WorldWideScience

Sample records for activation modulates permeability

  1. Acute Modulations in Permeability Barrier Function Regulate Epidermal Cornification : Role of Caspase-14 and the Protease-Activated Receptor Type 2

    Demerjian, Marianne; Hachem, Jean-Pierre; Tschachler, Erwin; Denecker, Geertrui; Declercq, Wim; Vandenabeele, Peter; Mauro, Theodora; Hupe, Melanie; Crumrine, Debra; Roelandt, Truus; Houben, Evi; Elias, Peter M.; Feingold, Kenneth R.

    2008-01-01

    Stratum corneum comprises corneocytes, derived from outer stratum granulosum during terminal differentiation, embedded in a lipid-enriched extracellular matrix, secreted from epidermal lamellar bodies. Permeability barrier insults stimulate rapid secretion of preformed lamellar bodies from the outer stratum granulosum, regulated through modulations in ionic gradients and serine protease (SP)/protease-activated receptor type 2 (PAR2) signaling. Because corneocytes are also required for barrier...

  2. Composite Crew Module (CCM) Permeability Characterization

    Kirsch, Michael T.

    2013-01-01

    In January 2007, the NASA Administrator chartered the NASA Engineering and Safety Center (NESC) to form an Agency team to design and build a composite crew module in 18 months in order to gain hands-on experience in anticipation that future exploration systems may be made of composite materials. One of the conclusions from this Composite Crew Module Primary Structure assessment was that there was a lack of understanding regarding the ability for composite pressure shells to contain consumable gases, which posed a technical risk relative to the use of a metallic design. After the completion of the Composite Crew Module test program, the test article was used in a new program to assess the overall leakage/permeability and identify specific features associated with high leak rates. This document contains the outcome of the leakage assessment.

  3. Vesicles as tools for the modulation of skin permeability.

    Dubey, Vaibhav; Mishra, Dinesh; Nahar, Manoj; Jain, Narendra K

    2007-11-01

    Human skin is a remarkably efficient barrier designed to keep our insides in and the outside out. The modulation of this efficient barrier's properties, including its permeability to chemicals, drugs and biologically active agents is the prime target for various dermal, transdermal, drug, antigen and gene delivery approaches. Therefore, several methods have been attempted to enhance the permeation rate of biologically active agents, temporarily and locally. One of the approaches is the application of drug-laden vesicular formulations. This review presents various mechanisms involved in increasing drug transport across the skin via different vesicular approaches, such as liposomes, elastic vesicles and ethosomes, along with compiling the research work conducted in this field. PMID:17970662

  4. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    Hind, William H.; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J.; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was mo...

  5. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    Hind, William H; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. Key Results Anandamide (10 μM) and oleoylethanolamide (OEA, 10 μM) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPARα (OEA only). Application of OEA, palmitoylethanolamide (both PPARα mediated) or virodhamine (all 10 μM) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPARα and γ, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. Conclusion and Implication The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites. PMID:25651941

  6. Temporal photonic crystals with modulations of both permittivity and permeability

    Martínez-Romero, Juan Sabino; Becerra-Fuentes, O. M.; Halevi, P.

    2016-06-01

    We present an in-depth study of electromagnetic wave propagation in a temporal photonic crystal, namely, a nonconducting medium whose permittivity ɛ (t ) and/or permeability μ (t ) are modulated periodically by unspecified agents (these modulations not necessarily being in phase). Maxwell's equations lead to an eigenvalue problem whose solution provides the dispersion relation ω (k ) for the waves that can propagate in such a dynamic medium. This is a generalization of previous work [J. R. Zurita-Sánchez and P. Halevi, Phys. Rev. A 81, 053834 (2010)], 10.1103/PhysRevA.81.053834 that was restricted to the electric modulation ɛ (t ) . For our numerical work (only) we assumed the harmonic modulations ɛ (t ) =ɛ ¯[1 +mɛsin(Ω t ) ] and μ (t ) =μ ¯[1 +mμsin(Ω t +θ ) ] , where Ω is the circular modulation frequency; mɛ and mμ are, respectively, the strengths of the electric and magnetic modulations; and θ is the phase difference between these modulations. An analytic calculation for weak modulations (mɛ≪1 ,mμ≪1 ) leads to two k bands, k1(ω ) and k2(ω ) , that are separated by a k gap. If the modulations are in phase (θ =0 ) , this gap is proportional to | mɛ-mμ| , while the gap is proportional to (mɛ+mμ) if the modulations are out of phase (θ =π ) . The gap thus disappears for equal, in-phase, modulations (mɛ=mμ) . An exact solution of the eigenvalue equation confirms that these approximations hold reasonably well even for moderate modulations. In fact, there are no k gaps for equal modulations even if these are very strong (mɛ ,μ≲1 ) . The photonic band structure k (ω ) is periodic in ω , with period Ω , and there is an infinite number of bands k1(ω ) , k2(ω ) ,... Further, by allowing ɛ (t ) and μ (t ) to have imaginary parts, we examined the effects of damping [Im k (ω )] on the k bands. We also determined the optical response of a temporal photonic crystal slab, applying the above harmonic model for ɛ (t ) and μ (t

  7. Non-invasive optical modulation of local vascular permeability

    Choi, Myunghwan; Choi, Chulhee

    2011-03-01

    For a systemically administered drug to act, it first needs to cross the vascular wall. This step represents a bottleneck for drug development, especially in the brain or retina, where tight junctions between endothelial cells form physiological barriers. Here, we demonstrate that femtosecond pulsed laser irradiation focused on the blood vessel wall induces transient permeabilization of plasma. Nonlinear absorption of the pulsed laser enabled the noninvasive modulation of vascular permeability with high spatial selectivity in three dimensions. By combining this method with systemic injection, we could locally deliver molecular probes in various tissues, such as brain cortex, meninges, ear, striated muscle, and bone. We suggest this method as a novel delivery tool for molecular probes or drugs.

  8. Intracellular calcium modulates basolateral K(+)-permeability in frog skin epithelium

    Brodin, Birger; Rytved, K A; Nielsen, R

    1994-01-01

    Cytosolic calcium ([Ca2+]i) has been suggested as a key modulator in the regulation of active sodium transport across electrically "tight" (high resistance) epithelia. In this study we investigated the effects of calcium on cellular electrophysiological parameters in a classical model tissue, the...... frog skin. [Ca2+]i was measured with fura-2 in an epifluorescence microscope setup. An inhibition of basolateral potassium permeability was observed when cytosolic calcium was increased. This inhibition was reversible upon removal of calcium from the serosal solution....

  9. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. PMID:27018328

  10. Thyroid hormone modulates rabbit proximal straight tubule paracellular permeability

    Baum, Michel; Quigley, Raymond

    2003-01-01

    Proximal straight tubules (PST) from both neonatal and hypothyroid adult rabbits have a lower rate of passive volume absorption when perfused with a high-chloride solution simulating late proximal tubular fluid than adult rabbit PST. We hypothesized that the maturational increase in serum thyroid hormone levels mediates the developmental changes in PST paracellular permeability. Neonatal tubules had lower chloride permeability, higher transepithelial resistance, but comparable mannitol permea...

  11. Zinc modulation of water permeability reveals that aquaporin 0 functions as a cooperative tetramer.

    Németh-Cahalan, Karin L; Kalman, Katalin; Froger, Alexandrine; Hall, James E

    2007-11-01

    We previously showed that the water permeability of AQP0, the water channel of the lens, increases with acid pH and that His40 is required (Németh-Cahalan, K.L., and J.E. Hall. 2000. J. Biol. Chem. 275:6777-6782; Németh-Cahalan, K.L., K. Kalman, and J.E. Hall. 2004. J. Gen. Physiol. 123:573-580). We have now investigated the effect of zinc (and other transition metals) on the water permeability of AQP0 expressed in Xenopus oocytes and determined the amino acid residues that facilitate zinc modulation. Zinc (1 mM) increased AQP0 water permeability by a factor of two and prevented any additional increase induced by acid pH. Zinc had no effect on water permeability of AQP1, AQP4 or MIPfun (AQP0 from killifish), or on mutants of AQP1 and MIPfun with added external histidines. Nickel, but not copper, had the same effect on AQP0 water permeability as zinc. A fit of the concentration dependence of the zinc effect to the Hill equation gives a coefficient greater than three, suggesting that binding of more than one zinc ion is necessary to enhance water permeability. His40 and His122 are necessary for zinc modulation of AQP0 water permeability, implying structural constraints for zinc binding and functional modulation. The change in water permeability was highly sensitive to a coinjected zinc-insensitive mutant and a single insensitive monomer completely abolished zinc modulation. Our results suggest a model in which positive cooperativity among subunits of the AQP0 tetramer is required for zinc modulation, implying that the tetramer is the functional unit. The results also offer the possibility of a pharmacological approach to manipulate the water permeability and transparency of the lens. PMID:17938229

  12. Permeability and modulation of the intestinal epithelial barrier in vitro

    Duizer, E.

    1999-01-01

    The bioavailability of all ingested compounds is to a great extend determined by the ability of these compounds to pass the intestinal epithelium. A high bioavailability is guaranteed for most nutrients and electrolytes since they are actively absorbed by the epithelium. The same epithelium, however

  13. Permeability and modulation of the intestinal epithelial barrier in vitro

    Duizer, E.

    1999-01-01

    The bioavailability of all ingested compounds is to a great extend determined by the ability of these compounds to pass the intestinal epithelium. A high bioavailability is guaranteed for most nutrients and electrolytes since they are actively absorbed by the epithelium. The same epithelium, however, renders the entrance of non-nutrient (potentially harmful) hydrophilic (macro-) molecules, viruses and bacteria into the systemic circulation very low by presenting an almost impermeable barrier ...

  14. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  15. Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform.

    Amemiya, Tomohiro; Ishikawa, Atsushi; Kanazawa, Toru; Kang, JoonHyung; Nishiyama, Nobuhiko; Miyamoto, Yasuyuki; Tanaka, Takuo; Arai, Shigehisa

    2015-01-01

    Metamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the new concept of operation. Here we report the first experimental demonstration of a permeability-controlled waveguide optical modulator consisting of an InGaAsP/InP Mach-Zehnder interferometer with 'tri-gate' metamaterial attached on its arms. The tri-gate metamaterial consists of metal resonator arrays and triple-gate field effect elements. It changes its permeability with a change in the controlling gate voltage, thereby changing the refractive index of the interferometer arm to switch the modulator with an extinction ratio of 6.9 dB at a wavelength of 1.55 μm. The result shows the feasibility of InP-based photonic integrated devices that can produce new functions by controlling their permeability as well as their permittivity. PMID:25797041

  16. Redox-active media for permeable reactive barriers

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe3O4), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  17. Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury.

    Shaver, Ciara M; Grove, Brandon S; Clune, Jennifer K; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2016-01-01

    Tissue factor (TF) is a critical mediator of direct acute lung injury (ALI) with global TF deficiency resulting in increased airspace inflammation, alveolar-capillary permeability, and alveolar hemorrhage after intra-tracheal lipopolysaccharide (LPS). In the lung, TF is expressed diffusely on the lung epithelium and intensely on cells of the myeloid lineage. We recently reported that TF on the lung epithelium, but not on myeloid cells, was the major source of TF during intra-tracheal LPS-induced ALI. Because of a growing body of literature demonstrating important pathophysiologic differences between ALI caused by different etiologies, we hypothesized that TF on myeloid cells may have distinct contributions to airspace inflammation and permeability between direct and indirect causes of ALI. To test this, we compared mice lacking TF on myeloid cells (TF(∆mye), LysM.Cre(+/-)TF(flox/flox)) to littermate controls during direct (bacterial pneumonia, ventilator-induced ALI, bleomycin-induced ALI) and indirect ALI (systemic LPS, cecal ligation and puncture). ALI was quantified by weight loss, bronchoalveolar lavage (BAL) inflammatory cell number, cytokine concentration, protein concentration, and BAL procoagulant activity. There was no significant contribution of TF on myeloid cells in multiple models of experimental ALI, leading to the conclusion that TF in myeloid cells is not a major contributor to experimental ALI. PMID:26924425

  18. Glucocorticoids Regulate Tight Junction Permeability of Lung Epithelia by Modulating Claudin 8.

    Kielgast, Felix; Schmidt, Hanna; Braubach, Peter; Winkelmann, Veronika E; Thompson, Kristin E; Frick, Manfred; Dietl, Paul; Wittekindt, Oliver H

    2016-05-01

    The lung epithelium constitutes a selective barrier that separates the airways from the aqueous interstitial compartment. Regulated barrier function controls water and ion transport across the epithelium and is essential for maintaining lung function. Tight junctions (TJs) seal the epithelial barrier and determine the paracellular transport. The properties of TJs depend especially on their claudin composition. Steroids are potent drugs used to treat a variety of airway diseases. Therefore, we addressed whether steroid hormones directly act on TJ properties in lung epithelia. Primary human tracheal epithelial cells and NCI-H441 cells, both cultivated under air-liquid interface conditions, were used as epithelial cell models. Our results demonstrate that glucocorticoids, but not mineralocorticoids, decreased paracellular permeability and shifted the ion permselectivity of TJs toward Cl(-). Glucocorticoids up-regulated claudin 8 (cldn8) expression via glucocorticoid receptors. Silencing experiments revealed that cldn8 is necessary to recruit occludin at the TJs. Immunohistochemistry on human lung tissue showed that cldn8 is specifically expressed in resorptive epithelia of the conducting and respiratory airways but not in the alveolar epithelium. We conclude that glucocorticoids enhance lung epithelia barrier function and increase paracellular Cl(-) selectivity via modulation of cldn8-dependent recruitment of occludin at the TJs. This mode of glucocorticoid action on lung epithelia might be beneficial to patients who suffer from impaired lung barrier function in various diseased conditions. PMID:26473470

  19. Dopamine modulated ionic permeability in mesoporous silica sphere based biomimetic compartment.

    Liu, Wei; Yang, Xiaohai; He, Dinggeng; He, Leiliang; Li, Li; Liu, Yu; Liu, Jianbo; Wang, Kemin

    2016-06-01

    The building of artificial systems with similar structure and function as cellular compartments will expand our understanding of compartmentalization related biological process and facilitate the construction of biomimetic highly functional structures. Herein, surface phenylboronic acid functionalized mesoporous silica sphere was developed as a biomimetic dopamine gated compartment, in which the ionic permeability can be well modulated through the dopamine-binding induced charge reversal. As the phenylboronic acid is negatively charged, the negatively charged 1, 3, 6, 8-pyrenetetrasulfonic acid (TPSA) was hindered from permeation into the biomimetic compartment. However, the presence of dopamine and its binding with phenylboronic acid reversed the gatekeeper shell from negative to positive charged and gated the permeation of TPSA into the interior. The dopamine gated permeation phenomenon resembles that in biological system, and thus the phenylboronic acid functionalized mesoporous silica sphere was taken as a simple model for dopamine gated ion channel decorated biological compartment. It will also contribute to the development of artificial cell and responsive nanoreactor. PMID:26962763

  20. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver disease (ALD......). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent transepithelial...

  1. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pmale animals (pfemale groups; dye contents in the whole brains were 0.14±0.01mg% in the control, 0.24±0.03mg% in 900MHz exposed and 0.14±0.02mg% in 1800MHz exposed animals. No statistical variance found between the control and 1800MHz exposed animals (p>0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. PMID:26723545

  2. Quantitative Retention-Activity Relationship Studies by Liposome Electrokinetic Chromatography to Predict Skin Permeability

    XIAN De-Ling; HUANG Ke-Long; LIU Su-Qin; XIAO Jing-Yi

    2008-01-01

    Liposome electrokinetic chromatography (LEKC) provides a simple and facile approach for drug membrane interactions using liposome as a pseudostationary phase. This study evaluated the potential of LEKC for high-throughput skin permeability profiled as an in vitro technique. A quantitative retention-activity relationship(QRAR) model for the estimation of skin permeability was proposed. For the 16 structurally diverse chemicals, lg k correlated well with permeability values (R2=0.886). The predictive ability of the model was evaluated by cross-validation. The result was compared to traditional quantitative structure-activity relationship, QSAR, models using some molecular descriptors and physicochemical parameters. Interestingly, a single LEKC retention parameter was capable of describing the skin permeability, while three variables in QSAR were needed to achieve a similar correlation (R2=0.704). The QRAR models developed in this paper may be a useful method to screening new chemicals and in the early stage of development and selection of chemicals.

  3. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  4. Activation of TRPA1 by membrane permeable local anesthetics

    Kronewald Sergej

    2011-08-01

    Full Text Available Abstract Background Low concentrations of local anesthetics (LAs suppress cellular excitability by inhibiting voltage-gated Na+ channels. In contrast, LAs at high concentrations can be excitatory and neurotoxic. We recently demonstrated that LA-evoked activation of sensory neurons is mediated by the capsaicin receptor TRPV1, and, to a lesser extent by the irritant receptor TRPA1. LA-induced activation and sensitization of TRPV1 involves a domain that is similar, but not identical to the vanilloid-binding domain. Additionally, activation of TRPV1 by LAs involves PLC and PI(4,5P2-signalling. In the present study we aimed to characterize essential structural determinants for LA-evoked activation of TRPA1. Results Recombinant rodent and human TRPA1 were expressed in HEK293t cells and investigated by means of whole-cell patch clamp recordings. The LA lidocaine activates TRPA1 in a concentration-dependent manner. The membrane impermeable lidocaine-derivative QX-314 is inactive when applied extracellularly. Lidocaine-activated TRPA1-currents are blocked by the TRPA1-antagonist HC-030031. Lidocaine is also an inhibitor of TRPA1, an effect that is more obvious in rodent than in human TRPA1. This species-specific difference is linked to the pore region (transmembrane domain 5 and 6 as described for activation of TRPA1 by menthol. Unlike menthol-sensitivity however, lidocaine-sensitivity is not similarly determined by serine- and threonine-residues within TM5. Instead, intracellular cysteine residues known to be covalently bound by reactive TRPA1-agonists seem to mediate activation of TRPA1 by LAs. Conclusions The structural determinants involved in activation of TRPA1 by LAs are disparate from those involved in activation by menthol or those involved in activation of TRPV1 by LAs.

