WorldWideScience

Sample records for activator suppresses oxidative

  1. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  2. Polyphenol derivatives inhibit human neutrophil activity by suppressing oxidative burst

    Drábiková, K.; Perečko, T.; Nosáľ, R.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2012-01-01

    Roč. 5, Suppl.1 (2012), s. 31-31. ISSN 1337-6853. [Interdisciplinary Toxicological Conference & Advanced Toxicological Course /17./. 27.08.2012-31.08.2012, Stará Lesná] Institutional research plan: CEZ:AV0Z40550506 Keywords : polyphenol derivatives * neutrophil activity * pinosylvin Subject RIV: CC - Organic Chemistry

  3. Activation of peroxisome proliferator-activated receptor-α (PPARα) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes

    Highlights: → PPARα activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. → PPARα activation also increased oxygen consumption rate and CO2 production and decreased secretion of triglyceride and ApoB from Caco-2 cells. → Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO2 production in small intestinal epithelial cells. → Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. → It suggested that intestinal lipid metabolism regulated by PPARα activation suppresses postprandial lipidemia. -- Abstract: Activation of peroxisome proliferator-activated receptor (PPAR)-α which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPARα activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPARα activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO2 and acid soluble metabolites in enterocytes. Moreover

  4. Impaired suppressive activities of human MUTYH variant proteins against oxidative mutagenesis

    Kazuya Shinmura; Masanori Goto; Hong Tao; Shun Matsuura; Tomonari Matsuda; Haruhiko Sugimura

    2012-01-01

    AIM:To investigate the suppressive activity of MUTYH variant proteins against mutations caused by oxidative lesion,8-hydroxyguanine (8OHG),in human cells.METHODS:p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants,which were previously found in patients with colorectal polyposis and cancer,were selected for use in this study.Human H1299 cancer cell lines inducibly expressing wild-type (WT) MUTYH (type 2) or one of the 4 above-mentioned MUTYH variants were established using the piggyBac transposon vector system,enabling the genomic integration of the transposon sequence for MUTYH expression.MUTYH expression was examined after cumate induction using Western blotting analysis and immunofiuorescence analysis.The intracellular localization of MUTYH variants tagged with FLAG was also immunofluorescently examined.Next,the mutation frequency in the supF of the shuttle plasmid pMY189 containing a single 8OHG residue at position 159 of the supFwas compared between empty vector cells and cells expressing WT MUTYH or one of the 4 MUTYH variants using a supF forward mutation assay.RESULTS:The successful establishment of human cell lines inducibly expressing WT MUTYH or one of the 4 MUTYH variants was concluded based on the detection of MUTYH expression in these cell lines after treatment with cumate.All of the MUTYH variants and WT MUTYH were localized in the nucleus,and nuclear localization was also observed for FLAG-tagged MUTYH.The mutation frequency ofsupFwas 2.2 x 102in the 8OHG-containing pMY189 plasmid and 2.5× 10-4 in WT pMY189 in empty vector cells,which was an 86-fold increase with the introduction of 8OHG.The mutation frequency (4.7 × 10-3) of supF in the 8OHG-containing pMY189 plasmid in cells overexpressing WT MUTYH was significantly lower than in the empty vector cells (P < 0.01).However,the mutation frequencies of the supF in the 8OHG-containing pMY189 plasmid in cells overexpressing the p.R154H,p.M255V,p.L360P,or p.P377L MUTYH variant were 1.84 × 10-2,1.55

  5. Activation of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes

    Kimura, Rino [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Takahashi, Nobuyuki, E-mail: nobu@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murota, Kaeko [Department of Life Science, School of Science and Engineering, Kinki University, Osaka 770-8503 (Japan); Yamada, Yuko [Laboratory of Physiological Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Niiya, Saori; Kanzaki, Noriyuki; Murakami, Yoko [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Moriyama, Tatsuya [Department of Applied Cell Biology, Graduate School of Agriculture, Kinki University, Nara 631-8505 (Japan); Goto, Tsuyoshi; Kawada, Teruo [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-06-24

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation of peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and

  6. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. PMID:22770942

  7. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia. PMID:26689453

  8. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells.

    Kim, Min-Ho; Seo, Jun-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-04-01

    Zinc oxide nanoparticles (ZO-NPs) are used as antimicrobials, anti-inflammatories, and to treat cancer. However, although ZO-NPs have excellent efficiency and specificity, their cytotoxicity is higher than that of micron-sized zinc oxide. Doping ZO-NPs with aluminum can improve therapeutic efficacy, but the biological effects and mechanisms involved have not been elucidated. Here, we reported the efficacy of aluminum-doped ZO-NP (AZO) on thymic stromal lymphopoietin (TSLP) production and caspase-1 activation in human mast cell line, HMC-1 cells. AZO significantly reduced TSLP levels as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α without inducing cytotoxicity. Furthermore, AZO more effectively reduced TSLP, IL-6, IL-8, and TNF-α levels than ZO-NP. The levels of inflammatory cytokine mRNA were also reduced by AZO treatment. AZO blocked production of IL-1β and activations of caspase-1 and nuclear factor-κB by inhibiting IκB kinase β and receptor interacting protein 2. In addition, AZO attenuated phosphorylation of mitogen-activated protein kinases, such as extracellular signal-regulated kinase, c-Jun N-terminal kinases, and p38. These findings provide evidence that AZO improves anti-inflammatory properties and offer a safe and effective potential treatment option. PMID:26825457

  9. Aciculatin inhibits lipopolysaccharide-mediated inducible nitric oxide synthase and cyclooxygenase-2 expression via suppressing NF-κB and JNK/p38 MAPK activation pathways

    Chen Chien-Chih

    2011-05-01

    Full Text Available Abstract Objectives Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl-5-hydroxy-2-(4-hydroxyphenyl-7-methoxy-4H-chromen-4-one, one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS-activated macrophages. Methods We used nitrate and prostaglandin E2 (PGE2 assays to examine inhibitory effect of aciculatin on nitric oxide (NO and PGE2 levels in LPS-activated mouse RAW264.7 macrophages and further investigated the mechanisms of aciculatin suppressed LPS-mediated iNOS/COX-2 expression by western blot, RT-PCR, reporter gene assay and confocal microscope analysis. Results Aciculatin remarkably decreased the LPS (1 μg/mL-induced mRNA and protein expression of iNOS and COX-2 as well as their downstream products, NO and PGE2 respectively, in a concentration-dependent manner (1-10 μM. Such inhibition was found, via immunoblot analyses, reporter gene assays, and confocal microscope observations that aciculatin not only acts through significant suppression of LPS-induced NF-κB activation, an effect highly correlated with its inhibitory effect on LPS-induced IκB kinase (IKK activation, IκB degradation, NF-κB phosphorylation, nuclear translocation and binding of NF-κB to the κB motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of JNK/p38 mitogen-activated protein kinases (MAPKs. Conclusion Our results demonstrated that aciculatin exerts potent anti-inflammatory activity through its dual inhibitory effects on iNOS and COX-2 by regulating NF-κB and JNK/p38 MAPK pathways.

  10. N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) suppresses microglial inducible nitric oxide synthase (iNOS) expression and activity induced by interferon-γ (IFN-γ)

    Platten, Michael; Wick, Wolfgang; Wischhusen, Jörg; WELLER, MICHAEL

    2001-01-01

    Microglial cells up-regulate inducible nitric oxide synthase (iNOS) expression in response to various pro-inflammatory stimuli including interferon-γ (IFN-γ), allowing for the release of nitric oxide (NO). Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid) is an antiallergic compound with suppressive effects on the activation of monocytes.Here, we show that N9 murine microglial cells express iNOS mRNA and protein and release nitric oxide into the culture medium in response to IFN-γ (200 ...

  11. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway

  12. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    Xu, Ya-Qiong [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Jin, Shao-Ju [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Luohe Medical College, Luohe 462002, Henan Province (China); Liu, Ning [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Li, Yu-Xiang [College of Nursing, Ningxia Medical University, Yinchuan 750004 (China); Zheng, Jie [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Ma, Lin [Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004 (China); Du, Juan; Zhou, Ru [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Zhao, Cheng-Jun [Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750000 (China); Niu, Yang [Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004 (China); Sun, Tao [Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004 (China); Yu, Jian-Qiang, E-mail: Yujq910315@163.com [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Luohe Medical College, Luohe 462002, Henan Province (China)

    2014-09-05

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.

  13. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  14. Suppression of Ostwald ripening in active emulsions

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  15. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  16. Raloxifene analogue LY117018 suppresses oxidative stress-induced endothelial cell apoptosis through activation of ERK1/2 signaling pathway.

    Yu, Jing; Eto, Masato; Kozaki, Koichi; Akishita, Masahiro; Okabe, Tetsuro; Ouchi, Yasuyoshi

    2008-07-28

    A selective estrogen receptor modulator, raloxifene, has been shown to reduce cardiovascular events in relatively high-risk postmenopausal women with osteoporosis. However, the mechanisms by which raloxifene exerts a pharmacological effect on cardiovascular organs have not been fully elucidated. The present study was designed to examine whether the raloxifene analogue, 6-hydroxy-2-(p-hydroxyphenyl)-benzo(b) thien-3-yl-p-(2-(pyrrolidinyl)ethoxy phenyl ketone (LY117018), could inhibit apoptosis and to clarify the signaling pathway in vascular endothelial cells. LY117018 significantly inhibited hydrogen peroxide-induced apoptosis in bovine carotid artery endothelial cells. The anti-apoptotic effect of LY117018 was abolished by an estrogen receptor antagonist, 7alpha,7beta-(9[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl) estra-1,3,5(10)-triene-3,17-diol (ICI 182,780). Mitogen-activated protein kinases (MAPK), including p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase1/2 (ERK1/2), and Akt, have been shown to act as apoptotic or anti-apoptotic signals. Phosphorylation of p38, JNK, ERK1/2 and Akt was examined. LY117018 increased ERK1/2 phosphorylation but did not enhance the phosphorylation of p38, JNK, or Akt. The anti-apoptotic effect of LY117018 was prevented by treatment with 2-[2'-amino-3'-methoxyphenyl]-oxanaphthalen-4-one (PD98059), an upstream inhibitor of ERK1/2. LY117018 stimulated an increase in ERK1/2 phosphorylation, which was diminished by ICI 182,780. The activation of ERK/1/2 by LY117018 was not inhibited by the transcription inhibitor, actinomycin D. These results suggest that estrogen receptors and the ERK1/2 signaling pathway are involved in the anti-apoptotic action of LY117018 in vascular endothelial cells. PMID:18541231

  17. Oxidative Damage and Suppression: an Experimental Approach to Teaching Biochemistry

    Isa G. J. de Avellar

    2005-07-01

    Full Text Available Experimental Biochemistry is a challenging and worthy didactical  task:  a vast field with many different techniques.   Radical mediated biooxidative processes, implied in aging and accompanying various pathologies,  have an enormous  appeal  to public in general and particularly to students in the science field.   The  Fenton  reaction,   first  reported by  the 22-year  old Cambridge  chemistry  undergraduate Henry J. H. Fenton  (Chemical  news vol. 33 page 190, 1876, is a useful in vitro system for generating hydroxyl radicals generally implied in biooxidation.  When coupled with the 2-deoxyribose (DR- thiobarbituric acid (TBA  method,  provides  a most  resourceful  tool for studying  oxidative  processes that may  provide  insights  to  in  vivo  processes.    In  this  communication  a  classical  experiment of quantification of thiobarbituric reactive  substances  (TBARS resulting  from breakage  of DR (5 mM in aqueous buffered media (5mM, pH 7.2 by 0,100 mM H2O2 and ferrous ion (up to 0,150 mM is the base for the demonstration of oxidative damage suppressive ability of known hydroxyl radical quenchers as ethanol,  dimethylsulfoxide (DMSO  and  thiourea (1mM  each.   The  results  of the  experiments, developed  to  be worked  in experimental classes for senior  undergraduate biochemistry students of biomedical  sciences, show a very mild but  consistent  suppressive  capacity  for ethanol  (reduction in2 percent  of TBARS  measured  at  0,150 mM ferrous ion concentration.  Thiourea  and  DMSO show very similar  suppressive  abilities:  reduction  in 19 and  18 percent  in measured  TBARS,  respectively (at  0,150 mM ferrous ion.

  18. Resveratrol alleviates endotoxemia-associated adrenal insufficiency by suppressing oxidative/nitrative stress.

    Duan, Guo-Li; Wang, Chang-Nan; Liu, Yu-Jian; Yu, Qing; Tang, Xiao-Lu; Ni, Xin; Zhu, Xiao-Yan

    2016-06-30

    We have recently demonstrated that endotoxin causes oxidative stress and overproduction of nitric oxide in adrenal glands, thereby leading to adrenocortical insufficiency. The aim of this study is to investigate the effects of resveratrol, a natural plant polyphenol with anti-oxidant and anti-nitrative properties, on endotoxemia-associated adrenocortical insufficiency. Resveratrol was administered immediately before injection of lipopolysaccharide (LPS). Twenty four hours later, the adrenocorticotropic hormone (ACTH) stimulation tests was been performed to measure the plasma corticosterone level and the adrenal gland tissues were collected for histopathologic examination, and determination of malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) and peroxynitrite production. Treatment with resveratrol significantly inhibited endotoxemia-induced iNOS expression, NO production, and peroxynitrite formation and also attenuated LPS-induced oxidative stress in the adrenal gland, as evidenced by the decrease of pro-oxidant biomarker (MDA), and the increases of anti-oxidant biomarkers (T-AOC, CAT and SOD activity). H&E staining demonstrated that administration of LPS resulted in increased into the adrenal gland. H&E-stained sections of adrenal glands demonstrated signs of leukocyte infiltration and hemorrhage during endotoxemia, which were significantly improved by resveratrol treatment. In addition, resveratrol reversed the LPS-induced downregulation of ACTH receptor and silent information regulator 1 (SIRT1) in adrenal gland, as well as adrenocortical hyporesponsiveness to ACTH. Resveratrol exerts protective effects against endotoxemia-associated adrenocortical insufficiency by suppressing oxidative/nitrative stress. These findings support the potential for resveratrol as a possible pharmacological agent to improve adrenocortical

  19. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases

  20. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  1. Active Flutter Suppression Combining the Receptance Method and Flutter Margin

    Wu, Zhigang; Cooper, Jonathan

    2016-01-01

    Active flutter suppression is used to prevent flutter throughout the flight envelope by supplying active control forces in response to vehicle motions. In recent years, studies have been conducted on active flutter suppression using the receptance method. The advantage of the receptance method is that the feedback control gains are purely based upon measured receptances, without any need to evaluate or know the mass, damping, and stiffness matrices of the system. However, determination of the...

  2. Memory Suppression is an Active Process that Improves Over Childhood

    Paz-Alonso, Pedro M.; Ghetti, Simona; Bryan J Matlen; Anderson, Michael C.; Bunge, Silvia A.

    2009-01-01

    We all have memories that we prefer not to think about. The ability to suppress retrieval of unwanted memories has been documented in behavioral and neuroimaging research using the Think/No-Think (TNT) paradigm with adults. Attempts to stop memory retrieval are associated with increased activation of lateral prefrontal cortex (PFC) and concomitant reduced activation in medial temporal lobe (MTL) structures. However, the extent to which children have the ability to actively suppress their memo...

  3. Alpha-1 antitrypsin prevents the development of preeclampsia through suppression of oxidative stress

    Yaling eFeng

    2016-05-01

    Full Text Available Preeclampsia (PE and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.

  4. OXIDATIVE STRESS AND PHYSICAL ACTIVITY

    Dragan Radovanović

    2012-06-01

    Full Text Available The cells continuously produce free radicals and reactive oxygen species as a part of metabolic processes. Increased aerobic metabolism during exercise is a potential source of oxidative stress. Also, anaerobic physical activity and oxidative stress are interrelated because the intense anaerobic activity leads to damage proteins, lipids and nucleic acids in muscle cells and blood. Complex system of antioxidant defense, which has the enzymatic and non-enzymatic part, has a role in protecting tissues from excessive oxidative damage. Most of the research conducted so far about the impact of various forms of physical activity on levels of oxidative stress is confirmed by changes in biomarkers that indicate lipid peroxidation and proteins modification. Untrained persons, as opposed to trained, are more susceptible to major changes in the body caused by oxidative stress during physical activity. The results of researches have shown that there are no significant differences between the genders in the level of oxidative stress during physical activity and response to antioxidant supplementation possibly applied. It is interesting that, despite of numerous studies, the exact location of oxidative stress origin during physical activity has not been reliably established. In addition, research results provide insufficient evidence on the effectiveness of using antioxidant supplementation to increase the defense against oxidative stress. It is necessary further investigation about the redox status and oxidative stress during physical activity in adolescent athletes.

  5. Memory suppression is an active process that improves over childhood

    Pedro M Paz-Alonso

    2009-09-01

    Full Text Available We all have memories that we prefer not to think about. The ability to suppress retrieval of unwanted memories has been documented in behavioral and neuroimaging research using the Think/No-Think (TNT paradigm with adults. Attempts to stop memory retrieval are associated with increased activation of lateral prefrontal cortex (PFC and concomitant reduced activation in medial temporal lobe (MTL structures. However, the extent to which children have the ability to actively suppress their memories is unknown. This study investigated memory suppression in middle childhood using the TNT paradigm. Forty children aged 8 to 12 and 30 young adults were instructed either to remember (Think or suppress (No-Think the memory of the second word of previously studied word-pairs, when presented with the first member as a reminder. They then performed two different cued recall tasks, testing their memory for the second word in each pair after the Think/No-Think phase using the same first studied word within the pair as a cue (intra-list cue and also an independent cue (extra-list cue. Children exhibited age-related improvements in memory suppression from age 8 to 12 in both memory tests, against a backdrop of overall improvements in declarative memory over this age range. These findings suggest that memory suppression is an active process that develops during late childhood, likely due to an age-related refinement in the ability to engage PFC to down-regulate activity in areas involved in episodic retrieval.

  6. Antiviral activity of oxidized polyamines.

    Bachrach, U

    2007-08-01

    Polyamines, oxidized by serum amine oxidase, yield aminoaldehydes and hydrogen peroxide. Acrolein may be formed from the aminoaldehydes by a spontaneous beta-elimination process. These oxidation products "oxidized polyamines" inhibit bacterial growth and exhibit anticancer activity. The antimicrobial activity of oxidized polyamines is not limited to bacteria; and the inactivation of bacterial viruses, plant viruses and animal viruses, was also reported. Bacteriophages of the T-odd series are permeable and were inactivated by oxidized polyamines. The inactive phages absorb to their bacterial host and injected their DNA, which formed a stable inactive complex with the aminoaldehydes. Aminoaldehydes, synthesized chemically, also inactivated viruses. The growth of the plant viruses: Tobacco mosaic virus, Potato virus X and Alfalfa mosaic virus was also inhibited by oxidized polyamines. The animal viruses, which were inactivated by oxidized polyamines included Myxoviruses (influenza and Newcastle disease viruses), West Nile, vaccinia and Sindbis viruses. These findings may have practical implications. PMID:17429570

  7. Active and passive vibration suppression for space structures

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  8. Investigation of tritium activity ingress to pressure suppression pool

    Kakrapar Atomic Power Station is a standardised design Indian PHWR consisting of twin units of 220 MWe each. Pressure suppression pool situated at the basement of reactor building holds about 2200 m3 of DM water. It acts as a media separating the high enthalpy areas from low enthalpy areas and remain passive during normal operation. During LOCA it reduces the pressure in RB atmosphere by condensing the steam passing through it. In both units of KAPS tritium activity is observed in suppression pool, most predominantly in KAPS-1. Activity build up in suppression pool can act as potential source of tritium activity in RB atmosphere leading to increased internal exposure of occupational workers. Also during de-watering of suppression pool, this water adds to the amount of liquid waste generated from the station which eventually results in exposure of the public to tritium. This paper discusses the activity build up trend in KAPS-1 suppression pool, its sources, works done to prevent the activity ingress and suggestions for design improvement. (author)

  9. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825453

  10. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization. PMID:26629611

  11. Diversity and activity of Lysobacter species from disease suppressive soils

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; de Bruijn, Irene

    2015-01-01

    BACKGROUND: The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoct

  12. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    Gomez Exposito, R.; Postma, J.; Raaijmakers, J.M.; Bruijn, de I.

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani

  13. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    Kalaivani Batumalaie; Muhammad Arif Amin; Dharmani Devi Murugan; Munavvar Zubaid Abdul Sattar; Nor Azizan Abdullah

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein e...

  14. Vitamin E Suppression of Microglial Activation Is Neuroprotective

    Li, Yuekui; Liu, Ling; Barger, Steven W.; Mrak, Robert E; Griffin, W Sue T

    2001-01-01

    Neurotoxic microglial-neuronal interactions have been implicated in the pathogenesis of various neurodegenerative diseases such as Alzheimer’s disease, and vitamin E has been shown to have direct neuroprotective effects. To determine whether vitamin E also has indirect neuroprotective effects through suppression of microglial activation, we used a microglial-neuronal coculture. Lipopolysaccharide (LPS) treatment of a microglial cell line (N9) induced a time-dependent activation of both p38 mi...

  15. Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment

    Qian Guo

    2015-01-01

    Full Text Available The clinical application of doxorubicin (DOX is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D is a steroid alkaloid extracted from a traditional Chinese medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH to oxidized glutathione (GSSG. Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α and nuclear respiratory factor 1 (NRF1, as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment.

  16. Nitric oxide suppresses growth and development in the unicellular green alga Micrasterias denticulata.

    Lehner, Christine; Kerschbaum, Hubert H; Lütz-Meindl, Ursula

    2009-01-30

    Nitric oxide (NO), a key molecule in inter- and intracellular signalling, is implicated in developmental processes, host defense, and apoptosis in higher plants. We investigated the effect of NO on development in the unicellular green alga, Micrasterias denticulata, using two different NO donors, S-nitroso-N-acetyl-dl-penicillamine (SNAP) and sodium nitroprusside (SNP). Investigations at the light microsopic level revealed that both NO donors suppressed cell growth. Ultrastructural analyses were performed with SNAP- as well as SNP-treated cells and, additionally, with the control compound N-acetyl-d-penicillamine (NAP). Cells incubated with NO donors lacked a secondary wall and dictyosomal function was impaired, whereas NAP-treated cells showed no difference in development and organelle structure compared to control cells. Moreover, cisternae of the Golgi stacks were slightly involute and no vesicles were pinched off after SNAP and SNP incubation. The NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, potassium salt) abrogated the effect of SNP, thus confirming that inhibition of cell growth is due to nitric oxide. Addition of iodoacetic acid, an inhibitor of cysteine-containing enzymes, like glyceraldehyde-3-phosphate dehydrogenase (GAPDH), evoked similar effects on cell growth and secondary wall formation as obtained by treatment with NO donors. Therefore, we hypothesize that NO inhibits activity of enzymes involved in the secretory pathway, such as GAPDH, via S-nitrosylation of the cysteine residue and, consequently, modulates cell growth in M. denticulata. PMID:18455833

  17. Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying Kin channels in Arabidopsis guard cells

    XUE ShaoWu; YANG Pin; HE YiKun

    2008-01-01

    We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib-ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele-vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan-nels, resulting in stomatal opening suppressed subsequently.

