of iodine and gold-based CAs is feasible while our simulations for the imaging of gold CAs in the clinical case support the future possibility of translating the technique to human imaging.

  19. Preclinical spectral computed tomography of gold nano-particles

    Roessl, Ewald; Cormode, David; Brendel, Bernhard; Jürgen Engel, Klaus; Martens, Gerhard; Thran, Axel; Fayad, Zahi; Proksa, Roland

    2011-08-01

    Today's state-of the art clinical computed tomography (CT) scanners exclusively use energy-integrating, scintillation detector technology, despite the fact that a part of the information carried by the transmitted X-ray photons is lost during the detection process. Room-temperature semiconductors, like CdTe or CZT, operated in energy-sensitive photon-counting mode provide information about the energy of every single X-ray detection event. This capability allows novel, promising approaches to selectively image abnormal tissue types like cancerous tissue or atherosclerotic plaque with the CT modality.In this article we report on recent dual K-edge imaging results obtained in the domain of pre-clinical, energy-sensitive photon-counting CT. In this approach, the tuning of threshold levels in the detector electronics to the K-edge energy in the attenuation of contrast agents (CA) offers highly specific, quantitative imaging of the distribution of the CA on top of the conventional, morphological image information. The combination of the high specificity of the K-edge imaging technique together with the powerful tool of targeting specific diseases in the human body by dedicated contrast materials might enrich the CT modality with capabilities of functional imaging known from the nuclear medicine imaging modalities, e.g., positron-emission-tomography but with the additional advantage of high spatial and temporal resolution. We also discuss briefly the technological difficulties to be overcome when translating the technique to human CT imaging and present the results of simulations indicating the feasibility of the K-edge imaging of vulnerable plaque using targeted gold nano-particles as contrast materials. Our experiments in the pre-clinical domain show that dual-K edge imaging of iodine and gold-based CAs is feasible while our simulations for the imaging of gold CAs in the clinical case support the future possibility of translating the technique to human imaging.

  20. Flux pinning properties of YBCO films with nano-particles by TFA-MOD method

    Masuda, Y.; Teranishi, R.; Matsuyama, M.; Yamada, K.; Kiss, T.; Munetoh, S.; Yoshizumi, M.; Izumi, T.

    Nano-particles were doped into YBCO films as pinning centers by a metal organic deposition (MOD) method using trifluoroacetates. Two types of initial solution with a cation ratio of Y: Ba: Cu = 1: 1.5: 3 were prepared; one with the dispersion of SnO2 particles with the size of 15-25 nm and the other one with the dispersion of smaller ZrO2 particles with the size of under 8 nm, then the solution was spin-coated on CeO2/Gd2Zr2O7/Hastelloy substrates. The coated films were calcined at 430 °C in oxygen atmosphere and crystallized at 780 °C in low oxygen atmosphere. From the results of X-ray diffraction analysis (XRD), peaks of BaSnO3 were observed clearly in the YBCO film by the starting solution with SnO2. On the other hands, little peaks corresponding to BaZrO3 were observed in the film by the solution with ZrO2. Many CuO segregations were recognized at the surface of SnO2 doped YBCO film in comparison to the YBCO film with ZrO2 doping. From these results, it is indicated that most of SnO2 particles in precursors are react with Ba during heating. Critical current density (JC) of the YBCO films by both solutions showed higher performance than that of pure YBCO film in magnetic fields.

  1. Modeling of an Active Tablet Coating Process.

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941

  2. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination.

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au(3+) reduction to metallic Au(0) is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au(0) exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  3. Fractures as Carriers for Colloid and Nano-Particles

    Weisbrod, N.; Cohen, M.; Tang, X.; Zvikelsky, O.; Meron, H.

    2013-12-01

    One of the major questions in studies in which transport of colloids and nano particles (NPs) is being explored is whether or not they will be mobile on large scales and in large conduits such as fractures and cracks. While many studies explore the migration on a small scale and mostly in ideal porous media, less is known about this topic on larger scales and in fractured rocks or cracked soils. Fractures are likely to be favorable carriers for colloids and NPs due to their large aperture, enabling relatively high flow velocity and smaller tortuosity of the flow path. Transport of various colloids including microspheres, clay particles and viruses, as well as colloid-facilitated transport of lead and cesium was explored in a naturally discrete fractured chalk cores. Preliminary work exploring the transport of NZVIs and TiO2 NPs is being carried out through these cores as well. Our results indicate very high recovery of large microspheres (0.2 and 1 micron) and lower recovery of the small spheres (0.02 micron). It was observed that clay particles, with similar surface properties and sizes to that of the microspheres, show significantly lower recoveries (50 vs over 90%), probably due to the high density of clay particles in respect to the microspheres (2.65 vs. 1.05 g/cm3). High recovery of bacteriophages was also observed, but they exhibit some differences in respect to microspheres with similar properties. In all cases, including the 0.02 micron colloids exhibiting lower recovery rates, arrival times were earlier than that of the bromide that was used as a reference. It was found that colloid-facilitated transport played a major role in the migration of lead and cesium through the fracture. In practice, lead was found to be mobile only in a colloidal form. The on-going work on NP transport through fractures is still in a preliminary phase. Nevertheless, TiO2 recovery was found to be very low. In conclusion, it was observed that in many cases fractures are favorable

  4. Diagnostics of Nano-Particle Formation in Process Plasmas

    Kersten, Holger

    2015-09-01

    in the plasma during the growth cycles has been monitored by microwave interfereomtery and the nano-particle formation and deposition was observed in-situ by XPS and NEXAFS at a synchrotron beamline. In collaboration with E. von Wahl, A. Hinz, T. Strunskus, V. Schneider, and T. Trottenberg, Institute of Experimental and Applied Physics, University of Kiel, Kiel, Germany.

  5. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles

    Lipase was covalently immobilized onto magnetic Fe3O4 nano-particles by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as an activating agent, and the bound lipase was used to catalyze the transesterification of vegetable oils with methanol to produce fatty acid methyl esters. The binding of lipase to magnetic particles was confirmed by enzyme assays, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectra. It was determined that the immobilized lipase exhibited better resistance to temperature and pH inactivation in comparison to free lipase. Using the immobilized lipase, the major parameters affecting the transesterification reaction, such as the alcohol/oil molar ratio, enzyme loading and free fatty acid present in reactants were investigated to obtain the optimum reaction condition. The conversion of soybean oil to methyl esters reached over 90% in the three-step transesterification when 40% immobilized lipase was used. Moreover, the lipase catalyst could be used for 3 times without significant decrease of the activity.

  6. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    Bin Dai; Qinqin Wang; Feng Yu; Mingyuan Zhu

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction...

  7. Photopyroelectric Techniques for thermo-optical characterization of gold nano-particles

    Since the first methodology, proposed by Turkevich, to produce gold nanoparticles (AuNPs), improvements have been made as to allow better controllability in their size and shape. These two parameters play important role for application of gold nanoparticles since they determine their optical and thermal properties. Two photopyroelectric techniques for the measurement of the thermal diffusivity and the optical absorption coefficient for nano-particles are introduced. These thermo-physical properties were measured for the colloidal systems at different nano-particle's sizes and, for optical properties, at three different wavelengths (405 nm, 488 nm and 532 nm). No significant difference, on thermal properties, was found in the range of nano-particles' sizes studied in this work; in opposition optical properties shown more sensitive to this parameter

  8. Microstructure and Behaviors of Nano Composite Coating

    ZHOUXi-ying; QIANShi-qiang; LiWei-hong; LIPei-yao; LIMan-ping

    2004-01-01

    Nano composite coatings are fabricated by electro brash plating containing various nano particles (Al2O3, SiO2 and ZrO2). Its surface morphology and microstructure are observed by means of S-2700 scanning elect-on microscopy (SEMI, And the mechanical behaviors of nano composite coating are analyzed. The results show that microstructure of nano composite coating is obviously fine because of nano particles. Micro hardness at room temperature increases with the increase of nano particles content. The wear resistance and hardness at high temperature are also improved. The strengthening effect is differentiated by the type and content of nano particle.s, This is due to the combination of dispersion strengthening and grain size strengthening.

  9. Size measurement of nano-particles using self-mixing effect

    Huarui Wang; Jianqi Shen

    2008-01-01

    In this letter, the technique of laser self-mixing effect is employed for nano-particle size analysis. In contrast to the photon correlation spectroscopy (PCS) and photon cross correlation spectroscopy (PCCS),the main advantages of this technique are sensitive, compact, low-cost, and simple experimental setup etc.An improved Kaczmarz projection method is developed in the inversion problem to extract the particle size distribution. The experimental results prove that nano-particle size can be measured reasonably by using the self-mixing effect technique combined with the improved projection algorithm.

  10. Synthesis and characterization of La2O3 nano particles for future CMOS applications

    This research paper deals with the preliminary studies on synthesis and characterization of lanthanum oxide or lanthana (La2O3) nano particles by chemical combustion using urea as fuel. The fuel urea is varied for different fuel to oxidizer ratios (O/F) or Ψ. The starting material (oxidizer) is the lanthanum nitrate (La(NO3)3.6H2O) and fuel as urea. The synthesized lanthana nano particles were characterized by X-ray diffraction (XRD) for crystal structure analysis, scanning electron microscopy (SEM) for morphological and particle size determination. (author)

  11. Biological Experiments in Microgravity Conditions Using Magnetic Micro- and Nano-Particles

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    even for weak magnetic objects, and can have significant effects on multiple processes in living cells/organisms. It was reported, that such high gradient magnetic fields can affect cell differentiation and cell proliferation processes in ground-based experiments. To prevent oxidation of ultradisperse ferromagnetic particles in aqueous media, it is beneficial to coat their surface with carbon. Suitable protected metallic micro- and nano-particles can be produced by a variety of techniques (CVD, plasmachemistry, joint grinding, etc.). Ferro-carbon particles produced by plasmachemical technique have high sorption capacities for various organic and inorganic compounds (as well as for various cell metabolites), can be formed in rather stable aqueous suspensions, and be controlled (e.g., sedimented) by a magnetic field. This makes these particles a very interesting research tool. In our opinion, biological experiments with ferro-carbon nano-structured particles in microgravity will generate important scientific data and will allow creating new methods of negating the adverse effects of microgravity on living systems.

  12. In situ, high-pressure differential thermal analysis and ionic conductance of PMMA-based gels with and without TiO2 nano-particle filler

    The transition behaviours of PMMA-based gels with and without nano-particle filler have been investigated at elevated pressures up to 0.9 GPa and in the temperature range 220-310 K. Both gels had molar ratios of 53.9:22:5.2:18.9 of ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate, PMMA, and one gel contained 8 wt.% TiO2 nano-particles. The results show a sluggish transition between a low-pressure (high temperature) state and a high-pressure (low temperature) state. The nano-particle filler facilitates the kinetics of the transition, yielding a significantly lower transition pressure as well as a better homogeneity in the sample after a transition back to the low-pressure state. These results can be explained by a filler-induced increase of the nucleation rate, which yields smaller crystallites. The transition is observed also by differential scanning calorimetry and Raman spectroscopy at ambient pressure and is likely associated with crystallization of the EC-PC solvent. The logarithmic pressure derivative of the conductance and, consequently, the activation volume changes a factor of 3 as a result of the transition

  13. Effect of Partial Orientation in [100] Direction on the Magnetic Properties of Co-Ferrite Prepared from Nano Particles

    H. M. El-Sayed

    2009-01-01

    Chemical co-precipitation method was used for the preparation of Co-ferrite nano particles. The particle size was about 14 nm. A magnetic anisotropy of Co-ferrite could be increased obtained by applying an external magnetic field during the pressing of the nano particles before the final sintering. This anisotropy enhanced the squareness and the coercivity of investigated samples.

  14. Growth of Sulfuric Acid Nano-Particles at Dry and Wet Conditions

    Škrabalová, Lenka; Brus, D.; Ždímal, Vladimír; Lihavainen, H.

    - : -, 2012, P270. [European Aerosol Confrernce EAC 2012. Granada (ES), 02.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA200760905 Institutional support: RVO:67985858 Keywords : sulfuric acid * nano-particles * particle growth Subject RIV: BJ - Thermodynamics http://www.eac2012.com/EAC2012Book/3.html

  15. The role of biological processes in the synthesis of plant origin of magnetic nano particles

    Full text:In recent years, in various spheres, particular in the use of medicine and the use of iron oxide (magnetit-Fe3O4, magemit Fe2O3) needed in the diagnostics the problems of synthesis of magnetic nano particles are in the centre of the focus of many scholars.The implementation of biological methods of synthesis of magnetic nano particles, it is very urgent clarification of the role of biological processes synthesis of nano particles. What is the role of biological processes in the synthesis of magnetic nano particles plant in order to clarify the model of the wheat (Triticum vulgare) and pea (Cicer arietinum L.) plants and seeds have been used. The study of the effects of radiation on organisms of different types of cell and chromosome levels of various radiation effects and radiation to understand the nature of the influence of the nature of the forecast allows you to substantiate. Chromosome aberation was has been taken in the cells of pea sprout exposures radiation rays as a criterion of cytogenetic effects. EPR studies of the pea and wheat seeds (control and radiations) were used. In accordance with the results of EPR experiments were carried out with pea seeds.

