WorldWideScience

Sample records for activating fak signaling

  1. Abnormal Cell Properties and Down-Regulated FAK-Src Complex Signaling in B Lymphoblasts of Autistic Subjects

    Science.gov (United States)

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M.; Merz, George; Ted Brown, W.; Li, Xiaohong

    2011-01-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase–extracellular signal–regulated kinase and phosphatidylinositol 3-kinase–Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase–Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. PMID:21703394

  2. Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway.

    Science.gov (United States)

    Sun, Jinghui; Luo, Qing; Liu, Lingling; Song, Guanbin

    2018-07-28

    Cancer stem cells (CSCs) are a small subpopulation of tumour cells that have been proposed to be responsible for cancer initiation, chemotherapy resistance and cancer recurrence. Shear stress activated cellular signalling is involved in cellular migration, proliferation and differentiation. However, little is known about the effects of shear stress on the migration of liver cancer stem cells (LCSCs). Here, we studied the effects of shear stress that are generated from a parallel plated flow chamber system, on LCSC migration and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2), using transwell assay and western blot, respectively. We found that 2 dyne/cm 2 shear stress loading for 6 h promotes LCSC migration and activation of the FAK and ERK1/2 signalling pathways, whereas treatment with the FAK phosphorylation inhibitor PF573228 or the ERK1/2 phosphorylation inhibitor PD98059 suppressed the shear stress-promoted migration, indicating the involvement of FAK and ERK1/2 activation in shear stress-induced LCSC migration. Additionally, atomic force microscopy (AFM) analysis showed that shear stress lowers LCSC stiffness via the FAK and ERK1/2 pathways, suggesting that the mechanism by which shear stress promotes LCSC migration might partially be responsible for the decrease in cell stiffness. Further experiments focused on the role of the actin cytoskeleton, demonstrating that the F-actin filaments in LCSCs are less well-defined after shear stress treatment, providing an explanation for the reduction in cell stiffness and the promotion of cell migration. Overall, our study demonstrates that shear stress promotes LCSC migration through the activation of the FAK-ERK1/2 signalling pathways, which further results in a reduction of organized actin and softer cell bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. αν and β1 Integrins mediate Aβ-induced neurotoxicity in hippocampal neurons via the FAK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Han

    Full Text Available αν and β1 integrins mediate Aβ-induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA to silence focal adhesion kinase (FAK, a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively. However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK. Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05 compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway.

  4. Lumican alleviates hypertrophic scarring by suppressing integrin-FAK signaling

    International Nuclear Information System (INIS)

    Zhao, Yuqian; Li, Xueyong; Xu, Xiaoli; He, Zhi; Cui, Lei; Lv, Xiaoxing

    2016-01-01

    Hypertrophic scarring (HS) is an overcompensation of wound healing that increases the risk of cosmetic disfigurement and functional impairment. No gold standard has been established for the treatment or prevention of HS. Our study aims to elucidate the expression and function of lumican in the pathogenesis of HS as well as the underlying mechanism involved in this procedure. An animal model of HS (rabbit ear) was established, and the Ad-lumican vectors were locally injected. Primary fibroblasts isolated from patients with hypertrophic burn scars were used in vitro. Histological and molecular changes in HS pathogenesis were evaluated. The results showed that lumican is significantly reduced in HS tissues and fibroblasts from HS patients as compared to normal skin or cells. Lumican levels were further suppressed in response to TGF-β stimulation. However, lumican upregulation effectively thinned the scar area and inhibited fibroblast proliferation and the cell cycle. Meanwhile, Ad-lumican administration suppressed the deposition of extracellular matrix, such as collagen and CTGF. Ad-lumican injected animals or fibroblasts presented comparable integrin α 2 β 1 expression while greatly reduced phosphorylation of FAK compared to the negative control. Moreover, Ad-lumican administration largely enhanced the binding of lumican to integrin α 2 β 1 and may thus inhibit the signaling propagation of collagen-integrin α 2 β 1 . Overall, the restoration of lumican levels contributed to suppressing the HS progression by inhibiting collagen-integrin α 2 β 1 -FAK signaling. - Highlights: • Lumican is downregulated during hypertrophic scar formation. • Lumican inhibits fibroblast proliferation. • Lumican inhibits extracellular matrix deposition. • Lumican suppresses collagen-integrin-FAK signaling.

  5. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  7. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  8. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    Science.gov (United States)

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration.

    Directory of Open Access Journals (Sweden)

    Simona Wagner

    2008-04-01

    Full Text Available Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.

  10. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro.

    Science.gov (United States)

    Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu

    2018-05-21

    The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.

  11. FUS-CHOP Promotes Invasion in Myxoid Liposarcoma through a SRC/FAK/RHO/ROCK-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Juan Tornin

    2018-01-01

    Full Text Available Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS, an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays and in vivo (chicken chorioallantoic membrane model approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP–mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19 and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP–expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP–mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.

  12. Focal adhesion kinase (FAK1 regulates SHB phosphorylation and its binding with a range of signaling proteins

    Directory of Open Access Journals (Sweden)

    Dergai O. V.

    2016-02-01

    Full Text Available Aim. To investigate an effect of the Focal adhesion kinase 1 (FAK1 expression on the level of tyrosine phosphorylation of an adaptor protein SHB and to find functional consequences of this posttranslational modification. Methods. Recombinant DNA construction, protein expression and purification, human cell transfection, western blot. Results. The expression of FAK1 induces the massive tyrosine phosphorylation of SHB adaptor and enhances its interaction in vitro with SH2 domains of a range of the signaling proteins such as PI3K, ABL, CRK and PLCG1. Additionally we have found that Epstein-Barr virus protein LMP2A can partially mimic the FAK1-mediated effect strongly elevating the efficiency and SHB interaction with the mentioned above proteins. While the expression of individual proteins elevated SHB phosphorylation level, the co-expression of LMP2A and FAK1 did not display a synergetic effect. Conclusions. FAK1 as well as LMP2A induce the SHB tyrosine phosphorylation and enhance its interaction with a set of the signaling proteins.

  13. HPW-RX40 restores anoikis sensitivity of human breast cancer cells by inhibiting integrin/FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Hua; Shih, Hsin-Chu [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Hsieh, Pei-Wen [Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan (China); Wu, Yang-Chang, E-mail: yachwu@mail.cmu.edu [School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan (China); Wu, Chin-Chung, E-mail: ccwu@kmu.edu.tw [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80708, Taiwan (China); Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2015-12-01

    Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.

  14. HPW-RX40 restores anoikis sensitivity of human breast cancer cells by inhibiting integrin/FAK signaling

    International Nuclear Information System (INIS)

    Chen, I-Hua; Shih, Hsin-Chu; Hsieh, Pei-Wen; Chang, Fang-Rong; Wu, Yang-Chang; Wu, Chin-Chung

    2015-01-01

    Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.

  15. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  16. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    Science.gov (United States)

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  17. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK

    Science.gov (United States)

    Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana

    2017-01-01

    Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935

  18. Molecular profiling of ALDH1+ colorectal cancer stem cells reveals preferential activation of MAPK, FAK, and oxidative stress prosurvival signalling pathways

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Fahad, Mohamed

    2018-01-01

    enrichment related to DNA damage, MAPK, FAK, oxidative stress response, and Wnt signalling. ALDH+ cells showed enhanced ROS stress resistance, whereas MAPK/FAK pathway pharmacologic inhibition limited their survival. Conversely, 5-fluorouracil increased the ALDH+ cell fraction among the SW403, HCT116 and SW.......006) and poor DFS (p = 0.05), thus implicating ALDH1A1 and POU5F1 in CRC prognosis. Our data reveal distinct molecular signature of ALDH+ CSCs in CRC and suggest pathways relevant for successful targeted therapies and management of CRC....

  19. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.

    Science.gov (United States)

    Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta

    2017-07-04

    Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.

  20. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway

  1. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wei-Hong [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Yang, Li-Yun [Department of Blood Transfusion, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Cao, Zhong-Yi, E-mail: m18070383032@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Qian, Yong, E-mail: yfykqkqy@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China)

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  2. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-01-01

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  3. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingyu [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Luo, Qing, E-mail: qing.luo@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Mao, Xinjian [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ju, Yang [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  4. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro.

    Science.gov (United States)

    Xu, Xiu-Ping; He, Hong-Li; Hu, Shu-Ling; Han, Ji-Bin; Huang, Li-Li; Xu, Jing-Yuan; Xie, Jian-Feng; Liu, Ai-Ran; Yang, Yi; Qiu, Hai-Bo

    2017-07-12

    Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but

  5. LEFTY2 Controls Migration of Human Endometrial Cancer Cells via Focal Adhesion Kinase Activity (FAK) and miRNA-200a.

    Science.gov (United States)

    Alowayed, Nour; Salker, Madhuri S; Zeng, Ni; Singh, Yogesh; Lang, Florian

    2016-01-01

    LEFTY2, a suppressor of cell proliferation, tumor growth, regulator of stemness and embryonic differentiation, is a negative regulator of cancer cell reprogramming. Malignant transformation may lead to migration requiring loss of adhesion and gain of migratory activity. Signaling involved in the orchestration of migration, proliferation and spreading of cells include focal adhesion kinase (FAK) and adhesion molecule E-cadherin. The present study explored whether LEFTY2 influences the proliferation marker MKi67, FAK activity, E-cadherin abundance and migration of Ishikawa human endometrial carcinoma cells. Moreover, the study explored the involvement of microRNA-200a (miR-200a), which is known to regulate cellular adhesion by targeting E-Cadherin. FAK activity was estimated from FAK phosphorylation quantified by Western blotting, migration utilizing a wound healing assay, miR-200a and MKi67 expression levels utilizing qRT-PCR, cell proliferation and apoptosis using BrdU and Annexin V staining, respectively, and E-Cadherin (E-Cad) abundance, using confocal microscopy. LEFTY2 (25 ng/ml, 48 hours) treatment was followed by decrease of MKi67 expression, FAK activity and migration. LEFTY2 upregulated miRNA-200a and E-Cad protein level in Ishikawa cells. The effect of LEFTY2 on migration was mimicked by FAK inhibitor PF 573228 (50 µM). Addition of LEFTY2 in the presence of PF-573228 did not result in a further significant decline of migration. In conclusion, LEFTY2 down-regulates MKi67 expression and FAK activity, up-regulates miR-200a and E-cadherin, and is thus a powerful negative regulator of endometrial cell proliferation and migration. © 2016 The Author(s) Published by S. Karger AG, Basel.

  6. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway.

    Science.gov (United States)

    Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie

    2017-08-01

    To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.

  7. Signaling via ITGB1/FAK and microfilament rearrangement mediates the internalization of Leptospira interrogans in mouse J774A.1 macrophages

    Directory of Open Access Journals (Sweden)

    Zhao Xin

    2015-01-01

    Full Text Available Leptospirosis caused by pathogenic Leptospira species is a worldwide zoonotic 2 infectious disease, but the mechanisms of leptospiral internalization remain poorly understood. Here, we report that mouse J774A.1 macrophages expressed integrin-subfamily proteins (ITGB1, ITGB2 and ITGB3. Antibody blockage and siRNA-based knockdown of ITGB1 decreased the internalization of leptospires into mouse J774A.1 macrophage cells. The internalization required focal adhesion kinase (FAK activation in J774A.1 cells rather than phosphoinositide-3-kinase (PI3K, and microfilament rather than microtubule aggregation during infection. The data indicated that the ITGB1/FAK/microfilament signaling pathway is responsible for leptospiral internalization in mouse macrophages.

  8. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  9. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen; Gervasi, Nicolas; Arsenieva, Diana A.; Walkiewicz, Katarzyna; Boutterin, Marie Claude; Ortega, Á lvaro Darí o; Leonard, Paul G.; Seantier, Bastien; Gasmi, Laï la; Bouceba, Tahar; Kadaré , Gress; Girault -, Jean Antoine; Arold, Stefan T.

    2014-01-01

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  10. Induction of keratinocyte migration by ECa 233 is mediated through FAK/Akt, ERK, and p38 MAPK signaling.

    Science.gov (United States)

    Singkhorn, Sawana; Tantisira, Mayuree H; Tanasawet, Supita; Hutamekalin, Pilaiwanwadee; Wongtawatchai, Tulaporn; Sukketsiri, Wanida

    2018-03-13

    Centella asiatica is widely considered the most important medicinal plant for treating and relieving skin diseases. Recently developed standardized extract of Centella asiatica ECa 233 has demonstrated positive effects on wound healing of incision and burn wound in rats. However, knowledge associated with wound healing mechanism of ECa 233 was scare. Therefore, this study aimed to investigate the effect and underlying molecular mechanisms of ECa 233 on the migration of a human keratinocyte cell line (HaCaT) using scratch wound healing assay. Formation of filopodia, a key protein in cell migration as well as signaling pathways possibly involved were subsequently assessed. It was found that HaCaT cell migration was significantly enhanced by ECa 233 in a concentration- and time-dependent manner. The filopodia formations were accordingly increased in exposure to ECa 233 at concentrations of 0.1-100 μg/ml. Furthermore, ECa 233 was found to significantly upregulate the expression of Rac1 and RhoA and to induce phosphorylation of FAK and Akt as well as ERK and p38 MAPK. Taken all together, it is suggestive that ECa 233 induces cell migration and subsequently promotes wound healing activity, through the activation of FAK, Akt, and MAPK signaling pathways thereby supporting the role of ECa 233 to be further developed for the clinical treatment of wound. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    Science.gov (United States)

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  12. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    International Nuclear Information System (INIS)

    Lin, Chunlong; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-01-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  13. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunlong, E-mail: lclmd@sina.com; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-02-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  14. Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells

    Science.gov (United States)

    Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas

    2001-01-01

    Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893

  15. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  16. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Luo, Qing, E-mail: qing.luo@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Sun, Jinghui, E-mail: sunjhemail@163.com [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Wang, Aoli, E-mail: leaf13332@163.com [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Shi, Yisong, E-mail: shiyis@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ju, Yang, E-mail: ju@mech.nagoya-u.ac.jp [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Morita, Yasuyuki, E-mail: morita@mech.nagoya-u.ac.jp [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-15

    Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.

  17. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Wang, Aoli; Shi, Yisong; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2017-01-01

    Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.

  18. Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation

    Science.gov (United States)

    Yang, Li-yun; He, Chang-yu; Chen, Xue-hua; Su, Li-ping; Liu, Bing-ya; Zhang, Hao

    2016-01-01

    Revival of dormant tumor cells may be an important tumor metastasis mechanism. We hypothesized that aurora kinase A (AURKA), a cell cycle control kinase, promotes the transition of laryngeal squamous cell carcinoma (LSCC) cells from G0 phase to active division. We therefore investigated whether AURKA could revive dormant tumor cells to promote metastasis. Western blotting revealed that AURKA expression was persistently low in dormant laryngeal cancer Hep2 (D-Hep2) cells and high in non-dormant (T-Hep2) cells. Decreasing AURKA expression in T-Hep2 cells induced dormancy and reduced FAK/PI3K/Akt pathway activity. Increasing AURKA expression in D-Hep2 cells increased FAK/PI3K/Akt pathway activity and enhanced cellular proliferation, migration, invasion and metastasis. In addition, FAK/PI3K/Akt pathway inhibition caused dormancy-like behavior and reduced cellular mobility, migration and invasion. We conclude that AURKA may revive dormant tumor cells via FAK/PI3K/Akt pathway activation, thereby promoting migration and invasion in laryngeal cancer. AURKA/FAK/PI3K/Akt inhibitors may thus represent potential targets for clinical LSCC treatment. PMID:27356739

  19. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  20. Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling.

    Directory of Open Access Journals (Sweden)

    Yunping Li

    2009-10-01

    Full Text Available An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.

  1. Preliminary crystallographic characterization of the Grb2 SH2 domain in complex with a FAK-derived phosphotyrosyl peptide

    International Nuclear Information System (INIS)

    Chen, Hsiao-Hsin; Chen, Cuei-Wen; Chang, Yu-Yung; Shen, Tang-Long; Hsu, Chun-Hua

    2010-01-01

    Crystals of the Grb2 SH2 domain in complex with a phosphotyrosyl peptide corresponding to residues 921–930 of focal adhesion kinase (FAK) have been obtained using the sitting-drop vapour-diffusion technique. Data have been collected to 2.49 Å resolution. Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein with a single SH2 domain that specifically binds to focal adhesion kinase (FAK) when residue Tyr925 of FAK is phosphorylated. The Grb2–FAK interaction is associated with cellular integrin-activated signal transduction events leading to the activation of the Ras-MAPK pathway. Crystals of the Grb2 SH2 domain in complex with a phosphopeptide corresponding to residues 921–930 of FAK have been obtained using the sitting-drop vapour-diffusion technique. The crystals belonged to space group P3 1 21, with unit-cell parameters a = b = 102.7, c = 127.6 Å, α = β = 90.0, γ = 120.0°. A diffraction data set was collected from a flash-cooled crystal at 100 K to 2.49 Å resolution using synchrotron radiation. Structure determination by molecular replacement and analysis of the detailed structure of the complex are currently in progress

  2. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H.; Waskow, Emily R.; Visconte, Valeria; Tiu, Ramon V.; Smith, Catherine C.; Shah, Neil; Bunting, Kevin D.; Boswell, H. Scott; Liu, Yan; Chan, Rebecca J.; Kapur, Reuben

    2015-01-01

    SUMMARY Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. PMID:25456130

  3. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Anindya Chatterjee

    2014-11-01

    Full Text Available Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML and myeloproliferative neoplasms (MPNs, and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.

  4. The dual kinase complex FAK-Src as a promising therapeutic target in cancer

    Science.gov (United States)

    Bolós, Victoria; Gasent, Joan Manuel; López-Tarruella, Sara; Grande, Enrique

    2010-01-01

    Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed. PMID:20616959

  5. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben

    2014-11-20

    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Focal adhesion kinase, a downstream mediator of Raf-1 signaling, suppresses cellular adhesion, migration, and neuroendocrine markers in BON carcinoid cells.

    Science.gov (United States)

    Ning, Li; Chen, Herbert; Kunnimalaiyaan, Muthusamy

    2010-05-01

    We have recently reported that activation of the Raf-1/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/2 (MEK1/2)/ERK1/2 signaling cascade in gastrointestinal carcinoid cell line (BON) alters cellular morphology and neuroendocrine phenotype. The mechanisms by which Raf-1 mediates these changes in carcinoid cells are unclear. Here, we report that activation of the Raf-1 signaling cascade in BON cells induced the expression of focal adhesion kinase (FAK) protein, suppressed the production of neuroendocrine markers, and resulted in significant decreases in cellular adhesion and migration. Importantly, inactivation of MEK1/2 by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene or abolition of FAK induction in Raf-1-activated BON cells by targeted siRNA led to reversal of the Raf-1-mediated reduction in neuroendocrine markers and cellular adhesion and migration. Phosphorylation site-specific antibodies detected the phosphorylated FAK(Tyr407), but not FAK(Tyr397), in these Raf-1-activated cells, indicating that FAK(Tyr407) may be associated with changes in the neuroendocrine phenotype. Overexpression of constitutively active FAK plasmids (wild-type FAK or FAK(Tyr397) mutant) into BON cells reduced neuroendocrine markers, whereas the FAK(Tyr407) mutant plasmid did not show any decrease in the levels of neuroendocrine markers, indicating that phosphorylation of FAK at the Tyr(407) residue may be important for these effects. Our results showed for the first time that FAK is an essential downstream effector of the Raf-1/MEK1/2/ERK1/2 signaling cascade and negatively regulated the neuroendocrine and metastatic phenotype in BON cells. (c)2010 AACR.

  7. The dual kinase complex FAK-Src as a promising therapeutic target in cancer

    Directory of Open Access Journals (Sweden)

    Victoria Bolós

    2010-06-01

    Full Text Available Victoria Bolós1,*, Joan Manuel Gasent2,*, Sara López-Tarruella3, Enrique Grande1,#1Pfizer Oncology, Madrid, Spain; 2Hospital Gral. Universitario Marina Alta, Oncology Department, Denia Alicante, 3,#Hospital Clínico San Carlos, Oncology Department, ∗These authors contributed equally to this work, #Center affiliated to the Red Temática de Investigación Cooperativa (RD06/0020/0021. Instituto de Salud Carlos III (ISCIII, Spanish Ministry of Science and InnovationAbstract: Focal adhesion kinase (FAK and steroid receptor coactivator (Src are intracellular (nonreceptor tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel

  8. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  9. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    Science.gov (United States)

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  10. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  11. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    International Nuclear Information System (INIS)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-01-01

    Highlights: ► A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. ► TAE226 suppressed proliferation and migration, with a modest effect on adhesion. ► Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. ► TAE226 treatment suppressed the progression of peritoneal dissemination. ► Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken together, a possible strategy for inhibiting peritoneal dissemination by targeting FAK with TAE226 appears to be applicable

  12. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hui-fang [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Bao, Xiao-hong [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Wang, Zhi-gang [College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021 (China); Tomono, Yasuko [Division of Molecular and Cell Biology, Shigei Medical Research Institute, 2117 Yamada, Okayama 700-0202 (Japan); Sakurama, Kazufumi; Ohara, Toshiaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Fukazawa, Takuya; Yamatsuji, Tomoki [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Fujiwara, Toshiyoshi [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Naomoto, Yoshio, E-mail: ynaomoto@med.kawasaki-m.ac.jp [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  13. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  14. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125 FAK -, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  15. Istaroxime Inhibits Motility and Down-Regulates Orai1 Expression, SOCE and FAK Phosphorylation in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matias Julian Stagno

    2017-07-01

    Full Text Available Background/Aims: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. Methods: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. Results: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. Conclusion: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.

  16. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    2011-01-01

    Full Text Available Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction

  17. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    Science.gov (United States)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  18. Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines.

    Science.gov (United States)

    Zhang, Zhihong; Knoepp, Stewart M; Ku, Hsun; Sansbury, Heather M; Xie, Yuhuan; Chahal, Manpreet S; Tomlinson, Stephen; Meier, Kathryn E

    2011-08-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells.

  19. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development and Therapy

    KAUST Repository

    Naser, Rayan Mohammad Mahmoud; Aldehaiman, Abdullah; Diaz Galicia, Miriam Escarlet; Arold, Stefan T.

    2018-01-01

    Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 are showing promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled through modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and discuss how these mechanisms could inspire or improve anticancer therapies.

  20. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development and Therapy

    KAUST Repository

    Naser, Rayan Mohammad Mahmoud

    2018-05-10

    Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 are showing promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled through modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and discuss how these mechanisms could inspire or improve anticancer therapies.

  1. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Wu

    Full Text Available Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA, dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.

  2. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    International Nuclear Information System (INIS)

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  3. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  4. Flaccidoxide-13-Acetate Extracted from the Soft Coral Cladiella kashmani Reduces Human Bladder Cancer Cell Migration and Invasion through Reducing Activation of the FAK/PI3K/AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Choo-Aun Neoh

    2017-12-01

    Full Text Available Metastasis of cancer is the cause of the majority of cancer deaths. Active compound flaccidoxide-13-acetate, isolated from the soft coral Cladiella kashmani, has been found to exhibit anti-tumor activity. In this study, Boyden chamber analysis, Western blotting and gelatin zymography assays indicated that flaccidoxide-13-acetate exerted inhibitory effects on the migration and invasion of RT4 and T24 human bladder cancer cells. The results demonstrated that flaccidoxide-13-acetate, in a concentration-dependent manner, reduced the levels of matrix metalloproteinase-2 (MMP-2, MMP-9, urokinase-type plasminogen activator receptor (uPAR, focal adhesion kinase (FAK, phosphatidylinositide-3 kinases (PI3K, p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR, p-mTOR, Ras homolog gene family, member A (Rho A, Ras, mitogen-activated protein kinase kinase 7 (MKK7 and mitogen-activated protein kinase kinase kinase 3 (MEKK3, and increased the expressions of tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2 in RT4 and T24 cells. This study revealed that flaccidoxide-13-acetate suppressed cell migration and invasion by reducing the expressions of MMP-2 and MMP-9, regulated by the FAK/PI3K/AKT/mTOR pathway. In conclusion, our study was the first to demonstrate that flaccidoxide-13-acetate could be a potent medical agent for use in controlling the migration and invasion of bladder cancer.

  5. Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway

    Directory of Open Access Journals (Sweden)

    Liang Chi-Ming

    2009-01-01

    Full Text Available Abstract Background Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s. The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK, Akt and glycogen synthase kinase-3β (GSK-3β. Conclusion We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s of the etiologic agents.

  6. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    LENUS (Irish Health Repository)

    Krause-Gruszczynska, Malgorzata

    2011-12-28

    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-\\/-, integrin-beta1-\\/-, focal adhesion kinase (FAK)-\\/- and Src\\/Yes\\/Fyn-\\/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1\\/2-\\/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  7. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system.

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2010-02-01

    Full Text Available Inflammatory response following central nervous system (CNS injury contributes to progressive neuropathology and reduction in functional recovery. Axons are sensitive to mechanical injury and toxic inflammatory mediators, which may lead to demyelination. Although it is well documented that degenerated myelin triggers undesirable inflammatory responses in autoimmune diseases such as multiple sclerosis (MS and its animal model, experimental autoimmune encephalomyelitis (EAE, there has been very little study of the direct inflammatory consequences of damaged myelin in spinal cord injury (SCI, i.e., there is no direct evidence to show that myelin debris from injured spinal cord can trigger undesirable inflammation in vitro and in vivo. Our data showed that myelin can initiate inflammatory responses in vivo, which is complement receptor 3 (CR3-dependent via stimulating macrophages to express pro-inflammatory molecules and down-regulates expression of anti-inflammatory cytokines. Mechanism study revealed that myelin-increased cytokine expression is through activation of FAK/PI3K/Akt/NF-kappaB signaling pathways and CR3 contributes to myelin-induced PI3K/Akt/NF-kappaB activation and cytokine production. The myelin induced inflammatory response is myelin specific as sphingomyelin (the major lipid of myelin and myelin basic protein (MBP, one of the major proteins of myelin are not able to activate NF-kappaB signaling pathway. In conclusion, our results demonstrate a crucial role of myelin as an endogenous inflammatory stimulus that induces pro-inflammatory responses and suggest that blocking myelin-CR3 interaction and enhancing myelin debris clearance may be effective interventions for treating SCI.

  8. The Role of FAK in the Secretion of MMP9 after CD147 Stimulation in Macrophages.

    Science.gov (United States)

    Yu, Chen; Lixia, Yang; Ruiwei, Guo; Yankun, Shi; Jinshan, Ye

    2018-03-30

    To investigate whether focal adhesion kinase (FAK) can participate in the secretion of matrix metalloproteinase 9 (MMP9) after CD147 stimulation in THP-1 induced macrophages; thus, to explore the potential treatment perspectives for acute coronary syndrome (ACS).Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages. To confirm the peak mRNA and protein expression of FAK and MMP9 after the stimulation of CD147, the macrophages were divided into 5 groups (0, 3, 6, 9, and 12 hours), with 0 hours group as control group. To investigate the role of FAK in the secretion of MMP9, with stimulation of CD147 for 9 hours, FAK inhibitor 14 was used to inhibit FAK Y397 phosphorylation. The mRNA and protein expressions were quantified by qRT-PCR and western blotting, respectively. (1) Relative mRNA expression of FAK and MMP9 were both significantly up-regulated (all P CD147, FAK peaked at 9 hours (3.908 ± 0.106 versus 1, P CD147 stimulation (all P CD147 up-regulates FAK, pFAK, and MMP9 mRNA and protein expressions in a dose-dependent manner. (4) FAK inhibitor 14 significantly reduced the relative protein expression level of pFAK (0.077 ± 0.012 versus 1, P CD147 stimulation.The results demonstrated that FAK Y397 phosphorylation was involved in the secretion of MMP9 after CD147 stimulation in macrophages and may play a role in the regulation of ACS.

  9. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal.

    Science.gov (United States)

    Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H

    2016-07-01

    Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.

  10. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    Directory of Open Access Journals (Sweden)

    Krause-Gruszczynska Malgorzata

    2011-12-01

    Full Text Available Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  11. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation.

    Directory of Open Access Journals (Sweden)

    Naadiya Carrim

    Full Text Available We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Human and mouse washed platelets (from WT or Pyk2 KO mice were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P surface expression and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk, PI3-K and Bruton's tyrosine kinase (Btk and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation.Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.

  12. pFAK-Y397 overexpression as both a prognostic and a predictive biomarker for patients with metastatic osteosarcoma.

    Science.gov (United States)

    Thanapprapasr, Kamolrat; Nartthanarung, Adisak; Thanapprapasr, Duangmani; Jinawath, Artit

    2017-01-01

    Focal adhesion kinase (FAK) is important for tumor cell survival and metastasis in various cancers. However, its expression and prognostic value in patients with metastatic osteosarcoma remain unknown. We investigated the expression of FAK and its phosphorylated form (pFAK-Y397) in osteosarcoma tissues from 53 patients by immunohistochemistry and evaluated their correlations with clinicopathologic characteristics and outcomes. The prognostic values were assessed using Kaplan-Meier survival and Cox regression analyses. Total FAK and pFAK-Y397 were overexpressed in 48 (90.6%) and 33 (62.3%) cases, respectively. pFAK-Y397 overexpression was correlated with poor histologic response after neoadjuvant chemotherapy in patients with osteosarcoma regardless of the presence of metastasis or not. Kaplan-Meier curve showed that patients with metastatic osteosarcoma with pFAK-Y397 overexpression had significantly worse overall survival (OS) than those with non-overexpression (P = 0.044). Multivariate Cox regression analysis confirmed pFAK-Y397 overexpression as an independent prognostic predictor for OS and post metastases OS (PMOS) (P = 0.017, P = 0.006, respectively). Age at diagnosis was also an independent indicator for PMOS (P = 0.003). However, total FAK expression was not correlated with any clinicopathologic characteristics or OS in patients with metastatic osteosarcoma. In conclusion, our findings identified FAK as a common aberrant protein overexpression in various subtypes of osteosarcoma. pFAK-Y397 overexpression can be used as a prognostic biomarker predicting poor OS for patients with metastatic osteosarcoma, and the expression of pFAK-Y397 differentiated good and poor responders to neoadjuvant chemotherapy.