  5. Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury

    Shaver, Ciara M.; Grove, Brandon S.; Clune, Jennifer K.; Nigel Mackman; Lorraine B. Ware; Bastarache, Julie A

    2016-01-01

    Tissue factor (TF) is a critical mediator of direct acute lung injury (ALI) with global TF deficiency resulting in increased airspace inflammation, alveolar-capillary permeability, and alveolar hemorrhage after intra-tracheal lipopolysaccharide (LPS). In the lung, TF is expressed diffusely on the lung epithelium and intensely on cells of the myeloid lineage. We recently reported that TF on the lung epithelium, but not on myeloid cells, was the major source of TF during intra-tracheal LPS-indu...

  6. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection

    Gunnarson, Eli; Song, Yutong; Kowalewski, Jacob M.; Brismar, Hjalmar; Brines, Michael; Cerami, Anthony; Andersson, Ulf; Zelenina, Marina; Aperia, Anita

    2009-01-01

    Disturbed brain water homeostasis with swelling of astroglial cells is a common complication in stroke, trauma, and meningitis and is considered to be a major cause of permanent brain damage. Astroglial cells possess the water channel aquaporin 4 (AQP4). Recent studies from our laboratory have shown that glutamate, acting on group I metabotropic glutamate receptors (mGluRs), increases the permeability of astrocyte AQP4, which, in situations of hypoxia-ischemia, will increase astrocyte water u...

  7. C-type natriuretic peptide modulates permeability of the blood–brain barrier

    BOHARA, Manoj; Kambe, Yuki; Nagayama, Tetsuya; TOKIMURA, Hiroshi; Arita, Kazunori; Miyata, Atsuro

    2014-01-01

    C-type natriuretic peptide (CNP) is abundant in brain and is reported to exert autocrine function in vascular cells, but its effect on blood–brain barrier (BBB) permeability has not been clarified yet. Here, we examined this effect. Transendothelial electrical resistance (TEER) of in vitro BBB model, composed of bovine brain microvascular endothelial cells and astrocytes, was significantly dose dependently decreased by CNP (1, 10, and 100 nmol/L). C-type natriuretic peptide treatment reduced ...

  8. Membrane Permeable Esterase–Activated Fluorescent Imaging Probe

    Kim, Youngmi; Choi, Yongdoo; Weissleder, Ralph; Tung, Ching-Hsuan

    2007-01-01

    An esterase-triggered probe 2 derived from a cyanine-based pH sensitive dye was developed for cell labeling. Permeation of probe 2 into cells and subsequent hydrolytic activation by cellular esterases result in a bright fluorescent intracellular signal.

  9. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  10. Global spatial sensitivity of runoff to subsurface permeability using the active subspace method

    Gilbert, James M.; Jefferson, Jennifer L.; Constantine, Paul G.; Maxwell, Reed M.

    2016-06-01

    Hillslope scale runoff is generated as a result of interacting factors that include water influx rate, surface and subsurface properties, and antecedent saturation. Heterogeneity of these factors affects the existence and characteristics of runoff. This heterogeneity becomes an increasingly relevant consideration as hydrologic models are extended and employed to capture greater detail in runoff generating processes. We investigate the impact of one type of heterogeneity - subsurface permeability - on runoff using the integrated hydrologic model ParFlow. Specifically, we examine the sensitivity of runoff to variation in three-dimensional subsurface permeability fields for scenarios dominated by either Hortonian or Dunnian runoff mechanisms. Ten thousand statistically consistent subsurface permeability fields are parameterized using a truncated Karhunen-Loéve (KL) series and used as inputs to 48-h simulations of integrated surface-subsurface flow in an idealized 'tilted-v' domain. Coefficients of the spatial modes of the KL permeability fields provide the parameter space for analysis using the active subspace method. The analysis shows that for Dunnian-dominated runoff conditions the cumulative runoff volume is sensitive primarily to the first spatial mode, corresponding to permeability values in the center of the three-dimensional model domain. In the Hortonian case, runoff volume is sensitive to multiple smaller-scale spatial modes and the locus of that sensitivity is in the near-surface zone upslope from the domain outlet. Variation in runoff volume resulting from random heterogeneity configurations can be expressed as an approximately univariate function of the active variable, a weighted combination of spatial parameterization coefficients computed through the active subspace method. However, this relationship between the active variable and runoff volume is more well-defined for Dunnian runoff than for the Hortonian scenario.

  11. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon;

    2015-01-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we...... its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect...... is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short...

  12. Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442.

    Wladimir Peters

    Full Text Available The endothelial glycocalyx (eGC plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force-epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp. extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic.

  13. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability.

    Ajiboye, T O; Mohammed, A O; Bello, S A; Yusuf, I I; Ibitoye, O B; Muritala, H F; Onajobi, I B

    2016-06-01

    Oxidative stress and membrane permeability as mode of antibacterial activity of aqueous extract of Syzygium aromaticum seeds against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was investigated. The concentration of phytochemical constituents of Syzygium aromaticum was determined using gas chromatography. Syzygium aromaticum seeds contain eugenol acetate > β-carophyllene > eugenin > eugenol > methyl salicylate > β-humulene > rhamnatin > fernesol > α-copeane > β-ylangene > kaempferol > cinnamic acid > oleanolic acid > benzaldehyde > α-humulene > vanillin > α-cubebene > carvicol > benzoic acid. Syzygium aromaticum showed antimicrobial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as 0.06 and 0.10 mg/mL respectively. Time kill susceptibility by Syzygium aromaticum at MBC values showed significant decrease in the optical density and colony-forming unit (CFU) of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Superoxide anion radical content of the bacterial cells increased significantly following exposure to the extract. In a similar vein, superoxide dismutase and catalase activities increased significantly, while the level of reduced glutathione reduced, malondialdehyde increased significantly in bacterial cells exposed to the extract. The extract at MBC also enhanced the leakage of 260 nm absorbing materials and outer membrane permeability. It is evident from the data generated from this study that aqueous extract of Syzygium aromaticum seeds enhanced membrane permeability and oxidative stress in Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. PMID:27038843

  14. Modulation of Emotion by Cognitive Activity

    Saea Iida

    2013-09-01

    Full Text Available While emotions themselves are beneficial for our survival, they are also the targets to be regulated appropriately to adapt to social environments. Previous studies have demonstrated that cognitive strategies such as cognitive reappraisal and expressive suppression can effectively enhance and attenuate emotions. Such cognitive strategies of emotion regulation are based on cortical modulation of sub-cortical emotion-related brain regions. Though in the prior studies emotion regulation was conducted in parallel with or after the emotion elicitation, a series of our studies showed that prior cognitive activities can automatically and unintentionally attenuate subsequent emotional responses. In this article, after reviewing the previous findings about emotion regulation, we introduce our empirical findings showing that cognitive activities where the neural system of emotion regulation would be recruited can unintentionally and automatically dampen psychological and physiological emotional responses. Finally, we propose possible neural mechanisms underlying modulation of emotion by cognitive activity.

  15. Effects of Neodymium on Growth, Pectinase Activity and Mycelium Permeability of Fusarium oxysporum

    2007-01-01

    The diameter of the colony of Fusarium oxysporum in solid medium, and the mycelium growth, pectinase activity, and mycelium permeability of Fusarium oxysporum in liquid medium under varying concentrations of Nd3+ (0, 2, 4, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, and 400 mg·L-1) were measured. The results indicated that the growth of Fusarium oxysporum was stimulated in solid medium when the concentration of Nd3+ ranges from 2 to 180 mg·L-1, whereas it was inhibited when Nd3+ concentration was greater than 200 mg·L-1. The colonies were fewer and smaller when Nd3+ was used in the solid medium. The growth of Fusarium oxysporum was inhibited in liquid medium when Nd3+ was used. The inhibition rate showed by the dry weight of mycelium ranged from 4.83% to 52.18% and increased with Nd3+ concentration. The pectinase activity decreased compared with that of controls. When the concentration of Nd3+ was 10 and 400 mg·L-1, the pectinase activity decreased by 95% at both concentrations. Mycelium cell membrane permeability increased when Nd3+ concentrations ranged from 10 to 400 mg·L-1 but decreased when Nd3+ concentration was 2 mg·L-1.

  16. An active cooling system for photovoltaic modules

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  17. Preparation and Visible Light Photocatalytic Activity for Photocatalyst of Permeable Glass Membrane/TiO2 Doped with Co

    HU Ke-Yan; CUI Ping; CHEN Xiao-Ming; ZHANG Min; LI Yong

    2007-01-01

    @@ The photocatalyst of permeable glass membrane/TiO2 doped with Co (permeable glass membrane/TiO2 doped with Co) is prepared by the sol-gel method. The morphology and phase of the samples are determined by the field emission scanning electron microscopy (FESEM) and x-ray diffraction experiment, respectively. The photocatalytic results show that the photocatalyst is sensitive to the visible light and exhibits excellent photocatalytic activity of photodegradation methylene blue. The photocatalytic mechanism is also discussed.

  18. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.

    Liao, Zhuangbin; Yang, Zhenguo; Piontek, Anna; Eichner, Miriam; Krause, Gerd; Li, Longxuan; Piontek, Joerg; Zhang, Jingjing

    2016-07-01

    The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5. PMID:27095710

  19. Gaia Payload Module Testing and Analysis Activities

    Soula, Laurent

    2012-07-01

    The Gaia objective is to produce a very accurate catalogue of 1 billion of sky objects in our galaxy and beyond. ASTRIUM’s extensive experience on silicon carbide (SiC) instruments has helped developing the latest-generation payload module. It integrates the most sensitive and stable telescopes ever made, mounted on a SiC torus structure supported by three bipods. This payload module has been tested in June 2011 by ASTRIUM at INTESPACE facilities in Toulouse. To conduct the sine qualification tests and support the data analyses in real-time, advanced tools have been used. Most of them have been developed in a previous ESA R&D project [1] “DYNamics: AssessMent and Improvement of TEst Data (DYNAMITED)” and implemented in a DynaWorks® environment. Mass Operator calculation, to evaluate the payload module interface loads from measured accelerations, or automatic correlation through a criterion based on FRF from tests or predictions, are part of these tools. Testing such a structure also revealed some piloting difficulties due to a quite low and varying damping of the structure and a strong coupling with the shaker. To take into account such phenomena in the correlation work, enhanced simulations have also been performed considering multi-points phased excitations. These analyses demonstrate the payload module qualification status and allow derivate a more representative model to be used in further coupled system activities.

  20. Caco-2 cells permeability evaluation of nifuroxazide derivatives with potential activity against methicillin-resistant Staphylococcus aureus (MRSA).

    B Fernandes, Mariane; Gonçalves, José E; C Tavares, Leoberto; Storpirtis, Sílvia

    2015-01-01

    Throughout the period of evaluation and selection in drug development, the assessment of the permeability potential of a compound to achieve an efficient refinement of the molecular structure has been widely appraised by the transport of substances across cell monolayers. This study aims to develop in vitro assays through Caco-2 cells in order to analyze the permeability of 5-nitro-heterocyclic compounds analogues to nifuroxazide with antimicrobial activity, especially showing promising activity against multidrug-resistant Staphylococcus aureus (MRSA). Caco-2 cell monolayers cultivated for 21 days in Transwell® plates were used for the in vitro permeability assays. The quantification of the nifuroxazide derivatives in the basolateral chambers was performed by a validated high performance liquid chromatography with UV (HPLC-UV) method. Apparent permeability values (Papp) show that these compounds can be considered as new drug candidates with the potential to present high absorption in vivo, according to the classifications of Yee and Biganzoli. The thiophenic derivatives showed permeability values higher than the furanic ones, being AminoTIO the compound with the greatest potential for the development of a new drug against MRSA, since it showed the best cytotoxicity, permeability and solubility ratio among all the derivatives. PMID:24918173

  1. IgE receptor-activated calcium permeability pathway in rat basophilic leukemia cells

    When antigen-stimulated 45Ca uptake is measured in RBL cells loaded with > 3 mM quin2, re-extrusion of 45Ca is minimized and the initial rate of 45Ca uptake reflects the true unidirectional influx of Ca. This influx correlates more closely with secretion than with the number of IgE receptors aggregated by antigen. The antigen-induced permeability pathway is saturable, having a Km of about 0.7 mM and a Vmax of 0.9 nmol Ca/106 cells/min and it persists for at least an hour provided that receptor aggregation is maintained. The negatively charged fluorescent probe bis-oxonol is insensitive to changes in the mitochondrial membrane potential and is, therefore, a useful plasma membrane potential indicator. Antigen-stimulation of RBL cells equilibrated with bis-oxonol causes a rapid depolarization that peaks within 2-3 minutes and persists until receptor aggregates are disrupted. Antigen-induced depolarization is seen in the absence of extracellular calcium, but is almost completely abolished when both sodium and calcium are replaced by glucose. Addition of calcium restores this response even when sodium is absent. This suggests that the IgE receptor-activated permeability pathway has a similar conductance for sodium and calcium ions

  2. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil

    Youssef W. Naguib

    2014-02-01

    Full Text Available Topical 5-fluorouracil (5-FU is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter. In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5% was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy.

  3. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  4. Effects of light activated in-office bleaching on permeability, microhardness, and mineral content of enamel.

    Parreiras, S O; Vianna, P; Kossatz, S; Loguercio, A D; Reis, A

    2014-01-01

    The aim of this study was to evaluate the permeability (PE), microhardness (KHN), and mineral change in enamel after LED/laser activated in-office bleaching. For PE, the coronal portion of premolars (n=51) was subjected to bleaching with 35% hydrogen peroxide (Whiteness HP Maxx, FGM Dental Products, Joinville, SC, Brazil). The samples were stained via the histochemical method, which involves a copper sulphate solution and rubeanic acid. The penetration of dye into the enamel was measured. The KHN of enamel was assessed before treatment, immediately after the bleaching treatment, and again after one week. The calcium and phosphorus content were analyzed with a scanning electron microscope with energy-dispersive X-ray (JSM 6360LV, Jeol Ltd, Tokyo, Japan). The data set from each test was subjected to appropriate parametric statistical analysis (α=0.05). No significant differences were observed for PE in NLA and LA compared to the control group (p=0.98), as well as for calcium (p=0.16) and phosphorus (p=0.80) content. Significant reduction of KHN after bleaching occurred for both groups (p<0.001). After immersion in artificial saliva, the KHN of the enamel for all groups was similar to that seen before bleaching. Light activation during in-office bleaching does not produce significant changes in the enamel compared to a non-light-activated technique. PMID:24815914

  5. Solar active envelope module with an adjustable transmittance/absorptance

    C. Villasante Villasante; I. del Hoyo; Pagola, I. (I.); Sanchez, M.; E. Aranzabe

    2015-01-01

    A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC) system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three ...

  6. Revision of the DELFIC Particle Activity Module

    Hooper, David A [ORNL; Jodoin, Vincent J [ORNL

    2010-09-01

    The Defense Land Fallout Interpretive Code (DELFIC) was originally released in 1968 as a tool for modeling fallout patterns and for predicting exposure rates. Despite the continual advancement of knowledge of fission yields, decay behavior of fission products, and biological dosimetry, the decay data and logic of DELFIC have remained mostly unchanged since inception. Additionally, previous code revisions caused a loss of conservation of radioactive nuclides. In this report, a new revision of the decay database and the Particle Activity Module is introduced and explained. The database upgrades discussed are replacement of the fission yields with ENDF/B-VII data as formatted in the Oak Ridge Isotope Generation (ORIGEN) code, revised decay constants, revised exposure rate multipliers, revised decay modes and branching ratios, and revised boiling point data. Included decay logic upgrades represent a correction of a flaw in the treatment of the fission yields, extension of the logic to include more complex decay modes, conservation of nuclides (including stable nuclides) at all times, and conversion of key variables to double precision for nuclide conservation. Finally, recommended future work is discussed with an emphasis on completion of the overall radiation physics upgrade, particularly for dosimetry, induced activity, decay of the actinides, and fractionation.

  7. Helium gas permeability of low activation SiC/SiC composite

    Permeability of helium gas in SiC fiber reinforced SiC composite (SiC/SiC composite) was measured by using a vacuum apparatus consisting two chambers. The SiC/SiC samples were prepared by different methods; polymer infiltration and pyrolysis (PIP), PIP and melt impregnation (MI), hot pressing (HP) and liquid phase sintering (LPS). The measurement of permeability was carried out with pressure of helium ranging from 102 to 105 Pa at room temperature. The permeability of the sample made by LPS method was several orders of magnitude lower than those of the other SiC/SiC composites. The lowest permeability, 4 x 10-11 m2s-1, was observed for the SiC/SiC composite made by LPS using SiC fibers and nano powder of β-SiC. The largest permeability, 5 x 10-5 m2s-1, was observed for the SiC/SiC composite made by PIP. The permeability of the SiC/SiC composite depended on the structures of fiber bundle and matrix, and roughly corresponded to the microscopic structures, i.e. pores and cracks. (author)

  8. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain

    Lochhead, Jeffrey J; McCaffrey, Gwen; Sanchez-Covarrubias, Lucy; Finch, Jessica D.; DeMarco, Kristin M; Quigley, Colleen E.; Davis, Thomas P.; Ronaldson, Patrick T

    2011-01-01

    Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain ba...

  9. Effects of ionizing radiation on the blood brain barrier permeability to pharmacologically active substances

    Trnovec, T.; Kallay, Z.; Bezek, S. (Institute of Experimental Pharmacology, Bratislava (Yugoslavia))

    1990-12-01

    Ionizing radiation can impair the integrity of the blood brain barrier (BBB). Data on early and late damage after brain irradiation are usually reported separately, yet a gradual transition between these two types has become evident. Signs appearing within 3 weeks after irradiation are considered to be early manifestations. The mechanism of radiation-effected integrity impairment of the BBB is discussed in relation to changes in morphological structures forming the BBB, the endothelium of intracerebral vessels, and in the surrounding astrocytes. Alterations in the function of the BBB are manifested in the endothelium by changes in the ultrastructural location of the activity of phosphatases and by the activation of pinocytotic vesicular transport, and in astrocyte cytoplasm by glycogen deposition. The changes in ultrastructure were critically surveyed with regard to increasing doses of radiation to the brain in the range of 5 Gy to 960 Gy. The qualitative as well as the semiquantitative and quantitative observations on the passage of substances across the damaged BBB were treated separately. Qualitative changes are based mainly on findings of extravasation of vital stains and of labelled proteins. The quantitative studies established differences in radiation-induced changes in the permeability of the BBB depending on the structure and physico-chemical properties of the barrier penetrating tracers. Indirect evaluation of radiation-induced BBB changes is based on studies of pharmacological effects of substances acting on the CNS. In conclusion, radiation impairs significantly the integrity of the BBB following single irradiation of the brain with a dose exceeding 10-15 Gy. The response of the BBB to ionizing radiation is dependent both on the dose to which the brain is exposed and on specific properties of the tracer. 68 references.