  16. The combined effect of deuterium depleted water and magnetic nano particles on Vitis vinifera (L) organogenesis

    Full text: The combined effect of Deuterium Depleted Water (DDW) associated with Magnetic Nano Particles (MNPs) on organogenesis evolution of the Vitis vinifera (L) was investigated. A total of 10 cuttings of first year shoots belonging to three varieties were put into liquid medium (500 cm3 / jar) in three experimental groups and one control (C) each in four replications. The experiment was one year long being divided in two parts, laboratory and greenhouse conditions respectively. During the laboratory experiment, no nutrients were added in experimental solutions. The number of roots, sprouts and leafs were determined periodically. The capacity to perform organogenesis depended on genotype. Each of them pointed out a particular behaviour. In lab conditions the shoot number significantly differs in each variety/liquid composition (P≤0.001). In greenhouse condition on Burgund variety the shoot growth was very fast. In 90 pottings the shoots length varied from 7.36±1.88 to 14.39±4.53 cm in DDW and Negative Control (NC). The number of leafs after 3 months varied from 3.75±0.41 to 7.59±0.45 on Silvania NC and Socodor TW and MNPs respectively. The largest leaves area was 20.32±0.04 cm2 on Burgund variety in DDW conditions. The DDW and MNPs repressed the organogenesis on Silvania and Burgund varieties. The association DDW and MNPs enhanced the leaves area. Generally, the single action of DDW enhanced the plantlet traits and improved the chlorophyll content. The single action of DDW or in association with MNPs had a favourable influence in organogenesis, growth and synthesis of chlorophyll involved in metabolic activity. The deuterium amount decreased in leave juice if the plantlets grew in DDW presence. (authors)

  17. Dependence of Quantum Yields on Size of Ag Nano-particle Embedded in BaO Thin Film

    2002-01-01

    Theoretical dependence of the quantum yields on the size of Ag nano-particle distribution from 0.8nm to 37nm embedded in BaO semiconductor is discussed. The calculation results show that the increase in Ag nano-particle diameter leads to the increase of the quantum yield threshold and the emergence of the rough Gaussian form, the results also show that the greater increase in Ag nano-particle diameter causes the emergence of the exact Gaussian form and makes the peaks rise up.

  18. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  19. Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid

    Amir Fathi

    2012-03-01

    Full Text Available In this study boron carbide nano particles were synthesized using polyvinyl alcohol and boric acid. First, initial samples with molar ratio of PVA : H3BO3 = 2.7:2.2 were prepared. Next, samples were pyrolyzed at 600, 700 and 800°C followed by heat treatment at 1400, 1500 and 1600°C. FTIR analysis was implemented before and after pyrolysis in order to study the reaction pathway. XRD technique was used to study the composition of produced specimens of boron carbide. Moreover, SEM and PSA analysis were also carried out to study the particle size and morphology of synthesized boron carbide. Finally, according to implemented tests and analyses, carbon-free boron carbide nano particles with an average size of 81 nm and mainly spherical morphology were successfully produced via this method.

  20. Development of functional nano-particle layer for highly efficient OLED

    Lee, Jae-Hyun; Kim, Min-Hoi; Choi, Haechul; Choi, Yoonseuk

    2015-12-01

    Organic light emitting diodes (OLEDs) are now widely commercialized in market due to many advantages such as possibility of making thin or flexible devices. Nevertheless there are still several things to obtain the high quality flexible OLEDs, one of the most important issues is the light extraction of the device. It is known that OLEDs have the typical light loss such as the waveguide loss, plasmon absorption loss and internal total reflection. In this paper, we demonstrate the one-step processed light scattering films with aluminum oxide nano-particles and polystyrene matrix composite to achieve highly efficient OLEDs. Optical characteristics and surface roughness of light scattering film was optimized by changing the mixing concentration of Al2O3 nano-particles and investigated with the atomic force microscopy and hazemeter, respectively.

  1. Control of cancer growth using single input autonomous fuzzy Nano-particles

    Fahimeh Razmi

    2015-04-01

    Full Text Available In this paper a single input fuzzy controller is applied on autonomous drug-encapsulated nanoparticles (ADENPs to restrict the cancer growth. The proposed ADENPs, swarmly release the drug in local cancerous tissue and effectively decreases the destruction of normal tissue. The amount of released drug is defined considering to feed backed values of tumor growth rate and the used drug. Some significant characteristics of Nano particles compared to Nano-robots is their ability to recognize the cancerous tissue from the normal one and their simple structure. Nano particles became an attractive topic in Nano science and many efforts have been done to manufacture these particles. Simulation results show that the proposed controlling method not only decreases the cancerous tissue effectively but also reduces the side effects of drug impressively.

  2. Implementation of background scattering variance reduction on the RapidNano particle scanner

    van der Walle, P.; Hannemann, S.; Eijk, D.(Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands); Mulckhuyse, W.F.W.; Donck, J.C.J. van der

    2014-01-01

    The background in simple dark field particle inspection shows a high scatter variance which cannot be distinguished from signals by small particles. According to our models, illumination from different azimuths can reduce the background variance. A multi-azimuth illumination has been successfully integrated on the Rapid Nano particle scanner. This illumination method reduces the variance of the background scattering on substrate roughness. It allows for a lower setting of the detection thresh...

  3. Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate

    Hou, Yanpan; Zhang, Zicheng; Zhang, Jiande; Liu, Zhuofeng; Song, Zuyin

    2015-05-01

    As an alternative to water, propylene carbonate (PC) has a good application prospect in the compact pulsed power sources for its breakdown strength higher than that of water, resistivity bigger than 109 Ω m, and low freezing temperature (-49 °C). In this paper, the investigation into dielectric breakdown of PC and PC-based nano-fluids (NFs) subjected to high amplitude electric field is presented with microsecond pulses applied to a 1 mm gap full of PC or NFs between spherical electrodes. One kind of NF is composed of PC mixed with 0.5-1.4 vol. % BaTiO3 (BT) nano-particles of mean diameter ≈100 nm and another is mixed with 0.3-0.8 vol. % BT nano-particles of mean diameter ≈30 nm. The experimental results demonstrate the rise of permittivity and improvement of the breakdown strength of NFs compared with PC. Moreover, it is found that there exists an optimum fraction for these NFs corresponding to tremendous surface area in nano-composites with finite mesoscopic thickness. In concrete, the dielectric breakdown voltage of NFs is 33% higher than that of PC as the volume concentration of nano-particles with a 100 nm diameter is 0.9% and the breakdown voltage of NFs is 40% higher as the volume concentration of nano-particles with a 30 nm diameter is 0.6%. These phenomena are considered as the dielectric breakdown voltage of PC-based NFs is increased because the interfaces between nano-fillers and PC matrices provide myriad trap sites for charge carriers, which play a dominant role in the breakdown performance of NFs.

  4. Controlled structural and optical properties of ZnO nano-particles

    Kazemi, Asieh Sadat; Ketabi, Seyed Ahmad [School of Physics and Center for Solid State Research, Damghan University, Damghan (Iran, Islamic Republic of); Abadyan, Mohamadreza, E-mail: abadyan@yahoo.co [Mechanical Engineering Group, Islamic Azad University, Tonekabon Branch, Ramsar Center (Iran, Islamic Republic of)

    2010-09-15

    In this work, we have analyzed two synthesis procedures through experimental characterizations, where one provides a main temperature region for the control of the shape and size of ZnO nano-particles in comparison to the other. We have found that the complexing agent has a significant role in showing such a control region. This effect might also improve the fabrication and properties of other interesting and applicable nano-structures.

  5. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  6. Experimental study of combustion of decane, dodecane and hexadecane with polymeric and nano-particle additives

    Ghamari, Mohsen; Ratner, Albert

    2015-11-01

    Recent studies have shown that adding combustible nano-particles could have promising effects on increasing burning rate of liquid fuels. Combustible nano-particles could enhance the heat conduction and mixing within the droplet. Polymers have also higher burning rate than regular hydrocarbon fuels because of having the flame closer to the droplet surface. Therefore adding polymeric additive could have the potential to increase the burning rate. In this study, combustion of stationary fuel droplets of n-Decane, n-Dodecane and n-Hexadecane doped with different percentages of a long chain polymer and also a very fine nano carbon was examined and compared with the pure hydrocarbon behavior. In contrast with hydrocarbon droplets with no polymer addition, several zones of combustion including a slow and steady burning zone, a strong swelling zone and a final fast and fairly steady combustion zone were also detected. In addition, increasing polymer percentage resulted in a more extended swelling zone and shorter slow burning zone in addition to a shorter total burning time. Addition of nano-particles also resulted in an overall increased burning rate and shortened burning time which is due to enhanced heat conduction within the droplet.

  7. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  8. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at su...

  9. Boundary lubrication by nano-particles; Lubrification limite par les nanoparticules

    Cizaire, L.

    2003-09-15

    The replacement of aggressive organic molecules by mineral particles which could reduce friction and wear has been the main idea of this research work. The aim is thus to reduce product concentration in lubricant and pollutant gas emission. Boundary lubrication regime is well suited for this type of study in particular for being discriminative in tested nano-particles efficacy. We are firstly being interested in an anti-wear additive. A physical and chemical study of dialysed over based calcium sulfonates by EFTEM, XPS and ToF-SIMS lead to describe nano-particles as calcium carbonate core, still amorphous by the residual presence of calcium hydroxide and surrounded by di-dodecyl-benzene sulfonate surfactant chains. Their anti-wear action has been investigated by coupling many tribo-meters with different contact geometry. Rubbing surfaces were protected by a thick tribo-film being on surfaces without any scratches. When additive is in contact area under high pressure and shearing, micellar structure is broken. Hydro-carbonated chains initially control friction by being broken up and then with increasing of contact severity, sulfonate chains are expulsed out of the tribo-film. Tribo-film growth corresponds then to agglomeration and crystallization of calcium carbonate core striped of detergent chains. We have shown then friction reduction capabilities of inorganic-fullerene (IF) MoS{sub 2} nano-particles. Lubricating power of MoS{sub 2} layers is as good whatever the layers number leading thinking that friction value is intrinsic character of compound nature. Fullerene nano-particles were described by HR-TEM as a concentric and closed multi-layered structure. Coupling of Raman, XRD and EXAFS have shown that MoS{sub 2} layers were well organised in hexagonal form with distortion in Mo-Mo bonds reaching 1% of initial length. Chemical stability of such structure, in particular in regard of oxidation, is very impressive. XPS, XANES and ToF-SIMS analyses have lead to

  10. Airflow structures and nano-particle deposition in a human upper airway model

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k-ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin≥30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  11. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy

    Highlights: • Nano-particle formation identified in Plansee PM2000 ODS alloy powders. • Y–Al–O nano-particles observed after annealing at 923 K for 5 h. • Particle diameter ≈2 nm and NV > 1023 m−3 over annealing range 1123–1223 K. • Particles dissolved at, and reprecipitated behind, recrystallisation fronts. - Abstract: The early stages of nano-particulate formation in mechanically alloyed and annealed, precursor powders used to manufacture the legacy commercial oxide dispersion strengthened alloy PM2000, formerly produced by Plansee GmbH, have been investigated. Powders were analysed in both the as-mechanically-alloyed condition and after annealing over the temperature range 923–1423 K. The nucleation and growth of coherent nano-particles in the partially recovered, fine grained, ferritic matrix of powders annealed at temperatures as low as 923 K has been confirmed. Powders annealed for 1 h at temperatures of 1123 K and 1223 K were partially recrystallised and contained high number densities (NV > 1023 m−3) of coherent 2 nm yttrium–aluminium–oxygen rich nano-particles. The identification of particle free zones in recrystallised grains, adjacent to recrystallising interfaces, plus the identical orientation relationships between nano-particles and the matrices in both unrecrystallised and recrystallised grains, indicates that the Y–Al–O nano-particles, first formed in fine grained regions, are dissolved during recrystallisation and re-precipitated subsequently in recrystallised grains

  12. Heat transfer augmentation of a circular pipe flow using nano-particle layers

    Yamagishi, Akira; Yuki, Kazuhisa; Sato, Tomoaki; Hashizume, Hidetoshi [Tohoku Univ. (Japan). Dept. of Quantum Science and Energy Engineering; Kunugi, Tomoaki [Kyoto Univ. (Japan). Faculty of Engineering; Sagara, Akio [National Inst. for Fusion Science (Japan)

    2007-07-01

    For the advanced fusion reactor FFHR2 (Force Free Helical Reactor) that has been proposed by NIFS, molten salt Flibe (LiF:BeF2=64:36) breeder blanket system is selected because of Flibe's features such as chemical stability, low-pressure operation and low electric conductivity. The Flibe is however high Prandtl number fluid since it has high viscosity and low thermal conductivity. Therefore its heat transfer performance is low compared with liquid Li or Pb-Li. In addition to heat removal of 1MW/m2 on the first wall, electrolysis of molten salt due to MHD effect will take place under high flow rate condition. This indicates that heat transfer enhancement under low flow rate is essential for the Flibe blanket system. In our laboratory, heat transfer characteristics of molten salt HTS (KNO3:NaNO2:NaNO3=53:40:7), have been evaluated, which is used as a simulant fluid of Flibe from the points of view of Be's toxicity and similar Prandtl number. In this paper, we adopt nano-particle layer method to form nano{proportional_to}micro scale structure on a heating surface using an acid or an alkali includes nano particles. There exist two methods to form nano particle layer. One is NPLS (Nano Particle Layer Structure) method which uses a chemical etching with an acid or an alkali including copper-oxide nano-particles. The other is FP (Fine Particle) method which employs electroless plating with inorganic metal salt solution. At first, immersion experiments of NPLS or FP layers into melted HTS shows that erosion of the FP sample is much less than that of the NPLS sample. Furthermore, a forced-convention heat transfer experiments with a circular tube whose inner surface has the nano-particle layer by the FP method is carried out in a large molten salt circulating loop named as TNT loop. Results show that average Nusselt numbers of the circular tube flow are about 1.3 times higher than that of a bared tube in the range of 3000

  13. Doping of TiO2 nano-particles in Y 123 superconductor

    Full text: In order to improve transport properties of superconductors, there have been lots of efforts like doping, irradiation, and heat treatment. There are a few reports about doping of nano-particles in high temperature superconductors. In this work we have doped TiO2 nano-particles in YBa2Cu3O7-d (Y 123) which was made by solid state method. We have prepared samples with two synthesis processes; Four samples which will be referred as 'standard' were prepared with doping of TiO2 nano-particles with 0, 3, 6, and 9 %wt to calcined (Oxygen uncompleted) Y 123 sample. The other samples named 'reference' were prepared with doping of TiO2 nano-particles with 0, 3, 6, and 9 % wt to sintered (Oxygen completed) Y 123 sample. These samples were annealed at 450 oC for one hour. In the standard samples, due to high temperature process, there is a probability of chemical reaction of TiO2 nano-particles with Y 123. So, the annealing temperature of the reference samples was chosen low such that TiO2 and Y 123 do not react with each other. Some measurements like XRD, SEM, R(T), Meissner effect, magnetic susceptibility, and I-V were performed. The XRD patterns showed the existence of YBa3Ti2O8.5 impurity phase and the intense increase of it with doping in the standard samples, consisted with susceptibility experiments. The XRD experiment in the reference samples confirmed the existence of TiO2 phase without any reaction with Y 123. In the SEM images of the standard samples some areas with different contrasts were observed, which seems to be the impurity secondary phase. In addition, in the SEM images of the reference samples, nano-metric particles (TiO2) beside micro-metric particles (Y 123) were observed. This means that TiO2 nano-particles have no any reaction with Y 123 phase, which is in agreement with XRD analysis. The Meissner effect for pure standard sample and all the reference samples was observed. The results of R(T) showed that just pure standard sample (Std 0 %) has