  13. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    Science.gov (United States)

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  14. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  15. Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix

    DEFF Research Database (Denmark)

    Heim, Joel B; Squirewell, Edwin J; Neu, Ancilla

    2017-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required...... for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development...... and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E....

  16. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells.

    Science.gov (United States)

    Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng

    2018-05-01

    angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.

  17. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  18. Tumour-associated endothelial-FAK correlated with molecular sub-type and prognostic factors in invasive breast cancer

    International Nuclear Information System (INIS)

    Alexopoulou, Annika N; Ho-Yen, Colan M; Papalazarou, Vassilis; Elia, George; Jones, J Louise; Hodivala-Dilke, Kairbaan

    2014-01-01

    Breast cancer is a heterogeneous disease that can be classified into one of 4 main molecular sub-types: luminal A, luminal B, Her2 over-expressing and basal-like (BL). These tumour sub-types require different treatments and have different risks of disease progression. BL cancers can be considered a sub-group of Triple negative (TN) cancers since they lack estrogen (ER), progesterone (PR) and Her2 expression. No targeted treatment currently exists for TN/BL cancers. Thus it is important to identify potential therapeutic targets and describe their relationship with established prognostic factors. Focal adhesion kinase (FAK) is upregulated in several human cancers and also plays a functional role in tumour angiogenesis. However, the association between breast cancer sub-types and tumour endothelial-FAK expression is unknown. Using immunofluorescence, we quantified FAK expression in tumour endothelial and tumour cell compartments in 149 invasive breast carcinomas and correlated expression with clinical, pathological and molecular parameters. Low endothelial-FAK expression was independently associated with luminal A tumours at univariate (p < 0.001) and multivariate (p = 0.001) analysis. There was a positive correlation between FAK expression in the vascular and tumour cell compartments (Spearman’s correlation co-efficient = 0.394, p < 0.001). Additionally, endothelial and tumour cell FAK expression were significantly increased in TN tumours (p = 0.043 and p = 0.033 respectively), in tumours with negative ER and PR status, and in high grade tumours at univariate analysis. Our findings establish a relationship between endothelial-FAK expression levels and the molecular sub-type of invasive breast cancer, and suggest that endothelial-FAK expression is potentially more clinically relevant than tumour cell FAK expression in breast cancer

  19. Entamoeba histolytica: a beta 1 integrin-like fibronectin receptor assembles a signaling complex similar to those of mammalian cells.

    Science.gov (United States)

    Flores-Robles, Donaciano; Rosales, Carlos; Rosales-Encina, José Luis; Talamás-Rohana, Patricia

    2003-01-01

    During tissue invasion, Entamoeba histolytica trophozoites interact with endothelial cells and extracellular matrix (ECM) proteins such as fibronectin (FN), collagen, and laminin. It has been demonstrated that trophozoites interact with FN through a beta1 integrin-like FN receptor (beta 1EhFNR), activating tyrosine kinases. In order to characterize the signaling process triggered by the amoebic receptor, activation, and association of tyrosine kinases and structural proteins were determined. As a result of FN binding by the beta 1EhFNR, the receptor itself, FAK, and paxillin were phosphorylated in tyrosine. Co-immunoprecipitation experiments showed that a multimolecular signaling complex was formed by the amoebic FN receptor, FAK, paxillin, and vinculin. These results strongly suggest that a signaling pathway, similar to the one used in mammalian cells, is activated when E. histolytica trophozoites adhere to FN.

  20. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    Science.gov (United States)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  1. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    Science.gov (United States)

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.

  2. Proteomic profiling identifies PTK2/FAK as a driver of radioresistance in HPV-negative head and neck cancer

    Science.gov (United States)

    Skinner, Heath D.; Giri, Uma; Yang, Liang P.; Woo, Sang Hyeok; Story, Michael; Pickering, Curtis; Byers, Lauren; Williams, Michelle; El Naggar, Adel; Wang, Jing; Diao, Lixia; Shen, Li; Fan, You Hong; Molkentine, David; Beadle, Beth; Meyn, Raymond; Myers, Jeffrey; Heymach, John

    2016-01-01

    Purpose Head and neck squamous cell carcinoma (HNSCC) is commonly treated with radiotherapy, and local failure after treatment remains the major cause of disease-related mortality. To date human papillomavirus (HPV) is the only known clinically validated, targetable biomarkers of response to radiation in HNSCC. Experimental Design We performed proteomic and transcriptomic analysis of targetable biomarkers of radioresistance in HPV-negative HNSCC cell lines in vitro, and tested whether pharmacologic blockade of candidate biomarkers sensitized cells to radiotherapy. Candidate biomarkers were then investigated in several independent cohorts of patients with HNSCC. Results Increased expression of several targets was associated with radioresistance, including FGFR, ERK1, EGFR, and focal adhesion kinase (FAK), also known as PTK2. Chemical inhibition of PTK2/FAK, but not FGFR, led to significant radiosensitization with increased G2/M arrest and potentiated DNA damage. PTK2/FAK overexpression was associated with gene amplification in HPV-negative HNSCC cell lines and clinical tumors. In two independent cohorts of patients with locally advanced HPV-negative HNSCC, PTK2/FAK amplification was highly associated with poorer disease-free survival (DFS) (P=0.012 and P=0.034). PTK2/FAK mRNA expression was also associated with worse DFS (P=0.03). Moreover, both PTK2/FAK mRNA (P=0.021) and copy number (P=0.063) were associated with DFS in the Head and Neck Cancer subgroup of The Cancer Genome Atlas. Conclusion Proteomic analysis identified PTK2/FAK overexpression is a biomarker of radioresistance in locally advanced HNSCC, and PTK2/FAK inhibition radiosensitized HNSCC cells. Combinations of PTK2/FAK inhibition with radiotherapy merit further evaluation as a therapeutic strategy for improving local control in HPV-negative HNSCC. PMID:27036135

  3. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    Science.gov (United States)

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Directory of Open Access Journals (Sweden)

    Ana E. González Wusener

    2016-01-01

    Full Text Available Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO cells and PTP1B reconstituted (WT cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration.

  5. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Science.gov (United States)

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  6. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes

    DEFF Research Database (Denmark)

    Goñi, Guillermina M; Epifano, Carolina; Boskovic, Jasminka

    2014-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the p...

  8. αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium.

    Directory of Open Access Journals (Sweden)

    Murilo F Roggia

    Full Text Available To elucidate the mechanism of the induction of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α by photoreceptor outer segments (POS and its effects on retinal pigment epithelium (RPE.PGC-1α upregulation by POS was confirmed in ARPE-19 cells and in RPE ex vivo. To elucidate the mechanism, siRNAs against β5 integrin, CD36, Mer tyrosine kinase (MerTK, and Atg5, blocking antibodies against CD36 and MerTK, and a specific inhibitor for focal adhesion kinase (FAK were used. We examined the effect of POS-induced PGC-1α upregulation on the levels of reactive oxygen species (ROS, mitochondrial biogenesis, senescence-associated β-galactosidase (SA-β-gal after H2O2 treatment, and lysosomal activity. Lysosomal activity was evaluated through transcriptional factor EB and its target genes, and the activity of cathepsin D. Lipid metabolism after POS treatment was assessed using Oil Red O and BODIPY C11. RPE phenotypes of PGC-1α-deficient mice were examined.POS-induced PGC-1α upregulation was suppressed by siRNA against β5 integrin and a FAK inhibitor. siRNAs and blocking antibodies against CD36 and MerTK enhanced the effect of POS on PGC-1α. The upregulation of PGC-1α increased the levels of mRNA for antioxidant enzymes and stimulated mitochondrial biogenesis, decreased ROS levels, and reduced SA-β-gal staining in H2O2-treated ARPE-19 cells. PGC-1α was critical for lysosomal activity and lipid metabolism after POS treatment. PGC-1α-deficient mice demonstrated an accumulation of type 2 lysosomes in RPE, thickening of Bruch's membrane, and poor choriocapillaris vasculature.The binding, but not the internalization of POS confers protective effects on RPE cells through the αvβ5 integrin/FAK/PGC-1α pathway.

  9. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    International Nuclear Information System (INIS)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21 WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin α v β 3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  10. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α...

  11. Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kurio, Naito [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan); Shimo, Tsuyoshi, E-mail: shimotsu@md.okayama-u.ac.jp [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan); Fukazawa, Takuya; Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, Okayama, 700-0821 (Japan); Okui, Tatsuo; Hassan, Nur Mohammad Monsur; Honami, Tatsuki [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan); Hatakeyama, Shinji [Novartis Institutes for BioMedical Research, Basel (Switzerland); Ikeda, Masahiko [Department of Surgery, Fukuyama City Hospital, Fukuyama, 720-8511 (Japan); Naomoto, Yoshio [Department of General Surgery, Kawasaki Medical School, Okayama, 700-0821 (Japan); Sasaki, Akira [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan)

    2011-05-01

    Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr{sup 397} inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor {kappa} B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.

  12. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells.

    Science.gov (United States)

    Knoepp, Stewart M; Chahal, Manpreet S; Xie, Yuhuan; Zhang, Zhihong; Brauner, Daniel J; Hallman, Mark A; Robinson, Stephanie A; Han, Shujie; Imai, Masaki; Tomlinson, Stephen; Meier, Kathryn E

    2008-09-01

    The phosphatidylcholine-using phospholipase D (PLD) isoform PLD2 is widely expressed in mammalian cells and is activated in response to a variety of promitogenic agonists. In this study, active and inactive hemagglutinin-tagged human PLD2 (HA-PLD2) constructs were stably expressed in an EL4 cell line lacking detectable endogenous PLD1 or PLD2. The overall goal of the study was to examine the roles of PLD2 in cellular signal transduction and cell phenotype. HA-PLD2 confers PLD activity that is activated by phorbol ester, ionomycin, and okadaic acid. Proliferation and Erk activation are unchanged in cells transfected with active PLD2; proliferation rate is decreased in cells expressing inactive PLD2. Basal tyrosine phosphorylation of focal adhesion kinase (FAK) is increased in cells expressing active PLD2, as is phosphorylation of Akt; inactive PLD2 has no effect. Expression of active PLD2 is associated with increased spreading and elongation of cells on tissue culture plastic, whereas inactive PLD2 inhibits cell spreading. Inactive PLD2 also inhibits cell adhesion, migration, and serum-induced invasion. Cells expressing active PLD2 form metastases in syngeneic mice, as do the parental cells; cells expressing inactive PLD2 form fewer metastases than parental cells. In summary, active PLD2 enhances FAK phosphorylation, Akt activation, and cell invasion in EL4 lymphoma cells, whereas inactive PLD2 exerts inhibitory effects on adhesion, migration, invasion, and tumor formation. Overall, expression of active PLD2 enhances processes favorable to lymphoma cell metastasis, whereas expression of inactive PLD2 inhibits metastasis.

  13. Inhibiting focal adhesion kinase (FAK) blocks IL-4 induced VCAM-1 expression and eosinophil recruitment in vitro and in vivo.

    Science.gov (United States)

    Aulakh, Gurpreet K; Petri, Björn; Wojcik, Katarzyna M; Colarusso, Pina; Lee, James J; Patel, Kamala D

    2018-04-06

    Leukocyte recruitment plays a critical role during both normal inflammation and chronic inflammatory diseases, and ongoing studies endeavor to better understand the complexities of this process. Focal adhesion kinase (FAK) is well known for its role in cancer, yet it also has been shown to regulate aspects of neutrophil and B16 melanoma cell recruitment by rapidly influencing endothelial cell focal adhesion dynamics and junctional opening. Recently, we found that FAK related non-kinase (FRNK), a protein that is often used as a FAK dominant negative, blocked eosinophil transmigration by preventing the transcription of vascular cell adhesion molecule-1 (VCAM-1) and eotaxin-3 (CCL26). Surprisingly, the blocking occurred even in the absence of endogenous FAK. To better understand the role of FAK in leukocyte recruitment, we used a FAK-specific inhibitor (PF-573228) and determined the effect on IL-4 induced eosinophil recruitment in vitro and in vivo. PF-573228 prevented the expression of VCAM-1 and CCL26 expression in IL-4-stimulated human endothelial cells in vitro. As a result, eosinophil adhesion and transmigration were blocked. PF-572338 also prevented IL-4-induced VCAM-1 expression in vivo. Using brightfield intravital microscopy, we found that PF-573228 decreased leukocyte rolling flux, adhesion, and emigration. We specifically examined eosinophil recruitment in vivo by using an eosinophil-GFP reporter mouse and found PF-573228 attenuated eosinophil emigration. This study reveals that a FAK inhibitor influences inflammation through its action on eosinophil recruitment. ©2018 Society for Leukocyte Biology.

  14. Die FAK-fenomeen: Populêre Afrikaanse musiek en volksliedjies ...

    African Journals Online (AJOL)

    The FAK phenomenon: Popular Afrikaans music and folk songs [Afrikaans] Afrikaans popular music of a variety of genres and subgenres is currently flourishing. A very productive phenomenon is the re-interpretation of older songs, in particular folk songs. This article gives a short historical overview of the collection and ...

  15. Inhibition of tumor vasculogenic mimicry and prolongation of host survival in highly aggressive gallbladder cancers by norcantharidin via blocking the ephrin type a receptor 2/focal adhesion kinase/paxillin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Vasculogenic mimicry (VM is a newly-defined tumor microcirculation pattern in highly aggressive malignant tumors. We recently reported tumor growth and VM formation of gallbladder cancers through the contribution of the ephrin type a receptor 2 (EphA2/focal adhesion kinase (FAK/Paxillin signaling pathways. In this study, we further investigated the anti-VM activity of norcantharidin (NCTD as a VM inhibitor for gallbladder cancers and the underlying mechanisms. In vivo and in vitro experiments to determine the effects of NCTD on tumor growth, host survival, VM formation of GBC-SD nude mouse xenografts, and vasculogenic-like networks, malignant phenotypes i.e., proliferation, apoptosis, invasion and migration of GBC-SD cells. Expression of VM signaling-related markers EphA2, FAK and Paxillin in vivo and in vitro were examined by immunofluorescence, western blotting and real-time polymerase chain reaction (RT-PCR, respectively. The results showed that after treatment with NCTD, GBC-SD cells were unable to form VM structures when injecting into nude mouse, growth of the xenograft was inhibited and these observations were confirmed by facts that VM formation by three-dimensional (3-D matrix, proliferation, apoptosis, invasion, migration of GBC-SD cells were affected; and survival time of the xenograft mice was prolonged. Furthermore, expression of EphA2, FAK and Paxillin proteins/mRNAs of the xenografts was downregulated. Thus, we concluded that NCTD has potential anti-VM activity against human gallbladder cancers; one of the underlying mechanisms may be via blocking the EphA2/FAK/Paxillin signaling pathway.

  16. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro.

    Science.gov (United States)

    Xu, Tianjiao; Pan, Zhi; Dong, Miaoxian; Yu, Chunlei; Niu, Yingcai

    2015-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in hepatic fibrosis. Ferulic acid (FA) has antifibrotic potential in renal and cardiac disease. However, whether FA comprises inhibitive effects of HSCs activation remains to be clarified. This study aims at evaluating the hypothesis that FA inhibits extracellular matrix (ECM)-related gene expression by the interruption of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) or/and Smad signaling pathways in HSC-T6. Our results indicated that FA significantly inhibited both viability and activation of HSC-T6 cells in vitro. In addition, we demonstrated, for the first time, that FA dramatically inhibited the expression of α1(I) collagen (Col-I) and fibronectin at levels of transcription and translation. Moreover, FA treatment inhibited Smad transcriptional activity, as evaluated by transient transfection with a plasmid construction containing SMAD response element and the luciferase reporter gene. Furthermore, FA inhibition of HSCs activation involved in both focal adhesion kinase (FAK)-dependent ERK1/2 and Smad signaling pathways with independent manner. Blocking transforming growth factor-β by a neutralizing antibody caused a marked reduction in both ERK1/2 and Smad signaling. These results support FA as an effective therapeutic agent for the prevention and treatment of hepatic fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  18. Anti-tumor activity of cabozantinib by FAK down-regulation in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Da-Lu Li

    2016-03-01

    Full Text Available Cabozantinib is a tyrosine kinase inhibitor involved in inhibition of cell proliferation and colony formation. We studied anti-cancer properties of cabozantinib in oral squamous cell carcinoma cells. The viability of BHY and HSC-3 cells decreased with increase in cabozantinib concentration and time. The proliferation of cell lines was affected by increasing concentration of cabozantinib from 0.3 to 1.2 μM after 48 hours of treatment. The expression of MET and phosphorylated MET was not affected by cabozantinib treatment. Cabozantinib-treated cells when compared to control, showed concentration-dependent increase in BHY and HSC-3 cells during G2/M phase and decrease in S phase with increase in cabozantinib concentration. Annexin-V/propidium iodide double staining showed that cells with annexin-V increased with the increase in cabozantinib concentration. The expression of apoptosis related proteins cleaved caspase-3 and cleaved-PARP were increased with increase in cabozantinib concentration. It was also found that suppression of FAK activation and expression was dose dependent. The results from this study revealed that cabozantinib can be useful in developing a drug for effective treatment of oral squamous cell carcinoma cells.

  19. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Asma Begum

    Full Text Available Cancer stem cells (CSCs play an important role in the clonogenic growth and metastasis of pancreatic ductal adenocarcinoma (PDAC. A hallmark of PDAC is the desmoplastic reaction, but the impact of the tumor microenvironment (TME on CSCs is unknown. In order to better understand the mechanisms, we examined the impact of extracellular matrix (ECM proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal adhesion kinase (FAK on clonogenic PDAC growth and migration in vitro and tumor initiation, growth, and metastasis in vivo in nude mice using shRNA and overexpression constructs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK. FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover, the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-paclitaxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with standard chemotherapy support the clinical testing of this combination.

  20. Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling

    Czech Academy of Sciences Publication Activity Database

    Klímová, Zuzana; Bráborec, Vojtěch; Maninová, Miloslava; Čáslavský, Josef; Weber, M. J.; Vomastek, Tomáš

    2016-01-01

    Roč. 1863, č. 9 (2016), s. 2189-2200 ISSN 0167-4889 R&D Projects: GA ČR GA13-06405S Institutional support: RVO:61388971 Keywords : RACK1 * ERK * FAK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.521, year: 2016

  1. Synergism between the mTOR inhibitor rapamycin and FAK down-regulation in the treatment of acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Pei-Jie Shi

    2016-02-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is an aggressive malignant disorder of lymphoid progenitor cells in both children and adults. Although improvements in contemporary therapy and development of new treatment strategies have led to dramatic increases in the cure rate in children with ALL, the relapse rate remains high and the prognosis of relapsed childhood ALL is poor. Molecularly targeted therapies have emerged as the leading treatments in cancer therapy. Multi-cytotoxic drug regimens have achieved success, yet many studies addressing targeted therapies have focused on only one single agent. In this study, we attempted to investigate whether the effect of the mammalian target of rapamycin (mTOR inhibitor rapamycin is synergistic with the effect of focal adhesion kinase (FAK down-regulation in the treatment of ALL. Methods The effect of rapamycin combined with FAK down-regulation on cell proliferation, the cell cycle, and apoptosis was investigated in the human precursor B acute lymphoblastic leukemia cells REH and on survival time and leukemia progression in a non-obese diabetic/severe combined immunodeficiency (NOD/SCID mouse model. Results When combined with FAK down-regulation, rapamycin-induced suppression of cell proliferation, G0/G1 cell cycle arrest, and apoptosis were significantly enhanced. In addition, REH cell-injected NOD/SCID mice treated with rapamycin and a short-hairpin RNA (shRNA to down-regulate FAK had significantly longer survival times and slower leukemia progression compared with mice injected with REH-empty vector cells and treated with rapamycin. Moreover, the B-cell CLL/lymphoma-2 (BCL-2 gene family was shown to be involved in the enhancement, by combined treatment, of REH cell apoptosis. Conclusions FAK down-regulation enhanced the in vitro and in vivo inhibitory effects of rapamycin on REH cell growth, indicating that the simultaneous targeting of mTOR- and FAK-related pathways might offer a novel

  2. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  3. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    Science.gov (United States)

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    Science.gov (United States)

    Schlaepfer, D D; Hunter, T

    1996-10-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.

  5. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    Science.gov (United States)

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  6. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Lillard James W

    2011-05-01

    Full Text Available Abstract Background Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin. Methods Bromodeoxyuridine (BrdU incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE assay was used to quantify In situ activation of PI3Kp85, AktSer473, GSK-3βSer9 and FKHRThr24 in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25. Results CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3β and forkhead in human rhabdomyosarcoma (FKHR inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.

  7. Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression

    Science.gov (United States)

    Nakazawa, Naotaka; Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    Substrate rigidity affects many physiological processes through mechanochemical signals from focal adhesion (FA) complexes that subsequently modulate gene expression. We find that shuttling of the LIM domain (domain discovered in the proteins, Lin11, Isl-1, and Mec-3) protein four-and-a-half LIM domains 2 (FHL2) between FAs and the nucleus depends on matrix mechanics. In particular, on soft surfaces or after the loss of force, FHL2 moves from FAs into the nucleus and concentrates at RNA polymerase (Pol) II sites, where it acts as a transcriptional cofactor, causing an increase in p21 gene expression that will inhibit growth on soft surfaces. At the molecular level, shuttling requires a specific tyrosine in FHL2, as well as phosphorylation by active FA kinase (FAK). Thus, we suggest that FHL2 phosphorylation by FAK is a critical, mechanically dependent step in signaling from soft matrices to the nucleus to inhibit cell proliferation by increasing p21 expression. PMID:27742790

  8. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  9. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  10. Peiminine serves as an adriamycin chemosensitizer in gastric cancer by modulating the EGFR/FAK pathway.

    Science.gov (United States)

    Tang, Qianqian; Wang, Yunfei; Ma, Lanjing; Ding, Meiling; Li, Tingyu; Nie, Yongzhan; Gu, Zhengyi

    2018-03-01

    Gastric cancer (GC) is one of the most common malignancies of the digestive tract. Adriamycin (ADR) has been widely utilized in various chemotherapy regimens for treating GC, yet its long-term application may increase drug resistance resulting in treatment failure. Increasing evidence shows that bioactive natural products can be used as chemotherapeutic sensitizers that can significantly improve chemotherapy sensitivity. Peiminine (PMI) is a biologically active component extracted from Fritillaria walujewii Regel. Thus, in the present study, we aimed to investigate whether peiminine (PMI) alters the chemosensitivity of GC to adriamycin (ADR). GC cells were treated with ADR with or without PMI. MTT assay, flow cytometry and a nude mouse tumor xenograft model of SGC7901 cells were used to evaluate the chemosensitization activity of PMI combined with ADR. Western blotting was used to examine the expression of cyclin D1 and cleaved PARP. The RayBio® Human RTK phosphorylation antibody array kit was used to test the differential protein expression. Compared with the ADR group, PMI combined with ADR significantly suppressed cell proliferation and induced cell apoptosis in vitro. The growth curve and tumor weight of the tumor xenografts were significantly decreased in mice treated with the combination of PMI and ADR. However, the organs showed no obvious abnormality after treatment with PMI plus ADR. The expression of cyclin D1 was decreased and the level of cleaved PARP was increased after treatment with PMI and ADR. The expression of p-EGFR and p-FAK was downregulated in cells treated with PMI and ADR, and the validation of p-EGFR and p-FAK was in accordance with the result of the phosphorylation antibody array kit. PMI may serve as a new chemosensitizer by inhibiting the proliferation and inducing the apoptosis to enhance the chemotherapeutic drug sensitivity of ADR in GC.

  11. XIAP reverses various functional activities of FRNK in endothelial cells

    International Nuclear Information System (INIS)

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-01-01

    Highlights: ► FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. ► XIAP binds the FRNK domain of FAK. ► XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. ► XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  12. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.

    Science.gov (United States)

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-09-27

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.

  13. CDH1 and IL1-beta expression dictates FAK and MAPKK-dependent cross-talk between cancer cells and human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Vishnubalaji, Radhakrishnan; Hamam, Rimi

    2015-01-01

    in signaling pathways related to bone formation, FAK and MAPKK signaling. Co-culturing hMSCs with MCF7 cells increased their growth evidenced by increase in Ki67 and PCNA staining in tumor cells in direct contact with hMSCs niche. On the other hand, co-culturing hMSCs with FaDu, HT-29 or MDA-MB-231 cells led......INTRODUCTION: Tumor microenvironment conferred by stromal (mesenchymal) stem cells (MSCs) plays a key role in tumor development, progression, and response to therapy. Defining the role of MSCs in tumorigenesis is crucial for their safe utilization in regenerative medicine. Herein, we conducted...... comprehensive investigation of the cross-talk between human MSCs (hMSCs) and 12 cancer cell lines derived from breast, prostate, colon, head/neck and skin. METHODS: Human bone marrow-derived MSC line expressing green fluorescence protein (GFP) (hMSC-GFP) were co-cultured with the following cancer cell lines...

  14. Receptor protein tyrosine phosphatase alpha enhances rheumatoid synovial fibroblast signaling and promotes arthritis in mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Aleman Muench, German R; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    2016-01-01

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the joint extracellular matrix. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to RA FLS anomalous behavior. The receptor

  15. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    Science.gov (United States)

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  16. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M; Dierdorf, Nina I; Hauck, Christof R; Hammerschmidt, Sven

    2010-11-12

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.

  17. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Johnson Erica L

    2010-06-01

    Full Text Available Abstract Background Cisplatin is more often used to treat ovarian cancer (OvCa, which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9. Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

  18. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling

    NARCIS (Netherlands)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration

  19. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  20. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  1. Receptor Protein Tyrosine Phosphatase α-Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Muench, German R Aleman; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the extracellular matrix of the joint. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to the anomalous behavior of RA FLS.

  2. Marine Bromophenol Bis (2,3-Dibromo-4,5-dihydroxy-phenyl-methane Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Modulating β1-Integrin/FAK Signaling

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2015-02-01

    Full Text Available Bis (2,3-dibromo-4,5-dihydroxy-phenyl-methane (BDDPM is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL. Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellular matrix (ECM. Detachment experiments have shown that the treatment of BEL-7402 cells with low concentrations of BDDPM (5.0 μg/mL significantly inhibits cell adhesion to fibronectin and collagen IV as well as cell migration and invasion. High doses of BDDPM (10.0 μg/mL completely inhibit the migration of BEL-7402 cells, and the expression level of MMPs (MMP-2 and MMP-9 is significantly decreased. Moreover, the expression of β1-integrin and focal adhesion kinase (FAK is found to be down-regulated by BDDPM. This study suggests that BDDPM has a potential to be developed as a novel anticancer therapeutic agent due to its anti-metastatic activity and also indicates that BDDPM, which has a unique chemical structure, could serve as a lead compound for rational drug design and for future development of anticancer agents.

  3. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Directory of Open Access Journals (Sweden)

    Duane Delimont

    Full Text Available It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  4. Romidepsin Promotes Osteogenic and Adipocytic Differentiation of Human Mesenchymal Stem Cells through Inhibition of Histondeacetylase Activity

    Directory of Open Access Journals (Sweden)

    Dalia Ali

    2018-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are adult multipotent stem cells that can differentiate into mesodermal lineage cells, including adipocytes and osteoblasts. However, the epigenetic mechanisms governing the lineage-specific commitment of BMSCs into adipocytes or osteoblasts are under investigation. Herein, we investigated the epigenetic effect of romidepsin, a small molecule dual inhibitor targeting HDAC1 and HDAC2 identified through an epigenetic library functional screen. BMSCs exposed to romidepsin (5 nM exhibited enhanced adipocytic and osteoblastic differentiation. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis and osteogenesis in romidepsin-treated BMSCs during induction into adipocytes or osteoblasts, respectively. Pharmacological inhibition of FAK signaling during adipogenesis or inhibition of FAK or TGFβ signaling during osteogenesis diminished the biological effects of romidepsin on BMSCs. The results of chromatin immunoprecipitation combined with quantitative polymerase chain reaction indicated a significant increase in H3K9Ac epigenetic markers in the promoter regions of peroxisome proliferator-activated receptor gamma (PPARγ and KLF15 (related to adipogenesis or SP7 (Osterix and alkaline phosphatase (ALP (related to osteogenesis in romidepsin-treated BMSCs. Our data indicated that romidepsin is a novel in vitro modulator of adipocytic and osteoblastic differentiation of BMSCs.

