WorldWideScience

Sample records for activates extracellular signal-regulated

  1. Bradykinin activation of extracellular signal-regulated kinases in human trabecular meshwork cells

    Webb, Jerry G.; Yang, Xiaofeng; Crosson, Craig E.

    2011-01-01

    Bradykinin stimulation of B2 kinin receptors has been shown to promote matrix metalloproteinase (MMP) secretion from trabecular meshwork cells and to increase conventional outflow facility. Because acute secretion of MMPs can be dependent on the activity of extracellular signal-regulated MAP kinases (ERK1/2), experiments were performed to determine bradykinin effects on ERK1/2 in cultured human trabecular meshwork cells and the relationship of these effects to MMP-9 release. Treatment of cell...

  2. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  3. Cadmium activates extracellular signal-regulated kinase 5 in HK-2 human renal proximal tubular cells

    Highlights: ► Cadmium exposure induces ERK5 phosphorylation in HK-2 renal proximal tubular cells. ► BIX02189 treatment suppresses cadmium-induced ERK5 but not ERK1/2 phosphorylation. ► BIX02189 treatment suppresses cadmium-induced CREB and c-Fos phosphorylation. ► ERK5 activation by cadmium exposure may play an anti-apoptotic role in HK-2 cells. -- Abstract: We examined the effects of cadmium chloride (CdCl2) exposure on the phosphorylation and functionality of extracellular signal-regulated kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, in HK-2 human renal proximal tubular cells. Following exposure to CdCl2, ERK5 phosphorylation increased markedly, but the level of total ERK5 was unchanged. ERK5 phosphorylation following CdCl2 exposure was rapid and transient, similar to the time course of ERK1/2 phosphorylation. Treatment of HK-2 cells with the MAPK/ERK kinase 5 inhibitor, BIX02189, suppressed CdCl2-induced ERK5 but not ERK1/2 phosphorylation. The CdCl2-induced increase of phosphorylated cAMP response element-binding protein (CREB) and activating transcription factor-1 (ATF-1), as well as the accumulation of mobility-shifted c-Fos protein, were suppressed by BIX02189 treatment. Furthermore, BIX02189 treatment enhanced cleavage of poly(ADP-ribose) polymerase and increased the level of cytoplasmic nucleosomes in HK-2 cells exposed to CdCl2. These findings suggest that ERK5 pathway activation by CdCl2 exposure might induce the phosphorylation of cell survival-transcription factors, such as CREB, ATF-1, and c-Fos, and may exert a partial anti-apoptotic role in HK-2 cells.

  4. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity

    Harada, Hisashi; Quearry, Bonnie; Ruiz-Vela, Antonio; Korsmeyer, Stanley J.

    2004-01-01

    The “BH3-only” proapoptotic BCL-2 family members initiate the intrinsic apoptotic pathway. A small interfering RNA knockdown of BIM confirms this BH3-only member is important for the cytokine-mediated homeostasis of hematopoietic cells. We show here that the phosphorylation status of BIM controls its proapoptotic activity. IL-3, a hematopoietic survival factor, induces extracellular signal-regulated kinase/mitogen-activated protein kinase-mediated phosphorylation of BIM on three serine sites ...

  5. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  6. Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death

    Hollmann, C Annette; Owens, Trevor; Nalbantoglu, Josephine; Hudson, Thomas J; Sladek, Robert

    2006-01-01

    , including LCK and VAV. In addition, CD40-sensitive DLBCL cell lines also displayed constitutive activation of extracellular signal-regulated kinase (ERK) and failed to undergo apoptosis when ERK phosphorylation was inhibited. In contrast, CD40-resistant lines showed no constitutive activation of ERK and no...

  7. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence

    Zamora-Martinez, Eva R.; Scott Edwards

    2014-01-01

    Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK) to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellula...

  8. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence

    Zamora-Martinez, Eva R.; Edwards, Scott

    2014-01-01

    Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK) to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular ...

  9. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway.

    Fei Liu

    Full Text Available G protein-coupled receptors (GPCRs activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A-adrenergic receptor (α(1A-AR-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2. Agonist-mediated endocytic traffic of α(1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A. α(1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A-AR. α(1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent. Activation of protein kinase C (PKC and C-Raf by α(1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor and Ro 31-8220 (a PKC inhibitor inhibited α(1B-AR- but not α(1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A-AR-induced ERK1/2 activation, which is independent of G(q/PLC/PKC signaling.

  10. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  11. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  12. Dopamine D2 receptor activates extracellular signal-regulated kinase through the specific region in the third cytoplasmic loop.

    Takeuchi, Yusuke; Fukunaga, Kohji

    2004-06-01

    To investigate whether the third cytoplasmic loop and the C-terminal cytoplasmic tail of dopamine D(2) receptor (D2R) are involved in extracellular signal-regulated kinase (ERK) activation and subsequent regulation of transcription factors, we established NG108-15 cells stably expressing D2LR and D2SR deleted 40 amino acid residues in the third cytoplasmic loop (NGD2LR-3rd-dele and NGD2SR-3rd-dele) or the C-terminal cytoplasmic tail (NGD2LR-C-dele and NGD2SR-C-dele) and evaluated these receptors' functions using luciferase reporter gene assay. Immunocytochemical studies showed similar intracellular distributions of D2LR-3rd-dele and D2SR-3rd-dele to D2LR and D2SR, respectively. Quinpirole-induced inhibition of forskolin-induced cyclic AMP responsive element (CRE) activation was not affected by the deletion of 40 amino acid residues. However, nuclear factor-kappa B (NF-kappaB) activation by D2R-3rd-dele was largely attenuated compared to that by D2R. Similarly, ERK or serum-responsive element (SRE) activation by quinpirole treatment was totally abolished in NGD2R-3rd-dele cells. Moreover, D2R-C-dele was diffusely distributed or clustered in the cell bodies and lost the receptor functions. Taken together, the 40 amino acid residues in the third cytoplasmic loop are essential for the ERK activation but not for inhibition of adenylyl cyclase through Gi/o proteins. In addition, the C-terminal cytoplasmic tail is essential for membrane association of D2Rs to elicit the receptor functions. PMID:15189353

  13. Extracellular signal-regulated kinase 1/2 signalling in SLE T cells is influenced by oestrogen and disease activity.

    Gorjestani, S; Rider, V; Kimler, B F; Greenwell, C; Abdou, N I

    2008-06-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs primarily in women of reproductive age. The disease is characterized by exaggerated T-cell activity and abnormal T-cell signalling. The mitogen-activated protein kinase (MAPK) pathway is involved in the maintenance of T-cell tolerance that fails in patients with SLE. Oestrogen is a female sex hormone that binds to nuclear receptors and alters the rate of gene transcription. Oestrogen can also act through the plasma membrane and rapidly stimulate second messengers including calcium flux and kinase activation. In this study, we investigated whether oestrogen influences the activation of MAPK signalling through the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in activated SLE T cells. SLE and control T cells were cultured in serum-free medium without and with oestradiol (10(-7) M) for 18 h. The T cells were activated with phorbol 12 myristate 13-acetate and ionomycin for various time points (0-60 min), and the amount of phosphorylated ERK1/2 was measured by immunoblotting. There were no differences in ERK1/2 phosphorylation between SLE and control T cells at 5 and 15 min after the activation stimulus. However, comparison between the amount of phosphorylated ERK1/2 in SLE T cells from the same patients cultured without and with oestradiol showed a significant oestrogen-dependent suppression (P=0.48) of ERK1/2 in patients with inactive/mild systemic lupus erythematosus disease activity index (SLEDAI) (0-2) compared with patients with moderate (4-6) or active (8-12) SLEDAI scores. These results suggest that the suppression of MAPK through ERK1/2 phosphorylation is sensitive to oestradiol in patients with inactive or mild disease, but the sensitivity is not maintained when disease activity increases. Furthermore, studies are now necessary to understand the mechanisms by which oestrogen influences MAPK activation in SLE T cells. PMID:18539708

  14. Activation of spinal extracellular signal-regulated kinases (ERK) 1/2 is associated with the development of visceral hyperalgesia of the bladder

    Lai, H. Henry; Qiu, Chang-Shen; Crock, Lara W.; Morales, Maria Elena P.; Ness, Tim J.; Gereau, Robert W.

    2011-01-01

    Activation of extracellular signal-regulated kinases (ERK) 1/2 in dorsal horn neurons is important for the development of somatic hypersensitivity and spinal central sensitization after peripheral inflammation. However, data regarding the roles of spinal ERK1/2 in the development of visceral hyperalgesia are sparse. Here we studied the activation of ERK1/2 in the lumbosacral spinal cord following innocuous and noxious distention of the inflamed (cyclophosphamide- treated) and non-inflamed uri...

  15. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa.

    Luconi, M.; Barni, T.; Vannelli, G B; C. Krausz; Marra, F; Benedetti, P A; Evangelista, V.; Francavilla, S.; Properzi, G; g. Forti; Baldi, E

    1998-01-01

    Recent evidence indicates the presence of p21 Ras and of a protein with characteristics similar to mitogen-activated protein kinases (MAPKs), also known as extracellular signal-regulated kinases (ERKs), in mammalian spermatozoa, suggesting the occurrence of the Ras/ERK cascade in these cells. In the present study we investigated the subcellular localization of ERKs and their biological functions in human spermatozoa. Immunohistochemistry, immunofluorescence, confocal microscopy, and immunoele...

  16. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  17. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael;

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) is a seven-transmembrane receptor well established to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) by discrete G protein-dependent and beta-arrestin2-dependent pathways. The biological importance of this, however, remains obs...... obscure. Application of the modified analogue [Sar(1), Ile(4), Ile(8)]-AngII ([SII] AngII) allowed us to dissect the two pathways of ERK1/2 activation in native cardiac myocytes. Although cytosol-retained, the beta-arrestin2-bound pool of ERK1/2 represents an active signalling component...

  18. Neuronal extracellular signal-regulated kinase (ERK activity as marker and mediator of alcohol and opioid dependence

    Eva R. Zamora-Martinez

    2014-03-01

    Full Text Available Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.

  19. Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2

    Tajti, János; Kuris, Anikó; Vécsei, László;

    2011-01-01

    BACKGROUND AND OBJECTIVE: Clinical and experimental studies have revealed a central role of calcitonin gene-related peptide (CGRP) in primary headaches. The role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in neuronal and glial cell expression of CGRP- immunoreactivity (-ir) in rat ...

  20. Pre-LTP requires extracellular signal-regulated kinase in the ACC

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush

    2016-01-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders. PMID:27178245

  1. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  2. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5.

    Wang, Li; Zhu, Zhi-Ming; Zhang, Ning-Kun; Fang, Zhi-Rong; Xu, Xiao-Hong; Zheng, Nan; Gao, Lian-Ru

    2016-05-01

    Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5. PMID:26787000

  3. Contribution of phospholipase D in endothelin-1-mediated extracellular signal-regulated kinase activation and proliferation in rat uterine leiomyoma cells.

    Robin, Philippe; Chouayekh, Sondes; Bole-Feysot, Christine; Leiber, Denis; Tanfin, Zahra

    2005-01-01

    Endothelin (ET)-1 is a mitogenic factor in numerous cell types, including rat myometrial cells. In the present study, we investigated the potential role of ET-1 in the proliferation of tumoral uterine smooth muscle cells (ELT-3 cells). We found that ET-1 exerted a more potent mitogenic effect in ELT-3 cells than in normal myometrial cells, as indicated by the increase in [3H]thymidine incorporation, cell number, and bromodeoxyuridine incorporation. The ET-1 was more efficient than platelet-derived growth factor and epidermal growth factor to stimulate proliferation. The ET-1-mediated cell proliferation was inhibited in the presence of U0126, a specific inhibitor of (mitogen-activated protein kinase ERK kinase), indicating that extracellular signal-regulated kinase (ERK) activation is involved. Additionally, ET-1 induced the activation of phospholipase (PL) D, leading to the synthesis of phosphatidic acid (PA). The ET-1-induced activation of PLD was twofold higher in ELT-3 cells compared to that in normal cells. The two cell types expressed mRNA for PLD1a and PLD2, whereas PLD1b was expressed only in ELT-3 cells. The exposure of cells to butan-1-ol reduced ET-1-mediated production of PA by PLD and partially inhibited ERK activation and DNA synthesis. Addition of exogenous PLD or PA in the medium reproduced the effect of ET-1 on ERK activation and cell proliferation. Collectively, these data indicate that ET-1 is a potent mitogenic factor in ELT-3 cells via a signaling pathway involving a PLD-dependent activation of ERK. This highlights the potential role of ET-1 in the development of uterine leiomyoma, and it reinforces the role of PLD in tumor growth. PMID:15355882

  4. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa.

    Luconi, M; Barni, T; Vannelli, G B; Krausz, C; Marra, F; Benedetti, P A; Evangelista, V; Francavilla, S; Properzi, G; Forti, G; Baldi, E

    1998-06-01

    Recent evidence indicates the presence of p21 Ras and of a protein with characteristics similar to mitogen-activated protein kinases (MAPKs), also known as extracellular signal-regulated kinases (ERKs), in mammalian spermatozoa, suggesting the occurrence of the Ras/ERK cascade in these cells. In the present study we investigated the subcellular localization of ERKs and their biological functions in human spermatozoa. Immunohistochemistry, immunofluorescence, confocal microscopy, and immunoelectron microscopy demonstrated localization of ERKs in the postacrosomal region of spermatozoa. After stimulation of acrosome reaction with the calcium ionophore A23187 and progesterone, ERKs were mostly localized at the level of the equatorial region, indicating redistribution of these proteins in acrosome-reacted spermatozoa. Two proteins of 42 and 44 kDa that are tyrosine phosphorylated in a time-dependent manner during in vitro capacitation were identified as p42 (ERK-2) and p44 (ERK-1) by means of specific antibodies. The increase in tyrosine phosphorylation of these proteins during capacitation was accompanied by increased kinase activity, as determined by the ability of ERK-1 and ERK-2 to phosphorylate the substrate myelin basic protein. The role of this activity in the occurrence of sperm capacitation was also investigated by using PD098059, an inhibitor of the MAPK cascade. The presence of this compound during in vitro capacitation inhibits ERK activation and significantly reduces the ability of spermatozoa to undergo the acrosome reaction in response to progesterone. Since only capacitated spermatozoa are able to respond to progesterone, these data strongly indicate that ERKs are involved in the regulation of capacitation. In summary, our data demonstrate the presence of functional ERKs in human spermatozoa and indicate that these enzymes are involved in activation of these cells during capacitation, providing new insight in clarifying the molecular mechanisms and the

  5. Follicle-stimulating hormone (FSH activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Crepieux Pascale

    2006-06-01

    Full Text Available Abstract Background The follicle-stimulating hormone receptor (FSH-R is a seven transmembrane spanning receptor (7TMR which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK. However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418 dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418 construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH.

  6. Xenin-induced feeding suppression is not mediated through the activation of central extracellular signal-regulated kinase signaling in mice.

    Kim, Eun Ran; Lew, Pei San; Spirkina, Alexandra; Mizuno, Tooru M

    2016-10-01

    Xenin is a gut hormone that reduces food intake by partly acting through the hypothalamus via neurotensin receptor 1 (Ntsr1). However, specific signaling pathways that mediate xenin-induced feeding suppression are not fully understood. Activation of Ntsr1 leads to the activation of the extracellular signal-regulated kinase (ERK). Hypothalamic ERK participates in the regulation of food intake by mediating the effect of hormonal signals. Therefore, we hypothesized that the anorectic effect of xenin is mediated by hypothalamic ERK signaling. To address this hypothesis, we compared levels of phosphorylation of ERK1/2 (pERK1/2) in the hypothalamus of both control and xenin-treated mice. The effect of xenin on ERK1/2 phosphorylation was also examined in mouse hypothalamic neuronal cell lines with or without Ntsr1. We also examined the effect of the blockade of central ERK signaling on xenin-induced feeding suppression in mice. The intraperitoneal (i.p.) injection of xenin caused a significant increase in the number of pERK1/2-immunoreactive cells in the hypothalamic arcuate nucleus. The majority of pERK1/2-positive cells expressed neuronal nuclei (NeuN), a marker for neurons. Xenin treatment increased pERK1/2 levels in one cell line expressing Ntsr1 but not another line without Ntsr1 expression. Both i.p. and intracerebroventricular (i.c.v.) injections of xenin reduced food intake in mice. The i.c.v. pre-treatment with U0126, a selective inhibitor of ERK1/2 upstream kinases, did not affect xenin-induced reduction in food intake. These findings suggest that although xenin activates ERK signaling in subpopulations of hypothalamic neurons, xenin does not require the activation of hypothalamic ERK signaling pathway to elicit feeding suppression. PMID:27316340

  7. Terpenic fraction of Pterodon pubescens inhibits nuclear factor kappa B and extracellular signal-regulated protein Kinase 1/2 activation and deregulates gene expression in leukemia cells

    Pereira Monica Farah

    2012-11-01

    Full Text Available Abstract Background Plant derived compounds have been shown to be important sources of several anti-cancer agents. As cell cycle deregulation and tumor growth are intimately linked, the discovery of new substances targeting events in this biochemical pathway would be of great value. The anti-leukemic effect of an ethanolic extract of Pterodon pubescens seeds (EEPp has been previously demonstrated and now we show that a terpenic subfraction (SF5 of EEPp containing farnesol, geranylgeraniol and vouacapan derivatives induces apoptosis in the human chronic myelogenous leukemia cell line K562. This work addresses SF5’s antiproliferative mechanisms in these cells since they are still unclear. Methods DNA synthesis in K562 cells was assessed by [3H]-methyl-thymidine incorporation and cell cycle status by flow cytometry. The expression of cyclins D1 and E2, of the cell cycle inhibitor p21 and of the proto-oncogene c-myc was evaluated by semi-quantitative RT-PCR. Extracellular-signal-regulated kinases (ERK 1/2 and nuclear factor kappa B (NF-κB activation was evaluated by western blotting. Results In K562 cells, SF5 treatment induced a higher inhibition of DNA synthesis and cell growth than the original EEPp hexanic fraction from which SF5 originated, and also arrested the cell cycle in G1. Exposure of these cells to SF5 led to a decrease in cyclin E2 and c-myc expression while p21 mRNA levels were increased. Furthermore, SF5 inhibited the activation of mitogen-activated protein kinase (MAPK ERK 1/2 and NF-κB. Conclusions This work suggests that the anti-leukemic action of SF5 is linked to the inhibition of ERKs, NF-κB and c-myc signaling pathways resulting in reduced cyclin E2 mRNA expression and cell cycle arrest in the G1 phase.

  8. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons

    Jian eWang

    2015-12-01

    Full Text Available Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc, especially the superficial laminae (I/II, received direct descending projections from granular and dysgranular parts of the insular cortex (IC. Extracellular signal-regulated kinase (ERK, an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs and reduced the paired-pulse ratio (PPR of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These

  9. Effect of D-cycloserine in conjunction with fear extinction training on extracellular signal-regulated kinase activation in the medial prefrontal cortex and amygdala in rat.

    Gupta, Subhash C; Hillman, Brandon G; Prakash, Anand; Ugale, Rajesh R; Stairs, Dustin J; Dravid, Shashank M

    2013-06-01

    D-cycloserine (DCS) is currently under clinical trials for a number of neuropsychiatric conditions and has been found to augment fear extinction in rodents and exposure therapy in humans. However, the molecular mechanism of DCS action in these multiple modalities remains unclear. Here, we describe the effect of DCS administration, alone or in conjunction with extinction training, on neuronal activity (c-fos) and neuronal plasticity [phospho-extracellular signal-regulated kinase (pERK)] markers using immunohistochemistry. We found that intraperitoneal administration of DCS in untrained young rats (24-28 days old) increased c-fos- and pERK-stained neurons in both the prelimbic and infralimbic division of the medial prefrontal cortex (mPFC) and reduced pERK levels in the lateral nucleus of the central amygdala. Moreover, DCS administration significantly increased GluA1, GluN1, GluN2A, and GluN2B expression in the mPFC. In a separate set of animals, we found that DCS facilitated fear extinction and increased pERK levels in the infralimbic prefrontal cortex, prelimbic prefrontal cortex intercalated cells and lateral nucleus of the central amygdala, compared with saline control. In the synaptoneurosomal preparation, we found that extinction training increased iGluR protein expression in the mPFC, compared with context animals. No significant difference in protein expression was observed between extinction-saline and extinction-DCS groups in the mPFC. In contrast, in the amygdala DCS, the conjunction with extinction training led to an increase in iGluR subunit expression, compared with the extinction-saline group. Our data suggest that the efficacy of DCS in neuropsychiatric disorders may be partly due to its ability to affect neuronal activity and signaling in the mPFC and amygdala subnuclei. PMID:23551217

  10. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs in naïve and pain-experiencing rats

    Cui Xiu-Yu

    2007-07-01

    Full Text Available Abstract Background Extracellular signal-regulated kinase (ERK, one member of the mitogen-activated protein kinase (MAPK family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex, and hippocampus under normal, transient pain and persistent pain states. Results In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2, not phosphorylated ERK1 (pERK1, was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. Conclusion Taken these results together, we conclude that: (1 under normal state, while ERK immunoreactivity is broadly distributed in the rat

  11. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig;

    2002-01-01

    the extracellular signal-regulated kinase (ERK) cascade to regulate GRK2 cellular levels. ERK activation by receptor stimulation elevated endogenous GRK2 while antagonist treatment decreased cellular GRK2. Activating ERK by overexpressing constitutive active MEK-1 or Ras elevated GRK2 protein levels while blocking...

  12. Insulin-like growth factor I receptor dose not contribute to heat shock-induced activation of Akt and extracellular signal-regulated kinase (ERK) in mouse embryo fibroblasts

    We have investigated the role of insulin-like growth factor I receptor (IGF-IR) in heat shock-induced activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3' kinase (PI3-K) pathways. We utilized mouse embryo fibroblasts (MEFs) devoid of endogenous IGF-LR (R-) and MEFs overexpressing human IGF-IR (WT) and examined the activation kinetics of extracellular signal-regulated kinase (ERK) and Akt following heat shock treatment. There were no differences in the kinetics or temperature dependence of activation of either ERK or Akt between the cell lines. As expected, heat shock failed to induce autophosphorylation of IGF-IR overexpressed in WT cells. Surprisingly, the autophosphorylation of endogenous epidermal growth factor receptor (EGFR), which is thought to play an important role in heat shock-induced activation of the MAPK and PI3-K pathways, was not observed in either WT or R-cells. These results suggest that neither IGF-IR nor EGFR contributes to the heat shock-induced activation of ERK and Akt in these cell lines. (author)

  13. Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARPP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism.

    Santini, Emanuela; Feyder, Michael; Gangarossa, Giuseppe; Bateup, Helen S; Greengard, Paul; Fisone, Gilberto

    2012-08-10

    Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia. PMID:22753408

  14. Dopamine- and cAMP-regulated Phosphoprotein of 32-kDa (DARPP-32)-dependent Activation of Extracellular Signal-regulated Kinase (ERK) and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in Experimental Parkinsonism*

    Santini, Emanuela; Feyder, Michael; Gangarossa, Giuseppe; Bateup, Helen S.; Greengard, Paul; Fisone, Gilberto

    2012-01-01

    Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia. PMID:22753408

  15. NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1

    Vuong, Billy; Hogan-Cann, Adam D. J.; Alano, Conrad C.; Stevenson, Mackenzie; Chan, Wai Yee; Anderson, Christopher M.; Swanson, Raymond A.; Kauppinen, Tiina M

    2015-01-01

    Background The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. Methods Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measure...

  16. Regulation of extracellular signal-regulated kinase 1/2 inlfuences hippocampal neuronal survival in a rat model of diabetic cerebral ischemia

    Yaning Zhao; Jianmin Li; Qiqun Tang; Pan Zhang; Liwei Jing; Changxiang Chen; Shuxing Li

    2014-01-01

    Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and Ku70 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These ifndings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac-celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/reperfusion.

  17. Extracellular-signal regulated kinase (Erk1/2), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and tristetraprolin (TTP) comprehensively regulate injury-induced immediate early gene (IEG) response in in vitro liver organ culture.