  14. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    Graphical abstract: - Highlights: • β-FeSi2 nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi2. • HRTEM and FESEM images indicate the β-FeSi2average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi2is p-type with hole density of 4.38 × 1018 cm−3 and mobility 8.9 cm2/V s. - Abstract: Nano-particles of β-FeSi2 have been synthesized by chemical reduction of a glassy phase of [Fe2O3, 4SiO2] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi2 semiconducting phase. The average crystallite size of β-FeSi2 is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi2 phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi2 nano-particles is p-type with hole concentration of 4.38 × 1018 cm−3 and average hole mobility of 8.9 cm2/V s at 300 K

  15. Mobilization and biodegradation of 2-methylnaphthalene by amphiphilic polyurethane nano-particle.

    Kim, Young-Bum; Kim, Ju-Young; Kim, Eun-ki

    2009-10-01

    Amphiphilic polyurethane (APU) nano-particle enhanced the mobilization of 2-methylnaphthalene (2-MNPT) in soil. Significant increase in the solubility of 2-MNPT was achieved. The molar solubilization ratio was 0.4 (mole 2-MNPT/mole APU). Simple precipitation of APU particle by 2 N CaCl(2) recovered 95% of APU particle and 92% of 2-MNPT simultaneously. Also, 2-MNPT, which was entrapped inside the APU particle, was directly degraded by Acinetobacter sp. as same efficiency as without APU particle. These results showed the potentials of APU particle in the mobilization and biodegradation of hydrophobic compounds from soil. PMID:19214790

  16. Size dependence of vacancy migration energy in ionic nano particles: A potential energy landscape perspective

    Niiyama, Tomoaki; Okushima, Teruaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2016-06-01

    Size dependence of vacancy migration energy in ionic nano particles is investigated by analysis of potential energy surfaces in potassium chloride clusters. Numerical methods are used to find almost all local minima and transition states for vacancy migration in clusters of different sizes, and reveal characteristic features of energy surface structure. It is shown that migration energy is significantly lower near a cluster surface than near a cluster core, and the mean first-passage time for migration of a vacancy decreases with cluster size. These results are consistent with observations of high diffusion rates in small clusters.

  17. Nano-particles produced by a simple formula; Nanoteilchen nach einfacher Rezeptur

    Wengenmayr, R.

    2001-07-01

    Nano-particles for fuel cell catalysts with a dimater of a few billionth parts of a meter can be produced by a simple, low-cost and environment-friendly method developed by a working group headed by Manfred T. Reetz, Director of the Max-Planck Institute of Coal Research at Muelheim on the Ruhr. [German] 'Nanopartikel' fuer Brennstoffzellen-Katalysatoren mit einem Durchmesser von wenigen Milliardstel Metern koennen neuerdings erstaunlich einfach, preiswert und umweltfreundlich hergestellt werden. Entwickelt wurde das Verfahren von der Arbeitsgruppe um Manfred T. Reetz, Direktor am Max-Planck-Institut fuer Kohlenforschung in Muelheim an der Ruhr. (orig.)

  18. Detection of biocolloids in aquatic media by Nano-Particle Analyzer

    Bundschuh, T.; T. Wagner; Eberhagen, I.; Hambsch, B.; KÖster, R.

    2005-01-01

    The Nano-Particle Analyzer (NPA) based on Laser-Induced Breakdown Detection (LIBD) selectively generates and detects plasma events on colloids in aquatic media. Here, it is made use of the fact that the power density required for plasma generation decreases from the gaseous to the solid medium. At an adequate laser pulse energy, plasmas can thus be generated selectively on colloids. The detections of biocolloids by LIBD-based NPA as described in this paper for the first time clearly reveal th...

  19. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  20. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  1. Synthesis and characterization of nano ZnO, nano Ag/ZnO composite & nano-particles embedded polymers

    Are, Thilak Reddy

    Zinc oxide and silver/zinc oxide nano particles were synthesized by a simple precipitation method in the presence of polyvinylpyrrolidone (PVP). The presence of polyvinylpyrrolidone prevents agglomeration and allows the formation of nano sized particles. Characterization of synthesized nano particles were carried out using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and the average sizes were determined by zeta seizer. The X-ray diffraction shows that the prepared particles were poorly crystalline. The DSC results show that the prepared particles are highly stable and no phase changes were observed when heated from room temperature to 500°C. Scanning electron microscopic observation shows that the particles are uniformly distributed with similar shape. Zeta seizer results show that the prepared particles are nano-particles with average size of about 100 nm. The prepared Zinc oxide nano particles were embedded into the polycaprolactone (PCL) polymer to study the effect of embedding zinc oxide nanoparticle on PCL crystallinity and mechanical properties. ZnO nano particles were successfully embedded into the polymer using in-situ and non-in-situ embedding processes. Characterization of PCL embedded with ZnO nanoparticles was performed by X-ray diffraction technique and scanning electron microscope. Crystallinity studies were done by using differential scanning calorimetry and the results show that the polymer embedded using an in situ process showed a decrease in crystallinity compared to the polymer embedded using a non-insitu process.

  2. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif

    2016-03-01

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  3. Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles

    Abdelghany, A.M., E-mail: a.m_abdelghany@yahoo.com [Spectroscopy Department, Physics Division, National Research Center, Dokki, 12311, Cairo (Egypt); Mekhail, M.Sh.; Abdelrazek, E.M.; Aboud, M.M. [Physics Department, Faculty of Science, Mansoura University, 35516, Mansoura (Egypt)

    2015-10-15

    Nano-particles of two Nobel metals, namely, (silver and gold) were prepared and used as a dopant in polyvinyl pyrrolidone (PVP) polymeric matrix by the simple casting technique. Prepared samples examined theoretically using density functional theory (DFT) and experimentally with Fourier transform infrared (FTIR) and (UV/Vis) spectroscopy. DFT calculations and FTIR experimental results shows the persistence of the characteristic bands of polymeric network in their positions while pyrrolidinone adsorbed both silver and gold colloid surfaces preferably via the non-bonding electrons of the carbonyl group. UV/Vis experimental data was employed to calculate the optical energy gap of pristine and doped samples. Optical band gap and particle size were calculated and is in agreement with the results obtained from TEM data. Transmission electron microscopy shows that the prepared silver and gold nanoparticles were mono dispersed within the polymeric matrix. - Highlights: • Nano-particles of two Nobel metals, namely, (silver and gold) were prepared. • Polyvinyl pyrrolidone polymeric matrix doped with nobel metal were prepared via casting technique. • Prepared samples investigated via combined (DFT) and (FTIR). • Transmission electron microscopy shows monodispersed nanoparticles.

  4. Analytical Investigation of Jeffery-Hamel Flow with High Magnetic Field and Nano Particle by RVIM

    Many researchers have been interested in application of mathematical methods to find analytical solutions of nonlinear equations and for this purpose, new methods have been developed. One of the newest analytical methods to solve nonlinear equations is Reconstruction of variational Iteration Method which is an accurate and a rapid convergence method in finding the approximate solution for nonlinear equations. By applying Laplace Transform, Reconstruction of variational Iteration Method overcomes the difficulty of the perturbation techniques and other variational methods in case of using small parameters and Lagrange multipliers, respectively. In this study Reconstruction of variational Iteration Method is applied for the effects of magnetic field and nano particle on the Jeffery-Hamel flow. The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The flow field inside the divergent channel is studied for various values of Hartmann number and angle of channel. Finally the effect of nano particle volume fraction in the absence of magnetic field is investigated, too. The validity of Reconstruction of variational Iteration Method method is ascertained by comparing our results with numerical (Runge Kutta method) results.

  5. Development of Single-side Magnet Array for Super Paramagnetic Nano-particle Targeting

    Wei He

    2014-04-01

    Full Text Available Permanent magnets are interesting for the use in magnetic drug targeting devices. The magnetic fields and forces with distances from magnets have limited the depth of targeting. Producing greater forces at deep depth by optimally designed magnet arrays would allow treatment of a wider class of patients. In this study, we present a design of a permanent magnet array for deep magnetic capture of super paramagnetic iron oxide nano-particles, which consists of an array of 3 individual bar permanent magnet positioned to achieve a reasonably magnitude magnetic field and its gradient within a deeply region. These configurations were simulated with two-dimensional finite-element methods. The super paramagnetic iron oxide nano-particles were adopted Fe3O4 particles with diameter 40 nm by chemical co-precipitation method. Performance factors were defined to relate magnetic field force with mass. The field strength and gradient were measured by a Hall probe and agreed well with the simulations.

  6. Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles

    Nano-particles of two Nobel metals, namely, (silver and gold) were prepared and used as a dopant in polyvinyl pyrrolidone (PVP) polymeric matrix by the simple casting technique. Prepared samples examined theoretically using density functional theory (DFT) and experimentally with Fourier transform infrared (FTIR) and (UV/Vis) spectroscopy. DFT calculations and FTIR experimental results shows the persistence of the characteristic bands of polymeric network in their positions while pyrrolidinone adsorbed both silver and gold colloid surfaces preferably via the non-bonding electrons of the carbonyl group. UV/Vis experimental data was employed to calculate the optical energy gap of pristine and doped samples. Optical band gap and particle size were calculated and is in agreement with the results obtained from TEM data. Transmission electron microscopy shows that the prepared silver and gold nanoparticles were mono dispersed within the polymeric matrix. - Highlights: • Nano-particles of two Nobel metals, namely, (silver and gold) were prepared. • Polyvinyl pyrrolidone polymeric matrix doped with nobel metal were prepared via casting technique. • Prepared samples investigated via combined (DFT) and (FTIR). • Transmission electron microscopy shows monodispersed nanoparticles

  7. Preparation and Characterization of Fe3O4 Magnetic Nano-particles by 60Co γ-ray Irradiation

    Mingcheng YANG; Hongyan SONG; Chengshen ZHU; Suqin HE; Ya GAO

    2007-01-01

    By using a new method, 60C0 γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.

  8. Synthesis of SmOHCO3 micro/nano particles from the coupling route of homogeneous precipitation with microemulsion

    朱文庆; 瞿芳; 陈浩军; 李卓; 刘斌

    2014-01-01

    SmOHCO3micro/nano particles were prepared in water/oil (W/O) reverse microemulsion composed of cetyltrimethyl ammonium bromide (CTAB), n-octane, n-butanol, Sm(NO3)3·6H2O and urea aqueous solution by the coupling route of homogeneous precipitation with microemulsion. The nanoparticles were characterized and analyzed by X-ray powder diffraction (XRD), thermal gravimetric and differential thermal gravimetric analysis (TG-DTG), Fourier transform infrared absorption spectra (FT-IR) and scan-ning electron microscope (SEM). The results showed that the phase SmOHCO3 micro/nano particles was in agreement with pure or-thorhombic phase. The different morphologies of SmOHCO3 micro/nano particles with good monodispersity and size were obtained by regulating the reaction temperature and reaction time. Possible formation mechanisms of the morphological structure of SmO-HCO3 were proposed and discussed.

  9. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  10. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy

    Dawson, Karl, E-mail: k.dawson@liverpool.ac.uk [Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH (United Kingdom); Haigh, Sarah J. [School of Materials, Materials Science Centre, University of Manchester, M13 9PL (United Kingdom); Tatlock, Gordon J.; Jones, Andy R. [Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH (United Kingdom)

    2015-09-15

    Highlights: • Nano-particle formation identified in Plansee PM2000 ODS alloy powders. • Y–Al–O nano-particles observed after annealing at 923 K for 5 h. • Particle diameter ≈2 nm and N{sub V} > 10{sup 23} m{sup −3} over annealing range 1123–1223 K. • Particles dissolved at, and reprecipitated behind, recrystallisation fronts. - Abstract: The early stages of nano-particulate formation in mechanically alloyed and annealed, precursor powders used to manufacture the legacy commercial oxide dispersion strengthened alloy PM2000, formerly produced by Plansee GmbH, have been investigated. Powders were analysed in both the as-mechanically-alloyed condition and after annealing over the temperature range 923–1423 K. The nucleation and growth of coherent nano-particles in the partially recovered, fine grained, ferritic matrix of powders annealed at temperatures as low as 923 K has been confirmed. Powders annealed for 1 h at temperatures of 1123 K and 1223 K were partially recrystallised and contained high number densities (N{sub V} > 10{sup 23} m{sup −3}) of coherent 2 nm yttrium–aluminium–oxygen rich nano-particles. The identification of particle free zones in recrystallised grains, adjacent to recrystallising interfaces, plus the identical orientation relationships between nano-particles and the matrices in both unrecrystallised and recrystallised grains, indicates that the Y–Al–O nano-particles, first formed in fine grained regions, are dissolved during recrystallisation and re-precipitated subsequently in recrystallised grains.

  11. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    Sen, Sabyasachi [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Gogurla, Narendar [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India); Banerji, Pallab [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Guha, Prasanta K. [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [Department of Basic Science, MCKV Institute of Engineering, Howrah, Liluah 711204 (India)

    2015-10-15

    Graphical abstract: - Highlights: • β-FeSi{sub 2} nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi{sub 2}. • HRTEM and FESEM images indicate the β-FeSi{sub 2}average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi{sub 2}is p-type with hole density of 4.38 × 10{sup 18} cm{sup −3} and mobility 8.9 cm{sup 2}/V s. - Abstract: Nano-particles of β-FeSi{sub 2} have been synthesized by chemical reduction of a glassy phase of [Fe{sub 2}O{sub 3}, 4SiO{sub 2}] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi{sub 2} semiconducting phase. The average crystallite size of β-FeSi{sub 2} is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi{sub 2} phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi{sub 2} nano-particles is p-type with hole concentration of 4.38 × 10{sup 18} cm{sup −3} and average hole mobility of 8.9 cm{sup 2}/V s at 300 K.

