WorldWideScience

Sample records for activates notch signaling

  1. The balance between GMD and OFUT1 regulates Notch signaling pathway activity by modulating Notch stability

    Alvaro Glavic

    2011-01-01

    Full Text Available The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1 performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD, the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.

  2. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  3. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  4. Opposing Activities of Notch and Wnt Signaling Regulate Intestinal Stem Cells and Gut Homeostasis

    Hua Tian

    2015-04-01

    Full Text Available Proper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology.

  5. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  6. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  7. Notch Activation of Ca(2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension.

    Smith, Kimberly A; Voiriot, Guillaume; Tang, Haiyang; Fraidenburg, Dustin R; Song, Shanshan; Yamamura, Hisao; Yamamura, Aya; Guo, Qiang; Wan, Jun; Pohl, Nicole M; Tauseef, Mohammad; Bodmer, Rolf; Ocorr, Karen; Thistlethwaite, Patricia A; Haddad, Gabriel G; Powell, Frank L; Makino, Ayako; Mehta, Dolly; Yuan, Jason X-J

    2015-09-01

    Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia. PMID:25569851

  8. Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling

    Irvine Kenneth D

    2008-01-01

    Full Text Available Abstract Background O-fucosyltransferase1 (OFUT1 is a conserved ER protein essential for Notch signaling. OFUT1 glycosylates EGF domains, which can then be further modified by the N-acetylglucosaminyltransferase Fringe. OFUT1 also possesses a chaperone activity that promotes the folding and secretion of Notch. Here, we investigate the respective contributions of these activities to Notch signaling in Drosophila. Results We show that expression of an isoform lacking fucosyltransferase activity, Ofut1R245A, rescues the requirement for Ofut1 in embryonic neurogenesis. Lack of requirement for O-fucosylation is further supported by the absence of embryonic phenotypes in Gmd mutants, which lack all forms of fucosylation. Requirements for O-fucose during imaginal development were evaluated by characterizing clones of cells expressing only Ofut1R245A. These clones phenocopy fringe mutant clones, indicating that the absence of O-fucose is functionally equivalent to the absence of elongated O-fucose. Conclusion Our results establish that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.

  9. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  10. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Frampton, Gabriel; Coufal, Monique [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Li, Huang [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ramirez, Jonathan [Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States); DeMorrow, Sharon, E-mail: demorrow@medicine.tamhsc.edu [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States)

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  11. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1.

    Shao, H; Cai, L; Grichnik, J M; Livingstone, A S; Velazquez, O C; Liu, Z-J

    2011-10-20

    The tumor microenvironment is emerging as an important target for cancer therapy. Fibroblasts (Fbs) within the tumor stroma are critically involved in promoting tumor growth and angiogenesis through secretion of soluble factors, synthesis of extracellular matrix and direct cell-cell interaction. In this work, we aim to alter the biological activity of stromal Fbs by modulating the Notch1 signaling pathway. We show that Fbs engineered to constitutively activate the Notch1 pathway significantly inhibit melanoma growth and tumor angiogenesis. We determine that the inhibitory effect of 'Notch-engineered' Fbs is mediated by increased secretion of Wnt-induced secreted protein-1 (WISP-1) as the effects of Notch1 activation in Fbs are reversed by shRNA-mediated blockade of WISP-1. When 'Notch-engineered' Fbs are co-grafted with melanoma cells in SCID mice, shRNA-mediated blockade of WISP-1 reverses the tumor-suppressive phenotype of the 'Notch-engineered' Fbs, significantly increases melanoma growth and tumor angiogenesis. Consistent with these findings, supplement of recombinant WISP-1 protein inhibits melanoma cell growth in vitro. In addition, WISP-1 is modestly expressed in melanoma-activated Fbs but highly expressed in inactivated Fbs. Evaluation of human melanoma skin biopsies indicates that expression of WISP-1 is significantly lower in melanoma nests and surrounding areas filled with infiltrated immune cells than in the adjacent dermis unaffected by the melanoma. Overall, our study shows that constitutive activation of the Notch1 pathway confers Fbs with a suppressive phenotype to melanoma growth, partially through WISP-1. Thus, targeting tumor stromal Fbs by activating Notch signaling and/or increasing WISP-1 may represent a novel therapeutic approach to combat melanoma. PMID:21516124

  12. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea.

    Ikeya, T; Hayashi, S

    1999-10-01

    The patterned branching in the Drosophila tracheal system is triggered by the FGF-like ligand Branchless that activates a receptor tyrosine kinase Breathless and the MAP kinase pathway. A single fusion cell at the tip of each fusion branch expresses the zinc-finger gene escargot, leads branch migration in a stereotypical pattern and contacts with another fusion cell to mediate fusion of the branches. A high level of MAP kinase activation is also limited to the tip of the branches. Restriction of such cell specialization events to the tip is essential for tracheal tubulogenesis. Here we show that Notch signaling plays crucial roles in the singling out process of the fusion cell. We found that Notch is activated in tracheal cells by Branchless signaling through stimulation of &Dgr; expression at the tip of tracheal branches and that activated Notch represses the fate of the fusion cell. In addition, Notch is required to restrict activation of MAP kinase to the tip of the branches, in part through the negative regulation of Branchless expression. Notch-mediated lateral inhibition in sending and receiving cells is thus essential to restrict the inductive influence of Branchless on the tracheal tubulogenesis. PMID:10498681

  13. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells.

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A; Cheng, Bin

    2016-02-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  14. Regulation of Notch Signaling by Glycosylation

    Stanley, Pamela

    2007-01-01

    Notch receptors are ~300 kd cell surface glycoproteins whose activation by Notch ligands regulates cell fate decisions in the metazoa. The extracellular domain of Notch receptors has many epidermal growth factor-like repeats that are glycosylated with O-fucose and O-glucose glycans as well as N-glycans. Disruption of O-fucose glycan synthesis leads to severe Notch signaling defects in Drosophila and mammals. Removal or addition of O-fucose glycan consensus sites on Notch receptors also leads ...

  15. Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation.

    Li Li

    Full Text Available The aberrant activation of Notch-1 signaling pathway has been proven to be associated with the development and progression of cancers. However, the specific roles and the underlying mechanisms of Notch-1 signaling pathway on the malignant behaviors of breast cancer are poorly understood. In this study, using multiple cellular and molecular approaches, we demonstrated that activation of Notch-1 signaling pathway promoted the malignant behaviors of MDA-MB-231 cells such as increased cell proliferation, colony formation, adhesion, migration, and invasion, and inhibited apoptosis; whereas deactivation of this signaling pathway led to the reversal of the aforementioned malignant cellular behaviors. Furthermore, we found that activation of Notch-1 signaling pathway triggered the activation of NF-κB signaling pathway and up-regulated the expression of NF-κB target genes including MMP-2/-9, VEGF, Survivin, Bcl-xL, and Cyclin D1. These results suggest that Notch-1 signaling pathway play important roles in promoting the malignant phenotype of breast cancer, which may be mediated partly through the activation of NF-κB signaling pathway. Our results further suggest that targeting Notch-1 signaling pathway may become a newer approach to halt the progression of breast cancer.

  16. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  17. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  18. Evidence of non-canonical NOTCH signaling

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads;

    2016-01-01

    Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (si......Canonical NOTCH signaling, known to be essential for tissue development, requires the Delta-Serrate-LAG2 (DSL) domain for NOTCH to interact with its ligand. However, despite lacking DSL, Delta-like 1 homolog (DLK1), a protein that plays a significant role in mammalian development, has been...

  19. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  20. Targeting Notch Signaling in Colorectal Cancer.

    Suman, Suman; Das, Trinath P; Ankem, Murali K; Damodaran, Chendil

    2014-12-01

    The activation of Notch signaling is implicated in tumorigenesis in the colon due to the induction of pro-survival signaling in colonic epithelial cells. Chemoresistance is a major obstacle for treatment and for the complete eradication of colorectal cancer (CRC), hence, the inhibition of Notch is an attractive target for CRC and several groups are working to identify small molecules or monoclonal antibodies that inhibit Notch or its downstream events; however, toxicity profiles in normal cells and organs often impede the clinical translation of these molecules. Dietary agents have gained momentum for targeting several pro-survival signaling cascades, and recent studies demonstrated that agents that inhibit Notch signaling result in growth inhibition in preclinical models of CRC. In this review, we focus on the importance of Notch as a preventive and therapeutic target for colon cancer and on the effect of WA on this signaling pathway in the context of colon cancer. PMID:25395896

  1. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    Matthew G MacKenzie

    Full Text Available Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21% and remained high out to 48 h (56.5 ± 19.67% after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2 = 0.9996. The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h. The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2% and stayed elevated out to 6 h (78 ± 16.6%. Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4% that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%. These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  2. Notch-1 Signaling Regulates Microglia Activation via NF-κB Pathway after Hypoxic Exposure In Vivo and In Vitro

    Yao, Linli; Kan, Enci Mary; Kaur, Charanjit; Dheen, S Thameem; Hao, Aijun; Lu, Jia; Ling, Eng-Ang

    2013-01-01

    Neuroinflammation mediated by the activated microglia is suggested to play a pivotal role in the pathogenesis of hypoxic brain injury; however, the underlying mechanism of microglia activation remains unclear. Here, we show that the canonical Notch signaling orchestrates microglia activation after hypoxic exposure which is closely associated with multiple pathological situations of the brain. Notch-1 and Delta-1 expression in primary microglia and BV-2 microglial cells was significantly eleva...

  3. Collagen represses canonical Notch signaling and binds to Notch ectodomain

    Zhang, Xiaojie; Meng, He; Michael M Wang

    2013-01-01

    The Notch signaling system features a growing number of modulators that include extracellular proteins that bind to the Notch ectodomain. Collagens are a complex, heterogeneous family of secreted proteins that serve both structural and signaling functions, most prominently through binding to integrins and DDR. The shared widespread tissue distribution of Notch and collagen prompted us to investigate the effects of collagen on Notch signaling. In a cell co-culture signaling assay, we found tha...

  4. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    Guo-yong Yu

    2016-01-01

    Full Text Available Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling, the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1, adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway.

  5. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway.

    Yu, Guo-Yong; Zheng, Gui-Zhou; Chang, Bo; Hu, Qin-Xiao; Lin, Fei-Xiang; Liu, De-Zhong; Wu, Chu-Cheng; Du, Shi-Xin; Li, Xue-Dong

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway. PMID:27069482

  6. Gamma secretase inhibitors of Notch signaling

    Olsauskas-Kuprys R

    2013-07-01

    Full Text Available Roma Olsauskas-Kuprys,1 Andrei Zlobin,1 Clodia Osipo1,2 1The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA; 2Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA Abstract: The numerous processes involved in the etiology of breast cancer such as cell survival, metabolism, proliferation, differentiation, and angiogenesis are currently being elucidated. However, underlying mechanisms that drive breast cancer progression and drug resistance are still poorly understood. As we discuss here in detail, the Notch signaling pathway is an important regulatory component of normal breast development, cell fate of normal breast stem cells, and proliferation and survival of breast cancer initiating cells. Notch exerts a wide range of critical effects through a canonical pathway where it is expressed as a type I membrane precursor heterodimer followed by at least two subsequent cleavages induced by ligand engagement to ultimately release an intracellular form to function as a transcriptional activator. Notch and its ligands are overexpressed in breast cancer, and one method of effectively blocking Notch activity is preventing its cleavage at the cell surface with γ-secretase inhibitors. In the context of Notch signaling, the application of clinically relevant anti-Notch drugs in treatment regimens may contribute to novel therapeutic interventions and promote more effective clinical response in women with breast cancer. Keywords: breast cancer, signaling pathways, γ-secretase, γ-secretase inhibitors, combination breast cancer therapy

  7. Notch -- a goldilocks signaling pathway in disease and cancer therapy.

    Braune, Eike-Benjamin; Lendahl, Urban

    2016-03-01

    The Notch signaling pathway is a fundamental signaling mechanism operating in most, if not all, multicellular organisms and in most cell types in the body. Like other "ivy league" pathways such as Wnt, PI3K, Sonic Hedgehog, Receptor Tyrosine Kinases (RTKs), and JAK/STAT signaling, the Notch pathway is a linear signaling mechanism, i.e., an extracellular ligand activates a receptor, which ultimately leads to transcriptional alterations in the cell nucleus, but Notch signaling is a strict cell-cell communication mechanism and lacks built-in amplification steps in the signaling pathway. Dysregulated Notch signaling, either by direct mutations in the pathway or by altered signaling output, is increasingly linked to disease, and Notch can act as an oncogene or tumor suppressor depending on the cellular context. This underscores that appropriate level of Notch signaling is important for differentiation and tissue homeostasis, a notion supported also by genetic data indicating that Notch signaling is very gene dosage-sensitive. Thus, too much or too little signaling can lead to disease and Notch can therefore be considered a Goldilocks signaling pathway. Given the emerging role of dysregulated Notch signaling in disease, there is increasing interest in developing therapeutic approaches to modulate Notch signaling. In this review we discuss recent findings on how signal transduction is tuned in the Notch pathway and how Notch signaling is dysregulated in disease. We also discuss different strategies to modulate Notch signaling for clinical use, for example by novel antibody-based tools and by taking advantage of the cross-talk between Notch and other signaling mechanisms. PMID:27115169

  8. Paradoxical effects of VEGF on synaptic activity partially involved in notch1 signaling in the mouse hippocampus.

    Yang, Jiajia; Yang, Chunxiao; Liu, Chunhua; Zhang, Tao; Yang, Zhuo

    2016-05-01

    It is well known that the neuronal effects of vascular endothelial growth factor (VEGF) include modulating learning and memory, plasticity of mature neurons, and synaptic transmission in addition to neurogenesis. However, there is conflicting evidence particularly of its role in the regulation of excitatory synaptic activity. In this study, application of the patch-clamp technique revealed that lower doses (10 and 50 ng/mL) of VEGF enhanced excitatory neurotransmission in hippocampal slices of mice through both presynaptic and postsynaptic mechanisms. However, the effects were reversed by higher doses of VEGF (>100 ng/mL), which inhibited excitatory neurotransmission via a presynaptic mechanism. These competing, concentration-dependent effects of VEGF suggested that different pathways were involved. The involvement of the Notch1 receptor was tested in the modulation of VEGF on synaptic activity by using heterozygous Notch1(+/-) mice. Notch1 knockdown did not influence the inhibitory effect of high VEGF doses (200 ng/mL) but reduced the enhancement effects of low concentration of VEGF (50 ng/mL) at the postsynaptic level, which might be due to the decreased level of VEGF receptor. The results indicate that the Notch1 receptor plays a role in VEGF-induced modulation of synaptic activity, which provides new insights into a complex VEGF/Notch signaling cross-talk. These findings set the groundwork for understanding new mechanisms of Notch signaling and the neurotrophic effects of VEGF, which is beneficial to develop new therapeutic targets to the VEGF/Notch axis and improve current treatments for neural diseases. PMID:26482652

  9. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    Guo-yong Yu; Gui-zhou Zheng; Bo Chang; Qin-xiao Hu; Fei-xiang Lin; De-zhong Liu; Chu-cheng Wu; Shi-xin Du; Xue-dong Li

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic ...

  10. Notch signaling and the developing hair follicle

    Aubin Houzelstein, Geneviève

    2012-01-01

    Notch function in the hair follicle has been mainly studied by use of transgenic mice carrying either loss or gain of function mutations in various members of the pathway. These studies revealed that whereas embryonic development of the hair follicle can be achieved without Notch, its postnatal development requires an intact Notch signaling in the hair bulb and the outer root sheath. Among the many roles played by Notch in the hair follicle, two can be highlighted: in the bulge, Notch control...

  11. Notch Signaling Pathway and Human Placenta

    Wei-Xiu Zhao, Jian-Hua Lin

    2012-01-01

    Notch signaling was evolutionarily conserved and critical for cell-fate determination, differentiation and many other biological processes. Growing evidences suggested that Notch signaling pathway played an important role in the mammalian placental development. All of the mammalian Notch family proteins had been identified in human placenta except Delta-like 3, which appeared to affect the axial skeletal system. However the molecular mechanisms that regulated the Notch signaling pathway remai...

  12. Notching on cancer’s door: Notch signaling in brain tumors

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  13. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells.

    Choi, Dongwon; Ramu, Swapnika; Park, Eunkyung; Jung, Eunson; Yang, Sara; Jung, Wonhyeuk; Choi, Inho; Lee, Sunju; Kim, Kyu Eui; Seong, Young Jin; Hong, Mingu; Daghlian, George; Kim, Daniel; Shin, Eugene; Seo, Jung In; Khatchadourian, Vicken; Zou, Mengchen; Li, Wei; De Filippo, Roger; Kokorowski, Paul; Chang, Andy; Kim, Steve; Bertoni, Ana; Furlanetto, Tania Weber; Shin, Sung; Li, Meng; Chen, Yibu; Wong, Alex; Koh, Chester; Geliebter, Jan; Hong, Young-Kwon

    2016-02-01

    Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies associated with significant morbidity and mortality. Although multiple studies have contributed to a better understanding of the genetic alterations underlying this frequently arising disease, the downstream molecular effectors that impact PTC pathogenesis remain to be further defined. Here, we report that the regulator of cell fate specification, PROX1, becomes inactivated in PTC through mRNA downregulation and cytoplasmic mislocalization. Expression studies in clinical specimens revealed that aberrantly activated NOTCH signaling promoted PROX1 downregulation and that cytoplasmic mislocalization significantly altered PROX1 protein stability. Importantly, restoration of PROX1 activity in thyroid carcinoma cells revealed that PROX1 not only enhanced Wnt/β-catenin signaling but also regulated several genes known to be associated with PTC, including thyroid cancer protein (TC)-1, SERPINA1, and FABP4. Furthermore, PROX1 reexpression suppressed the malignant phenotypes of thyroid carcinoma cells, such as proliferation, motility, adhesion, invasion, anchorage-independent growth, and polyploidy. Moreover, animal xenograft studies demonstrated that restoration of PROX1 severely impeded tumor formation and suppressed the invasiveness and the nuclear/cytoplasmic ratio of PTC cells. Taken together, our findings demonstrate that NOTCH-induced PROX1 inactivation significantly promotes the malignant behavior of thyroid carcinoma and suggest that PROX1 reactivation may represent a potential therapeutic strategy to attenuate disease progression. PMID:26609053

  14. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  15. Canonical Notch activation in osteocytes causes osteopetrosis.

    Canalis, Ernesto; Bridgewater, David; Schilling, Lauren; Zanotti, Stefano

    2016-01-15

    Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling. PMID:26578715

  16. Inhibition of Notch Signaling Blocks Growth of Glioblastoma Cell Lines and Tumor Neurospheres

    Chen, Jie; Kesari, Santosh; Rooney, Christine; Strack, Peter R.; Chen, Jihua; Shen, Huangxuan; Wu, Lizi; Griffin, James D.

    2010-01-01

    Glioblastoma (GBM) is the most common malignant brain tumor that is characterized by high proliferative rate and invasiveness. Since dysregulation of Notch signaling is implicated in the pathogenesis of many human cancers, here we investigated the role of Notch signaling in GBM. We found that there is aberrant activation of Notch signaling in GBM cell lines and human GBM-derived neurospheres. Inhibition of Notch signaling via the expression of a dominant negative form of the Notch coactivator...

  17. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1

    Parameswaran, Sowmya; Mathews, Saumi; Xia, Xiaohuan; Zheng, Li; Neville, Andrew J.; Ahmad, Iqbal

    2016-01-01

    Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally. PMID:27011052

  18. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21Waf1/CIP1, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV

  19. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R. [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Katzenellenbogen, Rachel A., E-mail: rkatzen@uw.edu [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Department of Pediatrics, Division of Adolescent Medicine, University of Washington, Seattle WA (United States)

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  20. Notch Signaling in Inflammation-Induced Preterm Labor.

    Jaiswal, Mukesh K; Agrawal, Varkha; Pamarthy, Sahithi; Katara, Gajendra K; Kulshrestha, Arpita; Gilman-Sachs, Alice; Beaman, Kenneth D; Hirsch, Emmet

    2015-01-01

    Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses. PMID:26472156

  1. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  2. Differential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease.

    Newman, Morgan; Wilson, Lachlan; Verdile, Giuseppe; Lim, Anne; Khan, Imran; Moussavi Nik, Seyyed Hani; Pursglove, Sharon; Chapman, Gavin; Martins, Ralph N; Lardelli, Michael

    2014-02-01

    PRESENILIN1 (PSEN1) is the major locus for mutations causing familial Alzheimer's disease (FAD) and is also mutated in Pick disease of brain, familial acne inversa and dilated cardiomyopathy. It is a critical facilitator of Notch signalling and many other signalling pathways and protein cleavage events including production of the Amyloidβ (Aβ) peptide from the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). We previously reported that interference with splicing of transcripts of the zebrafish orthologue of PSEN1 creates dominant negative effects on Notch signalling. Here, we extend this work to show that various truncations of human PSEN1 (or zebrafish Psen1) protein have starkly differential effects on Notch signalling and cleavage of zebrafish Appa (a paralogue of human APP). Different truncations can suppress or stimulate Notch signalling but not Appa cleavage and vice versa. The G183V mutation possibly causing Pick disease causes production of aberrant transcripts truncating the open reading frame after exon 5 sequence. We show that the truncated protein potentially translated from these transcripts avidly incorporates into very stable Psen1-dependent higher molecular weight complexes and suppresses cleavage of Appa but not Notch signalling. In contrast, the truncated protein potentially produced by the P242LfsX11 acne inversa mutation has no effect on Appa cleavage but, unexpectedly, enhances Notch signalling. Our results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles. PMID:24101600

  3. NUMB is a break of WNT-Notch signaling cycle.

    Katoh, Masuko; Katoh, Masaru

    2006-09-01

    Notch, FGF and WNT signaling pathways cross-talk during embryogenesis, tissue regeneration and carcinogenesis. Notch-ligand binding to Notch receptors leads to the cleavage of Notch receptors and the following nuclear translocation of Notch intracellular domain (NICD) to induce transcriptional activation of Notch target genes. Notch signaling inhibitors, NUMB and NUMB-like (NUMBL), are docking proteins with PTB domain. We searched for the TCF/LEF-binding site within the promoter region of NUMB and NUMBL genes. Because two TCF/LEF-binding sites were identified within human NUMB promoter based on bioinformatics and human intelligence (Humint), comparative integromics analyses on NUMB orthologs were further performed. Chimpanzee NUBM gene, consisting of 13 exons, was identified within NW_115880.1 genome sequence. XM_510045.1 was not the correct coding sequence for chimpanzee NUMB. Chimpanzee NUMB gene was found to encode a 651-amino-acid protein showing 99.5, 93.9 and 82.6% total-amino-acid identity with human NUMB, mouse Numb and chicken numb, respectively. Human NUMB mRNA was expressed in placenta, ES cells, neural tissues, trachea, testis, uterus, thymus, coronary artery as well as in a variety of tumors, such as cervical cancer, tong tumor, brain tumor, colorectal and breast cancer. Although distal TCF/LEF-binding site within human NUMB promoter was conserved only among primate NUMB orthologs, proximal TCF/LEF-binding site was conserved among primate and rodent NUMB orthologs. NUMB, JAG1, FGF18, FGF20 and SPRY4 are potent targets of the canonical WNT signaling pathway in progenitor cells. NUMB inhibits Notch signaling in progenitor cells to induce differentiation, while JAG1 activates Notch signaling in stem cells to maintain self-renewal potential. Because Notch signaling inhibitor NUMB was identified as the safe apparatus for the WNT - Notch signaling cycle, epigenetic silencing, deletion and loss-of-function mutation of NUMB gene could lead to carcinogenesis

  4. Linking Notch signaling to ischemic stroke

    Arboleda-Velasquez, Joseph F.; Zhou, Zhipeng; Shin, Hwa Kyoung; Louvi, Angeliki; Kim, Hyung-Hwan; Savitz, Sean I.; Liao, James K.; Salomone, Salvatore; Ayata, Cenk; Moskowitz, Michael A.; Artavanis-Tsakonas, Spyros

    2008-01-01

    Vascular smooth muscle cells (SMCs) have been implicated in the pathophysiology of stroke, the third most common cause of death and the leading cause of long-term neurological disability in the world. However, there is little insight into the underlying cellular pathways that link SMC function to brain ischemia susceptibility. Using a hitherto uncharacterized knockout mouse model of Notch 3, a Notch signaling receptor paralogue highly expressed in vascular SMCs, we uncover a striking suscepti...