  5. Mitochondrial fission promotes cell migration by Ca2+ /CaMKII/ERK/FAK pathway in hepatocellular carcinoma.

    Science.gov (United States)

    Sun, Xiacheng; Cao, Haiyan; Zhan, Lei; Yin, Chun; Wang, Gang; Liang, Ping; Li, Jibin; Wang, Zhe; Liu, Bingrong; Huang, Qichao; Xing, Jinliang

    2018-07-01

    Mitochondrial dynamics of fission and fusion plays critical roles in a diverse range of important cellular functions, and its deregulation has been increasingly implicated in human diseases. Previous studies have shown that increased mitochondrial fission significantly promoted the proliferation of hepatocellular carcinoma (HCC) cells. However, how they influence the migration of tumour cells remained largely unknown. In the present study, we further investigated the effect of mitochondrial fission on the migration and metastasis of hepatocellular carcinoma cells. Moreover, the underlying molecular mechanisms and therapeutic application were explored. Our data showed that dynamin-1-like protein expression was strongly increased in distant metastasis of hepatocellular carcinoma when compared to primary hepatocellular carcinoma. In contrast, the mitochondrial fusion protein mitofusin 1 showed an opposite trend. Moreover, the expression of dynamin-1-like protein and mitofusin 1 was significantly associated with the disease-free survival of hepatocellular carcinoma patients. In addition, our data further showed that mitochondrial fission significantly promoted the reprogramming of focal-adhesion dynamics and lamellipodia formation in hepatocellular carcinoma cells mainly by activating typical Ca 2+ /CaMKII/ERK/FAK pathway. Importantly, treatment with mitochondrial division inhibitor-1 significantly decreased calcium signalling in hepatocellular carcinoma cells and had a potential treatment effect for hepatocellular carcinoma metastasis in vivo. Taken together, our findings demonstrate that mitochondrial fission plays a critical role in the regulation of hepatocellular carcinoma cell migration, which provides strong evidence for this process as a drug target in hepatocellular carcinoma metastasis treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts.

    Science.gov (United States)

    Maninová, Miloslava; Klímová, Zuzana; Parsons, J Thomas; Weber, Michael J; Iwanicki, Marcin P; Vomastek, Tomáš

    2013-06-12

    The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration. We found that cell polarization and directional migration require also the reorientation of the nucleus. Nuclear reorientation is manifested as temporally restricted nuclear rotation that aligns the nuclear axis with the axis of cell migration. We also found that nuclear reorientation requires physical connection between the nucleus and cytoskeleton mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex. Nuclear reorientation is controlled by coordinated activity of lysophosphatidic acid (LPA)-mediated activation of GTPase Rho and the activation of integrin, FAK (focal adhesion kinase), Src, and p190RhoGAP signaling pathway. Integrin signaling is spatially induced at the leading edge as FAK and p190RhoGAP are predominantly activated or localized at this location. We suggest that integrin activation within lamellipodia defines cell front, and subsequent FAK, Src, and p190RhoGAP signaling represents the polarity signal that induces reorientation of the nucleus and thus promotes the establishment of front-rear polarity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Dual targeting of EGFR and focal adhesion kinase in 3D grown HNSCC cell cultures

    International Nuclear Information System (INIS)

    Eke, Iris; Cordes, Nils

    2011-01-01

    Purpose: Epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK) show frequent overexpression and hyperactivity in various human malignancies including head and neck squamous cell carcinomas (HNSCC). To examine effects of dual EGFR/FAK inhibition on cellular radiosensitivity of HNSCC cells in a more physiological environment, we employed a previously established laminin-rich extracellular matrix (lrECM) based three-dimensional (3D) cell culture model. Materials and methods: UTSCC15 and SAS HNSCC cell lines stably transfected with EGFR-CFP or CFP were used. Single or combined EGFR (Cetuximab, siRNA) and FAK (TAE226, siRNA) inhibition were accomplished prior to measuring clonogenic survival and protein expression and phosphorylation. Immunofluorescence enabled visualization of EGFR-CFP and FAK. Results: Cetuximab resulted in higher radiosensitization in EGFR-CFP overexpressing cell lines than CFP controls. Single EGFR or FAK inhibition mediated radiosensitization, while dual EGFR/FAK targeting further augmented this effect. Despite signaling alterations upon Cetuximab and siRNA knockdown, analysis of protein expression and phosphorylation indicates EGFR and FAK signaling coexistence without obvious overlap. Conclusions: Combined EGFR/FAK targeting yielded stronger radiosensitization than either approach alone, which might be based on non-overlapping downstream signaling. Whether dual targeting of EGFR and FAK can reasonably be combined with radiotherapy and chemotherapy needs clarification.

  8. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Grant A Howe

    Full Text Available Blockade of epidermal growth factor receptor (EGFR activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC. As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs, there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975 were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271 both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be

  10. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    Science.gov (United States)

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  11. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways.

    Science.gov (United States)

    Hung, Tung-Wei; Chen, Pei-Ni; Wu, Hsu-Chen; Wu, Sheng-Wen; Tsai, Pao-Yu; Hsieh, Yih-Shou; Chang, Horng-Rong

    2017-01-01

    Kaempferol, which is isolated from several natural plants, is a polyphenol belonging to the subgroup of flavonoids. Kaempferol exhibits various pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. In this study, kaempferol can significantly inhibit the invasion and migration of 786-O renal cell carcinoma (RCC) without cytotoxicity. We examined the potential mechanisms underlying its anti-invasive activities on 786-O RCC cells. Western blot was performed, and the results showed that kaempferol attenuates the manifestation of metalloproteinase-2 (MMP-2) protein and activity. The inhibitive effect of kaempferol on MMP-2 may be attributed to the downregulation of phosphorylation of Akt and focal adhesion kinase (FAK). By examining the SCID mice model, we found that kaempferol can safely inhibit the metastasis of the 786-O RCC cells into the lungs by about 87.4% as compared to vehicle treated control animals. In addition, the lung tumor masses of mice pretreated with 2-10 mg/kg kaempferol were reduced about twofold to fourfold. These data suggested that kaempferol can play a promising role in tumor prevention and cancer metastasis inhibition.

  12. Homodimers of Vanillin and Apocynin Decrease the Metastatic Potential of Human Cancer Cells by Inhibiting the FAK/PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Jantaree, Phatcharida; Lirdprapamongkol, Kriengsak; Kaewsri, Wilailak; Thongsornkleeb, Charnsak; Choowongkomon, Kiattawee; Atjanasuppat, Korakot; Ruchirawat, Somsak; Svasti, Jisnuson

    2017-03-22

    The spread of cancer cells to distant organs, in a process called metastasis, is the main factor that contributes to most death in cancer patients. Vanillin, the vanilla flavoring agent, has been shown to suppress metastasis in a mouse model. Here, we evaluated the antimetastatic potential of the food additive divanillin, the homodimer of vanillin, and their structurally related compounds, apocynin and diapocynin, in hepatocellular carcinoma cells. The Transwell invasion assay showed that the dimeric forms exhibited a potency higher than those of vanillin and apocynin in inhibiting invasion, with IC 50 values of 23.3 ± 7.4 to 41.3 ± 4.2 μM for the dimers, which are 26-34-fold lower than IC 50 values of vanillin and apocynin (p vanillin and apocynin to the Y397 pocket of the FAK FERM domain. Thus, the food additive divanillin has antimetastatic potential greater than that of the flavoring agent vanillin.

  13. Substrate stiffness promotes latent TGF-β1 activation in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Pang, Mingshu; Teng, Yao; Huang, Jianyong; Yuan, Yuan; Lin, Feng; Xiong, Chunyang

    2017-01-01

    Hepatocellular carcinoma (HCC) was usually coupled with increased stiffness of the extracellular matrix (ECM) and elevated level of transforming growth factor-β1 (TGF-β1). However, the mechanism by which substrate rigidity modulated TGF-β1 signaling transduction remained unknown. This paper investigated the molecular mechanism of how matrix stiffness regulating TGF-β1 signaling in HCC cells. By means of stiffness tunable collagen I-coated polyacrylamide (PA) gels, we found that the expressions of β1 integrin, p-FAK Y397 and p-Smad2 upregulated on stiffer gels as well as the content of TGF-β1 in culture media of HCC cells, which were inhibited by RGD blocking peptides, Y-27632 (ROCK inhibitor) or Blebbistatin (myosin II inhibitor). Cellular traction force was also significantly higher when plated on stiffer substrates but dramatically decreased after treatment with Y-27632 or Blebbistatin. Furthermore, the upregulation of p-Smad2 in the HCC cells on stiffer PA gels induced by exogenetic latent TGF-β1 was downregulated in the presence of RGD peptides. The nuclear translocation of Smad2 induced by latent TGF-β1 was inhibited by Y-27632 or Blebbistatin. Our results suggested that the extracellular matrix stiffness regulated latent TGF-β1 activation by cytoskeletal tension in HCC cells, showing that matrix stiffness was a key regulator involving the TGF-β1 activity in HCC cells. The current study presented a mechanism of how hepatocirrhosis developed into liver cancer. - Highlights: • TGF-β1 signaling pathway regulated by ECM stiffness was studied in hepatocellular carcinoma. • Matrix stiffness promoted latent TGF-β1 activation via β1 integrin-FAK-Rho GTPase pathway. • A mechanism of how hepatocirrhosis developed into liver cancer was presented.

  14. Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Paludan-Müller, Christine

    2009-01-01

    and potential growth of Salmonella enterica serovar Weltevreden, S. enterica serovar Enteritidis, Vibrio cholerae and V. parahaemolyticus as influenced by the preservation parameters (sodium chloride, garlic and lactic acid) present in the Thai fermented fish product som-fak. The inhibitory effects of sodium...... chloride (0–4%), garlic (0–10%) and lactic acid (pH levels as in som-fak) were measured in modified brain heart infusion (BHI) broth at 30 °C. All bacteria were inhibited by 8–10% sodium chloride. Salmonella grew in all concentrations of garlic whereas Vibrio spp. were inhibited by 1.0–1.5%. Lactic acid...... was inhibitory at levels above 1.5%. The combinations of sodium chloride, lactic acid and garlic showed a distinct hurdle effect in the broth system. Neither S. Enteritidis, V. cholerae nor V. parahaemolyticus grew in garlic (0.5–1%), regardless of the level of sodium chloride (0.5–4% (w/v)), when lactic acid (0...

  15. Mechanosensitive molecular networks involved in transducing resistance exercise-signals into muscle protein accretion

    Directory of Open Access Journals (Sweden)

    Emil Rindom

    2016-11-01

    Full Text Available Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS, may contribute to understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1, to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ-phosphatidic acid (PA axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK-Tuberous Sclerosis Complex 2TSC2-Ras homolog enriched in brain (Rheb axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA-striated muscle activator of Rho signaling (STARS axis or how it may implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP signaling through a small mother of decapentaplegic (Smad axis.

  16. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.

    Science.gov (United States)

    Polte, T R; Hanks, S K

    1995-11-07

    The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

  17. Activation of the ERK1/2 Signaling Pathway during the Osteogenic Differentiation of Mesenchymal Stem Cells Cultured on Substrates Modified with Various Chemical Groups

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2013-01-01

    Full Text Available The current study examined the influence of culture substrates modified with the functional groups –OH, –COOH, –NH2, and –CH3 using SAMs technology, in conjunction with TAAB control, on the osteogenic differentiation of rabbit BMSCs. The CCK-8 assay revealed that BMSCs exhibited substrate-dependent cell viability. The cells plated on –NH2- and –OH-modified substrates were well spread and homogeneous, but those on the –COOH- and –CH3-modified substrates showed more rounded phenotype. The mRNA expression of BMSCs revealed that –NH2-modified substrate promoted the mRNA expression and osteogenic differentiation of the BMSCs. The contribution of ERK1/2 signaling pathway to the osteogenic differentiation of BMSCs cultured on the –NH2-modified substrate was investigated in vitro. The –NH2-modified substrate promoted the expression of integrins; the activation of FAK and ERK1/2. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked ERK1/2 activation in a dose-dependent manner, as revealed for expression of Cbfα-1 and ALP. Blockade of ERK1/2 phosphorylation in BMSCs by PD98059 suppressed osteogenic differentiation on chemical surfaces. These findings indicate a potential role for ERK in the osteogenic differentiation of BMSCs on surfaces modified by specific chemical functional groups, indicating that the microenvironment affects the differentiation of BMSCs. This observation has important implications for bone tissue engineering.

  18. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M

    1998-01-01

    beta2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of beta2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4(+) T cell lines obtained from healthy donors...

  19. Devlet ve Vakıf Üniversiteleri Eğitim Fakültesi Öğrencilerinin Cep Telefonu Kullanım Sıklıklarının ve Marka Tercihlerinin Karşılaştırılması

    OpenAIRE

    TUTGUN ÜNAL, Aylin; ARSLAN, Ahmet

    2013-01-01

    Bu araştırmada, devlet ve vakıf üniversiteleri eğitim fakültesi öğrencilerinin cep telefonu kullanım sıklıkları ve marka tercihleri incelenmiştir. Araştırma, İstanbul’da yer alan Marmara Üniversitesi Atatürk Eğitim Fakültesi ve Maltepe Üniversitesi Eğitim Fakültesi’ne devam eden 985 öğrenci ile yürütülmüştür. Verilerin toplanmasında araştırmacılar tarafından geliştirilen “Cep Telefonu Kullanımı Sıklığı ve Marka Tercihi Belirleme Formu” kullanılmıştır. Araştırmada, eğitim fakültesi öğrencileri...

  20. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2018-01-01

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.

  1. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements.

    Science.gov (United States)

    Walsh, Mary F; Ampasala, Dinakar R; Rishi, Arun K; Basson, Marc D

    2009-02-01

    TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.

  2. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells

    KAUST Repository

    Kadaré, Gress

    2015-01-02

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.

  3. Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway.

    Science.gov (United States)

    Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi

    2016-04-20

    Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin/FAK

  4. A Molecular Approach for Metatastic Progression of Breast Cancer

    National Research Council Canada - National Science Library

    Vadlamudi, Ratna

    2003-01-01

    .... HER2/HRG signaling selectively upregulated Tyr phosphorylation of c-Src at Tyr-2l5 located with in the SH2 domain, increased c-Src kinase activity and selectively upregulated Tyr phosphorylation of FAK at Tyr-86l...

  5. Essential Function for PDLIM2 in Cell Polarization in Three-Dimensional Cultures by Feedback Regulation of the β1-Integrin–RhoA Signaling Axis

    Directory of Open Access Journals (Sweden)

    Ravi Kiran Deevi

    2014-05-01

    Full Text Available PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT. PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1 integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R and Receptor of activated protein kinase C 1 (RACK1, which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium.

  6. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  7. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells.

    Science.gov (United States)

    Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C

    2014-09-01

    Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These

  8. Effect of LIPUS on inflammatory factors, cell apoptosis and integrin signaling pathway in osteoarthritis animal models

    Directory of Open Access Journals (Sweden)

    Li-Cai Zhang

    2017-05-01

    Full Text Available Objective: To study the effect of low-intensity pulsed ultrasound (LIPUS on inflammatory factors, cell apoptosis and integrin signaling pathway in osteoarthritis animal models. Methods: Male New Zealand white rabbits were selected as the experimental animals and randomly divided into sham group, osteoarthritis model group (OA group and LIPUS intervention group (LIPUS group, animal models with osteoarthritis in hind limb knee joint were established and then given LIPUS intervention. 6 weeks after the intervention, the articular cartilage was separated to detect the expression of inflammatory factors, cell apoptosis molecules and integrin signaling pathway molecules. Results: OPN, NO, IL-1β, TNF-α, Fas, FasL, LC3-II, Beclin-1, Integrinβ1, FAK, ERK1/2, JNK, p38MAPK, MMP-1 and MMP-3 protein expression in articular cartilage of OA group were significantly higher than those of Sham group while Col-I and Col-II protein expression were significantly lower than those of Sham group; OPN, NO, IL-1β, TNF-α, Fas, FasL, LC3-II, Beclin-1, Integrinβ1, FAK, ERK1/2, JNK, p38MAPK, MMP-1 and MMP-3 protein expression in articular cartilage of LIPUS group were significantly lower than those of OA group while Col-I and Col-II protein expression were significantly higher than those of OA group. Conclusion: LIPUS has inhibiting effect on the inflammation, apoptosis and integrin signaling pathway in articular cartilage of osteoarthritis animal models, and it can promote the repair of articular cartilage.

  9. An Anti-Urokinase Plasminogen Activator Receptor Antibody (ATN-658 Blocks Prostate Cancer Invasion, Migration, Growth, and Experimental Skeletal Metastasis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Shafaat A. Rabbani

    2010-10-01

    Full Text Available Urokinase plasminogen activator receptor (uPAR is a multidomain protein that plays important roles in the growth, invasion, and metastasis of a number of cancers. In the present study, we examined the effects of administration of a monoclonal anti-uPAR antibody (ATN-658 on prostate cancer progression in vitro and in vivo. We examined the effect of treatment of ATN-658 on human prostate cancer cell invasion, migration, proliferation, and regulation of intracellular signaling pathways. For in vivo studies, PC-3 cells (1 x 106 were inoculated into the right flank of male Balb C nu/nu mice through subcutaneous or through intratibial route (2 x 105 of male Fox Chase severe combined immunodeficient mice to monitor the effect on tumor growth and skeletal metastasis. Treatment with ATN-658 resulted in a significant dose-dependent decrease in PC-3 cell invasion and migration without affecting cell doubling time. Western blot analysis showed that ATN-658 treatment decreased the phosphorylation of serine/threonine protein kinase B (AKT, mitogen-activated protein kinase (MAPK, and focal adhesion kinase (FAK without affecting AKT, MAPK, and FAK total protein expression. In in vivo studies, ATN-658 caused a significant decrease in tumor volume and a marked reduction in skeletal lesions as determined by Faxitron x-ray and micro-computed tomography. Immunohistochemical analysis of subcutaneous and tibial tumors showed a marked decrease in the levels of expression of pAKT, pMAPK, and pFAK, consistent with the in vitro observations. Results from these studies provide compelling evidence for the continued development of ATN-658 as a potential therapeutic agent for the treatment of prostate and other cancers expressing uPAR.

  10. Disrupting the Scaffold to Improve Focal Adhesion Kinase–Targeted Cancer Therapeutics

    Science.gov (United States)

    Cance, William G.; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-01-01

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer. PMID:23532331

  11. Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics.

    Science.gov (United States)

    Cance, William G; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-03-26

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer.

  12. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts.

    Science.gov (United States)

    Perinpanayagam, H; Zaharias, R; Stanford, C; Brand, R; Keller, J; Schneider, G

    2001-11-01

    In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.

  13. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...... phosphorylation of the MAP kinases extracellular signal-regulated kinases ERK1 and ERK2. The MAP kinase activation was sustained, because ERK1 and ERK2 were phosphorylated in PC12-E2 cells and primary hippocampal neurons even after 24 hr of cultivation on NCAM-expressing fibroblasts. Based on these results, we...

  14. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Directory of Open Access Journals (Sweden)

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  15. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration

    DEFF Research Database (Denmark)

    Yui, Shiro; Azzolin, Luca; Maimets, Martti

    2018-01-01

    by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous...

  16. Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes.

    Science.gov (United States)

    Beauchemin, Hugues; Shooshtarizadeh, Peiman; Vadnais, Charles; Vassen, Lothar; Pastore, Yves D; Möröy, Tarik

    2017-03-01

    Mutations in GFI1B are associated with inherited bleeding disorders called GFI1B -related thrombocytopenias. We show here that mice with a megakaryocyte-specific Gfi1b deletion exhibit a macrothrombocytopenic phenotype along a megakaryocytic dysplasia reminiscent of GFI1B -related thrombocytopenia. GFI1B deficiency increases megakaryocyte proliferation and affects their ploidy, but also abrogates their responsiveness towards integrin signaling and their ability to spread and reorganize their cytoskeleton. Gfi1b -null megakaryocytes are also unable to form proplatelets, a process independent of integrin signaling. GFI1B-deficient megakaryocytes exhibit aberrant expression of several components of both the actin and microtubule cytoskeleton, with a dramatic reduction of α-tubulin. Inhibition of FAK or ROCK, both important for actin cytoskeleton organization and integrin signaling, only partially restored their response to integrin ligands, but the inhibition of PAK, a regulator of the actin cytoskeleton, completely rescued the responsiveness of Gfi1b -null megakaryocytes to ligands, but not their ability to form proplatelets. We conclude that Gfi1b controls major functions of megakaryocytes such as integrin-dependent cytoskeleton organization, spreading and migration through the regulation of PAK activity whereas the proplatelet formation defect in GFI1B-deficient megakaryocytes is due, at least partially, to an insufficient α-tubulin content. Copyright© Ferrata Storti Foundation.

  17. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoli Yuan

    Full Text Available Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possible interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.

  18. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    Science.gov (United States)

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly

  19. Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second

    Science.gov (United States)

    Strohmeyer, Nico; Bharadwaj, Mitasha; Costell, Mercedes; Fässler, Reinhard; Müller, Daniel J.

    2017-12-01

    Integrin-mediated mechanosensing of the extracellular environment allows cells to control adhesion and signalling. Whether cells sense and respond to force immediately upon ligand-binding is unknown. Here, we report that during adhesion initiation, fibroblasts respond to mechanical load by strengthening integrin-mediated adhesion to fibronectin (FN) in a biphasic manner. In the first phase, which depends on talin and kindlin as well as on the actin nucleators Arp2/3 and mDia, FN-engaged α5β1 integrins activate focal adhesion kinase (FAK) and c-Src in less than 0.5 s to steeply strengthen α5β1- and αV-class integrin-mediated adhesion. When the mechanical load exceeds a certain threshold, fibroblasts decrease adhesion and initiate the second phase, which is characterized by less steep adhesion strengthening. This unique, biphasic cellular adhesion response is mediated by α5β1 integrins, which form catch bonds with FN and signal to FN-binding integrins to reinforce cell adhesion much before visible adhesion clusters are formed.

  20. [Detection of surface EMG signal using active electrode].

    Science.gov (United States)

    He, Qinghua; Peng, Chenglin; Wu, Baoming; Wang, He

    2003-09-01

    Research of surface electromyogram(EMG) signal is important in rehabilitation medicine, sport medicine and clinical diagnosis, accurate detection of signal is the base of quantitative analysis of surface EMG signal. In this article were discussed how to reduce possible noise in the detection of surface EMG. Considerations on the design of electrode unit were presented. Instrumentation amplifier AD620 was employed to design a bipolar active electrode for use in surface EMG detection. The experiments showed that active electrode could be used to improve signal/noise ratio, reduce noise and detect surface EMG signal effectively.

  1. Bioactive glass induced osteogenic differentiation of human adipose stem cells is dependent on cell attachment mechanism and mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    M Ojansivu

    2018-02-01

    Full Text Available Bioactive glasses (BaGs are widely utilised in bone tissue engineering (TE but the molecular response of cells to BaGs is poorly understood. To elucidate the mechanisms of cell attachment to BaGs and BaG-induced early osteogenic differentiation, we cultured human adipose stem cells (hASCs on discs of two silica-based BaGs S53P4 (23.0 Na2O - 20.0 CaO - 4.0 P2O5 - 53.0 SiO2 (wt-% and 1-06 (5.9 Na2O - 12.0 K2O - 5.3 MgO - 22.6 CaO - 4.0 P2O5 - 0.2 B2O3 - 50.0 SiO2 in the absence of osteogenic supplements. Both BaGs induced early osteogenic differentiation by increasing alkaline phosphatase activity (ALP and the expression of osteogenic marker genes RUNX2a and OSTERIX. Based on ALP activity, the slower reacting 1-06 glass was a stronger osteoinducer. Regarding the cell attachment, cells cultured on BaGs had enhanced integrinβ1 and vinculin production, and mature focal adhesions were smaller but more dispersed than on cell culture plastic (polystyrene. Focal adhesion kinase (FAK, extracellular signal-regulated kinase (ERK1/2 and c-Jun N-terminal kinase (JNK-induced c-Jun phosphorylations were upregulated by glass contact. Moreover, the BaG-stimulated osteoinduction was significantly reduced by FAK and mitogen-activated protein kinase (MAPK inhibitors, indicating an important role for FAK and MAPKs in the BaG-induced early osteogenic commitment of hASCs. Upon indirect insert culture, the ions released from the BaG discs could not reproduce the observed cellular changes, which highlighted the role of direct cell-BaG interactions in the osteopotential of BaGs. These findings gave valuable insight into the mechanism of BaG-induced osteogenic differentiation and therefore provided knowledge to aid the future design of new functional biomaterials to meet the increasing demand for clinical bone TE treatments.

  2. Neuronal Functions of Activators of G Protein Signaling

    Directory of Open Access Journals (Sweden)

    Man K. Tse

    2012-05-01

    Full Text Available G protein-coupled receptors (GPCRs are one of the most important gateways for signal transduction across the plasma membrane. Over the past decade, several classes of alternative regulators of G protein signaling have been identified and reported to activate the G proteins independent of the GPCRs. One group of such regulators is the activator of G protein signaling (AGS family which comprises of AGS1-10. They have entirely different activation mechanisms for G proteins as compared to the classic model of GPCR-mediated signaling and confer upon cells new avenues of signal transduction. As GPCRs are widely expressed in our nervous system, it is believed that the AGS family plays a major role in modulating the G protein signaling in neurons. In this article, we will review the current knowledge on AGS proteins in relation to their potential roles in neuronal regulations.

  3. Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasion.

    Science.gov (United States)

    Kim, Yun Jeong; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2014-09-01

    Menadione induces apoptosis in tumor cells. However, the mechanism of apoptosis in ovarian cancer cells exposed to menadione is not clear. In addition, it is unclear whether menadione-induced apoptosis is mediated by the depletion of glutathione (GSH) contents that is associated with the formation of reactive oxygen species. Furthermore, the effect of menadione on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effects of menadione exposure on apoptosis, cell adhesion, and cell migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that menadione may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of menadione appears to be mediated by the formation of reactive oxygen species and the depletion of GSH. Menadione inhibited fetal-bovine-serum-induced cell adhesion and migration of OVCAR-3 cells, possibly through the suppression the focal adhesion kinase (FAK)-dependent activation of cytoskeletal-associated components. Therefore, menadione might be beneficial in the treatment of epithelial ovarian adenocarcinoma and combination therapy.

  4. Avaliação das interações proteicas da quinase de adesão focal (FAK) em miocitos cardiacos : caracterização estrutural e funcional da interação da FAK com a cadeia pesada de miosina sarcomerica

    OpenAIRE

    Rosana Yuri Inoue

    2005-01-01

    Resumo: O estímulo mecânico é um dos principais fatores responsáveis pelos ajustes funcionais e estruturais do miocárdio em resposta à sobrecarga de trabalho. O estímulo determina a ativação de uma rede complexa de vias de sinalização celulares que culminam com o crescimento hipertrófico de cada cardiomiócito. A quinase de adesão focal (FAK) tem sido indicada como principal proteína sinalizadora envolvida na resposta de cardiomiócitosao estímulomecânico.No entanto, os mecanismosde ativação da...

  5. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer.

    Science.gov (United States)

    Zhao, Yawei; Cui, Lianzhi; Pan, Yue; Shao, Dan; Zheng, Xiao; Zhang, Fan; Zhang, Hansi; He, Kan; Chen, Li

    2017-12-01

    Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy-induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation. The transwell system was used to mimic the co-culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy-treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE 2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot. Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE 2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3-iPLA 2 -AA-COX-2-PGE 2 pathway by inhibiting the expression of iPLA 2 and COX-2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE 2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment. Our observation suggested that Berberine could inhibit the chemotherapy-induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation. © 2017 John Wiley & Sons Ltd.

  6. Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation.

    Science.gov (United States)

    Yakovlev, S; Mikhailenko, I; Tsurupa, G; Belkin, A M; Medved, L

    2014-12-01

    Upon conversion of fibrinogen into fibrin, fibrinogen αC-domains containing the RGD recognition motif form ordered αC polymers. Our previous study revealed that polymerisation of these domains promotes integrin-dependent adhesion and spreading of endothelial cells, as well as integrin-mediated activation of the FAK and ERK1/2 signalling pathways. The major goal of this study was to test the impact of αC-domain polymerisation on endothelial cell migration and proliferation during wound healing, and to clarify the mechanism underlying superior activity of αC polymers toward endothelial cells. In an in vitro wound healing assay, confluent endothelial cell monolayers on tissue culture plates coated with the αC monomer or αC polymers were wounded by scratching and wound closure was monitored by time-lapse videomicroscopy. Although the plates were coated with equal amounts of αC species, as confirmed by ELISA, wound closure by the cells occurred much faster on αC polymers, indicating that αC-domain polymerisation promotes cell migration and proliferation. In agreement, endothelial cell proliferation was also more efficient on αC polymers, as revealed by cell proliferation assay. Wound closure on both types of substrates was equally inhibited by the integrin-blocking GRGDSP peptide and a specific antagonist of the ERK1/2 signalling pathway. In contrast, blocking the FAK signaling pathway by a specific antagonist decreased wound closure only on αC polymers. These results indicate that polymerisation of the αC-domains enhances integrin-dependent endothelial cell migration and proliferation mainly through the FAK signalling pathway. Furthermore, clustering of integrin-binding RGD motifs in αC polymers is the major mechanism triggering these events.

  7. Double targeting of Survivin and XIAP radiosensitizes 3D grown human colorectal tumor cells and decreases migration

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Petraki, Chrysi; Reichert, Sebastian; Cordes, Nils; Rödel, Claus; Rödel, Franz

    2013-01-01

    Background and purpose: In the present study, we aimed to investigate the effect of single and double knockdown of the inhibitor of apoptosis proteins (IAP) Survivin and X-linked IAP (XIAP) on three-dimensional (3D) clonogenic survival, migration capacity and underlying signaling pathways. Materials and methods: Colorectal cancer cell lines (HCT-15, SW48, SW480, SW620) were subjected to siRNA-mediated single or Survivin/XIAP double knockdown followed by 3D colony forming assays, cell cycle analysis, Caspase activity assays, migration assays, matrigel transmigration assays and Western blotting (Survivin, XIAP, Focal adhesion kinase (FAK), p-FAK Y397, Akt1, p-Akt1 S473, Extracellular signal-regulated kinase (ERK1/2), p-ERK1/2 T202/Y204, Glycogen synthase kinase (GSK)3β, p-GSK3β S9, nuclear factor (NF)-κB p65). Results: While basal cell survival was altered cell line-dependently, Survivin or XIAP single and Survivin/XIAP double knockdown enhanced cellular radiosensitivity of all tested cancer cell lines grown in 3D. Particularly double knockdown conditions revealed accumulation of cells in G2/M, increased subG1 fraction, elevated Caspase 3/7 activity, and reduced migration. Intracellular signaling showed dephosphorylation of FAK and Akt1 upon Survivin and/or Survivin/XIAP silencing. Conclusions: Our results strengthen the notion of Survivin and XIAP to act as radiation resistance factors and further indicate that these apoptosis-regulating proteins are also functioning in cell cycling and cell migration

  8. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    Science.gov (United States)

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  9. The signalling axis mediating neuronal apoptosis in response to [Pt(O,O'-acac)(γ-acac)(DMS)].