  10. Sensitivity of predicted scaling and permeability in Enhanced Geothermal Systems to Thermodynamic Data and Activity Models

    Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj

    2010-05-01

    A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the

  11. FECAL CALPROTECTIN AND GASTROINTESTINAL (GI) PERMEABILITY CORRELATE WITH DISEASE ACTIVITY INDEX, AND HISTOLOGIC, ENDOSCOPIC, AND RADIOLOGIC FINDINGS IN CHILDREN WITH CROHN DISEASE (CD)

    Fecal calprotectin and permeability are noninvasive measures of GI inflammation and damage, respectively. However, there are scant data as to the possible association between the tests and CD disease activity in children. We hypothesized that levels of fecal calprotectin and permeability would corre...

  12. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    Tao Huang; Dongwei Li; Liu Kexiang; Yuewei Zhang

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the...

  13. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation.

    Xu, Qiu-lin; Guo, Xiao-hua; Liu, Jing-xian; Chen, Bin; Liu, Zhi-feng; Su, Lei

    2015-04-01

    Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10 mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20 µmol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia. PMID:25492552

  14. Lipid modulation of neuronal cholinergic activity

    Phospholipids are the major lipids in the plasma membrane, and it is now evident that the function of phospholipids exceeds that of the role of barrier between different aqueous compartments. Several lines of evidence suggest that a major plasma membrane lipids, phosphatidylcholine, may be a useful compound for modulating presynaptic cholinergic transmission. In order to investigate the effects of PC on cholinergic terminals, rat cortical synaptosomes were preloaded with [3H]-ACh and then treated with small unilamellar vesicles (SUV) composed of dipalmitoylphosphatidylcholine (DPPC) at concentrations (0.8-1.5 mg/ml) similar to those found circulating in plasma. The effects of DPPC on levels, hydrolysis, release, and synthesis of [3H]-ACh were then examined. Dipalmitoylphosphatidylcholine decreased the levels of [3H]-ACh. This decrease does not result from a dilution of the radioactive [3H]-choline by nonradioactive choline derived from PC. Specifically, it is the S3 (cytoplasmic) level of [3H]-ACh that is decreased by DPPC treatment. This decrease appears to be partially due to lipid activation of an intraterminal cholinesterase which results in hydrolysis of nonvesicular [3H]-ACh. The ability of the lipid to interfere with exocytosis may account for the blockade of the K+ induced [3H]-ACh release from the P3 (vesicular) fraction. The high affinity choline transporter was competitively inhibited by DPPC treatment when synaptosomes were treated with DPPC prior to [3H]-choline loading; the ubiquitous low affinity transport was not affected. These effects were specific for cholinergic neurons since the uptake and release of dopamine and norepinephrine from the substantia nigra and the cortex, respectively, were not affected

  15. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide.

    Hu, Kuan; Geng, Hao; Zhang, Qingzhou; Liu, Qisong; Xie, Mingsheng; Sun, Chengjie; Li, Wenjun; Lin, Huacan; Jiang, Fan; Wang, Tao; Wu, Yun-Dong; Li, Zigang

    2016-07-01

    The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X-ray diffraction analysis suggests that the absolute configuration of the in-tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation. PMID:27167181

  16. Bile enhances glucose uptake, reduces permeability, and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue.

    Bakke, Anne Marie; Chikwati, Elvis M; Venold, Fredrik F; Sahlmann, Christian; Holm, Halvor; Penn, Michael H; Oropeza-Moe, Marianne; Krogdahl, Åshild

    2014-02-01

    Antinutritional factors (ANFs) can disrupt digestive and other intestinal functions. ANFs in soybean meal (SBM) are implicated in proliferative and inflammatory responses in the intestine of various (functionally) monogastric animals, including Atlantic salmon (Salmo salar L.). The goal of the current study was to investigate the effect of ex vivo exposure of mid and distal intestinal tissue of salmon to soybean saponins (SAP), lectin (LEC) and Kunitz' trypsin inhibitor (KTI), singly and in combination, on epithelial function, as assessed by measuring in vitro glucose uptake pathways along a glucose concentration gradient. As solubilization of SAP in the calcium-containing Ringer's solution was problematic but resolved with the addition of a physiological concentration of bile collected from the gall bladder of salmon, an evaluation of bile effects became an added element. Results indicated that bile increased baseline glucose absorption and possibly transport, and also had a protective effect on the epithelial barrier, at least partially due to taurocholate. Compared to controls, tissues exposed to LEC+bile, KTI+bile and LEC+KTI+bile exhibited increased glucose uptake at the higher glucose concentrations, apparently due to markedly increased tissue permeability. Addition of SAP, however, attenuated the response, possibly by binding bile components. SAP+bile, also in combination with LEC and/or KTI, as well as LEC, KTI and LEC+KTI without bile often reduced transcellular glucose uptake pathways, while maintaining low tissue permeability. SAP+LEC+KTI+bile, LEC and KTI caused the most marked reductions. The distal intestine was more affected, reflecting the restriction of in vivo SBM-induced inflammatory changes to this region. PMID:24291392

  17. Activated protein C modulates the proinflammatory activity of dendritic cells

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  18. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  19. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the

  20. Exploring the biophysical evidence that mammalian two-pore channels are NAADP-activated calcium-permeable channels.

    Pitt, Samantha J; Reilly-O'Donnell, Benedict; Sitsapesan, Rebecca

    2016-08-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca(2+) from acidic intracellular endolysosomal Ca(2+) stores. It is widely accepted that two types of two-pore channels, termed TPC1 and TPC2, are responsible for the NAADP-mediated Ca(2+) release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca(2+) . Ion conduction and permeability also differ markedly. TPC1 and TPC2 are permeable to a range of cations although biophysical experiments suggest that TPC2 is slightly more selective for Ca(2+) over K(+) than TPC1 and hence capable of releasing greater quantities of Ca(2+) from acidic stores. TPC1 is also permeable to H(+) and therefore may play a role in regulating lysosomal and cytosolic pH, possibly creating localised acidic domains. The significantly different gating and ion conducting properties of TPC1 and TPC2 suggest that these two ion channels may play complementary physiological roles as Ca(2+) -release channels of the endolysosomal system. PMID:26872338

  1. Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor.

    Shaver, Ciara M; Grove, Brandon S; Putz, Nathan D; Clune, Jennifer K; Lawson, William E; Carnahan, Robert H; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2015-11-01

    Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI. PMID:25884207

  2. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity and stress-induced permeability changes

    Madonia, Paolo; Cusano, Paola; Diliberto, Iole Serena; Cangemi, Marianna

    2016-04-01

    Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009 - May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai-Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July-August 2011. We interpreted the seismic-related anomalies as "crustal fluid transients", i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.

  3. Modulation of Emotion by Cognitive Activity

    Saea Iida; Hiroki C. Tanabe; Takashi Nakao; Hideki Ohira

    2013-01-01

    While emotions themselves are beneficial for our survival, they are also the targets to be regulated appropriately to adapt to social environments. Previous studies have demonstrated that cognitive strategies such as cognitive reappraisal and expressive suppression can effectively enhance and attenuate emotions. Such cognitive strategies of emotion regulation are based on cortical modulation of sub-cortical emotion-related brain regions. Though in the prior studies emotion regulation was cond...

  4. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  5. Photothermal configuration applied to the study of water vapor permeability in biodegradable films under several water activities

    Lopez-Bueno, G.; Martín-Martínez, E. San; Cruz-Orea, A.; Tomas, S. A.; Tufiño, M.; Sanchez, F.

    2003-01-01

    A photothermal configuration was used to determine the water vapor permeability of biodegradable films (nixtamalized corn pericarps). The films were obtained from corn grains boiled in an alkaline solution containing water and Ca(OH)2. Samples were exposed to saturated salt solutions with relative humidity in the range 7%-97%. The water vapor diffusion coefficient was determined as a function of relative humidity. The obtained coefficients agreed with data available in the literature. It was also found that the photoacoustic amplitude shows a linear dependence on the water activity, in agreement with our theoretical model.

  6. Recombinant Bactericidal/Permeability-Increasing Protein (rBPI21) in Combination with Sulfadiazine Is Active against Toxoplasma gondii

    Khan, Anis A.; Lambert, Lewis H.; Remington, Jack S.; Araujo, Fausto G.

    1999-01-01

    The activity of recombinant bactericidal/permeability-increasing protein (rBPI21), alone or in combination with sulfadiazine, on the intracellular replication of Toxoplasma gondii was assessed in vitro and in mice with acute toxoplasmosis. rBPI21 markedly inhibited the intracellular growth of T. gondii in human foreskin fibroblasts (HFFs). Following 72 h of exposure, the 50% inhibitory concentration of rBPI21 for T. gondii was 2.6 μg/ml, whereas only slight cytotoxicity for HFF cells was obse...

  7. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation. PMID:27410614

  8. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota.

    Jing-Hua Wang

    ameliorates obesity and related metabolic endotoxemia via regulating distribution of gut flora and gut permeability.

  9. Optimal Coding Predicts Attentional Modulation of Activity in Neural Systems

    Jaramillo, Santiago; Pearlmutter, Barak A.

    2007-01-01

    Neuronal activity in response to a fixed stimulus has been shown to change as a function of attentional state, implying that the neural code also changes with attention. We propose an information-theoretic account of such modulation: that the nervous system adapts to optimally encode sensory stimuli while taking into account the changing relevance of different features. We show using computer simulation that such modulation emerges in a coding system informed about the uneven relevance of ...

  10. Network-dependent modulation of brain activity during sleep

    Watanabe, T.; Kan, S.; Koike, T.; Misaki, M; Konishi, S.; Miyauchi, S; Miyahsita, Y.; Masuda, N.

    2014-01-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy mod...

  11. Modulation of brain activity during phonological familiarization

    Majerus, Steve; Van der Linden, Martial; Collette, Fabienne; Laureys, Steven; Poncelet, Martine; Degueldre, Christian; Delfiore, Guy; Luxen, André; Salmon, Eric

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased activation in the left posterior superior temporal gyrus, in the bilateral temporal pole and middle temporal gyri. At the same time, interaction analysis ...

  12. Nonlinear active wave modulation approach for microdamage detection

    Wu, Hwai-Chung; Warnemuende, Kraig

    2001-07-01

    Several nondestructive testing methods can be used to estimate the extents of damage in a concrete structure. Pulse-velocity and amplitude attenuation, are very common in nondestructive ultrasonic evaluation. Velocity of propagation is not very sensitive to the degrees of damage unless a great deal of micro-damage having evolving into localized macro-damage. Amplitude attenuation is potentially more sensitive than pulse-velocity. However, this method depends strongly on the coupling conditions between transducers and concrete, hence unreliable. A new active modulation approach, Nonlinear Active Wave Modulation Spectroscopy, is adopted in our study. In this procedure, a probe wave will be passed through the system in a similar fashion to regular acoustics. Simultaneously, a second, low frequency modulating wave will be applied to the system to effectively change the size and stiffness of flaws microscopically and cyclically, thereby causing the frequency modulation to change cyclically as well. The resulting amplified modulations will be correlated to the extents of damage with the effect that even slight damage should become quantifiable. This study unveils the potential of nonlinear frequency analysis methods for micro-damage detection and evaluation using actively modulated acoustic signals. This method can interrogate materials exaggerating the nonlinearly that exists due to microcracking and deterioration.

  13. Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates

    Beverly Z Packard; Akira Komoriya

    2008-01-01

    Over the past decade the importance of signaling from reporter molecules inside live cells and tissues has been clearly established. Biochemical events related to inflammation, tumor metastasis and proliferation, and viral infectivity and replication are examples of processes being further defined as more molecular tools for live cell measurements become available. Moreover, in addition to quantitating parameters related to physiologic processes, real-time imaging of molecular interactions that compose basic cellular activities are providing insights into understanding disease mechanisms as well as extending clinical efficacy of therapeutic regimens. In this review the use of highly cell-permeable fluorogenic substrates that report protease activities inside live cells is described; applications to defining the molecular events of two cellular processes, i.e., apoptosis and cell-mediated cytotoxicity, are then illustrated.

  14. Modulation of Brain Activity during Phonological Familiarization

    Majerus, S.; Van der Linden, M.; Collette, F.; Laureys, S.; Poncelet, M.; Degueldre, C.; Delfiore, G.; Luxen, A.; Salmon, E.

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased…

  15. Nitroprusside modulates pulmonary vein arrhythmogenic activity

    Chen Yao-Chang

    2010-03-01

    Full Text Available Abstract Background Pulmonary veins (PVs are the most important sources of ectopic beats with the initiation of paroxysmal atrial fibrillation, or the foci of ectopic atrial tachycardia and focal atrial fibrillation. Elimination of nitric oxide (NO enhances cardiac triggered activity, and NO can decrease PV arrhythmogensis through mechano-electrical feedback. However, it is not clear whether NO may have direct electrophysiological effects on PV cardiomyocytes. This study is aimed to study the effects of nitroprusside (NO donor, on the ionic currents and arrhythmogenic activity of single cardiomyocytes from the PVs. Methods Single PV cardiomyocytes were isolated from the canine PVs. The action potential and ionic currents were investigated in isolated single canine PV cardiomyocytes before and after sodium nitroprusside (80 μM, using the whole-cell patch clamp technique. Results Nitroprusside decreased PV cardiomyocytes spontaneous beating rates from 1.7 ± 0.3 Hz to 0.5 ± 0.4 Hz in 9 cells (P Conclusion Nitroprusside regulates the electrical activity of PV cardiomyocytes, which suggests that NO may play a role in PV arrhythmogenesis.

  16. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  17. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis

    Valéria G. F. Pinheiro

    2006-12-01

    Full Text Available Low antimycobacterial drug concentrations have been observed in tuberculosis (TB patients under treatment. The lactulose/mannitol urinary excretion test (L/M, normally used to measure intestinal permeability, may be useful to assess drug absorption. The objective of this research was to study intestinal absorptive function and bioavailability of rifampin and isoniazid in TB patients. A cross sectional study was done with 41 patients and 28 healthy controls, using the L/M test. The bioavailabilities of rifampin (R and isoniazid (H were evaluated in 18 patients receiving full doses. Urinary excretion of mannitol and lactulose, measured by HPLC, was significantly lower in TB patients. The serum concentrations of the drugs were below the expected range for R (8-24 mcg/mL or H (3-6 mcg/mL in 16/18 patients. Analyzing the drugs individually, 12/18 patients had low serum concentrations of R, 13/18 for H and 8/18 for both drugs. We suggest that there is a decrease in the functional absorptive area of the intestine in TB patients, which would explain the reduced serum concentrations of antituberculosis drugs. There is a need for new approaches to improve drug bioavailability in TB patients.

  18. Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.; Bolon, Daniel N. A.; Schiffer, Celia A.

    2012-01-01

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Di...

  19. [Peptidergic modulation of the hippocampus synaptic activity].

    Skrebitskiĭ, V G; Kondratenko, R V; Povarov, I S; Dereviagin, V I

    2011-11-01

    Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent. PMID:22390072

  20. Muscle metaboreceptor modulation of cutaneous active vasodilation

    Crandall, C. G.; Stephens, D. P.; Johnson, J. M.

    1998-01-01

    PURPOSE: Isometric handgrip exercise in hyperthermia has been shown to reduce cutaneous vascular conductance (CVC) by inhibiting the cutaneous active vasodilator system. METHODS: To identify whether this response was initiated by muscle metaboreceptors, in seven subjects two 3-min bouts of isometric handgrip exercise in hyperthermia were performed, followed by 2 min of postexercise ischemia (PEI). An index of forearm skin blood flow (laser-Doppler flowmetry) was measured on the contralateral arm at an unblocked site and at a site at which adrenergic vasoconstrictor function was blocked via bretylium iontophoresis to reveal active cutaneous vasodilator function unambiguously. Sweat rate was measured via capacitance hygrometry, CVC was indexed from the ratio of skin blood flow to mean arterial pressure and was expressed as a percentage of maximal CVC at that site. In normothermia, neither isometric exercise nor PEI affected CVC (P > 0.05). RESULTS: The first bout of isometric handgrip exercise in hyperthermia reduced CVC at control sites and this reduction persisted through PEI (pre-exercise: 59.8 +/- 5.4, exercise: 49.8 +/- 4.9, PEI: 49.7 +/- 5.3% of maximum; both P < 0.05), whereas there were no significant changes in CVC at the bretylium treated sites. The succeeding bout of isometric exercise in hyperthermia significantly reduced CVC at both untreated (pre-exercise: 59.0 +/- 4.8, exercise: 47.3 +/- 4.0, PEI: 50.1 +/- 4.1% of maximum; both P < 0.05) and bretylium treated sites (pre-exercise: 61.4 +/- 7.3, exercise: 50.6 +/- 5.1, PEI: 53.9 +/- 6.0% of maximum, both P < 0.05). At both sites, CVC during PEI was lower than during the pre-exercise period (P < 0.05). Sweat rate rose significantly during both bouts of isometric exercise and remained elevated during PEI. CONCLUSIONS: These data suggest that the reduction in CVC during isometric exercise in hyperthermia, including the inhibition of the active vasodilator system, is primarily mediated by muscle

  1. Total Cellular RNA Modulates Protein Activity.

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  2. Introduction of an active enzyme into permeable cells of Escherichia coli

    Plasmolysed cells of Escherichia coli N212 (uvrA recA) acquired ultraviolet resistance when the cells were exposed to high concentrations of T4 endonuclease V. With increasing concentrations of T4 enzyme, survivals of plasmolysed cells after ultraviolet irradiation increased while colony-forming ability of unirradiated plasmolysed cells was not significantly affected by the enzyme treatment. Under appropriate conditions more than 200 fold increase in survivals was observed. When plasmolysed cells were treated with a pre-heated enzyme preparation or enzyme fractions derived from T4v1 (endonuclease V-deficient mutant)-infected cells, only little or no reactivation took place. Permeabilization of cells prior to the enzyme treatment was essential for the effective reactivation. Treatment of intact cells with the T4 enzyme did not cause any reactivation. Cells treated with 20mMEGTA or 50mM CaCl2 in cold were reactivated to certain extents by the enzyme, but the extents of the reactivation were far less compared to those of plasmolysed cells. Plasmolysed cells of strains carrying a mutation in one of uvrA, uvrB and uvrC genes were reactivated by introduction of T4 endonuclease V, as was the uvrA recA double mutant. UvrD mutants were also reactivated, but rather slightly. However, wild type strain as well as strains having a mutation in recA or polA gene were not reactivated. From these results it was suggested that T4 endonuclease V, taken up into permeable cells, can function in vivo to replace defective functions, which are controlled by the uvr genes. The conditions established in the present study may be used for introduction of other proteins into viable bacterial cells. (orig.)