  18. Artifact suppression and analysis of brain activities with electroencephalography signals

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  19. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    Chen, Yanyan [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Xue, Peng [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Zhang, Hao [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zheng, Hongzhi [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhou, Tong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Teng, Weiping [The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jingbopi@gmail.com [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China)

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  20. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  1. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Huu Duc Vo

    2007-06-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  2. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    Juan Zhang; Hongju Tang; Ruyuan Deng; Ning Wang; Yuqing Zhang; Yao Wang; Yun Liu; Fengying Li; Xiao Wang; Libin Zhou

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome pro...

  3. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation.

    Park, Kyung-Ran; Nam, Dongwoo; Yun, Hyung-Mun; Lee, Seok-Geun; Jang, Hyeung-Jin; Sethi, Gautam; Cho, Somi K; Ahn, Kwang Seok

    2011-12-22

    Both PI3K/AKT/mTOR/S6K1 and mitogen activated protein kinase (MAPK) signaling cascades play an important role in cell proliferation, survival, angiogenesis, and metastasis of tumor cells. In the present report, we investigated the effects of β-caryophyllene oxide (CPO), a sesquiterpene isolated from essential oils of medicinal plants such as guava (Psidium guajava), oregano (Origanum vulgare L.), cinnamon (Cinnamomum spp.) clove (Eugenia caryophyllata), and black pepper (Piper nigrum L.) on the PI3K/AKT/mTOR/S6K1 and MAPK activation pathways in human prostate and breast cancer cells. We found that CPO not only inhibited the constitutive activation of PI3K/AKT/mTOR/S6K1 signaling cascade; but also caused the activation of ERK, JNK, and p38 MAPK in tumor cells. CPO induced increased reactive oxygen species (ROS) generation from mitochondria, which is associated with the induction of apoptosis as characterized by positive Annexin V binding and TUNEL staining, loss of mitochondrial membrane potential, release of cytochrome c, activation of caspase-3, and cleavage of PARP. Inhibition of ROS generation by N-acetylcysteine (NAC) significantly prevented CPO-induced apoptosis. Subsequently, CPO also down-regulated the expression of various downstream gene products that mediate cell proliferation (cyclin D1), survival (bcl-2, bcl-xL, survivin, IAP-1, and IAP-2), metastasis (COX-2), angiogenesis (VEGF), and increased the expression of p53 and p21. Interestingly, we also observed that CPO can significantly potentiate the apoptotic effects of various pharmacological PI3K/AKT inhibitors when employed in combination in tumor cells. Overall, these findings suggest that CPO can interfere with multiple signaling cascades involved in tumorigenesis and used as a potential therapeutic candidate for both the prevention and treatment of cancer. PMID:21924548

  4. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria;

    2006-01-01

    either 1.25 mg/kg DPCPX dissolved in 2 ml/kg dimethyl sulfoxide (DMSO) or the same volume of DMSO alone, 15 min before the third ischemic episode. Time to electrocortical suppression was estimated based on the decay of the root mean square of two-channel electrocorticographic recordings. During the first...... two ischemic episodes, electrocortical suppression appeared after approximately 12 s in both groups. After DMSO administration, ischemic suppression remained unchanged. After DPCPX administration, the time to electrocortical suppression was increased by approximately 10 s, and bursts of activity were...

  5. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling

    Thyagarajan, Baskaran; Malli, Roland; Schmidt, Kurt; Graier, Wolfgang F; Groschner, Klaus

    2002-01-01

    Nitric oxide (NO) is a key modulator of cellular Ca2+ signalling and a determinant of mitochondrial function. Here, we demonstrate that NO governs capacitative Ca2+ entry (CCE) into HEK293 cells by impairment of mitochondrial Ca2+ handling. Authentic NO as well as the NO donors 1-[2-(carboxylato)pyrrolidin-1-yl]diazem-1-ium-1,2-diolate (ProliNO) and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) suppressed CCE activated by thapsigargin (TG)-induced store depletion. Threshold concentrations for inhibition of CCE by ProliNO and DEANO were 0.3 and 1 μM, respectively. NO-induced inhibition of CCE was not mimicked by peroxynitrite (100 μM), the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1, 100 μM) or 8-bromoguanosine 3′,5′-cyclic monophosphate (8-BrcGMP, 1 mM). In addition, the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a] quinoxalin-1-one (ODQ, 30 μM) failed to antagonize the inhibitory action of NO on CCE. DEANO (1–10 μM) suppressed mitochondrial respiration as evident from inhibition of cellular oxygen consumption. Experiments using fluorescent dyes to monitor mitochondrial membrane potential and mitochondrial Ca2+ levels, respectively, indicated that DEANO (10 μM) depolarized mitochondria and suppressed mitochondrial Ca2+ sequestration. The inhibitory effect of DEANO on Ca2+ uptake into mitochondria was confirmed by recording mitochondrial Ca2+ during agonist stimulation in HEK293 cells expressing ratiometric-pericam in mitochondria. DEANO (10 μM) failed to inhibit Ba2+ entry into TG-stimulated cells when extracellular Ca2+ was buffered below 1 μM, while clear inhibition of Ba2+ entry into store depleted cells was observed when extracellular Ca2+ levels were above 10 μM. Moreover, buffering of intracellular Ca2+ by use of N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl

  6. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  7. Suppression of Methionine Oxidation of a Pharmaceutical Antibody Stored in a Polymer-Based Syringe.

    Masato, Amano; Kiichi, Fukui; Uchiyama, Susumu

    2016-02-01

    Oxidation of methionine residues is one of the well-known deteriorations in monoclonal antibody (mAb) therapeutics. Because methionine oxidation may affect their efficacy and pharmacokinetic profile, oxidation levels should be strictly controlled during their storage period. In this study, we revealed that when a therapeutic antibody was filled into a cyclo olefin polymer-based syringe and stored in a blister pack with an oxygen absorber, the methionine oxidation production under thermal or light stress was suppressed because of the reduction in the concentration of dissolved oxygen. Also unexpectedly, fewer amounts of the high-molecular-weight species and the acidic variants of the antibody were generated under thermal or light stress. Although the high-molecular-weight species contains methionine oxidants at similar levels to those in a monomer species, they were likely to be constituted from a higher amount of the oxidative species of internal disulfide linkage, tyrosine, or histidine. Because the dissolved oxygen could be readily removed from the mAb solution in the polymer-based syringe owing to its high gas permeability, this study shows the advantages of the polymer-based syringe with an oxygen absorber over glass syringes in terms of the suppression of the methionine oxidation and oxidative high molecular species. PMID:26462145

  8. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  9. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Juan Zhang

    Full Text Available Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBPα, peroxisome proliferators-activated receptor γ2 (PPARγ2, and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  10. Suppression of nitric oxide production from nasal fibroblasts by metabolized clarithromycin in vitro

    Hirano Kojiro

    2010-11-01

    Full Text Available Abstract Background Low-dose and long-term administration of 14-membered macrolide antibiotics, so called macrolide therapy, has been reported to favorably modify the clinical conditions of chronic airway diseases. Since there is growing evidence that macrolide antibiotic-resistant bacteria's spreaders in the populations received macrolide therapy, it is strongly desired to develop macrolide antibiotics, which showed only anti-inflammatory action. The present study was designed to examine the influence of clarithromycin (CAM and its metabolized materials, M-1, M-4 and M-5, on free radical generation from nasal polyp fibroblasts (NPFs through the choice of nitric oxide (NO, which is one of important effector molecule in the development of airway inflammatory disease in vitro. Methods NPFs (5 × 105 cells/ml were stimulated with 1.0 μg/ml lipopolysaccharide (LPS in the presence of agents for 24 hours. NO levels in culture supernatants were examined by the Griess method. We also examined the influence of agents on the phosphorylation of MAPKs, NF-κB activation, iNOS mRNA expression and iNOS production in NPFs cultured for 2, 4, 8, and 12 hours, respectively. Results The addition of CAM (> 0.4 μg/ml and M-4 (> 0.04 μg/ml could suppress NO production from NPFs after LPS stimulation through the suppression of iNOS mRNA expression and NF-κB activation. CAM and M-4 also suppressed phosphorylation of MAPKs, ERK and p38 MAPK, but not JNK, which are increased LPS stimulation. On the other hand, M-1 and M-5 could not inhibit the NO generation, even when 0.1 μg/ml of the agent was added to cell cultures. Conclusion The present results may suggest that M-4 will be a good candidate for the agent in the treatment of chronic airway inflammatory diseases, since M-4 did not have antimicribiological effects on gram positive and negative bacteria.

  11. Nitric Oxide Donors Suppress Chemokine Production by Keratinocytes in Vitro and in Vivo

    Giustizieri, Maria Laura; Albanesi, Cristina; Scarponi, Claudia; De Pità, Ornella; Girolomoni, Giampiero

    2002-01-01

    Nitric oxide (NO) is involved in the modulation of inflammatory responses. In psoriatic skin, NO is highly produced by epidermal keratinocytes in response to interferon-γ and tumor necrosis factor-α. In this study, we investigated whether the NO donors, S-nitrosoglutathione (GS-NO) and NOR-1, could regulate chemokine production by human keratinocytes activated with interferon-γ and tumor necrosis factor-α. In addition, we studied the effects of the topical application of a GS-NO ointment on chemokine expression in lesional psoriatic skin. NO donors diminished in a dose-dependent manner and at both mRNA and protein levels the IP-10, RANTES, and MCP-1 expression in keratinocytes cultured from healthy patients and psoriatic patients. In contrast, constitutive and induced interleukin-8 production was unchanged. GS-NO-treated psoriatic skin showed reduction of IP-10, RANTES, and MCP-1, but not interleukin-8 expression by keratinocytes. Moreover, the number of CD14+ and CD3+ cells infiltrating the epidermis and papillary dermis diminished significantly. NO donors also down-regulated ICAM-1 protein expression without affecting mRNA accumulation in vitro, and suppressed keratinocyte ICAM-1 in vivo. Finally, NO donors inhibited nuclear factor-κB and STAT-1, but not AP-1 activities in transiently transfected keratinocytes. These results define NO donors as negative regulators of chemokine production by keratinocytes. PMID:12368213

  12. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.

    Li, Miao; Wang, Jinli; Fang, Yimin; Gong, Sitang; Li, Meiyu; Wu, Minhao; Lai, Xiaomin; Zeng, Gucheng; Wang, Yi; Yang, Kun; Huang, Xi

    2016-01-01

    Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis. PMID:27025258

  13. Comparative study between two different active flutter suppression systems

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  14. Suppression of oxidative stress by grape seed supplementation in rats

    Choi, Soo-Kyong; Zhang, Xian-Hua; Seo, Jung-Sook

    2012-01-01

    Polyphenol-rich grape seeds have a beneficial effect on human health. The present study was performed to investigate the effects of grape seeds on antioxidant activities in rats. Male Sprague-Dawley rats were randomly divided into a control diet group (C), a high-fat diet group (HF), a 5% grape seed-supplemented control diet group (G), and a 5% grape seed-supplemented high-fat diet group (HG). Dietary supplementation with grape seeds reduced serum concentrations of lipid peroxides compared wi...

  15. Inhibition of Emodin on LPS-induced Nitric Oxide Generation by Suppressing PLC-γ Phosphorylation in Rat Peritoneal Macrophages

    WANG Xin-yu; CAI Shou-guang; WU Yi-fen; LI Jun-ying; YANG Wen-xiu; HU Fen

    2010-01-01

    Objective To investigate the inhibitory mechanism of emodin on lipopolysaccharide(LPS)-induced nitric oxide(NO)generation in rat peritoneal macrophages.Methods NO production and iNOS expression were measured through nitrite assay and Western blotting assay,respectively.NF-kB activity and nuclei P65 expression were estimated by dual-luciferase and Western blotting assay,respectively.Intracellular free Ca2+([Ca2+]i)was detected using the ratiometric fluorescent calcium indicator dye,Fura-2,and a microspectrofluorometer.PLC-γphosporylation was analyzed by Western blotting assay.Results First,emodin was found playing active roles in suppressing LPS-induced NF-kB activation in rat peritoneal macrophages.Second,emodin down-regulated transient[Ca2*]i and could increase in NF-kB upstream signal.Finally,emodin suppressed phosphorylation of PLC-γ by LPS stimulation in the upstream of[Ca2+]i.Conclusion Suppression of PLC-γ phosphorylation is involved in emodin inhibiting NO generation by LPS stimulation in rat peritoneal macrophages.

  16. Suppression by Apoptotic Cells Defines Tumor Necrosis Factor-Mediated Induction of Glomerular Mesangial Cell Apoptosis by Activated Macrophages

    Duffield, Jeremy S.; Ware, Carl F.; Ryffel, Bernhardt; Savill, John

    2001-01-01

    Activated macrophages (Mφ) isolated from inflamed glomeruli or generated by interferon-γ and lipopolysaccharide treatment in vitro induce glomerular mesangial cell apoptosis by hitherto incompletely understood mechanisms. In this report we demonstrate that nitric oxide-independent killing of co-cultured mesangial cells by interferon-γ/lipopolysaccharide-activated Mφ is suppressed by binding/ingestion of apoptotic cells and is mediated by tumor necrosis factor (TNF). Thus, soluble TNF receptor...

  17. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  18. Hybrid Active/Passive Jet Engine Noise Suppression System

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  19. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity

    Shen CC

    2012-06-01

    Full Text Available Chien-Chang Shen,1,* Hong-Jen Liang,2,* Chia-Chi Wang,3 Mei-Hsiu Liao,4 Tong-Rong Jan11Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 2Innovation and Incubation Center, Yuanpei University, Hsinchu, 3School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 4Division of Isotope Application, Institute of Energy Research, Taoyuan, Taiwan*These authors contributed equally to this workBackground: It was recently reported that iron oxide nanoparticles attenuated antigen-specific humoral responses and T cell cytokine expression in ovalbumin-sensitized mice. It is presently unclear whether iron oxide nanoparticles influence T helper 1 cell-mediated immunity. The present study aimed to investigate the effect of iron oxide nanoparticles on delayed-type hypersensitivity (DTH, whose pathophysiology requires the participation of T helper 1 cells and macrophages.Methods: DTH was elicited by a subcutaneous challenge with ovalbumin to the footpads of mice sensitized with ovalbumin. Iron oxide nanoparticles (0.2–10 mg iron/kg were administered intravenously 1 hour prior to ovalbumin sensitization. Local inflammatory responses were examined by footpad swelling and histological analysis. The expression of cytokines by splenocytes was measured by enzyme-linked immunosorbent assay.Results: Administration of iron oxide nanoparticles, in a dose-dependent fashion, significantly attenuated inflammatory reactions associated with DTH, including the footpad swelling, the infiltration of T cells and macrophages, and the expression of interferon-γ, interleukin-6, and tumor necrosis factor-α in the inflammatory site. Iron oxide nanoparticles also demonstrated a suppressive effect on ovalbumin-stimulated production of interferon-γ by splenocytes and the phagocytic activity of splenic CD11b+ cells.Conclusion: These results demonstrated that a single dose of iron oxide nanoparticles attenuated

  20. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  1. Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress.

    Zhao, Hongyu; Liu, Zhenning; Shen, Haitao; Jin, Shuai; Zhang, Shun

    2016-06-15

    Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. The aim of our study was to investigate the molecular mechanism involved in the protective effects of GA in lipopolysaccharide (LPS) stimulated rat mesangial cells (HBZY-1) and septic rats. Sepsis model was established by injection of 5mg/kg LPS in rats or incubation with 1μg/ml LPS for 24h in HBZY-1 cells. A variety of molecular biological experiments were carried out to assess the effects of GA on inflammation, apoptosis, and oxidative stress. First we found that GA alleviated sepsis-induced kidney injury in vivo. Furthermore, GA suppressed inflammatory response in vivo and in vitro. Additionally, GA inhibited cell apoptosis and the changes in expressions of apoptosis related proteins induced by LPS. Moreover, GA markedly inhibited oxidative stress induced by LPS via activation of ERK signaling pathway. Finally GA could inhibit the activation of NF-κ B induced by LPS. Our present study indicates that GA has a protective effect against sepsis-induced inflammatory response, apoptosis, and oxidative stress damage, which provides a molecular basis for a new medical treatment of septic acute kidney injury. PMID:27063444

  2. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages.

    Kim, Min-Ji; Bae, Soo Han; Ryu, Jae-Chan; Kwon, Younghee; Oh, Ji-Hwan; Kwon, Jeongho; Moon, Jong-Seok; Kim, Kyubo; Miyawaki, Atsushi; Lee, Min Goo; Shin, Jaekyoon; Kim, Young Sam; Kim, Chang-Hoon; Ryter, Stefan W; Choi, Augustine M K; Rhee, Sue Goo; Ryu, Ji-Hwan; Yoon, Joo-Heon

    2016-08-01

    Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces "mitochondrial priming" by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis. PMID:27337507

  3. Mechanism study of organic antioxidant and inorganic salt on suppressing coal oxidation

    YU Shui-jun; YU Ming-gao; JIA Hai-lin; ZUO Qiu-ling

    2007-01-01

    The advantages and disadvantages of Organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical chain-type reaction mechanism.The inhibition curves on suppressing coal oxidation of the different type and different concentration of Organic antioxidant and inorganic salt were given through experimental study and data processing.Then some conclusions can be gained from the experimental study combining with theoretical analysis.First the inhibition mechanism of the organic antioxidant and inorganic salt is different.The former is that the chemical action is the dominant position.It can be called as the chain termination theory because the free radical is captured during coal oxidation.And the later is that the physical effect is the dominant position.It can be called as the decreasing-temperature theory because the liquid membrane which was formed by the inorganic salt can make coal body be the state of wetness and prevent oxygen from coal surface.Second the inhibition effect of the organic antioxidant is higher than the inorganic salt in the later period.But it is lower in the early period.

  4. Cotton fabrics treated with novel oxidic phases acting as effective smoke suppressants.

    Alongi, Jenny; Malucelli, Giulio

    2012-09-01

    Sol-gel processes have been applied to cotton fabrics in order to coat the fibres with a silica film, able to improve their thermo-oxidative resistance and their combustion behaviour under the irradiative heat flow of a cone calorimeter. To this aim, tetramethoxysilane, inorganic precursor of the silica phase, has been employed alone or coupled with species having either smoke suppressant features (namely, zinc oxide, zinc acetate dihydrate and zinc borate) or well known flame retardant properties (like ammonium pentaborate octahydrate, boron phosphate, ammonium polyphosphate and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide). In addition, the use of barium sulphate, which is a smoke suppressant and, at the same time, a flame retardant, has been investigated. Cone calorimetry turned out to be a suitable technique for assessing the flammability and smoke production of the treated fabrics (particularly when referring to total smoke release, smoke production rate and CO and CO2 yields). The composition and morphology of the deposited coatings, assessed by scanning electron microscopy, have been found to influence their combustion behaviour, as well as their thermal and thermo-oxidative stability evaluated by thermogravimetric analysis in nitrogen and air, respectively. PMID:24751038

  5. Why the White Bear is Still There: Electrophysiological Evidence for Ironic Semantic Activation during Thought Suppression

    Giuliano, Ryan J.; Wicha, Nicole Y. Y.

    2010-01-01

    Much research has focused on the paradoxical effects of thought suppression, leading to the viewpoint that increases in unwanted thoughts are due to an ironic monitoring process which increases the activation of the very thoughts one is trying to rid from consciousness. However, it remains unclear from behavioral findings whether suppressed thoughts become more accessible during the act of suppression. In the current study, event-related potentials were recorded while participants suppressed ...

  6. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania

    The in situ self-assembly of two types of typical two-dimensional (2D) nanomaterials (i.e., graphene oxide (GO) and monolayer titania (TO)) is realized using a simple drop-casting method. Within the as-prepared hybrid films, the GO and TO nanosheets arrange alternately into a lamellar structure. Notably, the hybridization of GO and TO suppresses the formation of coffee-rings when drop-cast, which is attributed to the strong interactions between the GO and TO nanosheets. Finally, the mechanism for the in situ hybridization of these two types of nanosheets into heterogeneous lamellar films and the suppression of the coffee-ring effect are discussed. These results demonstrate the potential applications of drop-cast hybrid films for high-quality membrane deposition from liquid phases. (paper)

  7. Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping

    Song, Jay Hyok; Kapylou, Andrei; Choi, Hee Sung; Yu, Byong Yong; Matulevich, Evegeniya; Kang, Sun Ho

    2016-05-01

    Li[Li1/6Ni1/6Co1/6Mn1/2]O2-xFx (x = 0.00 to 0.07) materials were synthesized with low temperature heat treatment (700 °C) and their electrochemical performances were evaluated. With the addition of fluorine, the reversible capacity significantly increased as the irreversibility was suppressed during the first cycle. The reduction of irreversibility was mainly attributed to the enhanced first cycle efficiency of Li2MnO3-like component after the fluorine addition. By combining results of the X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), In-situ X-ray absorption spectroscopy (XAS) analyses, and first principle calculations, it was proposed that the presence of fluorine facilitated the reduction of cobalt and manganese ions in Li-rich layered oxide, and that the reduced transition metal (TM) ions suppressed structural changes.

  8. The suppression of star formation by powerful active galactic nuclei.

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  9. The suppression of star formation by powerful active galactic nuclei

    Page, M J; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodr'iguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Perez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Portal, M Sanchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2013-01-01

    The old, red stars which constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly from accretion onto black holes. It is widely suspected, but unproven, that the tight correlation in mass of the black hole and stellar components results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, while powerful star-forming galaxies are usually dust-obscured and are brightest at infrared to submillimetre wavelengths. Here we report observations in the submillimetre and X-ray which show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 Gyrs old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10^44 erg/s. This suppression of star formation in the host galaxies of powerful AGN ...

  10. Activation of constitutive nitric oxide synthases by oxidized calmodulin mutants.

    Montgomery, Heather J; Bartlett, Ryan; Perdicakis, Basil; Jervis, Eric; Squier, Thomas C; Guillemette, J Guy

    2003-07-01

    Several calmodulin (CaM) mutants were engineered in an effort to identify the functional implications of the oxidation of individual methionines in CaM on the activity of the constitutive isoforms of nitric oxide synthase (NOS). Site-directed mutagenesis was used to substitute the majority of methionines with leucines. Substitution of all nine methionine residues in CaM with leucines had minimal effects on the binding affinity or maximal enzyme activation for either the neuronal (nNOS) or endothelial (eNOS) isoform. Selective substitution permitted determination of the functional consequences of the site-specific oxidation of Met(144) and Met(145) on the regulation of electron transfer within nNOS and eNOS. Site-specific oxidation of Met(144) and Met(145) resulted in changes in the CaM concentration necessary for half-maximal activation of nNOS and eNOS, suggesting that these side chains are involved in stabilizing the productive association between CaM and NOS. However, the site-specific oxidation of Met(144) and Met(145) had essentially no effect on the maximal extent of eNOS activation in the presence of saturating concentrations of CaM. In contrast, the site-specific oxidation of Met(144) (but not Met(145)) resulted in a reduction in the level of nNOS activation that was associated with decreased rates of electron transfer within the reductase domain. Thus, nNOS and eNOS exhibit different functional sensitivities to conditions of oxidative stress that are expected to oxidize CaM. This may underlie some aspects of the observed differences in the sensitivities of proteins in vasculature and neuronal tissues to nitration that are linked to NOS activation and the associated generation of peroxynitrite. PMID:12820885

  11. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  12. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  13. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide.