  5. Notch Signaling and Brain Tumors

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  6. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes

    Ge Changhui

    2010-03-01

    contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f.

  7. NOTCH SIGNALING REGULATES MOUSE AND HUMAN TH17 DIFFERENTIATION

    Keerthivasan, Shilpa; Suleiman, Reem; Lawlor, Rebecca; Roderick, Justine; Bates, Tonya; Minter, Lisa; Anguita, Juan; Juncadella, Ignacio; Nickoloff, Brian J; Le Poole, I. Caroline; Miele, Lucio; Osborne, Barbara A.

    2011-01-01

    T helper17 (Th17) cells are known to play a critical role in adaptive immune responses to several important extracellular pathogens. Additionally, Th17 cells are implicated in the pathogenesis of several autoimmune and inflammatory disorders as well as in cancer. Therefore, it is essential to understand the mechanisms that regulate Th17 differentiation. Notch signaling is known to be important at several stages of T cell development and differentiation. Here we report that Notch1 is activated...

  8. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells

    VanDussen, Kelli L; Carulli, Alexis J.; Keeley, Theresa M.; Patel, Sanjeevkumar R.; Puthoff, Brent J.; Magness, Scott T.; Tran, Ivy T.; Maillard, Ivan; Siebel, Christian; Kolterud, Åsa; Grosse, Ann S.; Gumucio, Deborah L; Ernst, Stephen A.; Tsai, Yu-Hwai; Dempsey, Peter J.

    2012-01-01

    Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression o...

  9. Current views on the role of Notch signaling and the pathogenesis of human leukemia

    Pancewicz Joanna

    2011-11-01

    Full Text Available Abstract The Notch signaling pathway is highly conserved from Drosophila to humans and plays an important role in the regulation of cellular proliferation, differentiation and apoptosis. Constitutive activation of Notch signaling has been shown to result in excessive cellular proliferation and a wide range of malignancies, including leukemia, glioblastoma and lung and breast cancers. Notch can also act as a tumor suppressor, and its inactivation has been associated with an increased risk of spontaneous squamous cell carcinoma. This minireview focuses on recent advances related to the mechanisms and roles of activated Notch1, Notch2, Notch3 and Notch4 signaling in human lymphocytic leukemia, myeloid leukemia and B cell lymphoma, as well as their significance, and recent advances in Notch-targeted therapies.

  10. [Neural stem cells and Notch signalling].

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  11. SIRT1 regulates endothelial Notch signaling in lung cancer.

    Mian Xie

    Full Text Available BACKGROUND: Sirtuin 1 (SIRT1 acts as a key regulator of vascular endothelial homeostasis, angiogenesis, and endothelial dysfunction. However, the underlying mechanism for SIRT1-mediated lung carcinoma angiogenesis remains unknown. Herein, we report that the nicotinamide adenine dinucleotide 1 (NAD1-dependent deacetylase SIRT1 can function as an intrinsic negative modulator of Delta-like ligand 4 (DLL4/Notch signaling in Lewis lung carcinoma (LLC xenograft-derived vascular endothelial cells (lung cancer-derived ECs. PRINCIPAL FINDINGS: SIRT1 negatively regulates Notch1 intracellular domain (N1IC and Notch1 target genes HEY1 and HEY2 in response to Delta-like ligand 4 (DLL4 stimulation. Furthermore, SIRT1 deacetylated and repressed N1IC expression. Quantitative chromatin immunoprecipitation (qChIP analysis and gene reporter assay demonstrated that SIRT1 bound to one highly conserved region, which was located at approximately -500 bp upstream of the transcriptional start site of Notch1,and repressed Notch1 transcription. Inhibition of endothelial cell growth and sprouting angiogenesis by DLL4/Notch signaling was enhanced in SIRT1-silenced lung cancer-derived EC and rescued by Notch inhibitor DAPT. In vivo, an increase in proangiogenic activity was observed in Matrigel plugs from endothelial-specific SIRT1 knock-in mice. SIRT1 also enhanced tumor neovascularization and tumor growth of LLC xenografts. CONCLUSIONS: Our results show that SIRT1 facilitates endothelial cell branching and proliferation to increase vessel density and promote lung tumor growth through down-regulation of DLL4/Notch signaling and deacetylation of N1IC. Thus, targeting SIRT1 activity or/and gene expression may represent a novel mechanism in the treatment of lung cancer.

  12. Notch1 Signaling Modulates Neuronal Progenitor Activity in the Subventricular Zone in Response to Aging and Focal Ischemia

    Sun, Fen; Mao, XiaoOu; Xie, Lin; Ding, Meiping; Shao, Bei; Jin, Kunlin

    2013-01-01

    Neurogenesis diminishes with aging and ischemia-induced neurogenesis also occurs, but reduced in aged brain. Currently, the cellular and molecular pathways mediating these effects remain largely unknown. Our previous study has shown that Notch1 signaling regulates neurogenesis in subventricular zone (SVZ) of young-adult brain after focal ischemia, but whether a similar effect occurs in aged normal and ischemic animals is unknown. Here, we used normal and ischemic aged rat br...

  13. Metastasis-associated lung adenocarcinoma transcript 1 promotes the proliferation of chondro­sarcoma cell via activating Notch-1 signaling pathway

    Xu FQ

    2016-04-01

    Full Text Available Fengqin Xu,1,* Zhi-qiang Zhang,2,* Yong-chao Fang,2 Xiao-lei Li,2 Yu Sun,2 Chuan-zhi Xiong,2 Lian-qi Yan,2 Qiang Wang2 1Department of Orthopaedics, Hongquan Hospital, 2Department of Orthopaedics, Subei People’s Hospital, Yangzhou, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1 is identified to be overexpressed in several cancers. However, the role of MALAT-1 in chondrosarcoma is poorly understood.Methods: The expression of MALAT-1 and Notch-1 signaling pathway was detected in chondrosarcoma tissues and chondrosarcoma cells by quantitative real-time polymerase chain reaction (qRT-PCR and Western blot. 3-(4,5-Dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay was performed to examine the cell viability of chondrosarcoma cells transfected with si-MALAT-1 or pcDNA-MALAT-1. Then the expression of Notch-1 signaling pathway was detected when MALAT-1 was upregulated or downregulated in chondrosarcoma cells. A subcutaneous chondrosarcoma cells xenograft model was used to confirm the effect of MALAT-1 on tumor growth in vivo.Results: We found the increased expression of MALAT-1 and Notch-1 signaling pathway in chondrosarcoma tissue and cells. MALAT-1 promoted the proliferation of chondrosarcoma cells. In addition, MALAT-1 activated the Notch-1 signaling pathway at posttranscriptional level in chondrosarcoma cells. Meanwhile, overexpression of Notch-1 reversed the effect of si-MALAT-1 on the proliferation of chondrosarcoma cells. Finally, we found that MALAT-1 promoted the tumor growth in a subcutaneous chondrosarcoma cells xenograft model, which confirmed the promoted effect of MALAT-1 on the tumor growth in vivo.Conclusion: Taken together, our study demonstrated that MALAT-1 promoted the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway. Keywords: MALAT-1, cell proliferation

  14. Role of Notch signaling in the mammalian heart

    Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair

  15. Role of Notch signaling in the mammalian heart

    Zhou, X.L.; Liu, J.C. [Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Donghu District, Nanchang, Jiangxi (China)

    2013-12-12

    Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.

  16. A Role for Notch Signalling in Breast Cancer and Endocrine Resistance

    Acar, Ahmet; Simões, Bruno M.; Clarke, Robert B.; Brennan, Keith

    2016-01-01

    Over the past decade, there has been growing interest in the Notch signalling pathway within the breast cancer field. This interest stemmed initially from the observation that Notch signalling is aberrantly activated in breast cancer and its effects on various cellular processes including proliferation, apoptosis, and cancer stem cell activity. However more recently, elevated Notch signalling has been correlated with therapy resistance in oestrogen receptor-positive breast cancer. As a result, inhibiting Notch signalling with therapeutic agents is being explored as a promising treatment option for breast cancer patients. PMID:26880941

  17. The role of Notch signaling in development and tumorigenesis

    Mazur, Pawel Karol

    2010-01-01

    This thesis underscores the high importance of Notch signaling in the development of pancreas and liver as well as in tumorigenesis of pancreas and skin. Pancreas-specific ablation of Notch signaling impairs exocrine cell expansion and leads to premature differentiation of progenitor into endocrine cells. In addition, Notch was found to play an essential role in pancreas recovery after acute pancreatitis. Also, Notch is critical for intrahepatic bile duct formation during liver maturation. Fi...

  18. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma.

    Mu, Xiaodong; Agarwal, Rashmi; March, Daniel; Rothenberg, Adam; Voigt, Clifford; Tebbets, Jessica; Huard, Johnny; Weiss, Kurt

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia. PMID:27378829

  19. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  20. Resveratrol can prevent CCl₄-induced liver injury by inhibiting Notch signaling pathway.

    Tanriverdi, Gamze; Kaya-Dagistanli, Fatma; Ayla, Sule; Demirci, Sibel; Eser, Mediha; Unal, Z Seda; Cengiz, Mujgan; Oktar, Huseyin

    2016-07-01

    We investigated whether Notch signaling was increased in an experimental liver fibrosis model and examined the effects of resveratrol on Notch expression. Rats were divided into four groups: the control group, injected with physiological saline; the CCl₄ group; the CCl₄ plus resveratrol group; and the resveratrol group. After treatment, immunostaining was performed to detect Notch1, Notch3, Notch4, transforming growth factor (TGF)-beta, alpha-smooth muscle actin (SMA), glial fibrillary acidic protein (GFAP), and proliferating cell nuclear antigen (PCNA), and TUNEL assays were performed to evaluate apoptosis. Sirius red staining was used to detect fibrosis. Samples were also biochemically evaluated for glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), lipid peroxidation, and protein oxidation. GSH, GPx, and catalase activities were significantly decreased (p⟨0.001) in the CCl₄ group. Distinct collagen accumulation was detected around the central vein and portal areas, and numbers of Notch1-, Notch3-, and Notch4-positive cells were significantly increased (p⟨0.001) in fibrotic areas in the CCl₄ group. Increased expression of Notch proteins in fibrotic areas may support the role of Notch in mediating signaling associated with liver fibrosis through activation of hepatic stellate and progenitor cells. In contrast, resveratrol prevented liver fibrosis by decreasing lipid peroxidation and may be effective for inhibiting Notch signaling. PMID:26742567

  1. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis.

    George, Rajani M; Hahn, Katherine L; Rawls, Alan; Viger, Robert S; Wilson-Rawls, Jeanne

    2015-10-01

    Notch2 and Notch3 and genes of the Notch signaling network are dynamically expressed in developing follicles, where they are essential for granulosa cell proliferation and meiotic maturation. Notch receptors, ligands, and downstream effector genes are also expressed in testicular Leydig cells, predicting a potential role in regulating steroidogenesis. In this study, we sought to determine if Notch signaling in small follicles regulates the proliferation response of granulosa cells to FSH and represses the up-regulation steroidogenic gene expression that occurs in response to FSH as the follicle grows. Inhibition of Notch signaling in small preantral follicles led to the up-regulation of the expression of genes in the steroid biosynthetic pathway. Similarly, progesterone secretion by MA-10 Leydig cells was significantly inhibited by constitutively active Notch. Together, these data indicated that Notch signaling inhibits steroidogenesis. GATA4 has been shown to be a positive regulator of steroidogenic genes, including STAR protein, P450 aromatase, and 3B-hydroxysteroid dehydrogenase. We observed that Notch downstream effectors HEY1, HEY2, and HEYL are able to differentially regulate these GATA4-dependent promoters. These data are supported by the presence of HEY/HES binding sites in these promoters. These studies indicate that Notch signaling has a role in the complex regulation of the steroidogenic pathway. PMID:26183893

  2. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  3. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry.

    Michael J Kluk

    Full Text Available Fixed, paraffin-embedded (FPE tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1 in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors, but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of

  4. Drosophila Cyclin G Is a Regulator of the Notch Signalling Pathway during Wing Development

    Nagel, Anja C.; Szawinski, Jutta; Zimmermann, Mirjam; Preiss, Anette

    2016-01-01

    Notch signalling regulates a multitude of differentiation processes during Drosophila development. For example, Notch activity is required for proper wing vein differentiation which is hampered in mutants of either the receptor Notch, the ligand Delta or the antagonist Hairless. Moreover, the Notch pathway is involved in several aspects of Drosophila oogenesis as well. We have identified Drosophila Cyclin G (CycG) as a molecular interaction partner of Hairless, the major antagonist in the Notch signalling pathway, in vitro and in vivo. Loss of CycG was shown before to cause female sterility and to disturb the architecture of the egg shell. Nevertheless, Notch dependent processes during oogenesis appeared largely unaffected in cycG mutant egg chambers. Loss of CycG modified the dominant wing phenotypes of Notch, Delta and Hairless mutants. Whereas the Notch loss of function phenotype was ameliorated by a loss of CycG, the phenotypes of either Notch gain of function or of Delta or Hairless loss of function were enhanced. In contrast, loss of CycG had only a minor effect on the wing vein phenotype of mutants affecting the EGFR signalling pathway emphasizing the specificity of the interaction of CycG and Notch pathway members. PMID:26963612

  5. Effect of Trastuzumab on Notch-1 Signaling Pathway in Breast Cancer SK-BR3 Cells

    Ming Han; Hua-yu Deng; Rong Jiang

    2012-01-01

    Objective:To investigate the effects and mechanisms of trastuzumab on Notch-1 pathway in breast cancer cells,recognizing the significance of Notch-1 signaling pathway in trastuzumab resistance.Methods:Immunocytochemistry staining and Western blotting were employed to justify the expression of Notch-1 protein in HER2-overexpressing SK-BR3 cells and HER2-non-overexpressing breast cancer MDA-MB-231 cells.Western blotting and reverse transcription PCR (RT-PCR) were used to detect the activated Notch-1 and Notch-1 target gene HES-1 mRNA expression after SK-BR3 cells were treated with trastuzumab.Double immunofluorescence staining and co-immunoprecipitation were used to analyze the relationship of Notch-1 and HER2 proteins.Results:The level of Notch-1 nuclear localization and activated Notch-1 proteins in HER2-overexpressing cells were significantly lower than in HER2-non-overexpressing cells (P<0.01),and the expressions of activated Notch-1 and HES-1 mRNA were obviously increased after trastuzumab treatment (P<1.05),but HER2 expression did not change significantly for trastuzumab treating (P>0.05).Moreover,Notch-1 was discovered to co-localize and interact with HER2 in SK-BR3 cells.Conclusion:Overexpression of HER2 decreased Notch-1 activity by the formation of a HER2-Notch1 complex,and trastuzumab can restore the activity of Notch-1 signaling pathway,which could be associated with cell resistance to trastuzumab.

  6. Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling.

    Hu, Bin; Nandhu, Mohan S; Sim, Hosung; Agudelo-Garcia, Paula A; Saldivar, Joshua C; Dolan, Claire E; Mora, Maria E; Nuovo, Gerard J; Cole, Susan E; Viapiano, Mariano S

    2012-08-01

    Malignant gliomas are highly invasive and chemoresistant brain tumors with extremely poor prognosis. Targeting of the soluble factors that trigger invasion and resistance, therefore, could have a significant impact against the infiltrative glioma cells that are a major source of recurrence. Fibulin-3 is a matrix protein that is absent in normal brain but upregulated in gliomas and promotes tumor invasion by unknown mechanisms. Here, we show that fibulin-3 is a novel soluble activator of Notch signaling that antagonizes DLL3, an autocrine inhibitor or Notch, and promotes tumor cell survival and invasion in a Notch-dependent manner. Using a strategy for inducible knockdown, we found that controlled downregulation of fibulin-3 reduced Notch signaling and led to increased apoptosis, reduced self-renewal of glioblastoma-initiating cells, and impaired growth and dispersion of intracranial tumors. In addition, fibulin-3 expression correlated with expression levels of Notch-dependent genes and was a marker of Notch activation in patient-derived glioma samples. These findings underscore a major role for the tumor extracellular matrix in regulating glioma invasion and resistance to apoptosis via activation of the key Notch pathway. More importantly, this work describes a noncanonical, soluble activator of Notch in a cancer model and shows how Notch signaling can be reduced by targeting tumor-specific accessible molecules in the tumor microenvironment. PMID:22665268

  7. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis

    Dey Devaveena

    2009-12-01

    Full Text Available Abstract Background Recent studies have implicated aberrant Notch signaling in breast cancers. Yet, relatively little is known about the pattern of expression of various components of the Notch pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands, and downstream targets at different stages of breast cancer progression. Results We report here that there is a general increase in the expression levels of Notch 1, 2, 4, Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were undetectable in normal tissues, moderate to high expression was detected in several cancers. We detected the presence of active, cleaved Notch1, along with downstream targets of the Notch pathway, Hes1/Hes5, in ~75% of breast cancers, clearly indicating that in a large proportion of breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1 and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ - suggesting that aberrant Notch activation may be an early event in breast cancer progression. Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation may lead to poor prognosis. Conclusions High level expression of Notch receptors and ligands, and its increased activation in several breast cancers and early precursors, places Notch signaling as a key player in breast cancer pathogenesis. Its cooperation with

  8. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  9. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Highlights: → Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. → hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. → Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  10. The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells.

    Jonas Ungerbäck

    Full Text Available BACKGROUND: Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC. In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. PRINCIPAL FINDINGS: In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the Apc(Min/+ mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. CONCLUSIONS: In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer.

  11. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway.

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. PMID:27003260

  12. Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma.

    Lee, Sang H; Do, Sung I; Lee, Hyun J; Kang, Hyun J; Koo, Bon S; Lim, Young C

    2016-05-01

    Notch1 is associated with the initiation and progression of various solid tumors. However, the exact role of Notch1 expression in head and neck squamous cell carcinoma (HNSCC) remain unclear. We created cells ectopically expressing notch intracellular domain (NICD) from previously established HNSCC cells and examined self-renewal capacity and stem cell markers' expression compared with control cells. In addition, we knocked Notch1 down in primary spheres obtained from HNSCC tumor tissue and assessed the attenuation of stemness-associated traits in these cells in vitro and in vivo. Furthermore, we examined clinical relevance of Notch1 expression in HNSCC patients. Constitutive activation of NICD promoted the self-renewal capacity of HNSCC cells by activating sphere formation and increased the expression of stem cell markers such as Oct4, Sox2, and CD44. In contrast, Notch1 knockdown in primary HNSCC cancer stem cells (CSCs) attenuated CSC traits and augmented the chemosensitizing effects of cisplatin along with the decreased expression of almost all of ABC transporter genes. In addition, Notch1 knockdown in HNSCC CSCs inhibited tumor formation and increased survival of mice in a xenograft model. Also, Notch1 acted upstream of canonical Wnt signaling in HNSCC cells. Finally, elevated Notch1 expression is associated with poor prognosis in patients with HNSCC. In conclusion, Notch1 may be a critical regulator of stemness in HNSCC cells, and inactivation of this pathway could be a potential targeted approach for the treatment of HNSCC. PMID:26927514

  13. Cross-platform expression profiling demonstrates that SV40 small tumor antigen activates Notch, Hedgehog, and Wnt signaling in human cells

    We previously analyzed human embryonic kidney (HEK) cell lines for the effects that simian virus 40 (SV40) small tumor antigen (ST) has on gene expression using Affymetrix U133 GeneChips. To cross-validate and extend our initial findings, we sought to compare the expression profiles of these cell lines using an alternative microarray platform. METHODS: We have analyzed matched cell lines with and without expression of SV40 ST using an Applied Biosystems (AB) microarray platform that uses single 60-mer oligonucleotides and single-color quantitative chemiluminescence for detection. RESULTS: While we were able to previously identify only 456 genes affected by ST with the Affymetrix platform, we identified 1927 individual genes with the AB platform. Additional technical replicates increased the number of identified genes to 3478 genes and confirmed the changes in 278 (61%) of our original set of 456 genes. Among the 3200 genes newly identified as affected by SV40 ST, we confirmed 20 by QRTPCR including several components of the Wnt, Notch, and Hedgehog signaling pathways, consistent with SV40 ST activation of these developmental pathways. While inhibitors of Notch activation had no effect on cell survival, cyclopamine had a potent killing effect on cells expressing SV40 ST. CONCLUSIONS: These data show that SV40 ST expression alters cell survival pathways to sensitize cells to the killing effect of Hedgehog pathway inhibitors

  14. Trastuzumab Resistance: Role for Notch Signaling

    Kinnari Mehta

    2009-01-01

    Full Text Available Epidermal growth factor receptor-2 (ErbB-2/HER2 is a potent breast oncogene that has been shown to be amplified in 20% of breast cancers. Overexpression of ErbB-2 predicts for aggressive tumor behavior, resistance to some cytotoxic and antihormonal therapies, and poor overall survival. Trastuzumab, the humanized, monoclonal antibody directed against ErbB-2 has shown tremendous efficacy and improved overall survival for women when combined with a taxane-based chemotherapy. However, resistance to trastuzumab remains a major concern, most notably in women with metastatic breast cancer. Numerous mechanisms that include overexpression of alternate receptor tyrosine kinases and/or loss of critical tumor suppressors have been proposed in the last several years to elucidate trastuzumab resistance. Here we review the many possible mechanisms of action that could contribute to resistance, and novel therapies to prevent or reverse the resistant phenotype. Moreover, we provide a critical role for Notch signaling cross-talk with overlapping or new signaling networks in trastuzumab-resistant breast.

  15. Preservation of proliferating pancreatic progenitor cells by Delta-Notch signaling in the embryonic chicken pancreas

    Serup Palle

    2007-06-01

    Full Text Available Abstract Background Genetic studies have shown that formation of pancreatic endocrine cells in mice is dependent on the cell autonomous action of the bHLH transcription factor Neurogenin3 and that the extent and timing of endocrine differentiation is controlled by Notch signaling. To further understand the mechanism by which Notch exerts this function, we have investigated pancreatic endocrine development in chicken embryos. Results In situ hybridization showed that expression of Notch signaling components and pro-endocrine bHLH factors is conserved to a large degree between chicken and mouse. Cell autonomous inhibition of Notch signal reception results in significantly increased endocrine differentiation demonstrating that these early progenitors are prevented from differentiating by ongoing Notch signaling. Conversely, activated Notch1 induces Hes5-1 expression and prevents endocrine development. Notably, activated Notch also prevents Ngn3-mediated induction of a number of downstream targets including NeuroD, Hes6-1, and MyT1 suggesting that Notch may act to inhibit both Ngn3 gene expression and protein function. Activated Notch1 could also block endocrine development and gene expression induced by NeuroD. Nevertheless, Ngn3- and NeuroD-induced delamination of endodermal cells was insensitive to activated Notch under these conditions. Finally, we show that Myt1 can partially overcome the repressive effect of activated Notch on endocrine gene expression. Conclusion We conclude that pancreatic endocrine development in the chicken relies on a conserved bHLH cascade under inhibitory control of Notch signaling. This lays the ground for further studies that take advantage of the ease at which chicken embryos can be manipulated. Our results also demonstrate that Notch can repress Ngn3 and NeuroD protein function and stimulate progenitor proliferation. To determine whether Notch in fact does act in Ngn3-expressing cells in vivo will require further

  16. NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches.

    Wenxue Ma

    Full Text Available BACKGROUND: Leukemia initiating cells (LIC contribute to therapeutic resistance through acquisition of mutations in signaling pathways, such as NOTCH1, that promote self-renewal and survival within supportive niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL and have been implicated in therapeutic resistance. However, the cell type and context specific consequences of NOTCH1 activation, its role in human LIC regeneration, and sensitivity to NOTCH1 inhibition in hematopoietic microenvironments had not been elucidated. METHODOLOGY AND PRINCIPAL FINDINGS: We established humanized bioluminescent T-ALL LIC mouse models transplanted with pediatric T-ALL samples that were sequenced for NOTCH1 and other common T-ALL mutations. In this study, CD34(+ cells from NOTCH1(Mutated T-ALL samples had higher leukemic engraftment and serial transplantation capacity than NOTCH1(Wild-type CD34(+ cells in hematopoietic niches, suggesting that self-renewing LIC were enriched within the NOTCH1(Mutated CD34(+ fraction. Humanized NOTCH1 monoclonal antibody treatment reduced LIC survival and self-renewal in NOTCH1(Mutated T-ALL LIC-engrafted mice and resulted in depletion of CD34(+CD2(+CD7(+ cells that harbor serial transplantation capacity. CONCLUSIONS: These results reveal a functional hierarchy within the LIC population based on NOTCH1 activation, which renders LIC susceptible to targeted NOTCH1 inhibition and highlights the utility of NOTCH1 antibody targeting as a key component of malignant stem cell eradication strategies.

