WorldWideScience

Sample records for activated carbon modified

  1. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  2. Active carbon production from modified asphalt

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  3. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  4. Adsorption of dissolved natural organic matter by modified activated carbons.

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  5. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  6. Enhanced adsorption of quaternary amine using modified activated carbon.

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon. PMID:24845325

  7. Enhanced mercury ion adsorption by amine-modified activated carbon

    Zhu Jianzhong [Center of Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65102 (United States); Yang, John, E-mail: yangj@lincolnu.edu [Center of Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65102 (United States); Deng Baolin [Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2009-07-30

    Mercury (Hg) is one of the most toxic metals found in water and sediments. In an effort to develop an effective adsorbent for aqueous Hg removal, activated carbon (AC) was modified with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified AC (MAC) were characterized by the scanning electron microscopy in conjunction with the energy-dispersive spectroscopy (SEM-EDS), the Fourier transform infrared spectroscopy (FT-IR), and potentiometry. The impacts of solvent, APTES concentration, reactive time and temperature on the surface modification were evaluated. The aqueous Hg adsorptive kinetics and capacity were also determined. Results demonstrated that the strong Hg-binding amine ligands were effectively introduced onto the AC surfaces through the silanol reaction between carbon surface functional groups (-COOH, -COH) and APTES molecules. The modification lowered the pH at the point of zero charge (pH{sub pzc}) to 4.54 from 9.6, favoring cation adsorption. MAC presented a faster rate of the Hg (II) adsorption and more than double adsorptive capacity as compared with AC.

  8. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  9. CO2 adsorption on chemically modified activated carbon.

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  10. Kinetic and Equilibrium Studies for the Removal of Bromate by the Modified Activated Carbon

    Muqing Qiu; Shuiying Xiong

    2015-01-01

    Bromate which was formed bromide dissolved in water during the ozonation process, is carcinogenic and mutagenic to humans. To avoid bromate damage, many countries strictly control its concentration in drinking water. Activated carbon is an effective adsorbent material widely used in water treatment. In order to enhance the adsorption of bromate ion on activated carbon, the modified activated carbon was obtained from granular activated carbon by chemical activation using cationic surfactant as...

  11. Kinetic and Equilibrium Studies for the Removal of Bromate by the Modified Activated Carbon

    Muqing Qiu

    2015-03-01

    Full Text Available Bromate which was formed bromide dissolved in water during the ozonation process, is carcinogenic and mutagenic to humans. To avoid bromate damage, many countries strictly control its concentration in drinking water. Activated carbon is an effective adsorbent material widely used in water treatment. In order to enhance the adsorption of bromate ion on activated carbon, the modified activated carbon was obtained from granular activated carbon by chemical activation using cationic surfactant as an activator. The adsorption characteristics of bromate ion on the modified activated carbon were investigated through adsorption experiments. The effects of temperature, pH in solution, contact time and initial bromate concentration on bromate adsorption by the modified activated carbon were investigated. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Kinetic adsorption data were analyzed by the pseudo-first-order kinetic model and the pseudo-second-order model, respectively.

  12. VPO catalysts synthesized on substrates with modified activated carbons

    VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 deg. C) and hard (50% H2O2, 350 deg. C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.

  13. Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed

    In the present work, commercial coconut shell activated carbon was impregnated with alkaline NaOH to investigate the efficiency of modified activated carbon for CO2 adsorption in a fixed-bed column adsorption system. The modification parameters, such as the NaOH concentration (24–48%) and dwelling time (1–4 h), were also investigated. The results showed that a 32% NaOH concentration with a 3 h dwelling time provided the best CO2 adsorption capacity. Later, the modified activated carbon was characterized by nitrogen adsorption–desorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The effects of the CO2 % in the feed, the adsorption temperature, the feed flow rate and the amount of adsorbent in the column were investigated in the adsorption experiments. The maximum CO2 adsorption capacity in this study was 27.10 mg/g at 35 °C. This study also suggests that NaOH-modified activated carbon is a state-of-the-art adsorbent for CO2 adsorption. - Highlights: • Coconut shell activated carbon was impregnated with alkaline NaOH. • CO2 was adsorbed in a fixed-bed column adsorption system. • The effects of CO2 concentration, temperature, flow rate and dose are analyzed. • Regeneration of modified activated carbons was effectively tested for ten cycles

  14. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  15. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 μg L-1 using activated carbon modified with DFID; 0.52 and 0.37 μg L-1 using activated carbon modified with DFTD and 0.46 and 0.31 μg L-1 using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%)

  16. Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation

    Highlights: • Phenanthroline as nitrogen source to modify traditional carbon support. • Synthesized a novel catalyst of Pd supported on PMC. • Pd/PMC catalyst shows excellent activity and stability. - Abstract: Modified carbon is fabricated by applying phenanthroline as nitrogen source and used as support (PMC) to immobilize Pd nanoparticles. Because the nitrogen-doping not only changes physicochemical and electronic properties of carbon but also serves as basic or coordination sites to stabilize and produce additional electronic activation for Pd, the Pd/PMC exhibits excellent electrochemcial performance for ethylene glycol oxidation. Compared to conventional Pd/C catalyst, the Pd/PMC catalyst has a larger electrochemically active surface area, 50 mV more negative onset potential, 1.77 times oxidation current and superior stability

  17. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  18. O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters

    Graphical abstract: Based on first-principle calculations, this study shows that the confined small Fe cluster inside the SWCNT can significantly modify the electronic structure of the carbon surface. This drastically facilitates the activation of the adsorbed O2 molecule. The calculated energy barrier (less than 0.8 eV) of the rate-determining step for the O2 dissociation indicates that the process can proceed readily at room temperature. - Highlights: • The confined Fe cluster inside the carbon nanotube can significantly modify the electronic structure of the carbon surface. • The confined Fe cluster makes the adsorption of the O2 molecule much more energetically favorable. • The calculated energies suggest that the dissociation of the O2 on the modified carbon surface can proceed readily at room temperature. - Abstract: Using first-principles calculations, the structural, magnetic, and electronic properties of the (6, 6) single-walled carbon nanotubes (SWCNT) with the confined small Fe cluster are systematically studied. We find that Fe–C interactions can induce the transfer of the electrons from the confined Fe to the carbon surface of the SWCNT considerably, and consequently the reduction of the local work function of the region in contact with the Fe. The charging of the carbon surface and the reduction of the work function make the adsorption of the O2 molecule much more energetically favorable on the outer surface of the SWCNT. Furthermore, the energy barrier of the rate-determining step, i.e., the approaching of the O2 towards the modified carbon surface, for the O2 dissociation is less than 0.8 eV, indicating that the process can proceed readily at room temperature

  19. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  20. MBBR system performance improvement for petroleum hydrocarbon removal using modified media with activated carbon.

    Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita

    2016-01-01

    Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater. PMID:27148731

  1. Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method.

    Zhang, Chuanjun; Yang, Danni; Jiang, Xia; Jiang, Wenju

    2016-08-01

    In this study, TiO2 powder was used as the additive to directly blend with raw bituminous coal and coking coal for preparing modified activated carbon (Ti/AC) by one-step carbonization-activation method. The Ti/AC samples were prepared through blending with different ratios of TiO2 (0-12 wt%) and their desulphurization performance was evaluated. The results show that the desulphurization activity of all Ti/AC samples was higher than that of the blank one, and the highest breakthrough sulphur capacity was obtained at 200.55 mg/g C when the blending ratio of TiO2 was 6 wt%. The Brunauer-Emmett-Temer results show that the micropores were dominant in the Ti/AC samples, and their textual properties did not change evidently compared with the blank one. The X-ray photoelectron spectroscopy results show that the loaded TiO2 could influence the relative content of surface functional groups, with slightly higher content of π-π* transitions groups on the Ti/AC samples, and the relative contents of C=O and π-π* transitions groups decreased evidently after the desulphurization process. The X-ray diffraction results show that the anatase TiO2 and rutile TiO2 co-existed on the surface of the Ti/AC samples. After the desulphurization process, TiO2 phases did not change and Ti(SO4)2 was not observed on the Ti/AC samples, while sulphate was the main desulphurization product. It can be assumed that SO2 could be catalytically oxidized into SO3 by TiO2 indirectly, rather than TiO2 directly reacted with SO2 to Ti(SO4)2. PMID:26695433