  3. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  4. Application of Discontinuous PWM Modulation in Active Power Filters

    Blaabjerg, Frede; Asiminoaei, Lucian; Rodriguez, Pedro

    2008-01-01

    Classical discontinuous pulsewidth modulations (DPWMs) may not be efficiently applied in active power filters (APFs), because it is hard to predict the peak values of the inverter current, and consequently it is difficult to calculate the position of the clamped interval, that minimizes the switc...

  5. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A. (UMASS, MED)

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  6. Solar active envelope module with an adjustable transmittance/absorptance

    C. Villasante Villasante

    2015-06-01

    Full Text Available A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three glazed chambers with advanced coatings and frames to assure a minimum thermal transmittance while allowing transparency. A fluid containing heat-absorbing nanoparticles flows inside the central chamber and is heated up due to the impinging solar energy. Unlike other systems proposed in the past, which included transparency control systems based on complex filters and chemical processes, the absorption of the module is controlled by the variation of the thickness of the central chamber with a mechanical device. That is, varying the thickness of the central chamber, it allows controlling the absorptance of the whole system and, as a result, indoor day-lighting and thermal loads. Therefore, a new system is proposed that enables to:  

  7. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  8. Synergistic inhibition of T-cell activation by a cell-permeable ZAP-70 mutant and ctCTLA-4

    Kim, Kyun-Do [Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); Choi, Je-Min; Chae, Wook-Jin [Department of Immunobiology, Yale University School of Medicine, New Haven CT 06520 (United States); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); ForHumanTech Co., Ltd., Kowoon Institute of Technology Innovation, Bldg. 706, Suwon (Korea, Republic of)

    2009-04-10

    T-cell activation requires TcR-mediated and co-stimulatory signals. ZAP-70 participates in the initial step of TcR signal transduction, while a co-receptor, CTLA-4, inhibits T-cell activation. In previous studies, the overexpression of a ZAP-70 mutant (ZAP-70-Y319F) inhibited the TcR-induced activation of NFAT and IL-2 production, while Hph-1-ctCTLA-4 prevented allergic inflammation. To develop an effective immunosuppressive protein drug that blocks both TcR-mediated and co-stimulatory signaling pathways, a fusion protein of ZAP-70-Y319F and the Hph-1 protein transduction domain was generated. Hph-1-ZAP-70-Y319F inhibited the phosphorylation of ZAP-70-Tyr{sup 319}, LAT-Tyr{sup 191}, and p44/42 MAPK induced by TcR stimulation, NFAT- and AP-1-mediated gene transcription, and the induction of CD69 expression and IL-2 secretion. Hph-1-ZAP-70-Y319F and Hph-1-ctCTLA-4 synergistically inhibited signaling events during T-cell activation. This is the first report to demonstrate the synergistic inhibition of signals transmitted via TcR and its co-stimulatory receptor by cell-permeable forms of intracellular signal mediators.

  9. Optimized Pulse Width Modulation for transformerless active-NPC inverters

    Achilladelis, Nikolaos; Koutroulis, Eftichios; Blaabjerg, Frede

    2014-01-01

    The transformerless DC/AC inverter topologies are employed in Photovoltaic systems in order to improve the power conversion efficiency, power density and cost. The Active-Neutral Point Clamped (Active-NPC) transformerless inverters have the advantage of achieving better thermal balance among their...... power semiconductors. In this paper, a new modulation technique is proposed for optimally controlling the power switches employed in transformerless Active-NPC inverters. The design results demonstrate that compared to the existing PWM strategies, using the proposed method results in lower total power...... losses and significantly better distribution of the power losses among the semiconductors of the Active-NPC inverter....

  10. Enhancement of vascular permeability by specific activation of protease-activated receptor-1 in rat hindpaw: a protective role of endogenous and exogenous nitric oxide

    Kawabata, Atsufumi; Kuroda, Ryotaro; Nishikawa, Hiroyuki; Asai, Toshiharu; Kataoka, Kazuo; Taneda, Mamoru

    1999-01-01

    To clarify the role of the first thrombin receptor/protease-activated receptor (PAR)-1 in an inflammatory process, we tested and characterized the effect of intraplantar (i.pl.) administration of the highly specific PAR-1 agonist TFLLR-NH2 in rat hindpaw.TFLLR-NH2 administered i.pl. at 0.01–0.03 μmol per paw enhanced vascular permeability in the hindpaw and produced paw oedema in a dose-dependent manner. This effect was almost completely abolished by repeated pretreatment with compound 48/80 ...

  11. Contextual modulation of hippocampal activity during picture naming.

    Llorens, A; Dubarry, A-S; Trébuchon, A; Chauvel, P; Alario, F-X; Liégeois-Chauvel, C

    2016-08-01

    Picture naming is a standard task used to probe language processes in healthy and impaired speakers. It recruits a broad neural network of language related areas, among which the hippocampus is rarely included. However, the hippocampus could play a role during picture naming, subtending, for example, implicit learning of the links between pictured objects and their names. To test this hypothesis, we recorded hippocampal activity during plain picture naming, without memorization requirement; we further assessed whether this activity was modulated by contextual factors such as repetition priming and semantic interference. Local field potentials recorded from intracerebral electrodes implanted in the healthy hippocampi of epileptic patients revealed a specific and reliable pattern of activity, markedly modulated by repetition priming and semantic context. These results indicate that the hippocampus is recruited during picture naming, presumably in relation to implicit learning, with contextual factors promoting differential hippocampal processes, possibly subtended by different sub-circuitries. PMID:27380274

  12. Sodium Permeability of a Cloned Small-Conductance Calcium-Activated Potassium Channel

    Shin, Narae; Soh, Heun; Chang, Sunghoe; Kim, Do Han; Park, Chul-Seung

    2005-01-01

    Small-conductance Ca2+-activated potassium channels (SKCa channels) are heteromeric complexes of pore-forming main subunits and constitutively bound calmodulin. SKCa channels in neuronal cells are activated by intracellular Ca2+ that increases during action potentials, and their ionic currents have been considered to underlie neuronal afterhyperpolarization. However, the ion selectivity of neuronal SKCa channels has not been rigorously investigated. In this study, we determined the monovalent...

  13. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier

  14. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma.

    Cornali, E.; Zietz, C; Benelli, R; Weninger, W.; Masiello, L.; Breier, G; Tschachler, E; Albini, A; Stürzl, M

    1996-01-01

    Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as we...

  15. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  16. Impact of the Enhanced Permeability and Retention (EPR Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates

    Amit K. Rajora

    2014-08-01

    Full Text Available Polymer-drug conjugates have demonstrated clinical potential in the context of anticancer therapy. However, such promising results have, to date, failed to translate into a marketed product. Polymer-drug conjugates rely on two factors for activity: (i the presence of a defective vasculature, for passive accumulation of this technology into the tumour tissue (enhanced permeability and retention (EPR effect and (ii the presence of a specific trigger at the tumour site, for selective drug release (e.g., the enzyme cathepsin B. Here, we retrospectively analyse literature data to investigate which tumour types have proved more responsive to polymer-drug conjugates and to determine correlations between the magnitude of the EPR effect and/or expression of cathepsin B. Lung, breast and ovarian cancers showed the highest response rate (30%, 47% and 41%, respectively for cathepsin-activated conjugates and 31%, 43%, 40%, across all conjugates. An analysis of literature data on cathepsin content in various tumour types showed that these tumour types had high cathepsin content (up to 3835 ng/mg for lung cancer, although marked heterogeneity was observed across different studies. In addition, these tumour types were also reported as having a high EPR effect. Our results suggest that a pre-screening of patient population could bring a more marked clinical benefit.

  17. Surface plasmon polariton modulator with optimized active layer

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...... from the pattern size and filling factor of the active material are analyzed for tuned permittivity of the ITO layer. Direct simulation of the device functionality validates optimization design....

  18. Target cell-specific modulation of neuronal activity by astrocytes

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  19. Active removal of large massive objects by hybrid propulsion module

    Luigi T. De Luca; Lavagna, Mich?le; Maggi, Filippo; Tadini, Pietro; Pardini, Carmen; Anselmo, Luciano; Grassi, Michele; Tancredi, Urbano; Francesconi, Alessandro; Chiesa, Sergio; Viola, Nicole; Bonnal, Christophe

    2013-01-01

    This paper deals with the feasibility study of a mission for the active removal of a large massive object, such as the second stage of the Zenit launcher or the Envisat spacecraft, abandoned in the most populated orbit region in low Earth orbit. Critical mission aspects and related technologies are investigated at a preliminary level. In particular, an innovative electro-adhesive system for target capture, mechanical systems for chaser-debris hard docking and a hybrid propulsion module for re...

  20. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m2 g-1, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  1. Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes.

    Yang, Yanqin; Wang, Wenwen; Xiong, Zhewen; Kong, Jiamin; Qiu, Yuwen; Shen, Feihai; Huang, Zhiying

    2016-08-01

    Triptolide (TP), an active component of the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has multiple pharmacological effects. However, the severe toxicity of TP greatly restricts its clinical applications. Although TP exposure causes serious heart injury, the mechanism underlying TP-induced cardiotoxicity has rarely been investigated. In previous studies, we found that TP-induced oxidative stress was involved in the mitochondria-dependent apoptosis of cardiomyocytes. Opening of the mitochondrial permeability transition pore (mPTP) is the key to the mitochondrial dysfunction in cardiac toxicity. The aim of this study was to investigate the potential cardioprotective effects of sirtuin 3 (SIRT3) on the mPTP. In the present study, the cytotoxicity of TP was accompanied by the up-regulation of the SIRT3 protein level and its rapid aggregation in nuclei and mitochondria. The SIRT3-FOXO3 signaling pathway was activated simultaneously, resulting in increased transcription of manganese superoxide dismutase (MnSOD) and catalase (CAT) for the elimination of reactive oxygen species (ROS). In addition, augmentation of the SIRT3 level via the overexpression plasmid SIRT3-Flag provided resistance to TP-induced cellular damage, whereas knocking down the SIRT3 level via siRNA accelerated the damage. Because it is an activator of SIRT3, the protective effect of resveratrol was also evaluated in H9c2 cells. In conclusion, the current results suggest that activation of SIRT3 substantially ameliorates the detrimental effects of TP by closing the mPTP. PMID:27064125

  2. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    Marie-Edith Arnal

    Full Text Available Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12 or mothers treated with the antibiotic (ATB amoxicillin around parturition (n = 11. Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic

  3. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  4. Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway.

    Yang, Jin-Ting; Qian, Ling-Bo; Zhang, Feng-Jiang; Wang, Jue; Ai, Heng; Tang, Li-Hui; Wang, Hui-Ping

    2015-04-01

    Myocardial ischemia/reperfusion (I/R) injury in diabetes is associated with oxidative stress, endothelial nitric oxide synthase (eNOS) dysfunction, and mitochondrial collapse, whereas luteolin is known to protect the cardiovascular system against diabetes and I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in diabetic rats by affecting eNOS and the mitochondrial permeability transition pore (mPTP). After diabetic rats were produced by streptozotocin treatment (65 mg/kg) for 3 weeks, luteolin (100 mg·kg·d) or L-NAME (25 mg·kg·d) was administered intragastrically for 2 weeks. Hearts were then isolated and subjected to 30 minutes of global ischemia followed by 120 minutes of reperfusion. Pretreatment with luteolin significantly improved left ventricular function and coronary flow throughout reperfusion, increased cardiac tissue viability and manganese superoxide dismutase (MnSOD) activity, and reduced coronary lactate dehydrogenase release, and the myocardial malonaldehyde level in diabetic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by L-NAME. Luteolin also significantly upregulated eNOS expression in diabetic rat hearts after I/R. Ca-induced mPTP opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated diabetic rats, and this effect was attenuated by L-NAME. These findings indicate that luteolin protects the diabetic heart against I/R injury by upregulating the myocardial eNOS pathway, and downstream effects include the enhancement of MnSOD and inhibition of mPTP. PMID:25502309

  5. Cost Effective System Modeling of Active Micro- Module Solar Tracker

    Md. Faisal Shuvo

    2014-01-01

    Full Text Available The increasing interests in using renewable energies are coming from solar thermal energy and solar photovoltaic systems to the micro production of electricity. Usually we already have considered the solar tracking topology in large scale applications like power plants and satellite but most of small scale applications don’t have any solar tracker system, mainly because of its high cost and complex circuit design. From that aspect, this paper confab microcontroller based one dimensional active micro-module solar tracking system, in which inexpensive LDR is used to generate reference voltage to operate microcontroller for functioning the tracking system. This system provides a fast response of tracking system to the parameters like change of light intensity as well as temperature variations. This micro-module model of tracking system can be used for small scale applications like portable electronic devices and running vehicles.

  6. Abnormal Task Modulation of Oscillatory Neural Activity in Schizophrenia

    Elisa C Dias

    2013-08-01

    Full Text Available Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue A is followed by a target X, ignoring other letter combinations. Patients show reduced hit rate to go trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1, as well as later cognitive components (N2, P3, CNV. Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths.Significant task-related event-related desynchronization (ERD was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.

  7. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts.

    Denev, Petko; Kratchanova, Maria; Ciz, Milan; Lojek, Antonin; Vasicek, Ondrej; Blazheva, Denitsa; Nedelcheva, Plamena; Vojtek, Libor; Hyrsl, Pavel

    2014-01-01

    The present study provides a comprehensive data on the antioxidant, antimicrobial and neutrophil-modulating activities of extracts from six medicinal plants--blackberry (Rubus fruticosus) leaves, chokeberry (Aronia melanocarpa) leaves, hawthorn (Crataegus monogyna) leaves, lady's mantle (Alchemilla glabra) aerial parts, meadowsweet (Filipendula ulmaria) aerial parts and raspberry (Rubus idaeus) leaves. In order to analyze the antioxidant activity of the herbs, several methods (ORAC, TRAP, HORAC and inhibition of lipid peroxidation) were used. Blackberry leaves and meadowsweet extracts revealed the highest antioxidant activities via all methods. All extracts studied blocked almost completely the opsonized zymosan particle-activated ROS production by neutrophils from human whole blood. On the other hand, the effect of extracts on phorbol myristate acetate-activated ROS production was much milder and even nonsignificant in the case of chokeberry leaves. This latter result suggests that extracts (apart from their antioxidative activity) interfere with the signaling cascade of phagocyte activation upstream of the protein kinase C activation. The antimicrobial activity of the investigated extracts against 11 human pathogens was investigated using three different methods. Meadowsweet and blackberry leaves extracts had the highest antimicrobial effect and the lowest minimal inhibiting concentrations (MICs) against the microorganisms tested. PMID:24945135

  8. Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity.

    Richardson, Andrew P; Halestrap, Andrew P

    2016-05-01

    Inhibition of the mitochondrial permeability transition pore (MPTP) by the novel inhibitor GNX-4975 was characterized. Titration of MPTP activity in de-energized rat liver mitochondria allowed determination of the number of GNX-4975-binding sites and their dissociation constant (Ki). Binding sites increased in number when MPTP opening was activated by increasing [Ca(2+)], phenylarsine oxide (PAO) or KSCN, and decreased when MPTP opening was inhibited with bongkrekic acid (BKA) or ADP. Values ranged between 9 and 50 pmol/mg of mitochondrial protein, but the Ki remained unchanged at ∼1.8 nM when the inhibitor was added before Ca(2+) However, when GNX-4975 was added after Ca(2+) it was much less potent with a Ki of ∼140 nM. These data imply that a protein conformational change is required to form the MPTP complex and generate the GNX-4975-binding site. Occupation of the latter with GNX-4975 prevents the Ca(2+) binding that triggers pore opening. We also demonstrated that GNX-4975 stabilizes an interaction between the adenine nucleotide translocase (ANT), held in its 'c' conformation with carboxyatractyloside (CAT), and the phosphate carrier (PiC) bound to immobilized PAO. No components of the F1Fo-ATP synthase bound significantly to immobilized PAO. Our data are consistent with our previous proposal that the MPTP may form at an interface between the PiC and ANT (or other similar mitochondrial carrier proteins) when they adopt novel conformations induced by factors that sensitize the MPTP to [Ca(2+)]. We propose that GNX-4975 binds to this interface preventing a calcium-triggered event that opens the interface into a pore. PMID:26920024

  9. Regulating the regulators: modulators of transcription factor activity.

    Everett, Logan; Hansen, Matthew; Hannenhalli, Sridhar

    2010-01-01

    Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard / PMID:20827600

  10. Modulating enzyme activity using ionic liquids or surfactants.

    Goldfeder, Mor; Fishman, Ayelet

    2014-01-01

    One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems. PMID:24281758

  11. Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity.

    Lee, Heung-Shick; Kim, Younhee

    2016-03-28

    Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicansassociated infections. PMID:26699747

  12. Visual experience modulates spatio-temporal dynamics of circuit activation

    Arianna Maffei

    2011-06-01

    Full Text Available Persistent reduction in sensory drive in early development results in multiple plastic changes of different cortical synapses. How these experience-dependent modifications affect the spatio-temporal dynamics of signal propagation in neocortical circuits is poorly understood. Here we demonstrate that brief visual deprivation significantly affects the propagation of electrical signals in the primary visual cortex. The spatio-temporal spread of circuit activation upon direct stimulation of its input layer (Layer 4 is reduced, as is the activation of Layer 2/3 – the main recipient of the output from Layer 4. Our data suggest that the decrease in spatio-temporal activation of L2/3 depends on reduced L4 output, and is not intrinsically generated within L2/3. The data shown here suggest that changes in the synaptic components of the visual cortical circuit result not only in alteration of local integration of excitatory and inhibitory inputs, but also in a significant decrease in overall circuit activation. Furthermore, our data indicate a differential effect of visual deprivation on L4 and L2/3, suggesting that while feedforward activation of L2/3 is reduced, its activation by long range, within layer inputs is unaltered. Thus, brief visual deprivation induces experience-dependent circuit re-organization by modulating not only circuit excitability, but also the spatio-temporal patterns of cortical activation within and between layers.