  17. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    Mu, Xiaodong; Agarwal, Rashmi; March, Daniel; Rothenberg, Adam; Voigt, Clifford; Tebbets, Jessica; Huard, Johnny; Weiss, Kurt

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notc...

  18. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

    Takam Kamga, Paul; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Nwabo Kamdje, Armel Hervé; Ambrosetti, Achille; Krampera, Mauro

    2016-04-19

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055

  19. Sequential Notch signalling at the boundary of fringe expressing and non-expressing cells.

    Tobias Troost

    Full Text Available Wing development in Drosophila requires the activation of Wingless (Wg in a small stripe along the boundary of Fringe (Fng expressing and non-expressing cells (FB, which coincides with the dorso-ventral (D/V boundary of the wing imaginal disc. The expression of Wg is induced by interactions between dorsal and ventral cells mediated by the Notch signalling pathway. It appears that mutual signalling from dorsal to ventral and ventral to dorsal cells by the Notch ligands Serrate (Ser and Delta (Dl respectively establishes a symmetric domain of Wg that straddles the D/V boundary. The directional signalling of these ligands requires the modification of Notch in dorsal cells by the glycosyltransferase Fng and is based on the restricted expression of the ligands with Ser expression to the dorsal and that of Dl to the ventral side of the wing anlage. In order to further investigate the mechanism of Notch signalling at the FB, we analysed the function of Fng, Ser and Dl during wing development at an ectopic FB and at the D/V boundary. We find that Notch signalling is initiated in an asymmetric fashion on only one side of the FB. During this initial asymmetric phase, only one ligand is required, with Ser initiating Notch-signalling at the D/V and Dl at the ectopic FB. Furthermore, our analysis suggests that Fng has also a positive effect on Ser signalling. Because of these additional properties, differential expression of the ligands, which has been a prerequisite to restrict Notch activation to the FB in the current model, is not required to restrict Notch signalling to the FB.

  20. Notch signaling in group 3 innate lymphoid cells modulates their plasticity.

    Chea, Sylvestre; Perchet, Thibaut; Petit, Maxime; Verrier, Thomas; Guy-Grand, Delphine; Banchi, Elena-Gaia; Vosshenrich, Christian A J; Di Santo, James P; Cumano, Ana; Golub, Rachel

    2016-01-01

    The Notch signaling pathway is conserved throughout evolution, and it controls various processes, including cell fate determination, differentiation, and proliferation. Innate lymphoid cells (ILCs) are lymphoid cells lacking antigen receptors that fulfill effector and regulatory functions in innate immunity and tissue remodeling. Type 3 ILCs (ILC3s) reinforce the epithelial barrier and maintain homeostasis with intestinal microbiota. We demonstrated that the population of natural cytotoxicity receptor-positive (NCR(+)) ILC3s in mice is composed of two subsets that have distinct developmental requirements. A major subset depended on the activation of Notch2 in NCR(-) ILC3 precursors in the lamina propria of the small intestine to stimulate expression of the genes encoding the transcription factors T-bet, RORγt, and aryl hydrocarbon receptor (AhR). Notch signaling contributed to the transition of NCR(-) cells into NCR(+) cells, the more proinflammatory subset, in a cell-autonomous manner. In the absence of Notch signaling, this subset of NCR(-) ILC3s did not acquire the gene expression profile of NCR(+) ILC3s. A second subset of NCR(+) ILC3s did not depend on Notch for their development or for increased transcription factor abundance; however, their production of cytokines and cell surface abundance of NCRs were decreased in the absence of Notch signaling. Together, our data suggest that Notch is a regulator of the plasticity of ILC3s by controlling NCR(+) cell fate. PMID:27141929

  1. Notch signaling, genital remodeling and reproductive function

    Murta, Daniel José de Moura Carita Dinis

    2014-01-01

    RESUMO - A via de sinalização Notch, remodelação celular genital e a função reprodutiva. - Esta tese avalia a relação entre a via de sinalização Notch, o remodelação celular genital e a função reprodutiva, sendo constituída por cinco capítulo experimentais. Nos dois primeiros, avaliamos o padrão de transcrição e expressão dos componentes e efectores da via Notch no desenvolvimento testicular pós-natal, ao longo do ciclo espermático e no epidídimo. Na experiência 3, avaliamos o fenótipo re...

  2. Oncogenic programmes and Notch activity: an 'organized crime'?

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  3. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche.

    Chen-Yuan Tseng

    2014-12-01

    Full Text Available Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs, and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.

  4. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche.

    Tseng, Chen-Yuan; Kao, Shih-Han; Wan, Chih-Ling; Cho, Yueh; Tung, Shu-Yun; Hsu, Hwei-Jan

    2014-12-01

    Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion. PMID:25521289

  5. Role of Notch signalling pathway in cancer and its association with DNA methylation

    Madhuri G. S. Aithal; Narayanappa Rajeswari

    2013-12-01

    The Notch signalling pathway is an evolutionarily conserved cell signalling pathway involved in the development of organisms as diverse as humans and fruit flies. It plays a pivotal role in cell fate determination. Dysregulated Notch signalling is oncogenic, inhibits apoptosis and promotes cell survival. Abnormal Notch signalling is seen in many cancers like T-cell acute lymphoblastic leukaemia, acute myeloid leukaemia and cancers of the breast, cervix, colon, pancreas, skin and brain. Inhibition of Notch signalling leads to growth arrest and differentiation in those cells in which Notch pathway is activated and this represents a new target for cancer therapy. Cancer develops from genome defects, including both genetic and epigenetic alterations. Epigenetics deals with heritable changes in gene function that occur without a change in the DNA sequence. Among various epigenetic alterations such as acetylation, phosphorylation, ubiquitylation and sumoylation, promoter region methylation is considered as an important component in cancer development. Epigenetic alterations can be used as biomarkers in screening, detection, diagnosis, staging and risk stratification of various cancers. DNA methylation can be therapeutically reversed and demethylating drugs have proven to be promising in cancer treatment. This review focusses on the methylation status of genes in Notch signalling pathway from various cancers and how this epigenetic alteration can be used as a biomarker for cancer diagnosis and subsequent treatment.

  6. Tumor-Suppressive Activity of Lunatic Fringe in Prostate through Differential Modulation of Notch Receptor Activation

    Shubing Zhang

    2014-02-01

    Full Text Available Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng, which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44+CD24− and CD49f+CD24− stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

  7. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  8. Notch信号调节外周T细胞的活化、增殖与分化%Notch signaling regulates activation, proliferation and differentiation of peripheral T cells

    唐晓燕; 季晓辉

    2008-01-01

    The differentiation of naive T cells to effector/memory T cells is regulated by a variety of factors. The recent advance of the contribution of Notch signaling in this differentiation step has provided a new path for better understanding the acquisition or persistence of the effector function of mature T cells. A growing body of literature indicates that the Notch pathway can influence the development of T cells in central immune organs. It is now clear that Notch' s ability to regulate cell-fate choices extends into the peripheral immune system, where the activation of the Notch signaling pathway can profoundly alter cytokine production in both CD4+ and CD8+T cells. In this review, we summarized the emerging and, in some points, conflicting evi-dences for Notch signaling on mature T cell activation, proliferation and differentiation. Although the effect of Notch ligation on CD4 + T cell cytokine production varies significantly from one report to another, it is clear that the Notch pathway is an important regulator of T cell activity. Specifically, the available data demonstrated that APCs utilize the Notch pathway to instruct T cell differentiation programs.%初始T细胞分化为效应T和记忆T细胞受到多种因素调节.最近在Notch信号途径的研究进展显示它也参于T细胞的活化与分化.大量研究已经表明Notch信号途径可以影响T细胞在中枢免疫器官的发育,现在关于它调节外周T细胞的分化状态也积累不少证据,Notch信号活化之后能够改变CD4+和CD8+T细胞分泌细胞因子的特点.以下着重介绍Notch信号参于调节外周T细胞的活化、增殖和分化的最新资料,尽管不同的研究者所得实验结果有冲突之处,但已经提示Notch信号在T细胞外周发育中的重要意义,特别重要的是抗原递呈细胞(APC)可以通过Notch信号途径调节T细胞的分化.

  9. Notch Activation Is Associated with Tetraploidy and Enhanced Chromosomal Instability in Meningiomas

    Gilson S. Baia

    2008-06-01

    Full Text Available The Notch signaling cascade is deregulated in diverse cancer types. Specific Notch function in cancer is dependent on the cellular context, the particular homologs expressed, and cross-talk with other signaling pathways. We have previously shown that components of the Notch signaling pathway are deregulated in meningiomas. How-ever, the functional consequence of abnormal Notch signaling to meningiomas is unknown. Here, we report that exogenous expression of the Notch pathway effector, HES1, is associated with tetraploid cells in meningioma cell lines. Activated Notch1 and Notch2 receptors induced endogenous HES1 expression and were associated with tetraploidy in meningiomas. Tetraploid meningioma cells exhibited nuclear features of chromosomal instability and increased frequency of nuclear atypia, such as multipolar mitotic spindles and accumulation of cells with large nuclei. FACS-sorted tetraploid cells are viable but have higher rates of spontaneous apoptosis when compared with diploid cells. We have used spectral karyotyping to show that, in contrast to diploid cells, tetraploid cells develop a higher number of both numerical and structural chromosomal abnormalities. Our findings identify a novel function for the Notch signaling pathway in generating tetraploidy and contributing to chromosomal instability. We speculate that abnormal Notch signaling pathway is an initiating genetic mechanism for meningioma and potentially promotes tumor development.

  10. WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates.

    Katoh, Masuko; Katoh, Masaru

    2007-01-01

    Notch and WNT signaling pathways are key components of the stem cell signaling network. Canonical WNT signaling to intestinal progenitor cells leads to transcriptional activation of the JAG1 gene, encoding Serrate-type Notch ligand. JAG1 then binds to the Notch receptor on adjacent stem cells to induce Notch receptor proteolyses for the release of Notch intracellular domain (NICD). NICD is associated with CSL/RBPSUH and Mastermind (MAML1, MAML2, or MAML3) to activate Notch target genes, such as HES1 and HES5. Although WNT-dependent Notch signaling activation in intestinal stem cells is clarified, the effects of Notch signaling activation on WNT signaling in progenitor cells remain unclear. We searched for Notch-response element (NRE) in the promoter region of genes encoding secreted WNT signaling inhibitors, including DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1. Double NREs were identified within human DKK2 promoter by bioinformatics and human intelligence (Humint). The human DKK2 gene was characterized as Notch signaling target in intestinal stem cells. Because DKK2 is a key player in the stem cell signaling network, the DKK2 gene at human chromosome 4q25 is a candidate tumor suppressor gene inactivated due to epigenetic silencing and/or deletion. The chimpanzee DKK2 gene was identified within the NW_105990.1 genome sequence, while the cow Dkk2 gene was identified within the AC156664.2 and AC158038.2 genome sequences. Chimpanzee DKK2 and cow Dkk2 showed 98.5% and 95.8% total-amino-acid identity with human DKK2, respectively. Double NREs in human DKK2 promoter were conserved in chimpanzee DKK2 promoter, partially in rat Dkk2 promoter, but not in cow and mouse Dkk2 promoters. The Notch-DKK2 signaling loop, created or potentiated in primates, was complementary to WNT-DKK1 and BMP-IHH-SFRP1 signaling loops for negative regulation of canonical WNT signaling pathway. Together, these facts indicate that DKK2 promoter evolution resulted in the

  11. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry

    Kluk, Michael J.; Ashworth, Todd; Wang, Hongfang; Knoechel, Birgit; Emily F Mason; Morgan, Elizabeth A.; Dorfman, David; Pinkus, Geraldine; Weigert, Oliver; Hornick, Jason L.; Chirieac, Lucian R.; Hirsch, Michelle; Oh, David J.; South, Andrew P; Leigh, Irene M.

    2013-01-01

    Fixed, paraffin-embedded (FPE) tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1) in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC) stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation...

  12. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.

    Charbonnier, Louis-Marie; Wang, Sen; Georgiev, Peter; Sefik, Esen; Chatila, Talal A

    2015-11-01

    Receptors of the Notch family direct the differentiation of helper T cell subsets, but their influence on regulatory T cell (T(reg) cell) responses is obscure. We found here that lineage-specific deletion of components of the Notch pathway enhanced T(reg) cell-mediated suppression of type 1 helper T cell (T(H)1 cell) responses and protected against their T(H)1 skewing and apoptosis. In contrast, expression in T(reg) cells of a gain-of-function transgene encoding the Notch1 intracellular domain resulted in lymphoproliferation, exacerbated T(H)1 responses and autoimmunity. Cell-intrinsic canonical Notch signaling impaired T(reg) cell fitness and promoted the acquisition by T(reg) cells of a T(H)1 cell-like phenotype, whereas non-canonical Notch signaling dependent on the adaptor Rictor activated the kinase AKT-transcription factor Foxo1 axis and impaired the epigenetic stability of Foxp3. Our findings establish a critical role for Notch signaling in controlling peripheral T(reg) cell function. PMID:26437242

  13. TGFBIp regulates differentiation of EPC (CD133(+) C-kit(+) Lin(-) cells) to EC through activation of the Notch signaling pathway.

    Maeng, Yong-Sun; Choi, Yeon Jeong; Kim, Eung Kweon

    2015-06-01

    Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs recognize the extracellular matrix (ECM), migrate, differentiate, and undergo tube morphogenesis. The ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behavior. Here, we tested the importance of transforming growth factor-beta-induced protein (TGFBIp) in regulation of the differentiation and angiogenic potential of human cord blood-derived EPCs (CD133(+) C-kit(+) Lin(-) cells). EPCs displayed increased endothelial differentiation when plated on TGFBIp compared to fibronectin. EPCs also exhibited increased adhesion and migration upon TGFBIp stimulation. Moreover, TGFBIp induced phosphorylation of the intracellular signaling molecules SRC, FAK, AKT, JNK, and ERK in EPCs. Using integrin-neutralizing antibodies, we showed that the effects of TGFBIp on EPCs are mediated by integrins α4 and α5. Furthermore, TGFBIp increased the adhesion, migration, and tube formation of CD34(+) mouse bone marrow stem cells in vitro. Gene expression analysis of EPCs plated on TGFBIp revealed that EPCs stimulated by TGFBIp exhibit increased expression of Notch ligands, such as delta-like 1 (DLL1) and Jagged1 (JAG1), through nuclear factor-kappa B signaling activation. Collectively, our findings demonstrate, for the first time, that locally generated TGFBIp at either wounds or tumor sites may contribute to differentiation and angiogenic function of EPCs by augmenting the recruitment of EPCs and regulating the expression of endothelial genes DLL1 and JAG1. PMID:25786978

  14. Notch signaling in Drosophila long-term memory formation

    Ge, Xuecai; Hannan, Frances; Xie, Zuolei; Feng, Chunhua; Tully, Tim; Zhou, Haimeng; Xie, Zuoping; Zhong, Yi

    2004-01-01

    Notch (N) is a cell surface receptor that mediates an evolutionarily ancient signaling pathway to control an extraordinarily broad spectrum of cell fates and developmental processes. To gain insights into the functions of N signaling in the adult brain, we examined the involvement of N in Drosophila olfactory learning and memory. Long-term memory (LTM) was disrupted by blocking N signaling in conditional mutants or by acutely induced expression of a dominant-negative N transgene. In contrast,...

  15. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Lagadec, Chann [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  16. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells

  17. Bevacizumab modulates retinal pigment epithelial-to-mesenchymal transition via regulating Notch signaling

    Jing-Jing Zhang

    2015-04-01

    Full Text Available AIM: To investigate the effect of bevacizumab treatment on Notch signaling and the induction of epithelial-of-mesenchymal transition (EMT in human retinal pigment epithelial cells (ARPE-19 in vitro. METHODS: In vitro cultivated ARPE-19 cells were treated with 0.25 mg/mL bevacizumab for 12, 24, and 48h. Cell morphology changes were observed under an inverted microscope. The expression of zonula occludens-1 (ZO-1, vimentin and Notch-1 intracellular domain (NICD was examined by immunofluorescence. The mRNA levels of ZO-1, α-SMA, Notch-1, Notch-2, Notch-4, Dll4, Jagged-1, RBP-Jk and Hes-1 expression were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR. The protein levels of α-SMA, NICD, Hes-1 and Dll-4 expression were examined with Western blot. RESULTS: Bevacizumab stimulation increased the expression of α-SMA and vimentin in ARPE-19 cells which changed into spindle-shaped fibroblast-like cells. Meanwhile, the mRNA expression of Hes-1 increased and the protein expression of Hes-1 and NICD also increased, which Notch signaling was activated. The mRNA expression of Notch-1, Jagged-1 and RBP-Jk increased at 48h, and while Dll4 mRNA and protein expression did not change after bevacizumab treatment. CONCLUSION: Jagged-1/Notch-1 signaling may play a critical role in bevacizumab-induced EMT in ARPE-19 cells, which provides a novel insight into the pathogenesis of intravitreal bevacizumab-associated complication.

  18. The functional role of Notch signaling in human gliomas

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now......Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...

  19. The functional role of Notch signaling in human gliomas

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...... have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now...

  20. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss

    Medyouf, Hind; Gao, Xiuhua; Armstrong, Florence; Gusscott, Samuel; Liu, Qing; Gedman, Amanda Larson; Matherly, Larry H.; Schultz, Kirk R.; Pflumio, Francoise; You, Mingjian James; Weng, Andrew P.

    2010-01-01

    NOTCH1 is activated by mutation in more than 50% of human T-cell acute lymphoblastic leukemias (T-ALLs) and inhibition of Notch signaling causes cell-cycle/growth arrest, providing rationale for NOTCH1 as a therapeutic target. The tumor suppressor phosphatase and tensin homolog (PTEN) is also mutated or lost in up to 20% of cases. It was recently observed among human T-ALL cell lines that PTEN loss correlated with resistance to Notch inhibition, raising concern that patients with PTEN-negativ...

  1. Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors.

    Richa K Dave

    Full Text Available BACKGROUND: Hedgehog (Hh signaling is crucial for the generation and maintenance of both embryonic and adult stem cells, thereby regulating development and tissue homeostasis. In the developing neocortex, Sonic Hedgehog (Shh regulates neural progenitor cell proliferation. During neurogenesis, radial glial cells of the ventricular zone (VZ are the predominant neocortical progenitors that generate neurons through both symmetric and asymmetric divisions. Despite its importance, relatively little is known of the molecular pathways that control the switch from symmetric proliferative to differentiative/neurogenic divisions in neural progenitors. PRINCIPAL FINDINGS: Here, we report that conditional inactivation of Patched1, a negative regulator of the Shh pathway, in Nestin positive neural progenitors of the neocortex leads to lamination defects due to improper corticogenesis and an increase in the number of symmetric proliferative divisions of the radial glial cells. Hedgehog-activated VZ progenitor cells demonstrated a concomitant upregulation of Hes1 and Blbp, downstream targets of Notch signaling. The Notch signaling pathway plays a pivotal role in the maintenance of stem/progenitor cells and the regulation of glial versus neuronal identity. To study the effect of Notch signaling on Hh-activated neural progenitors, we inactivated both Patched1 and Rbpj, a transcriptional mediator of Notch signaling, in Nestin positive cells of the neocortex. CONCLUSIONS: Our data indicate that by mid neurogenesis (embryonic day 14.5, attenuation of Notch signaling reverses the effect of Patched1 deletion on neurogenesis by restoring the balance between symmetric proliferative and neurogenic divisions. Hence, our results demonstrate that correct corticogenesis is an outcome of the interplay between the Hh and Notch signaling pathways.

  2. Homozygous NOTCH3 null mutation and impaired NOTCH3 signaling in recessive early-onset arteriopathy and cavitating leukoencephalopathy

    Pippucci, Tommaso; Maresca, Alessandra; Magini, Pamela; Cenacchi, Giovanna; Donadio, Vincenzo; Palombo, Flavia; Papa, Valentina; Incensi, Alex; Gasparre, Giuseppe; Valentino, Maria Lucia; Preziuso, Carmela; Pisano, Annalinda; Ragno, Michele; Liguori, Rocco; Giordano, Carla; Tonon, Caterina; Lodi, Raffaele; Parmeggiani, Antonia; Carelli, Valerio; Seri, Marco

    2015-01-01

    Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood-onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patient's vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies. PMID:25870235

  3. Faster embryonic segmentation through elevated Delta-Notch signalling.

    Liao, Bo-Kai; Jörg, David J; Oates, Andrew C

    2016-01-01

    An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. Several genetic loss-of-function conditions, including the Delta-Notch intercellular signalling mutants, result in slower segmentation. Here, we generate DeltaD transgenic zebrafish lines with a range of copy numbers and correspondingly increased signalling levels, and observe faster segmentation. The highest-expressing line shows an altered oscillating gene expression wave pattern and shortened segmentation period, producing embryos with more, shorter body segments. Our results reveal surprising differences in how Notch signalling strength is quantitatively interpreted in different organ systems, and suggest a role for intercellular communication in regulating the output period of the segmentation clock by altering its spatial pattern. PMID:27302627

  4. Notch-signalling is required for head regeneration and tentacle patterning in Hydra.

    Münder, Sandra; Tischer, Susanne; Grundhuber, Maresa; Büchels, Nathalie; Bruckmeier, Nadine; Eckert, Stefanie; Seefeldt, Carolin A; Prexl, Andrea; Käsbauer, Tina; Böttger, Angelika

    2013-11-01

    Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals. PMID:24012879

  5. Fas-Associated Protein with Death Domain Regulates Notch Signaling during Muscle Regeneration.

    Zhang, Rong; Wang, Lu; He, Liangqiang; Yang, Bingya; Yao, Chun; Du, Pan; Xu, Qiang; Cheng, Wei; Hua, Zi-Chun

    2014-01-01

    Notch signaling plays critical roles during myogenesis by promoting the proliferation and inhibiting the differentiation of myogenic progenitors. However, the mechanism of the temporal regulation of Notch signaling during the myogenic lineage progression remains elusive. In the present study, we show that a constitutively phosphoryl-mimicking mutation of Fas-associated death domain (FADD-D) enhances Notch-1 signaling and compromises Wnt signaling in both cultured myoblasts and regenerating muscles, which results in inhibited myogenic differentiation and muscle regeneration. Inhibition of Notch signaling recovers the regeneration ability in injured FADD-D muscles through rescuing Wnt signaling. Furthermore, we found that protein kinase Cα mediates FADD-D-induced Notch-1 signaling by stabilizing Notch-1. Collectively, these data identify a novel mechanism for the temporal regulation of Notch signaling during myogenic lineage progression and muscle regeneration. PMID:26303234

  6. Non-small-cell lung carcinoma: role of the Notch signaling pathway

    Barse L

    2015-06-01

    Full Text Available Levi Barse, Maurizio Bocchetta Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA Abstract: Notch signaling plays a pivotal role during embryogenesis. It regulates three fundamental processes: lateral inhibition, boundary formation, and lineage specification. During post-natal life, Notch receptors and ligands control critical cell fate decisions both in compartments that are undergoing differentiation and in pluripotent progenitor cells. First recognized as a potent oncogene in certain lymphoblastic leukemias and mesothelium-derived tissue, the role of Notch signaling in epithelial, solid tumors has been far more controversial. The overall consequence of Notch signaling and which form of the Notch receptor drives malignancy in humans is deeply debated. Most likely, this is due to the high degree of context-dependent effects of Notch signaling. More recently, it has been discovered that Notch (especially Notch-1 can exert different, even opposite effects in the same tissue under differing microenvironmental conditions. Further complicating the understanding of Notch receptors is the recently discovered role for non-canonical Notch signaling. Additionally, the most frequent Notch signaling antagonists used in biological systems have been inhibitors of the transmembrane protease complex γ-secretase, which itself processes a plethora of class one transmembrane proteins and thus cannot be considered a Notch-specific upstream regulator. Here we review the available empirical evidence gathered in recent years concerning Notch receptors and ligands in non-small-cell lung carcinoma (NSCLC. Although an overview of the field reveals seemingly contradicting results, we propose that Notch signaling can be exploited as a therapeutic target in NSCLC and represents a promising complement to the current arsenal utilized to combat this malignancy, particularly in targeting NSCLC tissues under specific environmental

  7. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells

    Hao, L; Rizzo, P; Osipo, C; Pannuti, A; Wyatt, D; Cheung, LW-K; Sonenshein, G; Osborne, BA; Miele, L

    2016-01-01

    Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself. PMID:19838210

  8. Wakayama symposium: role of canonical Notch signaling in conjucntival goblet cell differentiation and dry eye syndrome.