    Tran, Doan Duy Hai; Koch, Alexandra; Saran, Shashank; Armbrecht, Marcel; Ewald, Florian; Koch, Martina; Wahlicht, Tom; Wirth, Dagmar; Braun, Armin; Nashan, Björn; Gaestel, Matthias; Tamura, Teruko

    2016-05-01

    Differentiated hepatocytes are long-lived and normally do not undergo cell division, however they have the unique capacity to autonomously decide their replication fate after liver injury. In this context, the key players of liver regeneration immediately after injury have not been adequately studied. Using an in vitro liver culture system, we show that after liver injury, p38 mitogen-activated protein kinase (p38MAPK), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and extracellular-signal regulated kinase (Erk)1/2 were activated within 15min and continued to be phosphorylated for more than 2h. Both p38MAPK and Erk1/2 were activated at the edge of the cut as well as on the liver surface where the mesothelial cell sheet expresses several cytokines. Notably, in human liver Erk1/2 was also activated under the mesothelial cell sheet shortly after liver resections. Furthermore, in in vitro liver slice culture immediate early genes (IEGs) were upregulated within 1-2h and the S phase marker proliferation-cell-nuclear-antigen (PCNA) appeared 24h after injury. Although Erk1/2 was activated after injury, in MK2 depleted liver a set of IEGs, such as Dusp1, Cox2, or c-Myc and proliferation marker gene Ki67 were not induced. In addition, in immortalized hepatocyte cells, THLE-2, the same subset of genes was upregulated upon stimulation with lipopolysaccharide (LPS), but not in the presence of MK2 inhibitor. The protein level of tristetraprolin (TTP), a substrate for MK2 that plays a role in mRNA degradation, was increased in the presence of MK2 inhibitor. In this context, the depletion of TTP gene rescued Dusp1, Cox2, or c-Myc upregulation in the presence of MK2 inhibitor. These data imply that MK2 pathway is positively involved in Erk1/2 induced IEG response after liver injury. These data also suggest that in vitro liver culture may be a useful tool for measuring the proliferation potential of hepatocytes in individual liver. PMID:26876787

  18. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia

    Kobayashi Kimiko

    2008-04-01

    Full Text Available Abstract Background Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK in the generation of BV-induced pain hypersensitivity. Results We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38 was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn. Conclusion The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.

  19. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Sanja Perkovic

    2012-09-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  20. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  1. Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α.

    Kanda, Atsushi; Ishijima, Tomoko; Shinozaki, Fumika; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Nakai, Yuji; Abe, Keiko; Kawahata, Keiko; Ikegami, Shuji

    2014-06-28

    We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague-Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate-amino acid diet or a carbohydrate-WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, 'regulation of ATPase activity' and 'immune response'. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α. PMID:24598469

  2. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  3. Sex differences in fear extinction and involvements of extracellular signal-regulated kinase (ERK).

    Matsuda, Shingo; Matsuzawa, Daisuke; Ishii, Daisuke; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2015-09-01

    Stress-related disorders, such as post-traumatic stress disorder (PTSD) and panic disorders, are disproportionately prevalent in females. However, the biological mechanism underlying these sex differences in the prevalence rate remains unclear. In the present study, we examined sex differences in fear memory, fear extinction, and spontaneous recovery of fear. We investigated the presence of sex differences in recent and remote fear memory in mice using contextual fear conditioning, as well as sex differences in spontaneous recovery of fear memory using a consecutive fear extinction paradigm. We examined the number of fear extinction days required to prevent spontaneous recovery of fear in either sex. We investigated whether ovariectomy affected fear extinction and spontaneous recovery. We also measured the activation of extracellular signal-regulated kinase (ERK) 1 and 2 in the dorsal hippocampus and the medial prefrontal cortex following fear extinction sessions. In our results, we found no sex difference in recent or remote fear memory. However, females required more fear extinction sessions compared to males to prevent spontaneous recovery. Within-extinction freezing also differed between males and females. Moreover, females required more extinction sessions than males to increase ERK2 phosphorylation in the dorsal hippocampus. Our data suggest that contextual fear extinction was unstable in females compared to males and that such sex differences may be related to the ERK2 phosphorylation in the hippocampus. PMID:26079214

  4. Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2

    Kauppinen, Tiina M; Chan, Wai Y.; Suh, Sang Won; Wiggins, Amanda K.; Eric J. Huang; Swanson, Raymond A.

    2006-01-01

    Sustained activation of poly(ADP-ribose) polymerase-1 (PARP-1) and extracellular signal-regulated kinases 1/2 (ERK1/2) both promote neuronal death. Here we identify a direct link between these two cell death pathways. In a rat model of hypoglycemic brain injury, neuronal PARP-1 activation and subsequent neuronal death were blocked by the ERK1/2 inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059). In neuron cultures, PARP-1-mediated neuronal death induced by N-methyl-d-aspart...

  5. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress.

    Iñiguez, Sergio D; Vialou, Vincent; Warren, Brandon L; Cao, Jun-Li; Alcantara, Lyonna F; Davis, Lindsey C; Manojlovic, Zarko; Neve, Rachael L; Russo, Scott J; Han, Ming-Hu; Nestler, Eric J; Bolaños-Guzmán, Carlos A

    2010-06-01

    Neurotrophic factors and their signaling pathways have been implicated in the neurobiological adaptations in response to stress and the regulation of mood-related behaviors. A candidate signaling molecule implicated in mediating these cellular responses is the extracellular signal-regulated kinase (ERK1/2), although its functional role in mood regulation remains to be fully elucidated. Here we show that acute (1 d) or chronic (4 weeks) exposure to unpredictable stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 kinase and mitogen- and stress-activated protein kinase 1) within the ventral tegmental area (VTA), an important substrate for motivated behavior and mood regulation. Using herpes simplex virus-mediated gene transfer to assess the functional significance of this ERK induction, we show that overexpressing ERK2 within the VTA increases susceptibility to stress as measured in the forced swim test, responses to unconditioned nociceptive stimuli, and elevated plus maze in Sprague Dawley male rats, and in the tail suspension test and chronic social defeat stress procedure in C57BL/6 male mice. In contrast, blocking ERK2 activity in the VTA produces stress-resistant behavioral responses in these same assays and also blocks a chronic stress-induced reduction in sucrose preference. The effects induced by ERK2 blockade were accompanied by decreases in the firing frequency of VTA dopamine neurons, an important electrophysiological hallmark of resilient-like behavior. Together, these results strongly implicate a role for ERK2 signaling in the VTA as a key modulator of responsiveness to stress and mood-related behaviors. PMID:20519540

  6. Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells

    Moldrup, Marie-Louise Bülow; Georg, Birgitte; Falktoft, Birgitte;

    2010-01-01

    The photopigment melanopsin is expressed in a subtype of mammalian ganglion cells in the retina that project to the circadian clock in the hypothalamic suprachiasmatic nucleus to mediate non-visual light information. Melanopsin renders these retinal ganglion cells intrinsically photosensitive and...... involves a Galpha(q/11) coupled phospholipase C activation. However, the signaling proteins mediating melanopsin-induced Fos expression are unresolved. In this study, we examined the phototransduction leading to Fos expression in melanopsin-transfected PC12 cells. A pivotal role of the extracellular signal......-regulated protein kinase 1/2 (ERK1/2) was found as pharmacological blockage of this kinase suppressed the light-induced Fos expression. Illumination increased the inositol phosphate turnover and induced phosphorylation of ERK1/2 and p38 but not the c-Jun N-terminal kinase. The Galpha(q/11) protein inhibitor YM...

  7. Cross-talk of signalling cascades in the modulation of presynaptic extracellular signal-regulated protein kinase 1 and 2 function.

    Davies, J. A.

    2004-01-01

    Activation of extracellular signal-regulated protein kinases (ERK1/2) has emerged as a key signalling event in the modulation of presynaptic plasticity by neurotrophic factors. In this study, we investigated the cross-talk between presynaptic signalling pathways activating PKA or PKC and ERK signalling, underlying the modulation of neurotransmitter release. Purified, isolated cerebrocortical nerve terminals and phosphorylation state-specific antibodies were used to carry out this research. St...

  8. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  9. Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent

    Bei ZHOU; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Fumiaki UCHIUMI; Takashi IKEJIMA

    2007-01-01

    Aim: To investigate the mechanism of silibinin-protected isoproterenol-induced apoptosis in rat cardiac myocytes.Methods: The viability of rat cardiac myocytes was measured by MTT method. The apoptotic ratio was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Protein kinase C (PKC) activity assay was carried out according to the instructions of the PepTag non-radioactive protein kinase C assay kit. Western blot analysis was used to evaluate the level of Ras, Raf-1 and mitogen-activated protein kinase (MAPK) expression.Results: The protective effects of silibinin were significantly sup-pressed by inhibitors, including genistein, manumycin A and GW5074 [inhibitors for protein tyrosine kinases (PTK), Ras and Raf- 1, respectively]. The exposure of rat cardiac myocytes to isoproterenol alone caused decreased PKC activity, which was prevented by pretreatment with silibinin dose-dependently. Simultaneously,the increased expression of Ras and Raf-1 activated by silibinin were blocked by the PKC inhibitor, stauroporine. In addition, the extracellularly responsive kinase (ERK) inhibitor, PD98059, suppressed silibinin-protected apoptosis, whereas the p38 MAPK inhibitor, SB203580, protected cardiac myocytes from isoproterenol-induced injury, and the c-Jun N-terminal kinase (JNK) inhibitor, SP600125 had no protective effects. Furthermore, Western blot analysis showed that the expres-sion of phosphorylated ERK was increased by silibinin, the expression of phos-phorylated p38 MAPK was decreased and total ERK, p38, JNK and phosphory-lated JNK MAPK did not change after treatment with both isoproterenol and silibinin. Furthermore, pretreatment of cardiac myocyte with PKC, Ras and Raf inhibitors significantly blocked ERK phosphorylation.Conclusion: Silibinin is suggested to protect isoproterenol-induced rat cardiac myocyte apoptosis by activating the tyrosine kinase pathway, PKC and MAPK pathways.

  10. Role of reactive oxygen species in extracellular signal-regulated protein kinase phosphorylation and 6-hydroxydopamine cytotoxicity

    Scott M Kulich; Charleen T Chu

    2003-02-01

    A number of reports indicate the potential for redox signalling via extracellular signal-regulated protein kinases (ERK) during neuronal injury. We have previously found that sustained ERK activation contributes to toxicity elicited by 6-hydroxydopamine (6-OHDA) in the B65 neuronal cell line. To determine whether reactive oxygen species (ROS) play a role in mediating ERK activation and 6-OHDA toxicity, we examined the effects of catalase, superoxide dismutase (SOD1), and metalloporphyrin antioxidants (‘SOD mimetics’) on 6-OHDA-treated cells. We found that catalase and metalloporphyrin antioxidants not only conferred protection against 6-OHDA but also inhibited development of sustained ERK phosphorylation in both differentiated and undifferentiated B65 cells. However, exogenously added SOD1 and heat-inactivated catalase had no effect on either toxicity or sustained ERK phosphorylation. This correlation between antioxidant protection and inhibition of 6-OHDA-induced sustained ERK phosphorylation suggests that redox regulation of ERK signalling cascades may contribute to neuronal toxicity.

  11. Garcinol promotes neurogenesis in rat cortical progenitor cells through the duration of extracellular signal-regulated kinase signaling.

    Weng, Meng-Shih; Liao, Chiung-Ho; Yu, Sheng-Yung; Lin, Jen-Kun

    2011-02-01

    Garcinol is a polyisoprenylated benzophenone derivative found in Garcinia indica fruit rind and other species. The potential antioxidative and neuroprotective effects of garcinol in rat cortical astrocyte were demonstrated in our laboratory recently. Here, the effects of garcinol on the neuritogenesis process in cultured cortical progenitor cells were investigated to understand the roles of garcinol in neuronal survival and differentiation. These cells, derived from embryonic day 17 rats, differentiated into EGF-responsive neural precursor cells, would further form neurospheres. Our data exhibited garcinol induced neurite outgrowth in early developing EGF-treated neurospheres and significantly enhanced the expression of neuronal proteins, microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP). Furthermore, the neuronal marker, high-molecular-weight subunit of neurofilaments (NFH), was highly expressed after 5 μM garcinol treatment in neural precursor cells for 20 days. To identify the extracellular mechanism, rat cortical progenitor cells were treated garcinol and accordingly mediated the sustained activation of extracellular signal-regulated kinase (ERK) for different periods up to 20 h. In this regard, NMDA receptor-mediated calcium influx led to excitotoxic death and activated tyrosine phosphatase which limited the duration of ERK in cultured neurons. MK801, the NMDA receptor antagonist, treatment also induced the sustained phosphorylation of ERK and therefore enhanced neuronal survival. In our observation, garcinol treatment reduced growth factor deprivation-mediated cell death and nuclear import of C/EBPβ levels. Noteworthy, garcinol could promote neurite outgrowth in EGF-responsive neural precursor cells and modulate the ERK pathway in the enhancement of neuronal survival. PMID:21214247

  12. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats.

    Chuan Ma

    Full Text Available OBJECTIVES: To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK pathway in the temporomandibular joint (TMJ of rats subjected to chronic sleep deprivation (CSD. METHODS: Rats were subjected to CSD using the modified multiple platform method (MMPM. The serum levels of corticosterone (CORT and adrenocorticotropic hormone (ACTH were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR and Western blotting. RESULTS: The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE staining and scanning electron microscopy (SEM showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group. CONCLUSION: These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.

  13. Expression of Extracellular Signal-regulated Kinase and Angiotensin-converting Enzyme in Human Atria during Atrial Fibrillation

    戴友平; 王祥; 曹林生; 杨杪; 邬堂春

    2004-01-01

    Summary: In order to investigate the changes in the expression of extracellular signal-regulated kinase (ERK1/ERK2) and angiotensin-converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK-activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2-mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P<0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three-fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE-dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.

  14. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    . Hence, adenovirus induces the oncogenic Raf/MEK/ERK signaling pathway to enhance viral progeny by sustaining the levels of viral proteins. Concerning therapy, our results suggest that the use of Raf/MEK/ERK inhibitors will interfere with the propagation of oncolytic adenoviruses.......The Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling cascade enhances tumor cell proliferation in many cases. Here, we show that adenovirus type 5, a small DNA tumor virus used in experimental cancer therapy, strongly induces ERK phosphorylation...

  15. Role of extracellular signal-regulated kinase in regulating expression of interleukin 13 in lymphocytes from an asthmatic rat model

    LI Yuan-yuan; LIU Xian-sheng; LIU Chang; XU Yong-jian; XIONG Wei-xing

    2010-01-01

    Background The extracellular signal-regulated kinase (ERK) is widely expressed in mammal cells and involved in airway proliferation and remodeling in asthma. In this study, we intend to explore the role of ERK in the expression of the Th2 cytokine, interleukin 13 (IL-13) in lymphocytes in asthma.Methods Forty Sprague-Dawley rats were randomly divided into two groups: normal control and asthmatic groups. Peripheral blood lymphocytes were isolated and purified from the blood of each rat and divided into five groups: control, asthmatic lymphocytes, asthmatic cells stimulated with ERK activator epidermal growth factor (EGF), or with ERK inhibitor PD98059, or with EGF and PD98059 together. The expression of phosphorylated-ERK (p-ERK) was observed by immunocvtochemical staining, the expression of ERK mRNA was determined by reverse transcriptase-PCR, IL-13 protein in supernatants was measured by ELISA.Results (1) The ERK mRNA level and the percentage of cells with p-ERK in lymphocytes from asthmatic rats were significantly higher than those in normal controls, and were significantly increased by EGF administration. This effect of EGF was significantly inhibited by PD98059 pretreatment. (2) IL-13 protein in supematants of asthmatic lymphocytes was higher than that produced by normal control lymphocytes, and was significantly increased by EGF treatment. This EGF effect was partly blocked by PD98059 pretreatment. (3) There was a significant positive correlation between the percentage of cells with p-ERK in peripheral blood lymphocytes and IL-13 protein in supematants of lymphocytes from asthmatic rats.Conclusions In asthma the ERK expression and activation levels were increased, as was the protein level of IL-13. The ERK signaling pathway may be involved in the increased expression of the Th2 cytokine IL-13 in asthma.

  16. Cell division in the unicellular microalga Dunaliella viridis depends on phosphorylation of extracellular signal-regulated kinases (ERKs).

    Jiménez, Carlos; Cossío, Belén R; Rivard, Christopher J; Berl, Tomás; Capasso, Juan M

    2007-01-01

    In mammalian cells, MAPKs are involved in both stress response (JNK and p38 pathways) and cell proliferation and differentiation [extracellular signal-regulated kinase (ERK)] through protein kinase cascades. Exposure of Dunaliella viridis cell cultures to PD98059, a very specific inhibitor of the ERK signalling pathway, resulted in a total arrest of cell proliferation and a complete dephosphorylation of ERK. As shown by flow cytometry analysis of propidium iodide-stained cells, PD98059 stopped mitosis at the G(2) phase after the S phase has been completed. Multiple physiological parameters such as cell motility and reducing power generation (NADPH) clearly indicate that the treated cells are wholly viable. Exposure of D. viridis to environmental stresses that impair cell division, such as hyperosmotic shock, nitrogen starvation, or sublethal UV irradiation, caused a marked decrease in the phospho-ERK levels as detected by western blot. Two 400 bp polynucleotides from D. viridis with high homologies to published sequences of ERK1 and ERK2 were cloned, sequenced, and submitted to GenBank. Northern blot analysis revealed two mRNA bands of approximately 1.9 kb, consistent with the expected size of ERK proteins ( approximately 40 kDa). Sequence analysis showed that they contained several mitogen-activated protein kinase (MAPK) conserved domains, including II, III, VIb, VII, and the double phosphorylation motif. Interestingly, in D. viridis, this motif was T*DY* instead of the canonic T*EY*. Based on this finding, ERK plant sequences can be divided into two groups, one termed the T*DY* branch and the other termed the T*EY* branch. The molecular and functional data presented here suggest that ERK is a very ancient signalling pathway and that it was already present in the last common ancestor of all eukaryotic cells. PMID:17220513

  17. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael;

    2007-01-01

    effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] Ang...

  18. Glucocorticoid modulation of extracellular signal-regulated protein kinase 1/2 and p38 in human ovarian cancer HO-8910 cells

    夏冰; 卢建; 王钢

    2003-01-01

    Objective To investigate the signaling pathway through testing the effects of dexamethasone (Dex) on the activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 kinase (p38) in HO-8910 cells.Methods Activation of the ERK1/2 and p38 was detected by Western blotting using the antibodies against the total ERK1/2 and p38 mitogen-activated protein kinases (MAPKs) protein and the phosphorylated forms of them. Results Dex could suppress the activation of ERK1/2, while enhance the activation of p38 rapidly and strongly in a dose- and time- dependent manner. Neither effect could be blocked by RU486, the antagonist of glucocorticoid receptor (GR).Conclusion Dex has rapid effects on the activation of ERK1/2 and p38, and these effects are not mediated by GR.

  19. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    Hendus-Altenburger, Ruth; Pedraz-Cuesta, Elena; Olesen, Christina W;

    2016-01-01

    the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D......BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify......-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2....

  20. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  1. Enhanced transcription of contractile 5-hydroxytryptamine 2A receptors via extracellular signal-regulated kinase 1/2 after organ culture of rat mesenteric artery

    Cao, Yong-Xiao; He, Lang-Chong; Xu, Cang-Bao;

    2005-01-01

    5-Hydroxytryptamine (5-HT) has been found to elicit enhanced contractile effects in some vascular disorders. The present study was designed to examine if vascular 5-HT2A receptors are up-regulated during organ culture and if the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathways ...

  2. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  3. Extracellular signal regulated kinases 1/2 signal pathway and responses of astrocytes after diffuse brain injury

    Jinxing Li; Haimei Zhao; Yu Li; Chong Wang; Jiashan Zhao; Xianli Zhu

    2007-01-01

    BACKGROUND: The treatment of diffuse brain injury during an acute period is focused on relieving degrees of secondary brain injury. Generation and development of pathological changes of secondary brain injury depend on signal conduction, so down-regulating over response of astrocyte through interfering a key link of signal conduction pathway may bring a new thinking for the treatment of diffuse brain injury. OBJECTIVE: To observe the effect of over activity of extracellular signal regulated kinases 1/2 (ERK1/2) signal pathway on the response of astrocyte during an acute period of diffuse brain injury. DESIGN: Completely randomized grouping and controlled animal study.SETTINGS: Department of Neurosurgery, the Third Affiliated Hospital, Nanchang University; Department of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: A total of 158 healthy male SD rats, of 11 weeks old, weighing 320 - 370 g, were provided by Experimental Animal Faulty, Tongji Medical College, Huazhong University of Science and Technology. Rabbit-anti-phosphorylated ERK1/2 (pERKl/2) polyclonal antibody was provided by R&D Company; rabbit-anti-glial fibrillary acidic protein (GFAP) polyclonal antibody, SP immunohistochemical kit and horseradish peroxidase (HRP)-labeled goat-anti-rabbit IgG by Santa Cruz Company; specific inhibitor U0126 of ERK1/2 signal pathway by Alexis Company. METHODS: The experiment was carried out in the Laboratory of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology from September 2004 to March 2006. ①Detection of pERKl/2 expression: A total of 110 rats were randomly divided into sham operation group (n =5), model group (n =35), high-dosage U0126 group (n =35) and low-dosage U0126 group (n =35). Rats in the sham operation group were only treated with incision of epicranium and fixation of backup plate, but not hit. Rats in the model group

  4. N-glycosylation at Asn residues 554 and 566 of E-cadherin affects cell cycle progression through extracellular signal-regulated protein kinase signaling pathway

    Hongbo Zhao; Xiliang Zha; Lidong Sun; Liying Wang; Zhibin Xu; Feng Zhou; Jianmin Su; Jiawei Jin; Yong Yang; Yali Hu

    2008-01-01

    E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633.We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin were N-glycosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at Asn554, Asn566 and Asn618 failed to induce cell cycle arrest in G1 phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression.Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extraceilular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These findings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.

  5. Study on Effects of Extracts from Salvia Miltiorrhiza and Curcuma Longa in Inhibiting Phosphorylated Extracellular Signal Regulated Kinase Expression in Rat's Hepatic Stellate Cells

    CHENG Yang; PING Jian; LIU Cheng; TAN Ying-zi; CHEN Gao-feng

    2006-01-01

    Objective: To study the effect of salvianolic acid B (SAB) and curcumin, the extracts of Salvia Miltiorrhiza and Curcuma Longa, on the proliferation and activation of hepatic stellate cell (HSC), and the extracellular signal regulated kinase (ERK) expression in it. Methods: Rat's HSC-T6 were cultured and treated by SAB or curcumin. The inhibitory effect on cell proliferation was determined by 3-(4,5-dimthyl-2-2thiazoly)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetry, and the expression levels of α smooth actin (α-SMA), collagen type Ⅰ , and ERK were determined by Western blot. Results: SAB and curcumin inhibited the proliferation and activation of rat's HSC-T6 in dose-dependent fashion and significantly reduced the expression level of α-SMA ( P<0.01 ). Curcumin significantly reduced the expression of collagen type Ⅰ( P<0.05). Both SAB and curcumin showed insignificant effect on the ERK expression level, but they could significantly reduce the level of phosphorylated-ERK expression, showing significant difference as compared with that in the control group ( P<0.01 and P<0.05 respectively). Conclusion: SAB and curcumin could significantly inhibit the proliferation, activation of HSC, and the production of type Ⅰ collagen in HSC, the mechanism may be associated with their inhibition on ERK phosphorylation.

  6. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    Liang, Weiguo, E-mail: liangweiguo@tom.com [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Fang, Dejian [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Ye, Dongping [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009 (Australia); Zou, Longqiang; Shen, Yan; Dai, Libing [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Xu, Jiake, E-mail: jiake.xu@uwa.edu.au [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  7. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    Lu, Zhengyu [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Yang, Qi; Cui, Mei; Liu, Yanping [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Wang, Tao; Zhao, Hong [Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Dong, Qiang, E-mail: qiang_dong163@163.com [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China)

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  8. Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine

    Bell, Andrew M; Gutierrez-Mecinas, Maria; Polgár, Erika; Todd, Andrew J

    2016-01-01

    Background Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. Results Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP–EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP–EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. Conclusions Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway. PMID:27270268

  9. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro

  10. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process

  11. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase

    Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO2) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO2) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.

  12. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα- and Extracellular Signal-Regulated Kinase 1/2-Dependent Mechanism.

    Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V

    2015-08-01

    Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane. PMID:26065701

  13. Up-regulation of interleukin-8 by novel small cytoplasmic molecules of nontypeable Haemophilus influenzae via p38 and extracellular signal-regulated kinase pathways.