  13. Selective modulation of promoter recruitment and transcriptional activity of PPARγ

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor regulated by the insulin-sensitizing thiazolidinediones (TZDs). We studied selective modulation of endogenous genes by PPARγ ligands using microarray, RNA expression kinetics, and chromatin immunoprecipitation (ChIP) in 3T3-L1 adipocytes. We found over 300 genes that were significantly regulated the TZDs pioglitazone, rosiglitazone, and troglitazone. TZD-mediated expression profiles were unique but overlapping. Ninety-one genes were commonly regulated by all three ligands. TZD time course and dose-response studies revealed gene- and TZD-specific expression kinetics. PEPCK expression was induced rapidly but PDK4 expression was induced gradually. Troglitazone EC50 values for PEPCK, PDK4, and RGS2 regulation were greater than those for pioglitazone and rosiglitazone. TZDs differentially induced histone acetylation of and PPARγ recruitment to target gene promoters. Selective modulation of PPARγ by TZDs resulted in distinct expression profiles and transcription kinetics which may be due to differential promoter activation and chromatin remodeling of target genes

  14. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  15. Regular exercise modulates cardiac mast cell activation in ovariectomized rats.

    Phungphong, Sukanya; Kijtawornrat, Anusak; Wattanapermpool, Jonggonnee; Bupha-Intr, Tepmanas

    2016-03-01

    It is well accepted that regular exercise is a significant factor in the prevention of cardiac dysfunction; however, the cardioprotective mechanism is as yet not well defined. We have examined whether regular exercise can modulate the activity of cardiac mast cells (CMC) after deprivation of female sex hormones, as well as the density and percentage degranulation of mast cells, in ventricular tissue of ovariectomized (OVX) rats after an 11-week running program. A significant increase in CMC density with a greater percentage degranulation was induced after ovarian sex hormone deprivation. Increased CMC density was prevented by estrogen supplements, but not by regular training. To the contrary, increased CMC degranulation in the OVX rat heart was attenuated by exercise training, but not by estrogen supplement. These findings indicate a significant correlation between the degree of CMC degranulation and myocyte cross-section area. However, no change in the expression of inflammatory mediators, including chymase, interleukin-6, and interleukin-10, was detected. Taken together, these results clearly indicate one of the cardioprotective mechanisms of regular aerobic exercise is the modulation of CMC activation. PMID:26467449

  16. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  17. A method to predict different mechanisms for blood-brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine.

    Jiang, Ludi; Chen, Jiahua; He, Yusu; Zhang, Yanling; Li, Gongyu

    2016-02-01

    The blood-brain barrier (BBB), a highly selective barrier between central nervous system (CNS) and the blood stream, restricts and regulates the penetration of compounds from the blood into the brain. Drugs that affect the CNS interact with the BBB prior to their target site, so the prediction research on BBB permeability is a fundamental and significant research direction in neuropharmacology. In this study, we combed through the available data and then with the help of support vector machine (SVM), we established an experiment process for discovering potential CNS compounds and investigating the mechanisms of BBB permeability of them to advance the research in this field four types of prediction models, referring to CNS activity, BBB permeability, passive diffusion and efflux transport, were obtained in the experiment process. The first two models were used to discover compounds which may have CNS activity and also cross the BBB at the same time; the latter two were used to elucidate the mechanism of BBB permeability of those compounds. Three optimization parameter methods, Grid Search, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), were used to optimize the SVM models. Then, four optimal models were selected with excellent evaluation indexes (the accuracy, sensitivity and specificity of each model were all above 85%). Furthermore, discrimination models were utilized to study the BBB properties of the known CNS activity compounds in Chinese herbs and this may guide the CNS drug development. With the relatively systematic and quick approach, the application rationality of traditional Chinese medicines for treating nervous system disease in the clinical practice will be improved. PMID:26632324

  18. Modulation of cortical oscillatory activity during transcranial magnetic stimulation.

    Brignani, Debora; Manganotti, Paolo; Rossini, Paolo M; Miniussi, Carlo

    2008-05-01

    Transcranial magnetic stimulation (TMS) can transiently modulate cortical excitability, with a net effect depending on the stimulation frequency ( or =5 Hz facilitation, at least for the motor cortex). This possibility has generated interest in experiments aiming to improve deficits in clinical settings, as well as deficits in the cognitive domain. The aim of the present study was to investigate the on-line effects of low frequency (1 Hz) TMS on the EEG oscillatory activity in the healthy human brain, focusing particularly on the outcome of these modulatory effects in relation to the duration of the TMS stimulation. To this end, we used the event-related desynchronization/synchronization (ERD/ERS) approach to determine the patterns of oscillatory activity during two consecutive trains of sham and real TMS. Each train of stimulation was delivered to the left primary motor cortex (MI) of healthy subjects over a period of 10 min, while EEG rhythms were simultaneously recorded. Results indicated that TMS induced an increase in the power of brain rhythms that was related to the period of the stimulation, i.e. the synchronization of the alpha band increased with the duration of the stimulation, and this increase was inversely correlated with motor-evoked potentials (MEPs) amplitude. In conclusion, low frequency TMS over primary motor cortex induces a synchronization of the background oscillatory activity on the stimulated region. This induced modulation in brain oscillations seems to increase coherently with the duration of stimulation, suggesting that TMS effects may involve short-term modification of the neural circuitry sustaining MEPs characteristics. PMID:17557296

  19. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  20. Superoxide radical and iron modulate aconitase activity in mammalian cells.

    Gardner, P R; Raineri, I; Epstein, L B; White, C W

    1995-06-01

    Aconitase is a member of a family of iron-sulfur-containing (de)hydratases whose activities are modulated in bacteria by superoxide radical (O2-.)-mediated inactivation and iron-dependent reactivation. The inactivation-reactivation of aconitase(s) in cultured mammalian cells was explored since these reactions may impact important and diverse aconitase functions in the cytoplasm and mitochondria. Conditions which increase O2-. production including exposure to the redox-cycling agent phenazine methosulfate (PMS), inhibitors of mitochondrial ubiquinol-cytochrome c oxidoreductase, or hyperoxia inactivated aconitase in mammalian cells. Overproduction of mitochondrial Mn-superoxide dismutase protected aconitase from inactivation by PMS or inhibitors of ubiquinol-cytochrome c oxidoreductase, but not from normobaric hyperoxia. Aconitase activity was reactivated (t1/2 of 12 +/- 3 min) upon removal of PMS. The iron chelator deferoxamine impaired reactivation and increased net inactivation of aconitase by O2-.. The ability of ubiquinol-cytochrome c oxidoreductase-generated O2-. to inactivate aconitase in several cell types correlated with the fraction of the aconitase activity localized in mitochondria. Extracellular O2-. generated with xanthine oxidase did not affect aconitase activity nor did exogenous superoxide dismutase decrease aconitase inactivation by PMS. The results demonstrate a dynamic and cyclical O2-.-mediated inactivation and iron-dependent reactivation of the mammalian [4Fe-4S] aconitases under normal and stress conditions and provide further evidence for the membrane compartmentalization of O2-.. PMID:7768942

  1. Functional Expression of a Ca(2+)-activated Cl(-) Channel Modulator Involved in Ion Transport and Epithelial Cell Differentiation.

    Yamazaki, Jun

    2016-01-01

      Cl(-)-permeable channels and transporters expressed on the cell membranes of various mammalian cell types play pivotal roles in the transport of electrolytes and water, pH regulation, cell volume and membrane excitability, and are therefore expected to be useful molecular targets for drug discovery. Both TMEM16A (a possible candidate for Ca(2+)-regulated Cl(-) channels recently identified) and cystic fibrosis transmembrane conductance regulator (CFTR) (or cAMP-regulated Cl(-) channels) have been known to be involved in Cl(-) secretion and reabsorption in the rat salivary gland. Crosstalk between two types of regulatory pathways through these two types of channels has also been described. Previously, we demonstrated that CLCA, a Ca(2+)-activated Cl(-) channel modulator, was involved in Cl(-) absorption in rat salivary ducts. In addition to Ca(2+), basal NF-κB activity in a mouse keratinocyte line was shown to be involved in the transcriptional regulation of CLCA. Conversely, a truncated isoform of CLCA was found in undifferentiated epithelial cells present in the rat epidermal basal layers. Under regulation by Ca(2+) and PKC, the surface expression of β1-integrin and cell adhesion were decreased in the CLCA-overexpressing cells. Knockdown of this isoform elevated the expression of β1-integrin in rat epidermis in vivo. These results indicate that the specific differentiation-dependent localization of CLCA, and transcriptional regulation through Ca(2+), are likely to affect ion permeability and the adhesive potential of epithelial cells. In summary, these types of Cl(-) channels and their modulators may function in a coordinated manner in regulating the functions of epithelial cells under different physiological conditions. PMID:26935091

  2. Workshop Physics Activity Guide, Module 4: Electricity and Magnetism

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

  3. MCT SWIR modules for passive and active imaging applications

    Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Weber, A.; Wendler, J.; Sieck, A.

    2016-05-01

    Based on AIM's state-of-the-art MCT IR technology, detector modules for the SWIR spectral range have been developed, fabricated and characterized. While LPE grown MCT FPAs with extended 2.5μm cut-off have been fabricated and integrated also MBE grown MCT on GaAs is considered for future production. Two imaging applications have been in focus operating either in passive mode by making use of e.g. the night glow, or in active mode by laser illumination for gated viewing. Dedicated readout integrated circuits (ROIC), realized in 0.18μm Si-CMOS technology providing the required functionality for passive imaging and gated imaging, have been designed and implemented. For both designs a 640x512 15μm pitch format was chosen. The FPAs are integrated in compact dewar cooler configurations using AIM's split linear coolers. A command and control electronics (CCE) provides supply voltages, biasing, clocks, control and video digitization for easy system interfacing. For imaging under low-light conditions a low-noise 640x512 15μm pitch ROIC with CTIA input stages and correlated double sampling was designed. The ROIC provides rolling shutter and snapshot integration. To reduce size, weight, power and cost (SWaP-C) a 640x512 format detector in a 10μm pitch is under development. The module makes use of the extended SWIR spectral cut-off up to 2.5μm. To be used for active gated-viewing operation SWIR MCT avalanche photodiodes have been implemented and characterized on FPA level in a 640x512 15μm pitch format. The specific ROIC provides also the necessary functions for range gate control and triggering by the laser illumination. First lab and field tests of a gated viewing demonstrator have been carried out. The paper will present the development status and performance results of AIM's MCT based SWIR Modules for imaging applications.

  4. Caenorhabditis elegans glia modulate neuronal activity and behavior

    Randy F Stout

    2014-03-01

    Full Text Available Glial cells of C. elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived GLR glia appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are an extension of those experimental assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general.

  5. The Influence of Gasotransmitters on Membrane Permeability and Activity of Tonoplast H+-ATPase Under Oxidative Stress

    E.V. Spiridonova; Ozolina, N. V.; I.S. Nesterkina; V.N. Nurminsky

    2016-01-01

    The investigation of the influence of gasotransmitters – a new class of signaling molecules – on the root tissues of red beet (Beta vulgaris L.) was conducted. It was found, that hydrogen sulfide (H2S) had some stabilizing effect on cellular membranes, reducing their permeability detected with the aid of conductometric technique. The reliable influence of carbon monoxide (CO) and nitrogen oxide (NO) in our experiments was not observed. A significant increase in efflux of electrolytes from bee...

  6. Fine-grained clay fraction (,0.2 {mu}m): An interesting tool to approach the present thermal and permeability state in active geothermal systems

    Patrier, P.; Papapanagiotou, P.; Beaufort, D.; Traineau, H.; Bril, H.

    1992-01-01

    We have investigated by X-ray diffraction the very fine grained secondary minerals (< 0.2 {micro}m) developed in geothermal systems, in relation with their present thermal and permeability state. Because the smallest particles are the most reactive part of a rock, they are the youngest mineral phases of the geothermal fields. This study has been performed on two active geothermal fields: Milos field, Greece (130 < T < 320 C) and Chipilapa field, Salvador (90 < T < 215 C). In the Milos field, the mineralogical composition of the < 0.2 {micro}m clay fraction observed in the reservoir strongly differs from the overlying altered metamorphic schists in the presence of abundant quantities of saponite and talc/saponite interstratified minerals at unusually high temperature. These phases are considered to be kinetically control-led ''metastable'' minerals which rapidly evolve towards actinolite and talc for present temperatures higher than 300 C. Their occurrence is a good indicator of discharge in highly permeable zones. In the geothermal field of Chipilapa, the mineralogical composition of the < 0.2 {micro}m clay fractions fairly agrees with the temperatures presently measured in the wells, whereas several discrepancies may be pointed out from the compositions of coarser clay fractions (< 5 {micro}m) which contain minerals inherited from higher temperature stages. Permeable zones may be evidenced from an increase of expandable components in the interstratified minerals and a decrease of the coherent domain of the unexpandable clay particles (chlorite).

  7. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6.

    Egebjerg, J; Heinemann, S F

    1993-01-01

    The Ca2+ permeability of the kainate selective glutamate receptor GluR6 depends on the editing of the RNA (or DNA). The unedited version of GluR6, GluR6Q, encodes a glutamine at position 621 (Q/R site) and exhibits a Ca2+/monovalent ion permeability ratio of 1.2, while the edited version of GluR6, GluR6R, encodes an arginine at position 621 and exhibits a permeability ratio of 0.47. Kainate activation of the GluR6 receptor results in currents that are modulated by extracellular calcium ions. ...

  8. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    Shigeyoshi Matsumura

    2015-03-01

    Full Text Available The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP inhibited two group IC3 ribozymes (Syn Rz and Azo Rz and a group IC1 ribozyme (Tet Rz. In the case of a group IA2 ribozyme (Td Rz, however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules.

  9. Tiazofurin modulates lipopolysaccharide-activated microglia in vitro

    Savić Danijela

    2014-01-01

    Full Text Available Tiazofurin is a purine nucleoside analogue, with a broad spectrum of antitumoral and anti-inflammatory properties. In the present study, we have investigated the effect of tiazofurin on microglial inflammatory response to lipopolysaccharide in vitro. The cytotoxic effect of the drug was examined by sulforhodamine B assay. The Griess method was used to quantify nitrite production. Microglial morphology was assessed by measuring cell body size. Release of the pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β, interleukin-6, and the anti-inflammatory cytokine interleukin- 10, were evaluated by enzyme-linked immunosorbent assay. Our data showed that tiazofurin decreased the number of activated microglia, lowered nitric oxide production and reduced the average cell surface of these cells. Tiazofurin reduced tumor necrosis factor-α, interleukin-6 and increased interleukin-10 secretion. Conversely, this drug promoted the release of interleukin-1β. Results obtained in this study indicate that TR displayed both anti- and pro-inflammatory modulation of activated microglia that could be relevant for its antitumor action within the central nervous system. [Projekat Ministarstva nauke Republike Srbije, br. III41014

  10. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  11. Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information.

    Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén

    2016-03-16

    Numerous studies have shown that neuronal responses are modulated by stimulus properties and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation and vice versa. The information encoded by multiplicatively modulated neurons increased with greater population activity, while that of additively modulated neurons decreased. These effects offset each other so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a "traffic light" that determines which subset of neurons is most informative. PMID:26924437

  12. Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis.

    Parakkal Jovvian George

    Full Text Available Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB. However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity in TB is not known.We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB with co-incidental Strongyloides stercoralis (Ss infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB with or without Ss infection.Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection.Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.

  13. Developments in permeable and low permeability barriers

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  14. Antileishmanial activity of the estrogen receptor modulator raloxifene.

    Juliana Q Reimão

    2014-05-01

    Full Text Available BACKGROUND: The treatment of leishmaniasis relies mostly on parenteral drugs with potentially serious adverse effects. Additionally, parasite resistance in the treatment of leishmaniasis has been demonstrated for the majority of drugs available, making the search for more effective and less toxic drugs and treatment regimens a priority for the control of leishmaniasis. The aims of this study were to evaluate the antileishmanial activity of raloxifene in vitro and in vivo and to investigate its mechanism of action against Leishmania amazonensis. METHODOLOGY/PRINCIPAL FINDINGS: Raloxifene was shown to possess antileishmanial activity in vitro against several species with EC50 values ranging from 30.2 to 38.0 µM against promastigotes and from 8.8 to 16.2 µM against intracellular amastigotes. Raloxifene's mechanism of action was investigated through transmission electron microscopy and labeling with propidium iodide, DiSBAC2(3, rhodamine 123 and monodansylcadaverine. Microscopic examinations showed that raloxifene treated parasites displayed autophagosomes and mitochondrial damage while the plasma membrane remained continuous. Nonetheless, plasma membrane potential was rapidly altered upon raloxifene treatment with initial hyperpolarization followed by depolarization. Loss of mitochondrial membrane potential was also verified. Treatment of L. amazonensis-infected BALB/c mice with raloxifene led to significant decrease in lesion size and parasite burden. CONCLUSIONS/SIGNIFICANCE: The results of this work extend the investigation of selective estrogen receptor modulators as potential candidates for leishmaniasis treatment. The antileishmanial activity of raloxifene was demonstrated in vitro and in vivo. Raloxifene produces functional disorder on the plasma membrane of L. amazonensis promastigotes and leads to functional and morphological disruption of mitochondria, which culminate in cell death.

  15. Active space debris removal by a hybrid propulsion module

    DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.

    2013-10-01

    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of

  16. Extracellular magnesium and calcium blockers modulate macrophage activity.

    Libako, Patrycja; Nowacki, Wojciech; Castiglioni, Sara; Mazur, Andrzej; Maier, Jeanette A M

    2016-03-01

    Magnesium (Mg) possesses anti-inflammatory properties, partly because it antagonizes calcium (Ca) and inhibits L-type Ca channels. Our aim was to determine the effects of different concentrations of extracellular Mg, with or without Ca-channel blockers, in macrophages. A macrophage-like cell line J774.E was cultured in different concentrations of extracellular Mg and exposed to i) the phorbol ester PMA to induce the production of reactive oxygen species ii) lipopolysaccharide to induce the production of pro-inflammatory cytokines, or iii) ovalbumin to study endocytosis. The Ca antagonists verapamil and/or TMB-8 were used to interfere with Ca homeostasis. Different concentrations of extracellular Mg did not impact on endocytosis, while Ca antagonists markedly decreased it. Low extracellular Mg exacerbated, whereas Ca antagonists inhibited, PMA-induced production of free radicals. Ca blockers prevented lipopolysaccharide-induced transcription and release of IL-1β, IL-6 and TNF-α, while extracellular Mg had only a marginal effect. Ca channel inhibitors markedly reduced the activity of J774.E cells, thus underscoring the critical role of Ca in the non-specific immune response, a role which was, in some instances, also modulated by extracellular Mg. PMID:27160489

  17. CD83 Modulates B Cell Activation and Germinal Center Responses.

    Krzyzak, Lena; Seitz, Christine; Urbat, Anne; Hutzler, Stefan; Ostalecki, Christian; Gläsner, Joachim; Hiergeist, Andreas; Gessner, André; Winkler, Thomas H; Steinkasserer, Alexander; Nitschke, Lars

    2016-05-01

    CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo. PMID:26983787

  18. Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus

    Klein, Barbara; Mrowetz, Heike; Thalhamer, Josef; Scheiblhofer, Sandra; Weiss, Richard; Aigner, Ludwig

    2016-01-01

    Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus—a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1+ microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1+MHCII+ cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX+ cells was clearly increased in the allergy animals. Moreover, there were more BrdU+ cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU+NeuN+ cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis.