    Liu, Chia-Yang

    2015-01-01

    This review summarizes a recent finding regarding the intrinsic canonical Notch signaling pathway in regulating normal ocular surface morphogenesis and its role in the pathogenesis of goblet cell deficiency-associated keratoconjunctivitis sicca (KCS, or dry eye). Specifically, we used novel transgenic mice to investigate the mechanism of how the Notch1 activation may serve as the upstream control of expression of transcription factors Krüppel-like factors 4 or 5 (Klf4 or Klf5) which in turn controls goblet cell differentiation and activates mucin 5/ac synthesis during ocular surface morphogenesis. PMID:26818247

  9. Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves Notch signaling.

    Tsarovina, Konstantina; Schellenberger, Jens; Schneider, Carolin; Rohrer, Hermann

    2008-01-01

    Differentiation of noradrenergic neurons from neural crest-derived precursors results in the formation of primary sympathetic ganglia. As sympathetic neurons continue to divide after the acquisition of adrenergic and neuronal properties it was unclear, whether the increase in neuron number during neurogenesis is due to neuron proliferation rather than differentiation of progenitor cells. Here, we demonstrate Sox10-positive neural crest progenitor cells and continuous sympathetic neuron generation from Phox2b-positive autonomic progenitors during early chick sympathetic ganglion development. In vivo activation of Notch signaling resulted in a decreased neuronal population, whereas expression of the Notch signaling inhibitor Su(H)(DBM) increased the proportion of Scg10-positive neurons. Similar results were obtained for sensory dorsal root ganglia (DRG). The effects of Notch gain- and loss-of-function experiments support the notion that progenitor maintenance and neuron differentiation from progenitor cells are essential for neurogenesis also during early sympathetic ganglion development. PMID:17920293

  10. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. PMID:24972386

  11. Notch signalling in the paraxial mesoderm is most sensitive to reduced Pofut1 levels during early mouse development

    Serth Jürgen

    2009-01-01

    Full Text Available Abstract Background The evolutionarily conserved Notch signalling pathway regulates multiple developmental processes in a wide variety of organisms. One critical posttranslational modification of Notch for its function in vivo is the addition of O-linked fucose residues by protein O-fucosyltransferase 1 (POFUT1. In addition, POFUT1 acts as a chaperone and is required for Notch trafficking. Mouse embryos lacking POFUT1 function die with a phenotype indicative of global inactivation of Notch signalling. O-linked fucose residues on Notch can serve as substrates for further sugar modification by Fringe (FNG proteins. Notch modification by Fringe differently affects the ability of ligands to activate Notch receptors in a context-dependent manner indicating a complex modulation of Notch activity by differential glycosylation. Whether the context-dependent effects of Notch receptor glycosylation by FNG reflect different requirements of distinct developmental processes for O-fucosylation by POFUT1 is unclear. Results We have identified and characterized a spontaneous mutation in the mouse Pofut1 gene, referred to as "compact axial skeleton" (cax. Cax carries an insertion of an intracisternal A particle retrotransposon into the fourth intron of the Pofut1 gene and represents a hypomorphic Pofut1 allele that reduces transcription and leads to reduced Notch signalling. Cax mutant embryos have somites of variable size, showed partly abnormal Lfng expression and, consistently defective anterior-posterior somite patterning and axial skeleton development but had virtually no defects in several other Notch-regulated early developmental processes outside the paraxial mesoderm that we analyzed. Conclusion Notch-dependent processes apparently differ with respect to their requirement for levels of POFUT1. Normal Lfng expression and anterior-posterior somite patterning is highly sensitive to reduced POFUT1 levels in early mammalian embryos, whereas other early Notch

  12. Targeting Notch signaling pathway in cancer: Clinical development advances and challenges

    Takebe, Naoko; Nguyen, Dat; Yang, Sherry X

    2013-01-01

    Notch signaling plays an important role in development and cell fate determination, and it is deregulated in human hematologic malignancies and solid tumors. This review includes a brief introduction of the relevant pathophysiology of Notch signaling pathway and primarily focuses on the clinical development of promising agents that either obstruct Notch receptor cleavages such as γ-secretase inhibitors (GSIs) or interfere with the Notch ligand–receptor interaction by monoclonal antibodies (mA...

  13. Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling.

    de Melo, Jimmy; Zibetti, Cristina; Clark, Brian S; Hwang, Woochang; Miranda-Angulo, Ana L; Qian, Jiang; Blackshaw, Seth

    2016-02-24

    Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG development are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Temporally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1, Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misexpression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2 not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to drive MG specification and differentiation. PMID:26911688

  14. NOTCH4 signaling controls EFNB2-induced endothelial progenitor cell dysfunction in preeclampsia.

    Liu, Xiaoxia; Luo, Qingqing; Zheng, Yanfang; Liu, Xiaoping; Hu, Ying; Liu, Weifang; Luo, Minglian; Zhao, Yin; Zou, Li

    2016-07-01

    Preeclampsia is a serious complication of pregnancy and is closely related to endothelial dysfunction, which can be repaired by endothelial progenitor cells (EPCs). The DLL4/NOTCH-EFNB2 (ephrinB2) cascade may be involved in the pathogenesis of preeclampsia by inhibiting the biological activity of EPCs. In addition, both NOTCH1 and NOTCH4, which are specific receptors for DLL4/NOTCH, play critical roles in the various steps of angiogenesis. However, it has not been determined which receptor (NOTCH1, NOTCH4, or both) is specific for the DLL4/NOTCH-EFNB2 cascade. Accordingly, we performed a series of investigations to evaluate it. EFNB2 expression was examined when NOTCH4 or NOTCH1 was downregulated, with or without DLL4 treatment. Then, the effects of NOTCH4 on EPC function were detected. Additionally, we analyzed NOTCH4 and EFNB2 expression in the EPCs from preeclampsia and normal pregnancies. Results showed that NOTCH4 downregulation led to decreased expression of EFNB2, which maintained the same level in the presence of DLL4/NOTCH activation. By contrast, NOTCH1 silencing resulted in a moderate increase in EFNB2 expression, which further increased in the presence of DLL4/NOTCH activation. The downregulation of NOTCH4 resulted in an increase of EPC biological activity, which was similar to EFNB2 silencing. NOTCH4 expression, consistent with the EFNB2 level, increased notably in preeclampsia EPCs compared with the controls. These findings suggest that NOTCH4, not NOTCH1, is the specific receptor for the DLL4/NOTCH-EFNB2 cascade. Blockade of this cascade may enhance the angiogenic property of EPCs, and act as a potential target to promote angiogenesis in patients with preeclampsia. PMID:27069008

  15. Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling

    Sylvestre Chea

    2016-02-01

    Full Text Available T and innate lymphoid cells (ILCs share some aspects of their developmental programs. However, although Notch signaling is strictly required for T cell development, it is dispensable for fetal ILC development. Constitutive activation of Notch signaling, at the common lymphoid progenitor stage, drives T cell development and abrogates ILC development by preventing Id2 expression. By combining single-cell transcriptomics and clonal culture strategies, we characterize two heterogeneous α4β7-expressing lymphoid progenitor compartments. αLP1 (Flt3+ still retains T cell potential and comprises the global ILC progenitor, while αLP2 (Flt3− consists of ILC precursors that are primed toward the different ILC lineages. Only a subset of αLP2 precursors is sensitive to Notch signaling required for their proliferation. Our study identifies, in a refined manner, the diversity of transitional stages of ILC development, their transcriptional signatures, and their differential dependence on Notch signaling.

  16. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity.

    Liu, Zhenyi; Brunskill, Eric; Boyle, Scott; Chen, Shuang; Turkoz, Mustafa; Guo, Yuxuan; Grant, Rachel; Kopan, Raphael

    2015-03-15

    We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time. PMID:25725069

  17. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway.

    Krishnamoorthy, Veena; Carr, Tiffany; de Pooter, Renee F; Emanuelle, Akinola Olumide; Akinola, Emanuelle Olumide; Gounari, Fotini; Kee, Barbara L

    2015-04-01

    The chemokine receptor CCR9 controls the immigration of multipotent hematopoietic progenitor cells into the thymus to sustain T cell development. Postimmigration, thymocytes downregulate CCR9 and migrate toward the subcapsular zone where they recombine their TCR β-chain and γ-chain gene loci. CCR9 is subsequently upregulated and participates in the localization of thymocytes during their selection for self-tolerant receptor specificities. Although the dynamic regulation of CCR9 is essential for early T cell development, the mechanisms controlling CCR9 expression have not been determined. In this article, we show that key regulators of T cell development, Notch1 and the E protein transcription factors E2A and HEB, coordinately control the expression of Ccr9. E2A and HEB bind at two putative enhancers upstream of Ccr9 and positively regulate CCR9 expression at multiple stages of T cell development. In contrast, the canonical Notch signaling pathway prevents the recruitment of p300 to the putative Ccr9 enhancers, resulting in decreased acetylation of histone H3 and a failure to recruit RNA polymerase II to the Ccr9 promoter. Although Notch signaling modestly modulates the binding of E proteins to one of the two Ccr9 enhancers, we found that Notch signaling represses Ccr9 in T cell lymphoma lines in which Ccr9 transcription is independent of E protein function. Our data support the hypothesis that activation of Notch1 has a dominant-negative effect on Ccr9 transcription and that Notch1 and E proteins control the dynamic expression of Ccr9 during T cell development. PMID:25710912

  18. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis.

    Vanina G Da Ros

    Full Text Available Fine-tuned Notch and Hedgehog signalling pathways via attenuators and dampers have long been recognized as important mechanisms to ensure the proper size and differentiation of many organs and tissues. This notion is further supported by identification of mutations in these pathways in human cancer cells. However, although it is common that the Notch and Hedgehog pathways influence growth and patterning within the same organ through the establishment of organizing regions, the cross-talk between these two pathways and how the distinct organizing activities are integrated during growth is poorly understood. Here, in an unbiased genetic screen in the Drosophila melanogaster eye, we found that tumour-like growth was provoked by cooperation between the microRNA miR-7 and the Notch pathway. Surprisingly, the molecular basis of this cooperation between miR-7 and Notch converged on the silencing of Hedgehog signalling. In mechanistic terms, miR-7 silenced the interference hedgehog (ihog Hedgehog receptor, while Notch repressed expression of the brother of ihog (boi Hedgehog receptor. Tumourigenesis was induced co-operatively following Notch activation and reduced Hedgehog signalling, either via overexpression of the microRNA or through specific down-regulation of ihog, hedgehog, smoothened, or cubitus interruptus or via overexpression of the cubitus interruptus repressor form. Conversely, increasing Hedgehog signalling prevented eye overgrowth induced by the microRNA and Notch pathway. Further, we show that blocking Hh signal transduction in clones of cells mutant for smoothened also enhance the organizing activity and growth by Delta-Notch signalling in the wing primordium. Together, these findings uncover a hitherto unsuspected tumour suppressor role for the Hedgehog signalling and reveal an unanticipated cooperative antagonism between two pathways extensively used in growth control and cancer.

  19. Effect of activated Notch signaling system on Schwann cells%激活的Notch信号系统对许旺细胞调控作用的影响

    王瑾; 邓磊; 王艳华; 张培训; 张宏波; 姜保国

    2010-01-01

    Objective To study the effect of activated Notch signaling system on Schwann cells in vitro. Methods Schwann cells were isolated from sciatic nerves of adult SD rats. Recombinant rat jagged1/FC chimera, an activator of the Notch signaling system, and γ-secretase inhibitor (DAPT), an inhibitor of the Notch signaling system, were added into the culture medium respectively. The cells in the medium added with phosphate buffered saline were used as control group. Then the cultured cells were collected. NICD, as a mark of activated Notch system, was detected by immunofluorescence methods. MTT method was used to calculate the growth curve. The level of NGF in the cell supernatant was assayed by using ELISA. Results Schwann cells in recombinant rat jagged/FC chimera group grew better than those in the control groups. MTT method showed that activated Notch signaling significantly promote the proliferation of the cells(P < 0.05). After cultured for 48 h, the amount of NGF in cell supernatant of recombinant rat jagged1/FC chimera group was significantly increased (P < 0.05). Conclusion When the Notch signaling system is activated, Schwann cells not only proliferate but also secret more NGF.%目的 研究体外激活的Notch信号系统对许旺细胞的调控作用.方法 培养成年SD大鼠坐骨神经许旺细胞,分别加入Notch信号激活剂Recombinant rat jagged1/FC chimera和抑制剂DAPT,空白对照加PBS缓冲液.通过免疫荧光检测细胞Notch信号蛋白激活状态,MTT检测细胞增殖情况,酶联免疫吸附试验检测细胞分泌NGF情况.结果 倒置显微镜下观察Notch激活组细胞生长优于其他各组;MTT检测该组促细胞增殖作用明显(P<0.05),且增殖效果在72 h内逐渐增强;ELISA显示Notch激活组细胞培养上清液中NGF蛋白浓度[(60.11±2.61)pg/ml]较对照组[(51.29±3.59)pg/ml]及抑制组[(43.43±2.82 pg/ml]明显升高(P<0.05).结论 一定剂量的Notch信号激活剂不仅促进体外培养的许旺

  20. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium

    Alunni, A.; Krecsmarik, M.; A Bosco; Galant, S.; Pan, L.; Moens, C.B.; Bally-Cuif, L.

    2013-01-01

    Maintaining the homeostasis of germinal zones in adult organs is a fundamental but mechanistically poorly understood process. In particular, what controls stem cell activation remains unclear. We have previously shown that Notch signaling limits neural stem cell (NSC) proliferation in the adult zebrafish pallium. Combining pharmacological and genetic manipulations, we demonstrate here that long-term Notch invalidation primarily induces NSC amplification through their activation from quiescenc...

  1. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  2. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway.

    Takashima, Shigeo; Adams, Katrina L; Ortiz, Paola A; Ying, Chong T; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2011-05-15

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  3. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis

  4. Electroacupuncture pretreatment induces tolerance against focal cerebral ischemia through activation of canonical Notch pathway

    Zhao Yu

    2012-09-01

    Full Text Available Abstract Background Electroacupuncture (EA pretreatment can induce the tolerance against focal cerebral ischemia. However, the underlying mechanisms have not been fully understood. Emerging evidences suggest that canonical Notch signaling may be involved in ischemic brain injury. In the present study, we tested the hypothesis that EA pretreatment-induced tolerance against focal cerebral ischemia is mediated by Notch signaling. Results EA pretreatment significantly enhanced Notch1, Notch4 and Jag1 gene transcriptions in the striatum, except Notch1 intracellular domain level, which could be increased evidently by ischemia. After ischemia and reperfusion, Hes1 mRNA and Notch1 intracellular domain level in ischemic striatum in EA pretreatment group were increased and reached the peak at 2 h and 24 h, respectively, which were both earlier than the peak achieved in control group. Intraventricular injection with the γ-secretase inhibitor MW167 attenuated the neuroprotective effect of EA pretreatment. Conclusions EA pretreatment induces the tolerance against focal cerebral ischemia through activation of canonical Notch pathway.

  5. Notch activity in the nervous system: to switch or not switch?

    Blader Patrick

    2009-10-01

    Full Text Available Abstract The Notch pathway is instrumental for cell fate diversification during development. Pioneer studies conducted in Drosophila and more recent work performed in vertebrates have shown that in the nervous system, Notch is reiteratively employed when cells choose between two alternative fates, a process referred to as a binary fate decision. While the early (neural versus epidermal fate decisions mainly involve an inhibitory effect of Notch on the neural fate, late fate decisions (choice between different subtypes of neural cells have been proposed to involve a binary switch activity whereby Notch would be instructive for one fate and inhibitory for the other. We re-examine this binary switch model in light of two recent findings made in the vertebrate nervous system. First, in the zebrafish epiphysis, Notch is required to resolve a mixed identity through the inhibition of one specific fate. Second, in the murine telencephalon, Notch regulates the competence of neural progenitors to respond to the JAK/STAT pathway, thereby allowing for the induction of an astrocyte fate. In neither case is Notch instructive for the alternative fate, but rather cooperates with another signalling pathway to coordinate binary fate choices. We also review current knowledge on the molecular cascades acting downstream of Notch in the context of neural subtype diversification, a crucial issue if one is to determine Notch function as an instructive, permissive or inhibitory signal in the various cellular contexts where it is implicated. Finally, we speculate as to how such a 'non-switch' activity could contribute to the expansion of neuronal subtype diversity.

  6. UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans

    Komal Safdar

    2016-07-01

    Full Text Available Notch-type signaling mediates cell−cell interactions important for animal development. In humans, reduced or inappropriate Notch signaling activity is associated with various developmental defects and disease states, including cancers. Caenorhabditis elegans expresses two Notch-type receptors, GLP-1 and LIN-12. GLP-1 mediates several cell-signaling events in the embryo and promotes germline proliferation in the developing and adult gonad. LIN-12 acts redundantly with GLP-1 in certain inductive events in the embryo and mediates several cell−cell interactions during larval development. Recovery of genetic suppressors and enhancers of glp-1 or lin-12 loss- or gain-of-function mutations has identified numerous regulators of GLP-1 and LIN-12 signaling activity. Here, we report the molecular identification of sog-1, a gene identified in screens for recessive suppressors of conditional glp-1 loss-of-function mutations. The sog-1 gene encodes UBR-5, the sole C. elegans member of the UBR5/Hyd family of HECT-type E3 ubiquitin ligases. Molecular and genetic analyses indicate that the loss of ubr-5 function suppresses defects caused by reduced signaling via GLP-1 or LIN-12. In contrast, ubr-5 mutations do not suppress embryonic or larval lethality associated with mutations in a downstream transcription factor, LAG-1. In the gonad, ubr-5 acts in the receiving cells (germ cells to limit GLP-1 signaling activity. SEL-10 is the F-box component of SCFSEL-10 E3 ubiquitin–ligase complex that promotes turnover of Notch intracellular domain. UBR-5 acts redundantly with SEL-10 to limit Notch signaling in certain tissues. We hypothesize that UBR-5 activity limits Notch-type signaling by promoting turnover of receptor or limiting its interaction with pathway components.

  7. Modulation of signal strength switches Notch from an inducer of T cells to an inducer of ILC2

    Rebecca eGentek

    2013-10-01

    Full Text Available Innate lymphoid cells (ILC are emerging key players of the immune system with close lineage relationship to T cells. ILC2 play an important role in protective immunity against multicellular parasites, but are also involved in the pathogenesis of type 2 immune diseases. Here, we have studied the developmental requirements for human ILC2. We report that ILC2 are present in the thymus of young human donors, possibly reflecting local differentiation. Furthermore, we show that uncommitted lineage-CD34+CD1a- human thymic progenitors have the capacity to develop into ILC2 in vitro under the influence of Notch signaling, either by stimulation with the Notch ligand Delta like 1 (Dll1 or by expression of the active intracellular domain of NOTCH1 (NICD1. The capacity of NICD1 to mobilize the ILC2 differentiation program was sufficiently potent to override commitment to the T cell lineage in CD34+CD1a+ progenitors and force them into the ILC2 lineage. As Notch is an important factor also for T cell development, these results raise the question how one and the same signaling pathway can elicit such distinct developmental outcomes from the same precursors. We provide evidence that Notch signal strength is a critical determinant in this decision: by tuning signal amplitude, Notch can be converted from a T cell inducer (low signal strength to an ILC2 inducer (high signal strength. Thus, this study enhances our understanding of human ILC2 development and identifies a mechanism determining specificity of Notch signal output during T cell and ILC2 differentiation.

  8. Insensible is a novel nuclear inhibitor of Notch activity in Drosophila.

    Franck Coumailleau

    Full Text Available Notch signalling regulates a wide range of developmental processes. In the Drosophila peripheral nervous system, Notch regulates a series of binary fate decisions that lead to the formation of regularly spaced sensory organs. Each sensory organ is generated by single sensory organ precursor cell (SOP via a series of asymmetric cell divisions. Starting from a SOP-specific Cis-Regulatory Module (CRM, we identified insensible (insb, a.k.a CG6520, as a SOP/neuron-specific gene encoding a nuclear factor that inhibits Notch signalling activity. First, over-expression of Insb led to the transcriptional repression of a Notch reporter and to phenotypes associated with the inhibition of Notch. Second, while the complete loss of insb activity had no significant phenotype, it enhanced the bristle phenotype associated with reduced levels of Hairless, a nuclear protein acting as a co-repressor for Suppressor of Hairless. In conclusion, our work identified Insb as a novel SOP/neuron-specific nuclear inhibitor of Notch activity in Drosophila.

  9. Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face

    Barske, Lindsey; Askary, Amjad; Zuniga, Elizabeth; Balczerski, Bartosz; Bump, Paul; Nichols, James T.; Crump, J. Gage

    2016-01-01

    The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper

  10. Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation

    Jason C. Tung

    2014-03-01

    Full Text Available For cell-based treatments of myocardial infarction, a better understanding of key developmental signaling pathways and more robust techniques for producing cardiomyocytes are required. Manipulation of Notch signaling has promise as it plays an important role during cardiovascular development, but previous studies presented conflicting results that Notch activation both positively and negatively regulates cardiogenesis. We developed surface- and microparticle-based Notch-signaling biomaterials that function in a time-specific activation-tunable manner, enabling precise investigation of Notch activation at specific developmental stages. Using our technologies, a biphasic effect of Notch activation on cardiac differentiation was found: early activation in undifferentiated human embryonic stem cells (hESCs promotes ectodermal differentiation, activation in specified cardiovascular progenitor cells increases cardiac differentiation. Signaling also induces cardiomyocyte proliferation, and repeated doses of Notch-signaling microparticles further enhance cardiomyocyte population size. These results highlight the diverse effects of Notch activation during cardiac development and provide approaches for generating large quantities of cardiomyocytes.

  11. Dissecting and circumventing the requirement for RAM in CSL-dependent Notch signaling.

    Scott E Johnson

    Full Text Available The Notch signaling pathway is an intercellular communication network vital to metazoan development. Notch activation leads to the nuclear localization of the intracellular portion (NICD of the Notch receptor. Once in the nucleus, NICD binds the transcription factor CSL through a bivalent interaction involving the high-affinity RAM region and the lower affinity ANK domain, converting CSL from a transcriptionally-repressed to an active state. This interaction is believed to directly displace co-repressor proteins from CSL and recruit co-activator proteins. Here we investigate the consequences of this bivalent organization in converting CSL from the repressed to active form. One proposed function of RAM is to promote the weak ANK:CSL interaction; thus, fusion of CSL-ANK should bypass this function of RAM. We find that a CSL-ANK fusion protein is transcriptionally active in reporter assays, but that the addition of RAM in trans further increases transcriptional activity, suggesting another role of RAM in activation. A single F235L point substitution, which disrupts co-repressor binding to CSL, renders the CSL-ANK fusion fully active and refractory to further stimulation by RAM in trans. These results suggest that in the context of a mammalian CSL-ANK fusion protein, the main role of RAM is to displace co-repressor proteins from CSL.

  12. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy andAmhr2-cretransgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). TheAmhr2-cretransgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenicAmhr2-cre, Rosa(Notch1)females were infertile, whereas controlRosa(Notch1)mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression ofWnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activatedSmoand inbeta-catenin,Wnt4,Wnt7a, andDicerconditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  13. Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage.