    Wang, Beinan; Cleary, P Patrick; Xu, Haidong; Li, Jian-Dong

    2003-10-01

    Nontypeable Haemophilus influenzae (NTHI) is an important etiological agent of otitis media (OM) and of exacerbated chronic obstructive pulmonary diseases (COPD). Inflammation is a hallmark of both diseases. Interleukin-8 (IL-8), one of the important inflammatory mediators, is induced by NTHI and may play a significant role in the pathogenesis of these diseases. Our studies demonstrated that a soluble cytoplasmic fraction (SCF) from NTHI induced much greater IL-8 expression by human epithelial cells than did NTHI lipooligosaccharides and envelope proteins. The IL-8-inducing activity was associated with molecules of < or =3 kDa from SCF and was peptidase and lipase sensitive, suggesting that small lipopeptides are responsible for the strong IL-8 induction. Moreover, multiple intracellular signaling pathways were activated in response to cytoplasmic molecules. The results indicated that the p38 mitogen-activated protein kinase (MAPK) and Src-dependent Raf-1-Mek1/2-extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) pathways are required for NTHI-induced IL-8 production. In contrast, the phosphatidylinositol 3-kinase (PI3K)-Akt pathway did not affect IL-8 expression, although this pathway was concomitantly activated upon exposure to NTHI SCF. The PI3K-Akt pathway was also directly activated by IL-8 and significantly inhibited by an antagonist of IL-8 receptors during NTHI stimulation. These results indicated that the PI3K-Akt pathway is activated in response to IL-8 that is induced by NTHI and may lead to other important epithelial cell responses. This work provides insight into essential molecular and cellular events that may impact on the pathogenesis of OM and COPD and identifies rational targets for anti-inflammatory intervention. PMID:14500470

  14. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    Larsen, Claus Morten; Døssing, M G; Papa, S;

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen......-activated protein kinase (MAPK) family. Inhibition of JNK prevents IL-1beta-mediated beta cell destruction. In mouse embryo fibroblasts and 3DO T cells, overexpression of the gene encoding growth arrest and DNA-damage-inducible 45beta (Gadd45b) downregulates pro-apoptotic JNK signalling. The aim of this study...

  15. Dexamethasone suppresses DU145 cell proliferation and cell cycle through inhibition of the extracellular signal-regulated kinase 1/2 pathway and cyclin D1 expression

    Qing-Zhen Gao; Jia-Ju Lu; Zi-Dong Liu; Hui Zhang; Shao-Mei Wang; He Xu

    2008-01-01

    Aim: To determine the mechanisms of glucocorticoids in inhibiting advanced prostate cancer growth. Methods: The cell proliferation and cell cycle of prostate cancer DU145 cells following dexamethasone treatment were determined by proliferation assay and fluorescence-activated cell sorter. Western blot analysis was carried out to evaluate the effects of dexamethasone on phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and expression of cyclin D1 in DU145 cells with or without glucocorticoid receptor (GR) antagonist RU486. Reverse transcription- polymerase chain reaction verified the expression of GR mRNA in DU145 cells. Results: Dexamethasone signifi- cantly inhibited DU145 cell proliferation at the G0/G1 phase. Western blot analysis showed a dramatic reduction of ERK1/2 activity and cyclin D1 expression in dexamethasone-treated cells. The decreased phosphorylation of ERK1/2 in dexamethasone-treated cells was attenuated by GR blockade. Additionally, the effects of dexamethasone in inhibiting cyclin D1 expression were altered by GR blockade. Conclusion: Dexamethasone suppresses DU 145 cell prolifera- tion and cell cycle, and the underlying mechanisms are through the inhibition of phosphorylation of ERK1/2 and cyclin D1 expression. The inhibition of ERK1/2 phosphorylation and cyclin D1 expression is attenuated by GR blockade, suggesting that GR regulates ERK1/2 and cyclin D 1 pathways. These observations suggest that dexamethasone has a potential clinical application in prostate cancer therapy. (Asian JAndrol 2008 Jul; 10: 635-641)

  16. Nitric oxide production by Biomphalaria glabrata haemocytes: effects of Schistosoma mansoni ESPs and regulation through the extracellular signal-regulated kinase pathway

    Kirk Ruth S

    2009-04-01

    Full Text Available Abstract Background Schistosoma mansoni uses Biomphalaria glabrata as an intermediate host during its complex life cycle. In the snail, the parasite initially transforms from a miracidium into a mother sporocyst and during this process excretory-secretory products (ESPs are released. Nitric oxide (NO and its reactive intermediates play an important role in host defence responses against pathogens. This study therefore aimed to determine the effects of S. mansoni ESPs on NO production in defence cells (haemocytes from schistosome-susceptible and schistosome-resistant B. glabrata strains. As S. mansoni ESPs have previously been shown to inhibit extracellular signal-regulated kinase (ERK phosphorylation (activation in haemocytes from susceptible, but not resistant, B. glabrata the regulation of NO output by ERK in these cells was also investigated. Results Haemocytes from resistant snails challenged with S. mansoni ESPs (20 μg/ml over 5 h displayed an increase in NO production that was 3.3 times greater than that observed for unchallenged haemocytes; lower concentrations of ESPs (0.1–10 μg/ml did not significantly increase NO output. In contrast, haemocytes from susceptible snails showed no significant change in NO output following challenge with ESPs at any concentration used (0.1–20 μg/ml. Western blotting revealed that U0126 (1 μM or 10 μM blocked the phosphorylation (activation status of ERK in haemocytes from both snail strains. Inhibition of ERK signalling by U0126 attenuated considerably intracellular NO production in haemocytes from both susceptible and resistant B. glabrata strains, identifying ERK as a key regulator of NO output in these cells. Conclusion S. mansoni ESPs differentially influence intracellular NO levels in susceptible and resistant B. glabrata haemocytes, possibly through modulation of the ERK signalling pathway. Such effects might facilitate survival of S. mansoni in its intermediate host.

  17. Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction.

    Zhang, Sijia; Cao, Xuan; Stablow, Alec M; Shenoy, Vivek B; Winkelstein, Beth A

    2016-02-01

    Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2-13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local collagen fiber kinematics, may be associated with mechanotransduction signaling in neurons. PMID:26549105

  18. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish.

    Klausen, Christian; Booth, Morgan; Habibi, Hamid R; Chang, John P

    2008-08-01

    The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish. PMID:18558406

  19. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  20. Effect of Sodium Tanshinone Ⅱ A Sulfonate on Phosphorylation of Extracellular Signal-regulated Kinase1/2 in Angiotensin Ⅱ-induced Hypertrophy of Myocardial Cells

    LI Shu-sheng; FENG Jun; ZHENG Zhi; LIANG Qian-sheng

    2008-01-01

    Objective:To observe the effects of sodium tanshinone Ⅱ A sulfonate(STS)on angiotensin Ⅱ(Ang Ⅱ)-induced hypertrophy of myocardial cells through the expression of phosphorylated extracellular signal-regulated kinase(P-ERK1/2).Methods:In the primary culture of neonatal rat myocardial cells.the total protein content in myocardial cells was determined by coomassie brilliant blue and the protein synthesis rate was measured by[3H]-Leucine incorporation as indexes for hypertrophy of myocardial cells.The expression of p-ERK1/2 was determined using Western blot and immunofluorescence Iabeling.Results:(1)The totaI protein and protein synthesis rate increased significantly in contrast to the control group after the myocardial cells were stimulated by Ang Ⅱ (1 μmol/L)for 24 h;STS markedly inhibited the increment of the total protein level induced by Ang Ⅱ and the syntheses of protein.(2)After pretreatment of myocardial cells with Ang Ⅱ(1 μ mol/L)for 5 min,the p-ERK1/2 protein expression was increased,with the most obvious effect shown at about 10 min;pretreatment of myocardial cells with STS at different doses(2,10,50 μ mol/L)for 30 min resulted in obvious inhibition of the expression of p-ERK1/2 stimulated by Ang Ⅱ in a dose-dependent manner.(3)After the myocardial cells were stimulated by Ang Ⅱ(1 μ mol/L),the immunofluorescence of ERK1/2 rapidly appeared in the nucleus.The activation and translocation process of ERK1/2 induced by Ang Ⅱ was blocked distinctly by STS.Conclusion:STS inhibited the myocardial cell hypertrophy induced by Ang Ⅱ,and the mechanism may be associated with the inhibition of p-ERK1/2 expression.

  1. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  2. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for this malignant disease

  3. Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord

    Liu Ming-Gang

    2012-11-01

    Full Text Available Abstract Background In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5-extracellular signal-regulated kinase (ERK signaling in this process. Methods Complete Freund’s adjuvant (CFA was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK and mGluR5 in the trigeminal subnucleus caudalis (Vc and upper cervical spinal cord (C1-C2 were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t. route. Local inflammatory responses were verified by tongue histology. Results Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. Conclusions The present study constructed a new animal model of inflammatory tongue pain in rodents, and

  4. Sexual differences of the effects of prenatal stress on the expression of extracellular signal-regulated kinaseas in the hippocampus of offspring rats

    Qing Cai; Zhongliang Zhu; Xiaoli Fan; Ning Jia; Qinghong Li; Liang Song; Hui Li; Jiankang Liu

    2006-01-01

    were separated and housed four in each cage respectively until test at 30 days of age. At the end of postnatal day 30, one male and female offspring rats from the same dam were selected with a random choice and a total of 24 animals from 12 different dams were used. The experimental rats were sacrificed by decapitation under anesthesia. Bilateral hippocampal tissues were isolated and homogenized in cold condition. Alkaline carbonate buffer (BCA)method was used to detect the concentration of extracellular signal-regulated kinases (ERK), then mixed with loading buffer, the constant voltage was 100 V. Finally, BCIP/NBT staining and electrophoresis were performed, the absorbance (A) value for the bands was detected with the Bandscan analytical software,and the expression of ERK in hippocampus of offspring rats of different genders in each group was quantitatively analyzed.MAIN OUTCOME MEASURES: The level of ERK expression in hippocampus of offspring rats of different genders in each group was observed.RESULTS: All the 24 offspring rats were involved in the analysis of results. ① The staining results of ERP activity in the extract of brain tissue detected with Western blotting technique and specific antibody analysis showed that the ERP in hippocampus of offspring rats had two subtypes of ERK-1 and ERK-2, and the latter was the main type. ② Standardized by the average A value in the control group, the quantitative data of the general A value of total ERK showed that the expression of ERK-2 in hippocampus of female offspring rats was obviously higher in the PNS group than in the control group (A value: 126±6.76,100±4.89,P < 0.01). ③The expression of ERK-2 had no obvious difference between the female and male offspring rats in the control group. ④ The expression of ERK-2 in hippocampus of male offspring rats was a little higher in the PNS group than in the control group (A value: 104±6.27,102±5.48,P > 0.05).CONCLUSION: PNS significantly affects the increase of

  5. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. PMID:18275043

  6. Intestinal trefoil factor induces inactivation of extracellular signal-regulated protein kinase in intestinal epithelial cells

    Kanai, Michiyuki; Mullen, Colleen; Podolsky, Daniel K.

    1998-01-01

    Intestinal trefoil factor (ITF), a small, compact protease-resistant peptide, is abundantly expressed in goblet cells of large and small intestine. Although several biological activities of ITF have been identified, including promotion of wound healing, stimulation of epithelial cell migration, and protection of intestinal epithelial barrier, little is known about signaling events through which ITF mediates its physiological function. In this study, the effects of exogenous ITF on mitogen-act...

  7. Quercitrin treatment protects endothelial progenitor cells from oxidative damage via inducing autophagy through extracellular signal-regulated kinase.

    Zhi, Kangkang; Li, Maoquan; Bai, Jun; Wu, Yongfa; Zhou, Sili; Zhang, Xiaoping; Qu, Lefeng

    2016-07-01

    Atherosclerosis is a disease resulting from impaired endothelial function, often caused by oxidant injury or inflammation. Endothelial progenitor cells (EPCs) play a critical role in repairing damaged endothelium and protecting against atherosclerosis. Quercitrin, a plant-derived flavonoid compound, displays antioxidant and anti-inflammatory activities. In this study, we showed that quercitrin treatment reduced the apoptosis of EPCs caused by oxidized low-density lipoprotein (ox-LDL) in a dose-dependent manner. Quercitrin improved tube formation, migration and adhesion of ox-LDL-treated EPCs. To determine the effect of quercitrin in vivo, EPCs treated with or without ox-LDL and quercitrin were locally injected into the ischemic hind limb muscle of nude mice. Those injected with EPCs treated with ox-LDL and quercitrin showed significantly increased local accumulation of EPCs, blood flow recovery and capillary density compared with the control and ox-LDL only groups. Furthermore, we showed that quercitrin enhanced autophagy and upregulated mitogen-activated protein kinase and ERK phosphorylation in a dose-dependent manner in vitro. Autophagy inhibitors, chloroquine and 3-methyladenine, abrogated quercitrin-enhanced autophagy caused by ox-LDL as evidenced by decreased numbers of branch points, migratory cells and adherent cells, and increased numbers of apoptotic cells. The ERK inhibitor PD98059 abrogated quercitrin-enhanced autophagy, as identified by decreased autophagosome formation and downregulated ERK phosphorylation. The inhibition of ERK did not affect the expression of Rac1, but enhanced phosphorylation of Akt. Quercitrin treatment also increased the expression of E-cadherin, and PD98059 abrogated the upregulation of E-cadherin induced by quercitrin. Our findings suggested that autophagy is a protective mechanism in EPCs exposed to oxidative damage. Quercitrin can promote autophagy through the activation of ERK and the ERK signaling pathway is therefore

  8. PtdIns(3,4,5)P3-dependent Rac Exchanger 1 (PREX1) Rac-Guanine Nucleotide Exchange Factor (GEF) Activity Promotes Breast Cancer Cell Proliferation and Tumor Growth via Activation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Signaling.

    Liu, Heng-Jia; Ooms, Lisa M; Srijakotre, Nuthasuda; Man, Joey; Vieusseux, Jessica; Waters, JoAnne E; Feng, Yue; Bailey, Charles G; Rasko, John E J; Price, John T; Mitchell, Christina A

    2016-08-12

    PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) is a Rac-guanine nucleotide exchange factor (GEF) overexpressed in a significant proportion of human breast cancers that integrates signals from upstream ErbB2/3 and CXCR4 membrane surface receptors. However, the PREX1 domains that facilitate its oncogenic activity and downstream signaling are not completely understood. We identify that ERK1/2 MAPK acts downstream of PREX1 and contributes to PREX1-mediated anchorage-independent cell growth. PREX1 overexpression increased but its shRNA knockdown decreased ERK1/2 phosphorylation in response to EGF/IGF-1 stimulation, resulting in induction of the cell cycle regulators cyclin D1 and p21(WAF1/CIP1) PREX1-mediated ERK1/2 phosphorylation, anchorage-independent cell growth, and cell migration were suppressed by inhibition of MEK1/2/ERK1/2 signaling. PREX1 overexpression reduced staurosporine-induced apoptosis whereas its shRNA knockdown promoted apoptosis in response to staurosporine or the anti-estrogen drug tamoxifen. Expression of wild-type but not GEF-inactive PREX1 increased anchorage-independent cell growth. In addition, mouse xenograft studies revealed that expression of wild-type but not GEF-dead PREX1 resulted in the formation of larger tumors that displayed increased phosphorylation of ERK1/2 but not AKT. The impaired anchorage-independent cell growth, apoptosis, and ERK1/2 signaling observed in stable PREX1 knockdown cells was restored by expression of wild-type but not GEF-dead-PREX1. Therefore, PREX1-Rac-GEF activity is critical for PREX1-dependent anchorage-independent cell growth and xenograft tumor growth and may represent a possible therapeutic target for breast cancers that exhibit PREX1 overexpression. PMID:27358402

  9. Mechanism of the activation of extracellular signal-regulated kinase (ERK) in prostate cancer cell lines with different metastatic potential%细胞外信号调节激酶在不同转移性人前列腺癌细胞中被激活的 调节机制

    李红梅; 何春生; 郑杰; 由江峰; 吴秉铨; 方伟岗

    2001-01-01

    目的 探讨不同转移潜能的人前列腺癌细胞中与增殖分化密切相关的细胞外信号调节激酶(ERK)信号传导途径被激活的机制。方法 用细胞计数及MTT法检测外源性P2嘌呤受体激动剂ATP 对人前列腺癌细胞PC-3M亚系1E8(高转移)和2B4(低转移)体外生长的影响。用特异性识别双磷酸化ERK1/2(p44/p42)的抗体及蛋白质印迹方法,检测细胞经ATP作用后ERK1/2的活化情况并研究其调节机制。结果 ATP可明显抑制1E8和2B4细胞的体外生长,第6和第8天的抑制率分别为:1E8:54% 和59%;2B4:67% 和39%。ATP可激活1E8和2B4细胞内的ERK1/2 激酶。ATP诱导的ERK1/2活化可被P2嘌呤受体拮抗剂苏拉明抑制,抑制率:1E8:82%±9%;2B4:81%±6%。ERK1/2上游激酶MEK 抑制剂 PD98059可有效抑制ATP对ERK1/2的激活,抑制率:1E8:94%±4%;2B4:91%±4%。ATP对ERK的激活受到G蛋白活性调节剂PTX的抑制,抑制率:1E8:50%±3%,2B4:51%±4%。ATP对1E8细胞ERK1/2的激活水平高于2B4细胞。两种细胞对蛋白激酶C活性调节剂TPA作用的反应性不同。结论 不同转移性的人前列腺癌细胞亚系对外源性ATP 激活ERK1/2信号传导通路的反应性间存在差异,提示肿瘤转移受到不同信号传导机制调节。%Objective To investigate the mechanism of the activation of signal transduction of ERK induced by purinergic receptor agonist ATP in prostate cancer cells with different metastatic potential. Methods Cell counts and MTT method were used to detect the influence of ATP on the growth of 1E8 (metastatic) and 2B4 (non-metastatic) cells derived from human prostate cancer cell line PC3M. The activity of ERK1/2 was analyzed with phosphospecific antibodies directed against the dually phosphorylated, active forms of ERK1/2 (p44/p42) by Western Blot. Results ATP can significantly inhibit the growth of 1E8 and 2B4 cells in vitro

  10. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets

    Maedler, Kathrin; Størling, Joachim; Sturis, Jeppe;

    2004-01-01

    -regulated kinase (ERK) 1/2, an effect that was abrogated by 3 micromol/l NN414. Similarly, 1 micromol/l of the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor PD098059 or 1 micromol/l of the l-type Ca(2+) channel blocker nimodipine prevented glucose- and IL-1beta-induced ERK activation, beta......Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta...... and/or high-glucose-induced beta-cell production of IL-1beta. Treatment of type 1 and type 2 diabetic patients with the potassium channel opener diazoxide partially restores insulin secretion. Therefore, we studied the effect of diazoxide and of the novel potassium channel opener NN414, selective for...

  11. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  12. Mycobacterium tuberculosis 6-kDa Early Secreted Antigenic Target (ESAT-6 protein downregulates Lipopolysaccharide induced c-myc expression by modulating the Extracellular Signal Regulated Kinases 1/2

    Mir Fayaz

    2007-10-01

    Full Text Available Abstract Background Mycobacterium tuberculosis (Mtb causes death of 2–3 million people every year. The persistence of the pathogenic mycobacteria inside the macrophage occurs through modulation of host cell signaling which allows them, unlike the other non-pathogenic species, to survive inside the host. The secretory proteins of M. tuberculosis have gained attention in recent years both as vaccine candidates and diagnostic tools; they target the immune system and trigger a putatively protective response; however, they may also be involved in the clinical symptoms of the disease. Results Our studies showed that RD-1-encoded secretory protein ESAT-6 is involved in modulation of the mitogen-activated protein (MAP kinase-signaling pathway inside the macrophage. ESAT-6 induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2 in the cytoplasm but not in the nucleus, which normally is the case for MAP kinases. ESAT-6 also antagonized LPS-induced ERK1/2 phosphorylation in the nucleus. Stimulation of cells by ESAT-6 along with sodium orthovanadate (a tyrosine phosphatase inhibitor restored phosphorylation of ERK1/2 in the nucleus, suggesting active dephosphorylation of ERK1/2 by some putative phosphatase(s in the nucleus. Further, ESAT-6 was found to down regulate the expression of LPS-inducible gene c-myc in an ERK1/2-dependent manner. Conclusion This study showed the effect of secretory proteins of M. tuberculosis in the modulation of macrophage signaling pathways particularly ERK1/2 MAP kinase pathway. This modulation appears to be achieved by limiting the ERK1/2 activation in the nucleus which ultimately affects the macrophage gene expression. This could be a mechanism by which secretory proteins of Mtb might modulate gene expression inside the macrophages.

  13. The Role of Matrine and Mitogen-Ativated Protein Kinase/Extracellular Signal-Regulated Kinase Signal Transduction in the Inhibition of the Proliferation and Migration of Human Umbilical Veins Endothelial Cells Induced by Lung Cancer cells

    Ming BAI

    2009-07-01

    Full Text Available Background and objective Matrine, one of the major alkaloid components of the traditional Chinese medicine Sophora roots, has a wide range of pharmacological effects including anti-inflammatory activities, growth inhibition and induction of cell differentiation and apoptosis. Motigen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK has found to be a crucial signaling pathway in endothelial cells. The aim of this study is to investigate the role of Matrine and MAPK/ERK signal transduction in the inhibition of the proliferation and migration of human umbilical veins endothelial cells (HUVECs induced by lung cancer cells. Methods HUVECs were cultured with A549CM. Mat or PD98059 (i.e PD, specific inhibitor of MAPK/ERK, was added into the A549CM. The proliferation of the HUVECs was measured by cell counting. The migration of the HUVECs was observed by wound healing assay. The expression levels of ERK and p-ERK protein were detected by Western Blot analysis. Results On 24 hours after intervention, the A549CM significantly stimulated the proliferation, migration and expression of p-ERK of HUVECs. Compared with the A549CM group, Mat significantly inhibited the proliferation, migration and p-ERK expression of HUVECs induced by A549CM. While PD only decreased the proliferation and p-ERK expression of HUVECs induced by A549CM. PD had no effect in the migration of HUVECs. Conclusion The results demonstrated that Mat and PD98059 can effectively decrease proliferation and expression of p-ERK of HUVECs induced by A549CM. Furthermore Mat can also inhibit migration of HUVECs induced by A549CM that did not changed by PD98059. These data implied that suppressing MAPK/ERK signal transduction may play the crucial role in resisting lung cacinoma angiogenesis with Mat.

  14. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  15. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells

    Xiang Liu; Liying Du; Renqing Feng

    2013-01-01

    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells.Here,we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2).Western blot analysis demonstrated the downregulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2.Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2),protein kinase B (AKT),and glycogen synthase kinase 3 beta (GSK3β).Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKTpathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression.The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity,whereas the p27 Kip1 expression was increased.In addition,knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2,AKT,and GSK3β.After c-Src depletion by siRNAs,we observed significant down-regulation of cyclin D1 and cyclin E,and up-regulation of p27 Kip1.These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  16. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    Research highlights: → We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. → Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. → This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  17. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration

    Plikus, M. V.; Mayer, J. A.; de La Cruz, D.; Baker, Ruth E.; Maini, P.K.; Maxson, R.; Chuong, C M

    2008-01-01

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life1, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding microenvironment, or niche3. The activation of such stem cells is cyclic, involving periodic -catenin activity4, 5, 6, 7. In the adult mouse, regeneration occurs in ...

  18. Cyclic dermal BMP signaling regulates stem cell activation during hair regeneration

    Plikus, Maksim V; Mayer, Julie; de la Cruz, Damon; Baker, Ruth E.; Maini, Philip K.; Maxson, Robert; Chuong, Cheng-ming

    2008-01-01

    In the age of stem cell engineering, it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life,1 and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding micro-environment, or niche3. The activation of such stem cells is cyclic, involving periodic β-catenin activity4–7. In adult mouse, regeneration occurs in waves in...

  19. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  20. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and tran...

  1. Translocated signals regulating root meristem activity in lupins (Lupinus albus and L. angustifolius)

    Pluripotent stem cells in flowering plants occur at the root and shoot apices, at the cambium of shoot organs and the root pericycle. These meristematic cells provide sites for cell division and postembryonic organ differentiation. Their activity responds to environmental and endogenous cues that determine rate and direction of growth, developmental pattern and change in organ function. Recent analysis of gene expression in the shoot apical meristem (SAM) of Arabidopsis has revealed close cell/cell interactions and an exchange of signals between differentiating cell types. However, it is clear that the long distance translocation channels of vascular plants, phloem and xylem, also provide regulatory signals that influence the course of events in the SAM, such as the transition from vegetative to floral development. These channels serve as pathways for translocation of assimilates providing the vascular link between 'sources' and 'sinks' on the plant. Similarly, the below ground meristems responsible for root growth, lateral root initiation and branching as well as the initiation of nodules on legumes receive translocated shoot-derived 'signals' as well as assimilates in phloem. Physiological studies have established that such signals are integral components of meristem activity but their nature has not been clearly established. (author)

  2. Opposing Activities of Notch and Wnt Signaling Regulate Intestinal Stem Cells and Gut Homeostasis

    Hua Tian

    2015-04-01

    Full Text Available Proper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology.