    Zhen, Xia; Ng, Ethel Sau Kuen; Lam, Francis Fu Yuen

    2016-09-01

    Ischaemic stroke has become one of the leading causes of death and disability worldwide. The role of protease activated receptor-1 (PAR-1) in this disease is uncertain. In the present study, the actions of a protease activated receptor-1 activating peptide (PAR-1 AP) SFLLRN-NH2 were investigated in an in vivo rat model of ischaemic stroke induced by middle cerebral artery occlusion (MCAO) and in an in vitro model induced by oxygen and glucose deprivation (OGD) in primary cultured rat embryonic cortical neurones. Rats subjected to MCAO exhibited increased brain infarct volume, oedema, and neurological deficit. Rat cortical neurones subjected to OGD showed increased lactate dehydrogenase, caspase-3 activity and TUNEL positive cells, whereas, mitochondrial membrane potential and cell viability were decreased. Furthermore, both models had elevated levels of reactive oxygen species, nitrite, and malondialdehyde, while anti-oxidant enzymes and bcl-2/bax ratio were decreased. These detrimental changes were suppressed by SFLLRN-NH2, and its protective actions were inhibited by a PAR-1 antagonist (BMS-200261). In summary, SFLLRN-NH2 was found to possess anti-oxidant and anti-apoptotic properties, and it produced marked inhibition on the detrimental effects of ischaemia in in vivo and in vitro models of ischaemic stroke. The present findings suggest PAR-1 is a promising target for development of novel treatments of ischaemic brain disease. PMID:27238976

  14. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  15. Antitumor Activities of Metal Oxide Nanoparticles

    Maria Pilar Vinardell

    2015-06-01

    Full Text Available Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  16. Suppression of epithelial signal transducer and activator of transcription 1 activation by extracts of Aspergillus fumigatus.

    Bhushan, Bharat; Homma, Tetsuya; Norton, James E; Sha, Quan; Siebert, Jason; Gupta, Dave S; Schroeder, James W; Schleimer, Robert P

    2015-07-01

    Aspergillus fumigatus (AF) is often pathogenic in immune-deficient individuals and can cause life-threatening infections such as invasive aspergillosis. The pulmonary epithelial response to AF infection and the signaling pathways associated with it have not been completely studied. BEAS-2B cells or primary human bronchial epithelial cells were exposed to extracts of AF and challenged with IFN-β or the Toll-like receptor 3 agonist double-stranded RNA (dsRNA). Cytokine release (B-cell activating factor of the TNF family [BAFF], IFN-γ-induced protein-10 [IP-10], etc.) was assessed. AF extract was separated into low-molecular-weight (LMW) and high-molecular-weight (HMW) fractions using ultra 4 centrifugal force filters to characterize the activity. Real-time PCR was performed with a TaqMan method, and protein estimation was performed using ELISA techniques. Western blot was performed to assess phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-β and dsRNA induced messenger RNA (mRNA) expression of BAFF (350- and 452-fold, respectively [n = 3]) and IP-10 (1,081- and 3,044-fold, respectively [n = 3]) in BEAS-2B cells. When cells were pretreated with AF extract for 1 hour and then stimulated with IFN-β or dsRNA for 6 hours, induction of BAFF and IP-10 mRNA was strongly suppressed relative to levels produced by IFN-β and dsRNA alone. When compared with control, soluble BAFF and IP-10 protein levels were maximally suppressed in dsRNA-stimulated wells treated with 1:320 wt/vol AF extract (P < 0.005). Upon molecular size fractionation, a LMW fraction of AF extract had no measurable suppressive effect on IP-10 mRNA expression. However, a HMW fraction of the AF extract significantly suppressed IP-10 expression in BEAS-2B cells that were stimulated with dsRNA or IFN-β. When BEAS-2B cells were pretreated with AF extract and then stimulated with IFN-β, reduced levels of pSTAT1 were observed, with maximum suppression at 4 and 6

  17. SHIP-deficient dendritic cells, unlike wild type dendritic cells, suppress T cell proliferation via a nitric oxide-independent mechanism.

    Frann Antignano

    Full Text Available BACKGROUND: Dendritic cells (DCs not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs were far less capable than wild type (WT, SHIP+/+ GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated. METHODOLOGY/PRINCIPAL FINDINGS: In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs. CONCLUSIONS: These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented.

  18. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy

    LI Chun-jun; ZHANG Qiu-mei; LI Ming-zhen; ZHANG Jing-yun; YU Pei; YU De-min

    2009-01-01

    Background Cardiac failure is a leading cause of the mortality of diabetic patients.In part this is due to a specific cardiomyopathy,referred to as diabetic cardiomyopathy.Oxidative stress is widely considered to be one of the major factors underlying the pathogenesis of the disease.This study aimed to test whether the antioxidant α-lipoic acid(α-LA)could attenuate mitochondrion-dependent myocardial apoptosis through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy.Methods A rat model of diabetes was induced by a single tail intravenous injection of streptozotocin(STZ)45 mg/kg.Experimental animals were randomly assigned to 3 groups:normal control(NC),diabetes(DM)and DM treated with α-LA (α-LA).The latter group was administered with α-LA(100 mg/kg ip per day),the remainder received the same volume vehicle.At weeks 4,8,and 12 after the onset of diabetes,cardiac apoptosis was examined by TUNEL assay.Cardiomyopathy was evaluated by assessment of cardiac structure and function.Oxidative damage was evaluated by the content of malondialdehyde(MDA),reduced glutathione(GSH)and the activity of manganese superoxide diamutase (Mn-SOD)in the myocardial mitochondria.Expression of caspase-9 and caspase-3 proteins was determined by immunohistochemistry and mitochondrial cytochrome c release was detected by Western blottingResults At 4,8,and 12 weeks after the onset of diabetes,significant reductions in TUNEL-positive cells,caspase-9,-3 expression,and mitochondrial cytochrome c release were observed in the α-LA group compared to the DM group.In the DM group,the content of MDA in the myocardial mitochondria was significantly increased,and there was a decrease in both the mitochondrial GSH content and the activities of Mn-SOD.They were significantly improved by α-LA treatment.HE staining displayed structural abnormalities in diabetic hearts,while α-LA reversed this structural derangement.The index of cardiac function(±dp/dtmax)in the diabetes

  19. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells

    Parker, Katherine; Sinha, Pratima; Horn, Lucas A.; Clements, Virginia K.; Yang, Huan; Li, Jianhua; Tracey, Kevin J.; Ostrand-Rosenberg, Suzanne

    2014-01-01

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSC may define an element of the pathogenic inflammatory processes that ...

  20. Molecular mechanisms of growth suppression by pharmacologically activated p53

    Hedström, Elisabeth

    2009-01-01

    The tumor suppressor p53 is a transcription factor that is crucial for protecting cells from cancer development. The importance of p53 tumor suppression function is highlighted by the fact that the p53 pathway is inactivated in most, if not all cancers. Mutation of the p53 gene occurs in about 50% of all tumors, whereas in the tumors which retain wild-type p53, the function of p53 is abolished due to deregulation of the p53 pathway. Due to the potency of p53 in suppressing t...

  1. A sex difference in oxidative stress and behavioral suppression induced by ethanol withdrawal in rats.

    Jung, Marianna E; Metzger, Daniel B

    2016-11-01

    Ethanol withdrawal (EW) is referred to the abrupt termination of long-term heavy drinking, and provokes oxidative brain damage. Here, we investigated whether the cerebellum and hippocampus of female rats are less affected by prooxidant EW than male rats due to the antioxidant effect of 17β-estradiol (E2). Female and male rats received a four-week ethanol diet and three-week withdrawal per cycle for two cycles. Some female rats were ovariectomized with E2 or antioxidant (Vitamin E+Co-Q10) treatment. Measurements were cerebellum (Rotarod) and hippocampus (water-maze)-related behaviors, oxidative markers (O2(-), malondialdehyde, protein carbonyls), mitochondrial membrane swelling, and a key mitochondrial enzyme, cytochrome c oxidase (CcO). Separately, HT22 (hippocampal) cells were subjected to ethanol-exposure and withdrawal for two cycles to assess the effect of a CcO inhibitor on E2's protection for mitochondrial respiration and cell viability. Ethanol-withdrawn female rats showed a smaller increase in oxidative markers in cerebellum and hippocampus than male rats, and E2 treatment decreased the oxidative markers. Compared to male counterparts, ethanol-withdrawn female rats showed better Rotarod but poorer water-maze performance, accompanied by more severe mitochondrial membrane swelling and CcO suppression in hippocampus. E2 or antioxidant treatment improved Rotarod but not water-maze performance. In the presence of a CcO inhibitor, E2 treatment failed to protect mitochondrial respiration and cell viability from EW. These data suggest that antioxidant E2 contributes to smaller oxidative stress in ethanol-withdrawn female than male rats. They also suggest that EW-induced severe mitochondrial damage in hippocampus may blunt E2's antioxidant protection for hippocampus-related behavior. PMID:27503149

  2. Adaptive top-down suppression of hippocampal activity and the purging of intrusive memories from consciousness.

    Benoit, Roland G; Hulbert, Justin C; Huddleston, Ean; Anderson, Michael C

    2015-01-01

    When reminded of unwanted memories, people often attempt to suppress these experiences from awareness. Prior work indicates that control processes mediated by the dorsolateral prefrontal cortex (DLPFC) modulate hippocampal activity during such retrieval suppression. It remains unknown whether this modulation plays a role in purging an intrusive memory from consciousness. Here, we combined fMRI and effective connectivity analyses with phenomenological reports to scrutinize a role for adaptive top-down suppression of hippocampal retrieval processes in terminating mnemonic awareness of intrusive memories. Participants either suppressed or recalled memories of pictures depicting faces or places. After each trial, they reported their success at regulating awareness of the memory. DLPFC activation was greatest when unwanted memories intruded into consciousness and needed to be purged, and this increased engagement predicted superior control of intrusive memories over time. However, hippocampal activity was decreased during the suppression of place memories only. Importantly, the inhibitory influence of the DLPFC on the hippocampus was linked to the ensuing reduction in intrusions of the suppressed memories. Individuals who exhibited negative top-down coupling during early suppression attempts experienced fewer involuntary memory intrusions later on. Over repeated suppressions, the DLPFC-hippocampus connectivity grew less negative with the degree that they no longer had to purge unwanted memories from awareness. These findings support a role of DLPFC in countermanding the unfolding recollection of an unwanted memory via the suppression of hippocampal processing, a mechanism that may contribute to adaptation in the aftermath of traumatic experiences. PMID:25100219

  3. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence.

    Kretova, Miroslava; Sabova, Ludmila; Hodny, Zdenek; Bartek, Jiri; Kollarovic, Gabriel; Nelson, Buck D; Hubackova, Sona; Luciakova, Katarina

    2014-12-01

    Oxidative stress and persistent activation of DNA damage response (DDR) are causally involved in the development of cellular senescence, a phenomenon implicated in fundamental (patho)physiological processes such as aging, fetal development and tumorigenesis. Here, we report that adenine nucleotide translocase-2 (ANT2) is consistently down-regulated in all three major forms of cellular senescence: replicative, oncogene-induced and drug-induced, in both normal and cancerous human cells. We previously reported formation of novel NF1/Smad transcription repressor complexes in growth-arrested fibroblasts. Here we show that such complexes form in senescent cells. Mechanistically, binding of the NF1/Smad complexes to the NF1-dependent repressor elements in the ANT2 gene promoter repressed ANT2 expression. Etoposide-induced formation of these complexes and repression of ANT2 were relatively late events co-incident with production and secretion of, and dependent on, TGF-β. siRNA-mediated knock-down of ANT2 in proliferating cells resulted in increased levels of reactive oxygen species (ROS) and activation of the DDR. Knock-down of ANT2, together with etoposide treatment, further intensified ROS production and DNA damage signaling, leading to enhanced apoptosis. Together, our data show that TGF-β-mediated suppression of ANT2 through NF1/Smad4 complexes contributes to oxidative stress and DNA damage during induction of cellular senescence. PMID:25220407

  4. Active Oxidation of SiC

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  5. Suppressive Role of PPARγ-Regulated Endothelial Nitric Oxide Synthase in Adipocyte Lipolysis.

    Yoko Yamada

    Full Text Available Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/- mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD was able to induce non-alcoholic steatohepatitis (NASH in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.

  6. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness. PMID:27581629

  7. Artifact suppression and analysis of brain activities with electroencephalography signals

    Rashed-Al-Mahfuz, Md.; Islam, Md. Rabiul; Hirose, Keikichi; Molla, Md. Khademul Islam

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional bra...

  8. Suppression of basal and carbon nanotube-induced oxidative stress, inflammation and fibrosis in mouse lungs by Nrf2.

    Dong, Jie; Ma, Qiang

    2016-08-01

    The lungs are susceptible to oxidative damage by inhaled pathogenic agents, including multi-walled carbon nanotubes (MWCNT). The nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in regulating the body's defense against oxidative stress. Here, we analyzed the function of Nrf2 in the lungs. Under a basal condition, Nrf2 knockout (KO) mice showed apparent pulmonary infiltration of granulocytes, macrophages and B and T lymphocytes, and elevated deposition of collagen fibers. Exposure to MWCNT (XNRI MWNT-7, Mitsui, Tokyo, Japan) by pharyngeal aspiration elicited rapid inflammatory and fibrotic responses in a dose (0, 5, 20 and 40 μg) and time (1, 3, 7 and 14 d)-dependent manner. The responses reached peak levels on day 7 post-exposure to 40 μg MWCNT, evidenced by massive inflammatory infiltration and formation of inflammatory and fibrotic foci, which were more evident in Nrf2 KO than wild-type (WT) lungs. At the molecular level, Nrf2 protein was detected at a low level under a basal condition, and was dramatically increased by MWCNT in WT, but not Nrf2 KO, lungs. Activation of Nrf2 was inversely correlated with induced expression of fibrosis marker genes and profibrotic cytokines. Furthermore, the levels of ROS and oxidative stress were remarkably higher in Nrf2 KO than WT lungs under a physiological condition, and were dramatically increased by MWCNT, with the increase significantly more striking in KO lungs. The findings reveal that Nrf2 plays an important role in suppressing the basal and MWCNT-induced oxidant production, inflammation and fibrosis in the lungs, thereby protecting against MWCNT lung toxicity. PMID:26592091

  9. Astaxanthin Suppresses MPP+-Induced Oxidative Damage in PC12 Cells through a Sp1/NR1 Signaling Pathway

    Xiaochun Chen

    2013-03-01

    Full Text Available Objective: To investigate astaxanthin (ATX neuroprotection, and its mechanism, on a 1-methyl-4-phenyl-pyridine ion (MPP+-induced cell model of Parkinson’s disease. Methods: Mature, differentiated PC12 cells treated with MPP+ were used as an in vitro cell model. The MTT assay was used to investigate cell viability after ATX treatment, and western blot analysis was used to observe Sp1 (activated transcription factor 1 and NR1 (NMDA receptor subunit 1 protein expression, real-time PCR was used to monitor Sp1 and NR1 mRNA, and cell immunofluorescence was used to determine the location of Sp1 and NR1 protein and the nuclear translocation of Sp1. Results: PC12 cell viability was significantly reduced by MPP+ treatment. The expression of Sp1 and NR1 mRNA and protein were increased compared with the control (p < 0.01. Following co-treatment with ATX and MPP+, cell viability was significantly increased, and Sp1 and NR1 mRNA and protein were decreased, compared with the MPP+ groups (p < 0.01. In addition, mithracycin A protected PC12 cells from oxidative stress caused by MPP+ by specifically inhibiting the expression of Sp1. Moreover, cell immunofluorescence revealed that ATX could suppress Sp1 nuclear transfer. Conclusion: ATX inhibited oxidative stress induced by MPP+ in PC12 cells, via the SP1/NR1 signaling pathway.

  10. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade.

    Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui; Xiong, Jiawen; Hu, Renzong; Chen, Yu; Liu, Meilin

    2015-10-26

    Lithium-rich layered oxides are promising cathode materials for lithium-ion batteries and exhibit a high reversible capacity exceeding 250 mAh g(-1) . However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO-LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g(-1) at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium-ion and charge transport channels, and the LLMO-LFP5 cathode demonstrated an excellent rate capacity. PMID:26335589

  11. Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimer's disease.

    Zhang, J-S; Zhou, S-F; Wang, Q; Guo, J-N; Liang, H-M; Deng, J-B; He, W-Y

    2016-06-14

    The expression of β-site APP-cleaving enzyme 1 (BACE1) is increased in the brain of late-onset sporadic Alzheimer's disease (AD) and oxidative stress may be the potential cause of this event. The phenolic glucoside gastrodin (Gas), a main component of a Chinese herbal medicine Gastrodia elata Blume, has been demonstrated to display antioxidant activity and suppresses BACE1 expression. However, the mechanisms by which Gas suppresses BACE1 expression are not clear. Morris water maze test was performed to assess the effect of Gas treatment on memory impairments in Tg2576 mice. The level of oxidative stress in the brain of Tg2576 mice was determined by measuring the superoxide dismutase (SOD) activity, catalase (CAT) activity, and the levels of malondialdehyde (MDA) and ROS. In vivo and in vitro, we detected the expression levels of BACE1, pPKRThr446, PKR, pPERKThr981, PERK, peIF2αSer51, and eIF2α using western blot analysis. We found that Gas improved learning and memory abilities of Tg2576 transgenic mice and attenuated intracellular oxidative stress in hippocampi of Tg2576 mice. We discovered that the expression levels of BACE1, activated PKR (pPKRThr446) and activated eIF2α (peIF2αSer51) were elevated in the brains of Tg2576 mice and hydrogen peroxide (H2O2)-stimulated SH-SY5Y cells. Moreover, peptide PKR inhibitor (PRI) and Gas down-regulated BACE1 expression in Tg2576 mice and H2O2-stimulated SH-SY5Y cells by inhibiting activation of PKR and eIF2α. Gas alleviates memory deficits in mice and suppresses BACE1 expression by inhibiting the protein kinase/Eukaryotic initiation factor-2α (PKR/eIF2α) pathway. The research suggested that Gas may develop as an drug candidate in neurodegenerative diseases. PMID:26987953

  12. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucose-treated renal tubular cells.

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2011-09-01

    Compelling evidence indicates that polyphenolic antioxidants protect against diabetic nephropathy. Pycnogenol is made up of flavonoids, mainly procyanidins and phenolic compounds, and is a known powerful antioxidant. Hyperglycemia is characteristic of diabetic nephropathy and induces renal tubular cell apoptosis. Thus, in this study, we used high glucose-treated renal tubular cells to investigate the protective action of pycnogenol against high glucose-induced apoptosis and diabetic nephropathy. We also sought to further delineate the underlying mechanisms elicited by oxidative stress and inflammation and suppressed by pycnogenol. Results show that pycnogenol significantly suppressed the high glucose-induced morphological changes and the reduction in cell viability associated with cytotoxicity. Bcl2/Bax protein levels indicated pycnogenol's anti-apoptotic effect against high glucose-induced apoptotic cell death. In addition, several key markers of oxidative stress and inflammation were measured for pycnogenol's beneficial effects. Results indicate pycnogenol's anti-oxidative and anti-inflammatory efficacy in suppressing lipid peroxidation, total reactive species (RS), superoxide ((·)O(2)), nitric oxide (NO(·)), peroxynitrite (ONOO(-)), pro-inflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) nuclear translocation. Based on these results, we conclude that pycnogenol's anti-oxidative and anti-inflammatory properties underlie its anti-apoptotic effects, suggesting further investigation of pycnogenol as a promising treatment against diabetic nephropathy. PMID:21689714

  13. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    Highlights: •Oxidative stress impairs 3-MST-derived H2S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H2S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50–500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging

  14. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    Su, Cunjin; Shi, Aiming; Cao, Guowen [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Tao, Tao [Department of Urology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Hu, Zhanhong; Shen, Zhu; Tao, Hong; Cao, Bin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Hu, Duanmin, E-mail: hudmsdfey@sina.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China)

    2015-05-15

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.

  15. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H2DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP

  16. Active Suppression of Drilling System Vibrations For Deep Drilling

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  17. Danshen injection ameliorates STZ-induced diabetic nephropathy in association with suppression of oxidative stress, pro-inflammatory factors and fibrosis.

    Xu, Linhao; Shen, Peiqiang; Bi, Yanli; Chen, Jian; Xiao, Zhangang; Zhang, Xiaoming; Wang, Zheng

    2016-09-01

    Diabetic nephropathy (DN) is one of the most frequent complications in diabetes mellitus. This study aimed to explore whether Danshen injection is protective to renal tissue in diabetes. Intraperitoneal injection of streptozotocin (STZ) (60mg/kg) was used to induce diabetes in rats. Some STZ-induced diabetic rats were also intraperitoneally injected with Danshen solution at two different dosages (0.5 or 1ml/kg/day) for 6weeks. Our results showed that serum creatinine (sCr) and blood urea nitrogen were significantly increased in STZ-induced diabetic rats, which was alleviated upon Danshen injection. Danshen injection was also found to ameliorate hypertrophy and dilatation of renal tubule and glomeruli possibly by decreasing the expression of collagen and fibronectin in association with suppression of TGF-β1/Smad pathway. Further investigation revealed that Danshen injection could increase the activity of superoxide dismutase (SOD), and reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levels in STZ-induced diabetic rats, indicating suppression of oxidative stress. In addition, we also found that Danshen injection could suppress IκB/NF-κB signaling pathway and reduce the level of a number of pro-inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the diabetic renal tissue, indicating suppression of inflammation. In conclusion, our results demonstrated that Danshen injection may rescue STZ-induced diabetic nephropathy, possibly via suppressing the oxidative stress, inflammatory responses and fibrosis progression. PMID:27355131

  18. Midwinter suppression of baroclinic storm activity on Mars: observations and models

    P. L. Read; Mulholland, D. P.; Montabone, L.; Lewis, S R

    2011-01-01

    We present results from assimilated analyses of observations from the Mars Global Surveyor Thermal Emission Spectrometer showing evidence for a regular suppression of baroclinic circumpolar storm activity in both hemispheres of Mars around winter solstice. General circulation model simulations are then used to elucidate the structure and possible causes of this suppression, for which the local ‘Eady growth rate’ appears to be a good predictor.