    Stephen M Carlin

    Full Text Available The Delta/Notch signal transduction pathway is central to T cell differentiation from haemopoietic stem cells (HSCs. Although T cell development is well characterized using expression of cell surface markers, the detailed mechanisms driving differentiation have not been established. This issue becomes central with observations that adult HSCs exhibit poor differentiation towards the T cell lineage relative to neonatal or embryonic precursors. This study investigates the contribution of Notch signalling and stromal support cells to differentiation of adult and Cord Blood (CB human HSCs, using the Notch signalling OP9Delta co-culture system. Co-cultured cells were assayed at weekly intervals during development for phenotype markers using flow cytometry. Cells were also assayed for mRNA expression at critical developmental stages. Expression of the central thymocyte marker CD4 was initiated independently of Notch signalling, while cells grown with Notch signalling had reduced expression of CD4 mRNA and protein. Interruption of Notch signalling in partially differentiated cells increased CD4 mRNA and protein expression, and promoted differentiation to CD4(+ CD8(+ T cells. We identified a set of genes related to T cell development that were initiated by Notch signalling, and also a set of genes subsequently altered by Notch signal interruption. These results demonstrate that while Notch signalling is essential for establishment of the T cell lineage, at later stages of differentiation, its removal late in differentiation promotes more efficient DP cell generation. Notch signalling adds to signals provided by stromal cells to allow HSCs to differentiate to T cells via initiation of transcription factors such as HES1, GATA3 and TCF7. We also identify gene expression profile differences that may account for low generation of T cells from adult HSCs.

  14. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea.

    Maass, Juan C; Gu, Rende; Basch, Martin L; Waldhaus, Joerg; Lopez, Eduardo Martin; Xia, Anping; Oghalai, John S; Heller, Stefan; Groves, Andrew K

    2015-01-01

    Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies. PMID:25873862

  15. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea

    Juan Cristobal Maass

    2015-03-01

    Full Text Available Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration.. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies.

  16. Inhibition of Notch Signaling Ameliorates Acute Kidney Failure and Downregulates Platelet-Derived Growth Factor Receptor β in the Mouse Model.

    Kramer, Jan; Schwanbeck, Ralf; Pagel, Horst; Cakiroglu, Figen; Rohwedel, Jürgen; Just, Ursula

    2016-01-01

    Ischemic acute kidney injury (AKI) is associated with high morbidity and frequent complications. Repeated episodes of AKI may lead to end-stage renal failure. The pathobiology of regeneration in AKI is not well understood and there is no effective clinical therapy that improves regeneration. The Notch signaling pathway plays an essential role in kidney development and has been implicated in tissue repair in the adult kidney. Here, we found that kidneys after experimental AKI in mice showed increased expression of Notch receptors, specifically Notch1-3, of the Notch ligands Jagged-1 (Jag1), Jag2 and Delta-like-4 (Dll4) and of the Notch target genes Hes1, Hey2, HeyL, Sox9 and platelet-derived growth factor receptor β (Pdgfrb). Treatment of ischemic mice with the x03B3;-secretase inhibitor DBZ blocked Notch signaling and specifically downregulated the expression of Notch3 and the Notch target genes Hes1, Hey2, HeyL and Pdgfrb. After DBZ treatment, the mice developed less interstitial edema and displayed altered interstitial inflammation patterns. Furthermore, serum urea and creatinine levels were significantly decreased from 6 h onwards when compared to control mice treated with DMSO only. Our data are consistent with an amelioration of the severity of kidney injury by blocking Notch activation following AKI, and suggest an involvement of Notch-regulated Pdgfrb in AKI pathogenesis. PMID:26939110

  17. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice.

    Feng, Lizhao; Wang, Yijing; Cai, Han; Sun, Guanghong; Niu, Wanbao; Xin, Qiliang; Tang, Xiaofang; Zhang, Jiawei; Wang, Chao; Zhang, Hua; Xia, Guoliang

    2016-06-01

    Ovarian follicles are the basic functional units of female reproduction in the mammalian ovary. We show here that the protein a disintegrin and metalloproteinase domain 10 (ADAM10), a cell surface sheddase, plays an indispensable role in controlling primordial follicle formation by regulating the recruitment of follicle supporting cells in mice. We demonstrate that suppressing ADAM10 in vitro or deletion of Adam10 in vivo disrupts germline cyst breakdown and primordial follicle formation. Using a cell lineage tracing approach, we show that ADAM10 governs the recruitment of ovarian follicle cells by regulating the differentiation and proliferation of LGR5-positive follicle supporting progenitor cells. By detecting the development of FOXL2-positive pregranulosa cells, we found that inhibiting ADAM10 reduced the number of FOXL2-positive cells in perinatal ovaries. Furthermore, inhibiting ADAM10 suppressed the activation of Notch signaling, and blocking Notch signaling also disrupted the recruitment of follicle progenitor cells. Taken together, these results show that ADAM10-Notch signaling in ovarian somatic cells governs the primordial follicle formation by controlling the development of ovarian pregranulosa cells. The proper recruitment of ovarian follicle supporting cells is essential for establishment of the ovarian reserve in mice. PMID:27084580

  18. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  19. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  20. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells

    Suman, S; Das, T P; Damodaran, C

    2013-01-01

    Background: Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models. Methods: ALDH− and ALDH+ BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis. Results: Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH− and ALDH+ cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH− and ALDH+ cells. Conclusion: Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs. PMID:24129237

  1. Digital notch filter based active damping for LCL filters

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin;

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  2. Regulation of Notch Signaling by an Evolutionary Conserved DEAD Box RNA Helicase, Maheshvara in Drosophila melanogaster.

    Surabhi, Satya; Tripathi, Bipin K; Maurya, Bhawana; Bhaskar, Pradeep K; Mukherjee, Ashim; Mutsuddi, Mousumi

    2015-11-01

    Notch signaling is an evolutionary conserved process that influences cell fate determination, cell proliferation, and cell death in a context-dependent manner. Notch signaling is fine-tuned at multiple levels and misregulation of Notch has been implicated in a variety of human diseases. We have characterized maheshvara (mahe), a novel gene in Drosophila melanogaster that encodes a putative DEAD box protein that is highly conserved across taxa and belongs to the largest group of RNA helicase. A dynamic pattern of mahe expression along with the maternal accumulation of its transcripts is seen during early stages of embryogenesis. In addition, a strong expression is also seen in the developing nervous system. Ectopic expression of mahe in a wide range of tissues during development results in a variety of defects, many of which resemble a typical Notch loss-of-function phenotype. We illustrate that ectopic expression of mahe in the wing imaginal discs leads to loss of Notch targets, Cut and Wingless. Interestingly, Notch protein levels are also lowered, whereas no obvious change is seen in the levels of Notch transcripts. In addition, mahe overexpression can significantly rescue ectopic Notch-mediated proliferation of eye tissue. Further, we illustrate that mahe genetically interacts with Notch and its cytoplasmic regulator deltex in trans-heterozygous combination. Coexpression of Deltex and Mahe at the dorso-ventral boundary results in a wing-nicking phenotype and a more pronounced loss of Notch target Cut. Taken together we report identification of a novel evolutionary conserved RNA helicase mahe, which plays a vital role in regulation of Notch signaling. PMID:26400611

  3. The Notch and TGF-beta Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma.

    Sjölund, Jonas; Boström, Anna-Karin; Lindgren, David; Manna, Sugata; Moustakas, Aristidis; Ljungberg, Börje; Johansson, Martin; Fredlund, Erik; Axelson, Håkan

    2011-01-01

    Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown.

  4. Fast and Flexible Tracking and Mitigating a Jamming Signal with an Adaptive Notch Filter

    BORIO DANIELE; O'DRISCOLL CILLIAN; Fortuny Guasch, Joaquim

    2014-01-01

    GNSS jammers are small portable devices able to broadcast disruptive interference and overpower the much weaker GNSS signals. The authors consider the use of an adaptive notch filter as an effective solution for mitigating jamming effects.

  5. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats

    The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis

  6. Intrahepatic Bile Duct Regeneration in Mice Does Not Require Hnf6 or Notch Signaling through Rbpj

    Walter, Teagan J.; Vanderpool, Charles; Cast, Ashley E.; Huppert, Stacey S.

    2014-01-01

    The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mic...

  7. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    Kidd, Simon; Lieber, Toby

    2016-01-01

    The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity. PMID:26986723

  8. Luteolin Inhibits Breast Cancer Development and Progression In Vitro and In Vivo by Suppressing Notch Signaling and Regulating MiRNAs

    Da-Wei Sun

    2015-11-01

    Full Text Available Background/Aims: This study aims to investigate the effect of Luteolin on breast cancer in vitro and in vivo and the interaction between miRNAs and Notch signaling after Luteolin intervention, and illustrates the possible underlying mechanism and regulation loop. Methods: Cell growth/survival assays and cell cycle analyses were performed to evaluate cell survival in vitro. Scratch tests, cell invasion assays and tube formation assays were carried out to analyze cell viability and identify the impact of Luteolin on angiogenesis. Critical components in the Notch pathway including proteins and mRNAs were detected by Western blotting analyses, ELISA assays and real-time reverse transcription-polymerase chain reaction. Matrix metalloproteinases activity was evaluated by gelatin zymography analyses. MiRNAs were analyzed by miRNA expression assays. After MDA-MB-231 cells were separately transfected with Notch-1 siRNA/cDNA and miRNA mimics, the above assays were also carried out to examine potential tumor cell changes. Xenograft models were applied to evaluate the treatment potency of Luteolin in breast cancer. Results: Luteolin significantly inhibited breast cancer cell survival, cell cycle, tube formation and the expression of Notch signaling-related proteins and mRNAs, and regulated miRNAs. After introducing Notch-1 siRNA and miRNA mimics, MDA-MB-231 cells presented with changes in miRNA levels, reduced Notch signaling-related proteins, and decreased tumor survival, invasion and angiogenesis. Conclusion: Luteolin inhibits Notch signaling by regulating miRNAs. However, the effect of miRNAs on the Notch pathway could be either Luteolin-dependent or Luteolin-independent. Furthermore, Notch-1 alteration may inversely change miRNAs levels. Our data demonstrates that Luteolin, miRNAs and the Notch pathway are critical in breast cancer development and prognosis.

  9. Notch signaling regulates late-stage epidermal differentiation and maintains postnatal hair cycle homeostasis.

    Hsien-Yi Lin

    Full Text Available BACKGROUND: Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis. METHODOLOGY AND PRINCIPAL FINDINGS: We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes. SIGNIFICANCE: our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation

  10. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.

    Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  11. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése

    2013-01-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions in the...... normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC....

  12. LFA-1/ICAM-1 Ligation in Human T Cells Promotes Th1 Polarization through a GSK3β Signaling-Dependent Notch Pathway.

    Verma, Navin K; Fazil, M H U Turabe; Ong, Seow Theng; Chalasani, Madhavi Latha S; Low, Jian Hui; Kottaiswamy, Amuthavalli; P, Praseetha; Kizhakeyil, Atish; Kumar, Sunil; Panda, Aditya K; Freeley, Michael; Smith, Sinead M; Boehm, Bernhard O; Kelleher, Dermot

    2016-07-01

    In this study, we report that the integrin LFA-1 cross-linking with its ligand ICAM-1 in human PBMCs or CD4(+) T cells promotes Th1 polarization by upregulating IFN-γ secretion and T-bet expression. LFA-1 stimulation in PBMCs, CD4(+) T cells, or the T cell line HuT78 activates the Notch pathway by nuclear translocation of cleaved Notch1 intracellular domain (NICD) and upregulation of target molecules Hey1 and Hes1. Blocking LFA-1 by a neutralizing Ab or specific inhibition of Notch1 by a γ-secretase inhibitor substantially inhibits LFA-1/ICAM-1-mediated activation of Notch signaling. We further demonstrate that the Notch pathway activation is dependent on LFA-1/ICAM-1-induced inactivation of glycogen synthase kinase 3β (GSK3β), which is mediated via Akt and ERK. Furthermore, in silico analysis in combination with coimmunoprecipitation assays show an interaction between NICD and GSK3β. Thus, there exists a molecular cross-talk between LFA-1 and Notch1 through the Akt/ERK-GSK3β signaling axis that ultimately enhances T cell differentiation toward Th1. Although clinical use of LFA-1 antagonists is limited by toxicity related to immunosuppression, these findings support the concept that Notch inhibitors could be attractive for prevention or treatment of Th1-related immunologic disorders and have implications at the level of local inflammatory responses. PMID:27206767

  13. And Lophotrochozoa Makes Three: Notch/Hes Signaling in Annelid Segmentation

    Rivera, Ajna S; Weisblat, David A.

    2008-01-01

    Segmentation is unquestionably a major factor in the evoluation of complex body plans, but how this trait itself evolved is unknown. Approaching this problem requires comparing the molecular mechanisms of segmentation in diverse segmented and unsegmented taxa. Notch/Hes signaling is involved in segmentation in sequentially segmenting vertebrates and arthropods, as judged by patterns of expression of one or more genes in this network and by the disruption of segmental patterning when Notch/Hes...

  14. 14-3-3σ controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    14-3-3σ (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3σ mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3σ activity in corneal epithelial cells by overexpressing dominative negative 14-3-3σ led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3σ mutant-expressing corneal epithelial cells. We conclude that 14-3-3σ is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  15. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    Xin, Ying [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Lu, Qingxian [Tumor Immunobiology Group, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Li, Qiutang, E-mail: q.li@louisville.edu [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States)

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  16. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation

    Chen, Juan-Juan; Gao, Xiao-Tong; Yang, Lan; Fu, Wei; Liang, Liang; Li, Jun-Chang; Hu, Bin; Sun, Zhi-Jian; Huang, Si-Yong; Zhang, Yi-Zhe; Liang, Ying-Min; Qin, Hong-Yan; Han, Hua

    2016-01-01

    Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy. PMID:27188577

  17. Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering.

    Hong, Xuezhi; Wang, Dawei; Xu, Lei; He, Sailing

    2010-06-01

    A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission. PMID:20588368

  18. A comparison of adaptive and notch filtering for removing electromagnetic noise from monopolar surface electromyographic signals

    The purpose of this study was to compare the monopolar electromyographic (EMG) amplitude versus isometric force relationships from three signal processing methods (raw versus notch filtering versus adaptive filtering). Seventeen healthy subjects (mean ± SD age = 24.6 ± 4.3 yr) performed incremental isometric muscle actions of the dominant leg extensors in 10% increments from 10% to 100% of the maximum voluntary contraction (MVC). During each muscle action, a monopolar surface EMG signal was recorded from the vastus lateralis and processed with the three signal processing methods. The linear slope coefficients for the EMG amplitude versus isometric force relationships were equivalent for the three signal processing methods and correlated (r = 0.997–0.999). However, the mean amplitude values for the notch-filtered signals were less than those for the raw and adaptive-filtered signals. Thus, adaptive filtering may be the best method for removing electromagnetic noise from monopolar surface EMG signals

  19. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism.

    Phillips, Emma; Lang, Verena; Bohlen, Jonathan; Bethke, Frederic; Puccio, Laura; Tichy, Diana; Herold-Mende, Christel; Hielscher, Thomas; Lichter, Peter; Goidts, Violaine

    2016-10-15

    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM. PMID:27299852

  20. Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila

    Muñoz-Descalzo, Silvia; Tkocz, Katarzyna; Balayo, Tina; Arias, Alfonso Martinez

    2011-01-01

    There is increasing evidence for close functional interactions between Wnt and Notch signalling. In many instances, these are mediated by convergence of the signalling events on common transcriptional targets, but there are other instances that cannot be accounted for in this manner. Studies in Drosophila have revealed that an activated form of Armadillo, the effector of Wnt signalling, interacts with, and is modulated by, the Notch receptor. Specifically, the ligand-independent traffic of No...

  1. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. PMID:27296994

  2. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation.

    Laura Asnaghi

    Full Text Available The transcriptional response promoted by hypoxia-inducible factors has been associated with metastatic spread of uveal melanoma. We found expression of hypoxia-inducible factor 1α (HIF-1α protein in well-vascularized tumor regions as well as in four cell lines grown in normoxia, thus this pathway may be important even in well-oxygenated uveal melanoma cells. HIF-1α protein accumulation in normoxia was inhibited by rapamycin. As expected, hypoxia (1% pO2 further induced HIF-1α protein levels along with its target genes VEGF and LOX. Growth in hypoxia significantly increased cellular invasion of all 5 uveal melanoma lines tested, as did the introduction of an oxygen-insensitive HIF-1α mutant into Mel285 cells with low HIF-1α baseline levels. In contrast, HIF-1α knockdown using shRNA significantly decreased growth in hypoxia, and reduced by more than 50% tumor invasion in four lines with high HIF-1α baseline levels. Pharmacologic blockade of HIF-1α protein expression using digoxin dramatically suppressed cellular invasion both in normoxia and in hypoxia. We found that Notch pathway components, including Jag1-2 ligands, Hes1-Hey1 targets and the intracellular domain of Notch1, were increased in hypoxia, as well as the phosphorylation levels of Erk1-2 and Akt. Pharmacologic and genetic inhibition of Notch largely blocked the hypoxic induction of invasion as did the pharmacologic suppression of Erk1-2 activity. In addition, the increase in Erk1-2 and Akt phosphorylation by hypoxia was partially reduced by inhibiting Notch signaling. Our findings support the functional importance of HIF-1α signaling in promoting the invasive capacity of uveal melanoma cells in both hypoxia and normoxia, and suggest that pharmacologically targeting HIF-1α pathway directly or through blockade of Notch or Erk1-2 pathways can slow tumor spread.

  3. In silico evidence of signaling pathways of notch mediated networks in leukemia

    Raghunatha Rao

    2012-07-01

    Full Text Available Notch signaling plays a critical role in cell fate determination and maintenance of progenitors in many developmental systems. Notch receptors have been shown to be expressed on hematopoietic progenitor cells as well as to various degrees in peripheral blood T and B lymphocytes, monocytes, and neutrophils. Our aim was to understand the protein interaction network, using Notch1 protein name as query in STRING database and we generated a model to assess the significance of Notch1 associated proteins in Acute Lymphoblastic Leukemia (ALL. We further analyzed the expression levels of the genes encoding hub proteins, using Oncomine database, to determine their significance in leukemogenesis. Of the forty two hub genes, we observed that sixteen genes were underexpressed and eleven genes were overexpressed in T-cell Acute Lymphoblastic samples in comparison to their expression levels in normal cells. Of these, we found three novel genes which have not been reported earlier- KAT2B, PSEN1 (underexpressed and CDH2 (overexpressed.These three identified genes may provide new insights into the abnormal hematopoietic process observed in Leukemia as these genes are involved in Notch signaling and cell adhesion processes. It is evident that experimental validation of the protein interactors in leukemic cells could help in the identification of new diagnostic markers for leukemia.

  4. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway.

    Xian Shuang Liu

    Full Text Available BACKGROUND: The Notch signaling pathway regulates adult neurogenesis under physiological and pathophysiological conditions. MicroRNAs are small non-coding RNA molecules that regulate gene expression. The present study investigated the effect of miR-124a on the Notch signaling pathway in stroke-induced neurogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: We found that adult rats subjected to focal cerebral ischemia exhibited substantial reduction of miR-124a expression, a neuron specific miRNA, in the neural progenitor cells of the subventricular zone (SVZ of the lateral ventricle, which was inversely associated with activation of Notch signals. In vitro, transfection of neural progenitor cells harvested from the SVZ of adult rat with miR-124a repressed Jagged-1 (JAG1, a ligand of Notch, in a luciferase construct containing the JAG1 target site. Introduction of miR-124a in neural progenitor cells significantly reduced JAG1 transcript and protein levels, leading to inactivation of Notch signals. Transfection of neural progenitor cells with miR-124a significantly reduced progenitor cell proliferation and promoted neuronal differentiation measured by an increase in the number of Doublecortin positive cells, a marker of neuroblasts. Furthermore, introduction of miR-124a significantly increased p27Kip1 mRNA and protein levels, a downstream target gene of the Notch signaling pathway. CONCLUSIONS: Collectively, our study demonstrated that in vivo, stroke alters miRNA expression in SVZ neural progenitor cells and that in vitro, miR-124a mediates stroke-induced neurogenesis by targeting the JAG-Notch signaling pathway.

  5. Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling.

    Sangbin Park

    2011-08-01

    Full Text Available Drosophila neuroendocrine cells comprising the corpora cardiaca (CC are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism.

  6. The effects of notch filtering on electrically evoked myoelectric signals and associated motor unit index estimates

    Li Xiaoyan

    2011-11-01

    Full Text Available Abstract Background Notch filtering is the most commonly used technique for suppression of power line and harmonic interference that often contaminate surface electromyogram (EMG signals. Notch filters are routinely included in EMG recording instrumentation, and are used very often during clinical recording sessions. The objective of this study was to quantitatively assess the effects of notch filtering on electrically evoked myoelectric signals and on the related motor unit index measurements. Methods The study was primarily based on an experimental comparison of M wave recordings and index estimates of motor unit number and size, with the notch filter function of the EMG machine (Sierra Wave EMG system, Cadwell Lab Inc, Kennewick, WA, USA turned on and off, respectively. The comparison was implemented in the first dorsal interosseous (FDI muscle from the dominant hand of 15 neurologically intact subjects and bilaterally in 15 hemiparetic stroke subjects. Results On average, for intact subjects, the maximum M wave amplitude and the motor unit number index (MUNIX estimate were reduced by approximately 22% and 18%, respectively, with application of the built-in notch filter function in the EMG machine. This trend held true when examining the paretic and contralateral muscles of the stroke subjects. With the notch filter on vs. off, across stroke subjects, we observed a significant decrease in both maximum M wave amplitude and MUNIX values in the paretic muscles, as compared with the contralateral muscles. However, similar reduction ratios were obtained for both maximum M wave amplitude and MUNIX estimate. Across muscles of both intact and stroke subjects, it was observed that notch filtering does not have significant effects on motor unit size index (MUSIX estimate. No significant difference was found in MUSIX values between the paretic and contralateral muscles of the stroke subjects. Conclusions The notch filter function built in the EMG

  7. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis.

    Colombo, Michela; Mirandola, Leonardo; Reidy, Adair; Suvorava, Natallia; Konala, Venu; Chiaramonte, Raffaella; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Nugyen, Diane D; Dalhbeck, Scott; Cobos, Everardo; Figueroa, Jose A; Chiriva-Internati, Maurizio

    2015-03-01

    Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer. PMID:25901861

  8. Role of aspartyl-(asparaginyl-β-hydroxylase mediated notch signaling in cerebellar development and function

    Tong Ming

    2010-11-01

    Full Text Available Abstract Background Aspartyl-(Asparaginyl-β-Hydroxylase (AAH is a hydroxylating enzyme that promotes cell motility by enhancing Notch-Jagged-HES-1 signaling. Ethanol impaired cerebellar neuron migration during development is associated with reduced expression of AAH. Methods To further characterize the role of AAH in relation to cerebellar development, structure, and function, we utilized an in vivo model of early postnatal (P2 intracerebro-ventricular gene delivery to silence AAH with small interfering RNA (siAAH, or over-express it with recombinant plasmid DNA (pAAH. On P20, we assessed cerebellar motor function by rotarod testing. Cerebella harvested on P21 were used to measure AAH, genes/proteins that mediate AAH's downstream signaling, i.e. Notch-1, Jagged-1, and HES-1, and immunoreactivity corresponding to neuronal and glial elements. Results The findings demonstrated that: 1 siAAH transfection impaired motor performance and blunted cerebellar foliation, and decreased expression of neuronal and glial specific genes; 2 pAAH transfection enhanced motor performance and increased expression of neuronal and glial cytoskeletal proteins; and 3 alterations in AAH expression produced similar shifts in Notch-1, Jagged-1, and HES-1 protein or gene expression. Conclusions The results support our hypothesis that AAH is an important mediator of cerebellar development and function, and link AAH expression to Notch signaling pathways in the developing brain.

  9. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia.

    Kumar, V; Palermo, R; Talora, C; Campese, A F; Checquolo, S; Bellavia, D; Tottone, L; Testa, G; Miele, E; Indraccolo, S; Amadori, A; Ferretti, E; Gulino, A; Vacca, A; Screpanti, I

    2014-12-01

    Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated with several cancers, including leukemias. However, the transcriptional regulators of miRNAs, as well as the relationships between Notch signaling and miRNA deregulation, are poorly understood. To identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among seven miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus. Luciferase and chromatin immunoprecipitation assays on the promoter region of miR-223 show that both Notch and NF-kB are novel coregulatory signals of miR-223 expression, being able to activate cooperatively the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to γ-secretase inhibitor (GSI) treatment, suggesting that miR-223 could be involved in GSI sensitivity and its inhibition may be exploited in target therapy protocols. PMID:24727676

  10. Activated Notch Causes Deafness by Promoting a Supporting Cell Phenotype in Developing Auditory Hair Cells

    Grace Savoy-Burke; Felicia A Gilels; Wei Pan; Diana Pratt; Jianwen Que; Lin Gan; White, Patricia M.; Kiernan, Amy E.