  2. Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight

    Graphical abstract: Tentative photo-degradation mechanism diagram of the MB on the surface of carbon modified TNT. When the TiO2 was under ultraviolet light irradiation, the electrons were excited and transferred from the valence band (VB) to the conduction band (CB), leaving the holes on VB. The electrons were trapped by O2 and formed superoxide anion (O2−). H2O around the TiO2 was oxidized by the holes leaved on VB to hydroxyl radicals (OH·). When the TiO2 was modified by carbon, the same is that the electrons of C4+ would be excited from ground state to 2P orbital under visible light irradiation. The electrons and holes can also lead to the generation of the O2− and OH·. The oxidability of O2− and OH· created around the carbon modified TNT is strong, and could oxidize the MB to CO2 and H2O. - Highlights: • The TNT was successfully modified by carbon, its amount is about 4.95%. • The carbon modified TNT has a great enhancement of visible light absorption. • The photocatalytic ability of carbon modified TNT is higher than pristine TNT. • A tentative photo-degradation mechanism of carbon modified TNT is proposed. - Abstract: Carbon modified TiO2 nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO2 nanotube is smaller than that of pristine TiO2 nanotube, indicating the fact that carbon modifying leads to the increase of TiO2 crystallinity. TiO2 nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO2 nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed

  3. Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere

    Chen, Yuan; Lu, Qiuju; Yan, Xuelian; Mo, Qionghua; Chen, Yun; Liu, Bitao; Teng, Liumei; Xiao, Wei; Ge, Liangsheng; Wang, Qinyi

    2016-02-01

    Novel carbon quantum dot (CQD)-modified BiOI photocatalysts were prepared via a facile hydrothermal process. The CQD-modified BiOI materials were characterized by multiple techniques. The CQD with an average size around several nanometers was distributed on the surface of BiOI microsphere. Its photocatalytic activity was investigated sufficiently by the photodegradation of methylene orange (MO). The results showed that the CQD/BiOI 1.5 wt.% sample exhibited the optimum photocatalytic activity, which was 2.5 times that of the pure BiOI. This improvement was attributed to the crucial role of CQDs, which could be acted as a photocenter for absorbing solar light, charge separation center for suppressing charge recombination.

  4. Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere.

    Chen, Yuan; Lu, Qiuju; Yan, Xuelian; Mo, Qionghua; Chen, Yun; Liu, Bitao; Teng, Liumei; Xiao, Wei; Ge, Liangsheng; Wang, Qinyi

    2016-12-01

    Novel carbon quantum dot (CQD)-modified BiOI photocatalysts were prepared via a facile hydrothermal process. The CQD-modified BiOI materials were characterized by multiple techniques. The CQD with an average size around several nanometers was distributed on the surface of BiOI microsphere. Its photocatalytic activity was investigated sufficiently by the photodegradation of methylene orange (MO). The results showed that the CQD/BiOI 1.5 wt.% sample exhibited the optimum photocatalytic activity, which was 2.5 times that of the pure BiOI. This improvement was attributed to the crucial role of CQDs, which could be acted as a photocenter for absorbing solar light, charge separation center for suppressing charge recombination. PMID:26842793

  5. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  6. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons.

    Ghosh, Pranab Kumar

    2009-11-15

    Fresh activated carbon (AC) and waste activated carbon (WAC) were pretreated by heating with mineral acids (sulfuric acid and nitric acid) at high temperature to prepare several grades of adsorbents to evaluate their performance on Cr(VI) removal from aqueous phase. Effects of temperature, agitation speed and pH were tested, and optimum conditions were evaluated. Kinetic study was performed under optimum conditions with several grades of modified adsorbents to know the rates of adsorption. Batch adsorption equilibrium data followed both, Freuindlich and Langmuir isotherms. Maximum adsorption capacity (q(max)) of the selected adsorbents treated with sulfuric acid (MWAC 1) and nitric acid (MWAC 2), calculated from Langmuir isotherm are 7.485 and 10.929 mg/g, respectively. Nitric acid treated adsorbent (MWAC 2) was used for column study to determine the constants of bed depth service time (BDST) model for adsorption column design. PMID:19553008

  7. Kinetic for Adsorption of Dye Methyl Orange by the Modified Activated Carbon from Rice Husk

    Muqing Qiu

    2015-08-01

    Full Text Available In this study, the modified activated carbon from rice husk is used as the low cost material to absorb dye Methyl Orange in aqueous solution. The effects of different process parameters like pH, initial dye concentration and contact time on the adsorption of dye are investigated. The kinetic data of adsorption studies are discussed by the pseudo first-order, pseudo second-order and intraparticle diffusion. The results were shown that the adsorption process is chemisorption, which involves a sharing of electrons between the adsorbate and the surface of the adsorbent.

  8. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater. PMID:25353943

  9. UNIQUAC activity coefficient model and modified Redlich- Kwong EOS for the vapor liquid equilibrium systems of carbon dioxide-water

    Nurak Grisdanurak; Katawut Keowkrai; Lupong Kaewsichan

    2004-01-01

    The UNIQUAC activity coefficient model and fugacity coefficient model of modified Redlich-Kwong predicted vapor-liquid equilibrium between carbon dioxide and water efficiently. The activity coefficient model needed the energy interaction parameters between molecules of carbon dioxide and water. Those parameters can be obtained by non-linear regression method of the experimental data of the vapor-liquid equilibria of carbon dioxide and water (Lide, 1992). The fugacity coefficient model of modi...

  10. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  11. Chemically Modified Activated Carbons as Catalysts of Oxidative Dehydrogenation of n-Butane

    Commercial availability and low price of light alkanes make them very attractive in many branches of industry. Potentially interesting is their use in the process of oxidative dehydrogenation leading to production of olefins. This study was undertaken to characterise the oxidative dehydrogenation of n-butane to 1,3-butadiene (important substrate in production of synthetic rubber and polyamides) taking place over the modified carbon catalysts obtained from peach stones precursor. The catalytic tests were performed in the temperature range 250-450oC at oxygen/n-butane ratio of 1:1. For the majority of the activated carbon samples studied at the lowest temperature the only product was CO2. At 300oC the products of dehydrogenation of n-butane and side products appeared. With increasing temperature the amount of compounds generated increased and in the group of C4 hydrocarbons the dominant were 1-butene and 1,3-butadiene. The most effective catalyst was the sample oxidised with air, the least effective was the sample modified with ammonium peroxydisulphate. (authors)

  12. Removal of uranium from drinking water and other aqueous systems using modified powdered activated carbon

    A simple, rapid and eco friendly method for removal of high concentration of Uranium (U) from ground water (>2500 ppb), Mine water(>1000 ppb) and other aqueous systems has been developed based on laboratory trials using 10 litres of mine water and ground water. The removal of uranium was greater than 95% with a contact time of 10 minutes with modified powdered activated carbon (MPAC) at the natural pH of water. The concentration of Uranium left behind in drinking water after MPAC treatment (if necessary twice) was less than 15 ppb and is below WHO/AERB permissible limits. The methodology is so simple that it could be applied at remote villages to produce uranium free drinking water at the natural pH of water

  13. Synthesis and characterization of carbon modified TiO{sub 2} nanotube and photocatalytic activity on methylene blue under sunlight

    Li, Yinchang [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Wang, Yongqian, E-mail: cugwyq@126.com [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Zhejiang Research Institute, China University of Geosciences, Hanzhou 311305 (China); Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China)

    2015-07-30

    Graphical abstract: Tentative photo-degradation mechanism diagram of the MB on the surface of carbon modified TNT. When the TiO{sub 2} was under ultraviolet light irradiation, the electrons were excited and transferred from the valence band (VB) to the conduction band (CB), leaving the holes on VB. The electrons were trapped by O{sub 2} and formed superoxide anion (O{sub 2}{sup −}). H{sub 2}O around the TiO{sub 2} was oxidized by the holes leaved on VB to hydroxyl radicals (OH·). When the TiO{sub 2} was modified by carbon, the same is that the electrons of C{sup 4+} would be excited from ground state to 2P orbital under visible light irradiation. The electrons and holes can also lead to the generation of the O{sub 2}{sup −} and OH·. The oxidability of O{sub 2}{sup −} and OH· created around the carbon modified TNT is strong, and could oxidize the MB to CO{sub 2} and H{sub 2}O. - Highlights: • The TNT was successfully modified by carbon, its amount is about 4.95%. • The carbon modified TNT has a great enhancement of visible light absorption. • The photocatalytic ability of carbon modified TNT is higher than pristine TNT. • A tentative photo-degradation mechanism of carbon modified TNT is proposed. - Abstract: Carbon modified TiO{sub 2} nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO{sub 2} nanotube is smaller than that of pristine TiO{sub 2} nanotube, indicating the fact that carbon modifying leads to the increase of TiO{sub 2} crystallinity. TiO{sub 2} nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO{sub 2} nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed.