  19. Pumilio 1 Suppresses Multiple Activators of p53 to Safeguard Spermatogenesis

    Chen, Dong; Zheng, Wei; Lin, Aiping; Uyhazi, Katherine; Zhao, Hongyu; Lin, Haifan

    2012-01-01

    During spermatogenesis, germ cells initially expand exponentially through mitoses. A majority of these cells are then eliminated through p53-mediated apoptosis to maintain germline homeostasis [1–4]. However, the activity of p53 must be precisely modulated, especially suppressed in postmitotic spermatogenic cells, to guarantee robustness of spermatogenesis. Currently, how the suppression is achieved is not understood. Here, we show that Pumilio 1, a posttranscriptional regulator, binds to mRN...

  20. Tumor-Suppressive Activity of Lunatic Fringe in Prostate through Differential Modulation of Notch Receptor Activation

    Shubing Zhang

    2014-02-01

    Full Text Available Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng, which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44+CD24− and CD49f+CD24− stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

  1. Suppression of methane formation during Fisher-Tropsch synthesis using manganese-cobalt oxide supported on H-5A zeolite as a catalyst

    Syed Tajammul Hussain; Muhammad Mazhar; Muhammad Arif Nadeem

    2009-01-01

    In Fischer-Tropsch synthesis reaction, methane formation is one of the side reactions which must be suppressed in order to get better catalytic selectivity for light olefins. In the present study, we have modified cobalt based Fischer-Tropsch catalyst and developed a process to minimize methane production, consequently to produce maximum yield of light olefins. Manganese-cobalt oxide supported on H-5A zeolite catalyst was synthesized using modified H-5A zeolite, to increase its surface acid sites. Increased acidity of zeolite plays a major part in the suppression of methane formation during the Fischer-Tropsch reaction. The modified zeolite results in the electronic modification of catalyst surface by creating new active catalytic sites. The results are compared with other supported catalysts along with unmodified zeolite. Appreciable reduction in methane formation is achieved on modified zeolite supported catalyst in comparison with unsupported catalyst.

  2. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol).

    Uhlenhut, Klaus; Högger, Petra

    2012-07-15

    Many natural products exhibit anti-inflammatory activity by suppressing excessive nitric oxide (NO) production by inducible NO synthase (iNOS). The maritime pine bark extract Pycnogenol has been formerly shown to decrease nitrite generation, taken as an index for NO, but so far it was not clear which constituent of the complex flavonoid mixture mediated this effect. The purpose of this study was to elucidate whether the in vivo generated Pycnogenol metabolite M1 (δ-(3,4-dihydroxyphenyl)-γ-valerolactone) displayed any activity in the context of induction of iNOS expression and excessive NO production. For the first time we show that M1 inhibited nitrite production (IC(50) 1.3 μg/ml, 95% CI 0.96-1.70) and iNOS expression (IC(50) 3.8 μg/ml, 95% CI 0.99-14.35) in a concentration-dependent fashion. This exemplifies bioactivation by metabolism because the M1 precursor molecule catechin is only weakly active. However, these effects required application of M1 in the low-micromolar range, which was not consistent with concentrations previously detected in human plasma samples after ingestion of maritime pine bark extract. Thus, we investigated a possible accumulation of M1 in cells and indeed observed high-capacity binding of this flavonoid metabolite to macrophages, monocytes, and endothelial cells. This binding was distinctly decreased in the presence of the influx inhibitor phloretin, suggesting the contribution of a facilitated M1 transport into cells. In fact, intracellular accumulation of M1 could explain why in vivo bioactivity can be observed with nanomolar plasma concentrations that typically fail to exhibit measurable activity in vitro. PMID:22569413

  3. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    Módis, Katalin [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Asimakopoulou, Antonia [Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Coletta, Ciro [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Papapetropoulos, Andreas [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Szabo, Csaba, E-mail: szabocsaba@aol.com [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  4. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  5. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100-500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50-500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3-100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100-300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging. PMID:23537657

  6. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    Ingo eBojak

    2015-02-01

    Full Text Available Burst suppression in the electroencephalogram (EEG is a well described phenomenon that occurs during deep anaesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterisation as a ``global brain state'' has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anaesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anaesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterisation.Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anaesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex.

  7. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress.

    Giampieri, Francesca; Alvarez-Suarez, Jose M; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Bompadre, Stefano; Rubini, Corrado; Zizzi, Antonio; Astolfi, Paola; Santos-Buelga, Celestino; González-Paramás, Ana M; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio

    2016-08-01

    Doxorubicin (Dox), one of the most used chemotherapeutic agents, is known to generate oxidative stress and block DNA synthesis, which result in severe dose-limiting toxicity. A strategy to protect against Dox toxic effects could be to use dietary antioxidants of which fruits and vegetable are a rich source. In this context, strawberry consumption is associated with the maintenance of good health and the prevention of several diseases, thanks to the antioxidant capacities of its bioactive compounds. The aim of the present study was to evaluate the protective effects of strawberry consumption against oxidative stress induced by Dox in rats. Animals were fed with strawberry enriched diet (15% of the total calories) for two months and Dox (10 mg/kg; i.p.) was injected at the end of the experimental period. Strawberry consumption significantly inhibited ROS production and oxidative damage biomarkers accumulation in plasma and liver tissue and alleviated histopathological changes in rat livers treated with Dox. The reduction of antioxidant enzyme activities was significantly mitigated after strawberry consumption. In addition, strawberry enriched diet ameliorated liver mitochondrial antioxidant levels and functionality. In conclusion, strawberry intake protects against Dox-induced toxicity, at plasma, liver and mitochondrial levels thanks to its high contents of bioactive compounds. PMID:27286747

  8. Liuwei Dihuang, a traditional Chinese herbal formula, suppresses chronic inflammation and oxidative stress in obese rats

    Benjamin Perry; Junzeng Zhang; Tarek Saleh; Yanwen Wang

    2014-01-01

    OBJECTIVE:To investigate the anti-inlfammatory, anti-oxidative stress, and adipokine-ameliorating effects of Liuwei Dihuang (LWDH), a traditional Chinese herbal formula, in obese rats. METHODS:After 2 weeks of acclimation with free access to regular rodent chow and water, obese-prone-caesarean-derived (OP-CD) rats were fed a modified AIN-93G diet containing 60% energy from fat. Treatment was performed twice daily by gavage feeding with 500, 1 500, or 3 500 mg/kg body weight LWDH suspended in water (n=12 rats per group). Twelve obese-resistant-CD (OR-CD) rats were fed the atherogenic diet and gavaged with water, and served as the normal control. Blood biomarkers of inflammation, oxidative stress and adiponectin were measured post-sacriifce and used to determine the treatment effect of LWDH and assess the suitability of OR/OP-CD rats for studying these parameters. RESULTS:After 9 weeks of treatment, LWDH lowered serum C-reactive protein (CRP) and tumour necrosis factor-α (TNF-α) levels. Serum interleukin-6 (IL-6) levels showed a tendency towards reduction, but were not signiifcantly different from the OP-CD control. Liver superoxide dismutase (SOD) activity was increased in response to all three doses of LWDH, while the levels of reduced (GSH) and oxidized glutathione (GSSG) and thiobarbituric acid reactive substances (TBARS) were unchanged. Serum adiponectin levels were increased in response to oral administration of LWDH at the dose of either 500 or 1 500 mg/kg body weight. In addition, comparisons between OR-CD and OP-CD rats revealed differential, and for some biomarkers, conflicting characteristics of high-fat diet-fed OP-CD rats in reference to obese human subjects in terms of inlfammatory and oxidative stress biomarkers and circulating adiponectin levels. CONCLUSION: The results show, for the ifrst time, the anti-inlfammatory, anti-oxidative stress and adiponectin-ameliorating effects of LWDH in obese rats. The suitability of the OR/OP-CD rat model as a

  9. Active Vibration Suppression R and D for the NLC

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented

  10. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    Heida, T.; Zhao, Yan; Wezel, van, H.B.

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly contribute to the expression of parkinsonian tremor. However, the observed tremor-related hyperactivity in the cerebellar loop may have a compensatory rather than a causal role in Parkinson's disease...

  11. Suppression of natural killer cell activity by surgical stress in cancer patients and the underlying mechanisms.

    Yoshihara,Hisashi

    1986-04-01

    Full Text Available The influence of surgical stress on the natural killer (NK activity of peripheral blood lymphocytes in patients with carcinoma of the lung or gastrointestinal system was studied. The peripheral blood lymphocytes of the patients showed a marked decrease in NK activity against K-562 cells as target cells 1-2 days after surgery. The activity remained lowered for 2 weeks after thoractomy and for 1 week after laparotomy. No appreciable suppression of NK activity was observed with normal human peripheral blood lymphocytes preincubated with postoperative patient sera. Peripheral blood mononuclear cells obtained postoperatively from patients lost NK activity after ultraviolet irradiation, without any detectable loss of viability. Such irradiated mononuclear cells showed inhibition of NK activity after a 24-hour preincubation with peripheral blood lymphocytes from normal subjects. Similar suppressive activity was demonstrable in a fraction of mononuclear cells with adhesiveness to plastic petri dishes, while non-adherent cells had no such activity. When added immediately to the cytotoxicity assay system without the 24-hour preincubation, patient mononuclear cells caused no inhibition of NK activity, whereas adherent cells from normal subjects enhanced NK activity. The findings seems to indicate that, following surgical stress, plastic dish-adherent peripheral blood mononuclear cells become deprived of NK helper activity and exert suppression, thus causing postoperative depression of NK activity.

  12. Bacterial oxidation activity in heap leaching

    柳建设; 夏海波; 王兆慧; 胡岳华

    2004-01-01

    Bioleaching of sulfide minerals by bacteria, mainly Thiobacillus ferrooxidans (T. f. ) and Thiobacillus thiooxidans, plays an important role in hydrometallurgy because of its economic and environmental attractions. The surveys of production process and the bacterial oxidation activity in the heap bioleaching were investigated. The results show that pH value is high, bacteria biomass and ferric concentration are low, generation time (above 7.13 h)is long in leachate, and less bacteria are adsorbed on the ores. The bacteria in the leachate exposing on the surface and connecting with mineral, have much faster oxidation rate of Fe( Ⅱ ) and shorter generation time, compared with those which are in the reservoir for a long time. There is diversity for oxidation activity of Fe( Ⅱ ), while there is no diversity for oxidation of sulfur. So it is advisable to add sulfuric acid to degrade pH value to 2.0, add nutrients and shorten recycling time of leachate, so as to enhance bacteria concentration of leachate and the leaching efficiency.

  13. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure.

    Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K; Sinha-Hikim, Amiya P

    2011-06-01

    This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15-21 (E15-E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15-E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure. PMID:21424555

  14. Suppression of chlorine activation on aviation-produced volatile particles

    S. K. Meilinger

    2002-07-01

    Full Text Available We examine the effect of nm-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T > 210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (< 210 K we isolate two effects which efficiently reduce the aircraft-induced perturbation: (1 background particles growth due to H2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and ozone depletion. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  15. Suppression of chlorine activation on aviation-produced volatile particles

    S. K. Meilinger

    2002-01-01

    Full Text Available We examine the effect of nanometer-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T>210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and reductions in ozone levels. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  16. Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation.

    Malte Friese

    Full Text Available Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI. An initial act of self-control (suppressing emotions impaired subsequent performance in a second task requiring control (Stroop task. On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC including the dorsolateral prefrontal cortex (DLPFC, an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC including the anterior cingulate cortex (ACC, which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks.

  17. The immunobiology of sexual behavior: gender differences in the suppression of sexual activity during illness.

    Avitsur, R; Yirmiya, R

    1999-12-01

    Following infection or injury, sick individuals experience profound psychological and behavioral changes, such as anorexia, depressed activity, and reduced self-care behavior. In the present review, we present evidence for a gender-difference in the behavioral response to sickness. Specifically, following immune activation, sexual activity is suppressed in female, but not in male rats. This gender difference is specific to sexually related responses, because other behaviors, such as locomotion, are equally affected by immune challenges in males and estrous females. The suppression of female sexual behavior, induced by either endotoxin (lipopolysaccharide), or the cytokine interleukin-1 (IL-1), are mediated by central mechanisms that are independent of alterations in ovarian hormone secretion. Furthermore, synergistic effects of the cytokines IL-1 and tumor necrosis factor alpha (TNF alpha) are involved in modulating sexual behavior in sick females, and prostaglandins synthesis is required for the effects of IL-1 on female sexual behavior. The gender difference in the behavioral response to immune activation may be related to the findings that at the same doses and timing in which IL-1 suppressed sexual activity in female but not in male rats, females produced more prostaglandin E2 (PGE2) in the brain, and less corticosterone than males. Finally, we are suggesting that the suppressive effect of cytokines on female reproductive behavior may serve as a mechanism to reduce conception during infection, which exposes the mother and the fetus to dangers such as spontaneous abortions, preterm labor and maternal mortality. PMID:10593202

  18. Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells

    Isothiocyanates are natural compounds found in consumable cruciferous vegetables. They have been shown to inhibit chemical carcinogenesis by a wide variety of chemical carcinogens in animal models. Recent studies have also shown that isothiocyanates have antitumor activity, inhibiting the growth of several types of cultured human cancer cells. Our previous study showed that PEITC inhibited human leukemia cells growth by inducing apoptosis. However, the effect of isothiocyanates on lung cancer cell metastasis has not been studied. In the present study, we investigated the inhibitory effects of BITC and PEITC on metastatic potential of highly metastatic human lung cancer L9981 cells. Cell migration and invasion were measured by wound healing assay and transwell chemotaxis assay. Expression of metastasis-related genes was assessed by quantitative RT-PCR and Western blotting. The mechanisms of action were evaluated by flow cytometry, reporter assay and Western blotting. Our data showed that both BITC and PEITC inhibited L9981 cell growth in a dose-dependent manner, the IC50 values were 5.0 and 9.7 μM, respectively. Cell migrations were reduced to 8.1% and 16.5% of control, respectively; and cell invasions were reduced to 2.7% and 7.3% of control, respectively. Metastasis-related genes MMP-2, Twist and β-catenin were also modulated. BITC and PEITC inhibited cell survival signaling molecules Akt and NFκB activation. Moreover, BITC and PEITC increased ROS generation and caused GSH depletion. Pretreatment with NAC blocked BITC and PEITC induced ROS elevation and NFκB inhibition. Our results indicated that BITC and PEITC suppress lung cancer cell metastasis potential by modulation of metastasis-related gene expression, inhibition of Akt/NFκB pathway. Induction of oxidative stress may play an important role

  19. Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells

    Zhou Qinghua

    2010-06-01

    Full Text Available Abstract Background Isothiocyanates are natural compounds found in consumable cruciferous vegetables. They have been shown to inhibit chemical carcinogenesis by a wide variety of chemical carcinogens in animal models. Recent studies have also shown that isothiocyanates have antitumor activity, inhibiting the growth of several types of cultured human cancer cells. Our previous study showed that PEITC inhibited human leukemia cells growth by inducing apoptosis. However, the effect of isothiocyanates on lung cancer cell metastasis has not been studied. In the present study, we investigated the inhibitory effects of BITC and PEITC on metastatic potential of highly metastatic human lung cancer L9981 cells. Methods Cell migration and invasion were measured by wound healing assay and transwell chemotaxis assay. Expression of metastasis-related genes was assessed by quantitative RT-PCR and Western blotting. The mechanisms of action were evaluated by flow cytometry, reporter assay and Western blotting. Results Our data showed that both BITC and PEITC inhibited L9981 cell growth in a dose-dependent manner, the IC50 values were 5.0 and 9.7 μM, respectively. Cell migrations were reduced to 8.1% and 16.5% of control, respectively; and cell invasions were reduced to 2.7% and 7.3% of control, respectively. Metastasis-related genes MMP-2, Twist and β-catenin were also modulated. BITC and PEITC inhibited cell survival signaling molecules Akt and NFκB activation. Moreover, BITC and PEITC increased ROS generation and caused GSH depletion. Pretreatment with NAC blocked BITC and PEITC induced ROS elevation and NFκB inhibition. Conclusion Our results indicated that BITC and PEITC suppress lung cancer cell metastasis potential by modulation of metastasis-related gene expression, inhibition of Akt/NFκB pathway. Induction of oxidative stress may play an important role.

  20. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells.

    Gerö, Domokos; Szabo, Csaba

    2016-01-01

    Diabetic complications are the leading cause of morbidity and mortality in diabetic patients. Elevated blood glucose contributes to the development of endothelial and vascular dysfunction, and, consequently, to diabetic micro- and macrovascular complications, because it increases the mitochondrial proton gradient and mitochondrial oxidant production. Therapeutic approaches designed to counteract glucose-induced mitochondrial reactive oxygen species (ROS) production in the vasculature are expected to show efficacy against all diabetic complications, but direct pharmacological targeting (scavenging) of mitochondrial oxidants remains challenging due to the high reactivity of some of these oxidant species. In a recent study, we have conducted a medium-throughput cell-based screening of a focused library of well-annotated pharmacologically active compounds and identified glucocorticoids as inhibitors of mitochondrial superoxide production in microvascular endothelial cells exposed to elevated extracellular glucose. The goal of the current study was to investigate the mechanism of glucocorticoids' action. Our findings show that glucocorticoids induce the expression of the mitochondrial UCP2 protein and decrease the mitochondrial potential. UCP2 silencing prevents the protective effect of the glucocorticoids on ROS production. UCP2 induction also increases the oxygen consumption and the "proton leak" in microvascular endothelial cells. Furthermore, glutamine supplementation augments the effect of glucocorticoids via further enhancing the expression of UCP2 at the translational level. We conclude that UCP2 induction represents a novel experimental therapeutic intervention in diabetic vascular complications. While direct repurposing of glucocorticoids may not be possible for the therapy of diabetic complications due to their significant side effects that develop during chronic administration, the UCP2 pathway may be therapeutically targetable by other, glucocorticoid

  1. Suppressive effects of antigens on the activity of specific activated lymphocytes: A test to define the specificity of activated lymphocytes

    HU Jun; PAN Sheng-jun; CAI Zhen-jie; GUAN De-lin; LIU Xiao-cheng

    2006-01-01

    Objective:With the regular mixed lymphocytes culture (MLC) to detect the allograft rejection, the reactivity of the activated lymphocytes (primed lymphocytes) of a recipient shows sometimes increase and sometimes decrease against the antigens from the donor, which is inconsistent with the clinical results. In order to establish a convenient method for testing the specificity of the activated lymphocytes in vitro, so as to know the rejection occurred or not by testing the existence of the specific activated lymphocytes against donor's HLA antigens in the recipient's peripheral blood. Methods: Anti-IL-2 neutralizing monoclonal antibody (anti-IL-2 N-mAb) and immunosuppressors were introduced in this test system in the presence of specific stimulators and activated lymphocytes. Results: When the activated lymphocytes were chosen from the one-way MLC 4 d to undergo re-stimulation by specific stimulators, the activity of activated lymphocytes in the treatment group was suppressed significantly compared with that in the control group. The result of this test method is consistent with the biopsy in the clinical diagnosis of rejection.Conclusion :It suggests that the activated lymphocytes can be inactivated by specific antigens in certain conditions. This can be a useful tool to define the specificity of the activated lymphocytes.

  2. Kruppel-Like Factor 2-Mediated Suppression of MicroRNA-155 Reduces the Proinflammatory Activation of Macrophages.

    Shaolin He

    Full Text Available Recent evidence indicates that significant interactions exist between Kruppel-like factor 2 (KLF2 and microRNAs (miRNAs in endothelial cells. Because KLF2 is known to exert anti-inflammatory effects and inhibit the pro-inflammatory activation of monocytes, we sought to identify how inflammation-associated miR-155 is regulated by KLF2 in macrophages.Peritoneal macrophages from wild-type (WT C57Bl/6 mice were transfected with either recombinant adenovirus vector expressing KLF2 (Ad-KLF2 or siRNA targeting KLF2 (KLF2-siRNA for 24 h-48 h, then stimulated with oxidized low-density lipoproteins (ox-LDL, 50 μg/mL for 24 h. Quantitative real-time polymerase chain reaction showed that KLF2 markedly reduced the expression of miR-155 in quiescent/ox-LDL-stimulated macrophages. We also found that the increased expression of miR-155, monocyte chemoattractant protein (MCP-1 and interleukin (IL-6 and the decreased expression of the suppressor of cytokine signaling (SOCS-1 and IL-10 in ox-LDL-treated macrophages were significantly suppressed by KLF2. Most importantly, over-expression of miR-155 could partly reverse the suppressive effects of KLF2 on the inflammatory response of macrophages. Conversely, the suppression of miR-155 in KLF2 knockdown macrophages significantly overcame the pro-inflammatory properties associated with KLF2 knockdown. Finally, Ad-KLF2 significantly attenuated the diet-induced formation of atherosclerotic lesions in apolipoprotein E-deficient (apoE(-/- mice, which was associated with a significantly reduced expression of miR-155 and its relative inflammatory cytokine genes in the aortic arch and in macrophages.KLF2-mediated suppression of miR-155 reduced the inflammatory response of macrophages.

  3. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA single strand breaks

    DNA single-strand breaks (SSB) activate poly (ADP-ribose) polymerase 1 (PARP1), which then polymerizes ADP-ribosyl groups on various nuclear proteins, consuming cellular energy. Although PARP1 has a role in repairing SSB, activation of PARP1 also causes necrosis and inflammation due to depletion of cellular energy. Here we show that the major mammalian apurinic/apyrimidinic (AP) endonuclease-1 (APE1), an essential DNA repair protein, binds to SSB and suppresses the activation of PARP1. APE1's high affinity for SSB requires Arg177, which is unique in mammalian APEs. PARP1's binding to the cleaved DNA was inhibited, and PARP1 activation was suppressed by the wild-type APE1, but not by the R177A mutant APE1 protein. Cells transiently transfected with the wild-type APE1 decreased the PARP1 activation after H2O2 treatment, while such suppression did not occur with the expression of the R177A APE1 mutant. These results suggest that APE1 suppresses the activation of PARP1 during the repair process of the DNA damage generated by oxidative stress, which may have an important implication for cells to avoid necrosis due to energy depletion

  4. Suppression of harmonics resonance using active filter in cycloconverter for Maglev

    Kaga, Shigeo; Kawaguchi, Ikuo; Ikeda, Haruo [Railway Technical Research Inst., Tokyo (Japan); Ogihara, Yoshiya; Tokuda, Noriaki; Miyata, Toshio [Nissin Electric Co., Ltd, Kyoto (Japan)

    1995-12-31

    A cycloconverter is widely adopted as the VVVF (variable voltage variable frequency) power source because of its stable characteristics. In order to compensate the input reactive power and the input harmonics of the cycloconverter, LC (reactor-capacitor) type AC filter is provided. However, in this system, a harmonic resonance tends to appear. Therefore we have developed a harmonic suppressing system which combines a small capacity active filter and an AC filter. This paper describes the system configuration and the operational principle of the new harmonics suppression system, and the field test results. 3 refs, 8 figs, 1 tab

  5. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  6. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  7. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    Sun, Gui-bo; Sun, Xiao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Ye, Jing-xue [Jilin Agricultural University, No.2888, Xincheng Street, Changchun, 130021, Jilin (China); Si, Jian-yong [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo [Academy of Chinese Medical Sciences of Jilin Province, Gongnongda road 1745, Changchun, 130021, Jiblin (China); Meng, Xiang-bao; Qin, Meng; Sun, Jing [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  8. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H2O2)-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H2O2-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage. ► Luteolin enhances

  9. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  10. Study on Component Synthesis Active Vibration Suppression Method Using Zero-placement Technique

    Zhang Jianying; Liu Tun; Zhao Zhiping

    2008-01-01

    The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems.By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain.The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control stategy. Simulations have verified the validity and superiority of the proposed approach.