    Science.gov (United States)

    Muscella, Antonella; Calabriso, Nadia; Vetrugno, Carla; Fanizzi, Francesco Paolo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2011-06-01

    It was previously shown that [Pt(O,O'-acac)(γ-acac)(DMS)] induces apoptosis in various cancer cells and exerts antimetastatic responses in vitro. In rats, [Pt(O,O'-acac)(γ-acac)(DMS)] reaches the central nervous system in quantities higher than cisplatin causing less excitotoxicity. The aim of the present paper was to investigate whether [Pt(O,O'-acac)(γ-acac)(DMS)] is able to exert cytotoxic effects on SH-SY5Y human neuroblastoma cell line, and to study the intracellular transduction mechanisms underlying these effects. Here we have demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] was more effective than cisplatin in provoking apoptosis characterized by: (a) mitochondria depolarization, (b) decrease of Bcl-2 expression and increase of BAX expressions with cytosol-to-mitochondria translocation, (c) activation of caspase-7 and -9 and (d) generation of reactive oxygen species (ROS). [Pt(O,O'-acac)(γ-acac)(DMS)] provoked the activation of the following signalling kinases that were interacting with each other: PKC-δ and -ɛ, ERK1/2, p38MAPK, JNK1/2, NF-κB, c-src and FAK. We found that ROS generated by NADPH oxidase was responsible for the [Pt(O,O'-acac)(γ-acac)(DMS)]-mediated PKC-δ and -ɛ activation and consequential phosphorylation of all MAPKs. [Pt(O,O'-acac)(γ-acac)(DMS)]-induced mitochondrial apoptosis was blocked when p38MAPK and JNK1/2 were inhibited, whilst the effects on Bax/Bcl-2 mRNA and protein levels were blocked inhibiting NF-κB. NF-κB nuclear translocation was blocked inhibiting MEK1/2 activity. In addition to the induction of apoptosis [Pt(O,O'-acac)(γ-acac)(DMS)] downregulated pro-survival pathway. Survival inhibition started from mitochondrial ROS generation which induced c-src, FAK and Akt activation. In conclusion, our results suggest that [Pt(O,O'-acac)(γ-acac)(DMS)] may be considered a promising compound for the treatment of neuroblastoma. Further studies are warranted to explore in detail the therapeutic potential of this compound

  10. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    OpenAIRE

    Schlaepfer, D D; Hunter, T

    1996-01-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is req...

  11. Discovery of novel small molecule activators of β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Folkert Verkaar

    Full Text Available Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β-catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling.

  12. A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-Crk signaling

    Directory of Open Access Journals (Sweden)

    Hanafusa Hidesaburo

    2002-07-01

    Full Text Available Abstract Background The adaptor protein p130Cas (Cas has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. Results We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. Conclusion Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.

  13. Xerogel Interfaced Nanofibers Stimulate Bone Regeneration Through the Activation of Integrin and Bone Morphogenetic Protein Pathways.

    Science.gov (United States)

    Lee, Yoo-Mi; Yun, Hyung-Mun; Lee, Hye-Young; Lim, Hyun-Chang; Lee, Hae-Hyoung; Kim, Hae-Won; Kim, Eun-Cheol

    2017-02-01

    A xerogel was interfaced onto biopolymer nanofibers though a core–shell electrospinning design for bone regeneration. The xerogel-interfaced biopolymer nanofibrous matrix was bioactive and highly hydrophilic, with a significant decrease in the water contact angle. The matrix showed excellent in vitro responses of primary osteoblasts in terms of adhesion, proliferation, and migration. Furthermore, the osteoblastic differentiation of cells, including alkaline phosphatase activity, mineralization, and gene expression, was significantly upregulated by the xerogel interface. In vivo animal tests in a critical-sized calvarial defect confirmed the new bone formation ability of the xerogel-surfaced nanofiber matrices. The underlying signaling mechanisms of the stimulation were implied to be integrin and bone morphogenetic protein (BMP) pathways, as demonstrated by the activation of integrin (α2β1) and downstream signaling molecules (FAK, paxillin, RhoA, MAPK, and NF-κB), as well as the BMPs and the downstream transcription factor Smad1/5/8. Taking these findings together, the xerogel-surfaced biopolymer nanofibers are proposed to be a promising scaffold candidate for bone regeneration.

  14. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  15. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  16. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    Science.gov (United States)

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  17. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions

    KAUST Repository

    Walkiewicz, Katarzyna Wiktoria

    2015-06-17

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein ‘nanomachines’ to become activated in a site-specific manner.

  18. Signaling network of the Btk family kinases.

    Science.gov (United States)

    Qiu, Y; Kung, H J

    2000-11-20

    The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.

  19. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    Science.gov (United States)

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  20. CTGF enhances resistance to 5-FU-mediating cell apoptosis through FAK/MEK/ERK signal pathway in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Yang K

    2016-11-01

    Full Text Available Kai Yang, Kai Gao, Gui Hu, Yanguang Wen, Changwei Lin, Xiaorong Li Department of General Surgery, The Third Affiliated Hospital of Central South University, Central South University, Changsha, Hunan, People’s Republic of China Abstract: Colorectal cancer (CRC is one of the most commonly diagnosed cancers among both males and females; the chemotherapy drug 5-fluorouracil (5-FU is one of a doctors’ first lines of defense against CRC. However, therapeutic failures are common because of the emergence of drug resistance. Connective tissue growth factor (CTGF is a secreted protein that binds to integrins, and regulates the invasiveness and metastasis of certain carcinoma cells. Here, we found that CTGF was upregulated in drug-resistant phenotype of human CRC cells. Overexpression of CTGF enhanced the resistance to 5-FU-induced cell apoptosis. Moreover, downregulating the expression of CTGF promoted the curative effect of chemotherapy and blocked the cell cycle in the G1 phase. We also found that CTGF facilitated resistance to 5-FU-induced apoptosis by increasing the expression of B-cell lymphoma-extra large (Bcl-xL and survivin. Then we pharmacologically blocked MEK/ERK signal pathway and assessed 5-FU response by MTT assays. Our current results indicate that the expression of phosphorylated forms of MEK/ERK increased in high CTGF expression cells and MEK inhibited increases in 5-FU-mediated apoptosis of resistant CRC cells. Therefore, our data suggest that MEK/ERK signaling contributes to 5-FU resistance through upstream of CTGF, and supports CRC cell growth. Comprehending the molecular mechanism underlying 5-FU resistance may ultimately aid the fight against CRC. Keywords: connective tissue growth factor, 5-fluorouracil, mitogen-activated protein kinase/extracellular regulated protein kinases, phosphatidyl inositol 3-kinase/serine/threonine kinase Akt, colorectal cancer

  1. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  2. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  3. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  4. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  5. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    2007-11-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  6. Proline-rich tyrosine kinase 2 (Pyk2 regulates IGF-I-induced cell motility and invasion of urothelial carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Marco Genua

    Full Text Available The insulin-like growth factor receptor I (IGF-IR plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. We have recently demonstrated that the IGF-IR is overexpressed in invasive bladder cancer tissues and promotes motility and invasion of urothelial carcinoma cells. These effects require IGF-I-induced Akt- and MAPK-dependent activation of paxillin. The latter co-localizes with focal adhesion kinases (FAK at dynamic focal adhesions and is critical for promoting motility of urothelial cancer cells. FAK and its homolog Proline-rich tyrosine kinase 2 (Pyk2 modulate paxillin activation; however, their role in regulating IGF-IR-dependent signaling and motility in bladder cancer has not been established. In this study we demonstrate that FAK was not required for IGF-IR-dependent signaling and motility of invasive urothelial carcinoma cells. On the contrary, Pyk2, which was strongly activated by IGF-I, was critical for IGF-IR-dependent motility and invasion and regulated IGF-I-dependent activation of the Akt and MAPK pathways. Using immunofluorescence and AQUA analysis we further discovered that Pyk2 was overexpressed in bladder cancer tissues as compared to normal tissue controls. Significantly, in urothelial carcinoma tissues there was increased Pyk2 localization in the nuclei as compared to normal tissue controls. These results provide the first evidence of a specific Pyk2 activity in regulating IGF-IR-dependent motility and invasion of bladder cancer cells suggesting that Pyk2 and the IGF-IR may play a critical role in the invasive phenotype in urothelial neoplasia. In addition, Pyk2 and the IGF-IR may serve as novel biomarkers with diagnostic and prognostic significance in bladder cancer.

  7. Robust Indoor Human Activity Recognition Using Wireless Signals.

    Science.gov (United States)

    Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang

    2015-07-15

    Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  8. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions.

    Science.gov (United States)

    Walkiewicz, Katarzyna W; Girault, Jean-Antoine; Arold, Stefan T

    2015-10-01

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Enhanced constitutive invasion activity in human nontumorigenic keratinocytes exposed to a low level of barium for a long time.

    Science.gov (United States)

    Thang, Nguyen D; Yajima, Ichiro; Ohnuma, Shoko; Ohgami, Nobutaka; Kumasaka, Mayuko Y; Ichihara, Gaku; Kato, Masashi

    2015-02-01

    We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion. © 2013 Wiley Periodicals, Inc.

  10. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  11. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin; Zhao, Mei; Liu, Ya-Rong; Liu, Hai-Jun; Fang, Chao; Chen, Hong-Zhuan

    2014-01-01

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC

  12. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi; Li, Qi [Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010 (China); Zhou, Xiangdong, E-mail: zxd999@263.net [Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010 (China); Kolosov, Victor P.; Perelman, Juliy M. [Far Eastern Scientific Center of Physiology and Pathology of Respiration, Siberian Branch, Russian Academy of Medical Sciences, Blagoveshchensk (Russian Federation)

    2013-11-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression.

  13. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P.; Perelman, Juliy M.

    2013-01-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression

  14. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    Science.gov (United States)

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  15. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-01-01

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  16. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  17. Novel Role of Src in Priming Pyk2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    Full Text Available Proline-rich tyrosine kinase 2 (Pyk2 is a member of the focal adhesion kinase (FAK family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.

  18. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  19. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  20. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  1. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    International Nuclear Information System (INIS)

    Ceccarelli, D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

  2. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  3. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium

    DEFF Research Database (Denmark)

    Marshall, W. S.; Ossum, Carlo Gunnar; Hoffmann, Else Kay

    2005-01-01

    analysis) by eightfold at 5 min, then more slowly again to sevenfold at 60 min. Hypertonic shock slowly increased p38 by sevenfold at 60 min. Phosphorylated JNK kinase was increased by 40-50% by both hypotonic and hypertonic shock and was still elevated at 30 min in hypertonic medium. By immunoblot...... analysis it was found that the stress protein kinase (SPAK) and oxidation stress response kinase 1 (OSR1) were present in salt and freshwater acclimated fish with higher expression in freshwater. By immunocytochemistry, SPAK, OSR1 and phosphorylated focal adhesion kinase (pFAK) were colocalized with NKCC...

  4. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  5. Constrained Adherable Area of Nanotopographic Surfaces Promotes Cell Migration through the Regulation of Focal Adhesion via Focal Adhesion Kinase/Rac1 Activation.

    Science.gov (United States)

    Lim, Jiwon; Choi, Andrew; Kim, Hyung Woo; Yoon, Hyungjun; Park, Sang Min; Tsai, Chia-Hung Dylan; Kaneko, Makoto; Kim, Dong Sung

    2018-05-02

    Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.

  6. Chemical signal activation of an organocatalyst enables control over soft material formation.

    Science.gov (United States)

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  7. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    Science.gov (United States)

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  8. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    Science.gov (United States)

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  9. Structural basis of arrestin-3 activation and signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuyan; Perry, Nicole A.; Vishnivetskiy, Sergey A.; Berndt, Sandra; Gilbert, Nathaniel C.; Zhuo, Ya; Singh, Prashant K.; Tholen, Jonas; Ohi, Melanie D.; Gurevich, Eugenia V.; Brautigam, Chad A.; Klug, Candice S.; Gurevich, Vsevolod V.; Iverson, T.M. (UTSMC); (MCW); (Vanderbilt); (UASANS)

    2017-11-10

    A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.

  10. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan

    2006-01-01

    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  11. The hemodynamically-regulated vascular microenvironment promotes migration of the steroidogenic tissue during its interaction with chromaffin cells in the zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chou

    Full Text Available BACKGROUND: While the endothelium-organ interaction is critical for regulating cellular behaviors during development and disease, the role of blood flow in these processes is only partially understood. The dorsal aorta performs paracrine functions for the timely migration and differentiation of the sympatho-adrenal system. However, it is unclear how the adrenal cortex and medulla achieve and maintain specific integration and whether hemodynamic forces play a role. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, the possible modulation of steroidogenic and chromaffin cell integration by blood flow was investigated in the teleostean counterpart of the adrenal gland, the interrenal gland, in the zebrafish (Danio rerio. Steroidogenic tissue migration and angiogenesis were suppressed by genetic or pharmacologic inhibition of blood flow, and enhanced by acceleration of blood flow upon norepinephrine treatment. Repressed steroidogenic tissue migration and angiogenesis due to flow deficiency were recoverable following restoration of flow. The regulation of interrenal morphogenesis by blood flow was found to be mediated through the vascular microenvironment and the Fibronectin-phosphorylated Focal Adhesion Kinase (Fn-pFak signaling. Moreover, the knockdown of krüppel-like factor 2a (klf2a or matrix metalloproteinase 2 (mmp2, two genes regulated by the hemodynamic force, phenocopied the defects in migration, angiogenesis, the vascular microenvironment, and pFak signaling of the steroidogenic tissue observed in flow-deficient embryos, indicating a direct requirement of mechanotransduction in these processes. Interestingly, epithelial-type steroidogenic cells assumed a mesenchymal-like character and downregulated β-Catenin at cell-cell junctions during interaction with chromaffin cells, which was reversed by inhibiting blood flow or Fn-pFak signaling. Blood flow obstruction also affected the migration of chromaffin cells, but not through

  12. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    Science.gov (United States)

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  13. Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chih-Yu Peng

    2012-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component extracted from honeybee hives, exhibits anti-inflammatory and anticancer activities. However, the molecular mechanism by which CAPE affects oral cancer cell metastasis has yet to be elucidated. In this study, we investigated the potential mechanisms underlying the effects of CAPE on the invasive ability of SCC-9 oral cancer cells. Results showed that CAPE attenuated SCC-9 cell migration and invasion at noncytotoxic concentrations (0 μM to 40 μM. Western blot and gelatin zymography analysis findings further indicated that CAPE downregulated matrix metalloproteinase-2 (MMP-2 protein expression and inhibited its enzymatic activity. CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2 and potently decreased migration by reducing focal adhesion kinase (FAK phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK. These data indicate that CAPE could potentially be used as a chemoagent to prevent oral cancer metastasis.

  14. Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered MMP-2/-9/uPA activity.

    Directory of Open Access Journals (Sweden)

    Jae Won Chang

    Full Text Available Plasma, the fourth state of matter, is defined as a partially or completely ionized gas that includes a mixture of electrons and ions. Advances in plasma physics have made it possible to use non-thermal atmospheric pressure plasma (NTP in cancer research. However, previous studies have focused mainly on apoptotic cancer cell death mediated by NTP as a potential cancer therapy. In this study, we investigated the effect of NTP on invasion or metastasis, as well as the mechanism by which plasma induces anti-migration and anti-invasion properties in human thyroid papillary cancer cell lines (BHP10-3 and TPC1. Wound healing, pull-down, and Transwell assays demonstrated that NTP reduced cell migration and invasion. In addition, NTP induced morphological changes and cytoskeletal rearrangements, as detected by scanning electron microscopy and immunocytochemistry. We also examined matrix metalloproteinase (MMP-2/-9 and urokinase-type plasminogen activator (uPA activity using gelatin zymography, uPA assays and RT-PCR. FAK, Src, and paxillin expression was detected using Western blot analyses and immunocytochemistry. NTP decreased FAK, Src, and paxillin expression as well as MMP/uPA activity. In conclusion, NTP inhibited the invasion and metastasis of BHP10-3 and TPC1 cells by decreasing MMP-2/-9 and uPA activities and rearranging the cytoskeleton, which is regulated by the FAK/Src complex. These findings suggest novel actions for NTP and may aid in the development of new therapeutic strategies for locally invasive and metastatic cancers.

  15. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2009-03-01

    Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.

  16. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    International Nuclear Information System (INIS)

    Hirose, Yoshikazu; Itoh, Tohru; Miyajima, Atsushi

    2009-01-01

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk + hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk + hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk + hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  17. Wise, a context-dependent activator and inhibitor of Wnt signalling.

    Science.gov (United States)

    Itasaki, Nobue; Jones, C Michael; Mercurio, Sara; Rowe, Alison; Domingos, Pedro M; Smith, James C; Krumlauf, Robb

    2003-09-01

    We have isolated a novel secreted molecule, Wise, by a functional screen for activities that alter the anteroposterior character of neuralised Xenopus animal caps. Wise encodes a secreted protein capable of inducing posterior neural markers at a distance. Phenotypes arising from ectopic expression or depletion of Wise resemble those obtained when Wnt signalling is altered. In animal cap assays, posterior neural markers can be induced by Wnt family members, and induction of these markers by Wise requires components of the canonical Wnt pathway. This indicates that in this context Wise activates the Wnt signalling cascade by mimicking some of the effects of Wnt ligands. Activation of the pathway was further confirmed by nuclear accumulation of beta-catenin driven by Wise. By contrast, in an assay for secondary axis induction, extracellularly Wise antagonises the axis-inducing ability of Wnt8. Thus, Wise can activate or inhibit Wnt signalling in a context-dependent manner. The Wise protein physically interacts with the Wnt co-receptor, lipoprotein receptor-related protein 6 (LRP6), and is able to compete with Wnt8 for binding to LRP6. These activities of Wise provide a new mechanism for integrating inputs through the Wnt coreceptor complex to modulate the balance of Wnt signalling.

  18. Genotypic and phenotypic characterization of garlic-fermenting lactic acid bacteria isolated from som-fak, a Thai low-salt fermented fish product

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Valyasevi, R.; Huss, Hans Henrik

    2002-01-01

    AIMS: To evaluate the importance of garlic for fermentation of a Thai fish product, and to differentiate among garlic-/inulin-fermenting lactic acid bacteria (LAB) at strain level. METHODS AND RESULTS: Som-fak was prepared by fermentation of a mixture of fish, salt, rice, sucrose and garlic. p......H decreased to 4.5 in 2 days, but omitting garlic resulted in a lack of acidification. LAB were predominant and approximately one third of 234 isolated strains fermented garlic and inulin (the carbohydrate reserve in garlic). These strains were identified as Lactobacillus pentosus and Lact. plantarum...... AND IMPACT OF THE STUDY: The present study indicates the role of fructans (garlic/inulin) as carbohydrate sources for LAB. Fructan fermenters may have several biotechnological applications, for example, as probiotics....

  19. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.

    Science.gov (United States)

    Wang, Zheng; Tan, Xiaoli; Zhang, Zhiyan; Gu, Shoulai; Li, Guanying; Shi, Haifeng

    2012-03-01

    Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  1. Angiotensin converting enzyme (ACE and ACE2 bind integrins and ACE2 regulates integrin signalling.

    Directory of Open Access Journals (Sweden)

    Nicola E Clarke

    Full Text Available The angiotensin converting enzymes (ACEs are the key catalytic components of the renin-angiotensin system, mediating precise regulation of blood pressure by counterbalancing the effects of each other. Inhibition of ACE has been shown to improve pathology in cardiovascular disease, whilst ACE2 is cardioprotective in the failing heart. However, the mechanisms by which ACE2 mediates its cardioprotective functions have yet to be fully elucidated. Here we demonstrate that both ACE and ACE2 bind integrin subunits, in an RGD-independent manner, and that they can act as cell adhesion substrates. We show that cellular expression of ACE2 enhanced cell adhesion. Furthermore, we present evidence that soluble ACE2 (sACE2 is capable of suppressing integrin signalling mediated by FAK. In addition, sACE2 increases the expression of Akt, thereby lowering the proportion of the signalling molecule phosphorylated Akt. These results suggest that ACE2 plays a role in cell-cell interactions, possibly acting to fine-tune integrin signalling. Hence the expression and cleavage of ACE2 at the plasma membrane may influence cell-extracellular matrix interactions and the signalling that mediates cell survival and proliferation. As such, ectodomain shedding of ACE2 may play a role in the process of pathological cardiac remodelling.

  2. Disentangling stellar activity from exoplanetary signals with interferometry

    Directory of Open Access Journals (Sweden)

    Ligi Roxanne

    2015-01-01

    Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, affecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.

  3. Robust Indoor Human Activity Recognition Using Wireless Signals

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-07-01

    Full Text Available Wireless signals–based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP and access points (AP. First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions’ CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  4. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    Science.gov (United States)

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-09

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission.

  5. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity

    Directory of Open Access Journals (Sweden)

    Zhenwei Su

    2017-12-01

    Full Text Available Summary: The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems—in a single trial—to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity. : Su et al. demonstrate that nutrient content in the GI tract is rapidly signaled to hypothalamic neurons activated by hunger. This rapid effect is mediated by three satiation signals that synergistically reduce the activity of AgRP neurons. These findings uncover how hunger circuits in the brain are regulated and raise the possibility that hunger can be pharmacologically controlled. Keywords: calcium imaging, AgRP neurons, calories, satiation signals, sensory regulation, single trial learning, cholecystokinin, CCK, peptide tyrosine tyrosine, PYY, amylin, homeostasis

  6. Grp78 promotes the invasion of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Su, Rongjian; Li, Zhen; Li, Hongdan; Song, Huijuan; Bao, Cuifen; Wei, Jia; Cheng, Liufang

    2010-01-01

    Glucose regulated protein 78 (Grp78) is involved in the invasion and metastasis in many human cancers including gastric cancer, breast cancer, prostate cancer. But the role of Grp78 in the invasion of human hepatocellular carcinoma has not been reported. In this article, we examined if Grp78 was associated with the invasion of hepatocellular carcinoma and explored the possible underlying mechanism. The Grp78 and FAK expression levels in 44 patients with hepatocellular carcinoma were examined using immunohistochemistry. Grp78 overexpressing SMMC7721 cells were established by pcDNA3.1 (+)-Grp78 transfection and screened by G418. Grp78 and FAK levels in Grp78 overexpressing cells were down-regulated by siRNA transfection. The invasion status of tumor cells was evaluated by transwell assay in vitro, and chick embryo metastasis model in vivo. Cell spreading was determined by cell spreading assay, and quantitatively measured by Orisis software HUG. Grp78, pY397 FAK, pY576/577 FAK and FAK levels were detected by western blot. RhoA activity was detected by GST pulldown assay. The distribution of actin cytoskeleton was observed by fluorescent staining. Grp78 expression levels in 44 patients with hepatocellular carcinoma were negatively correlated with tumor grading, and positively correlated with portal invasion and intra-hepatic invasion. Overexpression of Grp78 in SMMC7721 cells promoted the invasion of cancer cells in vitro and in vivo, and this increase in tumor cell invasion was blocked by Grp78 siRNA knockdown. Our results also revealed that overexpression of Grp78 in SMMC7721 cells accelerated the process of cell spreading and promoted lamellipodia formation. Further analysis showed that overexpression of Grp78 in SMMC7721 cells increased pY397 and pY576/577 levels of FAK. Grp78 siRNA knockdown decreased FAK activation and activity. Our results also revealed that Grp78 overexpression in SMMC7721 cells decreased RhoA-GTP level, and Grp78 siRNA knockdown rescued Rho

  7. Grp78 promotes the invasion of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Li Hongdan

    2010-01-01

    Full Text Available Abstract Background Glucose regulated protein 78 (Grp78 is involved in the invasion and metastasis in many human cancers including gastric cancer, breast cancer, prostate cancer. But the role of Grp78 in the invasion of human hepatocellular carcinoma has not been reported. In this article, we examined if Grp78 was associated with the invasion of hepatocellular carcinoma and explored the possible underlying mechanism. Methods The Grp78 and FAK expression levels in 44 patients with hepatocellular carcinoma were examined using immunohistochemistry. Grp78 overexpressing SMMC7721 cells were established by pcDNA3.1 (+-Grp78 transfection and screened by G418. Grp78 and FAK levels in Grp78 overexpressing cells were down-regulated by siRNA transfection. The invasion status of tumor cells was evaluated by transwell assay in vitro, and chick embryo metastasis model in vivo. Cell spreading was determined by cell spreading assay, and quantitatively measured by Orisis software HUG. Grp78, pY397 FAK, pY576/577 FAK and FAK levels were detected by western blot. RhoA activity was detected by GST pulldown assay. The distribution of actin cytoskeleton was observed by fluorescent staining. Results Grp78 expression levels in 44 patients with hepatocellular carcinoma were negatively correlated with tumor grading, and positively correlated with portal invasion and intra-hepatic invasion. Overexpression of Grp78 in SMMC7721 cells promoted the invasion of cancer cells in vitro and in vivo, and this increase in tumor cell invasion was blocked by Grp78 siRNA knockdown. Our results also revealed that overexpression of Grp78 in SMMC7721 cells accelerated the process of cell spreading and promoted lamellipodia formation. Further analysis showed that overexpression of Grp78 in SMMC7721 cells increased pY397 and pY576/577 levels of FAK. Grp78 siRNA knockdown decreased FAK activation and activity. Our results also revealed that Grp78 overexpression in SMMC7721 cells decreased

  8. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A Requirement for ZAK Kinase Activity in Canonical TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Shyam Nyati

    2016-12-01

    Full Text Available The sterile alpha motif and leucine zipper containing kinase ZAK (AZK, MLT, MLK7, is a MAPK-kinase kinase (MKKK. Like most MAPKKKs which are known to activate the c-Jun. amino-terminal kinase (JNK pathway, ZAK has been shown to participate in the transduction of Transforming growth factor-β (TGF-β-mediated non-canonical signaling. A role for ZAK in SMAD-dependent, canonical TGF-β signaling has not been previously appreciated. Using a combination of functional genomics and biochemical techniques, we demonstrate that ZAK regulates canonical TGFβRI/II signaling in lung and breast cancer cell lines and may serve as a key node in the regulation of TGFBR kinase activity. Remarkably, we demonstrate that siRNA mediated depletion of ZAK strongly inhibited TGF-β dependent SMAD2/3 activation and subsequent promoter activation (SMAD binding element driven luciferase expression; SBE4-Luc. A ZAK specific inhibitor (DHP-2, dose-dependently activated the bioluminescent TGFBR-kinase activity reporter (BTR, blocked TGF-β induced SMAD2/3 phosphorylation and SBE4-Luc activation and cancer cell-invasion. In aggregate, these findings identify a novel role for the ZAK kinase in canonical TGF-β signaling and an invasive cancer cell phenotype thus providing a novel target for TGF-β inhibition.

  10. A heteromeric molecular complex regulates the migration of lung alveolar epithelial cells during wound healing.

    Science.gov (United States)

    Ghosh, Manik C; Makena, Patrudu S; Kennedy, Joseph; Teng, Bin; Luellen, Charlean; Sinclair, Scott E; Waters, Christopher M

    2017-05-19

    Alveolar type II epithelial cells (ATII) are instrumental in early wound healing in response to lung injury, restoring epithelial integrity through spreading and migration. We previously reported in separate studies that focal adhesion kinase-1 (FAK) and the chemokine receptor CXCR4 promote epithelial repair mechanisms. However, potential interactions between these two pathways were not previously considered. In the present study, we found that wounding of rat ATII cells promoted increased association between FAK and CXCR4. In addition, protein phosphatase-5 (PP5) increased its association with this heteromeric complex, while apoptosis signal regulating kinase-1 (ASK1) dissociated from the complex. Cell migration following wounding was decreased when PP5 expression was decreased using shRNA, but migration was increased in ATII cells isolated from ASK1 knockout mice. Interactions between FAK and CXCR4 were increased upon depletion of ASK1 using shRNA in MLE-12 cells, but unaffected when PP5 was depleted. Furthermore, we found that wounded rat ATII cells exhibited decreased ASK1 phosphorylation at Serine-966, decreased serine phosphorylation of FAK, and decreased association of phosphorylated ASK1 with FAK. These changes in phosphorylation were dependent upon expression of PP5. These results demonstrate a unique molecular complex comprising CXCR4, FAK, ASK1, and PP5 in ATII cells during wound healing.

  11. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  12. Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation.

    Directory of Open Access Journals (Sweden)

    Shiro Mizuno

    Full Text Available Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α dependent vascular endothelial growth factor (VEGF expression, and is also required for the activity of lysyl oxidase (LOX to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis via inactivation of focal adhesion kinase (FAK.To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT or FAK small interfering RNA (siRNA.Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim.These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.

  13. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Dmitry L. Aminin

    2015-03-01

    Full Text Available Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata. They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor, Akt (protein kinase B, ERK (extracellular signal-regulated kinases, FAK (focal adhesion kinase, MMP-9 (matrix metalloproteinase-9 and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.