  3. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2.

    Liu, Jia; Liu, Xue-Qing; Liu, Ying; Sun, Ya-Nan; Li, Si; Li, Chun-Mei; Li, Jie; Tian, Wei; Shang, Xiao-Ming; Zhou, Yun-Tao

    2016-01-01

    The biological function of the intronic microRNA-28 (miR-28) may be associated with the biological roles of its host gene, LIM domain lipoma‑preferred partner (LPP). LPP has been reported to promote smooth muscle cell migration in arterial injury and atherosclerosis. However, the mechanism of miR‑28 in atherosclerosis remains unclear. In the current study, the aim was to validate the inhibitory effect of miR‑28‑5p on extracellular signal‑regulated kinase 2 (ERK2), to investigate its biological role in atherosclerosis and its association with cardiovascular disease. Western blotting and stem‑loop reverse transcription‑quantitative polymerase chain reaction combined with TaqMAN microRNA analysis was conducted. The current study demonstrated that miR‑28‑5p upregulated the expression of ATP‑binding cassette transporter A1 (ABCA1) via the inhibition of ERK2 in HepG2 cells. In addition, increased levels of plasma miR‑28‑5p were positively correlated with the levels of high‑density lipoprotein cholesterol in patients with unstable angina. This suggests that miR-28-5p participates in atherosclerosis via ERK2-mediated upregulation of the ABCA1 pathway. PMID:26718613

  4. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1.

    Sharma, Mehul; Merkulova, Yulia; Raithatha, Sheetal; Parkinson, Leigh G; Shen, Yue; Cooper, Dawn; Granville, David J

    2016-05-01

    Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells. PMID:26936634

  5. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells

    Larsen, Lykke; Størling, J; Darville, M; Eizirik, D L; Bonny, C; Billestrup, N; Mandrup-Poulsen, Thomas

    2005-01-01

    The beta cell destruction and insulin deficiency that characterises type 1 diabetes mellitus is partially mediated by cytokines, such as IL-1beta, and by nitric oxide (NO)-dependent and -independent effector mechanisms. IL-1beta activates mitogen-activated protein kinases (MAPKs), including...

  6. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling

    Hou G

    2015-04-01

    Full Text Available Gang Hou, Yan Yin, Dan Han, Qiu-yue Wang, Jian Kang Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China Objective: We investigated how rosiglitazone attenuated cigarette smoke (CS-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP and anti-MMP activity, mitogen-activated protein kinase (MAPK phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB signaling pathway over-activation.Methods: A total of 36 Wistar rats were divided into three groups (n=12 each: animals were exposed to CS for 12 weeks in the absence (the CS group or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group; a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ, MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα phosphorylation in lung tissue was examined by Western blotting.Results: Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats.Conclusion: Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways

  7. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    nucleo-cytoplasmic transport and cell growth arrest activity of RASSF2. Taken together, the present study suggests that active transport between nucleus and cytoplasm may constitute an important regulatory mechanism for RASSF2 function.

  8. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    nucleo-cytoplasmic transport and cell growth arrest activity of RASSF2. Taken together, the present study suggests that active transport between nucleus and cytoplasm may constitute an important regulatory mechanism for RASSF2 function.

  9. Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2.

    Dochi, Takeo; Nakano, Takashi; Inoue, Mutsumi; Takamune, Nobutoki; Shoji, Shozo; Sano, Kouichi; Misumi, Shogo

    2014-05-01

    We reported previously that Pin1 facilitates human immunodeficiency virus type 1 (HIV-1) uncoating by interacting with the capsid core through the phosphorylated Ser(16)-Pro(17) motif. However, the specific kinase responsible for Ser(16) phosphorylation has remained unknown. Here, we showed that virion-associated extracellular signal-regulated kinase 2 (ERK2) phosphorylates Ser(16). The characterization of immature virions produced by exposing chronically HIV-1LAV-1-infected CEM/LAV-1 cells to 10 µM saquinavir indicated that Ser(16) is phosphorylated after the initiation of Pr55(Gag) processing. Furthermore, a mass spectrometry-based in vitro kinase assay demonstrated that ERK2 specifically phosphorylated the Ser(16) residue in the Ser(16)-Pro(17) motif-containing substrate. The treatment of CEM/LAV-1 cells with the ERK2 inhibitor sc-222229 decreased the Ser(16) phosphorylation level inside virions, and virus partially defective in Ser(16) phosphorylation showed impaired reverse transcription and attenuated replication owing to attenuated Pin1-dependent uncoating. Furthermore, the suppression of ERK2 expression by RNA interference in CEM/LAV-1 cells resulted in suppressed ERK2 packaging inside virions and decreased the Ser(16) phosphorylation level inside virions. Interestingly, the ERK2-packaging-defective virus showed impaired reverse transcription and attenuated HIV-1 replication. Taken together, these findings provide insights into the as-yet-obscure processes in Pin1-dependent HIV-1 uncoating. PMID:24509437

  10. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    Tu, Yihui [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Xue, Huaming [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Francis, Wendy [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Davies, Andrew P. [Department of Orthopaedics and Trauma, Moriston Hospital, Swansea (United Kingdom); Pallister, Ian; Kanamarlapudi, Venkateswarlu [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Xia, Zhidao, E-mail: zhidao.xia@gmail.com [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom)

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  11. Pneumolysin activates neutrophil extracellular trap formation.

    G Nel, J; Theron, A J; Durandt, C; Tintinger, G R; Pool, R; Mitchell, T J; Feldman, C; Anderson, R

    2016-06-01

    The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection. PMID:26749379

  12. Notch-1 Signaling Regulates Microglia Activation via NF-κB Pathway after Hypoxic Exposure In Vivo and In Vitro

    Yao, Linli; Kan, Enci Mary; Kaur, Charanjit; Dheen, S Thameem; Hao, Aijun; Lu, Jia; Ling, Eng-Ang

    2013-01-01

    Neuroinflammation mediated by the activated microglia is suggested to play a pivotal role in the pathogenesis of hypoxic brain injury; however, the underlying mechanism of microglia activation remains unclear. Here, we show that the canonical Notch signaling orchestrates microglia activation after hypoxic exposure which is closely associated with multiple pathological situations of the brain. Notch-1 and Delta-1 expression in primary microglia and BV-2 microglial cells was significantly eleva...

  13. 细胞外信号调节激酶1/2在谷氨酸引起的星形胶质细胞炎症反应中的作用%Effect of extracellular signal-regulated kinase 1/2 in glutamate-induced inflammatory reaction of culture astroglia in vitro

    魏红燕

    2009-01-01

    Objective It is to observe the expression of glutamate induce astroglia activated inflammatory and extracellular signal-regulated kinase 1/2 (ERK 1/2), and explore the effect of extracellular signal-regulated kinase1/2 in astroglia activated inflammatory. Methods The passage astroglia of rats cultured in vitro was treated by glutamate for 30 minutes with the density of 20 μmol/L and 50 μmol/L. The signal transduction pathway of MEK was inhibited by upstream kinase of ERK PD98059. The expressions changes of extracellular regulated protein kinases1/2 (ERK1/2), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) were observed before and after inhibited.Results Glutamate could increase the level of P-ERK 1/2 obviously in astroglia cultured in vitro, and also increase the level of iNos, COX-2, IL-1β obviously. PD98059 could completely inhibit the increase of ERK 1/2 induced by glutamate, and also inhibit the increase of iNos, COX-2, IL-1β induced by glutamate. Conclusion ERK 1/2 signal transduction pathway is involved in glutamate induce astroglia activated inflammatory reaction.%目的 观察谷氨酸诱导星形胶质细胞激活炎症细胞因子表达及细胞外信号调节激酶1/2(ERK1/2)的表达情况,探讨ERK1/2在星形胶质细胞激活炎症细胞因子中的作用.方法 传代体外培养的大鼠星形胶质细胞,分别用终浓度为20μmol/L 和50μmol/L的谷氨酸作用30min.应用ERK上游激酶MEK特异性阻断剂PD98059(10 μmol/L)阻断ERK信号转导通路,Western blot观察阻断前后星形胶质细胞磷酸化ERK1/2、白细胞介素-1β(IL-1β)、诱导型一氧化氮合酶(iNOS)和环氧合酶-2(COX-2)蛋白表达水平的改变.结果 谷氨酸使体外培养星形胶质细胞磷酸化ERK1/2蛋白表达明显增加,同时,使iNOS、COX-2、IL-1β表达明显增加;PD98059可完全阻断谷氨酸引起的ERK1/2表达增加,也可抑制谷氨酸引起的iNOS、COX-2、IL-1β蛋白表达增

  14. Platycodin D induces reactive oxygen species-mediated apoptosis signal-regulating kinase 1 activation and endoplasmic reticulum stress response in human breast cancer cells.

    Yu, Ji Sun; Kim, An Keun

    2012-08-01

    Platycodin D (PD), a natural compound found in Platycodon grandiflorum, induces apoptotic cell death in various carcinoma cells. One mechanism of PD-mediated cell death is by activation of mitogen-activated protein kinases, as suggested in a recent report. In this study, we further examined upstream signal pathways and the relationship between these signals and reactive oxygen species (ROS). Using immunoblotting assays, we found that PD activated apoptosis signal-regulating kinase 1 (ASK1) through phosphorylation of ASK1 at threonine and dephosphorylation of ASK1 at serine. We also showed that PD caused activation of the endoplasmic reticulum (ER) stress response. This was supported by observations showing that treatment with PD induces phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor 2 α (eIF 2α), up-regulating expression of glucose-regulated protein 78/immunoglobulin heavy chain binding protein (GRP78/Bip) and CCAAT/enhancer-binding protein homologous protein/growth arrest and DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-4. Furthermore, PD-induced ASK1 and ER stress responses were inhibited by the antioxidant N-acetyl-l-cysteine. These results suggest that ROS play a critical role for activation of ASK1 and ER stress in PD-treated cancer cells. PMID:22784044

  15. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  16. Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina

    Yi Hyun

    2007-12-01

    Full Text Available Abstract Background The Wnt signaling pathway is a cellular communication pathway that plays critical roles in development and disease. A major class of Wnt signaling regulators is the Dickkopf (Dkk family of secreted glycoproteins. Although the biological properties of Dickkopf 1 (Dkk1 and Dickkopf 2 (Dkk2 are well characterized, little is known about the function of the related Dickkopf 3 (Dkk3 protein in vivo or in cell lines. We recently demonstrated that Dkk3 transcripts are upregulated during photoreceptor death in a mouse model of retinal degeneration. In this study, we characterized the activity of Dkk3 in Wnt signaling and cell death. Results Dkk3 was localized to Müller glia and retinal ganglion cells in developing and adult mouse retina. Western blotting confirmed that Dkk3 is secreted from Müller glia cells in culture. We demonstrated that Dkk3 potentiated Wnt signaling in Müller glia and HEK293 cells but not in COS7 cells, indicating that it is a cell-type specific regulator of Wnt signaling. This unique Dkk3 activity was blocked by co-expression of Dkk1. Additionally, Dkk3 displayed pro-survival properties by decreasing caspase activation and increasing viability in HEK293 cells exposed to staurosporine and H2O2. In contrast, Dkk3 did not protect COS7 cells from apoptosis. Conclusion These data demonstrate that Dkk3 is a positive regulator of Wnt signaling, in contrast to its family member Dkk1. Furthermore, Dkk3 protects against apoptosis by reducing caspase activity, suggesting that Dkk3 may play a cytoprotective role in the retina.

  17. Extracellular magnesium and calcium blockers modulate macrophage activity.

    Libako, Patrycja; Nowacki, Wojciech; Castiglioni, Sara; Mazur, Andrzej; Maier, Jeanette A M

    2016-03-01

    Magnesium (Mg) possesses anti-inflammatory properties, partly because it antagonizes calcium (Ca) and inhibits L-type Ca channels. Our aim was to determine the effects of different concentrations of extracellular Mg, with or without Ca-channel blockers, in macrophages. A macrophage-like cell line J774.E was cultured in different concentrations of extracellular Mg and exposed to i) the phorbol ester PMA to induce the production of reactive oxygen species ii) lipopolysaccharide to induce the production of pro-inflammatory cytokines, or iii) ovalbumin to study endocytosis. The Ca antagonists verapamil and/or TMB-8 were used to interfere with Ca homeostasis. Different concentrations of extracellular Mg did not impact on endocytosis, while Ca antagonists markedly decreased it. Low extracellular Mg exacerbated, whereas Ca antagonists inhibited, PMA-induced production of free radicals. Ca blockers prevented lipopolysaccharide-induced transcription and release of IL-1β, IL-6 and TNF-α, while extracellular Mg had only a marginal effect. Ca channel inhibitors markedly reduced the activity of J774.E cells, thus underscoring the critical role of Ca in the non-specific immune response, a role which was, in some instances, also modulated by extracellular Mg. PMID:27160489

  18. Extracellular Protease Activity of Enteropathogenic Escherechia coli on Mucin Substrate

    SRI BUDIARTI

    2007-03-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC causes gastrointestinal infections in human. EPEC invasion was initiated by attachment and aggressive colonization on intestinal surface. Attachment of EPEC alter the intestine mucosal cells. Despite this, the pathogenic mechanism of EPEC infectior has not been fully understood. This research hypothesizes that extracellular proteolytic enzymes is necessary for EPEC colonization. The enzyme is secreted into gastrointestinal milieu and presumably destroy mucus layer cover the gastrointestinal tract. The objective of this study was to assay EPEC extracellular protease enzyme by using mucin substrate. The activity of EPEC extracellular proteolytic enzyme on 1% mucin substrate was investigated. Non-pathogenic E. coli was used as a negative control. Positive and tentative controls were Yersinia enterocolitica and Salmonella. Ten EPEC strains were assayed, seven of them were able to degrade mucin, and the highest activity was produced by K1.1 strain. Both positive and tentative controls also showed the ability to digest 0.20% mucin.

  19. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation.

    Schaarschmidt, Joerg; Nagel, Marcus B M; Huth, Sandra; Jaeschke, Holger; Moretti, Rocco; Hintze, Vera; von Bergen, Martin; Kalkhof, Stefan; Meiler, Jens; Paschke, Ralf

    2016-07-01

    The thyroid stimulating hormone receptor (TSHR) is a G protein-coupled receptor (GPCR) with a characteristic large extracellular domain (ECD). TSHR activation is initiated by binding of the hormone ligand TSH to the ECD. How the extracellular binding event triggers the conformational changes in the transmembrane domain (TMD) necessary for intracellular G protein activation is poorly understood. To gain insight in this process, the knowledge on the relative positioning of ECD and TMD and the conformation of the linker region at the interface of ECD and TMD are of particular importance. To generate a structural model for the TSHR we applied an integrated structural biology approach combining computational techniques with experimental data. Chemical cross-linking followed by mass spectrometry yielded 17 unique distance restraints within the ECD of the TSHR, its ligand TSH, and the hormone-receptor complex. These structural restraints generally confirm the expected binding mode of TSH to the ECD as well as the general fold of the domains and were used to guide homology modeling of the ECD. Functional characterization of TSHR mutants confirms the previously suggested close proximity of Ser-281 and Ile-486 within the TSHR. Rigidifying this contact permanently with a disulfide bridge disrupts ligand-induced receptor activation and indicates that rearrangement of the ECD/extracellular loop 1 (ECL1) interface is a critical step in receptor activation. The experimentally verified contact of Ser-281 (ECD) and Ile-486 (TMD) was subsequently utilized in docking homology models of the ECD and the TMD to create a full-length model of a glycoprotein hormone receptor. PMID:27129207

  20. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  1. Detection of Extracellular enzymes Activities in Various Fusarium spp.

    Kwon, Hyuk Woo; Yoon, Ji Hwan; Kim, Seong Hwan; Hong, Seung Beom; Cheon, Youngah; Ko, Seung Ju

    2007-01-01

    Thirty seven species of Fusarium were evaluated for their ability of producing extracellular enzymes using chromogenic medium containing substrates such as starch, cellobiose, CM-cellulose, xylan, and pectin. Among the tested species Fusarium mesoamericanum, F. graminearum, F. asiaticum, and F. acuminatum showed high β-glucosidase acitivity. Xylanase activity was strongly detected in F. proliferatum and F. oxysporum. Strong pectinase activity was also found in F. oxysporum and F. proliferatum...

  2. Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2.

    Bryckaert, M; Guillonneau, X; Hecquet, C; Courtois, Y; Mascarelli, F

    1999-12-01

    Retinal pigmented epithelial (RPE) cells are of central importance in the maintenance of neural retinal function. Changes in the RPE cells associated with repair activities have been described as metaplasia, while RPE cell apoptosis is responsible for the development of a variety of retinal degenerations. We investigated the regulation of the anti-apoptotic properties of the fibroblast growth factors (FGF) 2 in serum-free cultures of RPE cells. In the absence of serum, confluent stationary RPE cells died by apoptosis via a caspase 3-dependent pathway. The addition of FGF2 greatly reduced apoptosis over a 7-day culture period. We demonstrated the involvement of an autocrine loop involving endogenous FGF1 in the mechanisms that govern FGF2-induced resistance to apoptosis by showing: (1) higher levels of apoptosis in cells treated with antisense FGF1 oligonucleotide or after neutralization of excreted FGF1; (2) the long-term activation of FGFR1 and of ERK2, (3) the inhibition of FGFR1 and ERK2 activation and an increase in apoptosis if excreted FGF1 was neutralized. FGF2 also increased the de novo synthesis and the production of Bcl-xl before the onset of apoptosis. Both inhibition of ERK2 activation, which decreased Bcl-xl synthesis, and downregulation of Bcl-x by antisense oligonucleotide treatment inhibited the survival-promoting activity of FGF2. Thus, FGF2-induced cell survival is a progressive adaptive phenomenon involving ERK2 activation by excreted FGF1 and ERK2-dependent Bcl-x production. PMID:10602518

  3. Activation of AMP-Activated Protein Kinase and Extracelluar Signal-Regulated Kinase Mediates CB-PIC-Induced Apoptosis in Hypoxic SW620 Colorectal Cancer Cells

    Sung-Yun Cho; Hyo-Jeong Lee; Hyo-Jung Lee; Deok-Beom Jung; Hyunseok Kim; Eun Jung Sohn; Bonglee Kim; Ji Hoon Jung; Byoung-Mog Kwon; Sung-Hoon Kim

    2013-01-01

    Here, antitumor mechanism of cinnamaldehyde derivative CB-PIC was elucidated in human SW620 colon cancer cells. CB-PIC significantly exerted cytotoxicity, increased sub-G1 accumulation, and cleaved PARP with apoptotic features, while it enhanced the phosphorylation of AMPK alpha and ACC as well as activated the ERK in hypoxic SW620 cells. Furthermore, CB-PIC suppressed the expression of HIF1 alpha, Akt, and mTOR and activated the AMPK phosphorylation in hypoxic SW620 cells. Conversely, silenc...

  4. Serine/threonine kinase-protein kinase B and extracellular signal-regulated kinase regulate ventilator-induced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment

    Li, Li-Fu; Liao, Shuen-Kuei; Huang, Chung-Chi; Hung, Ming-Jui; Quinn, Deborah A

    2008-01-01

    Introduction Lung fibrosis, reduced lung compliance, and severe hypoxemia found in patients with acute lung injury often result in a need for the support of mechanical ventilation. High-tidal-volume mechanical ventilation can increase lung damage and fibrogeneic activity but the mechanisms regulating the interaction between high tidal volume and lung fibrosis are unclear. We hypothesized that high-tidal-volume ventilation increased pulmonary fibrosis in acute lung injury via the serine/threon...

  5. Extracellular electrical activity from the photoreceptors of midge

    A A Babrekar; G R Kulkarni; B B Nath; P B Vidyasagar

    2004-09-01

    The ontogeny of photosensitivity has been studied in a holometabolous insect, the midge Chironomus ramosus. The life cycle of midges shifts from an aquatic environment to a non-aquatic environment. Extracellular electrical activity of photoreceptor organs was recorded at larval and adult stages. We found an increase in photosensitivity as the larva metamorphosed to the adult stage. This is the first report of changes in photosensitivity during the development of any insect described in an ecological context.

  6. Evidence for cross-talk between M2 and M3 muscarinic acetylcholine receptors in the regulation of second messenger and extracellular signal-regulated kinase signalling pathways in Chinese hamster ovary cells

    Hornigold, David C; Mistry, Rajendra; Raymond, Pamela D; Blank, Jonathan L; John Challiss, R A

    2003-01-01

    We have examined possible mechanisms of cross-talk between the Gq/11-linked M3 muscarinic acetylcholine (mACh) receptor and the Gi/o-linked M2 mACh receptor by stable receptor coexpression in Chinese hamster ovary (CHO) cells. A number of second messenger (cyclic AMP, Ins(1,4,5)P3) and mitogen-activated protein kinase (ERK and JNK) responses stimulated by the mACh receptor agonist methacholine were examined in CHO-m2m3 cells and compared to those stimulated in CHO-m2 and CHO-m3 cell-lines, ex...

  7. Classification of the extracellular fields produced by activated neural structures

    Perry Danielle

    2005-09-01

    Full Text Available Abstract Background Classifying the types of extracellular potentials recorded when neural structures are activated is an important component in understanding nerve pathophysiology. Varying definitions and approaches to understanding the factors that influence the potentials recorded during neural activity have made this issue complex. Methods In this article, many of the factors which influence the distribution of electric potential produced by a traveling action potential are discussed from a theoretical standpoint with illustrative simulations. Results For an axon of arbitrary shape, it is shown that a quadrupolar potential is generated by action potentials traveling along a straight axon. However, a dipole moment is generated at any point where an axon bends or its diameter changes. Next, it is shown how asymmetric disturbances in the conductivity of the medium surrounding an axon produce dipolar potentials, even during propagation along a straight axon. Next, by studying the electric fields generated by a dipole source in an insulating cylinder, it is shown that in finite volume conductors, the extracellular potentials can be very different from those in infinite volume conductors. Finally, the effects of impulses propagating along axons with inhomogeneous cable properties are analyzed. Conclusion Because of the well-defined factors affecting extracellular potentials, the vague terms far-field and near-field potentials should be abandoned in favor of more accurate descriptions of the potentials.

  8. Extracellular enzyme activities and nutrient availability during artificial groundwater recharge.

    Kolehmainen, Reija E; Korpela, Jaana P; Münster, Uwe; Puhakka, Jaakko A; Tuovinen, Olli H

    2009-02-01

    Natural organic matter (NOM) removal is the main objective of artificial groundwater recharge (AGR) for drinking water production and biodegradation plays a substantial role in this process. This study focused on the biodegradation of NOM and nutrient availability for microorganisms in AGR by the determination of extracellular enzyme activities (EEAs) and nutrient concentrations along a flow path in an AGR aquifer (Tuusula Water Works, Finland). Natural groundwater in the same area but outside the influence of recharge was used as a reference. Determination of the specific alpha-d-glucosidase (alpha-Glu), beta-d-glucosidase (beta-Glu), phosphomonoesterase (PME), leucine aminopeptidase (LAP) and acetate esterase (AEST) activities by fluorogenic model substrates revealed major increases in the enzymatic hydrolysis rates in the aquifer within a 10m distance from the basin. The changes in the EEAs along the flow path occurred simultaneously with decreases in nutrient concentrations. The results support the assumption that the synthesis of extracellular enzymes in aquatic environments is up and down regulated by nutrient availability. The EEAs in the basin sediment and pore water samples (down to 10cm) were in the same order of magnitude as in the basin water, suggesting similar nutritional conditions. Phosphorus was likely to be the limiting nutrient at this particular AGR site. Furthermore, the extracellular enzymes functioned in a synergistic and cooperative way. PMID:19028394

  9. Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH).