    2014-01-01

    Purpose To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear. Methods An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product...

  11. The bHLH factors Dpn and members of the E(spl complex mediate the function of Notch signalling regulating cell proliferation during wing disc development

    Beatriz P. San Juan

    2012-05-01

    The Notch signalling pathway plays an essential role in the intricate control of cell proliferation and pattern formation in many organs during animal development. In addition, mutations in most members of this pathway are well characterized and frequently lead to tumour formation. The Drosophila imaginal wing discs have provided a suitable model system for the genetic and molecular analysis of the different pathway functions. During disc development, Notch signalling at the presumptive wing margin is necessary for the restricted activation of genes required for pattern formation control and disc proliferation. Interestingly, in different cellular contexts within the wing disc, Notch can either promote cell proliferation or can block the G1-S transition by negatively regulating the expression of dmyc and bantam micro RNA. The target genes of Notch signalling that are required for these functions have not been identified. Here, we show that the Hes vertebrate homolog, deadpan (dpn, and the Enhancer-of-split complex (E(splC genes act redundantly and cooperatively to mediate the Notch signalling function regulating cell proliferation during wing disc development.

  12. Tumor-derived Jagged1 Promotes Osteolytic Bone Metastasis of Breast Cancer by Engaging Notch Signaling in Bone Cells

    Sethi, Nilay; Dai, Xudong; Winter, Christopher G.; Kang, Yibin

    2011-01-01

    Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway’s contribution to metastasis remains unknown. Here we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cyto...

  13. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis

    Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Zhang, Xiaohui; Lu, Zhenzhen; Yang, Chunrun; Zhang, Chunhua; Zhang, Hui; Zhang, Na

    2015-01-01

    Background Epithelial mesenchymal transition (EMT) is involved in the pathogenesis of adenomyosis, and Notch signaling is crucial to EMT. The objective of this study was to explore Notch1/Numb/Snail signaling in adenomyosis. Methods The expression levels of the members of the Notch1/Numb/Snail signaling cascade in normal endometria (proliferative phase: n = 15; secretory phase: n = 15; postmenopausal phase: n = 15) and adenomyotic endometria (proliferative phase: n = 15; secretory phase: n = ...

  14. Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling

    McGraw Hillary

    2012-06-01

    Full Text Available Abstract Background The sensory neurons and glia of the dorsal root ganglia (DRG arise from neural crest cells in the developing vertebrate embryo. In mouse and chick, DRG formation is completed during embryogenesis. In contrast, zebrafish continue to add neurons and glia to the DRG into adulthood, long after neural crest migration is complete. The molecular and cellular regulation of late DRG growth in the zebrafish remains to be characterized. Results In the present study, we use transgenic zebrafish lines to examine neuronal addition during postembryonic DRG growth. Neuronal addition is continuous over the period of larval development. Fate-mapping experiments support the hypothesis that new neurons are added from a population of resident, neural crest-derived progenitor cells. Conditional inhibition of Notch signaling was used to assess the role of this signaling pathway in neuronal addition. An increase in the number of DRG neurons is seen when Notch signaling is inhibited during both early and late larval development. Conclusions Postembryonic growth of the zebrafish DRG comes about, in part, by addition of new neurons from a resident progenitor population, a process regulated by Notch signaling.

  15. Notch signaling, the segmentation clock, and the patterning of vertebrate somites

    Lewis Julian

    2009-05-01

    Full Text Available Abstract The Notch signaling pathway has multifarious functions in the organization of the developing vertebrate embryo. One of its most fundamental roles is in the emergence of the regular pattern of somites that will give rise to the musculoskeletal structures of the trunk. The parts it plays in the early operation of the segmentation clock and the later definition and differentiation of the somites are beginning to be understood.

  16. The endoderm specifies the mesodermal niche for the germline in Drosophila via Delta-Notch signaling

    Okegbe, Tishina C.; DiNardo, Stephen

    2011-01-01

    Interactions between niche cells and stem cells are vital for proper control over stem cell self-renewal and differentiation. However, there are few tissues where the initial establishment of a niche has been studied. The Drosophila testis houses two stem cell populations, which each lie adjacent to somatic niche cells. Although these niche cells sustain spermatogenesis throughout life, it is not understood how their fate is established. Here, we show that Notch signaling is necessary to spec...

  17. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    Takashima, Shigeo; Adams, Katrina L; Paola A Ortiz; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2011-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transien...

  18. Homemade notch filter to suppress strong FM or DAB - T/DVB - T signals

    Monstein, Christian

    2016-04-01

    Many of the current 116 solar radio spectrometer instruments in the e-Callisto network are suffering from strong interference from FM-radio, DAB-T or DVB-T broadcast stations. With simple surface mount device (SMD) components a cheap notch (trap)filter can be produced to suppress these strong signals that otherwise may saturate the low noise amplifier and/or the receiver.

  19. Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling.

    Jenkins, Robert P; Hanisch, Anja; Soza-Ried, Cristian; Sahai, Erik; Lewis, Julian

    2015-11-01

    The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2-3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock. PMID:26588097

  20. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling.

    Bivik, Caroline; MacDonald, Ryan B; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-04-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  1. Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila.

    Muñoz-Descalzo, Silvia; Tkocz, Katarzyna; Balayo, Tina; Arias, Alfonso Martinez

    2011-04-01

    There is increasing evidence for close functional interactions between Wnt and Notch signalling. In many instances, these are mediated by convergence of the signalling events on common transcriptional targets, but there are other instances that cannot be accounted for in this manner. Studies in Drosophila have revealed that an activated form of Armadillo, the effector of Wnt signalling, interacts with, and is modulated by, the Notch receptor. Specifically, the ligand-independent traffic of Notch serves to set up a threshold for the amount of this form of Armadillo and therefore for Wnt signalling. In the current model of Wnt signalling, a complex assembled around Axin and Apc allows GSK3 (Shaggy) to phosphorylate Armadillo and target it for degradation. However, genetic experiments suggest that the loss of function of any of these three elements does not have the same effect as elevating the activity of β-catenin. Here, we show that Axin and Apc, but not GSK3, modulate the ligand-independent traffic of Notch. This finding helps to explain unexpected differences in the phenotypes obtained by different ways of activating Armadillo function and provides further support for the notion that Wnt and Notch signalling form a single functional module. PMID:21389052

  2. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells

    Kikuchi Y

    2011-01-01

    Full Text Available Although mesenchymal stem cells (MSCs play pivotal supportive roles in hematopoiesis, how they interact with hematopoietic stem cells (HSCs is not well understood. We investigated the interaction between HSCs and surrogate MSCs (C3H10T1/2 stromal cells, focusing on the molecular events induced by cell contact of these bipartite populations. C3H10T1/2 is a mesenchymal stromal cell line that can be induced to differentiate into preadipocytes (A54 and myoblasts (M1601. The stromal cell derivatives were cocultured with murine HSCs (Lineage-Sca1+, and gene expression profiles in stromal cells and HSCs were compared before and after the coculture. HSCs gave rise to cobblestone areas only on A54 cells, with ninefold more progenitors than on M1601 or undifferentiated C3H10T1/2 cells. Microarray-based screening and a quantitative reverse transcriptase directed-polymerase chain reaction showed that the levels of Notch ligands (Jagged1 and Delta-like 3 were increased in A54 cells upon interaction with HSCs. On the other hand, the expression of Notch1 and Hes1 was upregulated in the HSCs cocultured with A54 cells. A transwell assay revealed that the reciprocal upregulation was dependent on cell-to-cell contact. The result suggested that in the hematopoietic niche, HSCs help MSCs to produce Notch ligands, and in turn, MSCs help HSCs to express Notch receptor. Such a reciprocal upregulation would reinforce the downstream signaling to determine the fate of hematopoietic cell lineage. Clarification of the initiating events on cell contact should lead to the identification of specific molecular targets to facilitate HSC engraftment in transplantation therapy.

  3. Notch signaling pathway and glioma stem cell niche%Notch信号通路与脑胶质瘤干细胞的niche

    林才厚; 郑宗清; 邱献新; 林志雄

    2013-01-01

    A small fraction of tumor stem cells exist in glioma and play a key role in the tumorigenesis and propagation of glioma.They have a close relationship with their niche that offers structural and functional support.In glioma niche,vascular endothelial cells can provide Notch ligands for cancer stem cells to activate Notch signaling pathway and contact with other signaling pathways,maintaining the tumor stem cell self-renewal and increasing resistance of brain tumor stem cells to radiotherapy.Therefore,Notch signaling pathway is considered to be a new therapeutic target of glioma.%研究表明极少数量肿瘤干细胞存在于脑胶质瘤中,但在其发生发展中起关键作用.脑胶质瘤干细胞与为其提供结构和功能支持的血管niche关系密切.在脑胶质瘤niche中,血管内皮细胞可以提供Notch配体给肿瘤干细胞,激活Notch信号通路,并与其他信号通路构成串话,维持肿瘤干细胞的自我更新,增加脑肿瘤干细胞对放疗的抵抗性.因此,Notch信号通路被认为是脑胶质瘤新的治疗靶点.

  4. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila.

    Reto Müller

    Full Text Available The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.

  5. Evidence for the Induction of Key Components of the NOTCH Signaling Pathway via Deltamethrin and Azamethiphos Treatment in the Sea Louse Caligus rogercresseyi.

    Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2016-01-01

    The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids. PMID:27187362

  6. Evidence for the Induction of Key Components of the NOTCH Signaling Pathway via Deltamethrin and Azamethiphos Treatment in the Sea Louse Caligus rogercresseyi

    Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2016-01-01

    The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids. PMID:27187362

  7. Design and Analysis of Robust Active Damping for LCL Filters using Digital Notch Filters

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin;

    2016-01-01

    resonance, where the notch frequency should be aligned exactly to the resonant frequency of the LCL filter. However, parameter variations of the LCL filter as well as the time delay appearing in digital control systems will induce resonance drifting, and thus break this alignment, possibly deteriorating the......Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp the......-connected PWM inverter verify the effectiveness of the proposed design for robust active damping using digital notch filters....

  8. Notch信号通路与胰腺发育%Notch Signaling Pathway in Pancreatic Development

    张涛

    2011-01-01

    Notch信号转导通路作为一种进化上保守的相邻细胞间的相互作用机制,参与了细胞的命运决定、自我更新、分化、增值、存活以及凋亡等诸多过程,调控着动物组织和器官的发生、发育和再生.目前,多因子多信号对胰腺发育的时空调节机制已成为研究热点.就Notch信号通路的结构特点及其在胰腺发育中的研究进展作一综述.%As an evolutionarily conserved mechanism of communication between back-fence cells, Notch signaling pathway involved in cell-fate specification, self-renewal, differentiation, proliferation, survival and apoptosis throughout organic morphogenesis, development and regeneration in animal species. Recently, the temporal-spatial regulation mechanism of multiple factors signals on pancreatic development has been becoming the focus of study. The structural characteristics of Notch signaling component and its roles in pancreas development were studied.

  9. Notch2 and immune function.

    Sakata-Yanagimoto, Mamiko; Chiba, Shigeru

    2012-01-01

    Notch2 is expressed in many cell types of most lineages in the hematolymphoid compartment and has specific roles in differentiation and function of various immune cells. Notch2 is required for development of splenic marginal zone B cells and regulates differentiation of dendritic cells (DCs) in the spleen. Notch2 appears to play some specific roles in the intestinal immunity, given that the fate of mast cells and a subset of DCs is regulated by Notch2 in the intestine. Notch2 also has important roles in helper T cell divergence from naïve CD4 T cells and activation of cytotoxic T cells. Moreover, recent genetic evidence suggests that both gain-and loss-of-function abnormalities of Notch2 cause transformation of immune cells. Inactivating mutations are found in Notch2 signaling pathways in chronic myelomonocytic leukemia, while activating mutations are found in mature B cell lymphomas, which reflects the role of Notch2 in the developmental process of these cells. PMID:22695918

  10. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  11. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate.

    Van de Walle, Inge; Dolens, Anne-Catherine; Durinck, Kaat; De Mulder, Katrien; Van Loocke, Wouter; Damle, Sagar; Waegemans, Els; De Medts, Jelle; Velghe, Imke; De Smedt, Magda; Vandekerckhove, Bart; Kerre, Tessa; Plum, Jean; Leclercq, Georges; Rothenberg, Ellen V; Van Vlierberghe, Pieter; Speleman, Frank; Taghon, Tom

    2016-01-01

    The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. PMID:27048872

  12. Effect of soluble Jagged1-mediated inhibition of Notch signaling on proliferation and differentiation of an adipocyte progenitor cell model

    Urs, Sumithra; Turner, Bryce; Tang, Yuefeng; Rostama, Bahman; Small, Deena; Liaw, Lucy

    2012-01-01

    Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, ...

  13. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer’s disease

    Brai, Emanuele; Raio, Noemi Alina; Alberi, Lavinia

    2016-01-01

    Background Notch1 signaling is a cellular cascade with a fundamental role from brain development to adult brain function. Reduction in Notch1 affects synaptic plasticity, memory and olfaction. On the other hand, Notch1 overactivation after brain injury is detrimental for neuronal survival. Some familial Alzheimer’s disease (FAD) mutations in Presenilins can affect Notch1 processing/activation. Others report that Notch1 is overexpressed in sporadic Alzheimer’s disease (AD). These works indicat...

  14. Vía de señalización Notch y nuevas estrategias para el tratamiento de cáncer Notch signaling pathway and new strategies in cancer treatment

    Leticia Santos

    2006-04-01

    Full Text Available La vía de señalización Notch desempeña un papel fundamental en las diferentes etapas del desarrollo celular como la proliferación, crecimiento, diferenciación y apoptosis. Estudios recientes han demostrado que, dependiendo del nivel de expresión y del contexto celular, los receptores de membrana Notch contribuyen en la resistencia a apoptosis en células tumorales. Estos descubrimientos sugieren que componentes de la vía de señalización Notch son un blanco potencial para el desarrollo de terapias más efectivas contra el cáncer. Esta revisión describe la función de la vía Notch y nuevas estrategias utilizadas en la modulación de su señal.The Notch signaling pathway plays a crucial role at different stages of cell development, such as proliferation, growth, differentiation, and apoptosis. Recent studies demonstrate that depending on the expression level and cellular context, the Notch receptors play a role in apoptosis resistance in malignant cells. These findings suggest that Notch signaling components may be a potential target in the development of new cancer therapies. This review describes the function of the Notch pathway and new strategies in the modulation of its signal.

  15. Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function.

    Wang, Weihuan; Zimmerman, Grant; Huang, Xiaoran; Yu, Shuiliang; Myers, Jay; Wang, Yiwei; Moreton, Stephen; Nthale, Joseph; Awadallah, Amad; Beck, Rose; Xin, Wei; Wald, David; Huang, Alex Y; Zhou, Lan

    2016-03-15

    More than half of T-cell acute lymphoblastic leukemia (T-ALL) patients harbor gain-of-function mutations in the intracellular domain of Notch1. Diffuse infiltration of the bone marrow commonly occurs in T-ALL and relapsed B-cell acute lymphoblastic leukemia patients, and is associated with worse prognosis. However, the mechanism of leukemia outgrowth in the marrow and the resulting biologic impact on hematopoiesis are poorly understood. Here, we investigated targetable cellular and molecular abnormalities in leukemia marrow stroma responsible for the suppression of normal hematopoiesis using a T-ALL mouse model and human T-ALL xenografts. We found that actively proliferating leukemia cells inhibited normal hematopoietic stem and progenitor cell (HSPC) proliferation and homing to the perivascular region. In addition, leukemia development was accompanied by the suppression of the endosteum-lining osteoblast population. We further demonstrated that aberrant Notch activation in the stroma plays an important role in negatively regulating the expression of CXLC12 on osteoblasts and their differentiation. Notch blockade reversed attenuated HSPC cycling, leukemia-associated abnormal blood lineage distribution, and thrombocytopenia as well as recovered osteoblast and HSPC abundance and improved the hematopoietic-supportive functions of osteoblasts. Finally, we confirmed that reduced osteoblast frequency and enhanced Notch signaling were also features of the marrow stroma of human ALL tissues. Collectively, our findings suggest that therapeutically targeting the leukemia-infiltrated hematopoietic niche may restore HSPC homeostasis and improve the outcome of ALL patients. PMID:26801976

  16. Oroxylin A induces autophagy in human malignant glioma cells via the mTOR-STAT3-Notch signaling pathway.

    Zou, Meijuan; Hu, Chen; You, Qidong; Zhang, Aixia; Wang, Xuerong; Guo, Qinglong

    2015-11-01

    Autophagy is a tightly-regulated catabolic pathway involving degradation of cellular proteins, cytoplasm and organelles. Recent evidence suggests that autophagy plays a potential role in cell death as a tumor suppressor and that its induction especially in combination with apoptosis could be beneficial. It remains unclear if all cancer cells behave the same mechanism when autophagy is induced. Although mammalian target of rapamycin (mTOR) is well known as a negative regulator of autophagy, the relationship between signal transducer and activator of transcription 3 (STAT3) and autophagy has not yet been investigated. Oroxylin A, a natural mono-flavonoid extracted from Scutellariae radix, is a promising therapeutic agent for treating multiple cancers. Here we investigated the mechanism underlying the effect of oroxylin A on malignant glioma cells. We showed that oroxylin A inhibited the proliferation of malignant glioma cells by inducing autophagy in a dose- and time-dependent manner. Oroxylin A treatment inhibits the AKT and ERK activation and the downstream phosphorylation level of mTOR and STAT3. In addition, oroxylin A treatment decreases the expression of Notch-1 and myeloid cell leukemia-1 (Mcl-1) but upregulates Beclin 1, the key autophagy-related protein. 3-MA (autophagy inhibitor) or knockdown of Beclin 1 partially can rescue cells from oroxylin A-induced autophagic cell death. In contrast, knockdown of STAT3 aggravates oroxylin A-induced autophagic cell death. Our data reveal an important role of autophagy in enhancing cell death induced by oroxylin A and conclude that oroxylin A exerts anti-malignant glioma proficiency by inducing autophagy via the ERK/AKT-mTOR-STAT3-Notch signaling cascade. PMID:25213258

  17. Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma

    Wu, Wen-Rui; Shi, Xiang-De; Zhang, Rui; Zhu, Man-Sheng; Xu, Lei-Bo; Yu, Xian-Huan; Zeng, Hong; Wang, Jie; Liu, Chao

    2014-01-01

    Notch signaling has been reported to be activated to promote biliary epithelial cell differentiation and tubulogenesis during bile duct development. In this study, clinicopathological significance of aberrant expression of Notch receptors in intrahepatic cholangiocarcinoma (ICC) was investigated. Thus, forty-one ICC specimens were examined by immunohistochemistry using anti-Notch1-4 antibodies, respectively. Expression of Notch receptors was scored by percentage of positive tumor cells and intensity of immunostaining. Clinicopathological parameters and survival data were compared with the expression of Notch receptors, respectively. Expression of Notch receptors was identified in cancer cells, as well as in non-neoplastic cells. Compared with adjacent non-tumor liver tissues, Notch1 and 4 were up regulated, and Notch2 and 3 were relatively weaker. Positive immunostaining of Notch1 in ICC cells was detected in 34 cases (82.9%), Notch2 in 23 (56.1%), Notch3 in 16 (39.0%) and Notch4 in 14 (34.1%). Notch1 was overexpressed in cases with tumor size > 5 cm (P = 0.036). Expression of Notch2 was correlated inversely with histological grade (P = 0.016). Overexpression of Notch4 was more common in cases with serum CA125 > 35 U/ml than cases with CA125 ≤ 35 U/ml (P = 0.048). Expression of Notch3 was not correlated with any other clinicopathological parameters. Moreover, Notch4 was related to poor survival (P < 0.001). To conclude, this study reveals that aberrant expression of Notch receptors 1 and 4 might play important roles during ICC progression. PMID:25031748

  18. Notch signaling mediates crosstalk between endothelial cells and macrophages via Dll4 and IL6 in cardiac microvascular inflammation.

    Pabois, Angélique; Pagie, Sylvain; Gérard, Nathalie; Laboisse, Christian; Pattier, Sabine; Hulin, Philippe; Nedellec, Steven; Toquet, Claire; Charreau, Béatrice

    2016-03-15

    Although short-term outcomes have improved with modern era immunosuppression, little progress has been made in long-term graft survival in cardiac transplantation. Antibody-mediated rejection (AMR) is one of the leading causes of graft failure and contributes significantly to poor long-term outcomes. Endothelial cell (EC) injury, intravascular macrophage infiltrate and microvascular inflammation are the histological features of AMR. Nevertheless, mechanisms of AMR remain unclear and treatment is still limited. Here, we investigated the mechanisms underlying vascular and inflammatory cell network involved in AMR at endothelial and macrophage levels, using endomyocardial transplant biopsies and EC/monocyte cocultures. First, we found that AMR associates with changes in Notch signaling at endothelium/monocyte interface including loss of endothelial Notch4 and the acquisition of the Notch ligand Dll4 in both cell types. We showed that endothelial Dll4 induces macrophage polarization into a pro-inflammatory fate (CD40(high)CD64(high)CD200R(low) HLA-DR(low)CD11b(low)) eliciting the production of IL-6. Dll4 and IL-6 are both Notch-dependent and are required for macrophage polarization through selective down and upregulation of M2- and M1-type markers, respectively. Overall, these findings highlight the impact of the graft's endothelium on macrophage recruitment and differentiation upon AMR via Notch signaling. We identified Dll4 and IL-6 as coregulators of vascular inflammation in cardiac transplantation and as potential targets for immunotherapy. PMID:26826491

  19. Osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the Notch1-RBP-Jκ/Msx2 signaling pathway.

    Shaoqiong Zhou

    Full Text Available OBJECTIVE: Vascular calcification is a common pathobiological process which occurs among the elder population and in patients with diabetes and chronic kidney disease. Osteoprotegerin, a secreted glycoprotein that regulates bone mass, has recently emerged as an important regulator of the development of vascular calcification. However, the mechanism is not fully understood. The purpose of this study is to explore novel signaling mechanisms of osteoprotegerin in the osteoblastic differentiation in rat aortic vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: VSMCs were isolated from thoracic aorta of Sprague Dawley rats. Osteoblastic differentiation of VSMCs was induced by an osteogenic medium. We confirmed by Von Kossa staining and direct cellular calcium measurement that mineralization was significantly increased in VSMCs cultured in osteogenic medium; consistent with an enhanced alkaline phosphatase activity. This osteoblastic differentiation in VSMCs was significantly reduced by the addition of osteoprotegerin in a dose responsive manner. Moreover, we identified, by real-time qPCR and western blotting, that expression of Notch1 and RBP-Jκ were significantly up-regulated in VSMCs cultured in osteogenic medium at both the mRNA and protein levels, these effects were dose-dependently abolished by the treatment of osteoprotegerin. Furthermore, we identified that Msx2, a downstream target of the Notch1/RBP-Jκ signaling, was markedly down-regulated by the treatment of osteoprotegerin. CONCLUSION: Osteoprotegerin inhibits vascular calcification through the down regulation of the Notch1-RBP-Jκ signaling pathway.

  20. Identification of novel Notch target genes in T cell leukaemia

    Warrander Fiona

    2009-06-01

    Full Text Available Abstract Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE, and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1. Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease.