  14. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths.

    Huang, Chen-Chia; Su, Yu-Jhih

    2010-03-15

    Adsorption and electrosorption of copper ions (Cu(2+)) from wastewater were investigated with variously modified activated carbon fiber (ACF) cloth electrodes. Commercial polyacrylonitrile-based ACF cloths were modified by nitric acid or impregnated with chitosan solution. The surface characteristics of ACFs before and after modification were evaluated by nitrogen adsorption-desorption isotherms, zeta potential, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. Adsorption and electrosorption capacities of Cu(2+) on ACF cloths without and with a bias potential were measured, respectively, and the electrosorption isotherms were also investigated. The initial pH of the copper ion solution was adjusted to 4.0. Experimental results showed that electrosorption effectively increases adsorption capacity. The adsorption/electrosorption isotherms of Cu(2+) on ACF cloths were in good agreement with Langmuir and Freundlich equations. The equilibrium adsorption capacity at 0.3 V was 0.389 mmol/g, which is two times higher than that at open circuit. The maximum electrosorption capacity of Cu(2+) on chitosan impregnated ACF cloths was 0.854 mmol/g, which is about 2.2 times higher than that on the pristine cloths. PMID:19896268

  15. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  16. A comparative study of hydrogen uptake features of Co, Ni and Pd modified nanofibres and activated carbon

    D' Elia, Luis F.; Gonzalez, I.; Saavedra, K.; Gottberg, V. [Petroleos de Venezuela (PDVSA)-Intevep, Gerencia General de Refinacion e Industrializacion, Gerencia Tecnica de Refinacion, Apartado 76343, Caracas 1070-A (Venezuela)

    2009-02-15

    Hydrogen represents a notable R and D area due to its impact on short and middle term energy business. Implementation of the so-called hydrogen economy still faces some technological breakthroughs. The most predominant belongs to storage; its state of the art is mainly focused on solid-state phenomena through physisorption or chemisorption. It has been found that thermal and acid pre-treatments of carbon nanofibres and activated carbon have opposite effects on hydrogen uptake levels. Thermal pre-treatment enhances hydrogen uptake; nonetheless, acid pre-treatment does not favour hydrogen-carbon interactions. Pd modified thermally-acidic pre-treated carbon materials have reversible hydrogen uptakes at the evaluated condition. On the other hand, Ni and Co modified thermally-acidic pre-treated carbon materials certainly uptake hydrogen, but it is not solely released (H{sub 2}O and CH{sub 4} are produced). (author)

  17. Activated Carbons Modified by Ar and CO2 Plasmas – Acetone and Cyclohexane Adsorption

    Jacek TYCZKOWSKI

    2012-06-01

    Full Text Available Low temperature plasma treatment is currently a scope of many research as interesting tool for enhancing surface properties of many types of materials, e.g. polymers, metals, carbon blacks. Activated carbons (AC due to their physicochemical properties play a major role as a structural element of gas filters commonly used in respiratory protection for adsorption of many different vapors from contaminated air. It is well known that various surface function groups presented on the AC play a significant role in the hydrophobic/hydrophilic nature of them. This paper refers to the initial study of the effect of low temperature gas plasma treatment on commercially available activated carbon. To treat activated carbon by low temperature plasma, a granulated carbon was placed in a rotating test chamber. The chamber was filled with the relevant reactive gas. The effects of plasma treatment on activated carbon surface and the adsorption properties for two selected organic vapors were studied by analyzing water vapor adsorption isotherm as well as by measurement of adsorption dynamics of those vapors onto gas filter bed made of plasma treated carbons. On the basis of the obtained results it could be concluded that low temperature plasma technology may be used for improving activated carbon properties towards better adsorption of specific low temperature organic vapors.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1919

  18. Adsorption of odorous sulfur compounds onto activated carbons modified by gamma irradiation.

    Vega, Esther; Sánchez-Polo, Manuel; Gonzalez-Olmos, Rafael; Martin, María J

    2015-11-01

    A commercial activated carbon (AC) was modified by gamma irradiation and was tested as adsorbent for the removal of ethyl mercaptan, dimethyl disulfide and dimethyl disulfide in wet conditions. Modifications were carried out under five different conditions: irradiation in absence of water, in presence of ultrapure water, in ultrapure water at pH=1.0 and 1000 mg L(-1) Cl(-), in ultrapure water at pH=7.5 and 1000 mg L(-1) Br(-), and in ultrapure water at pH=12.5 and 1000 mg L(-1) NO3(-). The chemical properties of each AC were characterized by elemental analysis, temperature programmed desorption and X-ray photoelectron spectroscopy. Outcomes show that a large number of oxygen functional groups were incorporated in the AC surface by gamma irradiation, especially in the AC irradiated in the presence of ultrapure water. The dynamic adsorption test results reveal that the incorporation of oxygen functional groups did not enhance the adsorption capacities for dimethyl sulfide and dimethyl disulfide. A significant improvement in the ethyl mercaptan adsorption capacity was correlated with the incorporation of phenolic groups in the AC surface. Moreover, diethyl disulfide was detected as by-product of ethyl mercaptan oxidation process under wet conditions and its formation depended on the chemical properties of ACs. PMID:26160734

  19. UNIQUAC activity coefficient model and modified Redlich- Kwong EOS for the vapor liquid equilibrium systems of carbon dioxide-water

    Nurak Grisdanurak

    2004-11-01

    Full Text Available The UNIQUAC activity coefficient model and fugacity coefficient model of modified Redlich-Kwong predicted vapor-liquid equilibrium between carbon dioxide and water efficiently. The activity coefficient model needed the energy interaction parameters between molecules of carbon dioxide and water. Those parameters can be obtained by non-linear regression method of the experimental data of the vapor-liquid equilibria of carbon dioxide and water (Lide, 1992. The fugacity coefficient model of modified Redlich- Kwong needed only some physical properties of carbon dioxide and water without any interaction parameters. The experimental data had ranges of temperature and partial pressure of carbon dioxide between 10 to 100ºC and 5 to 1,200 kPa, respectively. The parameters for the activity coefficient model are temperature dependent but are not concentration dependent. The regression results gave good agreements with the experimental data in which the mean absolute error (MAE between experiment and calculated partial pressure of carbon dioxide was 2.72% and the mean absolute standard deviation (MAD of that error was 1.35%. Comparing the effects of activity coefficients and fugacity coefficients, we found that the non-ideality in vapor phase was more influential than the non-ideality in liquid phase.

  20. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO2

    Carbon-modified TiO2 (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO2 particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO2 has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts

  1. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  2. Development of a modified diffusion type carbon activity meter for liquid sodium

    A high sensitivity automated carbon activity meter has been developed by combining elements of technology used in other instruments. The basic principle is the diffusion of carbon through an iron membrane driven by the concentration gradient between the sodium being measured and the sweep gas. The membrane used is similar to that used by Harwell workers, i.e., a coil of small diameter iron tubing with an oxide coating on the inner surface. A sweep gas of helium is used to pick up the carbon oxides generated by the reaction of carbon and iron oxide. The carbon oxides are converted to carbon dioxide in a copper oxide bed and measured with a gas chromatograph employing a helium ionization detector. This measuring system has an excellent signal-to-noise ratio and requires fewer gases than the flame ionization detector usually employed. The concentration of CO2 in the sweep gas was in the range of 0.2 to 2 ppM when measuring carbon activity in a stainless steel system

  3. Study On Adsorption of Bromate From Aqueous Solution On Modified Activated Carbon

    Liu, Tong-mian; Cui, Fu-yi; Zhao, Zhi-wei; Liu, Dong-mei; Zhu, Qi; Wang, Huan

    2010-11-01

    A coal-based activated carbon was treated chemically with nitric acid, sodium hydroxide and ammonia for its surface modification, and its adsorption capacity was investigated with bromate. Several techniques were used to characterize the physicochemical properties of these materials including BET, XPS, pHpzc and Boehm titration. The results indicated that the specific surface area of the activated carbon decreased after oxidation with nitric acid. But the amount of surface acidic oxygen-containing functional groups of the oxidized sample increased compared to the raw carbon and the points of zero charge (pHpzc) decreased. The specific surface area of the activated carbon also decreased after sodium hydroxide treatment and the points of zero charge increased. The changes of surface chemical properties after the ammonia treatment was opposite to the oxidized sample. As a result, the pHpzc of the carbon was increased to near pH9.3, the amount of surface basic groups was increased. Furthermore, the data of bromate adsorption on all the samples were fitted to the Langmuir isotherm model well which indicates monolayer adsorption. In addition, the adsorption capacity of ammonia treatment sample was the highest and its saturated adsorption capacity reached 1.55 mg/g. A strong correlation was found between basic groups and adsorption capacity of bromate. Enhancement of basic groups was favorable for bromate removal.