    Donaubauer, Elyse M; Hunzicker-Dunn, Mary E

    2016-06-01

    Within the ovarian follicle, immature oocytes are surrounded and supported by granulosa cells (GCs). Stimulation of GCs by FSH leads to their proliferation and differentiation, events that are necessary for fertility. FSH activates multiple signaling pathways to regulate genes necessary for follicular maturation. Herein, we investigated the role of Y-box-binding protein-1 (YB-1) within GCs. YB-1 is a nucleic acid binding protein that regulates transcription and translation. Our results show that FSH promotes an increase in the phosphorylation of YB-1 on Ser(102) within 15 min that is maintained at significantly increased levels until ∼8 h post treatment. FSH-stimulated phosphorylation of YB-1(Ser(102)) is prevented by pretreatment of GCs with the PKA-selective inhibitor PKA inhibitor (PKI), the MEK inhibitor PD98059, or the ribosomal S6 kinase-2 (RSK-2) inhibitor BI-D1870. Thus, phosphorylation of YB-1 on Ser(102) is PKA-, ERK-, and RSK-2-dependent. However, pretreatment of GCs with the protein phosphatase 1 (PP1) inhibitor tautomycin increased phosphorylation of YB-1(Ser(102)) in the absence of FSH; FSH did not further increase YB-1(Ser(102)) phosphorylation. This result suggests that the major effect of RSK-2 is to inhibit PP1 rather than to directly phosphorylate YB-1 on Ser(102) YB-1 coimmunoprecipitated with PP1β catalytic subunit and RSK-2. Transduction of GCs with the dephospho-adenoviral-YB-1(S102A) mutant prevented the induction by FSH of Egfr, Cyp19a1, Inha, Lhcgr, Cyp11a1, Hsd17b1, and Pappa mRNAs and estradiol-17β production. Collectively, our results reveal that phosphorylation of YB-1 on Ser(102) via the ERK/RSK-2 signaling pathway is necessary for FSH-mediated expression of target genes required for maturation of follicles to a preovulatory phenotype. PMID:27080258

  10. RACK1 Targets the Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway To Link Integrin Engagement with Focal Adhesion Disassembly and Cell Motility

    Vomastek, Tomáš; Iwanicki, M. P.; Schaeffer, J.; J.; Tarcsafalvi, A.; Parsons, J. T.; Weber, M. J.

    2007-01-01

    Roč. 27, č. 23 (2007), s. 8296-8305. ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * adhesion * cell Subject RIV: EE - Microbiology, Virology Impact factor: 6.420, year: 2007

  11. The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation

    Hansen, Jakob Lerche; Aplin, Mark; Hansen, Jonas Tind; Christensen, Gitte Lund; Bonde, Marie Mi; Schneider, Mikael; Haunsø, Stig; Schiffer, Hans H; Burstein, Ethan S; Weiner, David M; Sheikh, Søren P

    AT(1) receptor signalling is illustrated by the common use of angiotensin AT(1) receptor-inverse agonists in clinical practice. It is well established that rodent orthologues of the angiotensin AT(1) receptor can selectively signal through G protein-dependent and -independent mechanisms in......(1) receptor actions. However, it is currently unknown whether the human angiotensin AT(1) receptor can signal through G protein-independent mechanisms - and if so, what the physiological impact of such signalling is. We have performed a detailed pharmacological analysis of the human angiotensin AT(1......) receptor using a battery of angiotensin analogues and registered drugs targeting this receptor. We show that the human angiotensin AT(1) receptor signals directly through G protein-independent pathways and supports NIH3T3 cellular proliferation. The realization of G protein-independent signalling by the...

  12. Extracellular melanogenesis inhibitory activity and the structure-activity relationships of ugonins from Helminthostachys zeylanica roots.

    Yamauchi, Kosei; Mitsunaga, Tohru; Itakura, Yuki; Batubara, Irmanida

    2015-07-01

    Ugonin J, K, and L, which are luteolin derivatives, were isolated from Helminthostachys zeylanica roots by a series of chromatographic separations of a 50% ethanol/water extract. They were identified using nuclear magnetic resonance (NMR), ultraviolet (UV) spectra, and ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF-MS). In this study, the intra and extracellular melanogenic activity of the ugonins were determined using B16 melanoma cells. The results showed that ugonin J at 12.5, 25, and 50μM reduced extracellular melanin contents to 75, 16, and 14%, respectively, compared to the control. This indicates that ugonin J showed a stronger activity than arbutin, used as the positive control. Moreover, ugonin K showed a more potent inhibition with 19, 8, and 9% extracellular melanin reduction at the same concentrations, than that shown by ugonin J. In contrast, ugonin L did not inhibit intra- or extracellular melanogenic activity. Furthermore, in order to investigate the structure-activity relationships of the ugonins, the intra- and extracellular melanogenic activity of luteolin, methylluteolin, quercetin, eriodictyol, apigenin, and chrysin were determined. Consequently, it was suggested that the catechol and flavone skeleton of ugonin K is essential for the extracellular melanogenic inhibitory activity, and the low polarity substituent groups on the A ring of ugonin K may increase the activity. PMID:25979512

  13. A between-river comparison of extracellular-enzyme activity.

    Chappell, K R; Goulder, R

    1995-01-01

    River-water extracellular-enzyme activity in the lowland Rivers Ouse and Derwent, northeast England, had much in common. In both rivers, the mean enzyme activities over 15 months differed in the following order: leucine aminopeptidase > phosphatase > β-D-glucosidase > β-D-galactosi-idase and β-D-xylosidase. None of the five enzymes assayed had significant between-river difference in activity, and there was significant between-river correlation of β-D-glucosidase, phosphatase, and leucine-aminopeptidase activity. The common enzyme regimes were probably more due to between-river similarity of planktonic microbiota than to similar physico-chemical conditions. The potential for glucose uptake by bacterioplankton closely followed β-D-glucosidase activity in magnitude and periodicity. The potential for leucine uptake, however, was much less than leucine-aminopeptidase activity; hence rate of leucine release probably did not limit leucine uptake. There was an appreciable and highly variable proportion of free (river water; ranges were β-D-glucosidase 10-30%, phosphatase 53% to apparently 104%, and leucine aminopeptidase 22-98%. These free enzymes did not necessarily originate from planktonic microbiota and may explain the fairly loose coupling between whole-water enzyme activity and microbial variables. Marked downstream increase in enzyme activity, along about 104 km of the River Derwent, was found on only one of three sampling days; hence the single site used for regular sampling was reasonably representative of most of the river. PMID:24186635

  14. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  15. Comparison of Extracellular Cellulase Activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414

    Ng, Thomas K.; Zeikus, J. G.

    1981-01-01

    The crude extracellular cellulase of Clostridium thermocellum LQRI (virgin strain) was very active and solubilized microcrystalline cellulose at one-half the rate observed for the extracellular cellulase of Trichoderma reesei QM9414 (mutant strain). C. thermocellum cellulase activity differed considerably from that of T. reesei as follows: higher endoglucanase/exoglucanase activity ratio; absence of extracellular cellobiase or β-xylosidase activity; long-chain oligosaccharides instead of shor...

  16. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    Takeshita, Harunori [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi [Department of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima Kobe, Hyogo 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Miyazawa, Keiji [Discovery Research III, Research and Development, Kissei Pharmaceutical Company, 4365-1 Hodakakashiwara, Azumino, Nagano 399-8304 (Japan); Hla, Timothy [Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Avenue, Box 69, NY 10065 (United States); Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  17. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soil enzymes originate from a variety of organisms, notably fungi and bacteria...... and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil...... functioning and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins...

  18. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling......, recycling of nutrients and waste, soil remediation, plant growth support and regulation of above ground biodiversity, resilience, and soil suppressiveness. As such, soil ecosystem services are beneficial and vital for human life and at the same time threatened by anthropogenic activities. Increasing...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect the...

  19. Variation in activity of root extracellular phytase between genotypes of barley

    Asmar, Mohammad Farouq

    1997-01-01

    the genotypes performed differently with regard to the activity of the enzymes. The winter barley genotype, Marinka had the highest activity of root-associated extracellular phytase which differed significantly from Alexis and Senate, but not from Regatta. Alexis showed the lowest activity of root......Barley genotypes grown in nutrient solution under P nutrient stress and sterile conditions were compared in activity of root-associated and root-released extracellular phytase. The activity of root-associated phytase of all genotypes was about 10 times higher than that of root-released phytase and......-released extracellular phytase which differed significantly from those of Marinka and Regatta, but not from Senate. Generally, there was a significant correlation between the activity of root-associated and released extracellular phytase....

  20. Differentiating Intracellular from Extracellular Alkaline Phosphatase Activity in Soil by Sonication

    2013-01-01

    Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio  =  1/8 (w/v) and power density  =  15 watt ml-1], the activity of alkaline phosphomonoesterase (phosphatase) in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first...

  1. Differentiating Intracellular from Extracellular Alkaline Phosphatase Activity in Soil by Sonication

    Qin, S.P.; C. S. Hu; Oenema, O.

    2013-01-01

    Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio = 1/8 (w/v) and power density = 15 watt ml(-1)], the activity of alkaline phosphomonoesterase (phosphatase) in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first p...

  2. Arginine vasopressin stimulates proliferation of adult rat cardiac fibroblasts via protein kinase C-extracellular signal-regulated kinase 1/2 pathway%蛋白激酶C-细胞外信号调节激酶1/2通路介导精氨酸升压素对成年大鼠心肌成纤维细胞的促增殖作用

    何燕萍; 赵连友; 郑强荪; 刘少伟; 赵晓燕; 陆晓龙; 牛晓琳

    2008-01-01

    demonstrated that AVP is a mitogen for neonatal rat cardiac fibroblasts (CFs). In the present study, we extended our investigations to adult rat CFs to explore whether AVP could induce adult rat CF proliferation and, if so, to identify the mechanism involved. Adult rat CFs were isolated, cultured and subjected to AVP treatment. DNA synthesis and cell cycle distribution were analyzed by [3H]-thymidine incorporation and flow cytometry. Cellular extracellular signal-regulated kinase 1/2 (ERK 1/2) activity was measured by in vitro kinase assay using myelin basic protein (MBP) as a substrate. Protein expressions of total-and phospho-ERK1/2, p27Kip1, cyclins D1, A, E were assessed by Western blot. The results showed that AVP stimulated DNA synthesis in adult rat CFs, and the effect was abolished by a V1 receptor antagonist, d(CH2)5[Tyr2(Me),Arg8-vasopressin (0.1μmol/L), but not by a V2 receptor antagonist, desglycinamide-[d(CH2)5, D-Ile2, Ile4, Arg8-vasopressin (0.1μmol/L). AVP induced an activation of ERK1/2, which could be mimicked by the protein kinase C (PKC) activator, phorbol 12-myfistate 13-acetate (PMA, 30nmol/L, 5min), but abolished by depiction of PKC via chronic PMA incubation (2.5μmol/L,24h). In addition, AVP down-regulated protein expression of p27Kip1, increased protein expressions of cyclins D1, A and E, and induced cell cycle progression from G0/G1 into S stage. Inhibition of ERK1/2 activation by PD98059 (30μmol/L) abolished the effect of AVP on DNA synthesis, protein expressions of p27Klp1, cyclins D1, A and E as well as cell cycle progression. These results suggest that AVP is also a growth factor for adult rat CFs. The mitogenic effect of AVP is mediated via V1 receptors and PKC-ERK 1/2 pathway. Moreover, AVP modulates the expressions of cell cycle regulatory proteins p27Kip1 and cyclins D1, A and E, which lie downstream of ERK 1/2 activation, and induces cell cycle progression in adult rat CFs.

  3. Fibroblast Growth Factor-1 Induced Promatrilysin Expression Through the Activation of Extracellular-regulated Kinases and STAT3

    Thirupandiyur S. Udayakumar

    2002-01-01

    Full Text Available The MMP, matrilysin. (20MMP-7, has been shown to be overexpressed in prostate cancer cells and to increase prostate cancer cell invasion. Prostate stromal fibroblasts secrete factor(s, including fibroblast growth factor-1. (20FGF-1 that induces promatrilysin expression in LNCaP cells. In the present study, we investigated the signal transduction pathway involved in the FGF-1-induced expression of promatrilysin. FGF-1 treatment significantly increased the activation of extracellular signal-regulated kinases 1 and 2. (20ERK1 and ERK2. This induction was time-dependent and was sustained until 24 hours after treatment. Treating the cells with MEK1/2 inhibitor. (20PD98059 eliminated ERK activation completely and blocked FGF-1-mediated induction of promatrilysin expression. Transient transfection studies with human matrilysin promoter resulted in a four-to-five-fold increase in reporter luciferase enzyme activity that was blocked by the MEK1/2 inhibitor. (20PD98059. Serine phosphorylation of signal transducer and activator of transcription 3. (20STAT3 was observed after FGF-1 treatment and pretreatment with 20 µM PD98059 abolished STAT3 phosphorylation. Transient transfection with dominant negative STAT3 inhibited FGF-1-induced transactivation of the matrilysin promoter indicating that STAT3 plays an important role in FGF-1-induced matrilysin expression. We propose that the FGF-1-induced signaling pathway that leads to promatrilysin expression is ERK-dependent and leads to phosphorylation of Ser-727 on STAT3, phosphorylated STAT3, then binds and transactivates the matrilysin promoter. Our results demonstrate that ERK-MAP kinase and transcription factor STAT3 are important components of FGF-1-mediated signaling, which induce promatrilysin expression in LNCaP cells.

  4. Extracellular enzyme activity in anaerobic bacterial cultures: evidence of pullulanase activity among mesophilic marine bacteria.

    C. Arnosti; Repeta, D. J.

    1994-01-01

    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapid...

  5. Modulation of Network Activity in Dissociated Hippocampal Cultures by Enzymatic Digestion of Extracellular Matrix

    Mukhina I.V.; Vedunova М.V.; Sakharnova Т.А.; Dityatev А.E.

    2012-01-01

    To investigate the role of extracellular matrix in spontaneous neuronal network activity, we used microelectrode array technology and enzymatic treatment of hippocampal culture with hyaluronidase, which digests the major component of extracellular matrix, hyaluronic acid. Studies were performed using hippocampal cells that were dissociated from embryonic С57ВL6 mice (E18) and plated on microelectrode arrays (MEAs). Our findings revealed that hyaluronidase promoted seizure-like activity during...

  6. FGF signalling regulates bone growth through autophagy.

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes. PMID:26595272

  7. Phosphorylation of extracellular signal-regulated kinase in the medial prefrontal cortex is increased in the single-prolonged stress rats%单一连续应激大鼠内侧前额皮质细胞外信号调节激酶磷酸化增高

    田艳霞; 徐爱军; 李冉; 吕翠平; 王海涛

    2011-01-01

    Objective To investigate the change of phosphorylated p44/42 extracellular signal-regulated kinase ( pERK1/2 ) and c-fos expression induced by single-prolonged stress (SPS) in medial prefrontal cortex (mPFC). Methods Forty-five male Wistar rats were divided into control group, SPS group and PD98059-SPS group. The rats of SPS group and PD98059-SPS group were exposed to single-prolonged stress ( SPS ), and that of PD98059-SPS group were bilaterally infused the PD98059, inhibitor of ERK, into the mPFC. The behavior was examined using open-field test, elevated plusmaze and Morris water maze. The expression of pERK1/2 in mPFC was detected with immunohistochemical staining and Western blotting. And reverse transcription-polymerase chain reaction ( RT-PCR ) was employed to detect the c-fos mRNA.Results SPS exposure resulted in pronounced anxiety-like behavior and learning and spatial memory impairments.PD98059 significantly ameliorated the behavior alteration. Absorbance of pERK1/2 positive cell, expression of pERK1/2 and expression of c-fos mRNA of SPS rats were 51.54 ± 5.41, 89.61 ± 3.25 and 0.91 ± 0. 13 respectively, while the control group rats were 12. 18 ± 1.61, 34. 22±5.83 and 0. 13 ±0. 03, and PD98059-SPS group rats were 26. 26 ± 1.42,60. 59 ±5.88 and O. 35 ± 0. 11. These data suggest that expressions of pERK1/2 and c-fos mRNA in mPFC increased significantly after rats were exposed to SPS ( P < 0. 01 ), and the increase was siguifieantly abolished by PD98059 ( P < 0. 01 ). Conlusion The results suggest that pERK1/2 may be related to signal transduction pathway in single-prolonged stress.%目的 探讨单一连续应激(SPS)大鼠内侧前额皮质(mPFC)磷酸化细胞外信号调节激酶(pERK1/2)和c-fos表达的变化.方法将45只雄性Wistar大鼠随机分为对照组、应激组和干预组.应激组和干预组大鼠接受SPS,干预组大鼠接受SPS前30min前额皮质局部注射ERK抑制剂2′-氨基-3′-甲氧黄酮(PD98059).利用开场

  8. 转染Cox7a2重组质粒对大鼠支持细胞分泌功能和ERK磷酸化水平的影响%Analysis of cell secretion function and the phosphorylation level of extracellular signal-regulated kinase in rat sertoli cell transfected with Cox7a2 recombinant plasmid

    张铁; 刘保兴; 张秀平; 徐亚平

    2014-01-01

    Objective To investigate cell secretion function and the phosphorylation level of extracellular signal-regulated kinase in rat sertoli cell transfected with Cox7a2 recombinant plasmid. Methods Rat SCs were cultured and divided into three groups such as the control group, the mock group and the recombinant plasmid group. After 24h culture, the culture supernatants of the transfected cells were collected and the levels of transferrin (TF) , interleukin(IL)-1β and IL-6 in culture medium were measured by ELISA. The level of ERK phosphorylation in the transfected cells was detected by Western Blot. Results The level of TF was significantly decreased in the recombinant plasmid group as compared with that of the control group and the mock group (P<0.05) .The levels of IL-1βand IL-6 (157.14±12.69 pg/mL and 0.79±0.04 pg/mL) in the recombinant plasmid group were significantly higher than those of the control group and the mock group(33.05±1.92 pg/mL, 0.25±0.01pg/mL;40.46±6.69pg/mL, 0.37±0.03pg/mL, P<0.01), and the level of ERK phosphorylation was also increased significantly(P<0.01). Conclusion The cell secretion function was impaired in rat SCs transfected with Cox7a2 recombinant plasmid but the phosphorylation level of ERK was increased.%目的:观察大鼠睾丸支持细胞转染细胞色素C氧化酶7a2(Cox7a2)重组质粒后对支持细胞分泌功能及细胞外信号调节激酶(ERK)磷酸化水平的影响。方法培养原代大鼠睾丸支持细胞,将细胞分为空白对照组、空载体组、重组质粒组。将pEGFP-C1-Cox7a2重组质粒转染支持细胞24h后,收集细胞上清液,采用酶联免疫法,测定转铁蛋白(TF)、白细胞介素-1(interleukin-1, IL-1)β、白细胞介素-6(IL-6)含量。Western blot检测ERK的磷酸化水平。结果重组质粒组TF为(14.11±0.45)pmol/mL,显著低于空白对照组(24.3±0.64)pmol/mL和空载体组(25.16±0.42)pmol/mL(P<0.01)。重组质粒组IL-1

  9. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics

    Peng Zhang; Yu Shen; Jin-Song Guo; Chun Li; Han Wang; You-Peng Chen; Peng Yan; Ji-Xiang Yang; Fang Fang

    2015-01-01

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activ...

  10. Age-dependent changes in extracellular proteins, aminopeptidase and proteinase activities in Frankia isolate BR.

    Müller, A; Benoist, P; Diem, H G; Schwencke, J

    1991-12-01

    To investigate protein secretion by the nitrogen-fixing actinomycete Frankia isolate BR, we designed a rapid DEAE adsorption, salt elution and Biogel P6DG desalination method to concentrate protein from the growth medium. Secreted proteins reached a maximum concentration (5.6 gm l-1) in the medium at growth arrest. Analysis by SDS-PAGE detected up to 63 extracellular polypeptides when Frankia cells were grown under stirred conditions in BAP medium supplemented with phosphatidylcholine and MES buffer and 65 proteins in stirred BAP media alone. The pattern of extracellular polypeptides changed during growth. Several extracellular proteolytic activities were detected and compared with intracellular ones. The substrate specificity of the extracellular and intracellular aminopeptidase activities were the same. Also, the electrophoretic migration patterns of secreted and intracellular aminopeptidases could not be distinguished. Secretion of the proline-specific aminopeptidase FAP proteinase (PF) were secreted: 10 had the same electrophoretic mobility as their intracellular counterparts after SDS-gelatine-PAGE while five (PF - 39.5, PF - 38.5, PF - 36.5, PF - 25.5 and PF - 20.5 kDa) had a different electrophoretic mobility and, therefore, appeared to be exclusively extracellular. At least seven extracellular proteinases appeared to increase coordinately in activity shortly before growth arrest. PMID:15101385

  11. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways.

    Yamamoto, Naoki; Fujii, Yoko; Kasahara, Rika; Tanida, Mamoru; Ohora, Kentaro; Ono, Yoko; Suzuki, Kenji; Sobue, Kazuya

    2016-06-01

    One of the major neuropathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ) in the brain. Aβ accumulation seems to arise from an imbalance between Aβ production and clearance. Neprilysin (NEP) and insulin-degrading enzyme (IDE) are the important Aβ-degrading enzymes in the brain, and deficits in their expression may promote Aβ deposition in patients with sporadic late-onset AD. Statins, which are used clinically for reducing cholesterol levels, can exert beneficial effects on AD. Therefore, we examined whether various statins are associated with Aβ degradation by inducing NEP and IDE expression, and then evaluating the relation between activation of intracellular signaling transduction, inhibition of cholesterol production, and morphological changes to astrocytes. Treating cultured rat astrocytes with simvastatin and atorvastatin significantly decreased the expression of NEP but not IDE in a concentration- and time-dependent manner. The decrease in NEP expression was a result of activation of extracellular signal-regulated kinase (ERK) but not the reduction of cholesterol synthesis pathway. This NEP reduction was achieved by the release to the extracellular space of cultured astrocytes. Furthermore, the cultured medium prepared from simvastatin- and atorvastatin-treated astrocytes significantly induced the degradation of exogenous Aβ. These results suggest that simvastatin and atorvastatin induce the increase of Aβ degradation of NEP on the extracellular of astrocytes by inducing ERK-mediated pathway activity and that these reagents regulate the differential mechanisms between the secretion of NEP, the induction of cholesterol reduction, and the morphological changes in the cultured astrocytes. GLIA 2016;64:952-962. PMID:26875818

  12. Antimicrobial activity of extracellular metabolites from antagonistic bacteria isolated from potato (Solanum phureja) crops

    Sinar David Granada García; Antoni Rueda Lorza; Carlos Alberto Peláez

    2014-01-01

    Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual cultur...

  13. Insulin signaling regulates mitochondrial function in pancreatic beta-cells.

    Siming Liu

    Full Text Available Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in beta-cells that included glucokinase (GK, and the pro-apoptotic protein, BAD(S. Mitochondria isolated from beta-cells derived from beta-cell specific insulin receptor knockout (betaIRKO mice exhibited reduced BAD(S, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in betaIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BAD(S. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in betaIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for beta-cell dysfunction in type 2 diabetes.

  14. PATHOGEN IMPACT ON THE ACTIVITY DYNAMICS OF POTATO SUSPENSION CELLS EXTRA-CELLULAR PEROXIDASE

    Graskova I.A.

    2005-08-01

    Full Text Available Changes in the activity of extracellular peroxidases were measured in cell suspension cultures of potato infected by Clavibacter michiganensis subsp. sepedonicus (Spieck. et Kotth. Skapt et Burkh. The total extracellular peroxidases activity of the resistant potato variety was higher than that of the sensitive variety both before and after infection. The enzyme of the resistant variety had a рН optimum of 6.2, while that of the sensitive variety was 5.4. Extracellular peroxidases of the sensitive potato variety were activated 10 minutes after infection, and displayed highest activity 1.5-2 hours later. In the resistant variety, peroxidase activity rose sharply in the first minutes of infection, and second peak of activity occurred 1.5-2 hours later. The increase of extracellular peroxidases activity of the sensitive potato variety under pathogenesis is connected with the change of genome expression and synthesis of proteins. The increase of enzyme activity of resistant potato variety in the first moments of infection is not related to proteins synthesis and is apparently conditioned by the change of kinetic parameters.

  15. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying typha litter.