  14. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  15. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  16. Inhibition of JAK1, 2/STAT3 Signaling Induces Apoptosis, Cell Cycle Arrest, and Reduces Tumor Cell Invasion in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hua Xiong

    2008-03-01

    Full Text Available Abnormalities in the STAT3 pathway are involved in the oncogenesis of several cancers. However, the mechanism by which dysregulated STAT3 signaling contributes to the progression of human colorectal cancer (CRC has not been elucidated, nor has the role of JAK, the physiological activator of STAT3, been evaluated. To investigate the role of both JAK and STAT3 in CRC progression, we inhibited JAK with AG490 and depleted STAT3 with a SiRNA. Our results demonstrate that STAT3 and both JAK1 and 2 are involved in CRC cell growth, survival, invasion, and migration through regulation of gene expression, such as Bcl-2, p16ink4a, p21waf1/cip1, p27kip1, E-cadherin, VEGF, and MMPs. Importantly, the FAK is not required for STAT3-mediated regulation, but does function downstream of JAK. In addition, our data show that proteasome-mediated proteolysis promotes dephosphorylation of the JAK2, and consequently, negatively regulates STAT3 signaling in CRC. Moreover, immunohistochemical staining reveals that nuclear staining of phospho-STAT3 mostly presents in adenomas and adenocarcinomas, and a positive correlation is found between phospho-JAK2 immunoreactivity and the differentiation of colorectal adenocarcinomas. Therefore, our findings illustrate the biologic significance of JAK1, 2/STAT3 signaling in CRC progression and provide novel evidence that the JAK/STAT3 pathway may be a new potential target for therapy of CRC.

  17. Boehmenan, a lignan from Hibiscus ficulneus, showed Wnt signal inhibitory activity.

    Science.gov (United States)

    Shono, Takumi; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Ahmed, Firoj; Sadhu, Samir K; Ishibashi, Masami

    2015-07-15

    The Wnt signal pathway modulates numerous biological processes, and its aberrant activation is related to various diseases. Therefore, inhibition of the Wnt signal may provide an effective (or efficient) strategy for these diseases. Cell-based luciferase assay targeting the Wnt signal (TOP assay) revealed that Hibiscus ficulneus extract inhibited the Wnt signal. The activity-guided isolation of the MeOH extract of H. ficulneus stems yielded four known (1-4) lignans along with myriceric acid (5). Compounds 1-4 potently inhibited the Wnt signal with TOPflash IC50 values of 1.0, 4.5, 6.3, and 1.9 μM, respectively. Compound 1 exhibited cytotoxicity against both Wnt-dependent (HCT116) and Wnt-independent (RKO) cells. Western blot analysis showed that 1 decreased the expression of full, cytosolic and nuclear β-catenin along with c-myc in STF/293 cells. Our results suggested that 1 may have inhibited the Wnt signal by decreasing β-catenin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  19. Coco is a dual activity modulator of TGFβ signaling

    Science.gov (United States)

    Deglincerti, Alessia; Haremaki, Tomomi; Warmflash, Aryeh; Sorre, Benoit; Brivanlou, Ali H.

    2015-01-01

    The TGFβ signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGFβ ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGFβ1 signaling. Coco synergizes with TGFβ1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGFβ1 and enhances TGFβ1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGFβ signaling. PMID:26116664

  20. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  1. VEGFR-3 signaling is regulated by a G-protein activator, activator of G-protein signaling 8, in lymphatic endothelial cells.

    Science.gov (United States)

    Sakima, Miho; Hayashi, Hisaki; Mamun, Abdullah Al; Sato, Motohiko

    2018-07-01

    Vascular endothelial growth factor C (VEGFC) and its cognate receptor VEGFR-3 play a key role in lymphangiogenesis. We previously reported that an ischemia-inducible Gβγ signal regulator, activator of G-protein signaling 8 (AGS8), regulated the subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR-2) and influenced VEGFA-induced signaling in vascular endothelial cells. Here, we report that AGS8 regulates VEGFR-3, which is another subtype of the VEGF receptor family, and mediates VEGFC signaling in human dermal lymphatic endothelial cells (HDLECs). VEGFC stimulated the proliferation of HDLECs and tube formation by HDLECs, which were inhibited by knocking down AGS8 by small interfering RNA (siRNA). AGS8 siRNA inhibited VEGFC-mediated phosphorylation of VEGFR-3 and its downstream molecules, including ERK1/2 and AKT. Analysis of fluorescence-activated cell sorting and immunofluorescence staining demonstrated that AGS8 knockdown was associated with a reduction of VEGFR-3 at the cell surface. Endocytosis inhibitors did not rescue the decrease of cell-surface VEGFR-3, suggesting that AGS8 regulated the trafficking of VEGFR-3 to the plasma membrane. An immunoprecipitation assay indicated that VEGFR-3 formed a complex including AGS8 and Gβγ in cells. These data suggest the novel regulation of VEGFC-VEGFR-3 by AGS8 in HDLECs and a potential role for AGS8 in lymphangiogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  3. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  4. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  5. EphA2 Is a Potential Player of Malignant Cellular Behavior in Non-Metastatic Renal Cell Carcinoma Cells but Not in Metastatic Renal Cell Carcinoma Cells.

    Science.gov (United States)

    Cho, Min Chul; Cho, Sung Yong; Yoon, Cheol Yong; Lee, Seung Bae; Kwak, Cheol; Kim, Hyeon Hoe; Jeong, Hyeon

    2015-01-01

    To investigate the role of EphA2 in malignant cellular behavior in renal cell carcinoma (RCC) cells and whether FAK/RhoA signaling can act as downstream effectors of EphA2 on RCC cells. Expression of EphA2 protein in non-metastatic RCC (Caki-2 and A498), metastatic RCC cells (Caki-1 and ACHN), HEK-293 cells and prostate cancer cells (PC-3 and DU-145; positive controls of EphA2 expression) was evaluated by Western blot. Changes in mRNA or protein expression of EphA2, FAK or membrane-bound RhoA following EphA2, FAK or RhoA small interfering RNA (siRNA) transfection were determined by reverse transcription polymerase chain reaction or Western blot. The effect of siRNA treatment on cellular viability, apoptosis and invasion was analyzed by cell counting kit-8, Annexin-V and modified Matrigel-Boyden assays, respectively. In all RCC cell lines, the expression of EphA2 protein was detectable at variable levels; however, in HEK-293 cells, EphA2 expression was very low. Treatment with EphA2 siRNA significantly reduced the expression of EphA2 mRNA and protein in all RCC cell lines. For non-metastatic RCC cells (Caki-2 and A498) but not metastatic RCC cells (Caki-1 and ACHN), cellular viability, invasiveness, resistance to apoptosis, expression of membrane-bound RhoA protein and FAK phosphorylation were significantly decreased in EphA2 siRNA-treated cells compared to the control. In non-metastatic RCC cells, FAK siRNA significantly attenuated the invasiveness, resistance to apoptosis, as well as expression of membrane-bound RhoA protein without changing protein expression of EphA2. RhoA siRNA significantly decreased the malignant cellular behavior and expression of membrane-bound RhoA protein without changing EphA2 protein expression or FAK phosphorylation. Our data provide the first functional evidence that the EphA2/FAK/RhoA signaling pathway plays a critical role in the malignant cellular behavior of RCC and appears to be functional particularly in the early stage of

  6. LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming

    Directory of Open Access Journals (Sweden)

    Delun Huang

    2018-01-01

    Full Text Available The regulatory process of naïve-state induced pluripotent stem cell (iPSC generation is not well understood. Leukemia inhibitory factor (LIF-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3 is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs. However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs, and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation.

  7. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Directory of Open Access Journals (Sweden)

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  8. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    Science.gov (United States)

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  10. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Wang, Shuaiyu; Yoon, Yeo Cho; Sung, Mi-Jeong; Hur, Haeng-Jeon; Park, Jae-Ho

    2012-01-01

    Highlights: ► Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. ► Cafestol inhibits phosphorylation of FAK and Akt. ► Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects the following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.

  11. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  12. Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE.

    Science.gov (United States)

    Lai, Shan-Shan; Xue, Bin; Yang, Yang; Zhao, Li; Chu, Chao-Shun; Hao, Jia-Yin; Wen, Chuan-Jun

    2012-11-01

    The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE. Copyright © 2012. Published by Elsevier Inc.

  13. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  14. Single amino acid change in STING leads to constitutive active signaling.

    Directory of Open Access Journals (Sweden)

    Eric D Tang

    Full Text Available The production of cytokines by the immune system in response to cytosolic DNA plays an important role in host defense, autoimmune disease, and cancer immunogenicity. Recently a cytosolic DNA signaling pathway that is dependent on the endoplasmic reticulum adaptor and cyclic dinucleotide sensor protein STING has been identified. Association of cytosolic DNA with cyclic-GMP-AMP synthase (cGAS activates its enzymatic activity to synthesize the cyclic dinucleotide second messenger cGAMP from GTP and ATP. Direct detection of cGAMP by STING triggers the activation of IRF3 and NF-kB, and the production of type I interferons and proinflammatory cytokines. The mechanism of how STING is able to mediate downstream signaling remains incompletely understood although it has been shown that dimerization is a prerequisite. Here, we identify a single amino acid change in STING that confers constitutive active signaling. This mutation appears to both enhance ability of STING to both dimerize and associate with its downstream target TBK1.

  15. Single amino acid change in STING leads to constitutive active signaling.

    Science.gov (United States)

    Tang, Eric D; Wang, Cun-Yu

    2015-01-01

    The production of cytokines by the immune system in response to cytosolic DNA plays an important role in host defense, autoimmune disease, and cancer immunogenicity. Recently a cytosolic DNA signaling pathway that is dependent on the endoplasmic reticulum adaptor and cyclic dinucleotide sensor protein STING has been identified. Association of cytosolic DNA with cyclic-GMP-AMP synthase (cGAS) activates its enzymatic activity to synthesize the cyclic dinucleotide second messenger cGAMP from GTP and ATP. Direct detection of cGAMP by STING triggers the activation of IRF3 and NF-kB, and the production of type I interferons and proinflammatory cytokines. The mechanism of how STING is able to mediate downstream signaling remains incompletely understood although it has been shown that dimerization is a prerequisite. Here, we identify a single amino acid change in STING that confers constitutive active signaling. This mutation appears to both enhance ability of STING to both dimerize and associate with its downstream target TBK1.

  16. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif.

    Directory of Open Access Journals (Sweden)

    Mei Ying Ng

    Full Text Available Cycle inhibiting factors (Cifs are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.

  17. Normalization of voltage-sensitive dye signal with functional activity measures.

    Directory of Open Access Journals (Sweden)

    Kentaroh Takagaki

    Full Text Available In general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the DeltaF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the DeltaF/F method may, to an extent, be mitigated by a novel method of normalization, DeltaF/DeltaF(epileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of "hypersynchronized" bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional DeltaF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization

  18. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  19. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  20. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2008-05-01

    Full Text Available Caffeine consumption is a risk factor for osteoporosis, but the precise regulatory mechanisms are currently unknown. Here, we show that cell viability decreases in osteoblasts treated with caffeine in a dose-dependent manner. This cell death is attributed primarily to apoptosis and to a smaller extent, necrosis. Moreover, caffeine directly stimulates intracellular oxidative stress. Our data support caffeine-induced apoptosis in osteoblasts via a mitochondria-dependent pathway. The apoptotic biochemical changes were effectively prevented upon pretreatment with ROS scavengers, indicating that ROS plays a critical role as an upstream controller in the caffeine-induced apoptotic cascade. Additionally, p21-activated protein kinase 2 (PAK2 and c-Jun N-terminal kinase (JNK were activated in caffeine-treated osteoblasts. Experiments further found that PAK2 activity is required for caffeine-induced JNK activation and apoptosis. Importantly, our data also show that caffeine triggers cell death via inactivation of the survival signal, including the ERK- and Akt-mediated anti-apoptotic pathways. Finally, exposure of rats to dietary water containing 10~20 μM caffeine led to bone mineral density loss. These results demonstrate for the first time that caffeine triggers apoptosis in osteoblasts via activation of mitochondria-dependent cell death signaling and inactivation of the survival signal, and causes bone mineral density loss in vivo.

  1. Receptor activity-independent recruitment of βarrestin2 reveals specific signalling modes

    Science.gov (United States)

    Terrillon, Sonia; Bouvier, Michel

    2004-01-01

    The roles of βarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, βarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with βarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the βarrestin/receptor complexes. Interestingly, βarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating βarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of βarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by βarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that βarrestin2 can act as a ‘bonafide' signalling molecule even in the absence of activated receptor. PMID:15385966

  2. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-01-01

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  3. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  4. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    Science.gov (United States)

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  5. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  6. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen

    2015-01-01

    -regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin....... In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc (-/-)). The low bone mass exhibited by Terc (-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced...... skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc (-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase...

  7. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  8. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub.

    Science.gov (United States)

    Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David; Bryant, Clare E

    2018-01-24

    Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. © 2018, Latty et al.

  9. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan H; Mu, Hong; Ruvolo, Vivian R; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-06-01

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics ( P = 2 × 10 -4 ) and relapse ( P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3 -ITD ( P = 0.0024) or RAS ( P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34 + ( P = 5.42 × 10 -20 ) and CD34 + CD38 - MDS ( P = 7.62 × 10 -9 ) cells compared with normal CD34 + cells. MDS patients with higher FAK in CD34 + cells tended to have better overall survival ( P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Yuan Tian

    2016-08-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC. The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients.

  11. The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling.

    Science.gov (United States)

    Hahn, Ines; Fuss, Bernhard; Peters, Annika; Werner, Tamara; Sieberg, Andrea; Gosejacob, Dominic; Hoch, Michael

    2013-06-01

    Guanine nucleotide exchange factors (GEFs) of the cytohesin protein family are regulators of GDP/GTP exchange for members of the ADP ribosylation factor (Arf) of small GTPases. They have been identified as modulators of various receptor tyrosine kinase signaling pathways including the insulin, the vascular epidermal growth factor (VEGF) and the epidermal growth factor (EGF) pathways. These pathways control many cellular functions, including cell proliferation and differentiation, and their misregulation is often associated with cancerogenesis. In vivo studies on cytohesins using genetic loss of function alleles are lacking, however, since knockout mouse models are not available yet. We have recently identified mutants for the single cytohesin Steppke (Step) in Drosophila and we could demonstrate an essential role of Step in the insulin signaling cascade. In the present study, we provide in vivo evidence for a role of Step in EGFR signaling during wing and eye development. By analyzing step mutants, transgenic RNA interference (RNAi) and overexpression lines for tissue specific as well as clonal analysis, we found that Step acts downstream of the EGFR and is required for the activation of mitogen-activated protein kinase (MAPK) and the induction of EGFR target genes. We further demonstrate that step transcription is induced by EGFR signaling whereas it is negatively regulated by insulin signaling. Furthermore, genetic studies and biochemical analysis show that Step interacts with the Connector Enhancer of KSR (CNK). We propose that Step may be part of a larger signaling scaffold coordinating receptor tyrosine kinase-dependent MAPK activation.

  12. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    Science.gov (United States)

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  13. Survey of activated FLT3 signaling in leukemia.

    Directory of Open Access Journals (Sweden)

    Ting-lei Gu

    Full Text Available Activating mutations of FMS-like tyrosine kinase-3 (FLT3 are found in approximately 30% of patients with acute myeloid leukemia (AML. FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3 and B cell acute lymphoblastic leukemia (normal and amplification of FLT3 cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC, we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.

  14. Role of signaling lymphocytic activation molecule in T helper cell responses

    Directory of Open Access Journals (Sweden)

    Jan E. de Vries

    1998-01-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM; CDw150 is a 70 kDa glycoprotein. Signaling lymphocytic activation molecule is constitutively expressed on memory T cells, CD56+ T cells, a subset of T cell receptor γδ+ cells, immature thymocytes and, at low levels, on a proportion of peripheral blood B cells. Signaling lymphocytic activation molecule is rapidly upregulated on all T and B cells after activation. Engagement of SLAM by F(ab’2 fragments of an anti-SLAM monoclonal antibody (mAb A12 enhances antigen-specific T cell proliferation. In addition, mAb A12 was directly mitogenic for T cell clones and activated T cells. T cell proliferation induced by mAb A12 is independent of interleukin (IL-2, IL-4, IL-12 and IL-15, but is cyclosporin A sensitive. Ligation of SLAM during antigen-specific T cell proliferation resulted in upregulation of interferon (IFN-γ production, even by allergen-specific T helper cell (Th 2 clones, whereas the levels of IL-4 and IL-5 production were only marginally affected. The mAb A12 was unable to induce IL-4 and IL-5 production by Th1 clones. Co-stimulation of skin-derived Der P1-specific Th2 cells from patients with atopic dermatitis via SLAM resulted in the generation of a population of IFN-γ-producing cells, thereby reverting their phenotype to a Th0 pattern. Signaling lymphocytic activation molecule is a high-affinity self ligand mediating homophilic cell interaction. In addition, soluble SLAM enhances both T and B cell proliferation. Collectively, these data indicate that SLAM molecules act both as receptors and ligands that are not only involved in T cell expansion but also drive the expanding T cells during immune responses into the Th0/Th1 pathway. This suggests that signaling through SLAM plays a role in directing Th0/Th1 development.

  15. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Kumar N Alagramam

    2014-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  16. Nonreciprocal signal routing in an active quantum network

    Science.gov (United States)

    Metelmann, A.; Türeci, H. E.

    2018-04-01

    As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain parametrically driven elements selectively embedded in the circuit, offer a viable solution. Here, we present a general strategy for routing nonreciprocally quantum signals between two sites of a given lattice of oscillators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of overdamped oscillators linking the nodes of the main lattice. Solutions for spatially selective driving of the lattice elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to nonreciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the dynamical matrix of the network. We also demonstrate that signal and noise transmission characteristics can be separately optimized.

  17. The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling*

    Science.gov (United States)

    Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno

    2012-01-01

    The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422

  18. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  19. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer.

    Science.gov (United States)

    Wu, Zhiqiang; Wang, Ting; Fang, Meng; Huang, Wending; Sun, Zhengwang; Xiao, Jianru; Yan, Wangjun

    2018-04-06

    Breast cancer accounts for about 30% of all cancers in women, while approximately 70% breast cancer patients developed bone metastases throughout the course of their disease, highlighting the importance of exploring new therapeutic targets. Microfibrillar-associated protein 5 (MFAP5) is a component of extracellular elastic microfibril which has been confirmed to function in tissue development and cancer progression. But the role of MFAP5 in breast cancer remains unclear. The present study demonstrated that MFAP5 was up-regulated in breast cancers compared with that in normal breast tissues, and further increased in breast cancer bone metastasis. Functionally, MFAP5 overexpression accelerated breast cancer cell proliferation and migration, while an opposite effect was observed when MFAP5 was knocked down. In addition, up-regulation of MFAP5 increased the expression of MMP2 and MMP9 and activated the ERK signaling pathway. Conversely, inhibition of MFAP5 suppressed the expression of MMP2, MMP9, p-FAK, p-Erk1/2 and p-cJun. These findings may provide a better understanding about the mechanism of breast cancer and suggest that MFAP5 may be a potential prognostic biomarker and therapeutic target for breast cancer, especially for bone metastasis of breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M; Ho, Baotran; Zheng, Min; Magis, Andrew; Ostrov, David; Morrison, Carl; Cance, William G

    2013-01-01

    Focal Adhesion Kinase (FAK) is a 125 kDa non-receptor kinase that plays a major role in cancer cell survival and metastasis. We performed computer modeling of the p53 peptide containing the site of interaction with FAK, predicted the peptide structure and docked it into the three-dimensional structure of the N-terminal domain of FAK involved in the complex with p53. We screened small molecule compounds that targeted the site of the FAK-p53 interaction and identified compounds (called Roslins, or R compounds) docked in silico to this site. By different assays in isogenic HCT116p53 + / + and HCT116 p53 - / - cells we identified a small molecule compound called Roslin 2 (R2) that bound FAK, disrupted the binding of FAK and p53 and decreased cancer cell viability and clonogenicity in a p53-dependent manner. In addition, dual-luciferase assays demonstrated that the R2 compound increased p53 transcriptional activity that was inhibited by FAK using p21, Mdm-2, and Bax-promoter targets. R2 also caused increased expression of p53 targets: p21, Mdm-2 and Bax proteins. Furthermore, R2 significantly decreased tumor growth, disrupted the complex of FAK and p53, and up-regulated p21 in HCT116 p53 + / + but not in HCT116 p53 - / - xenografts in vivo. In addition, R2 sensitized HCT116p53 + / + cells to doxorubicin and 5-fluorouracil. Thus, disruption of the FAK and p53 interaction with a novel small molecule reactivated p53 in cancer cells in vitro and in vivo and can be effectively used for development of FAK-p53 targeted cancer therapy approaches

  1. A polymerase chain reaction-based methodology to detect gene doping.

    Science.gov (United States)

    Carter, Adam; Flueck, Martin

    2012-04-01

    The non-therapeutic use of genes to enhance athletic performance (gene doping) is a novel threat to the world of sports. Skeletal muscle is a prime target of gene therapy and we asked whether we can develop a test system to produce and detect gene doping. Towards this end, we introduced a plasmid (pCMV-FAK, 3.8 kb, 50 μg) for constitutive expression of the chicken homologue for the regulator of muscle growth, focal adhesion kinase (FAK), via gene electro transfer in the anti-gravitational muscle, m. soleus, or gastrocnemius medialis of rats. Activation of hypertrophy signalling was monitored by assessing the ribosomal kinase p70S6K and muscle fibre cross section. Detectability of the introduced plasmid was monitored with polymerase chain reaction in deoxyribonucleic acids (DNA) from transfected muscle and serum. Muscle transfection with pCMV-FAK elevated FAK expression 7- and 73-fold, respectively, and increased mean cross section by 52 and 16% in targeted muscle fibres of soleus and gastrocnemius muscle 7 days after gene electro transfer. Concomitantly p70S6K content was increased in transfected soleus muscle (+110%). Detection of the exogenous plasmid sequence was possible in DNA and cDNA of muscle until 7 days after transfection, but not in serum except close to the site of plasmid deposition, 1 h after injection and surgery. The findings suggest that the reliable detection of gene doping in the immoral athlete is not possible unless a change in the current practice of tissue sampling is applied involving the collection of muscle biopsy close to the site of gene injection.

  2. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  3. Study on acoustic emission signals of active defect in pressure piping under hydraulic pressure

    International Nuclear Information System (INIS)

    Ai Qiong; Liu Caixue; Wang Yao; He Pan; Song Jian

    2009-01-01

    Experimental investigations of acoustic emission (AE) of active defect in pressure piping with a prefabricated crack under hydraulic pressure tester were conducted. AE signals of fatigue-crack-growth in pressure piping were monitored incessantly in all processes, and all signals recorded were analyzed and processed. The result of signal processing show that the amplitude and energy of acoustic emission signals from defect in pressure pipeline increase gradually with the load time, and thus the active defects in pipeline can be identified; the amplitude, energy and count of acoustic emission signals increase sharply before the defect runs through, and we can forecast the penetrated leakage of pipeline. (authors)

  4. EG-1 interacts with c-Src and activates its signaling pathway.

    Science.gov (United States)

    Lu, Ming; Zhang, Liping; Sartippour, Maryam R; Norris, Andrew J; Brooks, Mai N

    2006-10-01

    EG-1 is significantly elevated in breast, colorectal, and prostate cancers. Overexpression of EG-1 stimulates cellular proliferation, and targeted inhibition blocks mouse xenograft tumor growth. To further clarify the function of EG-1, we investigated its role in c-Src activation. We observed that EG-1 overexpression results in activation of c-Src, but found no evidence that EG-1 is a direct Src substrate. EG-1 also binds to other members of the Src family. Furthermore, EG-1 shows interaction with multiple other SH3- and WW-containing molecules involved in various signaling pathways. These observations suggest that EG-1 may be involved in signaling pathways including c-Src activation.

  5. Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation.

    Science.gov (United States)

    Xu, Liang; Cui, Wen-Hui; Zhou, Wen-Cheng; Li, De-Lin; Li, Liu-Cheng; Zhao, Ping; Mo, Xiao-Ting; Zhang, Zhihui; Gao, Jian

    2017-08-01

    Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β-catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt-mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor-β (TGF-β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α-SMA and collagen I) and the TGF-β signalling pathway that include smad2/3 and its phosphorylated form p-smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β-catenin revealed epithelial-mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β-catenin in regulation of the signalling network, which acts to counteract autocrine TGF-β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1-smad2/3 signalling through Wnt/β-catenin contribute to lung fibrosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology.

    Science.gov (United States)

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects.

  7. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  8. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.

    Science.gov (United States)

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    2016-12-09

    The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    Science.gov (United States)

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  10. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  11. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy.

    Directory of Open Access Journals (Sweden)

    Franziska Altmüller

    2017-03-01

    Full Text Available Noonan syndrome (NS is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity

  12. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    Science.gov (United States)

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  13. Expression of focal adhesion kinase in uveal melanoma and the effects of Hsp90 inhibition by 17-AAG.

    Science.gov (United States)

    Faingold, Dana; Filho, Vasco Bravo; Fernandes, Bruno; Jagan, Lisa; de Barros, Alexandre M; Orellana, Maria Eugenia; Antecka, Emilia; Burnier, Miguel N

    2014-11-01

    Focal adhesion kinase (FAK) is implicated in tumor progression and metastatic cascade, and has been shown to be overexpressed in a variety of human cancers. However, the role of FAK in human uveal melanoma (UM) is not well defined. The purpose of this study was to evaluate the expression of FAK in UM tumors and normal eyes, and to determine the effect of Hsp90 inhibition on FAK expression in UM cells. FAK expression was assessed in 39 UM specimens, FAK[pY397] expression was assessed in 51 UM specimens, and both FAK and FAK[pY397] expression were assessed in 20 normal eyes. The expression of FAK and FAK[pY397] was detected by Western blot in five UM cell lines after treatment with 10 μmol/L of 17-AAG. FAK was positive in 87.2% and FAK[pY397] in 90% of UM specimens. Low FAK expression was detected in non-tumor structures and in normal eyes. The cell lines with the most proliferative, invasive phenotype (92.1, SP6.5 and MKT-BR) displayed high expression of FAK[pY397], and the levels of FAK and FAK[pY397] were decreased in the presence of 17-AAG starting with 24 h of exposure. FAK and FAK[pY397] were overexpressed in human UM tumors compared to normal ocular tissue and high levels of FAK[pY397] were seen in the most aggressive UM cell lines. Hsp90 inhibition led to downregulation of FAK expression. We propose a role for FAK in the pathogenesis of UM. Future studies are needed to explore the use of Hsp90 inhibitors as a feasible approach for modulating FAK in UM. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Development of regulatory guidance on safety reviews of nuclear power plants in Germany. A survey on accomplished and current PSA activities

    International Nuclear Information System (INIS)

    Berg, H.-P.; Froehmel, T.; Goertz, R.; Rehs, B.

    2005-01-01

    The paper describes the key points of the accomplished and current regulatory activities in order to revise PSA guide and the corresponding technical documents in Germany. The regulatory German PSA guide covers the fundamental requirements concerning the performance of PSAs in the frame of comprehensive safety reviews. The technical details regarding the performance of PSA are set out in two technical documents (PSA Methods and PSA Data) that have been developed by a working group of PSA experts (FAK PSA). Based on the experiences from the first series of PSRs, international experiences and the fact that PSR is mandatory since April 2002 revisions of all guides are underway. The first guide to be updated is the PSA guide together with the corresponding technical documents. The working programme and the revision process of FAK PSA was finished at the end of 2004 and the technical documents have recently been republished. (author)

  15. Activation of PERK signaling through fluoride-mediated endoplasmic reticulum stress in OS732 cells

    International Nuclear Information System (INIS)

    Xu, Hui; Zhou, Yu-lai; Zhang, Xiu-yun; Lu, Peng; Li, Guang-sheng

    2010-01-01

    Our proteomical analysis of osteoblasts exposed to fluoride revealed a distinctive upregulation of proteins in osteoblast. These upregulated proteins play key roles in the protein folding. The PRK-like ER kinase (PERK) signaling, one branch of unfolded protein response (UPR) to combat ER stress, is a transcription factor needed for osteoblast proliferation and differentiation. The mechanism of skeletal fluorosis by which fluoride regulates osteoblast is not fully defined. Here we studied the effect of fluoride on PERK signaling genes and x-box binding protein 1 (xbp-1) in OS7232 cells (human osteoblast-like cell line). Meantime, genes associated with bone turnover were examined in this study. We found that early and continuous fluoride exposure increased the binding immunoglobulin protein (BiP) expression and activated the PERK signaling pathway, resulting in activation of transcription factor 4 (ATF4) and nuclear factor erythroid 2-related factor 2 (Nrf2). The altered expression of cbfa1, osteoprotegerin (OPG)/nuclear factor kappa B ligand (RANKL) were viewed in this study. These results showed fluoride impelled a distinctive ER stress response in OS732 cells, primarily by activating PERK and PERK-dependent signaling. Little effects were viewed for activating xbp-1, a common target of the other two canonical sensors of ER stress, ATF6 and IRE1. In this study the altered expression of bone turnover genes were consistent with activation of ER stress and PERK signaling. This study proved that PERK signaling play major roles in action of fluoride on osteoblast, and suggested that bone response in skeletal fluorosis may be due in part to PERK signaling pathway.