  4. TREATMENT OF RADIOACTIVE WASTE SOLUTIONS CONTAINING CESIUM AND STRONTIUM BY CHEMICALLY MODIFIED ACTIVATED CARBON

    The aim of this study is to develop activated carbon prepared from peach stone shell as an adsorbent for Cs+ and Sr2+ ions from their aqueous waste solutions. In this respect, five samples of peach stone shell were investigated. The first four samples were prepared by immersing the samples in different concentrations of either ZnCl2 or KOH, individually, prior to heat treatment at 500oC. The fifth sample was prepared only by thermal treatment at 500oC.The physical and chemical characteristics of the prepared samples were carried out. A comparative study for the removal of Cs+ and Sr2+ ions from their aqueous waste solutions using the investigated samples have been carried out using batch experiments.The different parameters affecting adsorption process such as contact time and metal ion concentration were studied. The results obtained showed that the activated carbon prepared using ZnCl2 was more effective than the other investigated samples for adsorbing Cs+ and Sr2+ ions since the removal percentages reached 85% and 98% , respectively, while the activated carbon prepared using KOH was less effective for the removal of the same elements since the removal percentages reached 69% and 60%, respectively. In case of using physically activated carbon, the removal percentages reached 18% and 25% for Cs+ and Sr2+, respectively.From the obtained data, it can be concluded that the activated carbon prepared using ZnCl2 can be used as a good adsorbent for the removal of the investigated elements that may present in radioactive waste solutions before their discharge to the environment

  5. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  6. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    Graphical abstract: - Highlights: • Silver and mesoporous carbon co-modified Bi2WO6 (Ag/Bi2WO6/CMK-3) composite was prepared. • Photocatalytic activity of Bi2WO6 was remarkably enhanced by co-modification of silver and mesoporous carbon. • The degradation rate of MB can reach ca. 95.1% under visible light irradiation. • The Ag/Bi2WO6/CMK-3 composite has good stability and potential application prospects. - Abstract: Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi2WO6 and CMK-3/Bi2WO6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi2WO6 and Ag/Bi2WO6/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV–vis, TEM (HR-TEM), SEM, N2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi2WO6, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi2WO6. The photocatalytic activity of Ag/Bi2WO6/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi2WO6 and Ag/Bi2WO6 under comparable conditions, and Ag/Bi2WO6/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi2WO6 was also investigated

  7. Adsorption of mercury (II) from liquid solutions using modified activated carbons

    Hugo Soé Silva; Silvia Virginia Ruiz; Dolly Lucía Granados; Juan Manuel Santángelo

    2010-01-01

    Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent...

  8. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  9. Interactions of NO{sub 2} with activated carbons modified with cerium, lanthanum and sodium chlorides

    Kante, Karifala; Deliyanni, Eleni [Department of Chemistry, City College of New York, Graduate School of the City University of New York, 138 St. Convent Avenue, New York, NY 10031 (United States); Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu [Department of Chemistry, City College of New York, Graduate School of the City University of New York, 138 St. Convent Avenue, New York, NY 10031 (United States)

    2009-06-15

    Highly porous wood-based activated carbon was impregnated with cerium, lanthanum and sodium chlorides using incipient impregnation method. On the samples prepared adsorption of NO{sub 2} was carried out from moist (70% humidity) air either with or without the prehumidification. The materials were characterized using adsorption of nitrogen, thermal analysis, FTIR, and potentiometric titration. The results indicated that for all materials a significant amount of NO{sub 2} was reduced to NO and released from the system. In the case of virgin carbons, the NO{sub 2} interacting with the surface along with nitric and nitrous acids formed there in the presence of water significantly increased the acidity of the carbons by the formation of oxygen-containing groups and organic nitrates. On the other hand, when chlorides were present the capacity to interact with nitrogen dioxide increased since the inorganic phase, depending on the nature of metal, bound NO{sub 2} in the forms of nitrates (Ce, La, Na), got oxidized/oxidized carbon surface (for Ce) or contributed to the formation of nitrosyl chloride (for Na).

  10. Removal of ammonia from air on molybdenum and tungsten oxide modified activated carbons.

    Petit, Camille; Bandosz, Teresa J

    2008-04-15

    Microporous coconut-based activated carbon was impregnated with solutions of ammonium metatungstate or ammonium molybdate and then calcined in air in order to convert the salts into their corresponding oxides. The surface of those materials was characterized using adsorption of nitrogen, potentiometric titration, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermal analysis. The results indicated a significant increase in surface acidity related to the presence of tungsten or molybdenum oxides. On the materials obtained, adsorption of ammonia from either dry or moist air was carried out. The oxides distributed on the surface provided Lewis and/or Brønsted centers for interactions with ammonia molecules or ammonium ions. Water on the surface of carbon or in the gas phase increased the amount of ammonia adsorbed via involvement of Brønsted-type interactions and/or by leading to the formation of molybdate or tungstate salts on the surface. Although the amount of ammonia adsorbed is closely related to the number of moles of oxides and their acidic centers, the carbon surface also contributes to the adsorption via providing small pores where ammonia can be dissolved in the water film. PMID:18497162

  11. Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration☆

    Qin Lu; Haiyan Wu; Haoyan Li; Dianhai Yang

    2015-01-01

    A pilot-scale modified carbon source division anaerobic anoxic oxic (AAO) process with pre-concentration of returned activated sludge (RAS) was proposed in this study for the enhanced biological nutrient removal (BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60%and 50%, respectively, with an inner recycling ratio of 100%under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L−1 with a removal efficiency of 63%and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.

  12. In situ modifying of carbon tube-in-tube nanostructures with highly active Fe(2)O(3) nanoparticles.

    Bai, Shuli; Zhao, Jianghong; Du, Guixiang; Zheng, Jianfeng; Zhu, Zhenping

    2008-05-21

    A novel in situ method based on a liquid membrane templated self-assembly process is employed to modify carbon tube-in-tube nanostructures (TTCNTs) with Fe(2)O(3) nanoparticles. The as-obtained Fe(2)O(3) modified TTCNTs (Fe(2)O(3)/TTCNTs) nanocomposites are well constructed and the Fe(2)O(3) nanoparticles are well dispersed and decorated on the outer, inner and intramolecular surfaces of TTCNTs. In addition, the Fe(2)O(3)/TTCNTs nanocomposites are employed as catalysts for selective catalytic reduction (SCR) of NO with NH(3) and show high SCR catalytic activity, indicating that the novel multiple intramolecular channels and unique surface chemistry of the TTCNTs should play an important role in improving the properties of TTCNTs. PMID:21825743

  13. Determination of beta-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes.

    Stege, Patricia W; Messina, Germán A; Bianchi, Guillermo; Olsina, Roberto A; Raba, Julio

    2010-06-01

    Soil microorganisms and enzymes are the primary mediators of soil biological processes, including organic matter degradation, mineralization, and nutrient recycling. They play an important role in maintaining soil ecosystem quality and functional diversity. Moreover, enzyme activities can provide an indication of quantitative changes in soil organic matter. Beta-glucosidase (beta-Glu) activity has been found to be sensitive to soil management and has been proposed as a soil quality indicator because it provides an early indication of changes in organic matter status and its turnover. The aims of the present study were to test and use a simple and convenient procedure for the assay of beta-Glu activity in agricultural soil. The method described here is based on the enzymatic degradation of cellobiose by beta-Glu present in the soil sample and the subsequent determination of glucose produced by the enzymatic reaction using screen-printed carbon electrodes modified with multiwalled carbon nanotubes (SPCE-CNT) equipped with coimmobilized glucose oxidase and horseradish peroxidase enzymes. The potential applied to the SPCE-CNT detection was -0.15 V versus a Ag/AgCl pseudo-reference electrode. A linear calibration curve was obtained in the range 2.7-11.3 mM with a correlation coefficient. In the present study, an easy and effective SPCE-CNT-modified electrode allowed an improved amperometric response to be achieved and this is attributed to the increased surface area upon electrode modification. PMID:20349226