    Francoeur, Steven N; Schaecher, Mark; Neely, Robert K; Kuehn, Kevin A

    2006-11-01

    We examined the effect of light on extracellular enzyme activities of periphytic/endogenous microbial assemblages associated with decomposing litter of an emergent macrophyte Typha angustifolia within a small inland wetland in southeastern Michigan. Standing-dead Typha leaf litter was collected, placed into floating wire mesh litter baskets, and submerged in a wetland pool. Enzyme saturation assays were conducted on three occasions following litter submergence (days 9, 28, and 44) to generate saturation curves for the individual enzymes tested and to examine potential differences in enzyme saturation kinetics during microbial colonization and development. Experimental light manipulations were conducted on two occasions during microbial development (days 10 and 29). Short-term (30 min) light exposure significantly increased extracellular beta-glucosidase activity of litter-associated microbial communities. Activities of beta-xylosidase and leucine-aminopeptidase were not stimulated, and stimulation of phosphatase activity was variable. The exact mechanism for increased enzyme activity remains unknown, but it may have been increased pH arising from periphytic algal photosynthesis. These results suggest that extracellular enzyme activity in microbial communities colonizing natural organic substrata may be influenced by light/photosynthesis, as has previously been demonstrated for periphyton communities grown on artificial, inert substrata. Thus, light/photosynthetic mediated stimulation of extracellular enzyme activities may be a common occurrence in microbial communities associated with natural decaying plant litter in wetlands and might engender diurnal patterns in other microbial decay processes (e.g., production, organic matter decomposition, and mineralization). PMID:17082997

  16. Detection of Extracellular Enzyme Activity in Penicillium using Chromogenic Media

    Yoon, Ji Hwan; Hong, Seung Beom; Ko, Seung Ju; Kim, Seong Hwan

    2007-01-01

    A total of 106 Penicillium species were tested to examine their ability of degrading cellobiose, pectin and xylan. The activity of β-glucosidase was generally strong in all the Penicillium species tested. P. citrinum, P. charlesii, P. manginii and P. aurantiacum showed the higher ability of producing β-glucosidase than other tested species. Pectinase activity was detected in 24 Penicillium species. P. paracanescens, P. sizovae, P. sartoryi, P. chrysogenum, and P. claviforme showed strong pect...

  17. Characterization of the protease activity that cleaves the extracellular domain of β-dystroglycan

    Dystroglycan (DG) complex, composed of αDG and βDG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of βDG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of βDG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of βDG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of βDG specifically and (2) that MMP-2 and MMP-9 may be involved in this process

  18. MODULATION OF EASTERN OYSTER HEMOCYTE ACTIVITIES BY PERKINSUS MARINUS EXTRACELLULAR PROTEINS

    The oyster pathogen Perkinsus marinusproduces many extracellular proteins (ECP) in vitro. Analysis of this ECP revealed a battery of hydrolytic enzymes. Some of these enzymes are known to modulate the activity of host defense cells. Although information on the effects of P. marin...

  19. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  20. Extracellular ATP in T-lymphocyte activation: Possible role in effector functions

    1991-01-01

    We hypothesized that cytolytic T lymphocytes (CTL) may utilize extracellular ATP (ATPo) during the effector phase of the CTL-target cell interactions and that CTL could be the source of ATPo. It is demonstrated here that incubation of CTL with activating ligands [Con A or monoclonal antibody (mAb) to the T-cell antigen receptor (TCR)] results in the extracellular Ca2(+)-independent accumulation of the ATPo. The addition of the ATP-degrading enzymes into the mixture of CTL and target cells res...

  1. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    Cherif Slim

    2011-11-01

    Full Text Available Abstract Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature.... Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C. The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry, was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment

  2. Increased digitalis-like activity in human cerebrospinal fluid after expansion of the extracellular fluid volume

    The present study was designed to determine whether acute expansion of the extracellular fluid volume influenced the digitalis-like activity of human cerebrospinal fluid (CSF), previously described. Human CSF samples, drawn before and 30 minutes after the intravenous infusion of 1 liter of either saline or glucose solutions, were assayed for digitalis-like activity by inhibition of either the 86Rb+ uptake into human erythrocytes or by the activity of a purified Na+-K+ ATPase. The CSF inhibitory activity on both systems significantly increased after the infusion of sodium solutions but did not change after the infusion of glucose. These results indicate that the digitalis-like factor of human CSF might be involved in the regulation of the extracellular fluid volume and electrolyte content and thereby in some of the physiological responses to sodium loading. 31 references, 2 figures, 1 table

  3. Spectral representation: analyzing single-unit activity in extracellularly recorded neuronal data without spike sorting

    Luczak, Artur; Narayanan, Nandakumar S.

    2005-01-01

    One step in the conventional analysis of extracellularly recorded neuronal data is spike sorting, which separates electrical signal into action potentials from different neurons. Because spike sorting involves human judgment, it can be subjective and time intensive, particularly for large sets of neurons. Here we propose a simple, automated way to construct alternative representations of neuronal activity, called spectral representation (SR). In this approach, neuronal spikes are mapped to a ...

  4. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  5. DNase Activities of the Extracellular, Cell Wall-Associated, and Cytoplasmic Protein Fractions of Frankia Strain R43

    Tavares, F.; Sellstedt, A.

    1997-01-01

    DNase activities in different protein fractions of Frankia strain R43 were studied. The extracellular and the cell wall-associated fractions revealed the presence of exo- and endonucleolytic enzymes, but none was detected in the cytoplasmic fraction. The strongest DNase hydrolysis was found in the extracellular fraction, in which six DNases were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  6. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices.

    Davis, Niall F

    2011-04-01

    To evaluate the viability and proliferative activity of human urothelial cells (HUCs) cultured on tissue-engineered extracellular matrix scaffolds and to assess the potential of extracellular matrixes to support the growth of HUCs in their expected in vivo urine environment.

  7. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries).

    Arun, G; Eyini, M; Gunasekaran, P

    2015-06-01

    Melanins are enigmatic pigments produced by a wide variety of microorganisms including bacteria and fungi. Here, we have isolated and characterized extracellular melanin from mushroom fungus, Schizophyllum commune. The extracellular dark pigment produced by the broth culture of S. commune, after 21 days of incubation was recovered by hot acid-alkali treatment. The melanin nature of the pigment was characterized by biochemical tests and further, confirmed by UV, IR, EPR, NMR and MALDI-TOF Mass Spectra. Extracellular melanin, at 100 μg/ml, showed significant antibacterial activity against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas fluorescens and antifungal activity against Trichophyton simii and T. rubrum. At a concentration of 50 μg/ml, melanin showed high free radical scavenging activity of DPPH (2,2-diphenyl-1-picrylhydrazyl) indicating its antioxidant potential. It showed concentration dependent inhibition of cell proliferation of Human Epidermoid Larynx Carcinoma Cell Line (HEP-2). This study has demonstrated characterization of melanin from basidiomycetes mushroom fungus, Schizophyllum commune and its applications. PMID:26155678

  8. Intra- and extracellular activities of dicloxacillin against Staphylococcus aureus in vivo and in vitro.

    Sandberg, Anne; Jensen, Klaus Skovbo; Baudoux, Pierre; Van Bambeke, Françoise; Tulkens, Paul M; Frimodt-Møller, Niels

    2010-06-01

    Antibiotic treatment of Staphylococcus aureus infections is often problematic due to the slow response and recurrences. The intracellular persistence of the staphylococci offers a plausible explanation for the treatment difficulties because of the impaired intracellular efficacies of the antibiotics. The intra- and extracellular time- and concentration-kill relationships were examined in vitro with THP-1 cells and in vivo by use of a mouse peritonitis model. The in vivo model was further used to estimate the most predictive pharmacokinetic/pharmacodynamic (PK/PD) indices (the ratio of the maximum concentration of drug in plasma/MIC, the ratio of the area under the concentration-time curve/MIC, or the cumulative percentage of a 24-h period that the free [f] drug concentration exceeded the MIC under steady-state pharmacokinetic conditions [fT(MIC)]) for dicloxacillin (DCX) intra- and extracellularly. In general, DCX was found to have similar intracellular activities, regardless of the model used. Both models showed (i) the relative maximal efficacy (1-log-unit reduction in the numbers of CFU) of DCX intracellularly and (ii) the equal relative potency of DCX intra- and extracellularly, with the MIC being a good indicator of the overall response in both situations. Discordant results, based on data obtained different times after dosing, were obtained from the two models when the extracellular activity of DCX was measured, in which the in vitro model showed a considerable reduction in the number of CFU from that in the original inoculum (3-log-unit decrease in the number of CFU after 24 h), whereas the extracellular CFU reduction achieved in vivo after 4 h did not exceed 1 log unit. Multiple dosing of DCX in vivo revealed increased extra- and intracellular efficacies (2.5 log and 2 log units of reduction in the numbers of CFU after 24 h, respectively), confirming that DCX is a highly active antistaphylococcal antibiotic. PK/PD analysis revealed that fT(MIC) is the index

  9. NOTCH SIGNALING REGULATES MOUSE AND HUMAN TH17 DIFFERENTIATION

    Keerthivasan, Shilpa; Suleiman, Reem; Lawlor, Rebecca; Roderick, Justine; Bates, Tonya; Minter, Lisa; Anguita, Juan; Juncadella, Ignacio; Nickoloff, Brian J; Le Poole, I. Caroline; Miele, Lucio; Osborne, Barbara A.

    2011-01-01

    T helper17 (Th17) cells are known to play a critical role in adaptive immune responses to several important extracellular pathogens. Additionally, Th17 cells are implicated in the pathogenesis of several autoimmune and inflammatory disorders as well as in cancer. Therefore, it is essential to understand the mechanisms that regulate Th17 differentiation. Notch signaling is known to be important at several stages of T cell development and differentiation. Here we report that Notch1 is activated...

  10. Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis

    Hongjiang Li; Tongda Xu; Deshu Lin; Mingzhang Wen; Mingtang Xie; Jér(o)me Duclercq; Agnieszka Bielach

    2013-01-01

    The puzzle piece-shaped Arabidopsis leaf pavement cells (PCs) with interdigitated lobes and indents is a good model system to investigate the mechanisms that coordinate cell polarity and shape formation within a tissue.Auxin has been shown to coordinate the interdigitation by activating ROP GTPase-dependent signaling pathways.To identify additional components or mechanisms,we screened for mutants with abnormal PC morphogenesis and found that cytokinin signaling regulates the PC interdigitation pattern.Reduction in cytokinin accumulation and defects in cytokinin signaling (such as in ARR7-over-expressing lines,the ahk3cre1 cytokinin receptor mutant,and the ahp12345 cytokinin signaling mutant) enhanced PC interdigitation,whereas over-production of cytokinin and over-activation of cytokinin signaling in an ARR20 over-expression line delayed or abolished PC interdigitation throughout the cotyledon.Genetic and biochemical analyses suggest that cytokinin signaling acts upstream of ROPs to suppress the formation of interdigitated pattern.Our results provide novel mechanistic understanding of the pathways controlling PC shape and uncover a new role for cytokinin signaling in cell morphogenesis.

  11. Na+ -K+ pump activity in rat peritoneal mast cells: inhibition by extracellular calcium

    Knudsen, Torben; Johansen, Torben

    1989-01-01

    1. Pure populations of rat peritoneal mast cells were used to study cellular potassium uptake. The radioactive potassium analogue, 86rubidium, was used as a tracer for potassium for measurements of the activity of the cellular potassium uptake process. 2. The ouabain-sensitive and the ouabain...... nature of an enzyme, and it is mediated by the Na+ -K+ pump located in the plasma membrane. It is demonstrated that the activity of the Na+ -K+ pump mechanism is inhibited by low concentrations of extracellular calcium (0.1-1.2 mmol l-1). The possibility is discussed that calcium-deprivation may increase...

  12. Extracellular ATP-dependent activation of plasma membrane Ca2+ pump in HEK-293 cells

    Qi, Z.; Murase, K.; Obata, S.; Sokabe, M

    2000-01-01

    It is well known that extracellular ATP (ATPo) elevates the intracellular Ca2+ concentration ([Ca2+]i) by inducing Ca2+ influx or mobilizing Ca2+ from internal stores via activation of purinoceptors in the plasma membrane. This study shows that ATPo also activates the plasma membrane Ca2+ pumps (PMCPs) to bring the elevated [Ca2+]i back to the resting level in human embryonic kidney-293 (HEK-293) cells.The duration of ATPo-induced intracellular Ca2+ transients was significantly increased by P...

  13. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus

    Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.

    2012-01-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that mig...

  14. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.

    Saitoh, M.; Nishitoh, H; M. Fujii; Takeda, K; Tobiume, K; Sawada, Y; Kawabata, M.; Miyazono, K; Ichijo, H

    1998-01-01

    Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, ...

  15. Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake

    The aim of this study was to define a model for the coupling between extracellular enzyme activity and substrate uptake by bacterial populations in natural waters. The balance between uptake of leucine and extracellular hydrolytic production of leucine from a peptide model substrate was investigated in a combined fluorescence-radiotracer experiment with [3H] leucine as a marker for the leucine pool and L-leucine-4-methyl-7-coumarinylamide (Leu-MCA) as a marker for the pool of dissolved peptide substrates. Results show that at low concentrations of the model substrate the input and uptake processes of leucine are nearly balanced, whereas at high concentrations of the model substrate much more leucine is liberated than taken up. In addition, samples from one polluted and one less polluted station in the Kiel Fjord were investigated for their extracellular enzymatic and uptake properties in an annual cycle. Calculated on an annual average basis, turnover rates were ca. nine times higher than hydrolysis rates at the polluted station and ca., five times higher at the less polluted station. From the described model, this would mean that the relative fraction of polymers within the total dissolved organic carbon pool (with regard to the substrate combination dissolved protein-leucine) is about twice that at the polluted than at the less polluted station

  16. A preliminary study on estimating extra-cellular nitrate reductase activities in estuarine systems

    Pant H. K.

    2009-07-01

    Full Text Available Enzymes catalyzing ammonium (NH4+/nitrate (NO3– into nitrous oxide (N2O/molecular nitrogen (N2, play critical roles in water quality management. The objective of this paper was to investigate the role of extra-cellular enzymes in cycling of nitrogen (N in aquatic systems. It appears that N in estuaries, salt marshes, etc., does not stay long enough to be available for uptake, thus, creating N limited conditions. This study showed that indigenous extra-cellular nitrate reductase along with others involved in N transformations in the waters/sediments of estuarine systems can cause complete removal of NH4+ and NO3– from the waters and available NH4+ and NO3– from the sediments. These results indicate that due to high extra-cellular nitrate reductase and other enzymes associated with N transformations in sediments/waters, substantial amounts of NH4+ and NO3– can be quickly lost from the systems as N2O and/or nitric oxide (NO, in turn, creating N limited conditions in estuarine systems. Such high activities of indigenous nitrate reductase and others are useful in removing readily bioavailable N from the systems, thereby avoidance of eutrophic conditions. However, they might contribute in increasing the N2O, a potent greenhouse gas with global warming potential (GWP of 296, in the atmosphere.

  17. Effects of microwave irradiation on dewaterability and extracellular polymeric substances of waste activated sludge.

    Peng, Ge; Ye, Fenxia; Ye, Yangfang

    2013-03-01

    The effects of microwave irradiation on filterability and dewaterability of waste activated sludge measured by capillary suction time (CST) and dry solids in sludge cake were investigated. The results showed that the optimum irradiation time improved filterability, but that further increase of the time was detrimental. Dewaterability was enhanced significantly and increased with microwave time. Filterability and dewaterability were improved 25 to 28% and 1.3 times at the optimum times of 30 and 90 seconds for the sludge of 5 g total suspended solids (TSS)/L and 7 g TSS/L, respectively. The floc size decreased slightly. Loosely bound extracellular polymeric substances (LB-EPS) decreased under optimum time, but tightly bound extracellular polymeric substances did not change significantly after short irradiation time. The results implied that LB-EPS played a more important role in the observed changes of filterability and dewaterability and that the double-layered extracellular polymeric substances extraction method showed marked implications to dewaterability. PMID:23581243

  18. Interspecific nematode signals regulate dispersal behavior.

    Fatma Kaplan

    Full Text Available BACKGROUND: Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. METHODOLOGY/PRINCIPAL FINDINGS: Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. CONCLUSIONS/SIGNIFICANCE: Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  19. The subunit composition of human extracellular superoxide dismutase (EC-SOD regulate enzymatic activity

    Chr Nielsen Niels

    2007-10-01

    Full Text Available Abstract Background Human extracellular superoxide dismutase (EC-SOD is a tetrameric metalloenzyme responsible for the removal of superoxide anions from the extracellular space. We have previously shown that the EC-SOD subunit exists in two distinct folding variants based on differences in the disulfide bridge pattern (Petersen SV, Oury TD, Valnickova Z, Thøgersen IB, Højrup P, Crapo JD, Enghild JJ. Proc Natl Acad Sci USA. 2003;100(24:13875–80. One variant is enzymatically active (aEC-SOD while the other is inactive (iEC-SOD. The EC-SOD subunits are associated into covalently linked dimers through an inter-subunit disulfide bridge creating the theoretical possibility of 3 dimers (aa, ai or ii with different antioxidant potentials. We have analyzed the quaternary structure of the endogenous EC-SOD disulfide-linked dimer to investigate if these dimers in fact exist. Results The analyses of EC-SOD purified from human tissue show that all three dimer combinations exist including two homo-dimers (aa and ii and a hetero-dimer (ai. Because EC-SOD is a tetramer the dimers may combine to generate 5 different mature EC-SOD molecules where the specific activity of each molecule is determined by the ratio of aEC-SOD and iEC-SOD subunits. Conclusion This finding shows that the aEC-SOD and iEC-SOD subunits combine in all 3 possible ways supporting the presence of tetrameric enzymes with variable enzymatic activity. This variation in enzymatic potency may regulate the antioxidant level in the extracellular space and represent a novel way of modulating enzymatic activity.

  20. Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA.

    Cristina Antonella Nadalutti

    Full Text Available PURPOSE: To investigate the role of thioredoxin (TRX, a novel regulator of extracellular transglutaminase 2 (TG2, in celiac patients IgA (CD IgA mediated TG2 enzymatic activation. METHODS: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. RESULTS: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. CONCLUSIONS: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX.

  1. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation.

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis

  2. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    Aline B. M Vaz

    2011-09-01

    Full Text Available The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia, Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.

  3. Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity.

    Harold J G Meijer

    Full Text Available In eukaryotes phospholipase D (PLD is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol.

  4. Immune-enhancing activity of extracellular polysaccharides isolated from Rhizopus nigricans.

    Yu, Zhidan; Kong, Mengli; Zhang, Pengying; Sun, Qingjie; Chen, Kaoshan

    2016-09-01

    Extracellular polysaccharides (EPS1-1) was extracted from fermentation liquor of Rhizopus nigricans and evaluated its immune-enhancing activities in vitro and in vivo. Results suggested that the proliferation of lymphocyte was stimulated after treated with EPS1-1. Moreover, the activities of macrophages were enhanced by increasing the activities of phagocytosis and acid phosphatase, the production of NO and the mRNA levels of IL-2, TNF-α and iNOS. Furthermore, EPS1-1 could significantly boost the immunity of normal and immunosuppressed mice, which included the increase of loaded swimming time, footpad swelling, organ index and the secretion of IL-2 and TNF-α in serum, thus suggesting that EPS1-1 could improve the body immunity through cellular immunity and humoral immunity. These findings provided further insights into the potential use of EPS1-1 as immunopotentiator or new function food. PMID:27185145

  5. Extracellular matrix is a source of mitogenically active platelet-derived growth factor.

    Field, S L; Khachigian, L M; Sleigh, M J; Yang, G; Vandermark, S E; Hogg, P J; Chesterman, C N

    1996-08-01

    Platelet-derived growth factor (PDGF) is a chemotactic and mitogenic agent for fibroblasts and smooth muscle cells and plays a key role in the development of atherosclerotic lesions. PDGF is produced by a number of normal and transformed cell types and occurs as homo- or heterodimers of A and B polypeptide chains. Using Chinese hamster ovary (CHO) cells transfected with various forms of PDGF, we have previously shown that PDGF A(s) (short splice version) is secreted, PDGF A(l) (long splice version) predominantly extracellular matrix-associated, and PDGF B divided between medium, cells, and matrix. In the present study we have demonstrated the mitogenic activity of matrix-localized PDGF in artificial and more physiologically relevant models by culturing Balb/c-3T3 cells (3T3), human foreskin fibroblasts (HFF), and rabbit aortic smooth muscle cells (SMC) on extracellular matrix (ECM) laid down by PDGF-expressing CHO cells and human umbilical vein endothelial cells (HUVEC). These cells responded to the local growth stimulus of PDGF-containing CHO ECM and HUVEC ECM. We showed that 3T3 cells required proteolytic activity to utilize matrix-localized PDGF, as aprotinin and epsilon-ACA inhibited growth and 3T3 cells were shown to possess plasminogen activator activity. HFF and SMC did not appear to require proteolytic activity (including metalloproteinase and serine protease activity) as a prerequisite for mitogenesis but were able to access immobilized PDGF by contact with the matrix. An understanding of the mechanisms whereby the utilization of stored PDGF is controlled in situations of excessive cellular proliferation will aid in the development of therapy for these conditions. PMID:8707868

  6. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    Homa, Joanna; Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  7. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  8. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  9. Differential effect of extracellular calcium on the Na(+)-K+ pump activity in intact polymorphonuclear leucocytes and erythrocytes

    Petersen, R H; Knudsen, T; Johansen, Torben

    1991-01-01

    The effect of extracellular calcium on the Na(+)-K+ pump activity in human polymorphonuclear leucocytes and erythrocytes was studied and compared with the activity in mixed peritoneal leucocytes from rats. While there was maximal decrease in the pump activity (25-30%) of leucocytes from both rat ...

  10. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout

    Jensen, Frank Bo; Agnisola, Claudio; Novak, Ivana

    2009-01-01

    The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout...... heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco2 showed negligible hemolysis (<0.1%), and notably they released small amounts of ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than in...... its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O2 saturation did not lead to additional ATP release. An elevation of Pco2 was also without influence on erythrocyte ATP release. In the saline...

  11. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout

    Jensen, Frank B; Agnisola, Claudio; Novak, Ivana

    2009-01-01

    The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout...... heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco(2) showed negligible hemolysis (<0.1%), and notably they released small amounts of ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than in...... its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O(2) saturation did not lead to additional ATP release. An elevation of Pco(2) was also without influence on erythrocyte ATP release. In the saline...

  12. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    Suen, KinMan

    2013-05-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  13. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae.

    Braga, Fabio Ribeiro; Soares, Filippe Elias Freitas; Giuberti, Thais Zanotti; Lopes, Aline Del Carmen Garcias; Lacerda, Tracy; Ayupe, Tiago de Hollanda; Queiroz, Paula Viana; Gouveia, Angélica de Souza; Pinheiro, Larissa; Araújo, Andreia Luíza; Queiroz, José Humberto; Araújo, Jackson Victor

    2015-09-15

    Duddingtonia flagrans produces chitinases, however, optimization of the production of these enzymes still needs to be explored, and its nematocidal activity should still be the subject of studies. The objective of the present study was to optimize chitinase production, and evaluate the nematocidal activity of extracellular enzymes produced by the nematophagous fungus D. flagrans on cyathostomin infective larvae. An isolate from D. flagrans (AC001) was used in this study. For the production of enzymes (protease and chitinase), two different culture media were inoculated with AC001 conidia. Both enzymes were purified. The statistical Plackett-Burman factorial design was used to investigate some variables and their effect on the production of chitinases by D. flagrans. After that, the design central composite (CCD) was used in order to determine the optimum levels and investigate the interactions of these variables previously observed. Only two variables (moisture and incubation time), in the evaluated levels, had a significant effect (pemployability for this chitinase. PMID:26319197

  14. cAMP/PKA/CREB信号通路及相关调控蛋白PDE-4和ERK对学习记忆的影响%Influence of Learning and Memory on the Expression of Relevant Controlling Protein PDE-4 and Extracellular Signal Regulating Kinase

    杨夏

    2011-01-01

    In recent years,a lot of learning and memory tests which have been done with animals are all prompted that cAMP / PKA / CREB signaling pathway and the proteins are related to the process of learning and memory. PKA phosphorylates and activates cAMP response element hinding protein( CREB ). The latter is an important nucleoprotein , and it regulates the gene transcription of a promoter that has cAMP. It has heen confirmed that PDE-4 and ERK are cAMP /PKA/CREB signaling pathway regulatory protein. The cAMP/PKA/CREB signaling pathway and its regulated protein : PDE-4 and ERK. and the relationship among them, and explore its impact on learning and memory were reviewed in this article.%近年来在动物身上进行了大量的学习记忆实验,均提示cAMP/PKA/CREB信号通路中的各蛋白均与学习记忆过程有关.环磷酸腺苷(cAMP)激活蛋白激酶A磷酸化并激活cAMP反应单元结合蛋白(CREB),后者是一种重要的核蛋白,其调节启动子中具有cAMP反应单元(CRE)的基因转录,这种核转录因子具有调节包括学习记忆在内的广泛的生物学功能.已有研究证实,PDE4和ERK为cAMP/PKA/CREB信号通路的调节蛋白.现对cAMP/PKA/CREB信号通路中的各蛋白及其调控蛋白PDE-4和ERK进行研究,阐述着三者之间的关系,并探讨其对学习记忆的影响.