  12. Enhancing Asphalt Binder's Rheological Behavior and Aging Susceptibility Using Nano-Particles

    Walters, Renaldo C.

    The life expectancy of Asphalt Binder (AB) has been negatively impacted by the harsh bombardment of UV rays. UV rays cause asphalt to oxidize faster which results in deterioration of asphalt rheological characteristics that can lead to pavement distresses. This study investigates the impact that nano-particles and bio modification have on the aging susceptibility of asphalt binder. As such, the following hypothesis was investigated: Introduction of nano particles to asphalt binder will reduce asphalt oxidation aging by increasing the inter layer spacing of the nano particles. Two nano scale materials were used for this study, nano-clay and bio-char as well as one micro scale material, silica fume. Nano-clay (Cloisite 30B) is a naturally occurring inorganic mineral. Bio-char is the waste product from bio-binder production. Bio-binder is produced from swine manure using a thermochemical conversion process. This process is then followed by a filtration procedure where the bio-char is produced. Chemical and physical properties of bio-char showed a significant presence of carbon which could in turn reduce the rate of asphalt oxidation. Silica Fume is an ultra-fine powder collected as a by-product of silicon and ferrosilicon alloy production and consists of spherical particles. In this study several mixtures are designed and evaluated using RV testing (Rotational Viscometer), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Nano-clay is blended at 2% and 4% by weight of dry mass, with and without bio-binder (5% by weight of dry mass). Bio-char is grinded to nano scale and added to the virgin asphalt binder (PG 64-22) at 2%, 5% and 10% by weight of dry mass. Silica Fume is added to virgin asphalt binder (PG 64-22) at 2%, 4% and 8% by weight of dry mass. The optimum percent of nano scale material that is added to virgin asphalt binder is expected to reduce aging susceptibility of asphalt binder, extending its service life.

  13. Seed Coat Permeability of Active Ingredients

    Niemann, Sylvia

    2013-01-01

    The seed coat is the barrier controlling exchange of solutes between the plant embryo and its environment. This exchange is of importance for example in the uptake of germination inhibitors or in the uptake of agrochemicals applied as seed treatment. A thorough understanding of the basic mechanisms underlying solute permeation across the seed coat would help to improve the effectiveness of seed treatment formulations. In seed treatment formulations, additives can be used to enhance or decreas...

  14. Simple Model for Gold Nano Particles Concentration Dependence of Resonance Energy Transfer Intensity

    Hoa, N. M.; Ha, C. V.; Nga, D. T.; Lan, N. T.; Nhung, T. H.; Viet, N. A.

    2016-06-01

    Gold nano particles (GNPs) concentration dependence of the energy transfer occurs between the fluorophores and GNPs is investigated. In the case of theses pairs, GNPs can enhance or quench the fluorescence of fluorophores depending upon the relative magnitudes of two energy transfer mechanisms: i) the plasmonic field enhancement at the fluorophores emission frequencies (plasmon coupled fluorescence enhancement) and ii) the localized plasmon coupled Forster energy transfer from fluorescent particles to gold particles, which quenches the fluorescence. The competition of these mechanisms is depending on the spectral overlap of fluorophores and GNPs, their relative concentration, excitation wavelength. Simple two branches surface plasmon polariton model for GNPs concentration dependence of the energy transfer is proposed. The experimental data and theoretical results confirm our findings.

  15. BRITTLE-DUCTILE TRANSITION OF PP/EPDM/ELASTOMERIC NANO-PARTICLE TERNARY BLENDS

    Yan Xiao; Wen Cao; Ke Wang; Hong Tan; Qin Zhang; Rong-ni Du; Qiang Fu

    2006-01-01

    The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content,PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.

  16. Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles

    D Bahadur; S Rajakumar; Ankit Kumar

    2006-01-01

    Single-domain barium ferrite nano particles have been synthesized with narrow particle-size distribution using an auto combustion technique. In this process, citric acid was used as a fuel. Ratios of cation to fuel were maintained variously at 1 : 1, 1 : 2 and 1 : 3. The pH was 7 in all cases. Of all three cases, a cation to citric acid ratio of 1 : 2 gives better yield in the formation of crystalline and single domain particles with a narrow range of size distribution. Most particles are in the range of 80 to 100 nm. Maximum magnetization and coercivity values are also greater for 1 : 2 ratios. These values measured at room temperature are found to be 55 emu/gram and 5000 Oe respectively. XPS and ESR studies support the results.

  17. Eulerian flow modeling of suspensions containing interacting nano-particles: application to colloidal film drying.

    Gergianakis, I.; Meireles, M.; Bacchin, P.; Hallez, Y.

    2015-11-01

    Nano-particles in suspension often experience strong non-hydrodynamic interactions (NHIs) such as electrostatic repulsions. In this work, we present and justify a flow modeling strategy adapted to such systems. Earlier works on colloidal transport in simple flows, were based on the solution of a transport equation for the colloidal volume fraction with a known fluid velocity field and a volume-fraction-dependent diffusion coefficient accounting for mass fluxes due to NHIs. Extension of this modelling to complex flows requires the coupled resolution of a momentum transport equation for the suspension velocity field. We use the framework of the Suspension Balance Model to show that in the Pe Matter]. The influence of the effective Peclet number on the 1D/2D character of the flow is evaluated and the possible colloidal film patterning due to defaults of substrate topography is commented.

  18. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  19. Zinc oxide nano-particles as sealer in endodontics and its sealing ability

    Maryam Javidi

    2014-01-01

    Full Text Available Aims: The aim of this study was to evaluate the sealing ability of new experimental nano-ZOE-based sealer. Settings and Design: Three types of nano-ZOE-based sealer (calcined at different temperatures of 500, 600 and 700°C with two other commercially available sealers (AH26 and micro-sized zinc oxide eugenol sealer were used. Materials and Methods: Zinc oxide nano-particles were synthesized by a modified sol-gel method. The structure and morphology of the prepared powders were characterized using x-ray diffraction (XRD and transmission electron microscopy (TEM techniques. The instrumented canals of 60 single-rooted teeth were divided into five groups (n = 10, with the remaining ten used as controls. The canals were filled with gutta-percha using one of the materials mentioned above as sealer. After 3, 45 and 90 days, the samples were connected to a fluid filtration system. Statistical Analysis Used: The data were analyzed using Student′s t-test. Results: The XRD patterns and TEM images revealed that all the synthesized powders had hexagonal wurtzite structures with an average particle size of about 30-60 nm at different calcination temperatures. Microleakage in AH26 groups was significantly more than that in three groups of ZnO nano-particles at all the three evaluation intervals. Apical microleakage of ZnO micro-powders was significantly more than that of all the materials, but the sealing ability of ZnO nano-powder sealers did not differ significantly. Conclusion: The results of this study showed that the synthesized ZnO nano-powder sealers are suitable for use as a nano-sealer in root canal therapy to prevent leakage; however, further studies should be carried out to verify their safety.

  20. Modifying Si-based consolidants through the addition of colloidal nano-particles

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  1. Investigation of vulcanization of non-crystalline Cu{sub 2}ZnSnS{sub 4} nano-particles

    Wu, Shih Hsiung [Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Shih, Chuan Feng, E-mail: cfshih@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Pan, Hung Chun; Wang, Yu Yun; Chen, Ho Min; Wu, Chung Shin [Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China)

    2013-10-01

    Non-crystalline Cu{sub 2}ZnSnS{sub 4}(CZTS) nano-particles were fabricated by hydrothermal method. CZTS nano-particles that have different Cu/(Zn + Sn) ratio (0.77, 0.89, 1.02) were separately prepared. The morphology, composition and crystal structure of the as-prepared nano-particles and the vulcanized films were investigated by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffractometry, and Raman spectroscopy. When the temperature and time of vulcanization exceeded 400 °C and 60 min, respectively, the Cu-rich phase (Cu{sub 3}SnS{sub 4}) emerged. Sn lost during vulcanization. CZTS sample with 0.77 Cu content (Cu/(Zn + Sn) = 0.77) showed pure kesterite CZTS without secondary phases when they were vulcanized at 400 °C for 60 min. - Highlights: • Non-crystalline Cu{sub 2}ZnSnS{sub 4} (CZTS) nano-particles were synthesized. • After vulcanizing, the CZTS films showed some voids and grain size of 500 nm. • Cu{sub 3}SnS{sub 4} was obtained when the vulcanization temperature exceeded 500 °C. • Pure Kesterite CZTS was obtained at a vulcanization temperature as low as 400 °C.

  2. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends.

    Ghorbani, Fereshte Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Akhlaghi, Shahin; Hedenqvist, Mikael S

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. PMID:26652456

  3. Study on the effect of surface modifier on self-aggregation behavior of Ag nano-particle

    Graphical abstract: The typical TEM images of the silver NPs were close to mono-disperse spherical with diameters about 10 nm. The Ag/PVP NPs are highly crystalline, and the interplanar spacing of 0.235 nm is close to the separation between the (1 1 1) crystallographic planes of cubic Ag/PVP. Highlights: ► Four kinds of the mono-dispersed silver NPs with different capping agent were synthesized with diameters about 7, 3, 10, and 5 nm, respectively. ► HRTEM characterization also revealed the Ag/PVP, Ag/PAN, Ag/OA NPs are highly crystalline and the interplanar spacing was calculated. ► FTIR and TG-DSC were used to characterize the binding group of four molecules on Ag nano-particle's surface. ► The Effect of Surface Modifier on Self-Aggregation of Ag Nano-particle was discussed. - Abstract: In this study, four kinds of Ag nano-particles were synthesized with poly (vinylpyrrolidone) (PVP), polyaniline (PAN), L-cysteine (L-cys), and oleic acid (OA) as modified groups. The properties of these Ag nano-particles were characterized by several techniques. Transmission electron microscopy (TEM) observation show four samples were close to monodisperse spherical with diameters about 7, 3, 10, and 5 nm, respectively. The interplanar spacing was calculated and the crystal was discussed with X-ray diffraction (XRD) results. Both Fourier transform infrared spectra (FTIR) and thermogravimetry (TG)-differential scanning calorimetry (DSC) has revealed the binding group of four molecules on Ag nano-particle's surface. After the Ag nanoparticles (NPs) deposited onto the substrate, surface modifier would collapse on the particle surface. Ag nanoparticles are easier to self-aggregate for the weaker binding of surface modifier. As a result, the conductive film is formed. The effect of modified group and temperature were discussed on the conductivity of the silver films.

  4. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives. PMID:27243766

  5. Active coated nanoparticles: impact of plasmonic material choice

    Arslanagic, Samel; Ziolkowski, R.W.

    2011-01-01

    The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared.......The near- and far-field properties of a number of active coated spherical nanoparticles excited by an electric Hertzian dipole at optical frequencies are investigated. Their enhanced, as well as reduced, radiation effects are demonstrated and compared....

  6. Application of Nano-Structured Coatings for Mitigation of Flow-Accelerated Corrosion in Secondary Pipe Systems of Nuclear Power Plants

    Kim, Seung Hyun; Kim, Jong Jin; Yoo, Seung Chang; Huh, Jae Hoon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Flow-accelerated corrosion (FAC) is a complex corrosion process combined with mechanical reaction with fluid. There were lots of research to mitigate FAC such as controlling temperature or water chemistry but in this research, we adopt active coating techniques especially nano-particle reinforced coatings. One of the general characteristics of FAC and its mitigation is that surface friction due to surface morphology makes a significant effect on FAC. Therefore to form a uniform coating layers, nano-particles including TiO2, SiC, Fe-Cr-W and Graphene were utilized. Those materials are known as greatly improve the corrosion resistance of substrates such as carbon steels but their effects on mitigation of FAC are not revealed clearly. Therefore in this research, the FAC resistive performance of nano-structured coatings were tested by electrochemical impedance spectroscopy (EIS) in room temperature 15 wt% sulfuric acid. As the flow-accelerated corrosion inhibitors in secondary piping system of nuclear power plants, various kinds of nano-structured coatings were prepared and tested in room-temperature electrochemical cells. SHS7740 with two types of Densifiers, electroless nickel plating with TiO2 are prepared. Electropolarization curves shows the outstanding corrosion mitigation performance of SHS7740 but EIS results shows the promising potential of Ni-P and Ni-P-TiO2 electroless nickel plating. For future work, high-temperature electrochemical analysis system will be constructed and in secondary water chemistry will be simulated.

  7. Microstructural evolution of plasma sprayed submicron-/nano-zirconia-based thermal barrier coatings

    Wang, Y.; Bai, Y.; Liu, K.; Wang, J. W.; Kang, Y. X.; Li, J. R.; Chen, H. Y.; Li, B. Q.

    2016-02-01

    Two types of agglomerates powder with grain sizes in the submicron- /nano-range were used as the feedstock to deposit yttria partially stabilized zirconia (YPSZ) thermal barrier coatings (TBCs). The dual-modal submicron-coating and multi-modal nano-coating were fabricated. The results from thermal shock test indicated that, due to the weak bond and higher densification rate of unmelted nano-particles in the nano-coating, the interface between recrystallization zone and unmelted nano-particles linked up, which resulted in the decrease of content of unmelted nano-particles from 13% to 7%. The weak bond and higher shrinking rate of nano-particles led to the formation of coarse cracks that ran along the recrystallization zone/unmelted nano-particles interfaces. These cracks caused the premature failure of nano-coating. The submicron-coating can overcome the inherent deficiencies of nano-coating at high temperatures and show a higher thermal shock resistance, it is expected to become a candidate for high-performance TBCs.

  8. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3x10-3 - 24x10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6x10-3, 23x10-3, 24x10-3 and 16x10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently human

  9. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.

    2011-07-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  10. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    Khodabandeh, M; Koohi, M K; Shahroziyan, E; Badri, B; Pourfallah, A; Shams, Gh; Sadeghi-Hashjin, G [Faculty of Veterinary Medicine, University of Tehran, Tehran (Iran, Islamic Republic of); Roshani, A [Industrial and Environmental Protection Division, Research Institute of Petroleum Industry (RRIPI), Tehran (Iran, Islamic Republic of); Hobbenaghi, R, E-mail: gsadeghi@ut.ac.ir [Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of)

    2011-07-06

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3x10{sup -3} - 24x10{sup -3} ml/cm{sup 2} and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6x10{sup -3}, 23x10{sup -3}, 24x10{sup -3} and 16x10{sup -3} ml/cm{sup 2} respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most

  11. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  12. Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber.