  14. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier

    Odetola, Christopher; Trevani, Liliana; Easton, E. Bradley

    2015-10-01

    Two TiO2-C composite materials were prepared through a conventional sol gel synthesis using Vulcan XC-72 carbon black. The carbon was initially functionalised to form acid treated Vulcan (ATV) prior to TiO2 deposition. In one composite, the ATV was further modified through glucose adsorption (G-ATV) in order to facilitate the growth of small and uniform TiO2 nanoparticles on the carbon surface. Platinum nanoparticles were deposited on TiO2/G-ATV and TiO2/ATV supports through reduction of H2PtCl6 with NaBH4 at 0 °C. The electrochemical properties of the two composite catalysts were compared with in house Pt/C catalyst. We observed a three-fold increase in TiO2 loading (14 wt%) on glucose doped carbon surface compared with just acid treated support (5 wt%). The beginning of life (BOL) electrochemical active surface area (ECSA) of Pt/14 wt%TiO2/G-ATV catalyst was 40.4 m2 g-1 compared to 37.1 m2 g-1 obtained for Pt on 5 wt% TiO2/ATV despite increased TiO2 loadings on the former. Furthermore these composite catalysts showed enhanced oxygen reduction activity and better durability during accelerated stress tests which was attributed to an electronic interaction between Pt and the TiO2 on the support.

  15. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  16. Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers

    To improve the photocatalytic application performances of TiO2, in this work, firstly CdS modified Degussa P25 TiO2 (CdS/TiO2) composites were prepared by two methods, sol-gel method and precipitation method. Next they, sol-gel-CdS/TiO2 (sg-CdS/TiO2) and precipitation-CdS/TiO2 (pp-CdS/TiO2), were loaded on activated carbon fibers (ACFs) by dip-coating method using the sodium carboxymethyl cellulose as adhesives. The composites were characterized by XRD, UV-vis absorbance spectra, SEM, EDS and BET. The photocatalytic activities under sunlight were investigated by the degradation of methylene blue. The results showed that CdS/TiO2 composites were mainly composed of anatase-TiO2 and little CdS cubic phases. The absorption wavelengths of sg-CdS/TiO2 and pp-CdS/TiO2 composites were extended to 590 nm and 740 nm, respectively. The absorption edge had a pronounced 'red shift'. From EDS analysis, the elemental contents of CdS/TiO2 were mainly Ti and O and a small quantity of S and Cd. CdS/TiO2 loaded on ACFs were in the form of small clusters, but not very uniform; compared with the original ACFs, the surface area and pore volume of CdS/TiO2/ACFs decreased slightly, respectively, while the average pore diameter was not changed. The photodegradation rate of methylene blue under sunlight with CdS/TiO2/ACFs composites was markedly higher than that of P25-TiO2/ACFs, and the effect of pp-CdS/TiO2/ACFs composites was better than that of sg-CdS/TiO2/ACFs, when irradiated for 180 min, and the photodegradation rate of methylene blue reached to 90.1%. The photodegradation kinetics of the methylene blue fitted with the Langmuir-Hinshelwood equation. The apparent reaction rate constants of sg-CdS/TiO2/ACFs and pp-CdS/TiO2 were 0.0105 min-1 and 0.0146 min-1, respectively, which were about 1.3-1.7 times as large as that of P25-TiO2/ACFs.

  17. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  18. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.

    Tan, Guangcai; Sun, Weiling; Xu, Yaru; Wang, Hongyuan; Xu, Nan

    2016-07-01

    Corn straw biochar (BC) was used as a precursor to produce Na2S modified biochar (BS), KOH modified biochar (BK) and activated carbon (AC). Experiments were conducted to compare the sorption capacity of these sorbents for aqueous Hg (II) and atrazine existed alone or as a mixture. In comparison to BC, the sorption capacity of BS, BK and AC for single Hg (II) increased by 76.95%, 32.12% and 41.72%, while that for atrazine increased by 38.66%, 46.39% and 47 times, respectively. When Hg (II) and atrazine coexisted in an aqueous solution, competitive sorption was observed on all these sorbents. Sulfur impregnation was an efficient way to enhance the Hg (II) removal due to the formation of HgS precipitate, and oxygen-containing functional groups on the sorbents also contributed to Hg (II) sorption. Activated carbon was the best sorbent for atrazine removal because of its extremely high specific surface area. PMID:27061260

  19. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10−6 to 1.6 × 10−4 mol L−1 and 2.5 × 10−6 mol L−1 to 6.0 × 10−5 mol L−1 for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10−7 mol L−1 and 4.0 × 10−7 mol L−1 for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples

  20. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  1. Adsorption of volatile sulphur compounds onto modified activated carbons: effect of oxygen functional groups.

    Vega, Esther; Lemus, Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Palomar, José; Martin, María J

    2013-08-15

    The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions. PMID:23708449

  2. Modified Sol-Gel Synthesis of Carbon Nanotubes Supported Titania Composites with Enhanced Visible Light Induced Photocatalytic Activity

    Quanjie Wang

    2016-01-01

    Full Text Available Multiwalled carbon nanotube (MWCNT enhanced MWCNT/TiO2 nanocomposites were synthesized by surface coating of carbon nanotube with mixed phase of anatase and rutile TiO2 through a modified sol-gel approach using tetrabutyl titanate as raw material. The morphological structures and physicochemical properties of the nanocomposites were characterized by FT-IR, XRD, DTA-TG, TEM, and UV-Vis spectra. The results show that TiO2 nanoparticles with size of around 15 nm are closely attached on the sidewall of MWCNT. The nanocomposites possess good absorption properties not only in the ultraviolet but also in the visible light region. Under irradiation of ultraviolet lamp, the prepared composites have the highest photodegradation efficiency of 83% within 4 hours towards the degradation of Methyl Orange (MO aqueous solution. The results indicate that the carbon nanotubes supported TiO2 nanocomposites exhibit high photocatalytic activity and stability, showing great potentials in the treatment of wastewater.

  3. Adsorption of volatile sulphur compounds onto modified activated carbons: Effect of oxygen functional groups

    Highlights: • HNO3 oxidation incorporates a higher amount of functionalities than O3 oxidation. • The loss of porosity is compensated by the massive incorporation of oxygen groups. • HNO3 oxidation increases OH groups in AC and the ETM and DMS adsorption capacities. • The oxygen functional groups in the AC surface did not affect the DMDS adsorption. • COSMO-RS predicts the important role of OH groups for VSC adsorption. -- Abstract: The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions

  4. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  5. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  6. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    Graphical abstract: - Highlights: • Ni2P catalyst is tested in dehydrogenation of isobutane for the first time. • The effects of Cs promoter on catalytic performance of Ni2P/AC were investigated. • Cs-Ni2P/AC exhibits high activity and selectivity for isobutane dehydrogenation. - Abstract: In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Ni-C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength

  7. Comparison of raw and modified activated carbon and rice industry wastes for methylene blue sorption

    Befani, Maria; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Quintero, César E.

    2015-04-01

    In Argentina the average paddy rice production was 1.3x106 tn/year in the last decade. Entre Ríos province (E.R.) accounts for 60% of national milling, resulting in a significant accumulation of waste in the local environment; husk and ashes are used as fuel in drying grain plants. The use of rice wastes, as low-cost sorbents for the removal of synthetic dyes and other contaminants may be a sustainable option. The aim of this work is the investigation of the removal capacity of methylene blue (MB) from aqueous solutions using: (a) rice husk from a rice mill located in E.R. of size between 0.15 to 1.18 mm (RH2), (b) ash from rice husk burned at 800°C in oven for the grain drying unit of the rice mill (RHA800), and (c) biochar obtained from pyrolysis of RH2 material at 850°C (RHA4). Commercial activated carbon (AC), which is a porous material of high sorption capacity, was also used to compare its sorption capacity with the rice husk products. Furthermore, the incorporation of iron in the AC was studied using two different AC/Fe weight-by-weight ratios (AC-Fe and AC-0.5 Fe). The solution pH effect was studied in a range from 2 to 6.9. The maximal MB removal was achieved at pH of 6.8 to 6.9 for all materials studied, and at pH of 6.4 for AC. Kinetic experiments were conducted for a period of 48 h at pH 7 and C0 = 50 mg MB/L. Equilibrium was reached after 24 h and the adsorption capacity was 156, 104, 90, 79, 26, and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. The pseudo-second-order model expressed better the sorption kinetics of MB for all adsorbent materials. The AC-based materials presented better performance. The experimental data were fitted with the Freundlich and Langmuir isotherm models. The Langmuir model fits the data better in all cases. The maximum adsorption capacity was 238, 125, 92, 91, 46 and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. Agricultural wastes can be considered low-cost sorbents, but