  19. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    Nofar Torika

    Full Text Available The circulating renin-angiotensin system (RAS, including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker on tumor necrosis factor-α (TNF-α, interleukin 1-β (IL1-β and nitric oxide (NO release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor. Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the

  20. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of

  1. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N.; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression

  2. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level. PMID:23931157

  3. Role of the endogenous kallikrein-kinin system in modulating vasopressin-stimulated water flow and urea permeability in the toad urinary bladder.

    Carvounis, C P; Carvounis, G; Arbeit, L A

    1981-01-01

    This study investigates the endogenous kallikrein-kinin system's role as a modulator of vasopressin action in the toad urinary bladder. Kalli-krein inhibition by aprotinin, which results in decreased kinin production, significantly increased both vasopressin and 8-Br-cyclic (c) AMP-stimulated water flow. Kinin potentiation by the kininase II inhibitor captopril (SQ 14225) significantly decreased vasopressin and 8-Br-cAMP-stimulated water flow. In contrast to water flow, vasopressin-stimulated...

  4. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5 % dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS. PMID:26758971

  5. Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride.

    Heinen, Christian A; Reuss, Stefan; Amidon, Gordon L; Langguth, Peter

    2013-11-01

    In the current study the involvement of ion pair formation between bile salts and trospium chloride (TC), a positively charged Biopharmaceutical Classification System (BCS) class III substance, showing a decrease in bioavailability upon coadministration with food (negative food effect) was investigated. Isothermal titration calorimetry provided evidence of a reaction between TC and bile acids. An effect of ion pair formation on the apparent partition coefficient (APC) was examined using (3)H-trospium. The addition of bovine bile and bile extract porcine led to a significant increase of the APC. In vitro permeability studies of trospium were performed across Caco-2-monolayers and excised segments of rat jejunum in a modified Ussing chamber. The addition of bile acids led to an increase of trospium permeation across Caco-2-monolayers and rat excised segments by approximately a factor of 1.5. The addition of glycochenodeoxycholate (GCDC) was less effective than taurodeoxycholate (TDOC). In the presence of an olive oil emulsion, a complete extinction of the permeation increasing effects of bile salts was observed. Thus, although there are more bile acids in the intestine in the fed state compared to the fasted state, these are not able to form ion pairs with trospium in fed state, because they are involved in the emulsification of dietary fats. In conclusion, the formation of ion pairs between trospium and bile acids can partially explain its negative food effect. Our results are presumably transferable to other organic cations showing a negative food effect. PMID:23750707

  6. A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection.

    Sun, Yuan-Yuan; Sun, Li

    2016-01-01

    Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. PMID:27105425

  7. Cytotoxic Effect and Permeability Activities of Curcumin Analogue; 2, 6-Bis (2, 5-dimethoxybenzy-lidene cyclohexanone (BDMC33 in Caco-2 Cell Model

    N. Yakubu

    2015-11-01

    Full Text Available Previously, curcumin analogue, 2, 6-bis (2, 5-dimethoxybenzylidene cyclohexanone (BDMC33 with high anti-inflammatory activity was chemically synthesized in our laboratory to enhance the biological activity of curcumin. In this study, the toxicity and permeability activities of 2,6-bis(2,5-dimethoxybenzy-lidenecyclohexanone (BDMC33 in Caco-2 cells was investigated. Toxicity effects using MTT assay and apparent permeability coefficient (Papp, uptake (UR and efflux (ER ratios, and mass balance of BDMC33 after permeation in Caco-2 cells for 180 min were evaluated in apical (A to basolateral (B and basolateral (B to apical (A directions. The similar analyses on 3-(2-fluoro-benzylidene-5-(2-fluorocyclohexylmethylene-piperidin-4-one; (EF-24 (check control were also conducted. The 24 hr LC50 value for BDMC33 and EF-24 on Caco-2 cells were both 50 µM. The Papp value in A→B direction was 3.37 ± 0.47 cm/s (BDMC33 and 2.47 ± 0.15 cm/s (EF-24. Whereas in B→A direction, it was 1.9 ± 0.36 cm/s (BDMC33 and 1.8 ± 0.15 cm/s (EF-24 upon 120 min incubation. The UR and ER ratios calculated were 1.77% and 0.56%, respectively, and the mass balance calculated were 41-44% (BDMC33 and 31-34% (EF-24 in A→B and B→A direction. This study has suggested BDMC33 to be more absorbable than EF-24 in Caco-2 cells. Therefore, BDMC33 could be a leading feature, the anti-inflammatory agent, as it biological activities would be expected outside the intestine.

  8. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  9. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  10. Surfactant Protein A integrates activation signal strength to differentially modulate T cell proliferation

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; GOTO, HISATSUGU; Ledford, Julie G.; Hsia, Bethany; Pastva, Amy M.; Wright, Jo Rae

    2012-01-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar:airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A mediated modulation of T cell activation depends upon the strength, duration and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex and in vivo in different mouse models, ...

  11. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  12. Task-dependent modulation of oscillatory neural activity during movements

    Herz, D. M.; Christensen, M. S.; Reck, C.;

    2011-01-01

    -dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  13. Energy-Storage Modules for Active Solar Heating and Cooling

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  14. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  15. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  16. Modulation of pulmonary macrophage superoxide release and tumoricidal activity following activation by biological response modifiers.

    Drath, D B

    1986-10-01

    Following immunologic activation, pulmonary macrophages may prevent or cause regression of lung metastases by mechanisms which remain largely unknown. The studies described here were designed to determine if enhanced oxygen metabolite release was related to postactivation tumoricidal activity. We have shown that in vitro activation of Fischer 344 rat pulmonary macrophages by either free or liposome-encapsulated muramyl dipeptide leads to both enhanced release of superoxide anions and marked tumoricidal activity against syngenic (Fischer 13762), allogeneic (Schmidt-Ruppin RR 1022) and xenogeneic (Fibrosarcoma MCA-F) 125I-deoxyuridine-labeled target cells. This immune modulator did not, however, metabolically activate pulmonary macrophages as effectively as liposome-encapsulated lipopolysaccharide. A 24-h in vitro incubation with either 150 U or 300 U of interferon-gamma (3 X 10(6) U/mg) or 30 U, 150 U or 300 U of interferon-alpha (6 X 10(5) U/mg) caused a significant elevation in superoxide release above controls, whereas short-term exposure (2 or 4 h) had little or no effect. Free or encapsulated 6-O-stearoyl muramyl dipeptide, on the other hand, did increase superoxide levels at all 3 time periods. When either interferon-gamma or free or encapsulated muramyl dipeptide derivative were administered to intact rats by either i.v. injection, intratracheal instillation or osmotic minipump infusion, pulmonary macrophage tumoricidal activity was observed 96 h after cell harvesting. Zymosan-stimulated superoxide release, however, was not consistently elevated above control or empty liposome treatment following this course of in vivo activation. The data collectively suggest that in vivo pulmonary macrophage activation to a tumoricidal state and metabolic activation resulting in enhanced superoxide may be separable events. PMID:3021650

  17. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  18. Direct Modulation of Small GTPase Activity and Function.

    Cromm, Philipp M; Spiegel, Jochen; Grossmann, Tom N; Waldmann, Herbert

    2015-11-01

    Small GTPases are a family of GDP-/GTP-binding proteins that serve as biomolecular switches inside cells to control a variety of essential cellular processes. Aberrant function and regulation of small GTPases is associated with a variety of human diseases, thus rendering these proteins highly interesting targets in drug discovery. However, this class of proteins has been considered "undruggable", as intensive decade-long efforts did not yield clinically relevant direct modulators of small GTPases. Recently, the targeting of small GTPases has gained fresh impetus through the discovery of novel transient cavities on the protein surfaces and the application of new targeting strategies. Besides Ras proteins, other small GTPases have attracted increased attention since improved biological insight in combination with novel targeting strategies identified them as promising targets in drug discovery. This Review gives an overview of relevant aspects of the superfamily of small GTPases and summarizes recent progress and perspectives for the direct modulation of these challenging targets. PMID:26470842

  19. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats i...

  20. Finite Element Learning Modules as Active Learning Tools

    Brown, Ashland O.; Jensen, Daniel; Rencis, Joseph; Wood, Kristin; Wood, John; White, Christina; Raaberg, Kristen Kaufman; Coffman, Josh

    2012-01-01

    The purpose of active learning is to solicit participation by students beyond the passive mode of traditional classroom lectures. Reading, writing, participating in discussions, hands-on activities, engaging in active problem solving, and collaborative learning can all be involved. The skills acquired during active learning tend to go above and…

  1. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    J. Abraham Domínguez-Avila; Gustavo A. González-Aguilar; Emilio Alvarez-Parrilla; de la Rosa, Laura A.

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered...

  2. Modulation of Neuronal Voltage-Activated Calcium and Sodium Channels by Polyamines and pH

    Chen, Wenyan; Harnett, Mark T.; Smith, Stephen M.

    2007-01-01

    The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca2+ channels (VACCs) and voltage-activated Na+ channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concen...

  3. Curcumin Pretreatment Prevents Potassium Dichromate-Induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity, and Membrane Permeability Transition Pore Opening

    Wylly Ramsés García-Niño

    2013-01-01

    Full Text Available Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7 in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w. before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.. Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction.

  4. AUTOCRINE/PARACRINE MODULATION OF BARORECEPTOR ACTIVITY AFTER ANTIDROMIC STIMULATION OF AORTIC DEPRESSOR NERVE IN VIVO

    Valter J. Santana-Filho; Davis, Greg J.; Castania, Jaci A.; Ma, Xiuying; Salgado, Helio C; Abboud, Francois M.; Fazan, Rubens; Chapleau, Mark W.

    2014-01-01

    Activation of the sensory nerve endings of nonmyelinated C-fiber afferents evokes release of autocrine/paracrine factors that cause localized vasodilation, neurogenic inflammation, and modulation of sensory nerve activity. The aims of this study were to determine the effect of antidromic electrical stimulation on afferent baroreceptor activity in vivo, and investigate the role of endogenous prostanoids and hydrogen peroxide (H2O2) in mediating changes in nerve activity. Baroreceptor activity ...

  5. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  6. Permeable Pavements at Purdue

    Knapp, Jim

    2013-01-01

    Two case studies will be presented describing sustainable drainage alternatives. The processes used for the 2nd Street project in Seymour will provide a comparison of the design processes for conventional and green infrastructure solutions. Purdue University will discuss a number of permeable pavement installations on campus and provide a map for viewing. Asphalt, concrete, and permeable paver options will be discussed.

  7. Permeability of Dentine

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it.

  8. Permeability prediction in chalks

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability...... prediction, so we have investigated the use of velocity data to predict permeability. The compressional velocity fromwireline logs and core plugs of the chalk reservoir in the South Arne field, North Sea, has been used for this study. We compared various methods of permeability prediction from velocities....... The relationships between permeability and porosity from core data were first examined using Kozeny’s equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two...

  9. ATPase activity of erythrocyte membranes and their permeability for the K-ions as influenced by irradiation and serotonin

    Na, K-ATPase activity of membranes of erytrocytes after 1 hour of X-ray irradiation of citrate blood of rats (25.8 Kl/kg)-increased, and after irradiation of isolated erytrocytes, placed in the isotonic solution of NaCl did not change. The exflux of K-ions out of irradiated erytrocytes increased equally in both cases. Serotonin (2x10-4 M), added to the probes 10 minutes before irradiation, decreased the exflux of K+ by irradiated erytrocytes, but Na, K-ATPase activity under the influence of amine was without changes

  10. Glucose Enhances Leptin Signaling through Modulation of AMPK Activity

    Haoran Su; Lin Jiang; Christin Carter-Su; Liangyou Rui

    2012-01-01

    Leptin exerts its action by binding to and activating the long form of leptin receptors (LEPRb). LEPRb activates JAK2 that subsequently phosphorylates and activates STAT3. The JAK2/STAT3 pathway is required for leptin control of energy balance and body weight. Defects in leptin signaling lead to leptin resistance, a primary risk factor for obesity. Body weight is also regulated by nutrients, including glucose. Defects in glucose sensing also contribute to obesity. Here we report crosstalk bet...

  11. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  12. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines

    Spurny, R.; Ramerstorfer, J.; Price, K; Brams, M.; M. Ernst; Nury, H.; Verheij, M.; Legrand, P.; Bertrand, D.; Bertrand, S.; Dougherty, D A; de Esch, I. J. P.; Corringer, P.-J.; Sieghart, W.; Lummis, S. C. R.

    2012-01-01

    GABA_A receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA_A receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their conc...

  13. Program-Controlled High Voltage Module in Active Voltage Dividers(AVD) for MPGD

    Ginting, Muhammad Fadhil

    2016-01-01

    Micro Pattern Gas Detectors (MPGD) applications are rapidly developing and became an important part of upgrades for the LHC detectors. RD51/CERN have worked on Active Voltage Divider (AVD) technology for multistage MPGDs, One of the next developments for the AVD is to design and integrate high voltage module in a single box. The Program-Controlled High Voltage Module, part of one AIDA2020 project, has been successfully designed and developed, and can be integrated in AVD design.

  14. Modulation of Banana Polyphenol Oxidase (Ppo) Activity by Naturally Occurring Bioactive Compounds From Plant Extracts

    Alamelumangai. M; Dhanalakshmi, J; M. Mathumitha; R. Saranya Renganayaki; P. Muthukumaran; N.Rajalakshmi

    2015-01-01

    Polyphenol Oxidase (PPO) (E.C number 1.14.18.1) was extracted from banana (Musa paradisiaca) and partially purified by acetone precipitation. The enzyme was found to have high affinity towards its substrate, catechol. In this study, various plant extracts like Glycyrrhiza glabra, Rubia cordifolia, Hesperethusa crenulata and oil from the seeds of Hydnocarpus laurifolia were observed to modulate the activity of banana PPO. Method In this study, various plant extracts were observed to modulate t...

  15. Modulation of bulbospinal RVLM neurons by hypoxia/hypercapnia but not medullary respiratory activity

    Boychuk, Carie R.; Woerman, Amanda L.; Mendelowitz, David

    2012-01-01

    Although sympathetic vasomotor discharge has respiratory modulation, the site(s) responsible for this cardiorespiratory interaction are unknown. One likely source for this coupling is the RVLM where pre-sympathetic neurons originate in close apposition to respiratory neurons. The current study tested the hypothesis that RVLM bulbospinal neurons are modulated by medullary respiratory network activity using whole-cell patch-clamp electrophysiological recordings of RVLM neurons while simultaneou...

  16. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts

    Denev, P.; Kratchanova, M.; Číž, Milan; Lojek, Antonín; Vašíček, Ondřej; Blazheva, D.; Nedelcheva, P.; Vojtek, L.; Hyršl, P.

    2014-01-01

    Roč. 61, č. 2 (2014), s. 359-367. ISSN 0001-527X Institutional support: RVO:68081707 Keywords : herbs * polyphenols * antioxidant activity Subject RIV: BO - Biophysics Impact factor: 1.153, year: 2014

  17. Development and construction of a thermoelectric active facade module

    Marıa Ibanez-Puy; Jose Antonio Fernandez Sacristan; Cesar Martın-Gomez; Marina Vidaurre-Arbizu

    2015-01-01

    In order to fulfil the current challenges for the European building sector, building design has diverged into two alternative directions: active technologies and passive design strategies. In the last few years, advanced and responsive building envelope components have represented a promising answer to these challenges. This paper presents the design and construction process of a project that aims to design, build and control the energy performance of an industrial-scale modular active ventil...

  18. Activity-dependent modulation of neural circuit synaptic connectivity

    Tessier, Charles R.; Kendal Broadie

    2009-01-01

    In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1) early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2) subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circ...

  19. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  20. Modulation of the protein kinase activity of mTOR.

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  1. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production.

    Shao, Yina; Li, Chenghua; Che, Zhongjie; Zhang, Pengjuan; Zhang, Weiwei; Duan, Xuemei; Li, Ye

    2015-09-01

    Lipopolysaccharide-binding protein and bactericidal permeability-increasing protein (LBP/BPI) play crucial role in modulating cellular signals in response to Gram-negative bacteria infection. In the present study, two isoforms of LBP/BPI genes (designated as AjLBP/BPI1 and AjLBP/BPI2, respectively) were cloned from the sea cucumber Apostichopus japonicus by RACE approach. The full-length cDNAs of AjLBP/BPI1 and AjLBP/BPI2 were of 1479 and 1455 bp and encoded two secreted proteins of 492 and 484 amino acid residues, respectively. Signal peptide, two BPI/LBP/CETP and one central domain were totally conserved in the deduced amino acid of AjLBP/BPI1 and AjLBP/BPI2. Phylogentic analysis further supported that AjLBP/BPI1 and AjLBP/BPI2 belonged to new members of invertebrates LBP/BPI family. Spatial expression analysis revealed that both AjLBP/BPI1 and AjLBP/BPI2 were ubiquitously expressed in all examined tissues with the larger magnitude in AjLBP/BPI1. The Vibrio splenfidus challenge and LPS stimulation could significantly up-regulate the mRNA expression of both AjLBP/BPI1 and AjLBP/BPI2, with the increase of AjLBP/BPI2 expression occurred earlier than that of AjLBP/BPI1. More importantly, we found that LPS induced ROS production was markedly depressed after AjLBP/BPI1 knock-down, but there was no significant change by AjLBP/BPI2 silencing. Consistently, the expression level of unclassified AjToll, not AjTLR3, was tightly correlated with that of AjLBP/BPI1. Silencing the AjToll also depressed the ROS production in the cultured coelomocytes. All these results indicated that AjLBP/BPI1 and AjLBP/BPI2 probably played distinct roles in bacterial mediating immune response in sea cucumber, and AjLBP/BPI1 depressed coelomocytes ROS production via modulating AjToll cascade. PMID:25956196

  2. Cell proliferation in vitro modulates fibroblast collagenase activity

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3H-thymidine and 3H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  3. Modulation of β-catenin signaling by glucagon receptor activation.