    Moghaddasi, Sahar; Hossein Khoshgoftarmanesh, Amir; Karimzadeh, Fatholah; Chaney, Rufus

    2015-05-01

    There are growing interests on effects of nano-materials on living organisms including higher plants. No report is available on positive and negative effects of rubber ash nano-particles (RANPs) on edible plants. Recently, we reported the possibility of using waste tire rubber and rubber ash as zinc (Zn) fertilizer for plants. In this nutrient solution culture study, for the first time, root uptake and the effects of RANPs on growth and Zn, cadmium (Cd), and lead (Pb) concentration in cucumber was investigated. Various Zn levels (0, 1, 5, 25, 125mgL(-1)) were applied in the form of RANPs or ZnSO4. The root RANPs uptake was visualized by light (LA), scanning electron (SEM), and transmission electron microcopies (TEM). At all Zn levels, cucumber plants supplied with RANPs produced higher shoot and root biomass compared with those supplied with ZnSO4. In addition, the RANPs resulted in higher accumulation of Zn in cucumber tissues in comparison with ZnSO4; although phytotoxicity of Zn from ZnSO4 was greater than that from RANPs. Clear evidence of the RANPs penetration into the root cells was obtained by using SEM and TEM. Filaments of RANPs were also observed at the end of roots by LM and TEM. Further research is needed to clarify the fate of the RANPs in plant cells and their possible risks for food chain. PMID:25700091

  13. Positron Annihilation Study on Nickel and Iron Nano-Particles in Natural Rubber Composites

    Emad H. Aly

    2011-01-01

    Full Text Available Problem statement: The effect of Ni and Fe nano-particles as a filler on the free volume properties Of Natural Rubber (NR was studied using Positron Annihilation Lifetime Spectroscopy (PALS. Approach: The PAL measurements revealed that the free volume properties are strongly affected by the amount and type of filler. Results: Particularly speaking, the free volume fraction dramatically decreased by increasing the filler content. Besides, the addition of nano-prticles created new positron trapping sites at filler-rubber interfaces. Furthermore, correlations were made between the free volume hole sizes (Vh and each of the mechanical and electrical properties successively. A negative correlation was observed between Vh and hardness in the Ni-rubber composites while a positive counterpart was found in the case of Fe-rubber composites. Finally, the polarity of the fillers, being higher than that of the rubber itself, leads to an increase in electrical parameters and an inhibition of o-Ps formation. Conclusion: These results indicate that the investigated composites are considered to be insulating materials as their conductivity values are in the order of an insulator range.

  14. Study on an electrochemical biosensor for thrombin recognition based on aptamers and nano particles

    ZHENG Jing; LIN Li; CHENG GuiFang; WANG AnBao; TAN XueLian; HE PinGang; FANG YuZhi

    2007-01-01

    This paper presents a high specific, sensitive electrochemical biosensor for recognition of protein such as thrombin based on aptamers and nano particles. Two different aptamers were chosen to construct a sandwich manner for detecting thrombin. Aptamer Ⅰ was immobilized on nano magnetic particle for capturing thrombin, and aptamer Ⅱ labled with nano gold was used for detection. The electrical current generated from gold after the formation of the complex of magnetic particle, thrombin and nano gold,and then an electrochemical cell designed by ourselves was used for separating, gathering, and electrochemical detecting. Through magnetic separation, high specific and sensitive detection of the target protein, thrombin, was achieved. Linear response was observed over the range 5.6×10-12-1.12×10-9mol/L, with a detection limit of 1.42×10-12 mol/L. The presence of other protein as BSA did not affect the detection, which indicates that high selective recognition of thrombin can be achieved in complex biological samples such as human plasma.

  15. Study on an electrochemical biosensor for thrombin recognition based on aptamers and nano particles

    2007-01-01

    This paper presents a high specific, sensitive electrochemical biosensor for recognition of protein such as thrombin based on aptamers and nano particles. Two different aptamers were chosen to construct a sandwich manner for detecting thrombin. Aptamer I was immobilized on nano magnetic particle for capturing thrombin, and aptamer II labled with nano gold was used for detection. The electrical current generated from gold after the formation of the complex of magnetic particle, thrombin and nano gold, and then an electrochemical cell designed by ourselves was used for separating, gathering, and electrochemical detecting. Through magnetic separation, high specific and sensitive detection of the target protein, thrombin, was achieved. Linear response was observed over the range 5.6×10-12―1.12×10-9 mol/L, with a detection limit of 1.42×10-12 mol/L. The presence of other protein as BSA did not affect the detection, which indicates that high selective recognition of thrombin can be achieved in complex biological samples such as human plasma.

  16. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; khan Niazi, Muhammad Bilal; Khan, Azim

    2016-05-01

    Cadmium substituted cobalt ferrites with formula CdxCo1-xFe2O4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye-Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15-19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd2+concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner's model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system CdxCo1-xFe2O4 the impedance analysis were performed.

  17. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds.

    Faridi Esfanjani, Afshin; Jafari, Seid Mahdi

    2016-10-01

    Phenolic compounds are major micronutrients in our diet,(1) and evidence for their role in the prevention of degenerative diseases such as cancer, inflammation and neurodegenerative diseases is emerging. The easily destruction against environment stresses and low bioavailability of phenolics are main limitations of their application. Therefore, nano-encapsulated phenolics as a fine delivery system can solve their restrictions. Polymeric nanoparticles and natural nano-carriers are one of the most effective and industrial techniques which can be used for protection and delivery of phenolics. In this review, preparation, application and characterization of polymeric based nano-capsules and natural nano-carriers for phenolics have been considered and discussed including polymeric nanoparticles, polymeric complex nanoparticles, cyclodextrins, nano-caseins, nanocrystals, electrospun nano-fibers, electro-sprayed nano-particles, and nano-spray dried particles. Our main goal was to cover the relevant recent studies in the past few years. Although a number of different types of polymeric and natural based nano-scale delivery systems have been developed, there are relatively poor quantitative understanding of their in vivo absorption, permeation and release. Also, performing toxicity experiments, residual solvent analysis and studying their biological fate during digestion, absorption, and excretion of polymeric nanoparticle and natural nano-carriers containing phenolics should be considered in future researches. In addition, future investigations could focus on application of phenolic nano-scale delivery systems in pharmaceuticals and functional foods. PMID:27419648

  18. Magnetic behaviour of nano-particles of Fe2.8Zn0.2O4

    Subhash Chander; Seema Lakhanpal; Anjali Krishnamurthy; Bipin K Srivastava; V K Aswal

    2004-08-01

    Magnetization measurements are reported on a nano-particle sample of Zn- substituted spinel ferrite Fe2.8Zn0.2O4 in the temperature range 20-300 K. Analysis of small-angle neutron scattering data shows the sample to have a log-normal particle size distribution of median diameter 64.4 Å and standard deviation 0.38. Magnetization evolves over a long period of time going nearly linearly with log . Magnetic anisotropy, estimated by fitting -log curve, shows many fold increase over that of bulk particle sample. Major enhancement owes to disordered moments in surface layer. In the nano-particle state as well increasing amount of Zn causes anisotropy to decrease.

  19. Comparison of the influence of Cu micro- and nano-particles on the thermal properties of polyethylene/Cu composites

    2009-10-01

    Full Text Available Polyethylene (LDPE, LLDPE and HDPE composites with different copper (micro- and nano-sized particles contents were prepared by melt mixing and compression moulding. The melting and crystallization behaviour of the different composites was analysed using a differential scanning calorimeter (DSC, and the thermal stability in a thermogravimetric analyser (TGA. The thermal conductivities of the samples were also determined. The DSC results show that the Cu micro- and nano-particles influence the crystallization behaviour of the polyethylenes in different ways. The extent to which the copper particles influence the crystallization behaviour of the polyethylenes also depends on the respective morphologies of the different polyethylenes. The TGA results show an observable influence of both the presence of copper and the sizes of the copper particles on the thermal stabilities of the polymers. Thermal conductivities increased with increasing Cu content, but there was little difference between the thermal conductivities of the samples containing Cu micro- and nano-particles.

  20. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  1. Measurement of nano-particle diffusion in the simulated dynamic light scattering by contrast of dynamic images

    Wu, Xiaobin; Qiu, Jian; Luo, Kaiqing; Han, Peng

    2015-08-01

    Dynamic Light Scattering is used for measuring particle size distribution of nano-particle under Brownian motion. Signal is detected through a photomultiplier and processed by correlation analysis, and results are inverted at last. Method by using CCD camera can record the procedure of motion. However, there are several weaknesses such as low refresh speed and noise from CCD camera, and this method depends on particle size and detecting angle. A simulation of nano-particle under Brownian motion is proposed to record dynamic images, studies contrast of dynamic images which can represent speed of diffusion, and its characteristic under different conditions. The results show that through contrast of dynamic images diffusion coefficient can be obtained, which is independent on density of scattering volume.

  2. Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization

    Stach E. A.; Dietrich, P.J.; Lobo-Lapidus, R.J.; Wu, T.; Sumer, A.; Akatay, M.C.; Fingland, B.R.; Guo, N.; Dumesic, J.A.; Marshall, C.L.; Jellinek, J.; Delgass, W.N.; Ribeiro, F.H.; Miller, J.T.

    2012-03-01

    A carbon supported PtMo aqueous phase reforming catalyst for producing hydrogen from glycerol was characterized by analysis of the reaction products and pathway, TEM, XPS and XAS spectroscopy. Operando X-ray absorption spectroscopy (XAS) indicates the catalyst consists of bimetallic nano-particles with a Pt rich core and a Mo rich surface. XAS of adsorbed CO indicates that approximately 25% of the surface atoms are Pt. X-ray photoelectron spectroscopy indicates that there is unreduced and partially reduced Mo oxide (MoO{sub 3} and MoO{sub 2}), and Pt-rich PtMo bimetallic nano-particles. The average size measured by transmission electron microscopy of the fresh PtMo nano-particles is about 2 nm, which increases in size to 5 nm after 30 days of glycerol reforming at 31 bar and 503 K. The catalyst structure differs from the most energetically stable structure predicted by density functional theory (DFT) calculations for metallic Pt and Mo atoms. However, DFT indicates that for nano-particles composed of metallic Pt and Mo oxide, the Mo oxide is at the particle surface. Subsequent reduction would lead to the experimentally observed structure. The aqueous phase reforming reaction products and intermediates are consistent with both C-C and C-OH bond cleavage to generate H{sub 2}/CO{sub 2} or the side product CH{sub 4}. While the H{sub 2} selectivity at low conversion is about 75%, cleavage of C-OH bonds leads to liquid products with saturated carbon atoms. At high conversions (to gas), these will produced additional CH{sub 4} reducing the H{sub 2} yield and selectivity.

  3. Study of Nano Particles for Enhanced Heat Transfer Characteristics of Base Fluids for Cool Thermal Energy System

    Promit Choudhury; Priya Garg

    2014-01-01

    Reliable heat transfer is very crucial for heat demand and supply related applications where the optimum demand is not met. Cool thermal energy systems are the units which find application in conditioning and preserving items. A colloidal mixture of nano particles in a base fluid tremendously enhances the heat transfer characteristics of the original base fluid and is ideally suited for practical application due to its marvelous characteristics.

  4. Study of Nano Particles for Enhanced Heat Transfer Characteristics of Base Fluids for Cool Thermal Energy System

    Promit Choudhury

    2014-04-01

    Full Text Available Reliable heat transfer is very crucial for heat demand and supply related applications where the optimum demand is not met. Cool thermal energy systems are the units which find application in conditioning and preserving items. A colloidal mixture of nano particles in a base fluid tremendously enhances the heat transfer characteristics of the original base fluid and is ideally suited for practical application due to its marvelous characteristics.

  5. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234. ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  6. Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique

    Stein, Ashley F.; Ilavsky, Jan; Kopace, Rael; Bennett, Eric E.; Wen, Han

    2010-01-01

    Iron oxide nano-particles have very different x-ray diffraction properties from tissue. They can be clearly visualized against suppressed tissue background in a single-shot x-ray diffraction imaging technique. This technique is able to acquire both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain. We describe the use of two orthogonal transmission gratings to selectively retain diffraction signal from iron oxid...

  7. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics

    Fuliang Wang; Peng Mao; Hu He

    2016-01-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing sys...

  8. Effect of impregnation of La0.85Sr0.15MnO3/Yttria Stabilized Zirconia Solid Oxide Fuel Cell cathodes with La0.85Sr0.15MnO3 or Al2O3 nano-particles

    Kammer Hansen, Kent; Wandel, Marie; Liu, Yi-Lin; Mogensen, Mogens Bjerg

    2010-01-01

    electrodes if the temperature was kept low after the impregnation with strontium substituted lanthanum manganite. On good performing electrodes the effect disappeared on heating. Alumina nano-particles had a detrimental effect on the activity of the strontium substituted lanthanum manganite based electrodes.......Strontium substituted lanthanum manganite and yttria stabilized zirconia solid oxide fuel cell composite electrodes were impregnated with nano-particles of strontium substituted lanthanum manganite or alumina. A clear positive effect was observed on low performing electrodes and on good performing...

  9. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  10. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Highlights: ► Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. ► Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. ► Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  11. Study of the effect of Titanium dioxide nano particle size on efficiency of the dye-sensitized Solar cell using natural Pomegranate juice

    A Behjat

    2015-01-01

    Full Text Available Dye-sensitized solar cell (DSSC using natural Pomegranate juice as dye-sensitizeris fabricated and characterized. DSSCS consist of a working electrode, a redox electrolyte containing iodide and tri-iodide ions and a counter electrode. A nanocrystalline TiO2 semiconductor with a wide band-gap coated with a monolayer dye-sensitizer is used as working electrode. The effect of titanium dioxide (TiO2 nanoparticle size on efficiency of the DSSC based Pomegranate juice as a sensitizer is studied. For monolayer structure, we used two sizes of TiO2 nanoparticle (25 nm and 100 nm and a mixture of these two sizes. The highest efficiency of 0.61% was obtained with mixture of 25 and 100 nm TiO2 nano-particles in working electrode. For double-layer structure, we used 100 and 400 nm size TiO2 particles as light-scattering. The best efficiency was obtained using 400 nm TiO2 as light-scattering particles.