  16. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  17. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  18. Eğitim Fakültesi Öğrencilerinin Görüşlerine Göre Üniversitenin Örgütsel İmajının Değerlendirilmesi

    Directory of Open Access Journals (Sweden)

    Fatma KÖYBAŞI

    2016-12-01

    Full Text Available Öz: Bu araştırmanın amacı, eğitim fakültesi öğrencilerinin görüşlerine göre Cumhuriyet Üniversitesi’nin örgütsel imajını değerlendirmektir. Çalışma, betimsel tarama modelinde nicel bir çalışmadır. Araştırmanın örneklemi 2014-2015 akademik yılı Cumhuriyet Üniversitesi Eğitim Fakültesi’nde öğrenim gören 951 öğrenciden oluşmaktadır. Araştırmanın verileri, Kazoleas vd. (2001 tarafından geliştirilen ve Polat (2011 tarafından Türkçeye uyarlanan örgütsel imaj ölçeği ile toplanmıştır. Örgütsel imaj ölçeği 6 boyutlu olup toplam ölçeğin güvenirlik katsayısı .94’tür. Veriler, betimsel nicel analiz tekniği ile çözümlenmiş, ayrıca fark testleri (t-testi ve Anova kullanılmıştır. Araştırmanın bulgularına göre Cumhuriyet Üniversitesi Eğitim Fakültesi öğrencileri üniversitenin örgütsel imajını düşük düzeyde değerlendirmişlerdir. Kalite alt boyutu hariç (orta düzey diğer alt boyutlardaki imaj puanları düşük düzeyde olduğu ortaya çıkmıştır. Ayrıca üniversite öğrencilerinin görüşleri cinsiyet değişkenine göre anlamlı bir farklılık göstermemiştir. Diğer değişkenler olan memleket, öğrenim durumu, sınıf düzeyi ve yerleşim birimi değişkenlerine göre öğrencilerinin üniversitenin örgütsel imajına ilişkin görüşleri anlamlı bir farklılık göstermektedir. Memleket değişkenine göre öğrencilerin görüşlerindeki farklılık Sivaslı olan öğrenciler lehinedir. Öğrenim durumu değişkenine göre öğrencilerin görüşlerindeki farklılık 1.Öğretim öğrencileri lehinedir. 4. Sınıf öğrencileri 2. Sınıf öğrencilerine göre üniversitenin örgütsel imajını daha düşük düzeyde değerlendirdikleri ortaya çıkmıştır. Ayrıca, ilçede yaşayan öğrencilerin ilde yaşayan öğrencilere göre üniversitenin örgütsel imajını daha olumlu değerlendirdikleri bulunmuştur. Araştırma bulgular

  19. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  20. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Seo, Dong-Wan [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Kang, Jong-Sun [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746 (Korea, Republic of); Bae, Gyu-Un, E-mail: gbae@sookmyung.ac.kr [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  1. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee; Seo, Dong-Wan; Kang, Jong-Sun; Bae, Gyu-Un

    2016-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  2. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    Science.gov (United States)

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  3. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    Science.gov (United States)

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. 3D cell cultures of human head and neck squamous cell carcinoma cells are radiosensitized by the focal adhesion kinase inhibitor TAE226

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Lange, Inga; Eke, Iris; Cordes, Nils

    2009-01-01

    Background and purpose: Focal adhesion kinase (FAK), a main player in integrin signaling and survival, is frequently overexpressed in human cancers and therefore postulated as potential target in cancer therapy. The aim of this study was to evaluate the radiosensitizing potential of the FAK inhibitor TAE226 in three-dimensional (3D) tumor cell cultures. Materials and methods: Head and neck squamous cell carcinoma (HNSCC) cells (FaDu, UT-SCC15, UT-SCC45), lung cancer cells (A549), colorectal carcinoma cells (DLD-1, HCT-116) and pancreatic tumor cells (MiaPaCa2, Panc1) were treated with different concentrations of TAE226 (0-1 μm; 1 or 24 h) without or in combination with irradiation (0-6 Gy, X-ray, single dose). Subsequently, 3D clonogenic survival assays (laminin-rich extracellular matrix) and Western blotting (expression/phosphorylation, e.g. FAK, Akt, ERK1/2) were performed. Results: All investigated 3D cell cultures showed a dose-dependent reduction in clonogenic survival by TAE226. Intriguingly, TAE226 only significantly radiosensitized 3D HNSCC cell cultures accompanied by a pronounced dephosphorylation of FAK, Akt and ERK1/2. Conclusions: Our data demonstrate TAE226 as potent FAK inhibitor that enhances the cellular radiosensitivity particularly of HNSCC cells grown in a 3D cell culture model. Future in vitro and in vivo investigations will clarify, to which extent this approach might be clinically relevant for radiotherapy of HNSCC.

  5. Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Wen-juan Wu

    2017-01-01

    Full Text Available Signal transducer and activator of transcription (STAT is a unique protein family that binds to DNA, coupled with tyrosine phosphorylation signaling pathways, acting as a transcriptional regulator to mediate a variety of biological effects. Cerebral ischemia and reperfusion can activate STATs signaling pathway, but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging (DWI in rats after cerebral ischemia/reperfusion. Here, we established a rat model of focal cerebral ischemia injury using the modified Longa method. DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient. STAT3 protein expression showed no significant change after reperfusion, but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours. Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area. These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.

  6. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  7. Noncanonical ATM Activation and Signaling in Response to Transcription-Blocking DNA Damage.

    Science.gov (United States)

    Marteijn, Jurgen A; Vermeulen, Wim; Tresini, Maria

    2017-01-01

    Environmental genotoxins and metabolic byproducts generate DNA lesions that can cause genomic instability and disrupt tissue homeostasis. To ensure genomic integrity, cells employ mechanisms that convert signals generated by stochastic DNA damage into organized responses, including activation of repair systems, cell cycle checkpoints, and apoptotic mechanisms. DNA damage response (DDR) signaling pathways coordinate these responses and determine cellular fates in part, by transducing signals that modulate RNA metabolism. One of the master DDR coordinators, the Ataxia Telangiectasia Mutated (ATM) kinase, has a fundamental role in mediating DNA damage-induced changes in mRNA synthesis. ATM acts by modulating a variety of RNA metabolic pathways including nascent RNA splicing, a process catalyzed by the spliceosome. Interestingly, ATM and the spliceosome influence each other's activity in a reciprocal manner by a pathway that initiates when transcribing RNA polymerase II (RNAPII) encounters DNA lesions that prohibit forward translocation. In response to stalling of RNAPII assembly of late-stage spliceosomes is disrupted resulting in increased splicing factor mobility. Displacement of spliceosomes from lesion-arrested RNA polymerases facilitates formation of R-loops between the nascent RNA and DNA adjacent to the transcription bubble. R-loops signal for noncanonical ATM activation which in quiescent cells occurs in absence of detectable dsDNA breaks. In turn, activated ATM signals to regulate spliceosome dynamics and AS genome wide.This chapter describes the use of fluorescence microscopy methods that can be used to evaluate noncanonical ATM activation by transcription-blocking DNA damage. First, we present an immunofluorescence-detection method that can be used to evaluate ATM activation by autophosphorylation, in fixed cells. Second, we present a protocol for Fluorescence Recovery After Photobleaching (FRAP) of GFP-tagged splicing factors, a highly sensitive and

  8. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  9. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    International Nuclear Information System (INIS)

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-01-01

    Highlights: ► H 2 O 2 activates the insulin signaling pathway and glucose uptake in podocytes. ► H 2 O 2 induces time-dependent changes in AMPK phosphorylation. ► H 2 O 2 enhances insulin signaling pathways via AMPK activation. ► H 2 O 2 stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H 2 O 2 ) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H 2 O 2 -induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H 2 O 2 (100 μM) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min (Δ 183%, P 2 O 2 >. Furthermore, H 2 O 2 inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; Δ −32%, P 2 O 2 on IR phosphorylation by about 40% (from 2.07 ± 0.28 to 1.28 ± 0.12, P 2 O 2 increased glucose uptake in podocytes (from 0.88 ± 0.04 to 1.29 ± 0.12 nmol/min/mg protein, P 2 O 2 activated the insulin signaling pathway and glucose uptake via AMPK in cultured rat podocytes. This signaling may play a potential role in the prevention of insulin resistance under conditions associated with oxidative stress.

  10. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  11. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  12. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    Highlights: ► Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE 2 . ► The fibroblasts interact with human colonic epithelial cancer cells. ► Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. ► Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  13. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma.

    Science.gov (United States)

    Kanteti, Rajani; Mirzapoiazova, Tamara; Riehm, Jacob J; Dhanasingh, Immanuel; Mambetsariev, Bolot; Wang, Jiale; Kulkarni, Prakash; Kaushik, Garima; Seshacharyulu, Parthasarathy; Ponnusamy, Moorthy P; Kindler, Hedy L; Nasser, Mohd W; Batra, Surinder K; Salgia, Ravi

    2018-04-03

    The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.

  14. Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes.

    Science.gov (United States)

    Paco, Sonia; Hummel, Manuela; Plá, Virginia; Sumoy, Lauro; Aguado, Fernando

    2016-04-23

    cAMP signaling produces dramatic changes in astrocyte morphology and physiology. However, its involvement in phenotype acquisition and the transcriptionally mediated mechanisms of action are largely unknown. Here we analyzed the global transcriptome of cultured astroglial cells incubated with activators of cAMP pathways. A bulk of astroglial transcripts, 6221 annotated genes, were differentially regulated by cAMP signaling. cAMP analogs strongly upregulated genes involved in typical functions of mature astrocytes, such as homeostatic control, metabolic and structural support to neurons, antioxidant defense and communication, whereas they downregulated a considerable number of proliferating and immaturity-related transcripts. Moreover, numerous genes typically activated in reactive cells, such as scar components and immunological mediators, were repressed by cAMP. GSEA analysis contrasting gene expression profiles with transcriptome signatures of acutely isolated astrocytes and in situ evaluation of protein levels in these cells showed that cAMP signaling conferred mature and in vivo-like transcriptional features to cultured astrocytes. These results indicate that cAMP signaling is a key pathway promoting astrocyte maturation and restricting their developmental and activation features. Therefore, a positive modulation of cAMP signaling may promote the normal state of differentiated astrocytes and favor the protection and function of neuronal networks.

  15. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.

    Science.gov (United States)

    Catozzi, S; Sepulchre, J-A

    2017-08-01

    In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.

  16. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-08

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Artifact suppression and analysis of brain activities with electroencephalography signals.

    Science.gov (United States)

    Rashed-Al-Mahfuz, Md; Islam, Md Rabiul; Hirose, Keikichi; Molla, Md Khademul Islam

    2013-06-05

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  18. Adhesion and migration of cells responding to microtopography.

    Science.gov (United States)

    Estévez, Maruxa; Martínez, Elena; Yarwood, Stephen J; Dalby, Matthew J; Samitier, Josep

    2015-05-01

    It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 µm(2) posts and compare their response to that of FAK(-/-) fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon. © 2014 Wiley Periodicals, Inc.

  19. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com [Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724 (United States); Tissue Tech Inc., Miami, FL 33173 (United States); Zhu, Min; Lance, Peter [Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  20. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  1. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  2. A Comparative Proteomic Analysis of Erinacine A’s Inhibition of Gastric Cancer Cell Viability and Invasiveness

    Directory of Open Access Journals (Sweden)

    Hsing-Chun Kuo

    2017-08-01

    Full Text Available Background / Aims: Erinacine A, isolated from the ethanol extract of the Hericium erinaceus mycelium, has been demonstrated as a new alternative anticancer medicine. Drawing upon current research, this study presents an investigation of the molecular mechanism of erinacine A inhibition associated with gastric cancer cell growth. Methods: Cell viability was determined by Annexin V–FITC/propidium iodide staining and migration using a Boyden chamber assay to determine the effects of erinacine A treatment on the proliferation capacity and invasiveness of gastric cancer cells. A proteomic assay provided information that was used to identify the differentially-expressed proteins following erinacine A treatment, as well as the mechanism of its targets in the apoptotic induction of erinacine A. Results: Our results demonstrate that erinacine A treatment of TSGH 9201 cells increased cytotoxicity and the generation of reactive oxygen species (ROS, as well as decreased the invasiveness. Treatment of TSGH 9201 cells with erinacine A resulted in the activation of caspases and the expression of TRAIL. Erinacine A induction of apoptosis was accompanied by sustained phosphorylation of FAK/AKT/p70S6K and the PAK1 pathways, as well as the generation of ROS. Furthermore, the induction of apoptosis and anti-invasion properties by erinacine A could involve the differential expression of the 14-3-3 sigma protein (1433S and microtubule-associated tumor suppressor candidate 2 (MTUS2, with the activation of the FAK/AKT/p70S6K and PAK1 signaling pathways. Conclusions: These results lead us to speculate that erinacine A may generate an apoptotic cascade in TSGH 9201 cells by activating the FAK/AKT/p70S6K/PAK1 pathway and upregulating proteins 1433S and MTUS2, providing a new mechanism underlying the anti-cancer effects of erinacine A in human gastric cancer cells.

  3. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  4. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  5. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  6. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response.

    Science.gov (United States)

    Barrionuevo, Pablo A; Cao, Dingcai

    2016-09-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a "winner-takes-all" process, suggesting the integration with PC signals might be mediated by a postretinal site.

  7. Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling

    Directory of Open Access Journals (Sweden)

    Hanselman Keaton B

    2006-10-01

    Full Text Available Abstract Background In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109 animals. Results This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C phenotype of age-1(mg109. Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109;akt-1(mg247 animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109;pdk-1(mg261 animals was dependent on akt-1. However, reproductive development in age-1(mg109; mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109 animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247 and pdk-1(mg261 did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these

  8. Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling.

    Science.gov (United States)

    Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B; Wolkow, Catherine A

    2006-10-04

    In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109) animals. This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C) phenotype of age-1(mg109). Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109);akt-1(mg247) animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109);pdk-1(mg261) animals was dependent on akt-1. However, reproductive development in age-1(mg109); mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109) animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247) and pdk-1(mg261) did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these phenotypes. A screen for suppressors of PI3K

  9. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  10. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals

    International Nuclear Information System (INIS)

    Tong-Starksen, S.E.; Luciw, P.A.; Peterlin, B.M.

    1987-01-01

    Human immunodeficiency virus (HIV), the causative agent of AIDS, infects and kills lymphoid cells bearing the CD4 antigen. In an infected cell, a number of cellular as well as HIV-encoded gene products determine the levels of viral gene expression and HIV replication. Efficient HIV replication occurs in activated T cells. Utilizing transient expression assays, the authors show that gene expression directed by the HIV long terminal repeat (LTR) increases in response to T-cell activation signals. The effects of T-cell activation and of the HIV-encoded trans-activator (TAT) are multiplicative. Analysis of mutations and deletions in the HIV LTR reveals that the region responding to T-cell activation signals is located at positions -105 to -80. These sequences are composed of two direct repeats, which are homologous to the core transcriptional enhancer elements in the simian virus 40 genome. The studies reveal that these elements function as the HIV enhancer. By acting directly on the HIV LTR, T-cell activation may play an important role in HIV gene expression and in the activation of latent HIV

  11. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    Science.gov (United States)

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  12. An alternative mode of CD43 signal transduction activates pro-survival pathways of T lymphocytes.

    Science.gov (United States)

    Bravo-Adame, Maria Elena; Vera-Estrella, Rosario; Barkla, Bronwyn J; Martínez-Campos, Cecilia; Flores-Alcantar, Angel; Ocelotl-Oviedo, Jose Pablo; Pedraza-Alva, Gustavo; Rosenstein, Yvonne

    2017-01-01

    CD43 is one of the most abundant co-stimulatory molecules on a T-cell surface; it transduces activation signals through its cytoplasmic domain, contributing to modulation of the outcome of T-cell responses. The aim of this study was to uncover new signalling pathways regulated by this sialomucin. Analysis of changes in protein abundance allowed us to identify pyruvate kinase isozyme M2 (PKM2), an enzyme of the glycolytic pathway, as an element potentially participating in the signalling cascade resulting from the engagement of CD43 and the T-cell receptor (TCR). We found that the glycolytic activity of this enzyme was not significantly increased in response to TCR+CD43 co-stimulation, but that PKM2 was tyrosine phosphorylated, suggesting that it was performing moonlight functions. We report that phosphorylation of both Y 105 of PKM2 and of Y 705 of signal transducer and activator of transcription 3 was induced in response to TCR+CD43 co-stimulation, resulting in activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway. ERK5 and the cAMP response element binding protein (CREB) were activated, and c-Myc and nuclear factor-κB (p65) nuclear localization, as well as Bad phosphorylation, were augmented. Consistent with this, expression of human CD43 in a murine T-cell hybridoma favoured cell survival. Altogether, our data highlight novel signalling pathways for the CD43 molecule in T lymphocytes, and underscore a role for CD43 in promoting cell survival through non-glycolytic functions of metabolic enzymes. © 2016 John Wiley & Sons Ltd.

  13. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Science.gov (United States)

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  14. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

    Science.gov (United States)

    Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M

    2011-08-01

    Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.

  15. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  16. FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy

    OpenAIRE

    Kemp, P; Lee, JY; lori, O; Wells, D

    2015-01-01

    Myostatin is a TGFβ family ligand that reduces muscle mass. In cancer cells, TGFβ signalling is increased by the protein FHL1. Consequently, FHL1 may promote signalling by myostatin. We therefore tested the ability of FHL1 to regulate myostatin function. FHL1 increased the myostatin activity on a SMAD reporter and increased myostatin dependent myotube wasting. In mice, independent expression of myostatin reduced fibre diameter whereas FHL1 increased fibre diameter, both consistent with previo...

  17. Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity

    Directory of Open Access Journals (Sweden)

    Jessica A Church

    2009-11-01

    Full Text Available Tourette Syndrome (TS is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008. A prior resting-state functional connectivity MRI (rs-fcMRI analysis in TS has revealed functional immaturity in both putative control networks, with “anomalous” correlations (i.e. correlations outside the typical developmental range limited to the adaptive control network (Church et al., 2009. The present study used functional MRI (fMRI to study brain activity related to adaptive control (by studying start-cues signals, and to task-maintenance (by studying signals sustained across a task set. Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue activity will be altered in TS, including activity inconsistent with typical development (“anomalous”. Second, group differences found in task maintenance (i.e., sustained activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents

  18. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    Science.gov (United States)

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  19. Activation of PKA/CREB Signaling is Involved in BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2015-09-01

    Full Text Available Background/Aims: BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cells (MSCs although the molecular mechanism involved is largely unknown. Here, we explored the detail role of PKA/CREB signaling in BMP9-induced osteogenic differentiation. Methods: Activation status of PKA/CREB signaling is assessed by nonradioactive assay and Western blot. Using PKA inhibitors and a dominant negative protein of CREB (A-CREB, we investigated the effect of PKA/CREB signaling on BMP9-induced osteogenic differentiation. Results: We found that BMP9 promotes PKA activity and enhances CREB phosphorylation in MSCs. BMP9 is shown to down-regulate protein kinase A inhibitor γ (PKIγ expression. We demonstrated that PKA inhibitors suppress BMP9-induced early osteogenic marker alkaline phosphatase (ALP activity in MSCs as well as late osteogenic markers osteopontin (OPN, osteocalcin (OCN and matrix mineralization. We found that PKA inhibitor reduces BMP9-induced Runx2 activation and p38 phosphorylation in MSCs. Lastly, interference of CREB function by A-CREB decreased BMP9-induced osteogenic differentiation as well. Conclusion: Our results revealed that BMP9 may activate PKA/CREB signaling in MSCs through suppression of PKIγ expression. It is noteworthy that inhibition of PKA/CREB signaling may impair BMP9-induced osteogenic differentiation of MSCs, implying that activation of PKA/CREB signaling is required for BMP9 osteoinductive activity.

  20. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    International Nuclear Information System (INIS)

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella

    2005-01-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-Jκ-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV

  1. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille; Schenk, Sebastian T.; Hirt, Heribert; Colcombet, Jean; Krapp, Anne

    2017-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  2. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille

    2017-04-14

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  3. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity

    Science.gov (United States)

    Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991

  4. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  5. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  6. A method for the quantification of biased signalling at constitutively active receptors.

    Science.gov (United States)

    Hall, David A; Giraldo, Jesús

    2018-06-01

    Biased agonism, the ability of an agonist to differentially activate one of several signal transduction pathways when acting at a given receptor, is an increasingly recognized phenomenon at many receptors. The Black and Leff operational model lacks a way to describe constitutive receptor activity and hence inverse agonism. Thus, it is impossible to analyse the biased signalling of inverse agonists using this model. In this theoretical work, we develop and illustrate methods for the analysis of biased inverse agonism. Methods were derived for quantifying biased signalling in systems that demonstrate constitutive activity using the modified operational model proposed by Slack and Hall. The methods were illustrated using Monte Carlo simulations. The Monte Carlo simulations demonstrated that, with an appropriate experimental design, the model parameters are 'identifiable'. The method is consistent with methods based on the measurement of intrinsic relative activity (RA i ) (ΔΔlogR or ΔΔlog(τ/K a )) proposed by Ehlert and Kenakin and their co-workers but has some advantages. In particular, it allows the quantification of ligand bias independently of 'system bias' removing the requirement to normalize to a standard ligand. In systems with constitutive activity, the Slack and Hall model provides methods for quantifying the absolute bias of agonists and inverse agonists. This provides an alternative to methods based on RA i and is complementary to the ΔΔlog(τ/K a ) method of Kenakin et al. in systems where use of that method is inappropriate due to the presence of constitutive activity. © 2018 The British Pharmacological Society.

  7. Signaling pathways activation profiles make better markers of cancer than expression of individual genes

    OpenAIRE

    Borisov, Nikolay M.; Terekhanova, Nadezhda V.; Aliper, Alexander M.; Venkova, Larisa S.; Smirnov, Philip Yu; Roumiantsev, Sergey; Korzinkin, Mikhail B.; Zhavoronkov, Alex A.; Buzdin, Anton A.

    2014-01-01

    Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for...

  8. Assessment of Homomorphic Analysis for Human Activity Recognition from Acceleration Signals.

    Science.gov (United States)

    Vanrell, Sebastian Rodrigo; Milone, Diego Humberto; Rufiner, Hugo Leonardo

    2017-07-03

    Unobtrusive activity monitoring can provide valuable information for medical and sports applications. In recent years, human activity recognition has moved to wearable sensors to deal with unconstrained scenarios. Accelerometers are the preferred sensors due to their simplicity and availability. Previous studies have examined several \\azul{classic} techniques for extracting features from acceleration signals, including time-domain, time-frequency, frequency-domain, and other heuristic features. Spectral and temporal features are the preferred ones and they are generally computed from acceleration components, leaving the acceleration magnitude potential unexplored. In this study, based on homomorphic analysis, a new type of feature extraction stage is proposed in order to exploit discriminative activity information present in acceleration signals. Homomorphic analysis can isolate the information about whole body dynamics and translate it into a compact representation, called cepstral coefficients. Experiments have explored several configurations of the proposed features, including size of representation, signals to be used, and fusion with other features. Cepstral features computed from acceleration magnitude obtained one of the highest recognition rates. In addition, a beneficial contribution was found when time-domain and moving pace information was included in the feature vector. Overall, the proposed system achieved a recognition rate of 91.21% on the publicly available SCUT-NAA dataset. To the best of our knowledge, this is the highest recognition rate on this dataset.

  9. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... (Thr37/46) (P mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued...

  10. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway.

    Science.gov (United States)

    Cheng, Lihong; Ye, Ying; Xiang, Lan; Osada, Hiroyuki; Qi, Jianhua

    2017-01-15

    Neurotrophic factors such as nerve growth factor (NGF) play important roles in nervous system. NGF is a potential therapeutic drug for treatment of neurodegenerative diseases. However, because of physicochemical property, NGF cannot pass through the blood-brain barrier (BBB). Hence, small molecules which exhibit NGF-mimic activity and can pass through the BBB are considered to be promising drug candidates for treatment of such diseases. The present study was designed to isolate NGF-mimic substance from extract of natural products, determine their structures and investigate mechanism of action of the active substance. Extract of Lindernia crustacean was partitioned between water and ethyl acetate to obtain water layer and ethyl acetate layer samples, respectively, and then evaluated their neuritogenic activity in PC12 cells. The active sample was separated by open columns, followed by HPLC purification to obtain active compound. Then, specific inhibitors were used to investigate signaling pathway of neurite outgrowth induced by the active compound. Finally, western blot analysis was performed to confirm the pathway proposed by inhibitor experiments. The ethyl acetate layer sample of extract of Lindernia crustacea exhibited significant neuritogenic activity. Two new compounds, named as linderside A and lindersin B, were isolated; their structures were elucidated by spectroscopic and chemical derivatization methods. Linderside A is a cucurbitane glycoside, whereas lindersin B is a cucurbitane triterpenoid. Each compound has an unusual isopentene unit, namely, a double bond bound to an unmodified isopropyl group at the end of cucurbitane triterpenoid side chain. Among them, lindersin B induced significant neurite outgrowth in PC12 cells, while linderside A was inactive against PC12 cells. Western blotting analysis results showed that lindersin B-induced neuritogenic activity depended on the activation of the mitogen-activated protein kinase (MAPK)/extracellular signal

  11. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  12. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  13. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  14. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  15. E3 Ubiquitin Ligase RNF125 Activates Interleukin-36 Receptor Signaling and Contributes to Its Turnover.

    Science.gov (United States)

    Saha, Siddhartha S; Caviness, Gary; Yi, Guanghui; Raymond, Ernest L; Mbow, M Lamine; Kao, C Cheng

    2018-01-01

    Signaling by the interleukin-36 receptor (IL-36R) is linked to inflammatory diseases such as psoriasis. However, the regulation of IL-36R signaling is poorly understood. Activation of IL-36R signaling in cultured cells results in an increased polyubiquitination of the receptor subunit, IL-1Rrp2. Treatment with deubiquitinases shows that the receptor subunit of IL-36R, IL-1Rrp2, is primarily polyubiquitinated at the K63 position, which is associated with endocytic trafficking and signal transduction. A minor amount of ubiquitination is at the K48 position that is associated with protein degradation. A focused siRNA screen identified RNF125, an E3 ubiquitin ligase, to ubiquitinate IL-1Rrp2 upon activation of IL-36R signaling while not affecting the activated IL-1 receptor. Knockdown of RNF125 decreases signal transduction by the IL-36R. Overexpression of RNF125 in HEK293T cells activates IL-36R signaling and increases the ubiquitination of IL-1Rrp2 and its subsequent turnover. RNF125 can coimmunoprecipitate with the IL-36R, and it traffics with IL-1Rrp2 from the cell surface to lysosomes. Mutations of Lys568 and Lys569 in the C-terminal tail of IL-1Rrp2 decrease ubiquitination by RNF125 and increase the steady-state levels of IL-1Rrp2. These results demonstrate that RNF125 has multiple regulatory roles in the signaling, trafficking, and turnover of the IL-36R. © 2017 S. Karger AG, Basel.

  16. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities.

    Science.gov (United States)

    Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin

    2017-12-01

    Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite...... the dynamics of the subsystem under investigation both before and after the parameter change. The controller is well know, but there exists no detailed knowledge about the dynamics of the subsystem....

  18. Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.

    Science.gov (United States)

    Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan

    2017-03-21

    Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.

  19. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment

    OpenAIRE

    Yu, Xiaobing; Zou, Jizhong; Ye, Zhaohui; Hammond, Holly; Chen, Guibin; Tokunaga, Akinori; Mali, Prashant; Li, Yue-Ming; Civin, Curt; Gaiano, Nicholas; Cheng, Linzhao

    2008-01-01

    The Notch signaling pathway plays important roles in cell fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell fate choices in human embryonic stem (hES) cells. Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hES cell lines. We report here that activation of Notch signaling is required for undifferentiated hES cells to form the pr...

  20. Signal detection by active, noisy hair bundles

    Science.gov (United States)

    O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2018-05-01

    Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

  1. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  2. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    Science.gov (United States)

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  3. Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer’s Disease?

    Directory of Open Access Journals (Sweden)

    Kelsey E. Murphy

    2017-05-01

    Full Text Available Alzheimer’s disease (AD is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER stress and autophagy dysfunction, resulting in more complicated pathogenesis. Currently, few treatments can modify the complicated pathogenic progress of AD. Compared to the treatment with exogenous antioxidants, the activation of global antioxidant defense system via Nrf2 looks more promising in attenuating oxidative stress in AD brains. Accompanying the activation of the Nrf2-mediated antioxidant defense system that reduce the AD-causative factor, oxidative stress, it is also necessary to activate the neurotrophic signaling pathway that replaces damaged organelles and molecules with new ones. Thus, the dual actions to activate both the Nrf2 antioxidant system and neurotrophic signaling pathway are expected to provide a better strategy to modify AD pathogenesis. Here, we review the current understanding of AD pathogenesis and neuronal defense systems and discuss a possible way to co-activate the Nrf2 antioxidant system and neurotrophic signaling pathway with the hope of helping to find a better strategy to slow AD.

  4. Recordings of mucociliary activity in vivo: benefit of fast Fourier transformation of the photoelectric signal.

    Science.gov (United States)

    Lindberg, S; Cervin, A; Runer, T; Thomasson, L

    1996-09-01

    Investigations of mucociliary activity in vivo are based on photoelectric recordings of light reflections from the mucosa. The alterations in light intensity produced by the beating cilia are picked up by a photodetector and converted to photoelectric signals. The optimal processing of these signals is not known, but in vitro recordings have been reported to benefit from fast Fourier transformation (FFT) of the signal. The aim of the investigation was to study the effect of FFT for frequency analysis of photoelectric signals originating from an artificial light source simulating mucociliary activity or from sinus or nasal mucosa in vivo, as compared to a conventional method of calculating mucociliary wave frequency, in which each peak in the signal is interpreted as a beat (old method). In the experiments with the artificial light source, the FFT system was superior to the conventional method by a factor of 50 in detecting weak signals. By using FFT signal processing, frequency could be correctly calculated in experiments with a compound signal. In experiments in the rabbit maxillary sinus, the spontaneous variations were greater when signals were processed by FFT. The correlation between the two methods was excellent: r = .92. The increase in mucociliary activity in response to the ciliary stimulant methacholine at a dosage of 0.5 microgram/kg was greater measured with the FFT than with the old method (55.3% +/- 8.3% versus 43.0% +/- 8.2%, p detected. In the human nose, recordings from aluminum foil placed on the nasal dorsum and from the nasal septa mucosa displayed some similarities in the lower frequency spectrum (light, the mean frequency in seven healthy volunteers being 7.8 +/- 1.6 Hz for the human nasal mucosa. It is concluded that the FFT system has greater sensitivity in detecting photoelectric signals derived from the mucociliary system, and that it is also a useful tool for analyzing the contributions of artifacts to the signal.