  15. Antimicrobial activity of extracellular metabolites from antagonistic bacteria isolated from potato (Solanum phureja crops

    Sinar David Granada García

    2014-09-01

    Full Text Available Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.. Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.

  16. Activities of Extracellular Enzymes in Soils Following Woody Plant Invasion of Grassland

    Filley, T. R.; Stott, D. E.; Dooling, V.; Sorg, L.; Boutton, T.

    2008-12-01

    Extracellular enzymes produced by microbes and immobilize in the soil environment are the principle means by which complex plant and microbial compounds are degraded. The concentration of these enzymes and their ability to interact with litter and soil organic matter contributes both to the stabilization and destabilization of soil carbon. We quantified the activities of three extracellular enzymes, B-glucosidase, B- glucosaminidase, polyphenol oxidase (PPO), and a general marker for hydrolytic activity through fluorescein diacetate (FDA) hydrolysis activity, in a subtropical savanna parkland in southern Texas where woody plants have invaded a once open grassland. Previous research has demonstrated that areas which have shifted to woody vegetation are accruing soil carbon, undergoing a dramatic shift in the chemistry of plant input, and increasing in hyphal biomass. Soils were obtained along a successional chronosequence from grassland dominated by C4 grasses to woody patches dominated by C3 trees/shrubs in Oct 2006 and stored immediately frozen until thawing for enzyme assay. Most enzymes, with the exception of PPO, show distinct behavior when comparing grassland and clusters in that grasslands exhibit far lower mass normalized activity than clusters and no activity trend with respect to age of the adjacent cluster. Both FDA and B- glucosaminidase activities are positively correlated with the age of the woody clusters and increase their activity by as much as 10-fold across the age gradient from 14 yr to 86 yr old clusters. The cellulose degrading enzyme, B-glucosidase, always exhibited greater activity (1.5 -4 fold) in woody clusters than in grasslands, but did not exhibit a trend with increasing cluster age. The PPO activity is anomalous in that there is no quantitative difference in mass normalized activity between grassland and cluster and no trend with cluster age. The results for the FDA and B-glucosaminidase assays are consistent with concurrent studies

  17. Impact of Extracellular Acidity on the Activity of P-glycoprotein and the Cytotoxicity of Chemotherapeutic Drugs1

    Thews, Oliver; Gassner, Birgit; Kelleher, Debra K; Schwerdt, Gerald; Gekle, Michael

    2006-01-01

    The expression and activity of P-glycoprotein (pGP) play a role in the multidrug resistance of tumors. Because solid-growing tumors often show pronounced hypoxia or extracellular acidosis, this study attempted to analyze the impact of an acidic environment on the expression and activity of pGP and on the cytotoxicity of chemotherapeutic agents. For this, prostate carcinoma cells were exposed to an acidic extracellular environment (pH 6.6) for up to 24 hours. pGP activity was more than doubled...

  18. Impact of Extracellular Acidity on the Activity of P-glycoprotein and the Cytotoxicity of Chemotherapeutic Drugs

    Oliver Thews; Birgit Gassner; Kelleher, Debra K; Gerald Schwerd; Michael Gekle

    2006-01-01

    The expression and activity of P-glycoprotein (pGP) play a role in the multidrug resistance of tumors. Because solid-growing tumors often show pronounced hypoxia or extracellular acidosis, this study attempted to analyze the impact of an acidic environment on the expression and activity of pGP and on the cytotoxicity of chemotherapeutic agents. For this, prostate carcinoma cells were exposed to an acidic extracellular environment (pH 6.6) for up to 24 hours. pGP activity was more than doubled...

  19. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  20. Phosphorylation of the TAL1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1.

    Cheng, J. T.; Cobb, M H; Baer, R

    1993-01-01

    Alteration of the TAL1 gene is the most common genetic lesion found in T-cell acute lymphoblastic leukemia. TAL1 encodes phosphoproteins, pp42TAL1 and pp22TAL1, that represent phosphorylated versions of the full-length (residues 1 to 331) and truncated (residues 176 to 331) TAL1 gene products, respectively. Both proteins contain the basic helix-loop-helix motif, a DNA-binding and protein dimerization motif common to several known transcriptional regulatory factors. We now report that serine r...

  1. Leptin stimulates pituitary prolactin release through an extracellular signal-regulated kinase-dependent pathway

    Tipsmark, Christian K; Strom, Christina N; Bailey, Sean T;

    2008-01-01

    Leptin was initially identified as a regulator of appetite and weight control centers in the hypothalamus, but appears to be involved in a number of physiological processes. This study was carried out to examine the possible role of leptin in regulating prolactin (PRL) release using the teleost...... pituitary model system. This advantageous system allows isolation of a nearly pure population of lactotropes in their natural, in situ aggregated state. The rostral pars distalis were dissected from tilapia pituitaries and exposed to varying concentrations of leptin (0, 1, 10, 100 nM) for 1 h. Release of...... PRL was stimulated by leptin in a potent and concentration-dependent manner. A time-course experiment showed that the strongest response in PRL release with leptin occurs within the first hour (approximately sixfold), and stimulation was sustained after 16 h (approximately twofold). Many of the...

  2. The extracellular signal-regulated kinase (ERK) pathway: a potential therapeutic target in hypertension

    Roberts, Richard

    2012-01-01

    Richard E RobertsSchool of Biomedical Sciences, University of Nottingham, Nottingham, United KingdomAbstract: Hypertension is a risk factor for myocardial infarction, stroke, renal failure, heart failure, and peripheral vascular disease. One feature of hypertension is a hyperresponsiveness to contractile agents, and inhibition of vasoconstriction forms the basis of some of the treatments for hypertension. Hypertension is also associated with an increase in the growth and proliferation of vasc...

  3. Notch信号调节外周T细胞的活化、增殖与分化%Notch signaling regulates activation, proliferation and differentiation of peripheral T cells

    唐晓燕; 季晓辉

    2008-01-01

    The differentiation of naive T cells to effector/memory T cells is regulated by a variety of factors. The recent advance of the contribution of Notch signaling in this differentiation step has provided a new path for better understanding the acquisition or persistence of the effector function of mature T cells. A growing body of literature indicates that the Notch pathway can influence the development of T cells in central immune organs. It is now clear that Notch' s ability to regulate cell-fate choices extends into the peripheral immune system, where the activation of the Notch signaling pathway can profoundly alter cytokine production in both CD4+ and CD8+T cells. In this review, we summarized the emerging and, in some points, conflicting evi-dences for Notch signaling on mature T cell activation, proliferation and differentiation. Although the effect of Notch ligation on CD4 + T cell cytokine production varies significantly from one report to another, it is clear that the Notch pathway is an important regulator of T cell activity. Specifically, the available data demonstrated that APCs utilize the Notch pathway to instruct T cell differentiation programs.%初始T细胞分化为效应T和记忆T细胞受到多种因素调节.最近在Notch信号途径的研究进展显示它也参于T细胞的活化与分化.大量研究已经表明Notch信号途径可以影响T细胞在中枢免疫器官的发育,现在关于它调节外周T细胞的分化状态也积累不少证据,Notch信号活化之后能够改变CD4+和CD8+T细胞分泌细胞因子的特点.以下着重介绍Notch信号参于调节外周T细胞的活化、增殖和分化的最新资料,尽管不同的研究者所得实验结果有冲突之处,但已经提示Notch信号在T细胞外周发育中的重要意义,特别重要的是抗原递呈细胞(APC)可以通过Notch信号途径调节T细胞的分化.

  4. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola.

    Hao, Limin; Sheng, Zhicun; Lu, Jike; Tao, Ruyu; Jia, Shiru

    2016-05-01

    Fomitopsis pinicola (F. pinicola) is a kind of medicinal fungi, and few studies has been carried out on F. pinicola polysaccharides from liquid submerged cultivation. The characterization and antioxidant activities of extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) isolated from F. pinicola were investigated. The results showed that the molecular weight of EPS was 2.30×10(4)Da, and EPS was composed of mannose, rhamnose, xylose and galactose with the molar ratio of 0.1:1.0:0.3:0.5. The molecular weight of IPS was 4.07×10(5)Da, and the monosaccharide compositions included glucose, mannose, rhamnose, xylose and galactose with the molar ratio of 1.0:0.9:0.9:0.8:1.1. Antioxidant activities of both EPS and IPS including in vitro scavenging activities on 1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, cellular protective effects on yeast cells from ultraviolet (UV) radiation and H2O2 oxidative damage were tested. Both EPS and IPS showed antioxidant activities in a dose dependent manner, and IPS had higher antioxidant activity than EPS. So EPS and IPS could be potential novel antioxidants for functional food. PMID:26876995

  5. Molecular characterization of a signal-regulated kinase homolog from Echinococcus granulosus

    LI Jing; ZHANG Chuan-shan; L(U) Guo-dong; WANG Jun-hua; WEN Hao; YAN Gen-qiang; WEI Xu-fa; LIN Ren-yong

    2011-01-01

    Background Cystic echinococcosis due to Echinococcus granulosus (E. granulosus) is one of the most important chronic helminthic diseases, especially in sheep/cattle-raising regions. The larval stage of the parasite forms a cyst that grows in the liver, lung, or other organs ofthe host. To ensure a long life in the host tissues, the parasite establishes complex inter-cellular communication systems between its host to allow its differentiation toward each larval stage.Recent studies have reported that this communication is associated with the extracellular signal-regulated kinase (ERK)mitogen-activated protein kinase cascade in helminth parasites, and in particular that these protein kinases might serve as effective targets for a novel chemotherapy for cystic echinococcosis. The aim of the present study investigated the biological function of a novel ERK ortholog from E. granulosus, EgERK.Methods DNA encoding EgERK was isolated from protoscolices of E. granulosus and analyzed using the LA Taq polymerase chain reaction (PCR) approach and bioinformatics. Reverse transcription PCR (RT-PCR) was used to determine the transcription level of the gene at two different larval tissues. Western blotting was used to detect levels of EgERK protein. The expression profile of EgERK in protoscolices was examined by immunofluorescence.Results We cloned the entire Egerk genomic locus from E. granulosus. In addition, two alternatively spliced transcripts of Egerk, Egerk-A, and Egerk-B were identified. Egerk-A was found to constitutively expressed at the transcriptional and protein levels in two different larval tissues (cyst membranes and protoscolices). Egerk-A was expressed in the tegumental structures, hooklets, and suckers and in the tissue surrounding the rostellum of E. granulosus protoscolices.Conclusions We have cloned the genomic DNA of a novel ERK ortholog from E. granulosus, EgERK (GenBank ID HQ585923), and found that it is constitutively expressed in cyst membrane and

  6. Conductin/axin2 and Wnt signalling regulates centrosome cohesion

    Hadjihannas, Michel V; Brückner, Martina; Behrens, Jürgen

    2010-01-01

    Wnt signalling regulates centrosome cohesion. Work by the Behrens group shows that conductin/axin2, a negative regulator of β-catenin, localizes to centrosomes by binding to the centriole-associated component C-Nap1. Conductin/axin2 promotes centrosome cohesion by phosphorylating β-catenin at centrosomes and the authors propose a model for the regulation of centrosome separation by conductin and Wnt signalling.

  7. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis.

    Salabei, Joshua K; Gibb, Andrew A; Hill, Bradford G

    2014-02-01

    Extracellular flux (XF) analysis has become a mainstream method for measuring mitochondrial function in cells and tissues. Although this technique is commonly used to measure bioenergetics in intact cells, we outline here a detailed XF protocol for measuring respiration in permeabilized cells. Cells are permeabilized using saponin (SAP), digitonin (DIG) or recombinant perfringolysin O (rPFO) (XF-plasma membrane permeabilizer (PMP) reagent), and they are provided with specific substrates to measure complex I- or complex II-mediated respiratory activity, complex III+IV respiratory activity or complex IV activity. Medium- and long-chain acylcarnitines or glutamine may also be provided for measuring fatty acid (FA) oxidation or glutamine oxidation, respectively. This protocol uses a minimal number of cells compared with other protocols and does not require isolation of mitochondria. The results are highly reproducible, and mitochondria remain well coupled. Collectively, this protocol provides comprehensive and detailed information regarding mitochondrial activity and efficiency, and, after preparative steps, it takes 6-8 h to complete. PMID:24457333

  8. Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses.

    Swadlow, H A

    1992-08-01

    1. Extracellular action potentials were recorded from antidromically activated efferent neurons in visual, somatosensory, and motor cortex of the awake rabbit using low-impedance metal microelectrodes. Efferent neurons were also activated by current pulses delivered near the soma [juxtasomal current pulses (JSCPs)] through the recording microelectrode. Action potentials generated by JSCPs were not directly observed (because of the stimulus artifact), but were inferred with the use of a collision paradigm. Efferent populations studied include callosal neurons [CC (n = 80)], ipsilateral corticocortical neurons [C-IC (n = 21)], corticothalamic neurons of layer 6 [CF-6 (n = 57)], and descending corticofugal neurons of layer 5 [CF-5, corticotectal neurons of the visual cortex (n = 48)]. 2. Most CC neurons (45/46) and all C-IC (8/8) and CF-6 neurons (39/39) were directly activated by JSCPs at near-threshold intensities. Some CF-5 neurons (9/38), however, showed evidence of indirect activation. All efferent classes had similar current thresholds (means 1.85-2.10 microA) to direct activation by JSCPs, and thresholds were inversely related to extracellular spike amplitude. For each neuron, the range of JSCP intensities that generated response probabilities of between 0.2 and 0.8 was measured, and this "range of uncertainty" was significantly greater in CF-5 neurons (mean 32.7% of threshold) than in CC (mean 19.0%) or CF-6 (mean 20.4%) neurons. 3. Several factors indicate that the threshold of efferent neurons to JSCPs is very sensitive to excitatory and inhibitory synaptic inputs. Iontophoretic applications of gamma-aminobutyric acid (GABA) increased the threshold to JSCPs, and glutamate reduced the threshold. Electrical stimulation of afferent pathways at intensities just below threshold for eliciting action potentials resulted in a dramatic decrease in JSCP threshold. This initial short-latency threshold decrease was specific to stimulation of particular afferent pathways

  9. Intracellular modulation, extracellular disposal and serum increase of MiR-150 mark lymphocyte activation.

    Paola de Candia

    Full Text Available Activated lymphocytes release nano-sized vesicles (exosomes containing microRNAs that can be monitored in the bloodstream. We asked whether elicitation of immune responses is followed by release of lymphocyte-specific microRNAs. We found that, upon activation in vitro, human and mouse lymphocytes down-modulate intracellular miR-150 and accumulate it in exosomes. In vivo, miR-150 levels increased significantly in serum of humans immunized with flu vaccines and in mice immunized with ovalbumin, and this increase correlated with elevation of antibody titers. Immunization of immune-deficient mice, lacking MHCII, resulted neither in antibody production nor in elevation of circulating miR-150. This study provides proof of concept that serum microRNAs can be detected, with minimally invasive procedure, as biomarkers of vaccination and more in general of adaptive immune responses. Furthermore, the prompt reduction of intracellular level of miR-150, a key regulator of mRNAs critical for lymphocyte differentiation and functions, linked to its release in the external milieu suggests that the selective extracellular disposal of microRNAs can be a rapid way to regulate gene expression during lymphocyte activation.

  10. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors.

    Zhao, Li-Hua; Yin, Yanting; Yang, Dehua; Liu, Bo; Hou, Li; Wang, Xiaoxi; Pal, Kuntal; Jiang, Yi; Feng, Yang; Cai, Xiaoqing; Dai, Antao; Liu, Mingyao; Wang, Ming-Wei; Melcher, Karsten; Xu, H Eric

    2016-07-15

    G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation. PMID:27226600

  11. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering.

    Neyens, Elisabeth; Baeyens, Jan; Dewil, Raf; De heyder, Bart

    2004-01-30

    The management of wastewater sludge, now often referred to as biosolids, accounts for a major portion of the cost of the wastewater treatment process and represents significant technical challenges. In many wastewater treatment facilities, the bottleneck of the sludge handling system is the dewatering operation. Advanced sludge treatment (AST) processes have been developed in order to improve sludge dewatering and to facilitate handling and ultimate disposal. The authors have extensively reported lab-scale, semi-pilot and pilot investigations on either thermal and thermochemical processes, or chemical oxidation using hydrogen peroxide. To understand the action of these advanced sludge technologies, the essential role played by extracellular polymeric substances (EPS) needs to be understood. EPS form a highly hydrated biofilm matrix, in which the micro-organisms are embedded. Hence they are of considerable importance in the removal of pollutants from wastewater, in bioflocculation, in settling and in dewatering of activated sludge. The present paper reviews the characteristics of EPS and the influence of thermochemical and oxidation mechanisms on degradation and flocculation of EPS. Experimental investigations on waste activated sludge are conducted by the authors to evaluate the various literature findings. From the experiments, it is concluded that AST methods enhance cake dewaterability in two ways: (i) they degrade EPS proteins and polysaccharides reducing the EPS water retention properties; and (ii) they promote flocculation which reduces the amount of fine flocs. PMID:15177096

  12. Extracellular targeting of an active endoxylanase by a TolB negative mutant of Gluconobacter oxydans.

    Kosciow, Konrad; Domin, Claudia; Schweiger, Paul; Deppenmeier, Uwe

    2016-07-01

    Gluconobacter (G.) oxydans strains have great industrial potential due to their ability to incompletely oxidize a wide range of carbohydrates. But there is one major limitation preventing their full production potential. Hydrolysis of polysaccharides is not possible because extracellular hydrolases are not encoded in the genome of Gluconobacter species. Therefore, as a first step for the generation of exoenzyme producing G. oxydans, a leaky outer membrane mutant was created by deleting the TolB encoding gene gox1687. As a second step the xynA gene encoding an endo-1,4-β-xylanase from Bacillus subtilis was expressed in G. oxydans ΔtolB. More than 70 % of the total XynA activity (0.91 mmol h(-1) l culture(-1)) was detected in the culture supernatant of the TolB mutant and only 10 % of endoxylanase activity was observed in the supernatant of G. oxydans xynA. These results showed that a G. oxydans strain with an increased substrate spectrum that is able to use the renewable polysaccharide xylan as a substrate to produce the prebiotic compounds xylobiose and xylooligosaccharides was generated. This is the first report about the combination of the process of incomplete oxidation with the degradation of renewable organic materials from plants for the production of value-added products. PMID:27097633

  13. Molecular evaluation of extracellular activity of medicinal herb Clinacanthus nutans against herpes simplex virus type-2.

    Vachirayonstien, Thaveechai; Promkhatkaew, Duanthanorm; Bunjob, Malee; Chueyprom, Asawachai; Chavalittumrong, Pranee; Sawanpanyalert, Pathom

    2010-02-01

    Clinacanthus nutans (Burm. f.) Lindau (C. nutans), a medicinal herb belonging to the family Acanthaceae, has traditionally been used in herpes simplex virus (HSV) treatment in Thailand. Clinical trials have indicated that topical preparations produced from its extracts were effective in HSV-2 treatment. However, there is no clear evidence of the mechanism of action or a molecular target of C. nutans. In this study, the extracellular activity of C. nutans extracts against HSV-2 infected on HEp-2 cells was investigated in terms of its molecular aspects. HSV-2 was treated with the extracts and adsorped into the HEp-2 cells. After infection, HSV-2 DNA quantities in the infected cells were assessed and compared by the quantitative dot blot hybridisation technique. The results showed that treating the viruses with either less or more highly purified extracts before infection resulted in great reductions of viral infectivity. Further investigation was performed by Western blot analysis to determine the activities of the extracts on the viral proteins. At least eight viral proteins of the infected cell proteins (ICP) and some structural proteins, including 146, 125, 78, 69, 55, 44, 40 and 20 KDa proteins, were depleted and reduced gradually with higher and lower concentrated herb extracts, respectively. These suggest that the C. nutans extracts highly inactivated or inhibited HSV-2 before infection. PMID:20140802

  14. Comparison of extracellular polymeric substances (EPS) extraction from two different activated sludges.

    Zhang, Leiyan; Ren, Hongqiang; Ding, Lili

    2012-01-01

    The characteristics of extracellular polymeric substances (EPS) extracted with five different extraction protocols from two different activated sludges were studied. The results showed that the major EPS constituent extracted by centrifugation was protein for the sludge in sequencing batch reactor treating chemical wastewater, and nucleic acid for the sludge in moving bed biofilm reactor treating synthetic urban wastewater. The order of EPS extraction amounting from the two sludges was formaldehyde + NaOH > formaldehyde + heating > EDTA > heating > centrifugation. The different extraction methods, the wastewater type, and activated sludge source greatly affected the amount and composition of EPS. The chemical extracted methods were more effective than the physical methods in extracting EPS for the two sludges. Moreover, formaldehyde combined NaOH was most effective in extracting EPS for the two sludges. However, chemical extraction could contaminate the EPS solution, which was pointed out by infra-red analysis and was also proved by cell lyses during EPS extraction and carrying over of the chemical extractant. Therefore, this study highlights that the choice of EPS extraction method should consider both the extraction yield and content and the contamination of extracting reagents to the EPS solution. The extraction procedures should be optimized and most effective. PMID:22864444

  15. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. PMID:26952544

  16. Crosstalk between nuclear factor I-C and transforming growth factor-β1 signaling regulates odontoblast differentiation and homeostasis.

    Dong-Seol Lee

    Full Text Available Transforming growth factor-β1 (TGF-β1 signaling plays a key role in vertebrate development, homeostasis, and disease. Nuclear factor I-C (NFI-C has been implicated in TGF-β1 signaling, extracellular matrix gene transcription, and tooth root development. However, the functional relationship between NFI-C and TGF-β1 signaling remains uncharacterized. The purpose of this study was to identify the molecular interactions between NFI-C and TGF-β1 signaling in mouse odontoblasts. Real-time polymerase chain reaction and western analysis demonstrated that NFI-C expression levels were inversely proportional to levels of TGF-β1 signaling molecules during in vitro odontoblast differentiation. Western blot and immunofluorescence results showed that NFI-C was significantly degraded after TGF-β1 addition in odontoblasts, and the formation of the Smad3 complex was essential for NFI-C degradation. Additionally, ubiquitination assay results showed that Smurf1 and Smurf2 induced NFI-C degradation and polyubiquitination in a TGF-β1-dependent manner. Both kinase and in vitro binding assays revealed that the interaction between NFI-C and Smurf1/Smurf2 requires the activation of the mitogen-activated protein kinase pathway by TGF-β1. Moreover, degradation of NFI-C induced by TGF-β1 occurred generally in cell types other than odontoblasts in normal human breast epithelial cells. In contrast, NFI-C induced dephosphorylation of p-Smad2/3. These results show that crosstalk between NFI-C and TGF-β1 signaling regulates cell differentiation and homeostatic processes in odontoblasts, which might constitute a common cellular mechanism.

  17. Phosphotidylserine exposure and neutrophil extracellular traps enhance procoagulant activity in patients with inflammatory bowel disease.

    He, Zhangxiu; Si, Yu; Jiang, Tao; Ma, Ruishuang; Zhang, Yan; Cao, Muhua; Li, Tao; Yao, Zhipeng; Zhao, Lu; Fang, Shaohong; Yu, Bo; Dong, Zengxiang; Thatte, Hemant S; Bi, Yayan; Kou, Junjie; Yang, Shufen; Piao, Daxun; Hao, Lirong; Zhou, Jin; Shi, Jialan

    2016-04-01

    Inflammatory bowel disease (IBD)-associated thromboembolic event often lacks precise aetiology. The aim of this study was to investigate the contribution of phosphatidylserine (PS) exposure and neutrophil extracellular traps (NETs) towards the hypercoagulable state in IBD. We demonstrated that the levels of PS exposed MPs and the sources of MP-origin, platelets, erythrocytes, leukocytes and cultured endothelial cells (ECs) were higher in IBD groups than in healthy controls using flow cytometry and confocal microscopy. Wright-Giemsa and immunofluorescence staining demonstrated that the elevated NETs were released by activated IBD neutrophils or by control neutrophils treated with IBD sera obtained from patients with the active disease. MPs and MP-origin cells in IBD groups, especially in active stage, markedly shortened coagulation time and had increased levels of fibrin, thrombin and FXa production as assessed by coagulation function assays. Importantly, we found that on stimulated ECs, PS rich membranes provided binding sites for FXa and FVa, promoting fibrin formation while TNF blockage or IgG depletion attenuated this effect. Treatment of control neutrophils with TNF and isolated IgG from PR3-ANCA-positive active IBD patients also resulted in the release of NETs. Blockade of PS with lactadherin prolonged coagulation time, decreased fibrin formation to control levels, and inhibited the procoagulant enzymes production in the MPs and MP-origin cells. NET cleavage by DNase I partly decreased PCA in IBD or stimulated neutrophils. Our study reveals a previously unrecognised link between hypercoagulable state and PS exposure or NETs, and may further explain the epidemiological association of thrombosis within IBD patients. PMID:26660948

  18. Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth

    Zeng Yinxin; Yu Yong; Chen Bo; Li Huirong

    2004-01-01

    The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase, gelatinase, agarase, chitinase or cellulase were detected. Lipases were generally present by bacteria living in polar oceans. Protease-producing bacteria held the second highest proportion in culturable isolates. Strains producing amylase kept a relative stable proportion of around 30% in different polar marine habitats. All 50 Arctic sea-ice bacteria producing proteases were cold-adapted strains, however, only 20% were psychrophilic. 98% of them could grow at 3% NaCl, and 56% could grow without NaCl. On the other hand, 98% of these sea-ice bacteria produced extracellular proteases with optimum temperature at or higher than 35℃, well above the upper temperature limit of cell growth. Extracellular enzymes including amylase, agarase, cellulase and lipase released by bacteria from seawater or sediment in polar oceans, most expressed maximum activities between 25 and 35℃. Among extracellular enzymes released by bacterial strain BSw20308, protease expressed maximum activity at 40℃, higher than 35℃ of polysaccharide hydrolases and 25℃ of lipase.