  12. Synthesis of supported metallic nano-particles and their use in air depollution; Des nanoparticules metalliques supportees pour la depollution de l'air

    Barrault, J. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France); Valange, S. [Poitiers Univ., 86 (France); Tatibouet, J.M. [Centre National de la Recherche Scientifique (CNRS), Lab. de Catalyse en Chimie Organique, UMR CNRS 6503, 86 - Poitiers (France); Thollon, St. [CEA Grenoble (DRT/DTNM/LTS), 38 (France); Herlin-Boime, N. [CEA Saclay, IRAMIS, Service des Photons, Atomes et Molecules, Lab. Francis Perrin, CEA-CNRS URA 2453, 91 - Gif-sur-Yvette (France); Giraud, S. [CEA Saclay (DEN/SRMA), 91 - Gif-sur-Yvette (France); Ruiz, J.Ch. [CEA Marcoule (DTCD/SPDE/LFSM), 30 (France); Bergaya, B. [CRT Plasma lASER, 45 - Orleans (France); Joulin, J.P.; Delbianco, N. [Ceramiques Techniques Industrielles (CTI-SA), 30 - Salindres (France); Gabelica, Z. [Universite de Haute-Alsace (LPI-GSEC), ENSCMu, 68 - Mulhouse (France); Daturi, M. [Ecole Nationale Superieure d' Ingenieurs de Caen (ENSICAEN), CNRS-LCS, UMR 6506, 14 - Caen (France)

    2009-06-15

    The main objectives of the 'NACACOMO' Consortium ('Nano-materials: Catalysts for the Conversion of organic Molecules. Uses in fine chemicals and environment protection ') consisted in generating novel catalysts composed of nanoparticles of metals (Pt, Pd, Ag...) and/or oxides (TiO{sub 2}...) stabilized and well distributed over the surface of a support (foams, ceramics), by monitoring both the particle size and the 'coating' process itself, using new technologies: CVD, plasma-spray, laser pyrolysis, supercritical preparation, which were compared to conventional soft chemistry recipes. The most accurate characterization of particle morphology, local structure, texture, spatial arrangement but also of their reactivity, were achieved by privileging the utilization of various in situ methods. Details on formation mechanisms of a solid nano-particle at the atomic level (nucleation, growth and particle (re)distribution over the support...) could be obtained in selected cases, with opportunities for scaling up and shaping. The (chemical) nature of the so-obtained nano-materials was monitored for selected catalytic applications involving the development of environmental friendly processes, such as oxidation of VOC, with a priority for aromatics and chlorinated compounds. (authors)

  13. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns.

    Ataei-Germi, Taher; Nematollahzadeh, Ali

    2016-05-15

    Bimodal meso/macro-porous silica microspheres (MSM) were synthesized by a modified sol-emulsion-gel method and then the surface was coated with polydopamine (PDA) nano-particles of 39nm in size. Focusing on the encouraging properties of the synthesized adsorbent, such as high specific surface area (612.3m(2)g(-1), because of mesopores), fast mass transfer (0.9-2.67×10(-3)mLmin(-1)mg, because of macropores), and abundant "adhesive" functional groups of PDA, it was used for the removal of methylene blue (MB) from aqueous solution in a fixed-bed column. The effect of different parameters such as pH, initial concentration, and flow rate was studied. The results revealed that an appropriate sorption condition is an alkaline solution of MB (e.g., pH 10) at low flow rate (less than 5mLmin(-1)). Furthermore, the compatibility of the experimental data with mathematical models such as Thomas and Adams-Bohart was investigated. Both of the models showed a good agreement with the experimental data (R(2)=0.9954-0.9994), and could be applied for the prediction of the column properties and breakthrough curves. Regeneration of the column was performed by using HCl solution with a concentration of 0.1M as an eluent. PMID:26943002

  14. Spin-dependent-magnetoresistance control by regulation of heat treatment temperature for magnetite nano-particle sinter

    Asahi, T.; Yamasaki, Y.; Sugimura, A. [Department of Physics, Faculty of Science and Engineering, Konan University Okamoto 8-9-1, Higashi Nada-ku, Kobe, Hyogo 658-8501 (Japan); Taniguchi, T. [Department of Physics, Faculty of Science, Osaka University Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Ando, A.; Kawanaka, H.; Naitoh, Y.; Shimizu, T. [Nanotechnology Research Institute, Advanced Industrial Science and Technology AIST Tsukuba Central, Tsukuba, Ibaraki 305-8568 (Japan); Kobori, H.

    2009-12-15

    The control of spin-dependent-magnetoresistance by regulation of the heat treatment (HT) temperature for magnetite (Fe{sub 3}O{sub 3}) nano-particle sinter (MNPS) has been studied. The average nano-particle size in the MNPS is 30nm and the HT was carried out from 400 C to 800 C. The HT of the MNPS varies the coupling form between adjacent magnetite nano-particles and the crystallinity of that. The measurements on electrical resistance (ER), magnetoresistance (MR) and magnetization were performed between 4K and 300K. The behavior of the ER and MR considerably changes at the HT temperature of {proportional_to}600 C. Below {proportional_to}600 C the ER indicates the variable-range-hopping conduction behavior and the MR shows the large intensity in a wide temperature region. Above {proportional_to}600 C the ER shows the indication of the Verwey transition near 110K like a bulk single crystal and the MR designates the smaller intensity. We consider that below {proportional_to}600 C the ER and MR are dominated by the grain-boundary conduction and above {proportional_to}600 C those are determined by the inter-grain conduction. The magnetic field application to the grain-boundary region is inferred to cause the large enhancement of the MR. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser

    By directly brushing and scribing an ultra-thin (< 5-μm thick) polymer polyvinyl alcohol (PVA) film on one end-face of a FC/APC connector in erbium-doped fiber laser (EDFL), and then imprinting it with the graphite nano-particles exfoliated from a graphite foil, the intra-cavity graphite nano-particle based saturable absorber can be formed to induce passive mode-locking effect in the EDFL. Such a novel approach greatly suppresses the film-thickness induced laser-beam divergent loss to 3.4%, thus enhancing the intra-cavity circulating power to promote the shortening on mode-locking pulsewidth. The saturable absorber with area coverage ratio of graphite nano-particles is detuned from 70 to 25% to provide the modulation depth enhancing from 11 to 20% and the saturated transmittance from 27 to 60%. Optimizing the coverage ratio reduces the non-saturable loss to 40% and enhances the modulation depth to 21%, such that the sub-ps soliton mode-locking can be initiated to provide a chirped pulsewidth of 482 fs and a linewidth of 2.87 nm

  16. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. - Highlights: • Limited size and beam sensitivity of nano-particles challenge their quantification. • Keeping the electron dose to a minimum is therefore important. • Reliability of quantitative ADF STEM for atom-counting is demonstrated. • Limits for single atom sensitivity are discussed. • Limits are diagnosed by combining simulations and a statistical method

  17. Synthesis of metals chalcogenides nano-particles from H2X (X=S, Se, Te) produced electrochemically

    In this work, an electrochemical method to produce H2X (X=S, Se, Te) hydrides in a controlled way (without being able to store them) and to transfer them directly in the synthesis reactor has been perfected. By this method, the use of H2Te has been possible. The method uses the reduction of the elementary chalcogenide in acid medium. The Te being conductor, it can be directly used as electrode, on the other hand S and Se are insulators. Nevertheless, graphite-S or Se conducing composite electrodes can also be used. When the electrolyte composition (pH, salts presence) is well adjusted, the essential of the cathodic current is consumed by the chalcogenide reduction (low evolution of H2) with faradic yields of about 100% for H2S and H2Se and 40% for HeTe. The use of H2X allows the synthesis of nano-particles of metals chalcogenides directly by reaction with dissolved metallic salts in aqueous or organic medium and precipitation. Thus it has been possible to prepare all the CdX compounds under the form of nano-particles of diameter between 3 and 5 nm by bubbling of the gaseous hydrides in aqueous acetate solutions of Cd. In producing concomitantly H2S and H2Se, nano-particles of solid solutions CdSxSe1-x have been synthesized too. (O.M.)

  18. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting

    De Backer, A.; Martinez, G.T. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); MacArthur, K.E.; Jones, L. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Béché, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Nellist, P.D. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2015-04-15

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. - Highlights: • Limited size and beam sensitivity of nano-particles challenge their quantification. • Keeping the electron dose to a minimum is therefore important. • Reliability of quantitative ADF STEM for atom-counting is demonstrated. • Limits for single atom sensitivity are discussed. • Limits are diagnosed by combining simulations and a statistical method.

  19. Microfibrillated cellulose coatings as new release systems for active packaging.

    Lavoine, Nathalie; Desloges, Isabelle; Bras, Julien

    2014-03-15

    In this work, a new use of microfibrillated cellulose (MFC) is highlighted for high-added-value applications. For the first time, a nanoporous network formed by MFC coated on paper is used for a controlled release of molecules. The release study was carried out in water with caffeine as a model molecule. The release process was studied by means of (i) continuous, and (ii) intermittent diffusion experiments (with renewal of the medium every 10 min). The effect of the MFC was first observed for the samples impregnated in the caffeine solution. These samples, coated with MFC (coat weight of about 7 g/m(2)), released the caffeine over a longer period (29 washings compared with 16), even if the continuous diffusions were similar for both samples (without and with MFC coating). The slowest release of caffeine was observed for samples coated with the mixture (MFC+caffeine). Moreover, the caffeine was only fully released 9h after the release from the other samples was completed. This study compared two techniques for the introduction of model molecules in MFC-coated papers. The latter offers a more controlled and gradual release. This new approach creates many opportunities especially in the food-packaging field. A similar study could be carried out with an active species. PMID:24528763

  20. Experiment on heat transfer and absorption performance enhancement for binary nanofluids (NH{sub 3}/H{sub 2}O + Nano-Particles)

    Lee, Jin Ki; Jung, Chung Woo; Kang, Yong Tae [Kyunghee Univ., Yongin (Korea, Republic of)

    2008-09-15

    The objectives of this paper are to examine the effect of nano-particles on the pool type absorption heat transfer enhancement and to find the optimal conditions to design a highly effective compact absorber for ammonia/water absorption system. The effect of AL{sub 2}O{sub 3} nano-particles and Carbon NanoTube(CNT) on the absorption performance is studied experimentally. The experimental ranges of the key parameters are 20% of ammonia concentration, 0{approx}0.08 vol% (volume fraction) of CNT particles, and 0{approx}0.06 vol% of Al{sub 2}O{sub 3} nano-particles. For the ammonia/water nanofluids, the heat transfer rate and absorption rate with 0.02 vol% Al{sub 2}O{sub 3} nano-particles were found to be 29% and 18% higher than those without nano-particles respectively. It is recommended that the concentration of 0.02 vol% of Al{sub 2}O{sub 3} nano-particles be the best candidate for ammonia/water absorption performance enhancement.

  1. Synthesis and characterisation of Samarium (III) oxide (Sm2O3) nano particles by hydrothermal method

    Today there is an increasing need for high purity rare earth compounds in various fields, the optical, the electronics, the ceramic, the nuclear and geochemistry. Wide band-gap semiconducting rare earth oxides (REO) have widely used in thin film microcircuit elements, photoelectric devices, electrical switches, re-programmable memory elements and optical devices. Recent advances in creating and characterizing size selected rare earth atomic clusters in the range 1-100 nm have enabled the first tentative steps in the synthesis of a wide range of new materials from nanoscale particles. Nanometer-sized materials are of greatest interest because they have novel physical and chemical properties that are not characteristic of the atoms or of the bulk counterparts. The large ratio of surface area to volume can contribute to some of the unique properties of nanoparticles. The oxides of rare earths such as samarium, erbium, yttrium, europium and cerium have many important applications. Samarium oxide Sm2O3 has special uses in neutron absorber in control rods for nuclear power reactors, solid oxide fuel cell applications, phosphors, lasers and thermoelectric devices. It can also be used in optical glass manufacturing and in the electronic industry. In this paper, a promising rare earth oxide Sm2O3 nano particles have been synthesized by hydrothermal technique using an aqueous Sm(NO3)3.6H2O and Sm2(C2O4)3.10H2O solutions gel precursors. The as prepared solution was placed in a Teflon lined autoclave (volume-55 ml, degree of filling-80%). Time of isothermal hydrothermal treatment was made at temperatures 573 K at 24 h. The products were isolated subsequent washing by distilled water, and dried afterward at 80 deg C. The present study is a report Sm2O3 as nanoparticles, synthesis and characterizing the powder concerning the composition, structural, optical and surface morphology. (author)

  2. Beam energy considerations for gold nano-particle enhanced radiation treatment

    Van den Heuvel, F; Nuyts, S [Department of Experimental Radiotherapy, University of Leuven, Leuven (Belgium); Locquet, Jean-Pierre, E-mail: frank.vandenheuvel@med.kuleuven.b [Solid State Physics and Magnetism Section, University of Leuven, Leuven (Belgium)

    2010-08-21

    A novel approach using nano-technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo-electron volt (keV) range shows an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Kroenig (A-CK) electrons. The dependence of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include agent concentration, spectral dependence looking at mono-energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Kroenig electrons and their biological effectiveness. A quasi-linear dependence on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low-photon energies (10-20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110 kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono-energetic sources. In conclusion we find that the use of enhanced nano-particles shows promise to be implemented quite easily in regular clinics on a physical level due to the advantageous properties in classical beams.

  3. Beam energy considerations for gold nano-particle enhanced radiation treatment

    Van den Heuvel, F.; Locquet, Jean-Pierre; Nuyts, S.