  5. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer.

    Science.gov (United States)

    Friedbichler, Katrin; Themanns, Madeleine; Mueller, Kristina M; Schlederer, Michaela; Kornfeld, Jan-Wilhelm; Terracciano, Luigi M; Kozlov, Andrey V; Haindl, Susanne; Kenner, Lukas; Kolbe, Thomas; Mueller, Mathias; Snibson, Kenneth J; Heim, Markus H; Moriggl, Richard

    2012-03-01

    Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size. Copyright © 2011 American Association for the Study of Liver Diseases.

  6. The Association of Endothelin-1 Signaling with Bone Alkaline Phosphatase Expression and Protumorigenic Activities in Canine Osteosarcoma.

    Science.gov (United States)

    Neumann, Z L; Pondenis, H C; Masyr, A; Byrum, M L; Wycislo, K L; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is an aggressive sarcoma characterized by pathologic skeletal resorption and pulmonary metastases. A number of negative prognostic factors, including bone alkaline phosphatase, have been identified in dogs with OS, but the underlying biologic factors responsible for such observations have not been thoroughly investigated. Endothelin-1-mediated signaling is active during bone repair, and is responsible for osteoblast migration, survival, proliferation, and bone alkaline phosphatase expression. The endothelin-1 signaling axis is active in canine OS cells, and this pathway is utilized by malignant osteoblasts for promoting cellular migration, survival, proliferation, and bone alkaline phosphatase activities. 45 dogs with appendicular OS. The expressions of endothelin-1 and endothelin A receptor were studied in OS cell lines and in samples from spontaneously occurring tumors. Activities mediated by endothelin-1 signaling were investigated by characterizing responses in 3 OS cell lines. In 45 dogs with OS, bone alkaline phosphatase concentrations were correlated with primary tumor osteoproductivity. Canine OS cells express endothelin-1 and endothelin A receptor, and this signaling axis mediates OS migration, survival, proliferation, and bone alkaline phosphatase activities. In OS-bearing dogs, circulating bone alkaline phosphatase activities were positively correlated with primary tumor relative bone mineral densities. Canine OS cells express endothelin-1 and functional endothelin A receptors, with the potential for a protumorigenic signaling loop. Increases in bone alkaline phosphatase activity are associated with osteoblastic OS lesions, and might be an epiphenomenon of active endothelin-1 signaling or excessive osteoproduction within the localized bone microenvironment. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    Science.gov (United States)

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  8. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis; Goldmann, Wolfgang H.

    2009-01-01

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  9. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  11. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  12. Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed

    Science.gov (United States)

    Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan

    2017-01-01

    Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895

  13. Signal formation and active edge studies of 3D silicon detector technology

    CERN Document Server

    Kok, Angela

    3D detectors and devices with an ‘active edge’ were fabricated at the Stanford Nanofabrication Facility. Characteristics such as time response and edge sensitivity were studied. The induced signals from a 3D detector were studied using a fast, low-noise transimpedance amplifier. The rise time of the output signal obtained for a minimum ionising particle was faster than 4 ns at room temperature and 2 ns at 130K. This is in agreement with earlier calculations of 3D detectors that predicted the charge collection time to be between one to two ns. The first understanding of signal formation in a 3D detector was achieved by comparing measurements with a full system simulation. The differences in collection behaviour between electrons and holes were also understood and verified by measurement. Edge sensitivity was measured at the CERN SPS, using a high energy muon beam and a silicon telescope. The detector was measured to be efficient up to less than 4 μm from its physical edge. This confirmed that active edge ...

  14. Activation of stress signaling molecules in bat brain during arousal from hibernation.

    Science.gov (United States)

    Lee, Moonyong; Choi, Inho; Park, Kyoungsook

    2002-08-01

    Induction of glucose-regulated proteins (GRPs) is a ubiquitous intracellular response to stresses such as hypoxia, glucose starvation and acidosis. The induction of GRPs offers some protection against these stresses in vitro, but the specific role of GRPs in vivo remains unclear. Hibernating bats present a good in vivo model to address this question. The bats must overcome local high oxygen demand in tissue by severe metabolic stress during arousal thermogenesis. We used brain tissue of a temperate bat Rhinolopus ferrumequinum to investigate GRP induction by high metabolic oxygen demand and to identify associated signaling molecules. We found that during 30 min of arousal, oxygen consumption increased from nearly zero to 11.9/kg/h, which was about 8.7-fold higher than its active resting metabolic rate. During this time, body temperature rose from 7 degrees C to 35 degrees C, and levels of TNF-alpha and lactate in brain tissue increased 2-2.5-fold, indicating a high risk of oxygen shortage. Concomitantly, levels of GRP75, GRP78 and GRP94 increased 1.5-1.7-fold. At the same time, c-Jun N-terminal protein kinase (JNK) activity increased 6.4-fold, and extracellular signal-regulated protein kinase (ERK) activity decreased to a similar degree (6.1-fold). p38 MAPK activity was very low and remained unchanged during arousal. In addition, survival signaling molecules protein kinase B (Akt) and protein kinase C (PKC) were activated 3- and 5-fold, respectively, during arousal. Taken together, our results showed that bat brain undergoes high oxygen demand during arousal from hibernation. Up-regulation of GRP proteins and activation of JNK, PKCgamma and Akt may be critical for neuroprotection and the survival of bats during the repeated process.

  15. An apodized Kepler periodogram for separating planetary and stellar activity signals

    Science.gov (United States)

    Gregory, Philip C.

    2016-01-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R′hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb–Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals. PMID:27346979

  16. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer

    International Nuclear Information System (INIS)

    Andrade, Sheila Siqueira; Gouvea, Iuri Estrada; Silva, Mariana Cristina C.; Castro, Eloísa Dognani; Paula, Cláudia A. A. de; Okamoto, Debora; Oliveira, Lilian; Peres, Giovani Bravin; Ottaiano, Tatiana; Facina, Gil; Nazário, Afonso Celso Pinto; Campos, Antonio Hugo J. F. M.; Paredes-Gamero, Edgar Julian; Juliano, Maria; Silva, Ismael D. C. G. da; Oliva, Maria Luiza V.; Girão, Manoel J. B. C.

    2016-01-01

    Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions. Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells. The online version of this article (doi:10.1186/s12885-016-2203-7) contains supplementary material, which is available to authorized users

  17. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    Science.gov (United States)

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  18. Head direction cell activity in mice: robust directional signal depends on intact otolith organs

    Science.gov (United States)

    Yoder, Ryan M.; Taube, Jeffrey S.

    2009-01-01

    The head direction (HD) cell signal is a representation of an animal's perceived directional heading with respect to its environment. This signal appears to originate in the vestibular system, which includes the semicircular canals and otolith organs. Preliminary studies indicate the semicircular canals provide a necessary component of the HD signal, but involvement of otolithic information in the HD signal has not been tested. The present study was designed to determine the otolithic contribution to the HD signal, as well as to compare HD cell activity of mice to that of rats. HD cell activity in the anterodorsal thalamus was assessed in wild-type C57BL/6J and otoconia-deficient tilted mice during locomotion within a cylinder containing a prominent visual landmark. HD cell firing properties in C57BL/6J mice were generally similar to those in rats. However, in C57BL/6J mice, landmark rotation failed to demonstrate dominant control of the HD signal in 36% of the sessions. In darkness, directional firing became unstable during 42% of the sessions, but landmark control was not associated with HD signal stability in darkness. HD cells were identified in tilted mice, but directional firing properties were not as robust as those of C57BL/6J mice. Most HD cells in tilted mice were controlled by landmark rotation, but showed substantial signal degradation across trials. These results support current models that suggest otolithic information is involved in the perception of directional heading. Furthermore, compared to rats, the HD signal in mice appears to be less reliably anchored to prominent environmental cues. PMID:19176815

  19. The shaking signal of the honey bee informs workers to prepare for greater activity

    OpenAIRE

    Seeley, Thomas D.; Weidenmüller, Anja; Kühnholz, Susanne

    2010-01-01

    One of the most conspicuous activities o f worker bees inside a hive is the shaking of other wc~rliersT. his shaking has long been suspected to be a communication behavior, but its information content and function have until recently remained mysterious. Prior studies of the colony-level patterns of the production of ihc shaking signal supgest strongly that this signal semes to arouse workers to greater activity, such as at times of good foraging. Data from our obsenrauons of mdividual bees h...

  20. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling.

    Science.gov (United States)

    Cao, Yang; Wei, Wei; Zhang, Nan; Yu, Qing; Xu, Wen-Bin; Yu, Wen-Jun; Chen, Guo-Qiang; Wu, Ying-Li; Yan, Hua

    2015-04-10

    Retinoic acid receptor alpha (RARα) plays an essential role in the regulation of many biological processes, such as hematopoietic cell differentiation, while abnormal RARα function contributes to the pathogenesis of certain diseases including cancers, especially acute promyelocytic leukemia (APL). Recently, oridonin, a natural diterpenoid isolated from Rabdosia rubescens, was demonstrated to regulate RARα by increasing its protein level. However, the underlying molecular mechanism for this action has not been fully elucidated. In the APL cell line, NB4, the effect of oridonin on RARα protein was analyzed by western blot and real-time quantitative RT-PCR analyses. Flow cytometry was performed to detect intracellular levels of reactive oxygen species (ROS). The association between nuclear factor-kappa B (NF-κB) signaling and the effect of oridonin was assessed using specific inhibitors, shRNA gene knockdown, and immunofluorescence assays. In addition, primary leukemia cells were treated with oridonin and analyzed by western blot in this study. RARα possesses transcriptional activity in the presence of its ligand, all-trans retinoic acid (ATRA). Oridonin remarkably stabilized the RARα protein, which retained transcriptional activity. Oridonin also moderately increased intracellular ROS levels, while pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), dramatically abrogated RARα stabilization by oridonin. More intriguingly, direct exposure to low concentrations of H2O2 also increased RARα protein but not mRNA levels, suggesting a role for ROS in oridonin stabilization of RARα protein. Further investigations showed that NAC antagonized oridonin-induced activation of NF-κB signaling, while the NF-κB signaling inhibitor, Bay 11-7082, effectively blocked the oridonin increase in RARα protein levels. In line with this, over-expression of IκΒα (A32/36), a super-repressor form of IκΒα, or NF-κB-p65 knockdown inhibited oridonin or H2O2-induced

  1. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    Directory of Open Access Journals (Sweden)

    Hua Su

    2015-01-01

    Full Text Available The glomerular parietal epithelial cells (PECs have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.

  2. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  3. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells*

    Science.gov (United States)

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-01-01

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  4. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    Science.gov (United States)

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  5. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    OpenAIRE

    Joanna Pyczek; Rolf Buslei; David Schult; Annett Hölsken; Michael Buchfelder; Ina Heß; Heidi Hahn; Anja Uhmann

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and S...

  6. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4.

    Directory of Open Access Journals (Sweden)

    Alexandre Boyer

    Full Text Available Constitutive activation of the WNT signaling effector CTNNB1 (β-catenin in the Sertoli cells of the Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ mouse model results in progressive germ cell loss and sterility. In this study, we sought to determine if this phenotype could be due to a loss of spermatogonial stem cell (SSC activity. Reciprocal SSC transplants between Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ and wild-type mice showed that SSC activity is lost in Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ testes over time, whereas the mutant testes could not support colonization by wild-type SSCs. Microarray analyses performed on cultured Sertoli cells showed that CTNNB1 induces the expression of genes associated with the female sex determination pathway, which was also found to occur in Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ testes. One CTNNB1 target gene encoded the secreted signaling molecule WNT4. We therefore tested the effects of WNT4 on SSC-enriched germ cell cultures, and found that WNT4 induced cell death and reduced SSC activity without affecting cell cycle. Conversely, conditional inactivation of Wnt4 in the Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ model rescued spermatogenesis and male fertility, indicating that WNT4 is the major effector downstream of CTNNB1 responsible for germ cell loss. Furthermore, WNT4 was found to signal via the CTNNB1 pathway in Sertoli cells, suggesting a self-reinforcing positive feedback loop. Collectively, these data indicate for the first time that ectopic activation of a signaling cascade in the stem cell niche depletes SSC activity through a paracrine factor. These findings may provide insight into the pathogenesis of male infertility, as well as embryonic gonadal development.

  7. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    Science.gov (United States)

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  8. Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity

    KAUST Repository

    Menegazzi, Marta; Mariotto, Sofia; Dal Bosco, Martina; Darra, Elena; Vaiana, Nadia; Shoji, Kazuo; Safwat, Abdel Azeim; Marechal, Jean Didier; Perahia, David; Suzuki, Hisanori; Romeo, Sergio

    2013-01-01

    Our previous studies showed that (-)-epigallocatechin-3-gallate (EGCG) inhibits signal transducer activator of transcription 1 (STAT1) activation. Since EGCG may be a promising lead compound for new anti-STAT1 drug design, 15 synthetic catechins

  9. GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses

    Science.gov (United States)

    Levine, Ariel J.; Levine, Zachary J.; Brivanlou, Ali H.

    2013-01-01

    Within the TGF-β superfamily, there are approximately forty ligands divided into two major branches: the TGF-β/Activin/Nodal ligands and the BMP/GDF ligands. We studied the ligand GDF3 and found that it inhibits signaling by its co-family members, the BMPs; however, GDF3 has been described by others to have Nodal-like activity. Here, we show that GDF3 can activate Nodal signaling, but only at very high doses and only upon mRNA over-expression. In contrast, GDF3 inhibits BMP signaling upon over-expression of GDF3 mRNA, as recombinant protein, and regardless of its dose. We therefore further characterized the mechanism through which GDF3 protein acts as a specific BMP inhibitor and found that the BMP inhibitory activity of GDF3 resides redundantly in the unprocessed, predominant form and in the mature form of the protein. These results confirm and extend the activity that we described for GDF3 and illuminate the experimental basis for the different observations of others. We suggest that GDF3 is either a bi-functional TGF-β ligand, or, more likely, that it is a BMP inhibitor that can artificially activate Nodal signaling under non-physiological conditions. PMID:18823971

  10. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  11. Active Bio-sensor System, Compatible with Arm Muscle Movement or Blinking Signals in BCI Application

    Directory of Open Access Journals (Sweden)

    Saeid Mehrkanoon

    2008-05-01

    Full Text Available This paper addresses a bionic active sensor system for the BCI application. Proposed system involves analog and digital parts. Two types of accurate sensors are used to pickup the blinking and muscle movement signals. A precision micro-power instrumentation amplifier with the adjustable gain, a sixth order low pass active filter with cutoff frequency 0.1 Hz, and a sixth order band pas filter with the bandwidth of 2-6 Hz are constructed to provide the clean blinking and arm muscle movement signals. TMS320C25 DSP processor is used for independent and unique command signals which are prepared for BCI application by a power amplifier and driver.

  12. Defocused low-energy shock wave activates adipose tissue-derived stem cells in vitro via multiple signaling pathways.

    Science.gov (United States)

    Xu, Lina; Zhao, Yong; Wang, Muwen; Song, Wei; Li, Bo; Liu, Wei; Jin, Xunbo; Zhang, Haiyang

    2016-12-01

    We found defocused low-energy shock wave (DLSW) could be applied in regenerative medicine by activating mesenchymal stromal cells. However, the possible signaling pathways that participated in this process remain unknown. In the present study, DLSW was applied in cultured rat adipose tissue-derived stem cells (ADSCs) to explore its effect on ADSCs and the activated signaling pathways. After treating with DLSW, the cellular morphology and cytoskeleton of ADSCs were observed. The secretions of ADSCs were detected. The expressions of ADSC surface antigens were analyzed using flow cytometry. The expressions of proliferating cell nuclear antigen and Ki67 were analyzed using western blot. The expression of CXCR2 and the migrations of ADSCs in vitro and in vivo were detected. The phosphorylation of selected signaling pathways with or without inhibitors was also detected. DLSW did not change the morphology and phenotype of ADSCs, and could promote the secretion, proliferation and migration of ADSCs. The phosphorylation levels were significantly higher in mitogen-activated protein kinases (MAPK) pathway, phosphoinositide 3-kinase (PI-3K)/AKT pathway and nuclear factor-kappa B (NF-κB) signaling pathway but not in Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Furthermore, ADSCs were not activated by DLSW after adding the inhibitors of these pathways simultaneously. Our results demonstrated for the first time that DLSW could activate ADSCs through MAPK, PI-3K/AKT and NF-κB signaling pathways. Combination of DLSW and agonists targeting these pathways might improve the efficacy of ADSCs in regenerative medicine in the future. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Grb7 binds to Hax-1 and undergoes an intramolecular domain association that offers a model for Grb7 regulation

    OpenAIRE

    Siamakpour-Reihani, Sharareh; Peterson, Tabitha A.; Bradford, Andrew M.; Argiros, Haroula J.; Haas, Laura Lowell; Lor, Siamee N.; Haulsee, Zachary M.; Spuches, Anne M.; Johnson, Dennis L.; Rohrschneider, Larry R.; Shuster, Charles Brad; Lyons, Barbara A.

    2011-01-01

    Adaptor proteins mediate signal transduction from cell surface receptors to downstream signaling pathways. The Grb7 protein family of adaptor proteins is constituted by Grb7, Grb10, and Grb14. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7-mediated cell migration has been shown to proceed through a focal adhesion kinase (FAK)/Grb7 pathway, although the specific participants downstream of Grb7 in cell migration signaling have not been full...

  14. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  15. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Piwkowska, Agnieszka, E-mail: apiwkowska@cmdik.pan.pl [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Rogacka, Dorota; Angielski, Stefan [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Jankowski, Maciej [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Medical University of Gdansk, Department of Therapy Monitoring and Pharmacogenetics (Poland)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  16. Activation of Gαq Signaling Enhances Memory Consolidation and Slows Cognitive Decline.

    Science.gov (United States)

    Arey, Rachel N; Stein, Geneva M; Kaletsky, Rachel; Kauffman, Amanda; Murphy, Coleen T

    2018-05-02

    Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function G αq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced G αq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of G αq specifically in aged animals rescues the ability to form memory. Activation of G αq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  18. Hair growth-promoting effect of Aconiti Ciliare Tuber extract mediated by the activation of Wnt/β-catenin signaling.

    Science.gov (United States)

    Park, Phil-June; Moon, Byoung-San; Lee, Soung-Hoon; Kim, Su-Na; Kim, Ah-Reum; Kim, Hyung-Jun; Park, Won-Seok; Choi, Kang-Yell; Cho, Eun-Gyung; Lee, Tae Ryong

    2012-11-02

    The activation of Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis by stimulating bulge stem cells. This study was to obtain the activator of Wnt/β-catenin signaling pathway from natural products and to determine whether this activator can induce anagen hair growth in mice. To identify materials that activate Wnt/β-catenin signaling pathway, 800 natural product extracts were screened using pTOPFlash assay and neural progenitor cell (NPC) differentiation assay. A selected extract was further tested for its effects on alkaline phosphatase (ALP) activity in human immortalized dermal papilla cell (iDPC) and the proliferation in iDPC and immortalized rat vibrissa DPC (RvDP). Finally, hair growth-promoting effects were evaluated in the dorsal skin of C57BL/6 mice. Aconiti Ciliare Tuber (ACT) extract was one of the most active materials in both pTOPFlash and NPC differentiation assays. It promoted the differentiation of NPC cells even under proliferation-stimulating conditions (basic fibroblast growth factor: bFGF). It also increased ALP activity and proliferation of iDPC in dose-dependent manners, and it stimulated the induction of the anagen hair growth in C57BL/6 mice. These results suggest that ACT extract activates the Wnt/β-catenin signaling pathway by enhancing β-catenin transcription and has the potential to promote the induction of hair growth via activation of the stem cell activity of the dermal papilla cells. This is the first report indicating benefits of ACT extract in hair loss prevention by triggering the activation of Wnt/β-catenin signaling pathway and induction of the anagen hair growth in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The PreS2 activator MHBst of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice

    Science.gov (United States)

    Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans

    2002-01-01

    The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBst) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBst activators are paradigmatic for this class of activators. Here we report that MHBst is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBst triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBst-dependent activation of AP-1 and NF-κB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBst specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBst exert a tumor promoter-like function by activation of key enzymes of proliferation control. PMID:11847101

  20. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  1. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  2. In Vivo Characterization of Intracellular Signaling Pathways Activated by the Nerve Agent Sarin

    National Research Council Canada - National Science Library

    Shih, Tsung-Ming A; Snyder, Gretchen L; Hendrick, Joseph P; Fienberg, Allen A; McDonough, John H

    2004-01-01

    ..., an excessive stimulation of nicotinic and muscarinic receptors. Preliminary evidence using diverse OPs indicates that the DARPP-32/PP-1 signaling pathway is activated by nicotinic receptor stimulation...

  3. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  4. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  5. X-ray irradiation activates K+ channels via H2O2 signaling.

    Science.gov (United States)

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  6. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways.

    Science.gov (United States)

    Jiang, Rulan; Lönnerdal, Bo

    2017-02-01

    Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.

  7. The D. melanogaster capa-1 neuropeptide activates renal NF-kB signaling.

    Science.gov (United States)

    Terhzaz, Selim; Overend, Gayle; Sebastian, Sujith; Dow, Julian A T; Davies, Shireen-A

    2014-03-01

    The capa peptide family exists in a very wide range of insects including species of medical, veterinary and agricultural importance. Capa peptides act via a cognate G-protein coupled receptor (capaR) and have a diuretic action on the Malpighian tubules of Dipteran and Lepidopteran species. Capa signaling is critical for fluid homeostasis and has been associated with desiccation tolerance in the fly, Drosophila melanogaster. The mode of capa signaling is highly complex, affecting calcium, nitric oxide and cyclic GMP pathways. Such complex physiological regulation by cell signaling pathways may occur ultimately for optimal organismal stress tolerance to multiple stressors. Here we show that D. melanogaster capa-1 (Drome-capa-1) acts via the Nuclear Factor kappa B (NF-kB) stress signaling network. Human PCR gene arrays of capaR-transfected Human Embryonic Kidney (HEK) 293 cells showed that Drome-capa-1 increases expression of NF-kB, NF-kB regulated genes including IL8, TNF and PTGS2, and NF-kB pathway-associated transcription factors i.e. EGR1, FOS, cJUN. Furthermore, desiccated HEK293 cells show increased EGR1, EGR3 and PTGS2 - but not IL8, expression. CapaR-transfected NF-kB reporter cells showed that Drome-capa-1 increased NF-kB promoter activity via increased calcium. In Malpighian tubules, both Drome-capa-1 stimulation and desiccation result in increased gene expression of the D. melanogaster NF-kB orthologue, Relish; as well as EGR-like stripe and klumpfuss. Drome-capa-1 also induces Relish translocation in tubule principal cells. Targeted knockdown of Relish in only tubule principal cells reduces desiccation stress tolerance of adult flies. Together, these data suggest that Drome-capa-1 acts in desiccation stress tolerance, by activating NF-kB signaling. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function

    DEFF Research Database (Denmark)

    Indo, Hiroko P.; Hawkins, Clare L; Nakanishi, Ikuo

    2017-01-01

    -κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA...

  9. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Entry of Porphyromonas gingivalis Outer Membrane Vesicles into Epithelial Cells Causes Cellular Functional Impairment▿

    Science.gov (United States)

    Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis. PMID:19737899

  11. CPT-11 activates NLRP3 inflammasome through JNK and NF-κB signalings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qian [Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300, Guangzhou Road, Nanjing 210029 (China); Zhang, Xiong [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046 (China); Wang, Weicheng; Li, LeLe [Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300, Guangzhou Road, Nanjing 210029 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300, Guangzhou Road, Nanjing 210029 (China)

    2015-12-01

    CPT-11 is widely used for cancer therapy as a chemotherapeutic agent. Despite its good efficacy, a large number of side effects appeared during decades of clinical application. Delayed diarrhea, at dose limiting toxicity, happens after 24 h of treatment and the rate of occurrence is up to 90%. Although many investments have been made on this negative impact, the real molecular mechanism of delayed diarrhea is poorly understood. In this study, we have discovered that CPT-11 promotes macrophage infiltration into intestinal tissues and activates the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, resulting in a robust IL-1β response and colonic inflammation similar to DSS (dextran sodium sulfate) induced experimental colitis. CPT-11 plus LPS primed mouse bone marrow-derived macrophages (BMDMs) and human acute monocytic leukemia cells (THP-1 cells) staying in a highly activated status, showing increased caspase-1 activity and releasing great amounts of IL-1β and IL-18 as detected by ELISA and western blot. A further mechanism showed that JNK and NF-κB signaling pathways participated in inflammatory responses activated by CPT-11. These results prompted us to suggest that the NLRP3-IL-1β signaling pathway might play an important role in CPT11-induced colitis. Our findings provide a basis for developing novel strategies that improve clinical implications of CPT-11. - Highlights: • CPT-11 induced experimental colitis in vivo. • CPT-11 induced intestine injury and macrophage infiltration. • CPT-11 significantly elevated levels of macrophage derived inflammatory cytokines in mice intestines. • CPT-11 activated NLRP3 inflammasome in vitro and in vivo. • CPT-11 activated JNK and NF-κB signalings in THP-1 and BMDMs.

  12. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hee [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Schmitt, Christopher E.; Woolls, Melissa J. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Holland, Melinda B. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kim, Jun-Dae [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Jin, Suk-Won, E-mail: suk-won.jin@yale.edu [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States)

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  14. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    International Nuclear Information System (INIS)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-01

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process

  15. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Directory of Open Access Journals (Sweden)

    Necmettin Sezgin

    2012-01-01

    Full Text Available The analysis and classification of electromyography (EMG signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions.

  16. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Science.gov (United States)

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  17. Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Perley

    2014-11-01

    Full Text Available Signal intensity and feedback regulation are known to be major factors in the signaling events stemming from the T-cell receptor (TCR and its various coreceptors, but the exact nature of these relationships remains in question. We present a mathematical model of the complex signaling network involved in T-cell activation with cross-talk between the Erk, calcium, PKC and mTOR signaling pathways. The model parameters are adjusted to fit new and published data on TCR trafficking, Zap70, calcium, Erk and Isignaling. The regulation of the early signaling events by phosphatases, CD45 and SHP1, and the TCR dynamics are critical to determining the behavior of the model. Additional model corroboration is provided through quantitative and qualitative agreement with experimental data collected under different stimulating and knockout conditions. The resulting model is analyzed to investigate how signal intensity and feedback regulation affect TCR- and coreceptor-mediated signal transduction and their downstream transcriptional profiles to predict the outcome for a variety of stimulatory and knockdown experiments. Analysis of the model shows that: (1 SHP1 negative feedback is necessary for preventing hyperactivity in TCR signaling; (2 CD45 is required for TCR signaling, but also partially suppresses it at high expression levels; and (3 elevated FOXP3 and reduced IL-2 signaling, an expression profile often associated with T regulatory cells (Tregs, is observed when the system is subjected to weak TCR and CD28 costimulation or a severe reduction in CD45 activity.

  18. Activation of Signaling Cascades by Weak Extremely Low Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Einat Kapri-Pardes

    2017-10-01

    Full Text Available Background/Aims: Results from recent studies suggest that extremely low frequency magnetic fields (ELF-MF interfere with intracellular signaling pathways related to proliferative control. The mitogen-activated protein kinases (MAPKs, central signaling components that regulate essentially all stimulated cellular processes, include the extracellular signal-regulated kinases 1/2 (ERK1/2 that are extremely sensitive to extracellular cues. Anti-phospho-ERK antibodies serve as a readout for ERK1/2 activation and are able to detect minute changes in ERK stimulation. The objective of this study was to explore whether activation of ERK1/2 and other signaling cascades can be used as a readout for responses of a variety of cell types, both transformed and non-transformed, to ELF-MF. Methods: We applied ELF-MF at various field strengths and time periods to eight different cell types with an exposure system housed in a tissue culture incubator and followed the phosphorylation of MAPKs and Akt by western blotting. Results: We found that the phosphorylation of ERK1/2 is increased in response to ELF-MF. However, the phosphorylation of ERK1/2 is likely too low to induce ELF-MF-dependent proliferation or oncogenic transformation. The p38 MAPK was very slightly phosphorylated, but JNK or Akt were not. The effect on ERK1/2 was detected for exposures to ELF-MF strengths as low as 0.15 µT and was maximal at ∼10 µT. We also show that ERK1/2 phosphorylation is blocked by the flavoprotein inhibitor diphenyleneiodonium, indicating that the response to ELF-MF may be exerted via NADP oxidase similar to the phosphorylation of ERK1/2 in response to microwave radiation. Conclusions: Our results further indicate that cells are responsive to ELF-MF at field strengths much lower than previously suspected and that the effect may be mediated by NADP oxidase. However, the small increase in ERK1/2 phosphorylation is probably insufficient to affect proliferation and oncogenic

  19. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells.