  11. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    Gurunathan S

    2012-11-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Ahmed Abdal Dayem, Vasuki Eppakayala, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, South KoreaBackground: Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO and reduced graphene oxide (rGO in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME, for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared.Methods: The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation.Results: Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of

  12. An evaluation of Compton suppression neutron activation analysis for determination of trace elements in some geological samples

    Compton suppressed neutron activation analysis has been used for a variety of applications, but never has a detailed discussion of its use in far more complex matrices, such as geological samples, been fully addressed. This investigation seeks to serve as a qualitative evaluation of Compton suppression neutron activation analysis (CSNAA) and to illustrate the benefits of using Compton suppression with thermal and epithermal neutrons for the analysis of several geological specimens.

  13. An evaluation of Compton suppression neutron activation analysis for determination of trace elements in some geological samples.

    Landsberger, S; Kapsimalis, R

    2009-12-01

    Compton suppressed neutron activation analysis has been used for a variety of applications, but never has a detailed discussion of its use in far more complex matrices, such as geological samples, been fully addressed. This investigation seeks to serve as a qualitative evaluation of Compton suppression neutron activation analysis (CSNAA) and to illustrate the benefits of using Compton suppression with thermal and epithermal neutrons for the analysis of several geological specimens. PMID:19577479

  14. Influence of Na diffusion on thermochromism of vanadium oxide films and suppression through mixed-alkali effect

    Miller, Mark J.; Wang, Junlan, E-mail: junlan@u.washington.edu

    2015-10-15

    Highlights: • Vanadium oxide films were reactively sputtered on three types of glass substrates. • Na diffusion from soda-lime glass undesirably inhibited thermochromism. • Na diffusion was suppressed by replacing half of sodium in glass with potassium. • Mixed-alkali effect promotes thermochromic VO{sub 2} films on glass substrates. - Abstract: Vanadium(IV) oxide possesses a reversible first-order phase transformation near 68 °C. Potential applications of the material include advanced optical devices and thermochromic smart windows. In this study, vanadium oxide films were grown on three types of glass substrates using reactive DC magnetron sputtering and were then annealed in air. The substrates were characterized with energy-dispersive X-ray spectroscopy, and the films were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and UV-Vis-NIR spectrophotometry. The results show that the composition of the substrate has a major impact on the microstructure and optical properties of the deposited films. Sodium (Na) in the glass can undesirably inhibit thermochromism; however, replacing half of the Na with potassium (K) suppresses the Na diffusion and promotes the nucleation of pure VO{sub 2} with superior thermochromic functionality. The improved performance is attributed to the mixed-alkali effect between Na and K. These findings are both scientifically and technologically important since soda (Na{sub 2}O) is an essential flux material in glass products such as windows.

  15. Influence of Na diffusion on thermochromism of vanadium oxide films and suppression through mixed-alkali effect

    Highlights: • Vanadium oxide films were reactively sputtered on three types of glass substrates. • Na diffusion from soda-lime glass undesirably inhibited thermochromism. • Na diffusion was suppressed by replacing half of sodium in glass with potassium. • Mixed-alkali effect promotes thermochromic VO2 films on glass substrates. - Abstract: Vanadium(IV) oxide possesses a reversible first-order phase transformation near 68 °C. Potential applications of the material include advanced optical devices and thermochromic smart windows. In this study, vanadium oxide films were grown on three types of glass substrates using reactive DC magnetron sputtering and were then annealed in air. The substrates were characterized with energy-dispersive X-ray spectroscopy, and the films were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and UV-Vis-NIR spectrophotometry. The results show that the composition of the substrate has a major impact on the microstructure and optical properties of the deposited films. Sodium (Na) in the glass can undesirably inhibit thermochromism; however, replacing half of the Na with potassium (K) suppresses the Na diffusion and promotes the nucleation of pure VO2 with superior thermochromic functionality. The improved performance is attributed to the mixed-alkali effect between Na and K. These findings are both scientifically and technologically important since soda (Na2O) is an essential flux material in glass products such as windows

  16. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.;

    2002-01-01

    The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays with...... test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...... content of total C and N. From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B...

  17. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels. PMID:27016034

  18. Cationic chlorophyl derivatives with SOD mimicking activity suppress the proliferation of human ovarian cancer cells.

    Kobayashi, Y; Maniki, M; Nakamura, K

    1996-06-01

    Derivatives of chlorophyl, e.g. Fe-chlorin e6-Na, alpha, beta, gamma, delta-Tetraphenylporphine-tetrasulfonic acid disulfonic acid salt tetrahydrate (Fe-TPPTS) and alpha, beta, gamma, delta-Tetrakis (4-N-trimethylaminophenyl) porphine, tetra (p-toluensulfonate (Fe-TTMAPP), express SOD mimicking activity. Examination was made of suppressive effects of human cancer cell lines by derivatives of chlorophyl. Fe-TPPTS and Fe-TTMAPP suppressed proliferation of the human ovarian cancer cell lines but Fe-chlorin e6-Na failed to suppress the proliferation. Lipid peroxide was increased by application of Fe-TPPTS and Fe-TTMAPP, but decreased by application of Fe-chlorin e6-Na. SOD activity of the cancer cells did not change by application of these drugs. TPPTS and TTMAPP have a cationic charge but Fe-chlorin e6-Na has an anionic charge. It is suggested that charge of these drugs relates to the suppressive effects of the cancer cell proliferation. PMID:10851538

  19. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation.

    Pencheva, Nora; Buss, Colin G; Posada, Jessica; Merghoub, Taha; Tavazoie, Sohail F

    2014-02-27

    Melanoma metastasis is a devastating outcome lacking an effective preventative therapeutic. We provide pharmacologic, molecular, and genetic evidence establishing the liver-X nuclear hormone receptor (LXR) as a therapeutic target in melanoma. Oral administration of multiple LXR agonists suppressed melanoma invasion, angiogenesis, tumor progression, and metastasis. Molecular and genetic experiments revealed these effects to be mediated by LXRβ, which elicits these outcomes through transcriptional induction of tumoral and stromal apolipoprotein-E (ApoE). LXRβ agonism robustly suppressed tumor growth and metastasis across a diverse mutational spectrum of melanoma lines. LXRβ targeting significantly prolonged animal survival, suppressed the progression of established metastases, and inhibited brain metastatic colonization. Importantly, LXRβ activation displayed melanoma-suppressive cooperativity with the frontline regimens dacarbazine, B-Raf inhibition, and the anti-CTLA-4 antibody and robustly inhibited melanomas that had acquired resistance to B-Raf inhibition or dacarbazine. We present a promising therapeutic approach that uniquely acts by transcriptionally activating a metastasis suppressor gene. PMID:24581497

  20. Suppression of superoxide anion generation catalyzed by xanthine oxidase with alkyl caffeates and the scavenging activity.

    Masuoka, Noriyoshi; Kubo, Isao

    2016-05-01

    Alkyl caffeates are strong antioxidants and inhibitors of xanthine oxidase. However, it is unclear about the effect of caffeic acid and alkyl caffeates on superoxide anion (O2(-)) generation catalyzed by xanthine oxidase. Effects of caffeic acid and alkyl caffeates on the uric acid formation and O2(-) generation catalyzed by xanthine oxidase were analyzed. The scavenging activities of 1,1-diphenyl-2-picryhydrazyl (DPPH) radical and O2(-) generated with phenazine methosulfate (PMS) and NADH were examined. Caffeic acid derivatives equally suppressed O2(-) generation, and the suppression is stronger than inhibition of xanthine oxidase. Scavenging activity of O2(-) is low compared to the suppression of O2(-) generation. Suppression of O2(-) generation catalyzed by xanthine oxidase with caffeic acid derivatives was not due to enzyme inhibition or O2(-) scavenging but due to the reduction of xanthine oxidase molecules. Alkyl caffeates are effective inhibitors of uric acid and O2(-) catalyzed by xanthine oxidase as well as antioxidants for edible oil. PMID:26940252

  1. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation.

    Surh, Y J; Chun, K S; Cha, H H; Han, S S; Keum, Y S; Park, K K; Lee, S S

    2001-09-01

    A wide array of phenolic substances, particularly those present in edible and medicinal plants, have been reported to possess substantial anticarcinogenic and antimutagenic activities. The majority of naturally occurring phenolics retain antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activity. Cyclooxygenase-2 (COX-2) inducible and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. Improper up-regulation of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory disorders. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activities are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. Examples are curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), the green tea polyphenol epigallocatechin gallate (EGCG), and resveratrol from grapes (Vitis vinifera, Vitaceae) that strongly suppress tumor promotion. Recent studies have demonstrated that eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) is involved in regulation of COX-2 and iNOS expression. Several chemopreventive phytochemicals have been shown to inhibit COX-2 and iNOS expression by blocking improper NF-kappa B activation. Multiple lines of compelling evidence indicate that extracellular-regulated protein kinase and p38 mitogen-activated protein kinase are key elements of the intracellular signaling cascades responsible for NF-kappa B activation in response to a wide array of external stimuli. Curcumin, EGCG and resveratrol have been shown to suppress activation of NF-kappa B. One of the plausible mechanisms underlying inhibition of NF-kappa B activation by aforementioned phytochemicals involves repression of degradation of the inhibitory unit I kappa B alpha, which hampers subsequent nuclear translocation of

  2. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  3. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression.

    Hotta, Mariko; Nakata, Rieko; Katsukawa, Michiko; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2010-01-01

    Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin biosynthesis, plays a key role in inflammation and circulatory homeostasis. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor superfamily and are involved in the control of COX-2 expression, and vice versa. Here, we show that COX-2 promoter activity was suppressed by essential oils derived from thyme, clove, rose, eucalyptus, fennel, and bergamot in cell-based transfection assays using bovine arterial endothelial cells. Moreover, from thyme oil, we identified carvacrol as a major component of the suppressor of COX-2 expression and an activator of PPARalpha and gamma. PPARgamma-dependent suppression of COX-2 promoter activity was observed in response to carvacrol treatment. In human macrophage-like U937 cells, carvacrol suppressed lipopolysaccharide-induced COX-2 mRNA and protein expression, suggesting that carvacrol regulates COX-2 expression through its agonistic effect on PPARgamma. These results may be important in understanding the antiinflammatory and antilifestyle-related disease properties of carvacrol. PMID:19578162

  4. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  5. Synthesis of active controls for flutter suppression on a flight research wing

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  6. The activation and suppression of plant innate immunity by parasitic nematodes.

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism. PMID:24906126

  7. Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity

    Troglitazone, an agonist of peroxisome proliferator activated receptorγ (PPARγ), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 μM) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPARγ independent

  8. The Nrf2 Activator Vinylsulfone Reduces High Glucose-Induced Neural Tube Defects by Suppressing Cellular Stress and Apoptosis.

    Dong, Daoyin; Reece, E Albert; Yang, Peixin

    2016-08-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is one of the primary pathways responsible for the cellular defense system against oxidative stress. Oxidative stress-induced apoptosis is a causal event in diabetic embryopathy. Thus, the Nrf2 pathway may play an important role in the induction of diabetic embryopathy. In the present study, we investigated the potentially protective effect of the Nrf2 activator, vinylsulfone, on high glucose-induced cellular stress, apoptosis, and neural tube defects (NTDs). Embryonic day 8.5 (E8.5) whole mouse embryos were cultured in normal (5 mmol/L) or high (16.7 mmol/L) glucose conditions, with or without vinylsulfone. At a concentration of 10 μmol/L, vinylsulfone had an inhibitory effect on high glucose-induced NTD formation, but it was not significant. At a concentration of 20 μmol/L, vinylsulfone significantly reduced high glucose-induced NTDs. In addition, 20 μmol/L vinylsulfone abrogated the high glucose-induced oxidative stress markers lipid hydroperoxide (LPO), 4-hydroxynonenal (4-HNE), and nitrotyrosine-modified proteins. The high glucose-induced endoplasmic reticulum (ER) stress biomarkers were also suppressed by 20 μmol/L vinylsulfone through the inhibition of phosphorylated protein kinase RNA-like ER kinase (PERK), inositol requiring protein 1α (IRE1a), eukaryotic initiation factor 2α (eIF2a), upregulated C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP), and x-box binding protein 1 (XBP1) messenger RNA splicing. Furthermore, 20 μmol/L vinylsulfone abolished caspase 3 and caspase 8 cleavage, markers of apoptosis, in embryos cultured under high glucose conditions. The Nrf2 activator, vinylsulfone, is protective against high glucose-induced cellular stress, caspase activation, and subsequent NTD formation. Our data suggest that vinylsulfone supplementation is a potential therapy for diabetes-associated neurodevelopmental defects. PMID:26802109

  9. LArGe R and D for active background suppression in Gerda

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m3, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of the order 10−2 cts/(keV-kg-y), which is at the level of the GERDA phase I design goal. As a consequence of these results, the development of an active liquid argon veto in GERDA is pursued.

  10. LArGe R&D for active background suppression in Gerda

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; D'Andragora, A.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2012-07-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m3, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of the order 10-2 cts/(keV-kg-y), which is at the level of the GERDA phase I design goal. As a consequence of these results, the development of an active liquid argon veto in GERDA is pursued.

  11. EP2-PKA signaling is suppressed by triptolide in lipopolysaccharide-induced microglia activation

    Zhang, Ting; Gong, Xiaoli; Hu, Guanzheng; Wang, Xiaomin

    2015-01-01

    Background Microglia are key players for the inflammatory responses in the central nervous system. Suppression of microglial activation and the resulting production of proinflammatory molecules are considered a promising strategy to alleviate the progression of neurodegenerative disorders. Triptolide was demonstrated as a potent anti-inflammatory compound both in vitro and in vivo. The present study explored potential signal pathways of triptolide in the lipopolysaccharide (LPS)-induced infla...

  12. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    Bojak, Ingo; Stoyanov, Zhivko V.; Liley, David T. J.

    2015-01-01

    Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst ...

  13. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    Ingo eBojak; Zhivko Veselinov Stoyanov; David eLiley

    2015-01-01

    Burst suppression in the electroencephalogram (EEG) is a well described phenomenon that occurs during deep anaesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterisation as a ``global brain state'' has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that bu...

  14. Protective effect of carnosine after chronic cerebral hypoperfusion possibly through suppressing astrocyte activation

    Ma, Jing; Chen, Jihui; Bo, Shuhong; Lu, Xiaotong; Zhang, Jian

    2015-01-01

    Aim: Subcortical ischemic vascular dementia (SIVD) induced by chronic hypoperfusion is a common cause of vascular dementia. The aim of this study was to determine whether the protective effect of carnosine on white matter lesion after chronic cerebral hypoperfusion through suppressing astrocyte activation. Methods: Adult male mice (C57BL/6 strain) were subjected to permanent occlusion of the right unilateral common carotid arteries (rUCCAO) and treated with carnosine or histidine. Open field ...

  15. Improving detection specificity of iron oxide nanoparticles (IONPs) using the SWIFT sequence with long T(2) suppression.

    Wang, Luning; Tang, Wei; Zhen, Zipeng; Chen, Hongming; Xie, Jin; Zhao, Qun

    2014-07-01

    In order to improve the detection specificity of iron oxide nanoparticles (IONPs) delivered to tumors, we embedded saturation pulses into the sweep imaging using Fourier transformation (SWIFT) sequence to suppress long T(2) tissues and fat. Simulation of the Bloch equation was first conducted to study behavior of the saturation pulses of various lengths under different T(2) and off-resonance conditions. MR experiments were then conducted using in vivo mouse xenografts and a phantom consisting of IONPs, vegetable oil, and explanted tumor specimen, without and with long T(2) suppression under a 7T magnetic field. For the in vivo study, arginine-glycine-aspartate (RGD) coated 10nm IONPs (RGD-IONPs) were delivered to tumors implanted in nude mice through both intra-tumor and intravenous injections. Histological studies confirmed that RGD-IONPs efficiently homed to tumors through RGD-integrin interaction. Compared to conventional SWIFT, the proposed method resulted in sufficient suppression on long T(2) species but less influence on short T(2) species. For both the in vivo and ex vivo studies, significantly improved contrast-to-noise ratio (CNR) was achieved between the IONPs and the long T(2) species. PMID:24666573

  16. AMPK activators suppress cervical cancer cell growth through inhibition of DVL3 mediated Wnt/β-catenin signaling activity.

    H T Kwan

    Full Text Available Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009 and CyclinD1 (P = 0.009 expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.

  17. Suppressive Effect of Interface Reaction and Water Absorption by Al Incorporation into Pr-oxide Film

    We have investigated the effects of Al incorporation into a Pr-oxide/Si gate stack formed by atomic layer deposition. The PrAlOx (PAO) layers show an amorphous structure by the incorporation of Al into the Pr-oxide. The PAO sample with 10%-Al shows good C-V characteristics without a hump, and the interface state density (Dit) is as low as 5 × 1010 cm−2 eV−1. The amount of Si in the Pr-oxide film decreases by the Al incorporation. We deduce that Al incorporation into a Pr-oxide layer inhibits reaction at the interface of the PAO/Si substrate. We found that Al incorporation into the Pr-oxide is effective against the inhibition of moisture incorporation into the oxide film. The Pr(OH)3 component, estimated by x-ray photoelectron spectroscopy, increases near the surface of the Pr-oxide and PAO films with 10%-Al after 300 days, while the SiOx component does not change. The Pr(OH)3 component decreases with increasing Al incorporation. The Dit of the PAO/Si sample with 10%-Al increases after 300 days. After post metallization annealing of the sample in N2, Dit decreases with increasing annealing temperature.

  18. Lipid peroxides as endogenous oxidants forming 8-oxo-guanosine and lipid-soluble antioxidants as suppressing agents.

    Kanazawa, Kazuki; Sakamoto, Miku; Kanazawa, Ko; Ishigaki, Yoriko; Aihara, Yoshiko; Hashimoto, Takashi; Mizuno, Masashi

    2016-07-01

    The oxidation of guanosine to 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA is closely associated with induction of various diseases, but the endogenous oxidant species involved remains unclear. Hydrogen peroxides (H2O2) have been considered to be the oxidant, while lipid peroxides are another possible oxidant because generated easily in bio-membranes surrounding DNA. The oxidant potency was compared between lipid peroxides and H2O2. Linoleic acid hydroperoxides (LOOH) formed 8-oxo-dG at a higher level than H2O2 in guanosine or double-stranded DNA. In the presence of a physiological concentration of Fe(2+) to produce hydroxyl radicals, LOOH was also a stronger oxidant. In a lipid micelle, LOOH markedly produced 8-oxo-dG at a concentration one-tenth of that of H2O2. Upon adding to rat hepatic mitochondria, phosphatidylcholine hydroperoxides produced 8-oxo-dG abundantly. Employing HepG2 cells after pretreated with glutathione peroxidase inhibitor, LOOH formed 8-oxo-dG more abundantly than H2O2. Then, antioxidants to suppress the 8-oxo-dG formation were examined, when the nuclei of pre-incubated HepG2 with antioxidants were exposed to LOOH. Water-soluble ascorbic acid, trolox, and N-acetyl cysteine showed no or weak antioxidant potency, while lipid-soluble 2,6-dipalmitoyl ascorbic acid, α-tocopherol, and lipid-soluble phytochemicals exhibited stronger potency. The present study shows preferential formation of 8-oxo-dG upon LOOH and the inhibition by lipid-soluble antioxidants. PMID:27499574

  19. Surface treatment method for 1/f noise suppression in reactively sputtered nickel oxide film

    Kim, Dong Soo; Park, Seung-Man; Lee, Hee Chul

    2012-07-01

    A surface treatment method combined with O2 plasma treatment and Ar+ bombardment is proposed for 1/f noise suppression in a reactively sputtered NiO film as a micro-bolometer sensing material. The 1/f noise power spectral density on a sample prepared by the proposed surface treatment method prior to the contact formation is suppressed to a level roughly 18 times lower than that on an untreated sample. The improved noise characteristic can be ascribed to the cooperative effects of the two steps in the proposed surface treatment method. In its effects, the oxygen plasma treatment is supposed to increase the Ni3+ component on the surface of the NiO film, which in turn increases the hole concentration on the surface. Additional Ar+ bombardment is expected to remove contaminants on the surface of the NiO film, leading to a low contact resistance.

  20. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; YOSHIYAMA, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  1. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation.

    Hung, Yu-Chun; Hsu, Chun-Chieh; Chung, Ching-Hu; Huang, Tur-Fu

    2016-07-01

    In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells. PMID:27030393

  2. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus.

    Qi, Zhilin; Qi, Shimei; Ling, Liefeng; Lv, Jun; Feng, Zunyong

    2016-06-01

    Salidroside (SAL) is an active ingredient isolated from the Rhodiola rosea, has potent anti-inflammatory effect, but the mechanism is still elusive. The purpose of this study is to verify the effects of SAL on LPS-induced inflammatory response and investigate the possible underlying molecular mechanism. RAW264.7 cells were pre-incubated with SAL for 2h, then stimulated with or without LPS for another 16h. The levels of TNF-α, MCP-1, IL-6, and PGE2 were detected by ELISA, and the production of NO was determined by nitrite analysis. The expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by Western blotting. In RAW264.7 cells and murine peritoneal macrophages, the activation of signal molecules was also measured by Western blot. The nuclear translocation of STAT3 was determined by Laser confocal and nucleocytoplasmic separation experiments. Our results showed that SAL attenuated the productions of TNF-α, IL-6, MCP-1, PGE2 and NO dose dependently. SAL also suppressed LPS-induced expressions of iNOS and COX-2 significantly. Further studies revealed that SAL down-regulated the phosphorylation of JAK2-STAT3 signaling pathway and reduced the nuclear translocation of STAT3 induced by LPS in RAW264.7 cells and primary peritoneal macrophages. In addition, consistent with the results in vitro, in the model of mice acute lung injury (ALI) induced by LPS, SAL reduced the infiltration of inflammatory cells and decreased the levels of serum TNF-α and IL-6 obviously. Taken together, these data indicated that SAL exerted anti-inflammatory action via down-regulating LPS-induced activation of JAK2-STAT3 pathway and suppressing STAT3 transfer into the nucleus at least in part. PMID:27085677

  3. Brazilian Green Propolis Suppresses the Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-κB Activation in Microglia

    Zhou Wu

    2013-01-01

    Full Text Available Hypoxia has been recently proposed as a neuroinflammatogen, which drives microglia to produce proinflammatory cytokines, including interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, and IL-6. Considering the fact that propolis has hepatoprotective, antitumor, antioxidative, and anti-inflammatory effects, propolis may have protective effects against the hypoxia-induced neuroinflammatory responses. In this study, propolis (50 μg/mL was found to significantly inhibit the hypoxia-induced cytotoxicity and the release of proinflammatory cytokines, including IL-1β, TNF-α, and IL-6, by MG6 microglia following hypoxic exposure (1% O2, 24 h. Furthermore, propolis significantly inhibited the hypoxia-induced generation of reactive oxygen species (ROS from mitochondria and the activation of nuclear factor-κB (NF-κB in microglia. Moreover, systemic treatment with propolis (8.33 mg/kg, 2 times/day, i.p. for 7 days significantly suppressed the microglial expression of IL-1β, TNF-α, IL-6, and 8-oxo-deoxyguanosine, a biomarker for oxidative damaged DNA, in the somatosensory cortex of mice subjected to hypoxia exposure (10% O2, 4 h. These observations indicate that propolis suppresses the hypoxia-induced neuroinflammatory responses through inhibition of the NF-κB activation in microglia. Furthermore, increased generation of ROS from the mitochondria is responsible for the NF-κB activation. Therefore, propolis may be beneficial in preventing hypoxia-induced neuroinflammation.