    2010-08-01

    A novel approach using nano-technology enhanced radiation modalities is investigated. The proposed methodology uses antibodies labeled with organically inert metals with a high atomic number. Irradiation using photons with energies in the kilo-electron volt (keV) range shows an increase in dose due to a combination of an increase in photo-electric interactions and a pronounced generation of Auger and/or Coster-Krönig (A-CK) electrons. The dependence of the dose deposition on various factors is investigated using Monte Carlo simulation models. The factors investigated include agent concentration, spectral dependence looking at mono-energetic sources as well as classical bremsstrahlung sources. The optimization of the energy spectrum is performed in terms of physical dose enhancement as well as the dose deposited by Auger and/or Coster-Krönig electrons and their biological effectiveness. A quasi-linear dependence on concentration and an exponential decrease within the target medium is observed. The maximal dose enhancement is dependent on the position of the target in the beam. Apart from irradiation with low-photon energies (10-20 keV) there is no added benefit from the increase in generation of Auger electrons. Interestingly, a regular 110 kVp bremsstrahlung spectrum shows a comparable enhancement in comparison with the optimized mono-energetic sources. In conclusion we find that the use of enhanced nano-particles shows promise to be implemented quite easily in regular clinics on a physical level due to the advantageous properties in classical beams.

  4. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  5. Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles

    Stable colloidal TiO2 nano-particles are synthesized through the controlled hydrolysis of chemically modified titanium (Ti) isopropoxide with acetylacetone and acetic acid whereas ammonium salts of poly(acrylic acid) is used as a dispersing agent. Acetylacetone and acetic acid used as chelating ligand to retard the hydrolysis and condensation rates. The process is found promising for producing homogeneous aqueous phase colloidal dispersion of TiO2 particles. Fourier transformed infrared and nuclear magnetic resonance spectra reveal the formation of monodentate bridging of ligands with Ti-isopropoxide. UV–Vis spectroscopy confirms the effective adsorption of poly(acrylic acid) within the modified Ti precursor. Zeta potential of modified titanium isopropoxide precursor is measured to understand its stability in different pH. The thermal stability of the precursors modified with different chelating ligands and dispersing agent has been studied using thermo-gravimetric in conjunction to differential thermal analysis (TG-DTA). Phase formation behavior and the morphological features of the synthesized particles are studied using X-ray diffraction and electron microscopy techniques. The sizes of the anatase phase particles are found in the range of 12–20 nm. - Highlights: • Nanosized colloidal TiO2 is prepared by controlled hydrolysis of Ti-isopropoxide. • Effect of chelating and dispersing agent on stability of colloidal TiO2 is studied. • Phase, morphology and stability of colloidal TiO2 are investigated. • The sizes of synthesized TiO2 particles are found in the range of 12–20 nm. • Suitable chelating and dispersing agent can improve particle loading in sol

  6. Mechanistic aspects of electrodeposition of Ni–Co–SiC composite nano-coating on carbon steel

    The nucleation and early-stage growth mechanism and kinetics of electrodeposited Ni–Co–SiC composite coating on carbon steel was investigated by cyclic voltammetry, current–time transient measurements and atomic force microscopy characterization. The conventional Guglielmi's model for metal-inert particle co-deposition was modified to consider the effect of the bath electrolyte hydrodynamics on amount of nano-particles deposited in the coating. It is determined that the nucleation and early-stage growth of the coating depends on depositing overpotential. At low cathodic overpotentials, it is between an instantaneous and progressive mechanism; while at high overpotentials, it follows the instantaneous mechanism. Addition of SiC nano-particles in the bath electrolyte reduces the electrodepositing efficiency by inhibiting nucleation and growth of metallic coating. An empirical model is developed to estimate the amount of nano-particles contained in Ni–Co–SiC composite coating during pulse electrodeposition

  7. Electroless Ag coating of fly ash cenospheres using polyaniline activator

    The electroless Ag coating of fly ash cenospheres employing polyaniline activator was investigated after polyaniline activator was coated on the surfaces of the cenosphere particles by in situ chemical polymerization. The composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, x-ray diffraction and thermogravimetric analysis (TGA). The results indicate that a small amount of polyaniline activator was deposited in a discontinuous way on the surfaces of the cenosphere particles. Due to the activation of polyaniline, relatively compact and continuous Ag layer with a thickness of about 4 μm was obtained under the given electroless plating condition. The possible interaction between polyaniline and silver ions and the mechanism of Ag deposition were also investigated by the x-ray photoelectron spectroscopy technique.

  8. Electroless Ag coating of fly ash cenospheres using polyaniline activator

    Wang Wei; Li Qin; Li Ying; Xu Hui; Zhai Jianping, E-mail: jpzhai@nju.edu.c [State Key Laboratory of Pollution Control and Resource Reuse, and School of the Environment, Nanjing University, Nanjing 210093 (China)

    2009-11-07

    The electroless Ag coating of fly ash cenospheres employing polyaniline activator was investigated after polyaniline activator was coated on the surfaces of the cenosphere particles by in situ chemical polymerization. The composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, x-ray diffraction and thermogravimetric analysis (TGA). The results indicate that a small amount of polyaniline activator was deposited in a discontinuous way on the surfaces of the cenosphere particles. Due to the activation of polyaniline, relatively compact and continuous Ag layer with a thickness of about 4 {mu}m was obtained under the given electroless plating condition. The possible interaction between polyaniline and silver ions and the mechanism of Ag deposition were also investigated by the x-ray photoelectron spectroscopy technique.

  9. Electroless Ag coating of fly ash cenospheres using polyaniline activator

    Wang, Wei; Li, Qin; Li, Ying; Xu, Hui; Zhai, Jianping

    2009-11-01

    The electroless Ag coating of fly ash cenospheres employing polyaniline activator was investigated after polyaniline activator was coated on the surfaces of the cenosphere particles by in situ chemical polymerization. The composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, x-ray diffraction and thermogravimetric analysis (TGA). The results indicate that a small amount of polyaniline activator was deposited in a discontinuous way on the surfaces of the cenosphere particles. Due to the activation of polyaniline, relatively compact and continuous Ag layer with a thickness of about 4 µm was obtained under the given electroless plating condition. The possible interaction between polyaniline and silver ions and the mechanism of Ag deposition were also investigated by the x-ray photoelectron spectroscopy technique.

  10. Environmentally benign heterogeneous nano-particle catalysts: synthesis, characterization and catalytic activity of 4-nitrophenol.

    Murugan, Eagambaram; Jebaranjitham, J Nimita

    2011-02-01

    Pollution free catalyst is an attractive area of current interest. The p-Aminophenol is one of the most significant catalyst, because it involves the manufacture of various pharmaceuticals. Crosslinked poly(styrene)-co-poly(4-vinylimidazole) (PSPVIM) was prepared by varying the crosslinked monomer ratio as 2% and 10% respectively. The 2 (w%) of DVB, 25 (w%) of N-VIm as functional monomer and 73 (w%) of styrene as support monomer as organic phase and gelatin, boric acid and polyvinyl alcohol as aqueous phase was used to prepare cross-linked poly(styrene)-co-poly(N-vinyl imidazole) (PVIM) beads (Type-I). Similarly, Type II beads were also prepared by fixing the 10% as a cross linking ratio (DVB). The immobilization of Ag NPs onto the PS-VIm polymer matrix was performed using AgNO3 as a metal precursor solution. The k(obs) determined from UV-Vis results, reveals that the degree of reduction of 4-nitrophenol using Type-I catalysts is more effective than Type-II catalyst due to lower immobilization of AgNPs at higher cross-linked bead matrix. It was found that on increasing the amount of catalyst i.e., type-I PS-PVIm-AgNPs, the rate constant also increases. Therefore, PS-PVIm-AgNPs (Type-I) heterogeneous catalyst is superior for the reduction of 4-NP. PMID:21485850

  11. Bactericidal activity of green tea extracts: the importance of catechin containing nano particles

    Judy Gopal; Manikandan Muthu; Diby Paul; Doo-Hwan Kim; Sechul Chun

    2016-01-01

    When we drink green tea infusion, we believe we are drinking the extract of the green tea leaves. While practically each tea bag infused in 300 mL water contains about 50 mg of suspended green tea leaf particles. What is the role of these particles in the green tea effect is the objective of this study. These particles (three different size ranges) were isolated via varying speed centrifugation and their respective inputs evaluated. Live oral bacterial samples from human volunteers have been ...

  12. Coatings.

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  13. Deformation Behavior of Nanostructured Ceramic Coatings Deposited by Thermal Plasma Spray

    Xianliang JIANG; Eric Jordan; Leon Shaw; Maurice Gell

    2004-01-01

    Al2O3-13 wt pct TiO2 coating deposited by direct current plasma spray consists of nanostructured region and microlamellae. Bend test shows that the ceramic coating can sustain some deformation without sudden failure. The deformation is achieved through the movement of nano-particles in the nanostructured region under tensile stress.

  14. An investigation of the dependence of the average value of anisotropy constant of nano-particle systems on packing friction.

    Fannin, Paul C.; Coffey, William T.

    2000-03-01

    Measurements are presented of the complex magnetic susceptibility,\\chi (ω) = \\chi' (ω )- i\\chi'' (ω ), of a number of colloidal suspensions of nano-particles with different packing fractions, over the frequency range 10kHz to 18kHz. The magnetic field dependence of the average particle anisotropy constant, K, for magnetic fluids samples of magnetite in isopar M for seventeen values of polarising field, H, in the approximate range 0 to 100,000 A/m are presented and examined.

  15. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    Dong-Yeol Yang; Youngja Kim; Min Young Hur; Hae June Lee; Yong-Jin Kim; Tae-Soo Lim; Ki-Bong Kim; Sangsun Yang

    2015-01-01

    This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder) using an in situ one-step process via radio frequency (RF) thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the r...

  16. Preparation of Nano-Particles (Pb,La)TiO3 Thin Films by Liquid Source Misted Chemical Deposition

    张之圣; 曾建平; 李小图

    2004-01-01

    Nano-particles lanthanum-modified lead titanate (PLT) thin films are grown on Pt/Ti/SiO2/Si substrate by liquid source misted chemical deposition (LSMCD). PLT films are deposited for 4-8 times, and then annealed at various temperature. XRD and SEM show that the prepared films have good crystallization behavior and perovskite structure. The crystallite is about 60 nm. The deposition speed is 3 nm/min. This deposition method can exactly control stoichiometry ratios, doping concentration ratio and thickness of PLT thin films. The best annealing process is to bake at 300 ℃ for 10 min and anneal at 600 ℃ for 1 h.

  17. Influence of embedding Cu nano-particles into a Cu/SiO2/Pt structure on its resistive switching

    LIU, CHIH-YI; Huang, Jyun-Jie; Lai, Chun-Hung; Lin, Chao-Han

    2013-01-01

    Cu nano-particles (Cu-NPs) were embedded into the SiO2 layer of a Cu/SiO2/Pt structure to examine their influence on resistive switching characteristics. The device showed a reversible resistive switching behavior, which was due to the formation and rupture of a Cu-conducting filament with an electrochemical reaction. The Cu-NPs enhanced the local electric field within the SiO2 layer, which caused a decrease in the forming voltage. During successive switching processes, the Cu-NP was partiall...

  18. Development of a High-performance Fluorpolymer Electret Mixed with Nano-particles and Its Application to Vibration Energy Harvesting

    We have been developing small power generation device of capacitance-type to be converted to electrical energy vibration energy using an electret. In this Study, dielectric nanoparticles were mixed with an electret made of fluorocarbon polymer. As a result, implanted charge density of the electret was successfully enhanced thanks to the mixing of particles. A small sized vibration energy harvester (VEH) was fabricated using the fluorocarbon mixed with dielectric nano-particles. As a result of applying vibration (20 Hz, 0.65 G) to the fabricated VEH, The maximum generated power of approximately 50 μW was obtained

  19. Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique.

    Stein, Ashley F; Ilavsky, Jan; Kopace, Rael; Bennett, Eric E; Wen, Han

    2010-06-01

    Iron oxide nano-particles have very different x-ray diffraction properties from tissue. They can be clearly visualized against suppressed tissue background in a single-shot x-ray diffraction imaging technique. This technique is able to acquire both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain. We describe the use of two orthogonal transmission gratings to selectively retain diffraction signal from iron oxide particles that are larger than a threshold size, while eliminating the background signal from soft tissue and bone. This approach should help the tracking of functionalized particles in cell labeling and targeted therapy. PMID:20588456

  20. Precursor-Less Coating of Nanoparticles in the Gas Phase

    Pfeiffer, T.V.; Kedia, P.; Messing, M.E.; Valvo, M.; Schmidt-Ott, A.

    2015-01-01

    This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nano)particles using a type of physical vapor deposition (PVD) at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing th

  1. CEMS and XRD studies on changing shape of iron nano-particles by irradiation of Au ions of Fe-implanted Al2O3 granular layer

    In order to observe an inverse Ostwald ripening of Fe nano-particles in Fe-implanted Al2O3 granular layers, 3 MeV Au ions were irradiated to Fe nano-particles in these layers with doses of 0.5x and 1.5x1016 ions/cm2. It was found by Conversion Electron Mossbauer Spectroscopy (CEMS) that the inverse Ostwald ripening occurred by fractions of percentages and the magnetic anisotropy of Fe nano-particles was induced to the direction of Au ion beam, i.e. perpendicular to the granular plane. The average crystallite diameters of Fe nano-particles for Au ions unirradiated and irradiated samples were measured using Scherrer's formula from FWHM of Fe (110) X-ray Diffraction (XRD) patterns obtained by 2θ and 2θ/θ methods. It was confirmed that the average crystallite diameters of Fe nano-particles in Fe-implanted Al2O3 granular layers were extended by Au ions irradiation. (author)

  2. Microstructure and superconducting properties in air-properties GdBa2Cu3O7-δ superconductor with the additives of nano particles

    It is regarded as an effective method to improve the flux pinning performance by the additives of the secondary phase inclusions in nano sizes into high temperature superconductor bulks. We prepared the single domain superconductor GdBa2Gi3O7-δ bulks with variable additions of (ZrO2+SnO2+ZnO) nano-particles in air by using top seed melt-textured growth process. The effect of nano-particle additions on superconductivity properties has been investigated. An enhancement of the critical current JC in low and intermediate field at 77K and trapped field was discovered by the additions of the nano-particles. At the same time, the superconductor transition temperature, TC, slightly decreases from 93.5K to 91.5K The microstructure measurements show that the nano-particle inclusions enhance with the increase of the content of nano-particles, which may illuminate the JC enhancement of the specimens.

  3. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to underst...