  1. Clinicopathological significance of altered Notch signaling in extrahepatic cholangiocarcinoma and gallbladder carcinoma

    Hyun Ah Yoon; Myung Hwan Noh; Byung Geun Kim; Ji Sun Han; Jin Seok Jang; Seok Ryeol Choi; Jin Sook Jeong; Jin Ho Chun

    2011-01-01

    AIM: To investigate the role and clinicopathological significance of aberrant expression of Notch receptors and Delta-like ligand-4 (DLL4) in extrahepatic cholangiocarcinoma and gallbladder carcinoma.METHODS: One hundred and ten patients had surgically resected extrahepatic cholangiocarcinoma (CC) and gallbladder carcinoma specimens examined by immunohistochemistry of available paraffin blocks. Immunohistochemistry was performed using anti-Notch receptors 1-4 and anti-DLL4 antibodies. We scored the immunopositivity of Notch receptors and DLL4 expression by percentage of positive tumor cells with cytoplasmic expression and intensity of immunostaining. Coexistent nuclear localization was evaluated. Clinicopathological parameters and survival data were compared with the expression of Notch receptors 1-4 and DLL4.RESULTS: Notch receptor proteins showed in the cytoplasm with or without nuclear expression in cancer cells, as well as showing weak cytoplasmic expression in non-neoplastic cells. By semiquantitative evaluation, positive immunostaining of Notch receptor 1 was detected in 96 cases (87.3%), Notch receptor 2 in 97 (88.2%), Notch receptor 3 in 97 (88.2%), Notch receptor 4 in 103 (93.6), and DLL4 in 84 (76.4%). In addition, coexistent nuclear localization was noted [Notch receptor 1; 18 cases (18.8%), Notch receptor 2; 40 (41.2%), Notch receptor 3; 32 (33.0%), Notch receptor 4; 99 (96.1%), DLL4; 48 (57.1%)]. Notch receptor 1 expression was correlated with advanced tumor, node, metastasis (TNM) stage (P = 0.043), Notch receptor 3 with advanced T stage (P = 0.017), tendency to express in cases with nodal metastasis (P = 0.065) and advanced TNM stage (P = 0.052). DLL4 expression tended to be related to less histological differentiation (P = 0.095). Coexistent nuclear localization of Notch receptor 3 was related to no nodal metastasis (P = 0.027) and Notch receptor 4 with less histological differentiation (P = 0.036), while DLL4 tended to be related inversely with T

  2. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning

    Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-01-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  3. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning.

    Hunter, Ginger L; Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-07-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  4. Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders

    Kamstrup, M.R.; Ralfkiaer, E.; Skovgaard, G.L.;

    2008-01-01

    cutaneous CD30+ lymphoproliferative disorders. Methods Immunohistochemistry of formalin-fixed, paraffin-embedded skin samples from 12 patients with lymphomatoid papulosis (LyP) and 11 patients with primary cutaneous anaplastic large cell lymphoma (ALCL). Immunofluorescence studies of fresh skin samples......Background The central role of Notch signalling in T-cell development and oncogenesis raises the question of the importance of this pathway in cutaneous T-cell lymphomas. Objectives To investigate the pattern of expression of Notch and its ligands, Jagged and Delta, in skin samples of primary...

  5. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  6. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro

    HU Yan-hua; WU De-quan; GAO Feng; LI Guo-dong; ZHANG Xin-chen

    2010-01-01

    Background Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) could be induced to differentiate into insulin producing cells (IPCs) in vitro, which have good application potential in the cell replacement treatment of type-1 diabetes. However, the mechanisms regulating this differentiation have remained largely unknown. Notch signaling is critical in cell differentiation. This study investigated whether Notch signaling could regulate the IPCs differentiation of human UCB-MSCs. Methods Using an interfering Notch signaling protocol in vitro, we studied the role of Notch signaling in differentiation of human UCB-MSCs into IPCs. In a control group the induction took place without interfering Notch signaling. Results Human UCB-MSCs expressed the genes of Notch receptors (Notch 1 and Notch 2) and ligands (Jagged 1 and Deltalike 1). Human UCB-MSCs with over-expressing Notch signaling in differentiation resulted in the down-regulation of insulin gene level, proinsulin protein expression, and insulin-positive cells percentage compared with the control group. These results showed that over-expressing Notch signaling inhibited IPCs differentiation. Conversely, when Notch signaling was attenuated by receptor inhibitor, the induced cells increased on average by 3.06-fold (n=4, P<0.001) in insulin gene level, 2.60-fold (n=3, P <0.02) in proinsulin protein expression, and 1.62-fold (n=6, P <0.001) in the rate of IPCs compared with the control group. Notch signaling inhibition significantly promoted IPCs differentiation with about 40% of human UCB-MSCs that converted to IPCs, but these IPCs were not responsive to glucose challenge very well both in vitro and in vivo. Hence, further research has to be carried out in the future. Conclusions Notch signaling may be an important mechanism regulating IPCs differentiation of human UCB-MSCs in vitro and Notch signaling inhibition may be an efficient way to increase the number of IPCs, which may resolve the shortage of

  7. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs. PMID:27263934

  8. A novel population of local pericyte precursor cells in tumor stroma that require Notch signaling for differentiation.

    Patenaude, Alexandre; Woerher, Stefan; Umlandt, Patricia; Wong, Fred; Ibrahim, Rawa; Kyle, Alastair; Unger, Sandy; Fuller, Megan; Parker, Jeremy; Minchinton, Andrew; Eaves, Connie J; Karsan, Aly

    2015-09-01

    Pericytes are perivascular support cells, the origin of which in tumor tissue is not clear. Recently, we identified a Tie1(+) precursor cell that differentiates into vascular smooth muscle, in a Notch-dependent manner. To understand the involvement of Notch in the ontogeny of tumor pericytes we used a novel flow immunophenotyping strategy to define CD146(+)/CD45(-)/CD31(-/lo) pericytes in the tumor stroma. This strategy combined with ex vivo co-culture experiments identified a novel pericyte progenitor cell population defined as Sca1(hi)/CD146(-)/CD45(-)/CD31(-). The differentiation of these progenitor cells was stimulated by co-culture with endothelial cells. Overexpression of the Notch ligand Jagged1 in endothelial cells further stimulated the differentiation of Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells into pericytes, while inhibition of Notch signaling with a γ-secretase inhibitor reduced this differentiation. However, Notch inhibition specifically in Tie1-expressing cells did not change the abundance of pericytes in tumors, suggesting that the pericyte precursor is distinct from the vascular smooth muscle cell precursor. Transplant experiments showed that the bone marrow contributes minimally to tumor pericytes. Immunophenotyping revealed that Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells have greater potential to differentiate into pericytes and have increased expression of classic mesenchymal stem cell markers (CD13, CD44, Nt5e and Thy-1) compared to Sca1(-/lo)/CD146(-)/CD45(-)/CD31(-) cells. Our results suggest that a local Sca1(hi)/CD146(-)/CD45(-)/CD31(-) pericyte progenitor resides in the tumor microenvironment and requires Notch signaling for differentiation into mature pericytes. PMID:26092680

  9. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain.

    Lin, Suewei; Lai, Sen-Lin; Yu, Huang-Hsiang; Chihara, Takahiro; Luo, Liqun; Lee, Tzumin

    2010-01-01

    Numb can antagonize Notch signaling to diversify the fates of sister cells. We report here that paired sister cells acquire different fates in all three Drosophila neuronal lineages that make diverse types of antennal lobe projection neurons (PNs). Only one in each pair of postmitotic neurons survives into the adult stage in both anterodorsal (ad) and ventral (v) PN lineages. Notably, Notch signaling specifies the PN fate in the vPN lineage but promotes programmed cell death in the missing siblings in the adPN lineage. In addition, Notch/Numb-mediated binary sibling fates underlie the production of PNs and local interneurons from common precursors in the lAL lineage. Furthermore, Numb is needed in the lateral but not adPN or vPN lineages to prevent the appearance of ectopic neuroblasts and to ensure proper self-renewal of neural progenitors. These lineage-specific outputs of Notch/Numb signaling show that a universal mechanism of binary fate decision can be utilized to govern diverse neural sibling differentiations. PMID:20023159

  10. The importance of Notch signaling in peripheral T-cell lymphomas

    Kamstrup, Maria Rørbæk; Biskup, Edyta; Gjerdrum, Lise Mette Rahbek;

    2014-01-01

    Peripheral T-cell lymphomas (PTLs) represent an area of high medical need. Previously, we demonstrated high expression of Notch, a known oncogene, in primary cutaneous anaplastic large cell lymphoma (ALCL). In this study, we performed immunohistochemical staining for Notch1 in lymph nodes from PTL...... ALK- (nine cases) (p > 0.05). In the ALK+ ALCL cell line, Karpas-299, pharmacological inhibition of Notch with γ-secretase inhibitor (GSI) I was far more potent than with GSI IX, XX and XXI with regard to cell viability and apoptosis. In conclusion, PTL tumor cells have prominent Notch1 expression and...

  11. Effect of spinal cord extracts after spinal cord injury on proliferation of rat embryonic neural stem cells and Notch signal pathwayin vitro

    Qing-Zhong Zhou; Ge Zhang; Hai-Bo Long; Fei Lei; Fei Ye; Xu-Feng Jia; Yun-Long Zhou; Jian-Ping Kang; Da-Xiong Feng

    2014-01-01

    Objective:To investigate the effect of the spinal cord extracts(SCE) after spinal cord injuries (SCIs) on the proliferation of rat embryonic neural stem cells(NSCs) and the expressions of mRNA ofNotch1 as well as ofHes1 in this processin vitro.Methods:The experiment was conducted in4 different mediums:NSCs+PBS(GroupA-blank control group),NSCs+SCE with healthySD rats(GroupB-normal control group),NSCs+SCE withSD rats receiving sham-operation treatment (GroupC-sham-operation group) andNSCs+SCE withSCIs rats(GroupD- paraplegic group). Proliferative abilities of4 different groups were analyzed byMTT chromatometry after co-culture for1,2,3,4 and5 d, respectively.The expressions ofNotch1 andHes1 mRNA were also detected withRT-PCR after co-culture for24 and48 h, respectively.Results:After co-culture for1,2,3, 4 and5 d respectively, theMTT values of groupD were significantly higher than those of group A, groupB and groupC(P0.05).Both the expressions ofNotch1 andHes1 mRNA of groupD were significantly higher than those of other3 groups after co-culture for24 h and48 h as well(P0.05).There was no difference in expressions ofNotch1 andHes1 mRNA between24 h and48 h treatment in groupD.Conclusions:SCE could promote the proliferation ofNSCs.It is demonstrated that the microenvironment ofSCI may promote the proliferation ofNSCs.Besides,SCE could increase the expression ofNotch1 andHes1 mRNA of NSC.It can be concluded that theNotch signaling pathway activation is one of the mechanisms that locally injured microenvironment contributes to the proliferation ofENSC afterSCIs.This process may be performed by up-regulating the expressions ofNotch1 andHes1gene.

  12. Alterations of the Notch pathway in lung cancer

    Westhoff, Britta; Colaluca, Ivan N.; D'Ario, Giovanni; Donzelli, Maddalena; Tosoni, Daniela; Volorio, Sara; Pelosi, Giuseppe; Spaggiari, Lorenzo; Mazzarol, Giovanni; Viale, Giuseppe; Pece, Salvatore; Di Fiore, Pier Paolo

    2009-01-01

    Notch signaling regulates cell specification and homeostasis of stem cell compartments, and it is counteracted by the cell fate determinant Numb. Both Numb and Notch have been implicated in human tumors. Here, we show that Notch signaling is altered in approximately one third of non–small-cell lung carcinomas (NSCLCs), which are the leading cause of cancer-related deaths: in ≈30% of NSCLCs, loss of Numb expression leads to increased Notch activity, while in a smaller fraction of cases (around 10%), gain-of-function mutations of the NOTCH-1 gene are present. Activation of Notch correlates with poor clinical outcomes in NSCLC patients without TP53 mutations. Finally, primary epithelial cell cultures, derived from NSCLC harboring constitutive activation of the Notch pathway, are selectively killed by inhibitors of Notch (γ-secretase inhibitors), showing that the proliferative advantage of these tumors is dependent upon Notch signaling. Our results show that the deregulation of the Notch pathway is a relatively frequent event in NSCLCs and suggest that it might represent a possible target for molecular therapies in these tumors. PMID:20007775

  13. Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes

    Min, Kyong Mahn; Park, Jung Am [UMI, Seoul (Korea, Republic of); Shin, Ki Seok; Kim, In Chul [KHNP, Seoul (Korea, Republic of)

    2009-08-15

    Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes

  14. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm.

    Grigorian, Melina; Mandal, Lolitika; Hakimi, Manuel; Ortiz, Irma; Hartenstein, Volker

    2011-05-01

    Blood progenitors arise from a pool of pluripotential cells ("hemangioblasts") within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters ("cardiogenic clusters") that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts. PMID:21382367

  15. Notch mRNA expression in Drosophila embryos is negatively regulated at the level of mRNA 3' processing.

    Andrew K Shepherd

    Full Text Available Notch receptor regulates differentiation of almost all tissues and organs during animal development. Many mechanisms function at the protein level to finely regulate Notch activity. Here we provide evidence for Notch regulation at an earlier step - mRNA 3' processing. Processing at the Notch consensus polyadenylation site appears by default to be suppressed in Drosophila embryos. Interference with this suppression, by a mutation, results in increased levels of polyadenylated Notch mRNA, excess Notch signaling, and severe developmental defects. We propose that Notch mRNA 3' processing is negatively regulated to limit the production of Notch protein and render it a controlling factor in the generation of Notch signaling.

  16. Oscillatory Notch-pathway activity in a delay model of neuronal differentiation

    Momiji, Hiroshi; Monk, Nicholas A. M.

    2009-08-01

    Lateral inhibition resulting from a double-negative feedback loop underlies the assignment of different fates to cells in many developmental processes. Previous studies have shown that the presence of time delays in models of lateral inhibition can result in significant oscillatory transients before patterned steady states are reached. We study the impact of local feedback loops in a model of lateral inhibition based on the Notch signaling pathway, elucidating the roles of intracellular and intercellular delays in controlling the overall system behavior. The model exhibits both in-phase and out-of-phase oscillatory modes and oscillation death. Interactions between oscillatory modes can generate complex behaviors such as intermittent oscillations. Our results provide a framework for exploring the recent observation of transient Notch-pathway oscillations during fate assignment in vertebrate neurogenesis.

  17. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    Bruno M. Simões

    2015-09-01

    Full Text Available Breast cancers (BCs typically express estrogen receptors (ERs but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

  18. Regulation of Monocarboxylic Acid Transporter 1 Trafficking by the Canonical Wnt/β-Catenin Pathway in Rat Brain Endothelial Cells Requires Cross-talk with Notch Signaling.

    Liu, Zejian; Sneve, Mary; Haroldson, Thomas A; Smith, Jeffrey P; Drewes, Lester R

    2016-04-01

    The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelialMct1mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitorN-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways. PMID:26872974

  19. The Notch Delta-4 ligand helps to maintain the quiescence and the short-term reconstitutive potential of haematopoietic progenitor cells through activation of a key gene network

    Cyril Catelain

    2014-11-01

    Full Text Available Understanding the role of Notch and its ligands within the different bone marrow niches could shed light on the mechanisms regulating haematopoietic progenitor cells (HPCs maintenance and self-renewal. Here, we report that murine bone marrow HPCs activation by the vascular Notch Delta-4 ligand maintains a significant proportion of cells specifically in the G0 state. Furthermore, Delta-4/Notch pathway limits significantly the loss of the in vivo short-term reconstitutive potential upon transplantation of Delta-4 activated HPCs into lethally irradiated recipient mice. Both effects are directly correlated with the decrease of cell cycle genes transcription such as CYCLIN-D1, -D2, and -D3, and the upregulation of stemness related genes transcription such as BMI1, GATA2, HOXB4 and C-MYC. In addition, the transcriptional screening also highlights new downstream post-transcriptional factors, named PUMILIO1 and -2, as part of the stem signature associated with the Delta-4/Notch signalling pathway.

  20. Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E(spl/Hes genes.

    Ben E Housden

    Full Text Available Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H, in Drosophila], and RNA Polymerase II (Pol II immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl genes were the most rapidly upregulated, with Su(H, Pol II, and transcript levels increasing within 5-10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(splbHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(splbHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts.

  1. A conserved role for Notch in priming the cellular response to Shh through ciliary localisation of the key Shh transducer, Smoothened

    Stasiulewicz, Magdalena; Gray, Shona; Mastromina, Ioanna;

    2015-01-01

    , we show Notch activity promotes longer primary cilia both in vitro and in vivo. Strikingly, these Notch-regulated effects are Shh-independent. These data identify Notch signalling as a novel modulator of Shh signalling which acts mechanistically via regulation of ciliary localisation of key...

  2. Arsenic Trioxide Inhibits Cell Growth and Induces Apoptosis through Inactivation of Notch Signaling Pathway in Breast Cancer

    Zhiwei Wang

    2012-08-01

    Full Text Available Arsenic trioxide has been reported to inhibit cell growth and induce apoptotic cell death in many human cancer cells including breast cancer. However, the precise molecular mechanisms underlying the anti-tumor activity of arsenic trioxide are still largely unknown. In the present study, we assessed the effects of arsenic trioxide on cell viability and apoptosis in breast cancer cells. For mechanistic studies, we used multiple cellular and molecular approaches such as MTT assay, apoptosis ELISA assay, gene transfection, RT-PCR, Western blotting, and invasion assays. For the first time, we found a significant reduction in cell viability in arsenic trioxide-treated cells in a dose-dependent manner, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and its target genes. Taken together, our findings provide evidence showing that the down-regulation of Notch-1 by arsenic trioxide could be an effective approach, to cause down-regulation of Bcl-2, and NF-κB, resulting in the inhibition of cell growth and invasion as well as induction of apoptosis. These results suggest that the anti-tumor activity of arsenic trioxide is in part mediated through a novel mechanism involving inactivation of Notch-1 and its target genes. We also suggest that arsenic trioxide could be further developed as a potential therapeutic agent for the treatment of breast cancer.

  3. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    Genethliou, Nicholas; Panayiotou, Elena [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Gasperi, Rita De; Elder, Gregory [James J. Peters VA Medical Center, Research and Development (3F22), 130 West Kingsbridge Road, Bronx, NY 10468 (United States); Kessaris, Nicoletta; Richardson, William D. [Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  4. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial (Ν/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  5. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking.

    Robert J Lake

    2014-03-01

    Full Text Available Mechanisms that maintain transcriptional memory through cell division are important to maintain cell identity, and sequence-specific transcription factors that remain associated with mitotic chromatin are emerging as key players in transcriptional memory propagation. Here, we show that the major transcriptional effector of Notch signaling, RBPJ, is retained on mitotic chromatin, and that this mitotic chromatin association is mediated through the direct association of RBPJ with DNA. We further demonstrate that RBPJ binds directly to nucleosomal DNA in vitro, with a preference for sites close to the entry/exit position of the nucleosomal DNA. Genome-wide analysis in the murine embryonal-carcinoma cell line F9 revealed that roughly 60% of the sites occupied by RBPJ in asynchronous cells were also occupied in mitotic cells. Among them, we found that a fraction of RBPJ occupancy sites shifted between interphase and mitosis, suggesting that RBPJ can be retained on mitotic chromatin by sliding on DNA rather than disengaging from chromatin during mitotic chromatin condensation. We propose that RBPJ can function as a mitotic bookmark, marking genes for efficient transcriptional activation or repression upon mitotic exit. Strikingly, we found that sites of RBPJ occupancy were enriched for CTCF-binding motifs in addition to RBPJ-binding motifs, and that RBPJ and CTCF interact. Given that CTCF regulates transcription and bridges long-range chromatin interactions, our results raise the intriguing hypothesis that by collaborating with CTCF, RBPJ may participate in establishing chromatin domains and/or long-range chromatin interactions that could be propagated through cell division to maintain gene expression programs.

  6. Notch in the intestine: regulation of homeostasis and pathogenesis.

    Noah, Taeko K; Shroyer, Noah F

    2013-01-01

    The small and large intestines are tubular organs composed of several tissue types. The columnar epithelium that lines the inner surface of the intestines distinguishes the digestive physiology of each region of the intestine and consists of several distinct cell types that are rapidly and continually renewed by intestinal stem cells that reside near the base of the crypts of Lieberkühn. Notch signaling controls the fate of intestinal stem cells by regulating the expression of Hes genes and by repressing Atoh1. Alternate models of Notch pathway control of cell fate determination are presented. Roles for Notch signaling in development of the intestine, including mesenchymal and neural cells, are discussed. The oncogenic activities of Notch in colorectal cancer, as well as the tumor suppressive activities of Atoh1, are reviewed. Therapeutic targeting of the Notch pathway in colorectal cancers is discussed, along with potential caveats. PMID:23190077

  7. Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells.

    Zhou, Jiesi; Jain, Saket; Azad, Abul K; Xu, Xia; Yu, Hai Chuan; Xu, Zhihua; Godbout, Roseline; Fu, YangXin

    2016-08-01

    Epithelial-mesenchymal transition (EMT) plays a critical role in the progression of epithelial ovarian cancer (EOC). However, the mechanisms that regulate EMT in EOC are not fully understood. Here, we report that activation of Notch1 induces EMT in EOC cells as evidenced by downregulation of E-cadherin and cytokeratins, upregulation of Slug and Snail, as well as morphological changes. Interestingly, activation of Notch1 increases TGFβ/Smad signaling by upregulating the expression of TGFβ and TGFβ type 1 receptor. Time course experiments demonstrate that inhibition of Notch by DAPT (a γ-secretase inhibitor) decreases TGFβ-induced phosphorylation of receptor Smads at late, but not at early, timepoints. These results suggest that Notch activation plays a role in sustaining TGFβ/Smad signaling in EOC cells. Furthermore, inhibition of Notch by DAPT decreases TGFβ induction of Slug and repression of E-cadherin and knockdown of Notch1 decreases TGFβ-induced repression of E-cadherin, indicating that Notch is required, at least in part, for TGFβ-induced EMT in EOC cells. On the other hand, TGFβ treatment increases the expression of Notch ligand Jagged1 and Notch target gene HES1 in EOC cells. Functionally, the combination of Notch1 activation and TGFβ treatment is more potent in promoting motility and migration of EOC cells than either stimulation alone. Taken together, our results indicate that Notch and TGFβ form a reciprocal positive regulatory loop and cooperatively regulate EMT and promote EOC cell motility and migration. PMID:27075926

  8. The Effect of Physiological Stimuli on Sarcopenia; Impact of Notch and Wnt Signaling on Impaired Aged Skeletal Muscle Repair

    Susan Tsivitse Arthur, Ian D. Cooley

    2012-01-01

    Full Text Available The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.

  9. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling.

    Shaohua Wang

    Full Text Available Our previous research highlighted an inconsistency with Notch1 signaling-related compensatory neurogenesis after chronic mild stress (CMS in rodents suffering from cerebral ischemia, which continue to display post-stroke depressive symptoms. Here, we hypothesize that CMS aggrandized ischemia-related apoptosis injury and worsened synaptic integrity via gamma secretase-meditated Notch1 signaling. Adult rats were exposed to a CMS paradigm after left middle cerebral artery occlusion (MCAO. Open-field and sucrose consumption testing were employed to assess depression-like behavior. Gene expression of pro-apoptotic Bax, anti-apoptotic Bcl-2, and synaptic density-related synaptophysin were measured by western blotting and real-time PCR on Day 28 after MCAO surgery. CMS induced depressive behaviors in ischemic rats, which was accompanied by an elevation in Bax/bcl-2 ratio, TUNEL staining in neurons and reduced synaptophysin expression in the dentate gyrus. These collective effects were reversed by the gamma-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl]-S-phenyl-glycine t-butyl ester. We found that post-stroke stressors made neurons in the dentate gyrus vulnerable to apoptosis, which supports a putative role for Notch signaling in neural integrity, potentially in newborn cells' synaptic deficit with regard to preexisting cells. These findings suggest that post-stroke depression therapeutically benefits from blocking gamma secretase mediated Notch signaling, and whether this signaling pathway could be a therapeutic target needs to be further investigated.

  10. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology.

    Sucre, Jennifer M S; Wilkinson, Dan; Vijayaraj, Preethi; Paul, Manash; Dunn, Bruce; Alva-Ornelas, Jackelyn A; Gomperts, Brigitte N

    2016-05-15

    Bronchopulmonary dysplasia (BPD) is a leading complication of premature birth and occurs primarily in infants delivered during the saccular stage of lung development. Histopathology shows decreased alveolarization and a pattern of fibroblast proliferation and differentiation to the myofibroblast phenotype. Little is known about the molecular pathways and cellular mechanisms that define BPD pathophysiology and progression. We have developed a novel three-dimensional human model of the fibroblast activation associated with BPD, and using this model we have identified the Notch pathway as a key driver of fibroblast activation and proliferation in response to changes in oxygen. Fetal lung fibroblasts were cultured on sodium alginate beads to generate lung organoids. After exposure to alternating hypoxia and hyperoxia, the organoids developed a phenotypic response characterized by increased α-smooth muscle actin (α-SMA) expression and other genes known to be upregulated in BPD and also demonstrated increased expression of downstream effectors of the Notch pathway. Inhibition of Notch with a γ-secretase inhibitor prevented the development of the pattern of cellular proliferation and α-SMA expression in our model. Analysis of human autopsy tissue from the lungs of infants who expired with BPD demonstrated evidence of Notch activation within fibrotic areas of the alveolar septae, suggesting that Notch may be a key driver of BPD pathophysiology. PMID:26968771

  11. Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS stem/progenitor cell activity regardless of ErbB2 status.