  19. 豚鼠前庭上皮胰岛素样生长因子1及其受体与细胞外信号调节激酶1/2表达在庆大霉素损伤后的变化%Expression changes of insulin-like growth factor-1 and its receptor as well as extracellular signal regulated kinase 1/2 in the vestibular epithelium of guinea pigs following gentamycin toxicity

    盛宏申; 何跃; 徐光; 孙景豫; 王锦玲

    2007-01-01

    平表达,庆大霉素损伤后停药1 d其表达最强,之后逐渐下降,但停药后21 d其表达仍高于对照组.各组间胰岛素样生长因子1及其受体表达灰度值比较差异明显(F=51.8,45.7,P<0.05).二者变化规律基本一致.④对照组豚鼠细胞外信号调节激酶1/2有低水平表达.庆大霉素损伤后其表达逐渐增强,停药后7 d表达最强,之后逐渐下降,停药后21 d其表达仍高于对照组.各组间细胞外信号调节激酶1/2表达比较差异明显(F=103.7,106.4,P<0.05).二者变化规律相近.结论:庆大霉素损伤后豚鼠前庭上皮胰岛素样生长因子1及其受体,细胞外信号调节激酶1/2表达增加.胰岛素样生长因子1可能是内源性的促有丝分裂剂,通过旁分泌或自分泌的方式在豚鼠前庭毛细胞修复的早期发挥重要作用.细胞外信号调节激酶1/2可能在庆大霉素损伤后豚鼠前庭毛细胞自发修复中发挥重要的信号转导作用.%BACKGROUND:Insulin-like growth factor-1 (IGF-1) is an important mitogen and an indispensable regulator during normal hair cell development. Extracellular signal regulated kinase 1/2 (ERK1/2) is also expressed in mammalian vestibular organs.OBJECTIVE: To investigate the changes of the expression and the distribution of IGF-1, IGF-1 receptor (IGF-1R) and ERK1/2 in guinea pig's vestibular epithelium following gentamycin injury.DESIGN: A randomly controlled study.SETTING: Department of Otorhinolaryngology, General Hospital of Chengdu Military Area Command of Chinese PLA.MATERIALS: Twenty healthy and adult guinea pigs, weighing 300 to 350 g, provided by the Experimental Animal Center,Fourth Military Medical University of Chinese PLA, were randomly divided into four experimental groups and a control group with 4 in each group.METHODS: The experiment was performed at Department of Otorhinolaryngology Research Laboratory of Xijing Hospital,Fourth Military Medical University of Chinese PLA from January 2002 to May 2002. In the experimental

  20. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease

    Liu Bin

    2012-09-01

    Full Text Available Abstract Background Polycystic Kidney Disease (PKD kidneys exhibit increased extracellular matrix (ECM collagen expression and metalloproteinases (MMPs activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I and membrane bound type 1 MMP (MT1-MMP on cyst development using both in vitro 3 dimensional (3D collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  1. Inorganic fractions in extracellular polymeric substance extracted from activated sludge and biofilm samples by different methods.

    Zhang, Leiyan; Geng, Jinju; Ding, Lili; Ren, Hongqiang

    2012-01-01

    This study highlighted the inorganic fractions in the extracellular polymeric substance (EPS) extract from two activated sludges and one biofilm. Nine EPS extraction methods (centrifugation, sonication, cation exchange resin (CER) + sonication, CER, heating, formaldehyde + heating, formaldehyde + NaOH, ethanol and EDTA) were used in the study. The EPS extracts had large inorganic fractions, which ranged from 28% to 94% of the EPS dry weight. The EPS inorganic fraction was dependent on the source of the sludge and wastewater, the kinds of bacteria and the extraction method. The EPS extracts obtained by heating and sonication had smaller inorganic fractions than those obtained by centrifugation. The compositions of the inorganic fraction of EPS extracts obtained with CER and sonication + CER showed similar trends. The chemical extraction methods could contaminate the inorganic composition of EPS extracts by impurities, carrying over of the extractant itself or by changing the pH of the solution. Ethanol was the most effective extractant for obtaining inorganic ions. PMID:22828296

  2. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  3. The glycosyltransferase activities of lysyl hydroxylase 3 (LH3) in the extracellular space are important for cell growth and viability

    Wang, Chunguang; Kovanen, Vuokko; Raudasoja, Päivi; Eskelinen, Sinikka; Pospiech, Helmut; Myllylä, Raili

    2008-01-01

    Abstract Lysyl hydroxylase (LH) isoform 3 is a post-translational enzyme possessing LH, collagen galactosyltransferase (GT) and glucosyltransferase (GGT) activities. We have demonstrated that LH3 is found not only intracellularly, but also on the cell surface and in the extracellular space, suggesting additional functions for LH3. Here we show that the targeted disruption of LH3 by siRNA causes a marked reduction of both glycosyltransferase activities, and the overexpression of LH3 in HT-1080...

  4. Extracellular enzyme activities of aquatic bacteria in polluted environment: 2. Amylolytic activity

    Water samples were taken from Lake Drukshiai tributaries (Ricanka); Gulbinele Stream affected by urban rain sewerage from Visaginas; Gulbinele Stream into which municipal sewage from Visaginas (MS) and industrial rain sewerage from the Ignalina NPP and their mouth, and Lake Dringis. Lake Dringis, in Aukstaitija National Park, was selected as an ecosystem pattern of a weak anthropogenic influence, while Lake Drukshiai was chosen as a regularly polluted water body. Lake Drukshiai, the cooling basin of the Ignalina NPP (IRS-1.2), is being polluted with industrial and municipal sewage through its tributaries. The amylolytic activity (AA) of heterotrophic aquatic bacteria was tested. The highest total mean AA of aquatic bacteria was calculated in Lake Dringis. Here, the results were significantly higher than in Lake Drukshiai tributaries and their mouths, excepting the mouths of the Ricanka and MS. The lowest mean of AA in Lake Drukshiai was characteristic of the IRS-1.2 tributary. A comparison of the mean AA of active isolates showed that certain bacterial strains from the sites of varying degrees of pollution could be noted for a relatively high level of enzymatic activity. Thus, anthropogenic pollution exerts a negative effect on the total mean AA, although certain strains of bacteria are able to adapt to the stressful environment and remain active. (author)

  5. Extracellular enzyme activities of aquatic bacteria in polluted environment: 1. Proteolytic activity

    Proteolytic activity (PA) of heterotrophic aquatic bacteria from differently polluted lakes was tested. Lake Dringis located in the Aukstaitija National Park was selected as an ecosystem that exhibits a low degree of impact by human activity, whereas Lake Druksiai was selected as being a chronically polluted water body. Industrial and residential waste flows into Lake Druksiai, the Ignalina Nuclear Power Plant cooling reservoir, via its tributaries (URS-2, MS and IRS-1.2). The PA of the lakes was found to be different. The total mean PA of Lake Dringis bacteria was 2.5 to 16 times greater than that from Lake Druksiai tributaries, URS-2, MS and IRS-1.2 and their mouths. Thus, the research showed that the PA of aquatic bacteria is related with the ecological state of the environment. Toxic materials entering the hydro ecosystem with industrial and residential waste waters exert a negative impact on the PA of heterotrophic bacteria. (author)

  6. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  7. Modulation of agonist-activated calcium influx by extracellular pH in rat pancreatic acini

    The biochemical and Ca2+ transport pathways involved in generating the hormone-evoked Ca2+ signal are reported to be influenced by pH. The present study was designed to determine the effect of extracellular pH (pHo) and intracellular pH (pHi) on hormone-stimulated Ca2+ transport. We used rat pancreatic acini and measured free cytosolic Ca2+ concentration ([Ca2+]i) with fura-2, pHi with 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF), and Ca2+ fluxes with 45Ca2+. In the presence of external Ca2+, increasing pHo increased steady-state [Ca2+]i during sustained agonist stimulation; in the absence of external Ca2+, this increase in [Ca2+]i did not occur. The addition of an antagonist or blocking plasma membrane Ca2+ influx with La3+ in stimulated cells suspended at pHo 8.2 resulted in a reduction in [Ca2+]i. Increasing pHo increased the rate and extent of 45Ca2+ uptake into stimulated cells and the rate and extent of Ca2+ reloading of intracellular stores. The increased Ca2+ content of the intracellular stores with increased pHo indicated that at physiological pHo and pHi the agonist-mobilizable internal stores are not saturated with Ca2+. Changes in pHo affected pHi. However, changes in pHi at constant pHo had no effect on hormone-evoked [Ca2+]i increase, reduction in [Ca2+]i after hormone stimulation, or reloading of intracellular stores. We conclude that the hormone-activated plasma membrane Ca2+ entry pathway responsible for Ca2+ reloading is directly modulated by external H+

  8. Selected extracellular microRNA as potential biomarkers of multiple sclerosis activity--preliminary study.

    Kacperska, Magdalena Justyna; Jastrzebski, Karol; Tomasik, Bartlomiej; Walenczak, Jakub; Konarska-Krol, Maria; Glabinski, Andrzej

    2015-05-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). Four distinct disease courses are known, although approximately 90% of patients are diagnosed with the relapsing-remitting form (RRMS). The name "multiple sclerosis" pertains to the underlying pathology: the presence of demyelinating plaques in the CNS, in particular in the periventricular region, corpus callosum, cervical spine, and the cerebellum. There are ongoing efforts to discover biomarkers that would allow for an unequivocal diagnosis, assess the activity of inflammatory and neurodegenerative processes, or warn of disease progression. At present, small noncoding RNA particles-microRNA (miRNA, miR) seem to be particularly noteworthy, as they take part in posttranscriptional regulation of expression of various genes. Changes in composition as well as function of miRNA found in body fluids of MS patients are subjects of research, in the hope they prove accurate markers of MS activity. This preliminary study aims to evaluate the expression of selected extracellular microRNA particles (miRNA-let-7a, miRNA-92a, miRNA-684a) in patients experiencing MS relapse and remission, with healthy volunteers serving as a control group and to evaluate the correlation between miRNA expression and selected clinical parameters of those patients. Thirty-seven patients suffering from MS formed two examined groups: 20 patients undergoing relapse and 17 in remission. Thirty healthy volunteers formed the control group. All patients who were subjects to peripheral blood sampling had been hospitalized in the Department of Neurology and Stroke(1). Four milliliters of venous whole blood had been collected into EDTA tubes. The basis for the selection of the three particular miRNA investigated in this study (miRNA-let-7a, miRNA-92a, miRNA-684a) was a preliminary bioinformatic analysis of data compiled from several medical databases, including Ovid MEDLINE®, Embase, Cochrane Database of

  9. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation

    Dora eBrites

    2015-12-01

    Full Text Available Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past fifteen to twenty years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs, comprising ectosomes and exosomes with a size ranging from 0.1 to 1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs. Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating

  10. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation.

    Brites, Dora; Fernandes, Adelaide

    2015-01-01

    Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past 15-20 years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), comprising ectosomes and exosomes with a size ranging from 0.1-1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs). Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating critical pathways associated with

  11. A preliminary study on estimating extra-cellular nitrate reductase activities in estuarine systems

    Pant H. K.

    2009-01-01

    Enzymes catalyzing ammonium (NH4+)/nitrate (NO3–) into nitrous oxide (N2O)/molecular nitrogen (N2), play critical roles in water quality management. The objective of this paper was to investigate the role of extra-cellular enzymes in cycling of nitrogen (N) in aquatic systems. It appears that N in estuaries, salt marshes, etc., does not stay long enough to be available for uptake, thus, creating N limited conditions. This study showed that indigenous extra-cellular nitrate reductase along wit...

  12. Drugs elevating extracellular adenosine administered in vivo induce serum colony-stimulating activity and interleukin-6 in mice

    Weiterová, Lenka; Hofer, Michal; Pospíšil, Milan; Znojil, V.; Štreitová, Denisa

    2007-01-01

    Roč. 56, č. 4 (2007), s. 463-473. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP305/03/D050 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : extracellular adenosine * serum colony-stimulating activity * interleukin -6 Subject RIV: BO - Biophysics Impact factor: 1.505, year: 2007

  13. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    Hu, Y.; Liu, X.; D. QIAO

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting ex...

  14. 细胞外信号调节蛋白激酶5在慢性氟中毒大鼠脑组织中的表达及其与大鼠记忆力改变的关系%Correlation between expression of extracellular signal-regulated protein kinase 5 in rat brain and changed capacity of learning and memory of rats with chronic fluorosis

    邱志伟; 刘艳洁; 官志忠

    2016-01-01

    Objective Through observation of the expression and activity of extracellular regulated protein kinase 5 (ERK5) and its relationship with the learning and memory ability in rats with chronic fluorosis,to further study the pathogenesis of chronic fluorosis in nervous system.Methods Thirty SD rats were divided into 3 groups according to body weight by means of a random number table (10 rats in each group,half male and half female).The rats in control group were fed with free drinking tap water containing less than 0.5 mg/L fluoride (NaF);the rats in low fluoride group with 10.0 mg/L fluoride;the rat in high dose fluoride group with 50.0 mg/L fluoride.After 6months of experiment,rat brain tissue was took,mRNA expression level of ERK5 was detected by real-time fluorescence quantitative PCR (real-time PCR),protein expression level and activity of ERK5 were detected by Western blotting;the learning and memory ability of rats with chronic fluorosis were detected by Morris water maze test.Results The rat in groups exposed to fluoride exhibited different degrees of dental fluorosis and the fluoride content in urine of rats increased gradually with increase of fluoride doses (F =164.10,P < 0.05).The protein levels of phosphor-ERK5 in the control group,low fluoride group and high fluoride group were 0.13 ± 0.03,0.29 ± 0.10and 0.43 ±0.17,respectively,the difference was statistically significant (F=11.96,P< 0.05),and low fluoride group and high fluoride group were higher than control group (all P < 0.05).The total protein levels of ERK5 in control group,low fluoride group and high fluoride group were 0.32 ± 0.11,0.37 ± 0.13 and 0.49 ± 0.16,respectively,the difference was statistically significant (F =3.45,P < 0.05),and high fluoride group was higher than control group (P < 0.05).The expression of ERK5 mRNA in rat brains between groups was not significantly different (F =0.81,P > 0.05).The second,third,and forth days of directional navigation experiment

  15. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora; Quandt, Dagmar; Meusch, Undine; Rothe, Kathrin; Schubert, Kristin; Schöneberg, Torsten; Schaefer, Michael; Krügel, Ute; Smajilovic, Sanela; Bräuner-Osborne, Hans; Baerwald, Christoph; Wagner, Ulf

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration...... this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  16. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise.

    Hu, Y; Liu, X; Qiao, D

    2015-09-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (Prat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  17. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig's epithelial root sheath.

    Zhang, Ran; Teng, Yan; Zhu, Liang; Lin, JingTing; Yang, Xiao; Yang, Guan; Li, TieJun

    2015-09-01

    The interaction between Hertwig's epithelial root sheath (HERS) and the adjacent mesenchyme is vitally important in mouse tooth root development. We previously generated odontoblast-specific Ctnnb1 (encoding β-catenin) deletion mice, and demonstrated that odontoblast β-catenin signaling regulates odontoblast proliferation and differentiation. However, the role of odontoblast β-catenin signaling in regulation of HERS behavior has not been fully investigated. Here, using the same odontoblast- specific Ctnnb1 deletion mice, we found that ablation of β-catenin signaling in odontoblasts led to aberrant HERS formation. Mechanistically, odontoblast-specific Ctnnb1 deletion resulted in elevated bone morphogenetic protein 7 (Bmp7) expression and reduced expression of noggin and follistatin, both of which encode extracellular inhibitors of BMPs. Furthermore, the levels of phosphorylated Smad1/5/8 were increased in HERS cells. In vitro tissue culture confirmed that BMP7 treatment disrupted the HERS structure. Taken together, we demonstrated that odontoblast β-catenin signaling may act through regulation of BMP signaling to maintain the integrity of HERS cells. PMID:26208822

  18. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.

  19. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development. PMID:25732825

  20. Intra- and Extracellular Activities of Dicloxacillin against Staphylococcus aureus In Vivo and In Vitro▿

    Sandberg, Anne; Jensen, Klaus Skovbo; Baudoux, Pierre; Van Bambeke, Françoise; Tulkens, Paul M.; Frimodt-Møller, Niels

    2010-01-01

    Antibiotic treatment of Staphylococcus aureus infections is often problematic due to the slow response and recurrences. The intracellular persistence of the staphylococci offers a plausible explanation for the treatment difficulties because of the impaired intracellular efficacies of the antibiotics. The intra- and extracellular time- and concentration-kill relationships were examined in vitro with THP-1 cells and in vivo by use of a mouse peritonitis model. The in vivo model was further used...

  1. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72

    Asea, Alexzander

    2006-01-01

    Heat shock proteins exert their beneficial effects via basically two modes of action depending on their relative location within the host. Intracellular heat shock proteins found within cells serve a cytoprotective role by chaperoning naïve, misfolded and/or denatured proteins in response to stressful stimuli by a process known as the stress response. However, stressful stimuli also induce the release of intracellular heat shock proteins into the extracellular milieu and circulation. The extr...

  2. Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix

    BRENNAN, ELLEN P.; Reing, Janet; CHEW, DOUGLAS; MYERS-IRVIN, JULIE M.; YOUNG, E.J.; Badylak, Stephen F.

    2006-01-01

    Biological scaffolds composed of extracellular matrix (ECM) have been shown to be resistant to deliberate bacterial contamination in preclinical in vivo studies. The present study evaluated the degradation products resulting from the acid digestion of ECM scaffolds for antibacterial effects against clinical strains of Staphylococcus aureus and Escherichia coli. The ECM scaffolds were derived from porcine urinary bladder (UBM-ECM) and liver (L-ECM). These biological scaffolds were digested wit...

  3. Activated ras Prevents Downregulation of Bcl-XL Triggered by Detachment from the Extracellular Matrix

    Rosen, Kirill; RAK, Janusz; Leung, Thomas; Dean, Nicholas M.; Kerbel, Robert S.; Filmus, Jorge

    2000-01-01

    Detachment of epithelial cells from the extracellular matrix (ECM) results in a form of apoptosis often referred to as anoikis. Transformation of intestinal epithelial cells by oncogenic ras leads to resistance to anoikis, and this resistance is required for the full manifestation of the malignant phenotype. Previously, we demonstrated that ras-induced inhibition of anoikis in intestinal epithelial cells results, in part, from the ras-induced constitutive downregulation of Bak, a pro-apoptoti...

  4. A Novel Extracellular Multicopper Oxidase from Phanerochaete chrysosporium with Ferroxidase Activity

    Larrondo, Luis F.; Salas, Loreto; Melo, Francisco; Vicuña, Rafael; Cullen, Daniel

    2003-01-01

    Lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium involves various extracellular oxidative enzymes, including lignin peroxidase, manganese peroxidase, and a peroxide-generating enzyme, glyoxal oxidase. Recent studies have suggested that laccases also may be produced by this fungus, but these conclusions have been controversial. We identified four sequences related to laccases and ferroxidases (Fet3) in a search of the publicly available P. chrysosporium database. O...

  5. Impact of warming and drying on microbial activity in subarctic tundra soils: inferences from patterns in extracellular enzyme activity

    Schade, J. D.; Natali, S.; Spawn, S.; Sistla, S.; Schuur, E. A. G.

    2014-12-01

    Permafrost contains a large pool of carbon that has accumulated for thousands of years, and remains frozen in organic form. As climate warms, permafrost thaw will increase rates of microbial breakdown of old soil organic matter (SOM), accelerating release of carbon to the atmosphere. Higher rates of microbial decomposition may also release reactive nitrogen, which may increase plant production and carbon fixation. The net effect on atmospheric carbon, and the strength of climate feedback, depends on the balance between direct and indirect effects of increased microbial activity, which depends on changes in soil conditions and microbial responses to them. In particular, soil moisture and availability of C and N for microbes strongly influence soil respiration and primary production. Current understanding of changes in these factors as climate warms is limited. We present results from analysis of soil extracellular enzyme activities (EEA) from a long-term warming and drying experiment in subarctic Alaskan tundra (the CiPEHR experiment) as an indicator of changes in soil microbial activity and relative availability of C and N for microbes. We collected soil samples from control (C), warming (W), and warming + drying (WD) treatments and used fluorometric methods to estimate EEA in shallow (0-5 cm) and deep (5-15) soils. We measured soil moisture, SOM, and C:N, and plant tissue C:N as an indicator of N availability. Activity of N-acquiring enzymes was higher in WD soils at both depths. Carbon EEA in W soils was lower in surface, but higher in deeper soils. We also found significantly lower soil C:N in both W and WD in deeper soils, where C:N was generally lower than surface. In general, EEA results suggest drying leads to increased C availability relative to N. This may be due to lower soil moisture leading to greater aeration of soils in WD plots relative to W plots, which may be saturated due to significant land subsidence. Greater aeration may increase efficiency of

  6. Impact of Extracellular Acidity on the Activity of P-glycoprotein and the Cytotoxicity of Chemotherapeutic Drugs

    Oliver Thews

    2006-02-01

    Full Text Available The expression and activity of P-glycoprotein (pGP play a role in the multidrug resistance of tumors. Because solid-growing tumors often show pronounced hypoxia or extracellular acidosis, this study attempted to analyze the impact of an acidic environment on the expression and activity of pGP and on the cytotoxicity of chemotherapeutic agents. For this, prostate carcinoma cells were exposed to an acidic extracellular environment (pH 6.6 for up to 24 hours. pGP activity was more than doubled after 3 to 6 hours of incubation in acidic medium, whereas cellular pGP expression remained constant, indicating that increased transport rate is the result of functional modulation. In parallel, the cytotoxic efficacy of daunorubicin showed pronounced reduction at low pH, an effect that was reversible on coincubation with a pGP inhibitor. A reduction of intracellular Ca2+ concentration by 35% under acidic conditions induced a higher transport rate of pGP, an effect comparable to that found on inhibition of protein kinase C (PKC. These data indicate that pGP activity is increased by acidic pH presumably as a result of lowered intracellular calcium levels and inhibition of PKC. These findings may explain the reduced cytotoxicity of chemotherapeutic agents in hypoxic/acidic tumors.

  7. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F

    2016-03-01

    Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor. PMID:27007252

  8. Phytophthora infestans Has a Plethora of Phospholipase D Enzymes Including a Subclass That Has Extracellular Activity

    2011-01-01

    In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of...

  9. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  10. Extracellular cold active lipase from the psychrotrophic Halomonas sp. BRI 8 isolated from the Antarctic sea water

    Vipra Vijay Jadhav; Swanandi Suresh Pote; Amit Yadav; Shouche, Yogesh S.; Rama Kaustubh Bhadekar

    2013-01-01

    An extracellular cold active lipase-producing psychrotrophic bacterium (BRI 8) was isolated from the Antarctic sea water sample. The 16s rRNA sequence study revealed that the isolate belongs to the genus Halomonas (929 bp). The present paper reports optimization of fermentation conditions for production of lipase (EC 3.1.1.3) from Halomonas sp. BRI 8. Highest lipase production was observed in the medium containing olive oil and peptone. The optimum pH and temperature for enzyme catalysis were...