  4. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  5. Enhancement of photo-response via surface plasmon resonance induced by Ag nano-particles embedded in ZnO

    Li, Gaoming; Zhang, Jingwen; Chen, Guangde; Ye, Honggang; Duan, Xiangyang; Hou, Xun

    2016-09-01

    Surface plasmon resonance can be exploited to improve the performance of the photodetectors. However, it may cause the increase of dark current as a side effect. The enhancement of responsivity is highly dependent on the device structure involving SPR and the situations of the metal nano-particles. In this paper, we reported the responsivity enhancement of the ZnO UV detectors with SPR based on a structure in which Ag nano-particles are embedded in ZnO film, without the apparent increase of dark current. We found that the characteristic wavelength for SPR absorption is 380 nm, well predicted by Mie theory. And the spectral responsivity peak value increases from 472 mA/W to 10.522 A/W, by 22.3 times. The good matching between enhancement spectra and SPR absorption spectra confirms that the responsivity enhancement is resulted from SPR. Our results are of great importance in improving the photodetectors based on SPR effects, which may be widely used in light detection.

  6. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  7. Microstructure and mechanical property of in-situ nano-particle strengthened ferritic steel by novel internal oxidation

    A novel route of fabricating nano-particles strengthened ferrite steel was investigated in this study. Rather than by externally adding nano-oxide powders, we adopted the endogenous method of controlling oxide reaction and solute concentration distribution in the process of deoxidization to obtain a high density of in-situ nano-oxide particles homogeneously dispersed in the ferrite matrix in melt. The microstructure and tensile properties of these materials had been investigated to clarify the interrelation between the composition, microstructure and mechanical properties. Transmission electron microscopy (TEM) analysis indicated that these nano-particles were titanium oxides, which have a positive effect on optimizing inclusions and refining grains. Tensile tests revealed that these titanium oxide particles play an important role in increasing the yield strength. The steel has yield strength of 711 MPa, approximately three times higher than that of conventional plain carbon structural steels, and its ultimate tensile strength reaches 810 MPa with an elongation-to-failure value of 22%. Precipitation hardening and grain refinement hardening are the dominant factors responsible for yield strength increasing in this steel

  8. Synthesis of Uranium-di-Oxide nano-particles by pulsed laser ablation in ethanol and their characterisation

    The importance of actinide based nano-structures is well known in the area of biology, nuclear medicine, and nuclear industry. Pulsed laser ablation in liquid is recognised as an attractive technique for production of nano-structures of different metals and metal oxides with high purity. In this paper, we report synthesis of uranium-di-oxide nano particles by pulsed laser ablation in ethanol. The second harmonic emission of an electro- optically Q-switched nano-second Nd-YAG laser was used as the coherent source here. The structural and optical properties of the fabricated Uranium-di-oxide nano- particles were investigated by XRD, SEM, TEM, EDX and UV- Vis-NIR spectrophotometry. The mean size of the particles was found to be dependent on the laser ablation parameters. XRD and TEM analysis confirmed the phase of the synthesised material as pure crystalline Uranium-di- oxide with Face Centred Cubic structure. UV- Vis- NIR absorption spectra of the colloidal solution show high absorption in the UV regime. (author)

  9. Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation

    Zinc oxide nano-particles have been used by cosmetic industry for many years because they are extensively used as agents to attenuate (absorb and/or scatter) the ultraviolet radiation. In the most UV-attenuating agent is formulated in which the metal oxide nano-particles are incorporated into liquid media or polymer media are manufactured, such as sunscreens and skin care cosmetics. In this paper we study the wavelength dependence on the particle size (reff = 10-100 nm) by solving the scattering problem of hexagonal ZnO particle for different shapes (plate, equal ratio, column) using the discrete dipole approximation method to find the absorption, scattering, and extinction efficiencies for the UV region (30-400 nm). A new modified hexagonal shape is introduced to determine the scattering problem and it is assumed in this study that the wavelength is comparable to the particle size. From these results, we conclude that the optimum particle radius to block the UV radiation is between reff = 40-80 nm

  10. Dual layer hollow fiber PVDF ultra-filtration membranes containing Ag nano-particle loaded zeolite with longer term anti-bacterial capacity in salt water.

    Shi, Huyan; Xue, Lixin; Gao, Ailin; Zhou, Qingbo

    2016-01-01

    Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag(+) released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag(+) even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag(+) (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag(+) after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes. PMID:27148717

  11. Elaboration of titanium nitride coatings by activated reactive evaporation

    As titanium nitride is a very interesting and promising material for the protection against wear and corrosion of metals and alloys with a low fusion point, and notably steels, this research thesis reports the study of the elaboration of a TiN coating by activated reactive evaporation. In a first part, the author describes deposition processes based on evaporation and their characteristics. He explains the choice of the studied process. He discusses published data and results related to the titanium-nitrogen system. He describes the apparatus and reports the operation mode adjustment, and reports the study of the influence of operating conditions (substrate temperature, nitrogen pressure, evaporation rate, possible use of a discharge) on growth kinetics and on coating properties. A reaction mechanism is then proposed to describe and explain the obtained results

  12. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  13. Preparation of ZrO2 nano-particles by the hydrolysis of ZrOCl2 solution in the reverse micelles

    Chensha Li; Tongxiang Liang; Tianyong Luo

    2006-01-01

    Zirconia nano-particles have been produced by the hydrolysis of ZrOGl2 solution in the reverse micelles of a liquid-liquid two-phase system, in which sodium bis(2-ethylhexyl) sulfosuccinite (AOT) and toluene were chosen as the surfactant and organic phase, respectively. The reverse micelles prevented the aggregation of primary particles and reduced the diameters of zirconia nanoparticles. Superfine zirconia powders soft-aggregated by the zirconia nano-particles were obtained. The diameters of zirconia nanoparticles were influenced by the quantity of the surfactant.

  14. Endocytosis of activated receptors and clathrin-coated pit formation: deciphering the chicken or egg relationship

    1996-01-01

    The fundamental mechanisms by which receptors once targeted for endocytosis are found in coated pits is an important yet unresolved question. Specifically, are activated receptors simply trapped on encountering preexisting coated pits, subsequently being rapidly internalized? Or do the receptors themselves, by active recruitment, gather soluble coat and cytosolic components and initiate the rapid assembly of new coated pits that then mediate their internalization? To explore this question, we...

  15. Chiroptical activity in colloidal quantum dots coated with achiral ligands.

    Melnikau, Dzmitry; Savateeva, Diana; Gaponik, Nikolai; Govorov, Alexander O; Rakovich, Yury P

    2016-01-25

    We studied the chiroptical properties of colloidal solution of CdSe and CdSe/ZnS quantum dots (QDs) with a cubic lattice structure which were initially prepared without use of any chiral molecules and coated with achiral ligands. We demonstrate circular dichroism (CD) activity around first and second excitonic transition of these CdSe based nanocrystals. We consider that this chiroptical activity is caused by imbalance in racemic mixtures of QDs between the left and right handed nanoparticles, which appears as a result of the formation of various defects or incorporation of impurities into crystallographic structure during their synthesis. We demonstrate that optical activity of colloidal solution of CdSe QDs with achiral ligands weakly depends on the QDs size and number of ZnS monolayers, but does not depend on the nature of achiral ligands or polarity of the solution. PMID:26832599

  16. Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO

    Yar, A. Ansary, E-mail: arash_ansaryyar@yahoo.co [Department of Materials, Islamic Azad University, South Tehran Branch, P.O. Box 11365-4435, Tehran (Iran, Islamic Republic of); Montazerian, M.; Abdizadeh, H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of); Baharvandi, H.R. [Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2009-09-18

    In this research, aluminum alloy (A356.1) matrix composites reinforced with 1.5, 2.5 and 5 vol% nano-particle MgO were fabricated via stir casting method. Fabrication was performed at various casting temperatures, viz. 800, 850 and 950 deg. C. Optimum amount of reinforcement and casting temperature were determined by evaluating the density, microstructure and mechanical properties of composites. The composites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Hardness and compression tests were carried out in order to identify mechanical properties. The results reveal that the composites containing 1.5 vol% reinforcement particle fabricated at 850 deg. C have homogenous microstructure as well as improved mechanical properties.

  17. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  18. Electrical memory features of ferromagnetic CoFeAlSi nano-particles embedded in metal-oxide-semiconductor matrix

    Lee, Ja Bin [Novel Functional Materials and Devices Laboratory, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Ki Woong [Semiconductor R and D Center, Samsung Electronics Co. Ltd, Gyeonggi-Do 445-701 (Korea, Republic of); Lee, Jun Seok; An, Gwang Guk [Novel Functional Materials and Devices Laboratory, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Laboratory, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-07-01

    Half-metallic Heusler material Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) nano-particles (NPs) embedded in metal-oxide-semiconductor (MOS) structures with thin HfO{sub 2} tunneling and MgO control oxides were investigated. The CFAS NPs were prepared by rapid thermal annealing. The formation of well-controlled CFAS NPs on thin HfO{sub 2} tunneling oxide was confirmed by atomic force microscopy (AFM). Memory characteristics of CFAS NPs in MOS devices exhibited a large memory window of 4.65 V, as well as good retention and endurance times of 10{sup 5} cycles and 10{sup 9} s, respectively, demonstrating the potential of CFAS NPs as promising candidates for use in charge storage.

  19. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    Mikhelashvili, V.; Padmanabhan, R.; Meyler, B.; Yofis, S.; Atiya, G.; Cohen-Hyams, Z.; Weindling, S.; Ankonina, G.; Salzman, J.; Kaplan, W. D.; Eisenstein, G.

    2015-10-01

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology.

  20. Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation

    Adit Decharat

    2015-04-01

    Full Text Available High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices.

  1. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology

  2. Magnetic behaviour of nano-particles of Fe2.9Zn0.1O4

    Subhash Chander; Sudhish Kumar; Anjali Krishnamurthy; Bipin K Srivastava; V K Aswal

    2003-09-01

    DC magnetization measurements are reported in the temperature range 20–300 K on a poly-disperse nano-particle sample of the spinel ferrite Fe2.9Zn0.1O4 with a log-normal size distribution of median diameter 43.6 Å and standard deviation 0.58. Outside a core of ordered spins, moments in surface layer are disordered. Results also show some similarities with conventional spin glasses. Blocking temperature exhibits a near linear variation with two-third power of the applied magnetic field and magnetization evolves nearly linearly with logarithm of time . Magnetic anisotropy has been estimated by analysing the $M-\\log t$ curve. Anisotropy values show a large increase over that of bulk particle samples. Major contribution to this enhancement comes from the disordered surface spins.

  3. Effect of the Addition MgO Nano Particle to Mechanical Properties and Microstructure of ZTA Ceramic Composite

    The mechanical properties and microstructure of zirconia-toughened alumina ceramic composite doped with nano particle of MgO is investigated. The nano-MgO weight percent was varied from 0 wt% to 1.3 wt%. Each batch of composition was mixed using ultrasonic cleaning and mechanical stirrer, uniaxially pressed and sintered at 1600 degree Celsius for 4 h in pressureless conditions. Analysis of bulk density, Vickers hardness, fracture toughness and microstructural observation has been carried out. Results of Vickers hardness increased linearly with addition of more nano-MgO until a certain composition. Maximum Vickers hardness obtained was 1740HV with 1.1 wt % MgO. (author)

  4. Role of the Initial Formation of the Iron Nano-Particles in the Multi-Walled Carbon Nanotubes Growth Process

    Leszek Stobinski; Hong-Ming Lin

    2004-01-01

    Careful preparation of the iron nano-particle catalyst for carbon nanotubes (CNTs) fabrication has crucial importance for initial growth of multi-wall carbon-nanotubes (MWCNTs). Thin iron layer was thermally deposited in a high vacuum onto the surface of the SiO2/Si wafer at about 300 K. The sample was heated up to 700℃ in a hydrogen atmosphere, and then the sample was heated once again at750℃ in ethylene atmosphere. After hydrogen treatment continuous Fe layer was changed into many well separated Fe nano-peaks. AFM, SEM and HR-TEM studies of deposited MWCNTs allow us to propose a growth mechanism for long, straight MWCNTs.

  5. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  6. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO2) and cerium oxide (CeO2) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity

  7. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  8. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  9. Optical micro resonance based sensor schemes for detection and identification of nano particles and biological agents in situ

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas

    2010-05-01

    A novel emerging technique for the label-free analysis of nano particles including biomolecules using optical micro cavity resonance is being developed. Various schemes based on a mechanically fixed microspheres as well as microspheres melted by laser on the tip of a standard single mode fiber have been investigated to make further development for microbial application. Water solutions of ethanol, HCl, glucose, vitamin C and biotin have been used to test refractive index changes by monitoring the magnitude of the whispering gallery modes spectral shift. Particular efforts were made for effective fixing of the micro spheres in the water flow, an optimal geometry for micro resonance observation and material of microsphere the most appropriate for microbial application. Optical resonance in free micro spheres from PMMA fixed in micro channels produced by photolithography has been observed under the laser power of less then 1 microwatt. Resonance shifts of C reactive protein water solutions as well as albumin solutions in pure water and with HCl modelling blood have been investigated. Introducing controlled amount of glass gel nano particles into sensor microsphere surrounding were accompanied by both correlative resonance shift (400 nm in diameter) and total reconstruct of resonance spectra (57 nm in diameter). Developed schemes have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.

  10. Electroless Ni-Co-P Coating of Cenospheres Using Ag(NH3)2+ Activator

    ZENG Ai-xiang; XIONG Wei-hao

    2004-01-01

    Electroless Ni-Co-P-coating of fly-ash cenosphere particles is demonstrated in the present investigation. The Electroless Ni-Co-P-coating process is modified by replacing the conventional sensitization and activation steps with only using activation step with Ag(NH3)2+ activator. The cenospheres are characterized by scanning electron microscope (SEM),energy dispersive spectroscopy (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS)during and after the coating process. Relatively uniform coating is obtained under the given coating conditions. The possible mechanism of electroless Ni-Co-P-coating of cenospheres utilizing Ag(NH3)2+ activator is suggested. The low density Ni-Co-P coated cenospheres may be utilized for manufacturing conducting polymers for EMI-shielding application and microwave absorbing materials.