  4. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  5. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  6. The Effects of Xiangqing Anodyne Spray on Treating Acute Soft-Tissue Injury Mainly Depend on Suppressing Activations of AKT and p38 Pathways

    Shudong Wang

    2016-01-01

    Full Text Available Objectives. In the present study we try to elucidate the mechanism of Xiangqing anodyne spray (XQAS effects on acute soft-tissue injury (STI. Methods. Acute STI model was established by hammer blow in the rat hind leg muscle. Within 8 hours, instantly after modeling and per 2-hour interval repeated topical applications with or without XQAS, CP or IH ethanol extracts spray (CPS and IHS were performed, respectively; muscle swelling rate and inflammation-related biochemical parameters, muscle histological observation, and mRNA and protein expression were then examined. Results. XQAS dose-dependently suppressed STI-caused muscle swelling, proinflammatory mediator productions, and oxidative stress as well as severe pathological changes in the injured muscle tissue. Moreover, CPS mainly by blocking p38 activation while IHS majorly by blocking AKT activation led to cytoplastic IκBα degradation with NF-κB p65 translocated into the nucleus. There are synergistic effects between CP and IH components in the XQAS on preventing from acute STI with suppressing IκBα degradation, NF-κB p65 translocation, and subsequent inflammation and oxidative stress-related abnormality. Conclusion. Marked effects of XQAS on treating acute STI are ascribed to strong anti-inflammatory and antioxidative actions with a reasonable combination of CP active components, blocking p38-NF-κB pathway activated, and IH active components, blocking AKT-NF-κB pathway activated.

  7. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  8. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  9. TET1 Suppresses Cancer Invasion by Activating the Tissue Inhibitors of Metalloproteinases

    Chih-Hung Hsu

    2012-09-01

    Full Text Available Tumor suppressor gene silencing through cytosine methylation contributes to cancer formation. Whether DNA demethylation enzymes counteract this oncogenic effect is unknown. Here, we show that TET1, a dioxygenase involved in cytosine demethylation, is downregulated in prostate and breast cancer tissues. TET1 depletion facilitates cell invasion, tumor growth, and cancer metastasis in prostate xenograft models and correlates with poor survival rates in breast cancer patients. Consistently, enforced expression of TET1 reduces cell invasion and breast xenograft tumor formation. Mechanistically, TET1 suppresses cell invasion through its dioxygenase and DNA binding activities. Furthermore, TET1 maintains the expression of tissue inhibitors of metalloproteinase (TIMP family proteins 2 and 3 by inhibiting their DNA methylation. Concurrent low expression of TET1 and TIMP2 or TIMP3 correlates with advanced node status in clinical samples. Together, these results illustrate a mechanism by which TET1 suppresses tumor development and invasion partly through downregulation of critical gene methylation.

  10. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  11. Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems

    Lee, Tzung-Lin; Wang, Yen-Ching; Li, Jian-Cheng;

    2015-01-01

    Unintentional series and/or parallel resonances, due to the tuned passive filter and the line inductance, may result in severe harmonic distortion in the industrial power system. This paper presents a hybrid active filter to suppress harmonic resonance and reduce harmonic distortion as well....... The proposed hybrid filter is operated as variable harmonic conductance according to the voltage total harmonic distortion, so harmonic distortion can be reduced to an acceptable level in response to load change or parameter variation of power system. Since the hybrid filter is composed of a seventh......-tuned passive filter and an active filter in series connection, both dc voltage and kVA rating of the active filter are dramatically decreased compared with the pure shunt active filter. In real application, this feature is very attractive since the active power filter with fully power electronics is very...

  12. Instrumental neutron activation analysis with Compton suppression for the evaluation of foodstuff composition

    Instrumental neutron activation analysis (INAA) is a good option for studying chemical composition of food, allowing the simultaneous determination of several elements. However, the incomplete deposition of gamma-ray energies in the detector crystal due to Compton scatter can elevate the spectrum baseline making difficult the determination of some elements. The problem is particularly important for samples having high activities of radionuclides emitting gamma-rays with energies higher than those to be measured. For such cases, the use of a Compton suppression system can improve the detection limits. Here, the application of a suppression system for the analysis of foodstuff is evaluated. Measurements were carried out with a hyper pure germanium detector with 55 % relative efficiency for the photopeak 1332 keV of 60Co, working in anti-coincidence with two sodium iodine guard detectors (annulus and plug). Suppressed and unsuppressed spectra were simultaneously acquired. Initially, the overall system performance on the reduction of the Compton region was tested using 137Cs. Measuring between 358 and 382 keV, the higher suppression factor was 5.97, being observed a large variation according to the energy region selected for the determination. Reductions were noticed for the suppression factor resulting from increases on counting rate and source-detector distance. The suppression system showed to be stable during twenty weeks of periodic verifications. To evaluate the system performance on real sample analysis, several types and commercial brands of rice, potatoes, beans, peas, chickpeas and lentil were taken. After drying and grinding, samples were irradiated at a thermal neutron flux of 1x1013 cm-2 s-1 for 8 hours, in the nuclear research reactor IEA-R1 from IPEN/CNEN (Instituto de Pesquisas Energeticas e Nucleares). Each sample was measured after decay periods of about 3, 7, 15 and 40 days. Analysis was conducted by the k0 method using the software package Quantu

  13. Ketamine suppresses intestinal NF-kappa B activation and proinflammatory cytokine in endotoxic rats

    Jie Sun; Xiao-Dong Wang; Hong Liu; Jian-Guo Xu

    2004-01-01

    AIM: To investigate the protective effect of ketamine on the endotoxin-induced proinfiammatory cytokines and NFkappa B activation in the intestine.METHODS: Adult male Wistar rats were randomly divided into 6 groups: (a) normal saline control, (b) challenged with endotoxin (5 mg/kg) and treated by saline, (c) challenged with endotoxin (5 mg/kg) and treated by ketamine (0.5 mg/kg),(d) challenged with endotoxin (5 mg/kg) and treated by ketamine (5 mg/kg), (e) challenged with endotoxin (5 mg/kg) and treated by ketamine (50 mg/kg), and (f) saline injected and treated by ketamine (50 mg/kg). After 1, 4 or 6 h, TNF-α and IL-6 mRNA were investigated in the tissues of the intestine (jejunum) by RT-PCR. TNF-α and IL-6 were measured by ELISA. We used electrophoretic mobility shift assay (EMSA) to investigate NF-kappa B activity in the intestine.RESULTS: NF-kappa B activity, the expression of TNF-α and IL-6 were enhanced in the intestine by endotoxin.Ketamine at a dose of 0.5 mg/kg could suppress endotoxininduced TNF-α mRNA and protein elevation and inhibit NFkappa B activation in the intestine. However the least dosage of ketamine to inhibit IL-6 was 5 mg/kg in our experiment.CONCLUSION: Ketamine can suppress endotoxin-induced production of proinflammatory cytokines such as TNF-α and IL-6 production in the intestine. This suppressive effect may act through inhibiting NF-kappa B.

  14. Melatonin Suppresses Hypoxia-Induced Migration of HUVECs via Inhibition of ERK/Rac1 Activation

    Ling Yang

    2014-08-01

    Full Text Available Melatonin, a naturally-occurring hormone, possesses antioxidant properties and ameliorates vascular endothelial dysfunction. In this study, we evaluate the impact of melatonin on the migratory capability of human umbilical vein endothelial cells (HUVECs to hypoxia and further investigate whether ERK/Rac1 signaling is involved in this process. Here, we found that melatonin inhibited hypoxia-stimulated hypoxia-inducible factor-1α (HIF-1α expression and cell migration in a dose-dependent manner. Mechanistically, melatonin inhibited Rac1 activation and suppressed the co-localized Rac1 and F-actin on the membrane of HUVECs under hypoxic condition. In addition, the blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1-T17N suppressed HIF-1α expression and cell migration in response to hypoxia, as well, but constitutive activation of Rac1 mutant Rac1-V12 restored HIF-1α expression, preventing the inhibition of melatonin on cell migration. Furthermore, the anti-Rac1 effect of melatonin in HUVECs appeared to be associated with its inhibition of ERK phosphorylation, but not that of the PI3k/Akt signaling pathway. Taken together, our work indicates that melatonin exerts an anti-migratory effect on hypoxic HUVECs by blocking ERK/Rac1 activation and subsequent HIF-1α upregulation.

  15. PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α

    Cheng Sun

    2014-12-01

    Full Text Available PGC-1α plays a central role in hepatic gluconeogenesis and has been implicated in the onset of type 2 diabetes. Acetylation is an important posttranslational modification for regulating the transcriptional activity of PGC-1α. Here, we show that PCAF is a pivotal acetyltransferase for acetylating PGC-1α in both fasted and diabetic states. PCAF acetylates two lysine residues K328 and K450 in PGC-1α, which subsequently triggers its proteasomal degradation and suppresses its transcriptional activity. Adenoviral-mediated expression of PCAF in the obese mouse liver greatly represses gluconeogenic enzyme activation and glucose production and improves glucose homeostasis and insulin sensitivity. Moreover, liver-specific knockdown of PCAF stimulates PGC-1α activity, resulting in an increase in blood glucose and hepatic glucose output. Our results suggest that PCAF might be a potential pharmacological target for developing agents against metabolic disorders associated with hyperglycemia, such as obesity and diabetes.

  16. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry. PMID:26906715

  17. Active flutter suppression of a lifting surface using piezoelectric actuation and modern control theory

    Han, Jae-Hung; Tani, Junji; Qiu, Jinhao

    2006-04-01

    This paper presents a numerical and experimental investigation on active flutter suppression of a swept-back cantilevered lifting surface using piezoelectric (PZT) actuation. A finite element method, a panel aerodynamic method, and the minimum state-space realization are involved in the development of the equation of motion in state-space, which is efficiently used for the analysis of the system and design of control laws with a modern control framework. PZT actuators, bonded symmetrically on the plate, are optimally grouped into two equivalent actuator sets using genetic algorithms to enhance controllability. H2- and μ-synthesized control laws are designed and the flutter suppression performance is evaluated via wind tunnel testing. In the μ-synthesis design, a simple parametric uncertainty model is used to take into account the system changes with respect to airflow speed. Both controllers show comparable flutter suppression performance around the flutter point. However, the μ-synthesized controller shows improved behavior over a wide flow speed range.

  18. CAPC negatively regulates NF-κB activation and suppresses tumor growth and metastasis.

    Liu, X-F; Xiang, L; Zhang, Y; Becker, K G; Bera, T K; Pastan, I

    2012-03-29

    CAPC, also known as LRRC26, is expressed in normal prostate and salivary gland. We developed a mAb to CAPC and used it to characterize the protein and study its function. CAPC protein was detected in normal prostate and salivary gland, in several human breast cancer cell lines and in the prostate cancer cell line LNCaP. Knockdown of CAPC by siRNA in LNCaP cells enhanced anchorage-independent growth in soft agar. Conversely, overexpression of CAPC in MDA-231 breast cancer cells and A431 epidermoid cancer cells inhibited growth in soft agar and tumorigenesis in nude mice, and suppressed the metastasis of MDA-231 cells to the lung. Overexpression of CAPC downregulated NF-κB activity and its target genes, including GM-CSF (CSF2), CXCL1, IL8 and LTB1. It also suppressed genes encoding the serine protease mesotrypsin (PRSS3) and cystatin SN (CST1). CAPC expressing tumors showed a decrease in the number of proliferating cells and a large increase in ECM. The role of CAPC in the suppression of tumor growth and metastasis may be through its alteration of the tumor microenvironment. PMID:21822313

  19. Opiate-induced suppression of rat hypoglossal motoneuron activity and its reversal by ampakine therapy.

    Amanda R Lorier

    Full Text Available BACKGROUND: Hypoglossal (XII motoneurons innervate tongue muscles and are vital for maintaining upper-airway patency during inspiration. Depression of XII nerve activity by opioid analgesics is a significant clinical problem, but underlying mechanisms are poorly understood. Currently there are no suitable pharmacological approaches to counter opiate-induced suppression of XII nerve activity while maintaining analgesia. Ampakines accentuate alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA receptor responses. The AMPA family of glutamate receptors mediate excitatory transmission to XII motoneurons. Therefore the objectives were to determine whether the depressant actions of mu-opioid receptor activation on inspiratory activity includes a direct inhibitory action at the inspiratory premotoneuron to XII motoneuron synapse, and to identify underlying mechanism(s. We then examined whether ampakines counteract opioid-induced depression of XII motoneuron activity. METHODOLOGY/PRINCIPAL FINDINGS: A medullary slice preparation from neonatal rat that produces inspiratory-related output in vitro was used. Measurements of inspiratory burst amplitude and frequency were made from XII nerve roots. Whole-cell patch recordings from XII motoneurons were used to measure membrane currents and synaptic events. Application of the mu-opioid receptor agonist, DAMGO, to the XII nucleus depressed the output of inspiratory XII motoneurons via presynaptic inhibition of excitatory glutamatergic transmission. Ampakines (CX614 and CX717 alleviated DAMGO-induced depression of XII MN activity through postsynaptic actions on XII motoneurons. CONCLUSIONS/SIGNIFICANCE: The inspiratory-depressant actions of opioid analgesics include presynaptic inhibition of XII motoneuron output. Ampakines counteract mu-opioid receptor-mediated depression of XII motoneuron inspiratory activity. These results suggest that ampakines may be beneficial in countering opiate

  20. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  1. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation

  2. Light activated nitric oxide releasing materials

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  3. Adiponectin Increases Skeletal Muscle Mitochondrial Biogenesis by Suppressing Mitogen-Activated Protein Kinase Phosphatase-1

    Qiao, Liping; Kinney, Brice; Yoo, Hyung sun; Lee, Bonggi; Schaack, Jerome; Shao, Jianhua

    2012-01-01

    Adiponectin enhances mitochondrial biogenesis and oxidative metabolism in skeletal muscle. This study aimed to investigate the underlying mechanisms through which adiponectin induces mitochondrial biogenesis in skeletal muscle. Mitochondrial contents, expression, and activation status of p38 mitogen-activated protein kinase (MAPK) and PPARγ coactivator 1α (PGC-1α) were compared between skeletal muscle samples from adiponectin gene knockout, adiponectin-reconstituted, and control mice. Adenovi...

  4. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  5. Oxidative activation of dihydropyridine amides to reactive acyl donors

    Funder, Erik Daa; Trads, Julie Brender; Gothelf, Kurt Vesterager

    2015-01-01

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium...

  6. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  7. An evaluation of thermal and epithermal neutron activation analysis compton suppression methods for biological reference materials.

    Landsberger, S; Wu, D

    1999-01-01

    For neutron activation analysis (NAA), the usual matrix problems of sodium, chlorine, and bromine are well known to give rise to high backgrounds that inhibit the determination of several trace elements for short-lived or medium-lived NAA. For long counting times in long-lived NAA, very low backgrounds are required to achieve good sensitivities. We have investigated the use of thermal and epithermal NAA in conjunction with Compton suppression to determine several elements such as arsenic, antimony, cadmium, and mercury, at the level of a few nanograms. The values of these techniques are discussed in contrast to the standard radiochemical methods. PMID:10676521

  8. Nondestructive determination of arsenic in urine by epithermal neutron activation analysis and Compton suppression.

    Landsberger, S; Swift, G; Neuhoff, J

    1990-01-01

    Epithermal neutron activation analysis, in conjunction with Compton suppression, has been employed to determine arsenic levels in artificially doped urine samples. Typical detection limits were of the order of 10 ng/g. Replicate determinations gave precision values between 2 and 12%, whereas accuracy measurements were between +/- 1 and +/- 20%. Biological and geological reference materials from the National Institute of Standards and Technology (NIST) were also analyzed for arsenic content. Typically, the precision achieved again was between 2 and 12%, whereas the accuracy measurements were in excellent agreement with the certified values. PMID:1704729

  9. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis.

    Chen, Dong; Zheng, Wei; Lin, Aiping; Uyhazi, Katherine; Zhao, Hongyu; Lin, Haifan

    2012-03-01

    During spermatogenesis, germ cells initially expand exponentially through mitoses. A majority of these cells are then eliminated through p53-mediated apoptosis to maintain germline homeostasis. However, the activity of p53 must be precisely modulated, especially suppressed in postmitotic spermatogenic cells, to guarantee robustness of spermatogenesis. Currently, how the suppression is achieved is not understood. Here, we show that Pumilio 1, a posttranscriptional regulator, binds to mRNAs representing 1,527 genes, with significant enrichment for mRNAs involved in pathways regulating p53, cell cycle, and MAPK signaling. In particular, eight mRNAs encoding activators of p53 are repressed by Pumilio 1. Deleting Pumilio 1 results in strong activation of p53 and apoptosis mostly in spermatocytes, which disrupts sperm production and fertility. Removing p53 reduces apoptosis and rescues testicular hypotrophy in Pumilio 1 null mice. These results indicate that key components of the p53 pathway are coordinately regulated by Pumilio 1 at the posttranscriptional level, which may exemplify an RNA operon. PMID:22342750

  10. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads.

    Rando, R F; Ojwang, J; Elbaggari, A; Reyes, G R; Tinder, R; McGrath, M S; Hogan, M E

    1995-01-27

    An oligonucleotide (I100-15) composed of only deoxyguanosine and thymidine was able to inhibit human immunodeficiency virus type-1 (HIV-1) in culture assay systems. I100-15 did not block virus entry into cells but did reduce viral-specific transcripts. As assessed by NMR and polyacrylamide gel methods, I100-15 appears to form a structure in which two stacked guanosine tetrads are connected by three two-base long loops. Structure/activity experiments indicated that formation of intramolecular guanosine tetrads was necessary to achieve maximum antiviral activity. The single deoxyguanosine nucleotide present in each loop was found to be extremely important for the overall antiviral activity. The toxicity of I100-15 was determined to be well above the 50% effective dose (ED50) in culture which yielded a high therapeutic index (> 100). The addition of a cholesterol moiety to the 3' terminus of I100-15 (I100-23) reduced the ED50 value to less than 50 nM (from 0.12 microM for I100-15) and increased the duration of viral suppression to greater than 21 days (versus 7-10 days for I100-15) after removal of the drug from infected cell cultures. The favorable therapeutic index of such molecules coupled with the prolonged suppression of HIV-1, suggest that such compounds further warrant investigation as potential therapeutic agents. PMID:7829511

  11. Lasing and suppressed cavity-pulling effect of Cesium active optical clock

    Xu, Zhichao; Chen, Jingbiao

    2014-01-01

    We experimentally demonstrate the collective emission behavior and suppressed cavity-pulling effect of four-level active optical clock with Cesium atoms. Thermal Cesium atoms in a glass cell velocity selective pumped with a 455.5 nm laser operating at 6S$_{1/2}$ to 7P$_{3/2}$ transition are used as lasing medium. Population inverted Cesium atoms between 7S$_{1/2}$ and 6P$_{3/2}$ levels are optical weakly coupled by a pair cavity mirrors working at deep bad-cavity regime with a finesse of 4.3, and the ratio between cavity bandwidth and gain bandwidth is approximately 45. With increased 455.5 nm pumping laser intensity, the output power of cesium active optical clock at 1469.9 nm from 7S$_{1/2}$ level to 6P$_{3/2}$ level shows a threshold and reach a power of 13 $\\mu$W. Active optical clock would dramatically improve the optical clock stability since the lasing frequency does not follow the cavity length variation exactly, but in a form of suppressed cavity pulling effect. In this letter the cavity pulling effe...

  12. Estrogen Suppresses Brain Mitochondrial Oxidative Stress in Female and Male Rats

    Razmara, Ali; Duckles, Sue P.; Krause, Diana N.; Procaccio, Vincent

    2007-01-01

    Mitochondria are a major source of reactive oxygen species (ROS) and oxidative stress, key contributors to aging and neurodegenerative disorders. We report that gonadal hormones influence brain mitochondrial ROS production in both females and males. Initial experiments showed that estrogen decreases mitochondrial superoxide production in a receptor-mediated manner, as measured by MitoSOX fluorescence in differentiated PC-12 cells. We then assessed in vivo effects of gonadal hormones on brain ...

  13. Suppression of magnetoresistance in thin $WTe_2$ flakes by surface oxidation

    Woods, J M; Shen, J.; Kumaravadivel, P.; Pang, Y.; Xie, Y.; Pan, G. A.; Li, M; Altman, E. I.; Lu, L; Cha, J. J.

    2016-01-01

    Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Here, using semimetallic $WTe_2$ that exhibits large magnetoresistance, we show that surface oxidation and Fermi level pinning degrade the transport properties of thin $WTe_2$ flakes significantly. Wi...

  14. Suppression of hepatic stellate cell activation by microRNA-29b

    Highlights: → Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. → Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. → It blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. → miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. → miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-β, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  15. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells sti...

  16. Oxidative Conversion Mediates Antiproliferative Effects of tert-Butylhydroquinone: Structure and Activity Relationship Study.