  8. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  9. Ionic liquid modified carbon paste electrode and investigation of its electrocatalytic activity to hydrogen peroxide

    Erhan Canbay; Hayati Türkmen; Erol Akyilmaz

    2014-05-01

    This paper reports on the preparation and advantages of novel amperometric biosensors in the presence of hydrophobic ionic liquid (IL), 1-methyl-3-butylimidazolium bromide ([MBIB]). Carbon paste bio-sensor has been constructed by entrapping horseradish peroxidase in graphite and IL mixed with paraffin oil as a binder. The resulting IL/graphite material brings new capabilities for electrochemical devices by combining the advantages of ILs composite electrodes. Amounts of H2O2 were amperometrically detected by monitoring current values at reduction potential (–0.15 V) of K3Fe(CN)6. Decrease in biosensor responses were linearly related to H2O2 concentrations between 10 and 100 M with 2 s response time. Limit of detection of the biosensor were calculated to be 3.98 M for H2O2. In the optimization studies of the biosensor some parameters such as optimum pH, optimum temperature, enzyme amount, interference effects of some substances on the biosensor response, reproducibility and storage stability were carried out. The promising results are ascribed to the use of an ionic liquid, which forms an excellent charge-transfer bridge and wide electrochemical windows in the bulk of carbon paste electrode.

  10. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  11. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO3 0.1 mol.L-1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10-2 and 2.83 X 10-1 cm2, respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm-2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'-2). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of Cd, 3.0 x 10-5 μF.cm'-2 and 11 x 103 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm2 and 4.72 cm2. To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface areas of carbon

  12. 改性活性炭对土壤镉的吸附性影响%Study of Soil Cadmium Adsorption by Modified Activated Carbon

    洪博; 黄树辉; 丁凯翔; 汤炀斌

    2014-01-01

    Objective Research the effect of three kinds of modified activated carbon for cadmium adsorption of vegetable field , river sediment and lotus sediment .Method This experiment was carried out on the activated carbon on acid modification , alkali modification and oxidation modification , and determination of cadmium content dithizone spectrophotometry .Results The best activated carbon content is 0.025 g/g in the soil sample for experiment .With the increase of initial concentration of cadmium , soil of cadmium adsorption quantity is increasing .Conclusion Compared with common active carbon , three kinds of modified activated carbon cadmium adsorption quantity of the wetland soil all have different degrees of ascension .And compared to common activated carbon , the cadmium adsorption of the activated carbon with acid modified and oxidation modified increased by 7.7%, 8.3%, the adsorption increases significantly .%目的:研究3种改性活性炭对菜地、河流底泥、荷花底泥镉吸附性的影响。方法对活性炭进行酸改性、碱改性和氧化改性,采用双硫腙分光光度法测定镉含量。结果对实验土样,最佳活性炭添加量为0.025 g/g。随着初始镉含量的升高,土壤对镉的吸附量不断增大。结论3种改性活性炭相比普通活性炭对湿地土壤的镉吸附量均有不同程度的提升,荷花底泥中,酸性、氧化改性活性炭相比普通活性炭,吸附效果提高7.7%,8.3%,吸附效果提升显著。

  13. Sorption Characteristics of Mixed Molecules of Glutaraldehyde from Water on Mesoporous Acid-Amine Modified Low-Cost Activated Carbon: Mechanism, Isotherm, and Kinetics

    2015-01-01

    The environmental discharge of inefficiently treated waste solutions of the strong biocide glutaraldehyde (GA) from hospitals has potential toxic impact on aquatic organisms. The adsorption characteristics of mixed polarized monomeric and polymeric molecules of GA from water on mesoporous acid-amine modified low-cost activated carbon (AC) were investigated. It was found that the adsorption strongly depended on pH and surface chemistry. In acidic pH, the adsorption mechanism was elaborated to ...

  14. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    Shadrinov N. V.; Nartakhova S. I.

    2016-01-01

    The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  15. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L−1 and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L−1 of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS

  16. Effect of Relative Humidity on Adsorption of Formaldehyde on Modified Activated Carbons%相对湿度对甲醛在改性活性炭上吸附的影响

    李晶; 李忠; 刘冰; 夏启斌; 奚红霞

    2008-01-01

    This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carried out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.

  17. Preparation and electrocatalytic oxidation properties of a nickel pentacyanonitrosylferrate modified carbon composite electrode by two-step sol-gel technique: improvement of the catalytic activity

    The sol-gel technique was used to construct nickel pentacyanonitrosylferrate (NiPCNF) modified composite ceramic carbon electrodes (CCEs). This involves two steps: forming a CCE containing Ni powder and then immersing the electrode into a sodium pentacyanonitrosyl-ferrate solution (electroless deposition). The cyclic voltammograms of the resulting surface modified CCE under optimum conditions show a well-defined redox couple due to the [NiIIFeIII/II(CN)5NO]0/-1 system. The electrochemical properties and stability of the modified electrode were investigated by cyclic voltammetry. The apparent electron transfer rate constant (ks) and transfer coefficient (α) were determined by cyclic voltammetry being about 1.1 s-1 and 0.55, respectively. Sulfite has been chosen as a model to elucidate the electrocatalytic ability of NiPCNF-modified CCE prepared by one- or two-step sol-gel technique. The modified electrode showed excellent electrocatalytic activity toward the SO32- electro oxidation in pH range 3-9 in comparison with CCE modified by homogeneous mixture of graphite powder, Ni(NO3)2 and Na2[Fe(CN)5NO] (one-step sol-gel technique). Sulfite was determined amperometrically at the surface of this modified electrode in pH 7. Under the optimized conditions the calibration curve is linear in the concentration range 2 μM to 2.0 mM. The detection limit (signal-to-noise is 3) and sensitivity are 0.5 μM and 13.5 nA/μM. The modified carbon ceramic electrode containing nickel pentacyanonitrosylferrate shows good repeatability, short response time, t (90%) 2[Fe(CN)5NO] solution. The advantages of the SO32- amperometrically detector based on the nickel pentacyanonitrosylferrate-doped CCE is high sensitivity, inherent stability at wide pH range, excellent catalytic activity and less expense and simplicity of preparation. This sensor can be used as amperometric detector in chromatographic instruments

  18. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  19. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

    Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui

    2016-09-15

    A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. PMID:27132001

  20. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi{sub 2}WO{sub 6}

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn

    2015-03-30

    Graphical abstract: - Highlights: • Silver and mesoporous carbon co-modified Bi{sub 2}WO{sub 6} (Ag/Bi{sub 2}WO{sub 6}/CMK-3) composite was prepared. • Photocatalytic activity of Bi{sub 2}WO{sub 6} was remarkably enhanced by co-modification of silver and mesoporous carbon. • The degradation rate of MB can reach ca. 95.1% under visible light irradiation. • The Ag/Bi{sub 2}WO{sub 6}/CMK-3 composite has good stability and potential application prospects. - Abstract: Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi{sub 2}WO{sub 6} and CMK-3/Bi{sub 2}WO{sub 6} photocatalysts were synthesized by hydrothermal method, and then Ag/Bi{sub 2}WO{sub 6} and Ag/Bi{sub 2}WO{sub 6}/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV–vis, TEM (HR-TEM), SEM, N{sub 2} physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi{sub 2}WO{sub 6}, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi{sub 2}WO{sub 6}. The photocatalytic activity of Ag/Bi{sub 2}WO{sub 6}/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi{sub 2}WO{sub 6} and Ag/Bi{sub 2}WO{sub 6} under comparable conditions, and Ag/Bi{sub 2}WO{sub 6}/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi{sub 2}WO{sub 6} was also investigated.