    Gillian Farnie

    Full Text Available Pathways involved in DCIS stem and progenitor signalling are poorly understood yet are critical to understand DCIS biology and to develop new therapies. Notch and ErbB1/2 receptor signalling cross talk has been demonstrated in invasive breast cancer, but their role in DCIS stem and progenitor cells has not been investigated. We have utilised 2 DCIS cell lines, MCF10DCIS.com (ErbB2-normal and SUM225 (ErbB2-overexpressing and 7 human primary DCIS samples were cultured in 3D matrigel and as mammospheres in the presence, absence or combination of the Notch inhibitor, DAPT, and ErbB1/2 inhibitors, lapatinib or gefitinib. Western blotting was applied to assess downstream signalling. In this study we demonstrate that DAPT reduced acini size and mammosphere formation in MCF10DCIS.com whereas there was no effect in SUM225. Lapatinb reduced acini size and mammosphere formation in SUM225, whereas mammosphere formation and Notch1 activity were increased in MCF10DCIS.com. Combined DAPT/lapatinib treatment was more effective at reducing acini size in both DCIS cell lines. Mammosphere formation in cell lines and human primary DCIS was reduced further by DAPT/lapatinib or DAPT/gefitinib regardless of ErbB2 receptor status. Our pre-clinical human models of DCIS demonstrate that Notch and ErbB1/2 both play a role in DCIS acini growth and stem cell activity. We report for the first time that cross talk between the two pathways in DCIS occurs regardless of ErbB2 receptor status and inhibition of Notch and ErbB1/2 was more efficacious than either alone. These data provide further understanding of DCIS biology and suggest treatment strategies combining Notch and ErbB1/2 inhibitors should be investigated regardless of ErbB2 receptor status.

  12. Mind bomb-1 in dendritic cells is specifically required for Notch-mediated T helper type 2 differentiation.

    Hyun-Woo Jeong

    Full Text Available In dendritic cell (DC-CD4(+ T cell interaction, Notch signaling has been implicated in the CD4(+ T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1, a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+ T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+ T cells, suggesting that Notch activation in CD4(+ T cells is not required for these processes. Intriguingly, stimulation of CD4(+ T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+ T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+ T cells.

  13. Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction

    Gleason, Julie E.; Korswagen, Hendrik C.; Eisenmann, David M

    2002-01-01

    During Caenorhabditis elegans vulval development, activation of receptor tyrosine kinase/Ras and Notch signaling pathways causes three vulval precursor cells (VPCs) to adopt induced cell fates. A Wnt signaling pathway also acts in cell fate specification by the VPCs, via regulation of the Hox gene lin-39. We show here that either mutation of pry-1 or expression of an activated BAR-1 β-catenin protein causes an Overinduced phenotype, in which greater than three VPCs adopt induced cell fates. T...

  14. Dual Roles of O-Glucose Glycans Redundant with Monosaccharide O-Fucose on Notch in Notch Trafficking.

    Matsumoto, Kenjiroo; Ayukawa, Tomonori; Ishio, Akira; Sasamura, Takeshi; Yamakawa, Tomoko; Matsuno, Kenji

    2016-06-24

    Notch is a transmembrane receptor that mediates cell-cell interactions and controls various cell-fate specifications in metazoans. The extracellular domain of Notch contains multiple epidermal growth factor (EGF)-like repeats. At least five different glycans are found in distinct sites within these EGF-like repeats. The function of these individual glycans in Notch signaling has been investigated, primarily by disrupting their individual glycosyltransferases. However, we are just beginning to understand the potential functional interactions between these glycans. Monosaccharide O-fucose and O-glucose trisaccharide (O-glucose-xylose-xylose) are added to many of the Notch EGF-like repeats. In Drosophila, Shams adds a xylose specifically to the monosaccharide O-glucose. We found that loss of the terminal dixylose of O-glucose-linked saccharides had little effect on Notch signaling. However, our analyses of double mutants of shams and other genes required for glycan modifications revealed that both the monosaccharide O-glucose and the terminal dixylose of O-glucose-linked saccharides function redundantly with the monosaccharide O-fucose in Notch activation and trafficking. The terminal dixylose of O-glucose-linked saccharides and the monosaccharide O-glucose were required in distinct Notch trafficking processes: Notch transport from the apical plasma membrane to adherens junctions, and Notch export from the endoplasmic reticulum, respectively. Therefore, the monosaccharide O-glucose and terminal dixylose of O-glucose-linked saccharides have distinct activities in Notch trafficking, although a loss of these activities is compensated for by the presence of monosaccharide O-fucose. Given that various glycans attached to a protein motif may have redundant functions, our results suggest that these potential redundancies may lead to a serious underestimation of glycan functions. PMID:27129198

  15. Interactions between enhancer of rudimentary and Notch and deltex reveal a regulatory function of enhancer of rudimentary in the Notch signaling pathway in Drosophila melanogaster

    Tsubota, Stuart I.; Vogel, Alecia C.; Phillips, Anthony C; Ibach, Suzanne M; Weber, Nicholas K; Kostrzebski, Melissa A; Spencer, Susan A

    2011-01-01

    Enhancer of rudimentary, e(r), encodes a small nuclear protein, ER, that has been implicated in the regulation of pyrimidine metabolism, DNA replication and cell proliferation. In Drosophila melanogaster, a new recessive Notch allele, Nnd-p, was isolated as a lethal in combination with an e(r) allele, e(r)p2. Both mutants are viable as single mutants. Nnd-p is caused by a P-element insertion in the 5′ UTR, 378-bp upstream of the start of translation. Together the molecular and genetic data ar...

  16. Notch-Mediated Cell Adhesion

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  17. Clinical significance of NOTCH1 and NOTCH2 expression in gastric carcinomas: an immunohistochemical study

    Lukas eBauer

    2015-04-01

    Full Text Available Background: Notch signaling can exert oncogenic or tumor suppressive functions and can contribute to chemotherapy resistance in cancer. In this study, we aimed to clarify the clinicopathological significance and the prognostic and predictive value of NOTCH1 and NOTCH2 expression in gastric carcinoma (GC. Methods: NOTCH1 and NOTCH2 expression was determined immunohistochemically in 142 primarily resected GCs using tissue microarrays and in 84 pretherapeutic biopsies from patients treated by neoadjuvant chemotherapy. The results were correlated with survival, response to therapy and clinico-pathological features.Results: Primarily resected patients with NOTCH1-negative tumors demonstrated worse survival. High NOTCH1 expression was associated with early-stage tumors and with significantly increased survival in this subgroup.Higher NOTCH2 expression was associated with early-stage and intestinal-type tumors and with better survival in the subgroup of intestinal-type tumors.In pretherapeutic biopsies, higher NOTCH1 and NOTCH2 expression was more frequent in nonresponding patients, but these differences were statistically not significant. Conclusion: Our findings suggested that, in particular NOTCH1 expression indicated good prognosis in GC. The close relationship of high NOTCH1 and NOTCH2 expression with early tumor stages may indicate a tumor-suppressive role of Notch signaling in GC. The role of NOTCH1 and NOTCH2 in neoadjuvantly treated GC is limited.

  18. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Marina Pasca di Magliano

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  19. SNX17 regulates Notch pathway and pancreas development through the retromer-dependent recycling of Jag1

    Yin Wenguang

    2012-06-01

    Full Text Available Abstract Background Notch is one of the most important signaling pathways involved in cell fate determination. Activation of the Notch pathway requires the binding of a membrane-bound ligand to the Notch receptor in the adjacent cell which induces proteolytic cleavages and the activation of the receptor. A unique feature of the Notch signaling is that processes such as modification, endocytosis or recycling of the ligand have been reported to play critical roles during Notch signaling, however, the underlying molecular mechanism appears context-dependent and often controversial. Results Here we identified SNX17 as a novel regulator of the Notch pathway. SNX17 is a sorting nexin family protein implicated in vesicular trafficking and we find it is specifically required in the ligand-expressing cells for Notch signaling. Mechanistically, SNX17 regulates the protein level of Jag1a on plasma membrane by binding to Jag1a and facilitating the retromer-dependent recycling of the ligand. In zebrafish, inhibition of this SNX17-mediated Notch signaling pathway results in defects in neurogenesis as well as pancreas development. Conclusions Our results reveal that SNX17, by acting as a cargo-specific adaptor, promotes the retromer dependent recycling of Jag1a and Notch signaling and this pathway is involved in cell fate determination during zebrafish neurogenesis and pancreas development.

  20. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    Kristoffersen, Karina

    2013-01-01

    treatment. The overall aim of the present PhD project has been to study the functional role of EGFR and Notch activity in bCSCs stem cell-like features and tumorigenic potential with the purpose of deepen our knowledge about the significance of these pathways in the bCSC population in GBM. By establishing...... expression of the mutant receptor EGFRvIII, an expression that was maintained from patient material to the xenograft tumors and cell cultures. In a culture expressing EGFR and EGFRvIII we found that EGFR inhibition induced differentiation, while forced differentiation led to down-regulation of EGFR and EGFRv......III. In addition, we showed that EGFR/EGFRvIII down regulation either as a result of induced differentiation or EGFR inhibition led to decreased in vitro tumorigenic and stem cell-like potential. In cultures expressing high levels of the Notch-1 receptor we found that Notch inhibition decreased the in...

  1. Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis.

    Briot, Anaïs; Civelek, Mete; Seki, Atsuko; Hoi, Karen; Mack, Julia J; Lee, Stephen D; Kim, Jason; Hong, Cynthia; Yu, Jingjing; Fishbein, Gregory A; Vakili, Ladan; Fogelman, Alan M; Fishbein, Michael C; Lusis, Aldons J; Tontonoz, Peter; Navab, Mohamad; Berliner, Judith A; Iruela-Arispe, M Luisa

    2015-11-16

    Although much progress has been made in identifying the mechanisms that trigger endothelial activation and inflammatory cell recruitment during atherosclerosis, less is known about the intrinsic pathways that counteract these events. Here we identified NOTCH1 as an antagonist of endothelial cell (EC) activation. NOTCH1 was constitutively expressed by adult arterial endothelium, but levels were significantly reduced by high-fat diet. Furthermore, treatment of human aortic ECs (HAECs) with inflammatory lipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [Ox-PAPC]) and proinflammatory cytokines (TNF and IL1β) decreased Notch1 expression and signaling in vitro through a mechanism that requires STAT3 activation. Reduction of NOTCH1 in HAECs by siRNA, in the absence of inflammatory lipids or cytokines, increased inflammatory molecules and binding of monocytes. Conversely, some of the effects mediated by Ox-PAPC were reversed by increased NOTCH1 signaling, suggesting a link between lipid-mediated inflammation and Notch1. Interestingly, reduction of NOTCH1 by Ox-PAPC in HAECs was associated with a genetic variant previously correlated to high-density lipoprotein in a human genome-wide association study. Finally, endothelial Notch1 heterozygous mice showed higher diet-induced atherosclerosis. Based on these findings, we propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of vascular inflammation and initiation of atherosclerosis. PMID:26552708

  2. Notch-EGFR/HER2 Bidirectional Crosstalk in Breast Cancer

    Andrew T Baker

    2014-12-01

    Full Text Available The Notch pathway is a well-established mediator of cell-cell communication that plays a critical role in stem cell survival, self-renewal, cell fate decisions, tumorigenesis, invasion, metastasis, and drug resistance in a variety of cancers. An interesting form of crosstalk exists between the Notch receptor and the Epidermal Growth Factor Receptor Tyrosine Kinase family which consists of HER-1, -2, -3, and -4. Overexpression of HER and/or Notch occurs in several human cancers including brain, lung, breast, ovary, and skin making them potent oncogenes capable of advancing malignant disease. Continued assessment of interplay between these two critical signaling networks uncovers new insight into mechanisms used by HER-driven cancer cells to exploit Notch as a compensatory pathway. The compensatory Notch pathway maintains HER-induced downstream signals transmitted to pathways such as Mitogen Activated Protein Kinase (MAPK and Phosphatidylinositol 3-Kinase (PI3K, thereby allowing cancer cells to survive molecular targeted therapies, undergo EMT, and increase cellular invasion. Uncovering the critical crosstalk between the HER and Notch pathways can lead to improved screening for the expression of these oncogenes enabling patients to optimize their personal treatment options and predict potential treatment resistance. This review will focus on the current state of crosstalk between the HER and Notch receptors and the effectiveness of current therapies targeting HER-driven cancers.

  3. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation.

    Luna-Zurita, Luis; Prados, Belén; Grego-Bessa, Joaquim; Luxán, Guillermo; del Monte, Gonzalo; Benguría, Alberto; Adams, Ralf H; Pérez-Pomares, José María; de la Pompa, José Luis

    2010-10-01

    Cardiac valve formation is crucial for embryonic and adult heart function. Valve malformations constitute the most common congenital cardiac defect, but little is known about the molecular mechanisms regulating valve formation and homeostasis. Here, we show that endocardial Notch1 and myocardial Bmp2 signal integration establish a valve-forming field between 2 chamber developmental domains. Patterning occurs through the activation of endocardial epithelial-to-mesenchymal transition (EMT) exclusively in prospective valve territories. Mice with constitutive endocardial Notch1 activity ectopically express Hey1 and Heyl. They also display an activated mesenchymal gene program in ventricles and a partial (noninvasive) EMT in vitro that becomes invasive upon BMP2 treatment. Snail1, TGF-β2, or Notch1 inhibition reduces BMP2-induced ventricular transformation and invasion, whereas BMP2 treatment inhibits endothelial Gsk3β, stabilizing Snail1 and promoting invasiveness. Integration of Notch and Bmp2 signals is consistent with Notch1 signaling being attenuated after myocardial Bmp2 deletion. Notch1 activation in myocardium extends Hey1 expression to nonchamber myocardium, represses Bmp2, and impairs EMT. In contrast, Notch deletion abrogates endocardial Hey gene transcription and extends Bmp2 expression to the ventricular endocardium. This embryonic Notch1-Bmp2-Snail1 relationship may be relevant in adult valve disease, in which decreased NOTCH signaling causes valve mesenchyme cell formation, fibrosis, and calcification. PMID:20890042

  4. The Dmp1-SOST Transgene Interacts With and Downregulates the Dmp1-Cre Transgene and the Rosa(Notch) Allele.

    Zanotti, Stefano; Canalis, Ernesto

    2016-05-01

    Activation of Notch1 in osteocytes of Rosa(Notch) mice, where a loxP-flanked STOP cassette and the Nicd coding sequence were targeted to the reverse orientation splice acceptor (Rosa)26 locus, causes osteopetrosis associated with suppressed Sost expression and enhanced Wnt signaling. To determine whether Sost downregulation mediates the effects of Notch activation in osteocytes, Rosa(Notch) mice were crossed with transgenics expressing Cre recombinase or SOST under the control of the dentin matrix protein (Dmp)1 promoter. Dmp1-SOST transgenics displayed vertebral osteopenia and a modest femoral cancellous and cortical bone phenotype, whereas hemizygous Dmp1-Cre transgenics heterozygous for the Rosa(Notch) allele (Dmp1-Cre;Rosa(Notch) ) exhibited osteopetrosis. The phenotype of Notch activation in osteocytes was prevented in Dmp1-Cre;Rosa(Notch) mice hemizygous for the Dmp1-SOST transgene. The effect was associated with downregulated Notch signaling and suppressed Dmp1 and Rosa26 expression. To test whether SOST regulates Notch expression in osteocytes, cortical bone cultures from Dmp1-Cre;Rosa(Notch) mice or from Rosa(Notch) control littermates were exposed to recombinant human SOST. The addition of SOST had only modest effects on Notch target gene mRNA levels and suppressed Dmp1, but not Cre or Rosa26, expression. These findings suggest that prevention of the Dmp1-Cre;Rosa(Notch) skeletal phenotype by Dmp1-SOST is not secondary to SOST expression but to interactions among the Dmp1-SOST and Dmp1-Cre transgenes and the Rosa26 locus. In conclusion, the Dmp1-SOST transgene suppresses the expression of the Dmp1-Cre transgene and of Rosa26. J. Cell. Biochem. 117: 1222-1232, 2016. © 2015 Wiley Periodicals, Inc. PMID:26456319

  5. DAPT抑制妊娠滋养细胞肿瘤Notch信号通路对细胞增殖和EMT影响的研究%A study on the role of notch signaling pathway in gestational trophoblastic tumor.

    周园园; 薛艳; 田泉; 安瑞芳

    2015-01-01

    Objective:To study the significance of Notch signaling pathway in the de-velopment of gestational trophoblastic tumor and the relationship between EMT. Methods:The choriocarcinoma cell lines JAR and JEG-3 were treated with gamma-secretase inhibitor ( DAPT) . Using MTT assay to examine the activity of the two cell lines and evaluate the infulu-ence on the proliferation in JAR and JEG-3 cells of DAPT. qPCR was performed to assess mR-NA expression of Notch1. In addition,EMT related protein E-cadherin was detected by Western blot. Results:DAPT could inhibit JEG-3 cells and JAR cells growth,down-regulate the expres-sion of Notch1 mRNA,and up-regulate the expression of E-cadherin in JAR cells. Conclusions:Notch sigaling pathway and EMT may be associated with the development of gestational tropho-blastic tumor. DAPT may be a potential target of new therapeutic investigation in gestational trophoblastic tumor.%目的:探讨Notch信号通路在人妊娠滋养细胞肿瘤发生发展过程中的重要作用,及其与EMT之间的关系. 方法:采用γ-分泌酶抑制剂DAPT处理JAR和JEG-3两种人绒毛膜癌细胞株,MTT法检测两种细胞株的增殖情况,qPCR法检测Notch1 mRNA表达. Western blot法检测DAPT阻断Notch信号通路后JAR细胞中EMT相关蛋白E-cad的表达情况. 结果:DAPT能抑制JEG-3、JAR细胞生长,10μmol/L和15μmol/L DAPT作用48 h开始分别抑制JEG-3和JAR细胞生长( P0. 05);JAR细胞中,10μmol/L和15μmol/L DAPT作用组中Notch1 mRNA表达下调,两组比较差异有统计学意义( P<0 . 05 ). DAPT能上调JAR细胞中E-cad表达. 结论:Notch信号通路和EMT与妊娠滋养细胞肿瘤的发生发展有关;γ-分泌酶抑制剂DAPT或可成为妊娠滋养细胞肿瘤治疗的一个新靶点.

  6. Roles of myofibroblasts and notch and hedgehog signaling pathways in the formation of intrahepatic bile duct lesions in polycystic kidney rats.

    Furubo, Shinichi; Sato, Yasunori; Harada, Kenichi; Nakanuma, Yasuni

    2013-01-01

    Polycystic kidney (PCK) rats, an animal model of Caroli's disease, show a dilatation of intrahepatic bile ducts (IHBD) called "ductal plate malformation." Mesenchymal cells and the Notch and Hedgehog signaling pathways in portal tracts are reportedly involved in the normal development of IHBD, although there have been no studies on the roles of these signaling pathways in PCK rats. We immunohistochemically examined the expression of the molecules related to these signaling pathways in portal tracts. All molecules related to these signaling pathways expressed in portal tracts in Sprague Dawley (SD) rats (control) were also expressed in PCK rats. Mesenchymal cells (myofibroblasts) were frequently found in the connective tissue of portal tracts of 20 embryonic-day-old (E20D), 1-day-old (1D), and 1-week-old (1W) SD and PCK rats and were abundant in PCK rats. Interestingly, myofibroblasts almost disappeared at in both strains of 3W rats. Jagged1 was expressed in mesenchymal cells in portal tracts and was abundant in PCK rats. Double immunostaining showed that Jagged1-positive cells were myofibroblasts. Notch2 and HES1 were expressed in cholangiocytes of the bile ducts of both rats. Sonic Hedgehog was similarly expressed in the bile ducts of both rats. A well-balanced and time-sequential expression of the Notch and Hedgehog family in portal tracts might be essential for the normal development of IHBD in E20D to 1W SD rats, and an imbalanced interaction of these molecules, particularly increased Jagged1 expression in periductal and periportal myofibroblasts and Notch2 expressed in cholangiocytes, may be involved in the formation of bile duct lesions in PCK rats. PMID:23331119

  7. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition

    Zavadil, J.; Čermák, Lukáš; Soto-Nieves, N.; Bottinger, E. P.

    2004-01-01

    Roč. 23, - (2004), s. 1155-1165. ISSN 0261-4189 Institutional research plan: CEZ:AV0Z5052915 Keywords : TGFb, Notch, EMT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.492, year: 2004

  8. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy.

    Abravanel, Daniel L; Belka, George K; Pan, Tien-chi; Pant, Dhruv K; Collins, Meredith A; Sterner, Christopher J; Chodosh, Lewis A

    2015-06-01

    Breast cancer mortality is principally due to recurrent tumors that arise from a reservoir of residual tumor cells that survive therapy. Remarkably, breast cancers can recur after extended periods of clinical remission, implying that at least some residual tumor cells pass through a dormant phase prior to relapse. Nevertheless, the mechanisms that contribute to breast cancer recurrence are poorly understood. Using a mouse model of recurrent mammary tumorigenesis in combination with bioinformatics analyses of breast cancer patients, we have identified a role for Notch signaling in mammary tumor dormancy and recurrence. Specifically, we found that Notch signaling is acutely upregulated in tumor cells following HER2/neu pathway inhibition, that Notch signaling remains activated in a subset of dormant residual tumor cells that persist following HER2/neu downregulation, that activation of Notch signaling accelerates tumor recurrence, and that inhibition of Notch signaling by either genetic or pharmacological approaches impairs recurrence in mice. Consistent with these findings, meta-analysis of microarray data from over 4,000 breast cancer patients revealed that elevated Notch pathway activity is independently associated with an increased rate of recurrence. Together, these results implicate Notch signaling in tumor recurrence from dormant residual tumor cells and provide evidence that dormancy is a targetable stage of breast cancer progression. PMID:25961456

  9. The altered change of Notch1 signaling in depressed rats%抑郁状态下大鼠海马Notch1信号系统的改变

    李元; 戴志萍; 隋毓秀

    2011-01-01

    目的 了解大鼠抑郁模型中海马神经重塑障碍与Notch1信号系统功能改变的关系.方法 54只大鼠随机分为CUMS 14 d组、CUMS 28 d组和对照组,前两组接受慢性不可预知温和应激和孤养(chronic unpredictable mild stress,CUMS)14 d和28 d建立抑郁模型.采用免疫组化、免疫荧光、RT-PCR和Western blot 法.测定大鼠海马神经干细胞的增殖、存活和分化以及Notch1信号通路各个因子的基因及蛋白表达水平的改变.结果 与对照组比较,CUMS 14 d组和CUMS 28 d组大鼠海马神经干细胞增殖与存活明显减少(P0.05).与对照组比较.CUMS 14 d组和CUMS 28 d组Notch1信号通路各因子(NICD、Hes1、Hes5和Jag1)基因表达和蛋白水平明显降低(P<0.01).结论 抑郁大鼠海马齿状回神经干细胞增殖和存活受到抑制,但分化无改变;同时,大鼠海马Notch1功能下调.提示Notch1信号系统可能与抑郁症海马神经再生障碍有关.%Objective To investigate the relationship between impaired hippocampal neurogenesis and altered Notchl signaling in depressed rats. Methods In the present study, chronic unpredictable mild stress (CUMS) was used to inhibit the neurogenesis in the hippocampus. The function of Notchl signaling was investigated by using realtime PCR and western blot at different time points (14 d and 28 d) during chronic stress. The hippocampal neurogenesis was monitored by assessing cell proliferation, survival, and differentiation. Results After 14 days, CUMS significantly reduced weight (P < 0.05), the sucrose preference (P < 0.001), number of squares crossed (P < 0.01) and number of grooming and rearing compared with the controls. The immobility time was significantly increased after 14 d CUMS treated relative to the controls (P < 0.001). Twenty-eight days after CUMS protocol, these parameters were significantly difference in rats exposed to CUMS compare with the controls (weight, P < 0.05; sucrose preference, P < 0.001; number of

  10. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    Helena C Reinardy

    Full Text Available Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.