    Sanidad, Katherine Z; Sukamtoh, Elvira; Wang, Weicang; Du, Zheyuan; Florio, Ellie; He, Lili; Xiao, Hang; Decker, Eric A; Zhang, Guodong

    2016-05-18

    Previous studies have shown that tert-butylhydroquinone (TBHQ), a widely used food antioxidant, has cytotoxic effects at high doses; however, the underlying mechanisms are not well understood. Here, we found that the effects of TBHQ on cell proliferation, cell cycle progression, and apoptosis are mainly mediated by its oxidative conversion to a quinone metabolite tert-butylquinone (TBQ). Co-addition of cupric ion (Cu(2+)) caused accelerated oxidative conversion of TBHQ to TBQ and enhanced the biological activities of TBHQ on cell proliferation, cell cycle progression, and apoptosis in MC38 colon cancer cells. In contrast, co-addition of ethylenediaminetetraacetic acid (EDTA) suppressed TBHQ oxidation and inhibited the biological activities of TBHQ in MC38 cells. For example, after 24 h of treatment in basal medium, low-dose TBHQ (1.88-7.5 μM) had little effect on MC38 cell proliferation, while co-addition of 50 μM Cu(2+) caused 30-70% inhibition of cell proliferation; in contrast, treatment with high-dose TBHQ (15 μM) inhibited 50 ± 4% MC38 proliferation, which was abolished by co-addition of 50 μM EDTA. We further showed that TBQ had more potent actions on cell proliferation and associated cellular responses than TBHQ, supporting a critical role of TBQ formation in the biological activities of TBHQ. Finally, a structure and activity relationship study showed that the fast-oxidized para-hydroquinones had potent antiproliferative effects in MC38 cells, while the slow-oxidized para-hydroquinones had weak or little biological activities. Together, these results suggest that the biological activities of TBHQ and other para-hydroquinones are mainly mediated by their oxidative metabolism to generate more biologically active quinone metabolites. PMID:27111399

  17. Poly(ADP-Ribose) Polymerase 1 Promotes Oxidative-Stress-Induced Liver Cell Death via Suppressing Farnesoid X Receptor α

    Wang, Cheng; Zhang, Fengxiao; Wang, Lin; Zhang, Yanqing; Li, Xiangrao; Huang, Kun; Du, Meng; Liu, Fangmei; Huang, Shizheng; Guan, Youfei; Huang, Dan; Huang, Kai

    2013-01-01

    Farnesoid X receptor α (FXR) is highly expressed in the liver and regulates the expression of various genes involved in liver repair. In this study, we demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP1) promoted hepatic cell death by inhibiting the expression of FXR-dependent hepatoprotective genes. PARP1 could bind to and poly(ADP-ribosyl)ate FXR. Poly(ADP-ribosyl)ation dissociated FXR from the FXR response element (FXRE), present in the promoters of target genes, and suppress...

  18. Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia.

    Hiroko Endo

    Full Text Available A hypoxic microenvironment in tumors has been recognized as a cause of malignancy or resistance to various cancer therapies. In contrast to recent progress in understanding the acute response of cancer cells to hypoxia, the characteristics of tumor cells in chronic hypoxia remain elusive. We have identified a pancreatic cancer cell line, AsPC-1, that is exceptionally able to survive for weeks under 1% oxygen conditions while most tested cancer cell lines die after only some days under these conditions. In chronic hypoxia, AsPC-1 cells entered a state of dormancy characterized by no proliferation, no death, and metabolic suppression. They reversibly switched to active status after being placed again in optimal culture conditions. ATP turnover, an indicator of energy demand, was markedly decreased and accompanied by reduced AKT phosphorylation. Forced activation of AKT resulted in increased ATP turnover and massive cell death in vitro and a decreased number of dormant cells in vivo. In contrast to most cancer cell lines, primary-cultured colorectal cancer cells easily entered the dormant status with AKT suppression under hypoxia combined with growth factor-depleted conditions. Primary colorectal cancer cells in dormancy were resistant to chemotherapy. Thus, the ability to survive in a deteriorated microenvironment by entering into dormancy under chronic hypoxia might be a common property among cancer cells. Targeting the regulatory mechanism inducing this dormant status could provide a new strategy for treating cancer.

  19. Giant Suppression of the Activation Rate in Dynamical Systems Exhibiting Chaotic Transitions

    The phenomenon of giant suppression of activation, when two or more correlated noise signals act on the system, was found a few years ago in dynamical bistable or metastable systems. When the correlation between these noise signals is strong enough and the amplitudes of the noise are chosen correctly - the life time of the metastable state may be longer than in the case of the application of only a single noise even by many orders of magnitude. In this paper, we investigate similar phenomena in systems exhibiting several chaotic transitions: Pomeau-Manneville intermittency, boundary crisis and interior crisis induced intermittency. Our goal is to show that, in these systems the application of two noise components with the proper choice of the parameters in the case of intermittency can also lengthen the mean laminar phase length or, in the case of boundary crisis, lengthen the time the trajectory spends on the pre-crisis attractor. In systems with crisis induced intermittency, we introduce a new phenomenon we called quasi-deterministic giant suppression of activation in which the lengthening of the laminar phase lengths is caused not by the action of two correlated noise signals but by a single noise term which is correlated with one of the chaotic variables of the system. (author)

  20. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  1. Suppression of the spin pumping in Pd/Ni81Fe19 bilayers with nano-oxide layer

    We demonstrate that the spin pumping effect can be effectively suppressed with a nano-oxide layer. Spin pumping effect manifests itself by an enhancement of the Gilbert damping parameter in normal metal/ferromagnetic hetero-structures, while many spintronics devices prefer smaller damping parameter. Since the spin pumping effect is directly related with the spin dependent interface conductance, we can modify the spin pumping by altering the interface conductance with the nano-oxide layer. We prepared series of Pd/Ni81Fe19 bilayers with different pausing time between Pd and Ni81Fe19 depositions in order to control the interface conductance. The Gilbert damping parameters are determined from the line-width measurements in the ferromagnetic resonance spectra for each pausing time sample. They are 0.0490, 0.0296, 0.0278, and 0.0251 for 0, 6, 30, and 60 s pausing time, respectively. We find that the damping parameter of Pd/Ni81Fe19 is almost recovered to one of the Cu/Ni81Fe19 bilayer with 60 s pausing time, while the static magnetic properties are not noticeably changed.

  2. Suppression of Photoanodic Surface Oxidation of n-Type 6H-SiC Electrodes in Aqueous Electrolytes.

    Sachsenhauser, Matthias; Walczak, Karl; Hampel, Paul A; Stutzmann, Martin; Sharp, Ian D; Garrido, Jose A

    2016-02-16

    The photoelectrochemical characterization of silicon carbide (SiC) electrodes is important for enabling a wide range of potential applications for this semiconductor. However, photocorrosion of the SiC surface remains a key challenge, because this process considerably hinders the deployment of this material into functional devices. In this report, we use cyclic voltammetry to investigate the stability of n-type 6H-SiC photoelectrodes in buffered aqueous electrolytes. For measurements in pure Tris buffer, photogenerated holes accumulate at the interface under anodic polarization, resulting in the formation of a porous surface oxide layer. Two possibilities are presented to significantly enhance the stability of the SiC photoelectrodes. In the first approach, redox molecules are added to the buffer solution to kinetically facilitate hole transfer to these molecules, and in the second approach, water oxidation in the electrolyte is induced by depositing a cobalt phosphate catalyst onto the semiconductor surface. Both methods are found to effectively suppress photocorrosion of the SiC electrodes, as confirmed by atomic force microscopy and X-ray photoelectron spectroscopy measurements. The presented study provides straightforward routes to stabilize n-type SiC photoelectrodes in aqueous electrolytes, which is essential for a possible utilization of this material in the fields of photocatalysis and multimodal biosensing. PMID:26795116

  3. Proanthocyanidins Produce Significant Attenuation of Doxorubicin-Induced Mutagenicity via Suppression of Oxidative Stress

    Sabry M. Attia

    2010-01-01

    Full Text Available This study has been initiated to determine whether proanthocyanidins can protect against doxorubicin-induced mutagenicity in mice and to elucidate the potential mechanism of this protection. Pretreatment of mice with proanthocyanidins (100 mg/kg/day, orally for 7 days and simultaneously with doxorubicin (12 mg/kg, i.p. for another day, significantly reduced the frequency of bone marrow DNA strand breaks and micronucleated polychromatic erythrocytes compared to doxorubicin-treated mice alone. Furthermore, proanthocyanidins caused a reduction in bone marrow suppression induced by doxorubicin treatment. In male germline, orally administration of proanthocyanidins (100 mg/kg/day, orally for 7 consecutive days before and 7 consecutive days after treatment with doxorubicin (12 mg/ kg, i.p., significantly elevated the levels of sperm count and motility reduced by doxorubicin treatment. Furthermore, proanthocyanidins significantly decreased the elevated levels of spermatogonial and spermatocyte chromosomal aberrations and sperm head abnormality induced by doxorubicin. Prior administration of proanthocyanidins ahead of doxorubicin reduced the doxorubicin induced testicular lipid peroxidation and prevented the reduction in testicularnonprotein sulfhydryl significantly. Conclusively, this study provides for the first time that proanthocyanidins have a protective role in the abatement of doxorubicin-induced mutagenesis and cell proliferation changes in germinal cells of mice that reside, at least in part, in their radical scavengeractivity. Therefore, proanthocyanidins can be a promising chemopreventive agent to avert secondary malignancy and abnormal reproductive outcomes risks in cancer patients receiving doxorubicin-involved treatment.

  4. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC. PMID:23924858

  5. AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able to suppress yeast GRx5 mutant phenotypes and respond to oxidative stress

    Arabidopsis monothiol glutaredoxin (Grx), AtGRX4, was targeted to chloroplasts/plastids and had high similarity to yeast Grx5. In yeast expression assays, AtGRX4 localized to the mitochondria and suppressed the sensitivity of grx5 cells to oxidants. In addition, AtGRX4 reduced iron accumulation and ...

  6. Preferential suppression of Auger energy backflow by separation of Er ions from carriers with a thin oxide interlayer in Er-doped porous silicon

    Strong enhancement of the Er-related 1.54 μm emission was obtained at room temperature from Er-doped porous silicon (PSi), when host PSi was slightly preoxidized at 900 deg. C before Er incorporation. It was speculated that the formation of the oxide interlayer played an important role. Separate measurements of the energy transfer and the Auger deexcitation between carriers in Si crystallites and Er ions were carried out using a two-beam (cw and pulse) excitation method for various preoxidation time which was supposed to change the oxide interlayer thicknesses from about 1 to 10 nm. It was found that a very thin SiO2 interlayer between Si crystallites and Er ions suppressed preferentially the Auger deexcitation to the carrier-mediated Er excitation. A thin SiO2 interlayer was also effective to suppress the phonon-assisted energy backtransfer at high temperatures (so-called temperature quenching). This preferential suppression of the energy backflow (both Auger deexcitation and temperature quenching) by a thin oxide interlayer led to a strong room temperature Er-related emission at 1.54 μm in Er-doped porous silicon. The Er/SiO2/Si structure was also formed on a flat Si surface and quite the same result was obtained. The oxide interlayer thickness of ∼2 nm was found optimum to suppress the energy backflow sufficiently with only a slight decrease in the carrier-mediated excitation of Er ions

  7. Soot oxidation over NOx storage catalysts. Activity and deactivation

    Soot oxidation activity and deactivation of NOx storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al2O3, are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al2O3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150oC with NO+O2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO2 followed by NO recycles to NO2, and (2) soot oxidation with O2 assisted by NO2. Only a part of the stored NOx that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NOx storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al2O3 catalyst is more active, but least stable compared with Pt/Ba-Al2O3. (author)

  8. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D.; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M.; Jaramillo, Thomas F.

    2014-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal ox...

  9. Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B.; Gaju, Nuria; Francisco M. Cazorla; De Vicente, Antonio

    2015-01-01

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grow...

  10. Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species

    Reier, T.; Teschner, D; Lunkenbein, T.; Bergmann, A; Selve, S.; Kraehnert, R.; R. Schlögl; Strasser, P.

    2014-01-01

    The morphology, crystallinity, and chemical state of well-defined Ir oxide nanoscale thin-film catalysts prepared on Ti substrates at various calcination temperatures were investigated. Special emphasis was placed on the calcination temperature-dependent interaction between Ir oxide film and Ti substrate and its impact on the electrocatalytic oxygen evolution reaction (OER) activity. The Ir oxide films were characterized by scanning electron microscopy, transmission electron microscopy, scann...

  11. In vitro suppression of spontaneous erythrocyte autoimmune responses with lymphocytes activated with concanavalin A

    Ramshaw, I.A.; Woodsworth, M.; Eidinger, D.

    1979-01-01

    When normal mouse spleen cells are cultured in vitro, large numbers of cells develop that produce antibody toward antigens found on bromelain-treated mouse erythrocytes (BrMRBC). The in vitro culture also generates T cells that mediate DTH toward these antigens. We have suggested that under in vivo conditions, suppressor T cells maintain these immune responses at a low level but that this suppression wanes when the cells are cultured in vitro. The present study examines the effect of concanavalin A (Con A) on the in vitro development of humoral and cell-mediated immunity to BrMRBC. Mitogenic concentrations of Con A prevented the development of both the PFC and T/sub DTH/ responses toward BrMRBC. The Con A-induced suppression was due to the induction of suppressor T cells; thus the addition of Con A-activated cells to fresh spleen cell cultures prevented the development of both the PFC and T/sub DTH/ response against BrMRBC.

  12. H-reflex suppression and autonomic activation during lucid REM sleep: a case study.

    Brylowski, A; Levitan, L; LaBerge, S

    1989-08-01

    A single subject, a proficient lucid dreamer experienced with signaling the onset of lucidity (reflective consciousness of dreaming) by means of voluntary eye movements, spent 4 nonconsecutive nights in the sleep laboratory. The subject reported becoming lucid and signaling in 8 of the 18 rapid-eye movement (REM) periods recorded. Ten lucid dream reports were verified by polygraphic examination of signals, providing a total of 12.5 min of signal-verified lucid REM. H-Reflex amplitude was recorded every 5 s, along with continuous recording of electroencephalogram, electrooculogram, electromyogram, electrocardiogram, finger pulse, and respiration. Significant findings included greater mean H-reflex suppression during lucid REM sleep than during nonlucid REM and correlations of H-reflex suppression with increased eye movement density, heart rate, and respiration rate. These results support previous studies reporting that lucid REM is not, as might be supposed, a state closer to awakening than ordinary, or nonlucid, REM; rather, lucid dreaming occurs during unequivocal REM sleep and is characteristically associated with phasic REM activation. PMID:2762692

  13. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation.

    Ito, S; Tanaka, Y; Oshino, R; Okado, S; Hori, M; Isobe, K-I

    2016-01-01

    Growth arrest and DNA damage inducible protein 34 (GADD34) is induced by various cellular stresses, such as DNA damage, endoplasmic reticulum stress, and amino-acid deprivation. Although the major roles of GADD34 are regulating ER stress responses and apoptosis, a recent study suggested that GADD34 is linked to innate immune responses. In this report, we investigated the roles of GADD34 in inflammatory responses against bacterial infection. To explore the effects of GADD34 on systemic inflammation in vivo, we employed a lipopolysaccharide (LPS)-induced murine sepsis model and assessed the lethality, serum cytokine levels, and tissue injury in the presence or absence of GADD34. We found that GADD34 deficiency increased the lethality and serum cytokine levels in LPS-induced sepsis. Moreover, GADD34 deficiency enhanced tissue destruction, cell death, and pro-inflammatory cytokine expression in LPS-induced acute liver injury. Pro-inflammatory cytokine production after LPS stimulation is regulated by the Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. In vitro experiments revealed that GADD34 suppressed pro-inflammatory cytokine production by macrophages through dephosphorylation of IKKβ. In conclusion, GADD34 attenuates LPS-induced sepsis and acute tissue injury through suppressing macrophage activation. Targeting this anti-inflammatory role of GADD34 may be a promising area for the development of therapeutic agents to regulate inflammatory disorders. PMID:27171261

  14. Suppression of Breast Cancer Cell Migration by Small Interfering RNA Delivered by Polyethylenimine-Functionalized Graphene Oxide

    Huang, Yuan-Pin; Hung, Chao-Ming; Hsu, Yi-Chiang; Zhong, Cai-Yan; Wang, Wan-Rou; Chang, Chi-Chang; Lee, Mon-Juan

    2016-05-01

    The carbon-based nanomaterial graphene can be chemically modified to associate with various molecules such as chemicals and biomolecules and developed as novel carriers for drug and gene delivery. In this study, a nonviral gene transfection reagent was produced by functionalizing graphene oxide (GO) with a polycationic polymer, polyethylenimine (PEI), to increase the biocompatibility of GO and to transfect small interfering RNA (siRNA) against C-X-C chemokine receptor type 4 (CXCR4), a biomarker associated with cancer metastasis, into invasive breast cancer cells. PEI-functionalized GO (PEI-GO) was a homogeneous aqueous solution that remained in suspension during storage at 4 °C for at least 6 months. The particle size of PEI-GO was 172 ± 4.58 and 188 ± 5.00 nm at 4 and 25 °C, respectively, and increased slightly to 262 ± 17.6 nm at 37 °C, but remained unaltered with time. Binding affinity of PEI-GO toward siRNA was assessed by electrophoretic mobility shift assay (EMSA), in which PEI-GO and siRNA were completely associated at a PEI-GO:siRNA weight ratio of 2:1 and above. The invasive breast cancer cell line, MDA-MB-231, was transfected with PEI-GO in complex with siRNAs against CXCR4 (siCXCR4). Suppression of the mRNA and protein expression of CXCR4 by the PEI-GO/siCXCR4 complex was confirmed by real-time PCR and western blot analysis. In addition, the metastatic potential of MDA-MB-231 cells was attenuated by the PEI-GO/siCXCR4 complex as demonstrated in wound healing assay. Our results suggest that PEI-GO is effective in the delivery of siRNA and may contribute to targeted gene therapy to suppress cancer metastasis.

  15. Troglitazone suppresses telomerase activity independently of PPARγ in estrogen-receptor negative breast cancer cells

    Nguyen Johnny

    2010-07-01

    Full Text Available Abstract Background Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ. However, its effect on telomerase regulation in breast cancer has not been investigated. Methods In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. Results We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. Conclusions To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined.

  16. Troglitazone suppresses telomerase activity independently of PPARγ in estrogen-receptor negative breast cancer cells

    Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ). However, its effect on telomerase regulation in breast cancer has not been investigated. In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined

  17. Rewiring drug-activated p53-regulatory network from suppressing to promoting tumorigenesis

    Wei Song; Jiguang Wang; Ying Yang; Naihe Jing; Xiangsun Zhang; Luonan Chen; Jiarui Wu

    2012-01-01

    Many of oncogenes and tumor suppressor genes have been found to exert variable and even opposing roles in different kinds of tumors or at different stages of cancer development.Here we showed that tumorigenic potential of mouse embryonic carcinoma P19 cells cultured in adherent plates (attached-P19-cells) was suppressed by a chemotherapeutic agent,5-aza-2'-deoxycytidine (ZdCyd),whereas the higher pro-tumorigenicity of P19 cells growing in suspension (detached-P19-cells) was generated by the ZdCyd treatment.Surprisingly,p53 activity was highly up-regulated by ZdCyd in both growing conditions.By our developed computational approaches,we revealed that there was a significant enrichment of apoptotic pathways in the ZdCyd-induced p53-dominant gene-regulatory network in attached P19 cells,whereas the pro-survival genes were significantly enriched in the ZdCyd-induced p53 network in detached P19 cells.The protein-protein interaction network of the ZdCyd-treated detached P19 cells was significantly different from that of ZdCyd-treated attached P19 cells.On the other hand,inhibition of pS3 expression by siRNA suppressed the ZdCyd-induced tumorigenesis of detached P19 cells,suggesting that the ZdCyd-activated p53 plays oncogenic function in detached P19 cells.Taken together,these results indicate a context-dependent role for the ZdCyd-activated p53-dominant network in tumorigenesis.

  18. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis.

    Clark, Matthew P; Leaman, Douglas W; Hazelhurst, Lori A; Hwang, Eun S; Quinn, Anthony

    2016-02-01

    Previously we showed that BBR3378, a novel analog of the anticancer drug mitoxantrone, had the ability to ameliorate ascending paralysis in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis, without the drug-induced cardiotoxicity or lymphopenia associated with mitoxantrone therapy. Chemotherapeutic drugs like mitoxantrone, a topoisomerase inhibitor, are thought to provide protection in inflammatory autoimmune diseases like EAE by inducing apoptosis in rapidly proliferating autoreactive lymphocytes. Here, we show that while BR3378 blocked cell division, T cells were still able to respond to antigenic stimulation and upregulate surface molecules indicative of activation. However, in contrast to mitoxantrone, BBR3378 inhibited the production of the proinflammatory cytokine IFN-γ both in recently activated T cell blasts and established Th1 effectors, while sparing the activities of IL-13-producing Th2 cells. IFN-γ is known to be regulated by the transcription factor T-bet. In addition to IFN-γ, in vitro and in vivo exposure to BBR3378 suppressed the expression of other T-bet regulated proteins, including CXCR3 and IL-2Rβ. Microarray analysis revealed BBR3378-induced suppression of additional T-bet regulated genes, suggesting that the drug might disrupt global Th1 programming. Importantly, BBR3378 antagonized ongoing Th1 autoimmune responses in vivo, modulated clinical disease and CNS inflammation in acute and relapsing forms of EAE. Therefore, BBR3378 may be a unique inhibitor of T-bet regulated genes and may have potential as a therapeutic intervention in human autoimmune disease. PMID:26709219

  19. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

    Yan Jin

    Full Text Available Sodium salicylate (NaSal, a tinnitus inducing agent, can activate serotonergic (5-HTergic neurons in the dorsal raphe nucleus (DRN and can increase serotonin (5-HT level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.