    Science.gov (United States)

    Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H

    2011-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 μmol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. Copyright © 2011, Taylor & Francis Group, LLC

  20. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation

    Science.gov (United States)

    Cioce, M; Canino, C; Goparaju, C; Yang, H; Carbone, M; Pass, H I

    2014-01-01

    Clinical management of malignant pleural mesothelioma (MPM) is very challenging because of the uncommon resistance of this tumor to chemotherapy. We report here increased expression of macrophage colony-stimulating-factor-1-receptor (M-CSF/CSF-1R) mRNA in mesothelioma versus normal tissue specimens and demonstrate that CSF-1R expression identifies chemoresistant cells of mesothelial nature in both primary cultures and mesothelioma cell lines. By using RNAi or ligand trapping, we demonstrate that the chemoresistance properties of those cells depend on autocrine CSF-1R signaling. At the single-cell level, the isolated CSF-1Rpos cells exhibit a complex repertoire of pluripotency, epithelial–mesenchymal transition and detoxifying factors, which define a clonogenic, chemoresistant, precursor-like cell sub-population. The simple activation of CSF-1R in untransformed mesothelial cells is sufficient to confer clonogenicity and resistance to pemetrexed, hallmarks of mesothelioma. In addition, this induced a gene expression profile highly mimicking that observed in the MPM cells endogenously expressing the receptor and the ligands, suggesting that CSF-1R expression is mainly responsible for the phenotype of the identified cell sub-populations. The survival of CSF1Rpos cells requires active AKT (v-akt murine thymoma viral oncogene homolog 1) signaling, which contributed to increased levels of nuclear, transcriptionally competent β-catenin. Inhibition of AKT reduced the transcriptional activity of β-catenin-dependent reporters and sensitized the cells to senescence-induced clonogenic death after pemetrexed treatment. This work expands what is known on the non-macrophage functions of CSF-1R and its role in solid tumors, and suggests that CSF-1R signaling may have a critical pathogenic role in a prototypical, inflammation-related cancer such as MPM and therefore may represent a promising target for therapeutic intervention. PMID:24722292

  1. TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease

    Directory of Open Access Journals (Sweden)

    Sung Il Kim

    2012-06-01

    Full Text Available Transforming growth factor-β (TGF-β is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF-β1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF-β1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF-β1 is connected with the complexity of its cell signaling networks. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF-β1, and has been the focus of many previous reviews, importantly TGF-β1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1, which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF-β1.

  2. The Prc and RseP proteases control bacterial cell-surface signalling activity.

    NARCIS (Netherlands)

    Bastiaansen, K.C.J.T.; Ibañez, A.; Ramos, JL; Bitter, W.; Llamas, M.A.

    2014-01-01

    Summary: Extracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also

  3. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Directory of Open Access Journals (Sweden)

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  4. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2006-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways which in turn results in the loss of growth control in prostate cancer cells...

  5. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2004-01-01

    .... The experiments proposed in this application are based upon the hypothesis that stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  6. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2002-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  7. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2005-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  8. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2003-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  9. The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice.

    Science.gov (United States)

    Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans

    2002-02-15

    The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBs(t)) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBs(t) activators are paradigmatic for this class of activators. Here we report that MHBs(t) is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBs(t) triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBs(t)-dependent activation of AP-1 and NF-kappaB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBs(t) specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBs(t) exert a tumor promoter-like function by activation of key enzymes of proliferation control.

  10. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    OpenAIRE

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  11. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  12. An Active Capacitor with Self-Power and Internal Feedback Control Signals

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This paper proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. A control strategy that does not require any external feedback...... signal is proposed and a self-power scheme for gate drivers and the controller is applied to achieve the two-terminal active capacitor. The concept, control method, self-power scheme, efficiency, and impedance characteristics of the active capacitor are presented. A case study of the proposed active...... capacitor for a capacitive DC-link application is discussed. The results reveal a significantly lower overall energy storage of passive elements and a reduced cost to fulfill a specific reliability target, compared to a passive capacitor solution. Proof-of-concept experimental results are given to verify...

  13. Ca 2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca 2+ channels

    KAUST Repository

    Qia, Zhi

    2010-11-18

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogendefense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca 2+ permeable channels in mesophyll cells, resulting in cytosolic Ca 2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor- like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2- dependent cytosolic Ca 2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca 2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca 2+ conductance and resulting cytosolic Ca 2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen- defense genes in a Ca 2+-dependent manner.

  14. DMPD: Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available thatrespond to T cell activation signals. Arai N, Naito Y, Watanabe M, Masuda ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T,Matsud... in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. Authors Arai N, Naito Y, Watanabe M, Masud...a ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T,Matsuda I, Yokota

  15. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  16. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Science.gov (United States)

    Yeung, Bonnie H Y; Wong, Chris K C

    2011-01-01

    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  17. PTP1B Inhibition Causes Rac1 Activation by Enhancing Receptor Tyrosine Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2014-04-01

    Full Text Available Background/Aims: The present study investigated the signaling pathway underlying Rac1 activation induced by the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl-cyclopropyl]-octanoic acid (DCP-LA. Methods: Activity of protein tyrosine phosphatase 1B (PTP1B was assayed under cell-free conditions. Western blot was carried out to quantify phosphorylation of insulin receptor substrate-1 (IRS-1 and Akt in PC-12 cells. Rac1 activity was monitored in the föerster resonance energy transfer (FRET analysis using living and fixed PC-12 cells. Results: DCP-LA markedly suppressed PTP1B activity in a concentration (100 pM-100 µM-dependent manner. In the DCP-LA binding assay, fluorescein-conjugated DCP-LA produced a single fluorescent signal band at 60 kDa, corresponding to the molecule of PTP1B, and the signal was attenuated or abolished by co-treatment or pretreatment with non-conjugated DCP-LA. DCP-LA significantly enhanced nerve growth factor (NGF-stimulated phosphorylation of IRS-1 at Tyr1222 and Akt1/2 at Thr308/309 and Ser473/474 in PC-12 cells. In the FRET analysis, DCP-LA significantly enhanced NGF-stimulated Rac1 activation, which is abrogated by the phosphatidylinositol 3 kinase (PI3K inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase-1 (PDK1 inhibitor BX912, or the Akt inhibitor MK2206. Conclusion: The results of the present study show that DCP-LA-induced PTP1B inhibition, possibly through its direct binding, causes Rac1 activation by enhancing a pathway along a receptor tyrosine kinase (RTK/IRS-1/PI3K/Akt/Rac1 axis.

  18. A novel mechanism of skin tumor promotion involving interferon-gamma (IFNγ)/signal transducer and activator of transcription-1 (Stat1) signaling.

    Science.gov (United States)

    Bozeman, Ronald; Abel, Erika L; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John

    2015-08-01

    The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1(-/-) ) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1(-/-) mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. © 2014 Wiley Periodicals, Inc.

  19. Transiently Active Wnt/β-Catenin Signaling Is Not Required but Must Be Silenced for Stem Cell Function during Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Malea M. Murphy

    2014-09-01

    Full Text Available Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells, Wnt/β-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly test in vivo whether Wnt/β-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal. Instead, downregulation of transiently activated β-catenin is important to limit the regenerative response, as continuous regeneration is deleterious. Wnt/β-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which β-catenin signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/β-catenin signaling that is important for muscle regeneration.

  20. Cell surface and gene expression regulation molecules in dystrophinopathy: mdx vs. Duchenne

    Directory of Open Access Journals (Sweden)

    RICARDO FADIC

    2005-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is secondary to loss-of-function mutations in the dystrophin gene. The causes underlying the progression of DMD, differential muscle involvement, and the discrepancies in phenotypes among species with the same genetic defect are not understood. The mdx mouse, an animal model with dystrophin mutation, has a milder phenotype. This article reviews the available information on expression of signaling-related molecules in DMD and mdx. Extracellular matrix proteoglycans, growth factors, integrins, caveolin-3, and neuronal nitric oxide synthase expression do not show significant differences. Calcineurin is inconsistently activated in mdx, which is associated with lack of cardiomyopathy, compared to the permanent calcineurin activation in mdx/utrophin null mice that have a DMD-like cardiomyopathy. Levels of focal adhesion kinase (FAK and extracellular regulated kinases (ERKs differ among mdx and DMD. Further work is needed to identify the point of discrepancy in these signaling molecules' pathways in dystrophynopathies.

  1. Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth1[CC-BY

    Science.gov (United States)

    Mohammed, Binish; Bilooei, Sara Farahi; Grove, Elliot; Railo, Saana; Palme, Klaus

    2018-01-01

    The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions. PMID:29284741

  2. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Beaven, Michael A; Iwaki, Shoko

    2008-01-01

    Although primarily required for the growth, differentiation, and survival of mast cells, Kit ligand (stem cell factor) is also required for optimal antigen-mediated mast cell activation. Therefore, concurrent inhibition of Kit- and FcepsilonRI-mediated signaling would be an attractive approach...... characterized Kit inhibitor imatinib mesylate (imatinib). In contrast to imatinib, however, hypothemycin also effectively inhibited FcepsilonRI-mediated degranulation and cytokine production in addition to the potentiation of these responses via Kit. The effect of hypothemycin on Kit-mediated responses could...... be explained by its inhibition of Kit kinase activity, whereas the inhibitory effects on FcepsilonRI-dependent signaling were at the level of Btk activation. Because hypothemycin also significantly reduced the mouse passive cutaneous anaphylaxis response in vivo, these data provide proof of principle...

  3. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Verheij, M.; Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; Blitterswijk, W.J. van; Fuks, Z.; Haimovitz-Friedman, A.

    1998-01-01

    Ionizing radiation, like a variety of other cellular stress factors, initiates apoptosis, or programmed cell death, in many cell systems. This mode of radiation-induced cell kill should be distinguished from clonogenic cell death due to unrepaired DNA damage. Ionizing radiation not only exerts its effect on the nuclear DNA, but also at the plasma membrane level where it may activate multiple signal transduction pathways. One of these pathways is the stress-activated protein kinase (SAPK) cascade which transduces death signals from the cell membrane to the nucleus. This review discusses recent evidence on the critical role of this signaling system in radiation- and stress-induced apoptosis. An improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  5. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling.

    Science.gov (United States)

    Choi, Jun-Hyuk; Lindsey-Boltz, Laura A; Kemp, Michael; Mason, Aaron C; Wold, Marc S; Sancar, Aziz

    2010-08-03

    ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.

  6. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions

    Directory of Open Access Journals (Sweden)

    Barja-Fidalgo C.

    2005-01-01

    Full Text Available Extracellular matrix proteins and cell adhesion receptors (integrins play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

  7. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes.

    Science.gov (United States)

    Smith, Ian F; Shuai, Jianwei; Parker, Ian

    2011-04-20

    A new mechanism of cell-cell communication was recently proposed after the discovery of tunneling nanotubes (TNTs) between cells. TNTs are membrane protrusions with lengths of tens of microns and diameters of a few hundred nanometers that permit the exchange of membrane and cytoplasmic constituents between neighboring cells. TNTs have been reported to mediate intercellular Ca(2+) signaling; however, our simulations indicate that passive diffusion of Ca(2+) ions alone would be inadequate for efficient transmission between cells. Instead, we observed spontaneous and inositol trisphosphate (IP(3))-evoked Ca(2+) signals within TNTs between cultured mammalian cells, which sometimes remained localized and in other instances propagated as saltatory waves to evoke Ca(2+) signals in a connected cell. Consistent with this, immunostaining showed the presence of both endoplasmic reticulum and IP(3) receptors along the TNT. We propose that IP(3) receptors may actively propagate intercellular Ca(2+) signals along TNTs via Ca(2+)-induced Ca(2+) release, acting as amplification sites to overcome the limitations of passive diffusion in a chemical analog of electrical transmission of action potentials. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. β2-Adrenergic receptor activation mobilizes intracellular calcium via a non-canonical cAMP-independent signaling pathway.

    Science.gov (United States)

    Galaz-Montoya, Monica; Wright, Sara J; Rodriguez, Gustavo J; Lichtarge, Olivier; Wensel, Theodore G

    2017-06-16

    Beta adrenergic receptors (βARs) are G-protein-coupled receptors essential for physiological responses to the hormones/neurotransmitters epinephrine and norepinephrine which are found in the nervous system and throughout the body. They are the targets of numerous widely used drugs, especially in the case of the most extensively studied βAR, β 2 AR, whose ligands are used for asthma and cardiovascular disease. βARs signal through Gα s G-proteins and via activation of adenylyl cyclase and cAMP-dependent protein kinase, but some alternative downstream pathways have also been proposed that could be important for understanding normal physiological functioning of βAR signaling and its disruption in disease. Using fluorescence-based Ca 2+ flux assays combined with pharmacology and gene knock-out methods, we discovered a previously unrecognized endogenous pathway in HEK-293 cells whereby β 2 AR activation leads to robust Ca 2+ mobilization from intracellular stores via activation of phospholipase C and opening of inositol trisphosphate (InsP 3 ) receptors. This pathway did not involve cAMP, Gα s , or Gα i or the participation of the other members of the canonical β 2 AR signaling cascade and, therefore, constitutes a novel signaling mechanism for this receptor. This newly uncovered mechanism for Ca 2+ mobilization by β 2 AR has broad implications for adrenergic signaling, cross-talk with other signaling pathways, and the effects of βAR-directed drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    Science.gov (United States)

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  10. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling.

    Science.gov (United States)

    Han, Bing; Yu, Yi-Qun; Yang, Qi-Lian; Shen, Chun-Ying; Wang, Xiao-Juan

    2017-10-17

    In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.

  11. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  12. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  13. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports.

    Science.gov (United States)

    Petrie, Timothy A; Capadona, Jeffrey R; Reyes, Catherine D; García, Andrés J

    2006-11-01

    Biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including the arginine-glycine-aspartic acid (RGD) motif present in numerous adhesive proteins, on a non-fouling support have emerged as promising approaches to improve cellular activities and healing responses. Nevertheless, these bio-inspired strategies are limited by low activity of the oligopeptides compared to the native ligand due to the absence of complementary or modulatory domains. In the present analysis, we generated well-defined biointerfaces presenting RGD-based ligands of increasing complexity to directly compare their biological activities in terms of cell adhesion strength, integrin binding and signaling. Mixed self-assembled monolayers of alkanethiols on gold were optimized to engineer robust supports that present anchoring groups for ligand tethering within a non-fouling, protein adsorption-resistant background. Controlled bioadhesive interfaces were generated by tethering adhesive ligands via standard peptide chemistry. On a molar basis, biointerfaces functionalized with the FNIII7-10 recombinant fragment presenting the RGD and PHSRN adhesive motifs in the correct structural context exhibited significantly higher adhesion strength, FAK activation, and cell proliferation rate than supports presenting RGD ligand or RGD-PHSRN, an oligopeptide presenting these two sites separated by a polyglycine linker. Moreover, FNIII7-10-functionalized surfaces displayed specificity for alpha5beta1 integrin, while cell adhesion to supports presenting RGD or RGD-PHSRN was primarily mediated by alphavbeta3 integrin. These results are significant to the rational engineering of bioactive materials that convey integrin binding specificity for directed cellular and tissue responses in biomedical and biotechnological applications.

  14. PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jialin [Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819 (China); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Shimpi, Prajakta; Armstrong, Laura; Salter, Deanna [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Slitt, Angela L., E-mail: aslitt@uri.edu [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States)

    2016-01-01

    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 μM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 μg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 μM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role of PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. - Highlights: • PFOS induces adipogenesis in association

  15. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Science.gov (United States)

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  16. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  17. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    OpenAIRE

    Andreas Stengel; Yvette F. Taché; Yvette F. Taché

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a br...

  18. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  19. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment.

    Science.gov (United States)

    Perrot, Carole Y; Javelaud, Delphine; Mauviel, Alain

    2013-02-01

    Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals

    International Nuclear Information System (INIS)

    Tang Fang

    2008-01-01

    In the field of secure communication, it is very important to demodulate the message hidden in chaotic signals. In this paper, an adaptive synchronization strategy based on active control is proposed, which is used to design an active controller and an appropriate adaptive demodulator at the receiver to recover the transmitted message hidden in chaotic signals of a drive system. Based on Lyapunov stability theory, it is shown that the transmitted message can be theoretically recovered by using the proposed strategy. Numerical simulations based on the Chua's circuit are also presented to verify the effectiveness of the proposed strategy. In addition, it is shown via simulations that, by increasing the gain of the active controller the message error caused by the external noise and the discontinuous property of the message can be reduced

  1. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaijun [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Jiang, Yiqian [The First People Hospital of Xiaoshan, Hangzhou (China); Wang, Wei; Ma, Jian [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Chen, Min, E-mail: eyedrchenminzj@163.com [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China)

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.

  2. Biphasic activation of liver regeneration-associated signals in an early stage after portal vein branch ligation

    International Nuclear Information System (INIS)

    Yokoyama, Shinya; Yokoyama, Yukihiro; Kawai, Toru; Kobayashi, Satoshi; Nagino, Masato; Oda, Koji; Nimura, Yuji; Sokabe, Masahiro

    2006-01-01

    At an early stage in liver regeneration, a variety of factors including transcriptional factors, proinflammatory cytokines, and proto-oncogenes are activated or expressed. However, these responses are affected by surgical stress in the conventional portal vein branch ligation model (PVL). We sought to determine the net activation of early regeneration-associated signals after PVL using a newly developed non-surgical stress PVL model. Male Wistar rats were assigned into two groups, a stress-PVL (sPVL) model with laparotomy and portal vein branch ligation, and a non-stress-PVL (nsPVL) one subjected to portal vein branch ligation 1 week after laparotomy in which the effects of surgical stress were subsided. The activation of transcriptional factors and expression of immediate early genes were analyzed at an early time point (within 24 h) by Western blotting and RT-PCR, respectively. A monophasic upregulation of nuclear factor-κB (NF-κB) and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3) peaked at 3 h after sPVL was observed. In contrast, the expression pattern of these factors was biphasic (first peak at 0.5-1 h, second peak at 3-6 h) in nsPVL group. The expression pattern of immediate early genes showed a similar trend between sPVL and nsPVL. cDNA array analysis for the non-ligated lobe at 2 h after PVL revealed a much higher gene activation in sPVL than in nsPVL. These results indicate that previously observed activation pattern of regeneration-associated signals after PVL is significantly affected by the effect of laparotomy and our results using nsPVL model may more accurately represent liver regeneration-associated signal pattern

  3. Injury-induced rapid activation of MAPK signaling in dechorionated eggs and larvae of the silkworm Bombyx mori.

    Science.gov (United States)

    Gu, Shi-Hong; Chen, Chien-Hung

    2017-04-01

    Previous study showed that diapause in Bombyx mori eggs can be terminated by dechorionation and that activation in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) in dechorionated cultured eggs is involved in diapause termination. In the present study, the possible mechanism underlying activation of ERK upon dechorionation was further investigated. Results showed that mechanical injury of diapause eggs without medium incubation also resulted in rapid increase in the phospho-ERK levels and that injury increased the phospho-ERK levels at different stages of both diapause eggs and eggs in which diapause initiation was prevented by HCl. Effects of anaerobiosis on dechorionation-stimulated phospho-ERK levels showed that the mechanical injury itself but not the dramatic increase in oxygen uptake upon injury is involved in a rapid activation of ERK. Chemical anaerobiosis on dechorionation-stimulated phospho-ERK levels and the in vivo effect of anaerobiosis showed that the supply of oxygen also plays a role in ERK signaling. In addition, injury induced the phosphorylation of c-jun N-terminal kinases (JNKs) and p38 kinase, components of two parallel MAPK pathways. A kinase assay showed a dramatic increase in JNK kinase activity in egg lysates upon injury. When newly hatched first instar larvae were injured, an increase in the phospho-ERK levels similar to that in dechorionated eggs was observed. From the results, we hypothesize that the injury-induced rapid activation of MAPK signaling, which serves as a natural signal for embryonic development, is related to diapause termination in dechorionated eggs. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  4. Non-Smad signaling pathways.

    Science.gov (United States)

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  5. β-Sitosterol and flavonoids isolated from Bauhinia malabarica found during screening for Wnt signaling inhibitory activity.

    Science.gov (United States)

    Park, Hyun Young; Toume, Kazufumi; Arai, Midori A; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2014-01-01

    Screening with a cell-based luciferase assay was conducted to identify bioactive natural products which inhibit Wnt signaling activity-guided separation of an MeOH extract of Bauhinia malabarica (Caesalpiniaceae) leaves yielded five compounds, which were identified as β-sitosterol (1), quercetin (2), 6,8-C-dimethyl kaempferol-3-O-rhamnopyranoside (3), hyperin (4), and 6,8-C-dimethyl kaempferol-3-methyl ether (5). The tested compounds 1, 3, and 5 exhibited Wnt signaling inhibitory activity, with IC50 values of 0.77, 0.74, and 16.6 μM, respectively.

  6. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals

    Directory of Open Access Journals (Sweden)

    Jiajia Song

    2017-10-01

    Full Text Available Dynamic accurate heart-rate (HR estimation using a photoplethysmogram (PPG during intense physical activities is always challenging due to corruption by motion artifacts (MAs. It is difficult to reconstruct a clean signal and extract HR from contaminated PPG. This paper proposes a robust HR-estimation algorithm framework that uses one-channel PPG and tri-axis acceleration data to reconstruct the PPG and calculate the HR based on features of the PPG and spectral analysis. Firstly, the signal is judged by the presence of MAs. Then, the spectral peaks corresponding to acceleration data are filtered from the periodogram of the PPG when MAs exist. Different signal-processing methods are applied based on the amount of remaining PPG spectral peaks. The main MA-removal algorithm (NFEEMD includes the repeated single-notch filter and ensemble empirical mode decomposition. Finally, HR calibration is designed to ensure the accuracy of HR tracking. The NFEEMD algorithm was performed on the 23 datasets from the 2015 IEEE Signal Processing Cup Database. The average estimation errors were 1.12 BPM (12 training datasets, 2.63 BPM (10 testing datasets and 1.87 BPM (all 23 datasets, respectively. The Pearson correlation was 0.992. The experiment results illustrate that the proposed algorithm is not only suitable for HR estimation during continuous activities, like slow running (13 training datasets, but also for intense physical activities with acceleration, like arm exercise (10 testing datasets.

  7. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  8. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    Science.gov (United States)

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  9. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    International Nuclear Information System (INIS)

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C.

    2005-01-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (∼600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration

  10. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Science.gov (United States)

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy.

  11. The role of c-Src in the invasion and metastasis of hepatocellular carcinoma cells induced by association of cell surface GRP78 with activated α2M

    International Nuclear Information System (INIS)

    Zhao, Song; Li, Hongdan; Wang, Qingjun; Su, Chang; Wang, Guan; Song, Huijuan; Zhao, Liang; Luan, Zhidong; Su, Rongjian

    2015-01-01

    Emerging data have suggested that cell surface GRP78 is a multifunctional receptor and has been linked to proliferative and antiapoptotic signaling cascades. Activated α 2− macroglobin (α 2 M*) is a natural circulating ligand of cell surface GRP78. Association of cell surface GRP78 with α 2 M* is involved in the regulation of cell proliferation, survival and apoptosis in human cancers. The invasion and metastasis of HCC cells were examined using transwell and wound healing assay; Cell surface expression of GRP78 was detected by in cell western assay. Translocation of GRP78 from cytosol to cell surface was observed by transfection of GRP78-EGFP plus TRIRC-WGA staining. The levels of Src, phosphor-Src, FAK, phospho-FAK, EGFR, phospho-EGFR, phospho-Cortactin, phospho-Paxillin were determined by western blot. Cell surface expression of GRP78 in HCC tissue samples was observed by immunofluorescence. The distribution of Paxillin and Cortactin in HCC cells was also observed by immunofluorescence. The interaction between GRP78 and Src were detected by far-western blot, co-immunoprecipitation and GST pulldown. GRP78 mRNA was detected by RT-PCR. In the current study, we showed that association of cell surface GRP78 with α 2 M* stimulated the invasion and metastasis of HCC. Cell surface GRP78 could interact directly with c-Src, promoted the phosphorylation of c-Src at Y416. Inhibition of the tyrosine kinase activity of c-Src with PP2 reverted the stimulatory effect caused by association of cell surface GRP78 with α 2 M*. Moreover, association of cell surface GRP78 with α 2 M* facilitates the interaction between EGFR and c-Src and consequently phosphorylated EGFR at Y1101 and Y845, promoting the invasion and metastasis of HCCs. However, inhibition of the tyrosine kinase of c-Src do not affect the interaction between EGFR and Src. c-Src plays a critical role in the invasion and metastasis of HCC induced by association of cell surface GRP78 with α 2 M*. Cell surface GRP

  12. STAT3 can be activated through paracrine signaling in breast epithelial cells

    International Nuclear Information System (INIS)

    Lieblein, Jacqueline C; Ball, Sarah; Hutzen, Brian; Sasser, A Kate; Lin, Huey-Jen; Huang, Tim HM; Hall, Brett M; Lin, Jiayuh

    2008-01-01

    Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with

  13. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  14. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  15. Signal-dependent Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate without Activation of Phospholipase C

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-01

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating. PMID:22065576

  16. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  17. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    Science.gov (United States)

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  18. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  20. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  1. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Libregts, Sten F.W.M.; Nolte, Martijn A., E-mail: m.nolte@sanquin.nl

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  2. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    International Nuclear Information System (INIS)

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-01-01

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function

  3. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  4. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Bo [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Song, Youngwoo; Kim, Changhee [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  5. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    Directory of Open Access Journals (Sweden)

    Taslima T. Lina

    2016-07-01

    Full Text Available Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40% were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4 expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival.

  6. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    Science.gov (United States)

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Signaling lymphocytic activation molecules Slam and cancers: friends or foes?

    Science.gov (United States)

    Fouquet, Gregory; Marcq, Ingrid; Debuysscher, Véronique; Bayry, Jagadeesh; Rabbind Singh, Amrathlal; Bengrine, Abderrahmane; Nguyen-Khac, Eric; Naassila, Mickael; Bouhlal, Hicham

    2018-03-23

    Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.

  8. Far infrared promotes wound healing through activation of Notch1 signaling.

    Science.gov (United States)

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  9. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    Science.gov (United States)

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  10. Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling

    International Nuclear Information System (INIS)

    Inestrosa, Nibaldo C.; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-01-01

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-β-peptide (Aβ), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPARγ is present in rat hippocampal neurons in culture. (2) Activation of PPARγ by troglitazone and rosiglitazone protects rat hippocampal neurons against Aβ-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPARγ agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic Aβ-induced rise in bulk-free Ca 2+ . (4) PPARγ activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3β (GSK-3β) and an increase of the cytoplasmic and nuclear β-catenin levels. We conclude that the activation of PPARγ prevents Aβ-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPARγ and the Wnt signaling pathway. More important, the fact that the activation of PPARγ attenuated Aβ-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective

  11. Lead acetate induces EGFR activation upstream of SFK and PKCα linkage to the Ras/Raf-1/ERK signaling

    International Nuclear Information System (INIS)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-01-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC → ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1 S338 and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKCα using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKCα, Ras-GTP, phospho-Raf-1 S338 and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKCα activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKCα activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKCα and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade

  12. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    Science.gov (United States)

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  13. Comparative proteomic analysis to dissect differences in signal transduction in activating TSH receptor mutations in the thyroid.

    Science.gov (United States)

    Krause, Kerstin; Boisnard, Alexandra; Ihling, Christian; Ludgate, Marian; Eszlinger, Markus; Krohn, Knut; Sinz, Andrea; Fuhrer, Dagmar

    2012-02-01

    In the thyroid, cAMP controls both thyroid growth and function. Gain-of-function mutations in the thyroid-stimulating hormone receptor (TSHR) lead to constitutive cAMP formation and are a major cause of autonomous thyroid adenomas. The impact of activating TSHR mutations on the signal transduction network of the thyrocyte is not fully understood. To gain more insights into constitutive TSHR signaling, rat thyrocytes (FRTL-5 cells) with stable expression of three activating TSHR mutants (mutTSHR: A623I, L629F and Del613-621), which differ in their functional characteristics in vitro, were analyzed by a quantitative proteomic approach and compared to the wild-type TSHR (WT-TSHR). This study revealed (1) differences in the expression of Rab proteins suggesting an increased TSHR internalization in mutTSHR but not in the WT-TSHR; (2) differential stimulation of PI3K/Akt signaling in mutTSHR vs. WT-TSHR cells, (3) activation of Epac, impairing short-time Akt phosphorylation in both, mutTSHR and WT-TSHR cells. Based on the analysis of global changes in protein expression patterns, our findings underline the complexity of gain-of-function TSHR signaling in thyrocytes, which extends beyond pure cAMP and/or IP formation. Moreover, evidence for augmented endocytosis in the mutTSHR, adds to a new concept of TSHR signaling in thyroid autonomy. Further studies are required to clarify whether the observed differences in Rab, PI3K and Epac signaling may contribute to differences in the phenotypic presentation, i.e. stimulation of function and growth of thyroid autonomy in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  15. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Gebhardt, Rolf; Weiss, Thomas S.; Kiess, Wieland; Garten, Antje

    2015-01-01

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  16. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    International Nuclear Information System (INIS)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-01-01

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca 2+ signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7 −/− ) and wild-type mice (anxa7 +/+ ) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7 −/− mice than in anxa7 +/+ mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions

  17. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  18. Running on Empty: Leptin Signaling in VTA Regulates Reward from Physical Activity.

    Science.gov (United States)

    Chen, Zuxin; Kenny, Paul J

    2015-10-06

    Hunger increases physical activity and stamina to support food-directed foraging behaviors, but underlying mechanisms are unclear. In this issue, Fernandes et al. (2015) show that disruption of leptin-regulated STAT3 signaling in midbrain dopamine neurons increases the rewarding effects of running in mice, which could explain the "high" experienced by endurance runners. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  20. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.