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  4. Regular exercise improves cardiac contractile activation by modulating MHC isoforms and SERCA activity in orchidectomized rats.

    Vutthasathien, Pavarana; Wattanapermpool, Jonggonnee

    2015-10-01

    Data from the trial known as Testosterone in Older Men with Mobility Limitations (TOM) has indicated an association between testosterone administration and a greater risk for adverse cardiovascular events. We therefore propose that regular exercise is a cardioprotective alternative that prevents detrimental changes in contractile activation when a deficiency in male sex hormones exists. Ten-week-old orchidectomized (ORX) rats were subjected to a 9-wk treadmill running program at moderate intensity starting 1 wk after surgery. Although exercise-induced cardiac hypertrophy was observed both in rats that underwent ORX and sham surgery, regular exercise enhanced cardiac myofilament Ca(2+) sensitivity and myosin light-chain 2 phosphorylation only in rats that underwent a sham operation. Although the rats that had sham surgery and and given exercise exhibited no change in maximum developed tension, regular running prevented the suppression of maximum active tension in the hearts of ORX rats. Regular exercise also prevented a shift in myosin heavy chain (MHC) isoforms toward β-MHC, a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity, and an increase in SERCA sensitivity in the hearts of ORX rats. Neither SERCA content nor its modulating component, phospholamban (PLB), was altered by exercise in either sham-operated or ORX rats. However, decreases in the phosphorylated Thr(17) form of PLB and the phosphorylated Thr(287) form of Ca(2+)/calmodulin-dependent kinase II in the hearts of ORX rats were abolished after regular exercise. These results thus support the use of regular running as a cardioprotective alternative to testosterone replacement in hypogonadal conditions. PMID:26272317

  5. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  6. Activity-dependent modulation of neural circuit synaptic connectivity

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  7. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts—orthographically related, but which—in their commonly written form—share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895

  8. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    Yoko eNakano

    2016-03-01

    Full Text Available The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i a past-tense form of the same verb, (ii a stem-related form with the epenthetic vowel -i, (iii a semantically-related form, and (iv a phonologically-related form. Significant priming effects were obtained for prime types (i, (ii and (iii, but not for (iv. This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i, but not for non-affixal and semantically-related primes of types (ii and (iii. In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts – orthographically related, but which - in their commonly written form - share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system affect the processing of (morphologically complex words.

  9. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese.

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts-orthographically related, but which-in their commonly written form-share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895

  10. Complex modulation of peptidolytic activity of cathepsin D by sphingolipids

    Žebrakovská, Iva; Máša, Martin; Srp, Jaroslav; Horn, Martin; Vávrová, K.; Mareš, Michael

    2011-01-01

    Roč. 1811, č. 12 (2011), s. 1097-1104. ISSN 1388-1981 R&D Projects: GA AV ČR IAA400550705 Institutional research plan: CEZ:AV0Z40550506 Keywords : sphingolipid * phospholipid * inhibition * activation * cathepsin D * enzyme regulation Subject RIV: CE - Biochemistry Impact factor: 5.269, year: 2011

  11. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  12. Interrelations between blood-brain barrier permeability and matrix metalloproteinases are differently affected by tissue plasminogen activator and hyperoxia in a rat model of embolic stroke

    Michalski Dominik

    2012-01-01

    Full Text Available Abstract Background In ischemic stroke, blood-brain barrier (BBB regulations, typically involving matrix metalloproteinases (MMPs and inhibitors (TIMPs as mediators, became interesting since tissue plasminogen activator (tPA-related BBB breakdown with risk of secondary hemorrhage was considered to involve these mediators too. Despite high clinical relevance, detailed interactions are purely understood. After a pilot study addressing hyperoxia as potential neuroprotective co-treatment to tPA, we analyzed interrelations between BBB permeability (BBB-P, MMPs and TIMPs. Findings Rats underwent embolic middle cerebral artery occlusion (eMCAO and treatment with normobaric (NBO or hyperbaric oxygen (HBO, tPA, tPA+HBO, or no treatment. BBB-P was assessed by intravenously applied FITC-albumin at 4 or 24 hours. MMP-2/-9 and TIMP-1/-2 serum levels were determined at 5 or 25 hours. Time point-corrected partial correlations were used to explore interrelations of BBB-P in ischemic regions (extra-/intravasal FITC-albumin ratio and related serum markers. BBB-P correlated positively with MMP-2 and MMP-9 in controls, whereas hyperoxia led to an inverse association, most pronounced for HBO/MMP-9 (r = -0.606; P Conclusions HBO was found to reverse the positively directed interrelation of BBB-P and MMPs after eMCAO, but this effect failed to sustain in the expected amount when HBO and tPA were given simultaneously.

  13. MDMA (ecstasy) modulates locomotor and prefrontal cortex sensory evoked activity.

    Atkins, Kristal; Burks, Tilithia; Swann, Alan C; Dafny, Nachum

    2009-12-11

    Ingestion of 3, 4-methylenedioxymethamphetamine (MDMA) leads to heightened response to sensory stimulation; thus, MDMA is referred to as "ecstasy" because it produces pleasurable enhancement of such sensation. There have been no electrophysiological studies that report the consequences of MDMA on sensory input. The present study was initiated to study the effects of acute and chronic MDMA on locomotor activity and sensory evoked field potential from freely behaving rats previously implanted with permanent electrodes in the prefrontal cortex (PFC). The main findings of this study are that: (1) acute MDMA augments locomotor behavior and attenuates the incoming sensory input, (2) chronic treatment of MDMA elicits behavioral sensitization, (3) chronic administration of MDMA results in attenuation of the baseline activity of the sensory evoked field potential, and (4) administration of rechallenge MDMA result in enhancement of the PFC sensory evoked field potential. PMID:19769950

  14. Substrate modulation of enzyme activity in the herpesvirus protease family

    Lazic, Ana; Goetz, David H.; Nomura, Anson M.; Marnett, Alan B.; Craik, Charles S.

    2007-01-01

    The herpesvirus proteases are an example in which allosteric regulation of an enzyme activity is achieved through the formation of quaternary structure. Here, we report a 1.7 Å resolution structure of Kaposi’s Sarcoma herpesvirus protease in complex with a hexapeptide transition state analogue that stabilizes the dimeric state of the enzyme. Extended substrate binding sites are induced upon peptide binding. In particular, 104 Å2 of surface are buried in the newly formed S4 pocket when tyrosin...

  15. Modulation of insulin degrading enzyme activity and liver cell proliferation

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expre...

  16. Sendai Virus Fusion Activity as Modulated by Target Membrane Components

    Nunes-Correia, Isabel; Ramalho-Santos, João; Maria C Pedroso de Lima

    1998-01-01

    We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already boun...

  17. Visual Experience Modulates Spatio-Temporal Dynamics of Circuit Activation

    Wang, Lang; Fontanini, Alfredo; Maffei, Arianna

    2011-01-01

    Persistent reduction in sensory drive in early development results in multiple plastic changes of different cortical synapses. How these experience-dependent modifications affect the spatio-temporal dynamics of signal propagation in neocortical circuits is poorly understood. Here we demonstrate that brief visual deprivation significantly affects the propagation of electrical signals in the primary visual cortex. The spatio-temporal spread of circuit activation upon direct stimulation of its i...

  18. Visual experience modulates spatio-temporal dynamics of circuit activation

    Arianna Maffei

    2011-01-01

    Persistent reduction in sensory drive in early development results in multiple plastic changes of different cortical synapses. How these experience-dependent modifications affect the spatio-temporal dynamics of signal propagation in neocortical circuits is poorly understood. Here we demonstrate that brief visual deprivation significantly affects the propagation of electrical signals in the primary visual cortex. The spatio-temporal spread of circuit activation upon direct stimulation of its i...

  19. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    Heida, T.; Zhao, Yan; Wezel, van, H.B.

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly contribute to the expression of parkinsonian tremor. However, the observed tremor-related hyperactivity in the cerebellar loop may have a compensatory rather than a causal role in Parkinson's disease...

  20. Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    Bohbot, Jonathan D.; Joseph C. Dickens

    2010-01-01

    Background DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied, yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs). Methodology/Principal Findings Here we characterize the act...

  1. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence. PMID:21828348

  2. Lipid metabolizing enzyme activities modulated by phospholipid substrate lateral distribution.

    Salinas, Dino G; Reyes, Juan G; De la Fuente, Milton

    2011-09-01

    Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters--without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes. PMID:21108012

  3. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  4. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. PMID:26593642

  5. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation.

    Buffalari, Deanne M; Grace, Anthony A

    2007-11-01

    Substantial data exists demonstrating the importance of the amygdala and the locus ceruleus (LC) in responding to stress, aversive memory formation, and the development of stress-related disorders; however, little is known about the effects of norepinephrine (NE) on amygdala neuronal activity in vivo. The basolateral nucleus of the amygdala (BLA) receives dense NE projections from the LC, NE increases in the BLA in response to stress, and the BLA can also modulate the LC via reciprocal projections. These experiments examined the effects of noradrenergic agents on spontaneous and evoked responses of BLA neurons. NE iontophoresis inhibited spontaneous firing and decreased the responsiveness of BLA neurons to electrical stimulation of entorhinal cortex and sensory association cortex (Te3). Confirmed BLA projection neurons exhibited exclusively inhibitory responses to NE. Systemic administration of propranolol, a beta-receptor antagonist, decreased the spontaneous firing rate and potentiated the NE-evoked inhibition of BLA neurons. In addition, iontophoresis of the alpha-2 agonist clonidine, footshock administration, and LC stimulation mimicked the effects of NE iontophoresis on spontaneous activity. Furthermore, the effects of LC stimulation were partially blocked by systemic administration of alpha 2 and beta receptor antagonists. This is the first study to demonstrate the actions of directly applied and stimulus-evoked NE in the BLA in vivo, and provides a mechanism by which beta receptors can mediate the important behavioral consequences of NE within the BLA. The interaction between these two structures is particularly relevant with regard to their known involvement in stress responses and stress-related disorders. PMID:17989300

  6. Tissue plasminogen activator modulates the cellular and behavioral response to cocaine

    Maiya, Rajani; Zhou, Yan; Norris, Erin H.; Kreek, Mary Jeanne; Strickland, Sidney

    2009-01-01

    Cocaine exposure induces long-lasting molecular and structural adaptations in the brain. In this study, we show that tissue plasminogen activator (tPA), an extracellular protease involved in neuronal plasticity, modulates the biochemical and behavioral response to cocaine. When injected in the acute binge paradigm, cocaine enhanced tPA activity in the amygdala, which required activation of corticotropin-releasing factor type-1 (CRF-R1) receptors. Compared with WT mice, tPA−/− mice injected wi...

  7. Electrostatically gated membrane permeability in inorganic protocells

    Li, Mei; Harbron, Rachel; Weaver, Jonathan; Binks, Bernard; Mann, Stephen.

    2013-01-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covale...

  8. Activation of the Endoperoxide Ascaridole Modulates Its Sensitizing Capacity.

    Krutz, Nora L; Hennen, Jennifer; Korb, Corinna; Schellenberger, Mario T; Gerberick, G Frank; Blömeke, Brunhilde

    2015-10-01

    The monoterpene ascaridole, a fairly stable endoperoxide found in essential oils such as tea tree oil can provoke allergic contact dermatitis which has been evidenced under patch test conditions. However, concomitantly we observed irritative skin reactions that demand further data underlining the sensitization potential of ascaridole. Here, we studied the effects of ascaridole on dendritic cell (DC) activation and protein reactivity, 2 key steps of chemical-induced skin sensitization. Treatment of human monocyte-derived DC with ascaridole found support for full DC maturation, a capability of sensitizers but not irritants. It induced significant upregulation of the expression of the costimulatory molecules CD86, CD80, CD40, and the adhesion molecule CD54 in a time-dependent manner. Maturation was accompanied by release of proinflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, and IL-8. Similar to other chemical skin sensitizers including hydroperoxides, we observed a certain reactivity of ascaridole toward cysteine- but not lysine-containing peptides. During recent years, evidence accumulated for a radical mechanism as trigger for protein reactivity of peroxides. Treatment of the fairly stable endoperoxide ascaridole with iron as radical inducer ("activated ascaridole") resulted in cysteine peptide reactivity exceeding by far that of ascaridole itself. Furthermore, activated ascaridole showed increased potential for induction of the Nrf2 target gene heme oxygenase 1 and upregulation of CD86 and CD54 on THP-1 cells, an established DC surrogate. These results indicate that radical formation could be involved in the steps leading to skin sensitization induced by the endoperoxide ascaridole. PMID:26185204

  9. Acetylcholinesterase Modulates Presenilin-1 Levels and γ-Secretase Activity

    Campanari, María-Letizia; García Ayllón, María Salud; Belbin, Olivia; Galcerán, Joan; Lleó, Alberto; Sáez-Valero, Javier

    2014-01-01

    The cholinergic enzyme acetylcholinesterase (AChE) and the catalytic component of the ¿-secretase complex, presenilin-1 (PS1), are known to interact. In this study, we investigate the consequences of AChE-PS1 interactions, particularly the influence of AChE in PS1 levels and ¿-secretase activity. PS1 is able to co-immunoprecipitate all AChE variants (AChE-R and AChE-T) and molecular forms (tetramers and light subunits) present in the human brain. Overexpression of AChE-R or AChE-T, or their r...

  10. Control of Foxp3 stability through modulation of TET activity.

    Yue, Xiaojing; Trifari, Sara; Äijö, Tarmo; Tsagaratou, Ageliki; Pastor, William A; Zepeda-Martínez, Jorge A; Lio, Chan-Wang J; Li, Xiang; Huang, Yun; Vijayanand, Pandurangan; Lähdesmäki, Harri; Rao, Anjana

    2016-03-01

    Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine and other oxidized methylcytosines, intermediates in DNA demethylation. In this study, we examine the role of TET proteins in regulating Foxp3, a transcription factor essential for the development and function of regulatory T cells (T reg cells), a distinct lineage of CD4(+) T cells that prevent autoimmunity and maintain immune homeostasis. We show that during T reg cell development in the thymus, TET proteins mediate the loss of 5mC in T reg cell-specific hypomethylated regions, including CNS1 and CNS2, intronic cis-regulatory elements in the Foxp3 locus. Similar to CNS2-deficient T reg cells, the stability of Foxp3 expression is markedly compromised in T reg cells from Tet2/Tet3 double-deficient mice. Vitamin C potentiates TET activity and acts through Tet2/Tet3 to increase the stability of Foxp3 expression in TGF-β-induced T reg cells. Our data suggest that targeting TET enzymes with small molecule activators such as vitamin C might increase induced T reg cell efficacy. PMID:26903244

  11. Development and construction of a thermoelectric active facade module

    Marıa Ibanez-Puy

    2015-06-01

    Full Text Available In order to fulfil the current challenges for the European building sector, building design has diverged into two alternative directions: active technologies and passive design strategies. In the last few years, advanced and responsive building envelope components have represented a promising answer to these challenges. This paper presents the design and construction process of a project that aims to design, build and control the energy performance of an industrial-scale modular active ventilated facade prototype with a new Themoelectric Peltier System (TPS. The TPS is a thermoelectric HVAC heat pump system designed to be located in the building envelope and providing a high comfort level. Trying to optimize the energy performance of the traditional ventilated opaque facade, and make more efficient the energy performance of the TPS, the concept of adaptability has been applied to ventilated opaque facades. The essential research theme is to control the natural phenomena that take place inside the ventilated air cavity of the facade: taking advantage when heat dissipation is needed, and avoiding it when heat losses are not welcome. In order to quantify the previous statements, some facade prototypes are being built in Pamplona (Spain and their energy performance is going to be analyzed during a year.  

  12. Modulation of P-glycoprotein ATPase activity by some phytoconstituents.

    Najar, I A; Sachin, B S; Sharma, S C; Satti, N K; Suri, K A; Johri, R K

    2010-03-01

    In the present investigation 16 phytoconstituents, which are active moieties found in several medicinal herbs, have been evaluated for their P-glycoprotein (P-gp) stimulation/inhibition profiles using a P-gp-dependent ATPase assay in rat jejunal membrane (in vitro). Acteoside, agnuside, catechin, chlorogenic acid, picroside -II and santonin showed an inhibitory effect. Negundoside, picroside -I and oleanolic acid caused a stimulatory effect. Andrographolide, apocyanin, berberine, glycyrrhizin, magniferin and piperine produced a biphasic response (stimulation at low concentration and inhibition at high concentration). The results suggested that a possible interaction of these phytoconstituents at the level of P-gp, could be an important parameter in determining their role in several key pharmacodynamic events. PMID:19653312

  13. Seismic waves increase permeability.

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253

  14. Urokinase and type I plasminogen activator inhibitor production by normal human hepatocytes: modulation by inflammatory agents.

    Busso, N; Nicodeme, E; Chesne, C; Guillouzo, A; Belin, D; Hyafil, F

    1994-07-01

    We examined the effects of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor-alpha and transforming growth factor-beta) on the plasminogen activator system (urokinase, tissue-type plasminogen activator, type 1 plasminogen activator inhibitor) in primary cultures of human hepatocytes. We show that interleukin-1 beta and tumor necrosis factor-alpha increase urokinase-type plasminogen activator production, reinforcing the concept that increased urokinase production is associated with inflammatory processes. By contrast, the same agents (i.e., interleukin-1 beta and tumor necrosis factor-alpha) do not stimulate plasminogen activator inhibitor type 1 production. This latter observation rules out hepatocytes as a major cellular source of plasmatic plasminogen activator inhibitor type 1 during acute-phase-related responses. Among the inflammatory agents used, transforming growth factor-beta was found to be the most effective modulator of both urokinase-type plasminogen activator and plasminogen activator inhibitor type 1, inducing severalfold increases of activity of urokinase-type plasminogen activator, antigen and the corresponding mRNA and increasing plasminogen activator inhibitor type 1 antigen and mRNA levels. Urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 modulation by transforming growth factor-beta may play a critical role in hepatic pathophysiology. PMID:8020888

  15. CK2 activity is modulated by growth rate in Saccharomyces cerevisiae

    Research highlights: → CK2 subunits are nuclear both in glucose and in ethanol growing yeast cells. → CK2 activity is modulated in S. cerevisiae. → CK2 activity is higher in conditions supporting higher growth rates. → Vmax is higher in faster growing cells, while Km is not affected. -- Abstract: CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and kcat. Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.