  20. Electrocatalytic activity of oxidation products of guanine and 5'-GMP towards the oxidation of NADH

    We have studied the potential electrocatalytic activity towards the oxidation of NADH of several oxidation products of guanine and its derivative guanosine-5'-monophosphate (5'-GMP) on pyrolytic graphite electrodes (PGE). The distribution of products generated strongly depends on the experimental conditions. Our investigations focused on the oxidation products that are adsorbed on the electrode surface, are redox active and, exhibited electrocatalytic activity toward the oxidation of NADH. These compounds were electrochemically and kinetically characterized in terms of dependence of the formal potential on pH and electron transfer rate constant (ks). The voltammetric and catalytic behavior of both guanine and 5'-GMP oxidation products was compared with that of other guanine derivatives we have previously studied. Some mechanistic aspects concerning the generation of the catalysts are also discussed

  1. Arthritis suppression by NADPH activation operates through an interferon-β pathway

    Andersson Sofia

    2007-05-01

    Full Text Available Abstract Background A polymorphism in the activating component of the nicotinamide adenine dinucleotide phosphate (NADPH oxidase complex, neutrophil cytosolic factor 1 (NCF1, has previously been identified as a regulator of arthritis severity in mice and rats. This discovery resulted in a search for NADPH oxidase-activating substances as a potential new approach to treat autoimmune disorders such as rheumatoid arthritis (RA. We have recently shown that compounds inducing NCF1-dependent oxidative burst, e.g. phytol, have a strong ameliorating effect on arthritis in rats. However, the underlying molecular mechanism is still not clearly understood. The aim of this study was to use gene-expression profiling to understand the protective effect against arthritis of activation of NADPH oxidase in the immune system. Results Subcutaneous administration of phytol leads to an accumulation of the compound in the inguinal lymph nodes, with peak levels being reached approximately 10 days after administration. Hence, global gene-expression profiling on inguinal lymph nodes was performed 10 days after the induction of pristane-induced arthritis (PIA and phytol administration. The differentially expressed genes could be divided into two pathways, consisting of genes regulated by different interferons. IFN-γ regulated the pathway associated with arthritis development, whereas IFN-β regulated the pathway associated with disease protection through phytol. Importantly, these two molecular pathways were also confirmed to differentiate between the arthritis-susceptible dark agouti (DA rat, (with an Ncf-1DA allele that allows only low oxidative burst, and the arthritis-protected DA.Ncf-1E3 rat (with an Ncf1E3 allele that allows a stronger oxidative burst. Conclusion Naturally occurring genetic polymorphisms in the Ncf-1 gene modulate the activity of the NADPH oxidase complex, which strongly regulates the severity of arthritis. We now show that the Ncf-1 allele that

  2. (Z-5-(2,4-Dihydroxybenzylidenethiazolidine-2,4-dione Prevents UVB-Induced Melanogenesis and Wrinkle Formation through Suppressing Oxidative Stress in HRM-2 Hairless Mice

    Bonggi Lee

    2016-01-01

    Full Text Available Background. Uncontrolled melanogenesis and wrinkle formation are an indication of photoaging. Our previous studies demonstrated that (Z-5-(2,4-dihydroxybenzylidenethiazolidine-2,4-dione (MHY498 inhibited tyrosinase activity and melanogenesis in vitro. Objective. To examine in vivo effects of MHY498 as an antiaging compound on UVB-induced melanogenesis and wrinkle formation, we topically applied MHY498 on dorsal skin of HRM-2 hairless mice. Methods. Using histological analysis, we evaluated effects of MHY498 on melanogenesis and wrinkle formation after UVB exposure. In addition, related molecular signaling pathways were examined using western blotting, fluorometric assay, and enzyme-linked immunosorbent assay. Results. MHY498 suppressed UVB-induced melanogenesis by inhibiting phosphorylation of CREB and translocation of MITF protein into the nucleus, which are key factors for tyrosinase expression. Consistently, tyrosinase protein levels were notably reduced in the dorsal skin of the hairless mice by MHY498 treatment. Furthermore, MHY498 inhibited UVB-induced wrinkle formation and collagen fiber destruction by increasing type 1 procollagen concentration and decreasing protein expression levels of MMPs, which play an essential role in collagen fiber degradation. As a mechanism, MHY498 notably ameliorated UVB-induced oxidative stress and NF-κB activation in the dermal skin of the hairless mice. Conclusion. Our study suggests that MHY498 can be used as a therapeutic or cosmetic agent for preventing uncontrolled melanogenesis and wrinkle formation.

  3. Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression

    Ilie, A; Ciocan, D; Constantinescu, A O; Zagrean, A-M; Nita, D A; Zagrean, L; Moldovan, M

    2009-01-01

    -vessel occlusion" model under chloral hydrate anesthesia. Quantification of BS recovery was carried out using BS ratio. During GCI full electrocortical suppression was attained (BS ratio reached 100%). During the following reperfusion the BS ratio returned to 0. The time course of the decay was exponential after 1...... and 5-min GCI and bi-exponential after 10-min GCI. The BS recovery was progressively delayed with the duration of ischemia. Administration of the A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 1.25 mg/kg i.p.) accelerated the post-ischemic BS recovery for all GCI durations. Following the 10......-min GCI the effect of DPCPX was only apparent on the initial fast decay of the BS ratio. These data suggest that endogenous adenosine release promotes BS patterns during reperfusion following transient cerebral ischemia. Furthermore, the endogenous A1R activation may be the primary underlying cause of...

  4. Modern control techniques in active flutter suppression using a control moment gyro

    Buchek, P. M.

    1974-01-01

    Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.

  5. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  6. IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment

    Natsuizaka, Mitsuteru; Kinugasa, Hideaki; Kagawa, Shingo; Whelan, Kelly A.; NAGANUMA, Seiji; Subramanian, Harry; Chang, Sanders; Nakagawa, Kei J; Rustgi, Naryan L; Kita, Yoshiaki; Natsugoe, Shoji; Basu, Devraj; Gimotty, Phyllis A.; Klein-Szanto, Andres J.; Diehl, J. Alan

    2014-01-01

    Insulin-like growth factor binding protein 3 (IGFBP3), a hypoxia-inducible gene, regulates a variety of cellular processes including cell proliferation, senescence, apoptosis and epithelial-mesenchymal transition (EMT). IGFBP3 has been linked to the pathogenesis of cancers. Most previous studies focus upon proapoptotic tumor suppressor activities of IGFBP3. Nevertheless, IGFBP3 is overexpressed in certain cancers including esophageal squamous cell carcinoma (ESCC), one of the most aggressive ...

  7. Protective Effect of Irisin on Atherosclerosis via Suppressing Oxidized Low Density Lipoprotein Induced Vascular Inflammation and Endothelial Dysfunction

    Zhang, Yuzhu; Mu, Qian; Zhou, Zheng; Song, Haibo; Zhang, Yuan; Wu, Fei; Jiang, Miao; Wang, Fang; Zhang, Wen; Li, Liang; Shao, Lei; Wang, Xingli; Li, Shiwu; Yang, Lijun; Wu, Qi; Zhang, Mingxiang; Tang, Dongqi

    2016-01-01

    Irisin, a newly discovered myokine, is considered as a promising candidate for the treatment of metabolic disturbances and cardiovascular diseases. In the present study, we used two animal models, apolipoprotein E-deficient mice fed on a high-cholesterol diet and a mouse carotid partial ligation model to test the anti-atherosclerotic effect of irisin. Irisin treatment (0.5 μg/g body weight/day) significantly reduced the severity of aortic atherosclerosis in apolipoprotein E-deficient mice fed on a high-cholesterol diet and suppressed carotid neointima formation in a carotid partial ligation model. It was associated with decreased inflammation and cell apoptosis in aortic tissues. In addition, in a cell culture model, irisin restored ox-LDL-induced human umbilical vein endothelial cell dysfunction by reducing the levels of inflammatory genes via inhibiting the reactive oxygen species (ROS)/ p38 MAPK/ NF-κB signaling pathway activation and inhibiting cell apoptosis via up-regulating Bcl-2 and down-regulating Bax and caspase-3 expression. Our study demonstrated that irisin significantly reduced atherosclerosis in apolipoprotein E-deficient mice via suppressing ox-LDL-induced cell inflammation and apoptosis, which might have a direct therapeutic effect on atherosclerotic diseases. PMID:27355581

  8. Correlation of tumor growth suppression and methionine aminopetidase-2 activity blockade using an orally active inhibitor

    Wang, Jieyi; Tucker, Lora A; Stavropoulos, Jason; Qian ZHANG; Wang, Yi-Chun; Bukofzer, Gail; Niquette, Amanda; Meulbroek, Jonathan A; Barnes, David M; Shen, Jianwei; Bouska, Jennifer; Donawho, Cherrie; Sheppard, George S.; Bell, Randy L.

    2008-01-01

    This laboratory and others have shown that agents that inhibit the in vitro catalytic activity of methionine aminopeptidase-2 (MetAP2) are effective in blocking angiogenesis and tumor growth in preclinical models. However, these prototype MetAP2 inhibitors are clearly not optimized for therapeutic use in the clinic. We have discovered an orally active class of MetAP2 inhibitors, the anthranilic acid sulfonamides exemplified by A-800141, which is highly specific for MetAP2. This orally bioavai...

  9. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation. PMID:23122161

  10. Composition dependence of methanol oxidation activity in nickel–cobalt hydroxides and oxides: an optimization toward highly active electrodes

    Graphical Abstract: Display Omitted - Abstract: Non-precious metal electrodes, Ni and Co hydroxides and oxides, have been recently found active towards electro-oxidation of methanol in alkaline. In this article, we present a first and complete study on composition dependence of Ni–Co hydroxides and oxides for methanol electro-oxidation. Ni–Co hydroxide electrodes were prepared by co-electrodeposition on stainless steel mesh (SSM). The atomic ratio of Ni/Ni + Co in Ni–Co hydroxides was controlled by adjusting the ratio of precursor concentration. Ni–Co oxide electrodes were further obtained by annealing the Ni–Co hydroxides. The morphology factors of Ni–Co hydroxides and oxides were revealed by measuring double layer capacitance using cyclic voltammetry (CV). Methanol oxidation reaction (MOR) performance of these Ni–Co hydroxides and oxide electrodes was investigated by CV, and electrochemical impedance spectroscopy (EIS) techniques at room temperature (RT, ∼25 °C). It is found that the MOR performance of Ni–Co hydroxides increased with the increase of Ni content, while the performance of Ni–Co oxide electrodes presented a volcano plot. The highest MOR performance, the smallest charge transfer resistance and Tafel slope were found at the atomic composition of 46% Ni. Such an enhancement probably was due to the synergistic effect of co-existing Ni and Co in the spinel structure. In contrast, the electrode with the mixture of Ni oxide and Co oxide was unable to reach such a high activity. The function of Ni in Ni–Co hydroxides and oxides was attributed to facilitating the methanol oxidation, and in low potential it presented high absorption of intermediate products

  11. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. PMID:26735168

  12. Infusing sodium bicarbonate suppresses hydrogen peroxide accumulation and superoxide dismutase activity in hypoxic-reoxygenated newborn piglets.

    Jiang-Qin Liu

    effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2O(2 accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity.

  13. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses t cell activation

    Telang Sucheta

    2012-05-01

    Full Text Available Abstract Background T cell activation is associated with a rapid increase in intracellular fructose-2,6-bisphosphate (F2,6BP, an allosteric activator of the glycolytic enzyme, 6-phosphofructo-1-kinase. The steady state concentration of F2,6BP in T cells is dependent on the expression of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4 and the fructose-2,6-bisphosphatase, TIGAR. Of the PFKFB family of enzymes, PFKFB3 has the highest kinase:bisphosphatase ratio and has been demonstrated to be required for T cell proliferation. A small molecule antagonist of PFKFB3, 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO, recently has been shown to reduce F2,6BP synthesis, glucose uptake and proliferation in transformed cells. We hypothesized that the induction of PFKFB3 expression may be required for the stimulation of glycolysis in T cells and that exposure to the PFKFB3 antagonist, 3PO, would suppress T cell activation. Methods We examined PFKFB1-4 and TIGAR expression and F2,6BP concentration in purified CD3+ T cells stimulated with microbead-conjugated agonist antibodies specific for CD3 and the co-stimulatory receptor, CD28. We then determined the effect of 3PO on anti-CD3/anti-CD28-induced T cell activation, F2,6BP synthesis, 2-[1-14C]-deoxy-d-glucose uptake, lactate secretion, TNF-α secretion and proliferation. Finally, we examined the effect of 3PO administration on the development of delayed type hypersensitivity to methylated BSA and on imiquimod-induced psoriasis in mice. Results We found that purified human CD3+ T cells express PFKFB2, PFKFB3, PFKFB4 and TIGAR, and that anti-CD3/anti-CD28 conjugated microbeads stimulated a >20-fold increase in F2,6BP with a coincident increase in protein expression of the PFKFB3 family member and a decrease in TIGAR protein expression. We then found that exposure to the PFKFB3 small molecule antagonist, 3PO (1–10 μM, markedly attenuated the stimulation of F2,6BP

  14. Development of an in vitro system for the analysis of ultraviolet radiation-induced suppression of natural killer cell activity

    Previous studies have shown that natural killer (NK) cell activity was suppressed in volunteer subjects exposed to ultraviolet radiation (UVR) from solarium lamps. The present studies were carried out to determine the spectrum of UVR responsible for suppression of NK activity and to develop in vitro methods to analyze the effectiveness of sunscreen agents in prevention of UVR-mediated suppression of NK activity and other aspects of immune function. These studies suggest that when the greater proportion of UV-A in solar radiation and its greater penetration into skin is taken into account, UV-A may have equivalent or greater direct immunosuppressive effects than UV-B. The mechanisms of their immunosuppressive effects may, however, differ. The in vitro system described here would appear to provide a simple test system for further analysis of UVR-induced immunosuppression. (Author)

  15. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  16. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation

    Miguel Foronda

    2015-12-01

    Full Text Available Adult stem cells (ASCs reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014. Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013. Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4cKO mice, we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4cKO mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014. Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  17. Suppression of Atlantic Tropical Cyclone Activity by Extratropical Rossby Wave Breaking

    Zhang, G.; Wang, Z.

    2014-12-01

    With warm SST anomalies in the tropical Atlantic and cold SST anomalies in the East Pacific, the reduced Atlantic tropical cyclone activity from August to early September in 2013 was a surprise to the hurricane community. Our analyses suggest that the suppressed storm activity can be attributed to the frequent occurrence of dry air in the middle to upper troposphere along with strong vertical wind shear. Such unfavorable conditions are directly related to the equatorward propagation and breaking of midlatitude Rossby waves, which lead to the equatorward intrusions of cold and dry extratropical air. Further examination suggests the active anti-cyclonic Rossby wave breaking and frequent equatorward intrusions of extratropical air in August 2013 were associated with changes of the midlatitude jet stream (i.e., acceleration, eastward extension and greater strain rate). The EOF analysis of 200-hPa zonal wind identifies a recurrent mode of interannual variability over Atlantic, which is associated with the variations of the intensity and zonal extent of the mid-latitude jet. This mode is found significantly correlated to Atlantic hurricane frequency in August, with a coefficient higher than the Nino3.4 index and comparable to the (relative) SST of Major Development Region (MDR). Our analyses thus emphasize the extratropical impacts on Atlantic tropical cyclones via the Rossby wave breaking. This physical link is missing in most statistical and hybrid forecast schemes and may help explain the seasonal prediction bust in 2013.

  18. The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma.

    Lu, Yue; Cai, Shuangfan; Nie, Jia; Li, Yangyang; Shi, Guochao; Hao, Jimin; Fu, Wenwei; Tan, Hongsheng; Chen, Shilin; Li, Bin; Xu, Hongxi

    2016-01-15

    Mast cells play an important role in allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. The genus Garcinia of the family Guttiferae is well known as a prolific source of polycyclic polyprenylated acylphloroglucinols and bioactive prenylated xanthones, which exhibit various biological activities including antibacterial, antifungal, anti-inflammatory, antioxidant, and cytotoxic effects. Nujiangexanthone A (N7) is a novel compound isolated from the leaves of Garcinia nujiangensis. In this paper, we sought to determine the anti-allergic and anti-inflammation activity of N7 in vivo and its mechanism in vitro. We found N7 suppressed IgE/Ag induced mast cell activiation, including degranulation and production of cytokines and eicosanoids, through inhibiting Src kinase activity and Syk dependent pathways. N7 inhibited histamine release, prostaglandin D2 and leukotriene C4 generation in mast cell dependent passive cutaneous anaphylaxis animal model. We also found N7 inhibited the IL-4, IL-5, IL-13 and IgE levels in ovalbumin-induced asthma model. Histological studies demonstrated that N7 substantially inhibited OVA-induced cellular infiltration and increased mucus production in the lung tissue. Our study reveals the anti-allergic function of N7, thereby suggesting the utility of this compound as a possible novel agent for preventing mast cell-related immediate and delayed allergic diseases. PMID:26571438

  19. New hybrid active power filter for harmonic current suppression and reactive power compensation

    Biricik, Samet; Cemal Ozerdem, Ozgur; Redif, Soydan; Sezai Dincer, Mustafa

    2016-08-01

    In the case of undistorted and balanced grid voltages, low ratio shunt active power filters (APFs) can give unity power factors and achieve current harmonic cancellation. However, this is not possible when source voltages are distorted and unbalanced. In this study, the cost-effective hybrid active power filter (HAPF) topology for satisfying the requirements of harmonic current suppression and non-active power compensation for industry is presented. An effective strategy is developed to observe the effect of the placement of power capacitors and LC filters with the shunt APF. A new method for alleviating the negative effects of a nonideal grid voltage is proposed that uses a self-tuning filter algorithm with instantaneous reactive power theory. The real-time control of the studied system was achieved with a field-programmable gate array (FPGA) architecture, which was developed using the OPAL-RT system. The performance result of the proposed HAPF system is tested and presented under nonideal supply voltage conditions.

  20. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation.

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G; Blasco, Maria A

    2015-12-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155. PMID:26697322

  1. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C

    Cooper, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    Utilizing clinostatic rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity, we found phytohemagglutinin (PHA) responsiveness to be almost completely diminished. Activation marker expression was significantly reduced in RWV cultures. Furthermore, cytokine secretion profiles suggested that monocytes are not as adversely affected by simulated microgravity as T cells. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness because placing peripheral blood mononuclear cells (PBMC) within small collagen beads did partially restore PHA responsiveness. However, activation of purified T cells with cross-linked CD2/CD28 and CD3/CD28 antibody pairs was completely suppressed in the RWV, suggesting a defect in signal transduction. Activation of purified T cells with PMA and ionomycin was unaffected by RWV culture. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  2. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  3. Nitric Oxide Generated from Isoniazid Activation by KatG: Source of Nitric Oxide and Activity against Mycobacterium tuberculosis

    Timmins, Graham S.; Master, Sharon; Rusnak, Frank; Deretic, Vojo

    2004-01-01

    Isonicotinic acid hydrazide (INH) is a frontline antituberculosis agent. Once taken up by Mycobacterium tuberculosis, INH requires activation by the catalase-peroxidase KatG, converting INH from its prodrug form into a range of bactericidal reactive species. Here we used 15N-labeled INH together with electron paramagnetic resonance spin trapping techniques to demonstrate that nitric oxide (NȮ) is generated from oxidation at the hydrazide nitrogens during the activation of INH by M. tuberculos...

  4. Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons.

    Constantin, Stephanie; Wray, Susan

    2016-08-01

    GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation. PMID:27359210

  5. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone

    Inflammatory bowel disease (IBD) affects millions of people worldwide. Although the etiology of this disease is uncertain, accumulating evidence indicates a key role for the activated mucosal immune system. In the present study, we examined the effects of the natural compound fraxinellone on dextran sulfate sodium (DSS)-induced colitis in mice, an animal model that mimics IBD. Treatment with fraxinellone significantly reduced weight loss and diarrhea in mice and alleviated the macroscopic and microscopic signs of the disease. In addition, the activities of myeloperoxidase and alkaline phosphatase were markedly suppressed, while the levels of glutathione were increased in colitis tissues following fraxinellone treatment. This compound also decreased the colonic levels of interleukin (IL)-1β, IL-6, IL-18 and tumor necrosis factor (TNF)-α in a concentration-dependent manner. These effects of fraxinellone in mice with experimental colitis were attributed to its inhibition of CD11b+ macrophage infiltration. The mRNA levels of macrophage-related molecules in the colon, including intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), were also markedly inhibited following fraxinellone treatment. The results from in vitro assays showed that fraxinellone significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide (NO), IL-1β and IL-18 as well as the activity of iNOS in both THP-1 cells and mouse primary peritoneal macrophages. The mechanisms responsible for these effects were attributed to the inhibitory role of fraxinellone in NF-κB signaling and NLRP3 inflammasome activation. Overall, our results support fraxinellone as a novel drug candidate in the treatment of colonic inflammation. - Highlights: • Fraxinellone, a lactone compound, alleviated DSS induced colitis. • The effects of fraxinellone were attributed to its inhibition on infiltrated

  6. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities.

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B; Gaju, Nuria; Cazorla, Francisco M; de Vicente, Antonio

    2015-05-15

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially. PMID:25769825

  7. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study.

    Das, Ila; Das, Sukta; Saha, Tapas

    2010-07-01

    Cancer chemoprevention is the use of natural, synthetic or biological substances to reverse or prevent the development of cancer. Saffron is a naturally derived plant product that acts as an antispasmodic, diaphoretic, carminative, emmenagogic and sedative. Our aim in this study was to investigate the chemopreventive effect of aqueous saffron on chemically induced skin carcinogenesis using a histopathological approach. Mice were divided into five groups: carcinogen control (CC), normal control (NC) and saffron-treated Groups A, B and C. Groups A, B, C and CC mice received three topical applications of 7,12 dimethylbenz[a]anthracene (DMBA) followed by croton oil on shaven dorsal skin for 8 weeks. NC mice received topical skin applications of the vehicle, acetone, only. Saffron infusion was fed orally to three groups of mice either before (Group A) or after (Group C) or both before and after (Group B) DMBA applications. The activities of antioxidant enzymes glutathione-S transferase (GST), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) in liver tissue samples taken at 0, 6, 10 and 12 weeks from all groups were assessed. Standard histological examination of skin demonstrated a beneficial action of saffron in mice where saffron treatments were given both before and after the induction of skin carcinogenesis. Saffron ingestion inhibited the formation of skin papillomas in animals and simultaneously reduced their size. In conclusion, saffron inhibits DMBA-induced skin carcinoma in mice when treated early. This may be due, at least in part, to the induction of cellular defense systems. PMID:19328523

  8. Suppression of Breast Cancer Cell Migration by Small Interfering RNA Delivered by Polyethylenimine-Functionalized Graphene Oxide.

    Huang, Yuan-Pin; Hung, Chao-Ming; Hsu, Yi-Chiang; Zhong, Cai-Yan; Wang, Wan-Rou; Chang, Chi-Chang; Lee, Mon-Juan

    2016-12-01

    The carbon-based nanomaterial graphene can be chemically modified to associate with various molecules such as chemicals and biomolecules and developed as novel carriers for drug and gene delivery. In this study, a nonviral gene transfection reagent was produced by functionalizing graphene oxide (GO) with a polycationic polymer, polyethylenimine (PEI), to increase the biocompatibility of GO and to transfect small interfering RNA (siRNA) against C-X-C chemokine receptor type 4 (CXCR4), a biomarker associated with cancer metastasis, into invasive breast cancer cells. PEI-functionalized GO (PEI-GO) was a homogeneous aqueous solution that remained in suspension during storage at 4 °C for at least 6 months. The particle size of PEI-GO was 172 ± 4.58 and 188 ± 5.00 nm at 4 and 25 °C, respectively, and increased slightly to 262 ± 17.6 nm at 37 °C, but remained unaltered with time. Binding affinity of PEI-GO toward siRNA was assessed by electrophoretic mobility shift assay (EMSA), in which PEI-GO and siRNA were completely associated at a PEI-GO:siRNA weight ratio of 2:1 and above. The invasive breast cancer cell line, MDA-MB-231, was transfected with PEI-GO in complex with siRNAs against CXCR4 (siCXCR4). Suppression of the mRNA and protein expression of CXCR4 by the PEI-GO/siCXCR4 complex was confirmed by real-time PCR and western blot analysis. In addition, the metastatic potential of MDA-MB-231 cells was attenuated by the PEI-GO/siCXCR4 complex as demonstrated in wound healing assay. Our results suggest that PEI-GO is effective in the delivery of siRNA and may contribute to targeted gene therapy to suppress cancer metastasis. PMID:27173676

  9. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  10. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Highlights: ► Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. ► Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. ► Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.