  1. The study of furfural removal from aqueous solutions using activated carbon and bentonite modified with cetyltrimethylammonium bromide (CTAB, a cationic surfactant

    M Leili

    2016-01-01

    Full Text Available Background and Objectives: Furfural is one of the toxic chemical compounds used in many industries such as petrochemical, food, paper products, pharmaceutical, etc., due to having some characteristics. Therefore, furfural could be found at different concentrations in the effluent from these industries and can enter the environment. Hence, the aim of this study was the assessment the efficiency of a low cost bentonite modified with cationic surfactant in the removal of furfural from aqueous solution. Material and Methods: In this experimental study, bentonite was purchased from one of the Mines of Zanjan Province, Iran and then the efficiency of bentonite modified with the cationic surfactant CTAB (CTAB-Bent was assessed in the adsorption of furfural from aqueous solution. Activated carbon (AC was also purchased as commercial grade. Results: Under optimum conditions, the removal efficiency of AC and CTAB-Bent was about 52 and 66%, respectively. For both adsorbents used in this study, the increase of contact time and sorbent dosage resulted in increasing the removal efficiency, but the removal efficiency was decreased with the increase of furfural initial concentrations. Regarding pH, the removal efficiency was the highest in relative acidic and neutral environment, (60 and 69% for AC and CTAB-Bent respectively. The kinetics studies revealed that the highest correlation coefficients were obtained for the pseudo-second order rate kinetic model. Adsorption data from both adsorbents was also fitted with Langmuir isotherm.   Conclusion: It was found that modified bentonite with CTAB as a natural adsorbent could have better efficiencies compared with activated carbon in the furfural removal, although more contact times is needed.

  2. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC. PMID:26520818

  3. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use.

    Pal, Sukdeb; Joardar, J; Song, Joon Myong

    2006-10-01

    Modification of activated carbon (AC) by aluminum hydroxychloride (AHC), and diatomaceous earth by zinc hydroxide changed the zeta potentials of these filter media from negative to positive. The modification method is amenable to room temperature, and eliminates the essential requirement of strong base treatment for making metal hydroxide coated filter media. Solid-state MAS 27Al NMR spectra suggested the presence of Al13-mer in the AHC-treated AC. AHC-modified AC samples were further treated with silver halide, and two antibacterial compounds to prevent microbial growth on filter media. In situ precipitation of silver bromide on AC resulted in formation of nanosized AgBr crystals. Bacteria removal performances of the modified media were tested in columns. For the first time, we demonstrated that only 30 g of either AHC-treated AC (60 x 200 mesh) or nano AgBr supported AC could provide >6 log E. coli removal over approximately 1000 L when the input water had a bacterial load of 10(7) CFU/mL. The filter media were robust enough to perform even when water was passed at superficial velocities 3-10 times the typical velocity (6 cm/min) of water treatment processes. Metal leaching from the modified media was found to be less than the USEPA specified Maximum Contaminant Level. PMID:17051805

  4. A New Electrochemical Sensor Based on Task-Specific Ionic Liquids-Modified Palm Shell Activated Carbon for the Determination of Mercury in Water Samples

    Ahmed Abu Ismaiel

    2014-07-01

    Full Text Available In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II, including a relatively high selectivity; a Nernstian response to Hg (II ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s. No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II and no significant interferences from other cationic or anionic species.

  5. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  6. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni{sub 2}P supported on active carbon

    Xu, Yanli [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Huanxin [Tianjin Academy of Environmental Sciences, Tianjin 300191 (China); Wang, Kang [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Xitao, E-mail: wangxt@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Graphical abstract: - Highlights: • Ni{sub 2}P catalyst is tested in dehydrogenation of isobutane for the first time. • The effects of Cs promoter on catalytic performance of Ni2P/AC were investigated. • Cs-Ni2P/AC exhibits high activity and selectivity for isobutane dehydrogenation. - Abstract: In this article, an environmentally friendly non-noble-metal class of Cs-Ni{sub 2}P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H{sub 2}-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni{sub 2}P particles, which decreases the strength of Ni-C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni{sub 2}P/AC catalysts display much higher catalytic performance as compared to Ni{sub 2}P/AC catalyst. Cs-Ni{sub 2}P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni{sub 2}P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  7. Comparative studies on the adsorption properties of powdered activated carbon and propenoic acid modified sawdust in the treatment of secondary palm oil mill effluent

    Propenoic acid monomer was used to modify pulped cellulosic materials (sawdust). The sorption properties of the propenoic acid modified sawdust (PAMS) were compared with those of powdered activated carbon (PAC) in the tertiary treatment of palm oil mill effluent, previously clarified with iron (III) chloride plus lime (secondary effluent). The adsorption processes were effected in a fluidized bed reactor (FBR) at a pressure of 80 kilo Newton per meter square (kNm/sup -2/). Optimum amount of PAC and PAMS used for the fluidized adsorption of contaminants from the secondary palm oil mill effluent (POME) were 2.5 g/1 and 4.0 g/1, respectively. These sorption processes were found to be optimum at 10 min and 50 min for PAC and PAMS, respectively. At optimum sorption conditions, removal differentials of 28.6%/g chemical oxygen demand, 19.1%/g suspended solids, and 19.3%/g colour in favour of PAC were established. The application of optimum conditions for adsorption, for both adsorbents, to the bulk treatment of the palm oil mill effluent yielded a clear effluent with wider reuse applicability. (author)

  8. Osteoblast cell response to surface-modified carbon nanotubes

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  9. Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes

    Gong, Beini; Lu, Yonghong; Wu, Pingxiao; Huang, Zhujian; Zhu, Yajie; Dang, Zhi; Zhu, Nengwu; Lu, Guining; Huang, Junyi

    2016-03-01

    For enhanced photocatalytic performance of visible light responsive CdZnS, a series of Cd0.5Zn0.5S solid solutions were fabricated by different methods. It was found that the semiconductor obtained through the precipitation-hydrothermal method (CZS-PH) exhibited the highest photocatalytic hydrogen production rate of 2154 μmol h-1 g-1. The enhanced photocatalytic hydrogen production of CZS-PH was probably due to stacking fault formation as well as narrow bandgap, a large surface area and a small crystallite size. Based on this, carbon nanotubes modified with Cu2+ (CNTs (Cu)) were used as a cocatalyst for CZS-PH. The addition of CNTs (Cu) enhanced notably the absorption of the composites for visible light. The highest photocatalytic hydrogen production rate of the Cd0.5Zn0.5S-CNTs (Cu) composite was 2995 μmol h-1 g-1 with 1.0 wt.% of CNTs (Cu). The improvement of the photocatalytic activity by loading of CNTs (Cu) was not due to alteration of bandgap energy or surface area, and was probably attributed to suppression of the electron-hole recombination by the CNTs, with Cu2+ anchored in the interface optimizing the photogenerated electron transfer pathway between the semiconductor and CNTs. We report here the successful combination of homojunction and heterojunction in CdZnS semiconductor, which resulted in promotion of charge separation and enhanced photocatalytic activity.

  10. Activated carbons and gold

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  11. 金属盐改性活性炭吸附去除水中苯酚实验研究%Experimental study on adsorption performance of phenol in water with activated carbon by metal salts modified

    杨英; 孟红旗; 李素敏

    2012-01-01

    Activated carbon modified by Metal salts has broad application prospects in water purification. The modified activated carbons from five salts( Al^3+ , H ^+ ,Zn^2+ , Cu^2+ , Mn^7+ ) were respectively prepared using the impregnation method, and the adsorption performance of phenol solution by a filtration process was investigated with different modified activated carbon. The results showed that the adsorption performance on modified acti- vated carbons by these different salts gradually decreased in the direction: Al^3+ 〉 H ^+ 〉Zn^2+ 〉 Cu^2+〉 Mn^7+ . The filter bed of modified activated carbons had a stronger resistance impact on phenol solution. In a lower filtration rate, the purification capacity of modified activated carbon by aluminum salts achieved more than 99% in dealing with low concentrations of phenol solution, and the effluent concentration was lower than 1 mg/L. Overall. The effect of this kind activated carbon was superior to the other kind by hydrochloric acids. Therefore, in the depth of water treatment, aluminum salts can be used as one of the main direction of the ac- tivated carbon modified.%金属盐改性活性炭在净水处理中具有广阔的应用前景.利用浸渍法制备了5种(Al3+,H+,Zn2+,Cu2+,Mn7+)改性活性炭,用过滤手段对改性活性炭吸附去除苯酚的性能进行了研究.结果表明,各种改性活性炭过滤去除苯酚性能的高低顺序为:Al3+〉H+〉Zn2+〉CK〉Cu2+〉Mn7+;活性炭滤柱对苯酚原水具有较强的耐冲击性能,在较低滤速下,铝盐改性活性炭滤柱对中低质量浓度苯酚水的净化能力达99%以上,出水质量浓度低于1 mg/L,整体上优于盐酸活化炭滤柱.在净水深度处理中,铝盐可作为活性炭改性的主要方向之一.