  16. CCL2/MCP-1 modulation of microglial activation and proliferation

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  17. Isolated PWM DC-AC SICAM with an active capacitive voltage clamp[Pulse Density Modulated; Pulse Width Modulation

    Ljusev, P.

    2004-03-15

    In this report an isolated PWM DC-AC SICAM with an active capacitive voltage clamp is presented. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitors and possibly with an EMC filter on the mains entrance. Isolation from the AC mains is achieved using a high frequency (HF) transformer, whose voltages are not audio-modulated. The latter simplifies the design and is expected to have many advantages over the approach where the transformer voltages are modulated in regards to the audio signal reference. Input stage is built as a DC-AC inverter (push-pull, half-bridge or a full-bridge) and operated with 50% duty cycle, with all the challenges to avoid transformer saturation and obtain symmetrical operation. On the secondary side the output section is implemented as rectifier+inverter AC-AC stage, i.e. a true bidirectional bridge, which operation is aimed towards amplification of the audio signal. In order to solve the problem with the commutation of the load current, a dead time between the incoming and outgoing bidirectional switch is implemented, while a capacitive voltage clamp is used to keep the induced overvoltage to reasonable levels. The energy stored in the clamping capacitor is not wasted as in the dissipative clamps, but is rather transferred back to the primary side for further processing using an auxiliary isolated single-switch converter, i.e. an active clamping technique is used. (au)

  18. Varying modulation of HIV-1 LTR activity by Baf complexes.

    Van Duyne, Rachel; Guendel, Irene; Narayanan, Aarthi; Gregg, Edward; Shafagati, Nazly; Tyagi, Mudit; Easley, Rebecca; Klase, Zachary; Nekhai, Sergei; Kehn-Hall, Kylene; Kashanchi, Fatah

    2011-08-19

    The human immunodeficiency virus type 1 (HIV-1) long terminal repeat is present on both ends of the integrated viral genome and contains regulatory elements needed for transcriptional initiation and elongation. Post-integration, a highly ordered chromatin structure consisting of at least five nucleosomes, is found at the 5' long terminal repeat, the location and modification state of which control the state of active viral replication as well as silencing of the latent HIV-1 provirus. In this context, the chromatin remodeling field rapidly emerges as having a critical role in the control of viral gene expression. In the current study, we focused on unique Baf subunits that are common to the most highly recognized of chromatin remodeling proteins, the SWI/SNF (switching-defective-sucrose non-fermenting) complexes. We find that at least two Baf proteins, Baf53 and Baf170, are highly regulated in HIV-1-infected cells. Previously, studies have shown that the depletion of Baf53 in uninfected cells leads to the expansion of chromosomal territories and the decompaction of the chromatin. Baf53, in the presence of HIV-1 infection, co-elutes off of a chromatographic column as a different-sized complex when compared to uninfected cells and appears to be predominantly phosphorylated. The innate function of Baf53-containing complexes appears to be transcriptionally suppressive, in that knocking down Baf53 increases viral gene expression from cells both transiently and chronically infected with HIV-1. Additionally, cdk9/cyclin T in the presence of Tat is able to phosphorylate Baf53 in vitro, implying that this posttranslationally modified form relieves the suppressive effect and allows for viral transcription to proceed. PMID:21699904

  19. Gyroid Nanoporous Membranes with Tunable Permeability

    Li, Li; Schulte, Lars; Clausen, Lydia D.;

    2011-01-01

    Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross...... chemistry of 1,2-PB nanoporous membranes can be controlled, for example, by hydrophilic patterning of the originally hydrophobic membranes, which allows for different active porosity toward aqueous solutions and, therefore, different permeability. The membrane selectivity is evaluated by comparing the...... effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  20. MODULATION OF EASTERN OYSTER HEMOCYTE ACTIVITIES BY PERKINSUS MARINUS EXTRACELLULAR PROTEINS

    The oyster pathogen Perkinsus marinusproduces many extracellular proteins (ECP) in vitro. Analysis of this ECP revealed a battery of hydrolytic enzymes. Some of these enzymes are known to modulate the activity of host defense cells. Although information on the effects of P. marin...

  1. Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance

    Okazaki, Y.O.; Horschig, J.; Luther, L.M.; Oostenveld, R.; Murakami, I.; Jensen, O.

    2015-01-01

    It has been demonstrated that alpha activity is lateralized when attention is directed to the left or right visual hemifield. We investigated whether real-time neurofeedback training of the alpha lateralization enhances participants' ability to modulate posterior alpha lateralization and causes subs

  2. Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea

    Hayashi, K.; Schoonbeek, H.; Waard, de M.A.

    2003-01-01

    Modulators known to reduce multidrug resistance in tumour cells were tested for their potency to synergize the fungitoxic activity of the fungicide oxpoconazole, a sterol demethylation inhibitor (DMI), against Botrytis cinerea Pers. Chlorpromazine, a phenothiazine compound known as a calmodulin anta

  3. MODULATION BREATHING OF THE ELECTRICAL ACTIVITY IN THE PHRENIC NERVE DURING STARTLES REFLEXES

    Emanov, Sergey

    2006-01-01

    In the paper the reflex activity in the phrenic nerve is studied in chloralose anesthetized cats during development of somatic startle reflexes. Modulation of responses during the respiratory cycle is described. Organization of possible neurophysiologic mechanisms of phrenic responses during startle reflexes is discussed

  4. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  5. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Yoshiki Matsuda

    Full Text Available Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%. Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20% in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients.

  6. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; Tatsumi, Yoshiyuki

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients. PMID:27441843

  7. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    Agarwal, Pratul K [ORNL

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  8. Novel Active Bouncer Topology for Klystron Modulators based on Pulsed Transformers

    AUTHOR|(CDS)2079689; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    Active droop compensation systems, so called active bouncers, for klystron modulators based on monolithic pulse transformers perform the regulation of the output pulse voltage while simultaneously withstand all the primary current of the modulator. This imposes the utilization of high power semiconductors which can produce high switching losses and degrade the overall system efficiency. In order to overcome this issue, this paper proposes a new active bouncer topology based on the parallel connection of two different power converters: the first one is in charge of handling the majority of the primary current at high efficiency, and the second one is used to fine tune the bouncer voltage via a high bandwidth converter rated at a fraction of the first parallel connected converter. Detailed comparison between a classical active bouncer and two variants of the proposed topology are presented and based on numerical simulations.

  9. Dopamine Modulates Reward System Activity During Subconscious Processing of Sexual Stimuli

    Oei, Nicole Y. L.; Rombouts, Serge ARB; Soeter, Roelof P.; van Gerven, Joop M; Both, Stephanie

    2012-01-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive–compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the ‘reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. You...

  10. Human immunodeficiency virus-1 gp120 and gp160 envelope proteins modulate mesangial cell gelatinolytic activity.

    Singhal, P. C.; Sagar, S.; D. Chandra; Garg, P

    1995-01-01

    Patients with human immunodeficiency virus (HIV) infection often develop glomerular lesions (mesangial expansion and sclerosis). Modulation of matrix degradation may be important in the expansion of the mesangium. We studied the effect of HIV sera and HIV-1 envelope glycoproteins on gelatinolytic activity of human mesangial cells. HIV serum-treated cells showed lower (P < 0.01) gelatinolytic activity when compared with cells treated with control serum (control serum, 4.3 +/- 0.1 versus HIV se...

  11. Noradrenergic Activation of the Basolateral Amygdala Modulates Consolidation of Object Recognition Memory

    Roozendaal, Benno; Castello, Nicholas A.; Vedana, Gustavo; Barsegyan, Areg; McGaugh, James L.

    2008-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) modulates the consolidation of memory for many kinds of highly emotionally arousing training tasks. The present experiments investigated whether posttraining noradrenergic activation of the BLA is sufficient to enable memory consolidation of a low-arousing training experience. Sprague-Dawley rats received intra-BLA infusions of norepinephrine, the β-adrenoceptor antagonist propranolol or saline immediately after either ...

  12. Identification of Functionally Relevant Lysine Residues That Modulate Human Farnesoid X Receptor Activation

    Sun, An-Qiang; Luo, Yuhuan; Backos, Donald S.; Xu, Shuhua; Balasubramaniyan, Natarajan; Reigan, Philip; Suchy, Frederick J.

    2013-01-01

    Base amino acid lysine residues play an important role in regulation of nuclear receptors [e.g., farnesyl X receptor (FXR)], leading to enhanced or suppressed biologic activity. To understand the molecular mechanisms and the subsequent effects in modulating FXR functions in diverse biologic processes, we individually replaced eight highly conserved lysine residues of human FXR (hFXR) with arginine. The effects of each mutated FXR on target gene activation, subcellular localization, protein-pr...

  13. Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide

    Rossi-George, Alba; GUO, CHANG-JIANG; Oakes, Benjamin L.; Gow, Andrew J.

    2012-01-01

    Microglia are resident immune cells of the central nervous system. Their persistent activation in neurodegenerative diseases, traditionally attributed to neuronal dysfunction, may be due to a microglial failure to modulate the release of cytotoxic mediators such as nitric oxide (NO). The persistent activation of microglia with the subsequent release of NO vis-á-vis the accumulation of redox transition metals such as copper (Cu) in neurodegenerative diseases, prompted the hypothesis that coppe...

  14. Cardiotoxicity of acetogenins from Persea americana occurs through the mitochondrial permeability transition pore and caspase-dependent apoptosis pathways.

    Silva-Platas, Christian; García, Noemí; Fernández-Sada, Evaristo; Dávila, Daniel; Hernández-Brenes, Carmen; Rodríguez, Dariana; García-Rivas, Gerardo

    2012-08-01

    Acetogenins are cell-membrane permeable, naturally occurring secondary metabolites of plants such as Annonaceae, Lauraceae and other related phylogenic families. They belong to the chemical derivatives of polyketides, which are synthesized from fatty acid precursors. Although acetogenins have displayed diverse biological activities, the anti-proliferative effect on human cancer cells has been widely reported. Acetogenins are inhibitors of complex I in the electron transport chain therefore they interrupt ATP synthesis in mitochondria. We tested a new acetogenins-enriched extract from the seed of Persea americana in order to investigate if any toxicity was induced on cardiac tissue and determine the involved mechanism. In isolated perfused heart we found that contractility was completely inhibited at an accumulative dose of 77 μg/ml. In isolated cardiomyocytes, the acetogenins-enriched extract induced apoptosis through the activation of the intrinsic pathway at 43 μg/ml. In isolated mitochondria, it inhibited complex I activity on NADH-linked respiration, as would be expected, but also induced permeability transition on succinate-linked respiration. Cyclosporine A, a known blocker of permeability transition, significantly prevented the permeability transition triggered by the acetogenins-enriched extract. In addition, our acetogenins-enriched extract inhibited ADP/ATP exchange, suggesting that an important element in phosphate or adenylate transport was affected. In this manner we suggest that acetogenins-enriched extract from Persea americana could directly modulate permeability transition, an entity not yet associated with the acetogenins' direct effects, resulting in cardiotoxicity. PMID:22733015

  15. Plasmonic modulator optimized by patterning of active layer and tuning permittivity

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    -dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside the...... waveguide. The grating can be turned on and off, thus modulating reflection from the structure. The considered structure with electrical control possesses a high performance and can efficiently work as a plasmonic component in nanophotonic architectures....

  16. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)

  17. Bicarbonate and Ca(2+) Sensing Modulators Activate Photoreceptor ROS-GC1 Synergistically.

    Duda, Teresa; Pertzev, Alexandre; Makino, Clint L; Sharma, Rameshwar K

    2016-01-01

    Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs) 1 and 2 bind to its juxtamembrane domain (JMD) and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca(2+) levels are low. In cones, the additional expression of the Ca(2+)-dependent guanylate cyclase activating protein (CD-GCAP) S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca(2+) levels. Independent of Ca(2+), ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain (CCD). Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca(2+)-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F(514)S mutation in ROS-GC1 that causes blindness in type 1 Leber's congenital amaurosis (LCA) severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca(2+) signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F(514)S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca(2+). Our study challenges the recently proposed GCAP1 and GCAP2 "overlapping" phototransduction model (Peshenko et al., 2015b). PMID:26858600

  18. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  19. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  20. Vascular permeability modulation and isolated perfused microvessel approach%血管通透性的调节和游离微血管技术在其研究中的应用

    王述昀; 赵克森

    2005-01-01

    Vascular hyperpermeability is a cardinal feature of inflammation or bum in which an array of inflammatory mediators can cause such changes in the microvessels. The fimctional measures of microvascular exchange that represent the properties of microvascular wails are the permeability coefficients which have been reported from measurements on intact whole organisms (including human subjects}, on perfused tissues and organs, on single perfused microvessels, and on monolayers of cultured microvascular endothelial cells. In this review, we summarize some experiments of vascular permeability in individually isolated perfused microvessels.

  1. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules

    Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ('model signatures') constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that

  2. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    Joset A Etzel

    Full Text Available Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction, these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals.

  3. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  4. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    冯存芳; 汪映海

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a genera./ method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach.%Projective synchronization in modulated time-delayed systems is studied by applying an active control method.Based on the Lyapunov asymptotical stability theorem,the controller and sufficient condition for projective synchronization are calculated analytically.We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems.This method allows us to adjust the desired scaling factor arbitrarily.The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices.Numerical simulations fully support the analytical approach.

  5. Hand modulation of visual, preparatory, and saccadic activity in the monkey frontal eye field.

    Thura, David; Hadj-Bouziane, Fadila; Meunier, Martine; Boussaoud, Driss

    2011-04-01

    Behavioral studies have shown that hand position influences saccade characteristics. This study examined the neuronal changes that could underlie this behavioral observation. Single neurons were recorded in the frontal eye field (FEF) of 2 monkeys as they executed a visually guided saccade task, while holding their hand at given locations on a touch screen. The task was performed with the hand either visible or invisible, in order to assess the relative contribution of visual and proprioceptive information on hand position. Among the 224 neurons tested, the visual, saccadic and/or preparatory activity of more than half of them was modulated by hand position, whether the hand was visible or invisible. Comparison of lower (hand's workspace) and upper (out of reach) visual targets showed that hand modulation was predominant in the hand's workspace. Finally, some cells preferred congruency of hand and target in space, others preferred incongruency. Interestingly, hand modulation of saccadic activity correlated with hand position effects on saccade reaction times. We conclude that visual and proprioceptive signals derived from the hand are integrated by FEF neurons. These signals can modulate target selection through attention and allow the oculomotor system to use hand-related somatosensory signals for the initiation of visually guided saccades. PMID:20713503

  6. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  7. The skin migratory stage of the schistosomulum of Schistosoma mansoni has a surface showing greater permeability and activity in membrane internalisation than other forms of skin or mechanical schistosomula.

    DE Jesus Jeremias, Wander; DA Cunha Melo, Jose Renan; Baba, Elio Hideo; Coelho, Paulo Marcos Zech; Kusel, John Robert

    2015-08-01

    Skin schistosomula can be prepared by collecting them after isolated mouse skin have been penetrated by cercariae in vitro. The schistosomula can also migrate out of isolated mouse skin penetrated by cercariae in vitro and from mouse skin penetrated by cercariae in vivo. Schistosomula can also be produced from cercariae applied through a syringe or in a vortex. When certain surface properties of the different forms of schistosomula were compared, those migrating from mouse skin penetrated by cercariae in vivo or in vitro had greatly increased permeability to membrane impermeant molecules such as Lucifer yellow and high molecular weight dextrans. These migrating forms also possessed surfaces which showed greatly enhanced uptake into internal membrane vesicles of the dye FM 143, a marker for endocytosis. This greatly enhanced activity and permeability of the surfaces of tissue migrating schistosomula is likely to be of great importance in the adaptation to the new host. PMID:26028506

  8. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    RamónALorca

    2014-07-01

    Full Text Available The large-conductance voltage- and Ca2+-activated K+ channel (BKCa is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits, association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.

  9. Insights into structure-activity relationship of GABAA receptor modulating coumarins and furanocoumarins.

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F; Kopp, Brigitte; Hering, Steffen

    2011-10-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (I(GABA)) by a selection of 18 coumarin derivatives on recombinant α(1)β(2)γ(2S) GABA(A) receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC(50)=14 ± 1 μM) and oxypeucedanin (EC(50)=25 ± 8 μM) displayed the highest efficiency with I(GABA) potentiation of 116 ± 4 % and 547 ± 56 %, respectively. I(GABA) enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish I(GABA) modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin - comprising three hydrophobic and one aromatic feature - identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABA(A) receptor modulators. PMID:21749864

  10. Screening and characterization of molecules that modulate the biological activity of IFNs-I.

    Bürgi, Milagros; Zapol'skii, Viktor A; Hinkelmann, Bettina; Köster, Mario; Kaufmann, Dieter E; Sasse, Florenz; Hauser, Hansjörg; Etcheverrigaray, Marina; Kratje, Ricardo; Bollati-Fogolín, Mariela; Oggero, Marcos

    2016-09-10

    Type I Interferons (IFNs-I) are species-specific glycoproteins which play an important role as primary defence against viral infections and that can also modulate the adaptive immune system. In some autoimmune diseases, interferons (IFNs) are over-produced. IFNs are widely used as biopharmaceuticals for a variety of cancer indications, chronic viral diseases, and for their immuno-modulatory action in patients with multiple sclerosis; therefore, increasing their therapeutic efficiency and decreasing their side effects is of high clinical value. In this sense, it is interesting to find molecules that can modulate the activity of IFNs. In order to achieve that, it was necessary to establish a simple, fast and robust assay to analyze numerous compounds simultaneously. We developed four reporter gene assays (RGAs) to identify IFN activity modulator compounds by using WISH-Mx2/EGFP, HeLa-Mx2/EGFP, A549-Mx2/EGFP, and HEp2-Mx2/EGFP reporter cell lines (RCLs). All of them present a Z' factor higher than 0.7. By using these RGAs, natural and synthetic compounds were analyzed simultaneously. A total of 442 compounds were studied by the Low Throughput Screening (LTS) assay using the four RCLs to discriminate between their inhibitory or enhancing effects on IFN activity. Some of them were characterized and 15 leads were identified. Finally, one promising candidate with enhancing effect on IFN-α/-β activity and five compounds with inhibitory effect were described. PMID:27346232