  12. Sorption Characteristics of Mixed Molecules of Glutaraldehyde from Water on Mesoporous Acid-Amine Modified Low-Cost Activated Carbon: Mechanism, Isotherm, and Kinetics

    Mukosha Lloyd

    2015-01-01

    Full Text Available The environmental discharge of inefficiently treated waste solutions of the strong biocide glutaraldehyde (GA from hospitals has potential toxic impact on aquatic organisms. The adsorption characteristics of mixed polarized monomeric and polymeric molecules of GA from water on mesoporous acid-amine modified low-cost activated carbon (AC were investigated. It was found that the adsorption strongly depended on pH and surface chemistry. In acidic pH, the adsorption mechanism was elaborated to involve chemical sorption of mainly hydroxyl GA monomeric molecules on acidic surface groups, while in alkaline pH, the adsorption was elaborated to involve both chemical and physical sorption of GA polymeric forms having mixed functional groups (aldehyde, carboxyl, and hydroxyl on acidic and amine surface groups. The optimum pH of adsorption was about 12 with significant contribution by cooperative adsorption, elucidated in terms of hydrogen bonding and aldol condensation. Freundlich and Dubinin-Radushkevich models were fitted to isotherm data. The adsorption kinetics was dependent on initial concentration and temperature and described by the Elovich model. The adsorption was endothermic, while the intraparticle diffusion model suggested significant contribution by film diffusion. The developed low-cost AC could be used to supplement the GA alkaline deactivation process for efficient removal of residual GA aquatic toxicity.

  13. Decolourisation of dye solutions by oxidation with H{sub 2}O{sub 2} in the presence of modified activated carbons

    Santos, V.P. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: santos.vera@fe.up.pt; Pereira, M.F.R. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: fpereira@fe.up.pt; Faria, P.C.C. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: pfaria@fe.up.pt; Orfao, J.J.M. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: jjmo@fe.up.pt

    2009-03-15

    The decolourisation of dye solutions by oxidation with H{sub 2}O{sub 2}, using activated carbon as catalyst, is studied. For this purpose, three different samples, mainly differing in the respective surface chemistries, were prepared and characterized. Moreover, this work involved three pH levels, corresponding to acid, neutral and alkaline solutions, and six dyes belonging to several classes. The catalytic decolourisation tests were performed in a laboratorial batch reactor. Adsorption on activated carbon and non-catalytic peroxidation kinetic experiments were also carried out in the same reactor, in order to compare the efficiencies of the three processes. The non-catalytic reaction is usually inefficient and, typically, adsorption presents a low level of decolourisation. In these cases, the combination of activated carbon with hydrogen peroxide may significantly enhance the process, since the activated carbon catalyses the decomposition of H{sub 2}O{sub 2} into hydroxyl radicals, which are very reactive. Based on the experiments with the different activated carbon samples, which have similar physical properties, it is proved that the surface chemistry of the catalyst plays a key role, being the basic sample the most active. This is discussed considering the involvement of the free electrons on the graphene basal planes of activated carbon as active centres for the catalytic reaction. Additionally, it is shown that the decolourisation is enhanced at high pH values, and a possible explanation for this observation, based on the proposed mechanism, is given.

  14. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the

  15. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  16. CVD carbon powders modified by ball milling

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  17. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study.

    Reddaiah, K; Madhusudana Reddy, T; Venkata Ramana, D K; Subba Rao, Y

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1mol/dm(3) phosphate buffer (PBS) solution of pH7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89×10(-7)mol/dm(3) and 6.312×10(-7)mol/dm(3) respectively with a dynamic range from 1×10(-6) to 1.8×10(-5)mol/dm(3). The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. PMID:26952453

  18. The use of cheap polyaniline and melamine co-modified carbon nanotubes as active and stable catalysts for oxygen reduction reaction in alkaline medium

    In this work, an active and stable electrocatalyst for alkaline electrolyte oxygen reduction reaction was prepared by using single-wall carbon nanotubes with high specific surface area as the carbon source, and polyaniline and melamine as dual nitrogen sources via high-temperature pyrolysis process. Electrochemical experiments suggest that the metallic cobalt in the precursor can facilitate the oxygen reduction reaction to be carried out with an efficient 4-electron transfer pathway. Besides, the prepared catalyst has exhibited superior tolerance against methanol crossover effect and outstanding stability compared with commercial Pt-based catalysts in alkaline medium

  19. Modified carbon nanotubes: from nanomedicine to nanotoxicology

    Bottini, Massimo; Bottini, Nunzio

    2012-09-01

    Nanomedicine is the science of fabricating smart devices able to diagnose and treat diseases more efficiently than conventional medicine while minimizing costs, complexity and adverse effects. Carbon nanotubes (CNTs) are receiving considerable attention for biomedical applications due to their extraordinary properties. In particular, their chemical nature and high aspect ratio (ratio between the length and the diameter) make them ideal carriers to achieve delivery of high doses of therapeutic and imaging cargo to a specific site of interest. A major obstacle to the use of pristine (unmodified) CNTs in biological systems is their complete aqueous insolubility and low biocompatibility and toxicity profiles. To endow CNTs with solubility in a biological milieu, several non-covalent and covalent modification methods have been explored. Suitably modified CNTs have shown increased solubility under physiological conditions, improved biocompatibility profiles and lack of toxicity after injection in living animals. Additionally, after being loaded with cargo (small molecules, proteins, peptides or nucleic acids) they have been successfully evaluated as pharmaceutical, therapeutic and diagnostic tools.

  20. Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: Characterization, degradation activity and stability

    Polytetrafluoroethylene (PTFE) was firstly used to modify the surface characteristics of Fe-C particles and acted as catalyst to degrade 2,4-dichlorophenol (2,4-DCP) by heterogeneous electro-Fenton (EF) in near neutral pH condition. Fe-C particles before and after PTFE modification, and after 15 times consecutive degradations were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) spectrometry. The modified Fe-C exhibited a good activity for degradation of 120 mg/L 2,4-DCP in near neutral pH condition, achieving over 95% removal efficiency within 120 min under the conditions of Fe-C 6 g/L, current intensity 100 mA and initial pH 6.7. In this heterogeneous EF system, a significant synergetic effect between anodic oxidation and single Fe-C micro-electrolysis was obtained, which attributed to the effective EF oxidation at favorable acidic pH condition that triggered by anodic oxidation. 15 times consecutive runs demonstrated the 2,4-DCP degradation efficiency was stable while the iron leaching ratio was relatively low. Account for the catalytic activity, life span and inexpensive cost, the PTFE modified Fe-C was potential for industrial application as a good electro-Fenton catalyst to abate biorefractory pollutants in neutral pH condition

  1. Copper modified carbon molecular sieves for selective oxygen removal

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  2. KOH改性活性炭涂层电极的电容去离子性能研究%Research on the capacitive deionization performance of activated carbon-coated eIectrodes modified with KOH

    蒋绍阶; 马丹丹; 盛贵尚; 蒋世龙; 陈莽

    2015-01-01

    The surface modification has been made to the commercial activated carbon powder with KOH. The sur-face structure of activated carbon,before and after the modification are analyzed with BET. The capacitive deioniza-tion adsorption device is established with activated carbon-coated electrodes. The deionization effect of the modified electrode is researched. The research shows that after being modified with KOH ,the specific surface area of activa-ted carbons is increased from 519.25 m2/g to 975.07 m2/g;it means that its increase in percentage is 87.78%. The percentage of medium-size pore volume is 48.28%higher than the total pore volume. The pore structure and pore-size distribution are more advantageous for Na+and Cl-to get through,raising the electrode adsorption rate.%用KOH对市售的粉末活性炭进行表面改性。采用BET分析改性前后活性炭的表面结构,并采用活性炭涂层电极构建电容去离子吸附装置,研究改性后电极的去离子效果。研究表明:经过KOH改性后,活性炭的比表面积从519.25 m2/g增加到975.07 m2/g,提高了87.78%,中孔孔容占总孔孔容的百分比提高了48.28%,改性后活性炭的孔隙结构和孔径的分布更有利于溶液中的Na+和Cl-通过,提高了电极的吸附速率。

  3. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  4. Inexpensive Ipomoea aquatica Biomass-Modified Carbon Black as an Active Pt-Free Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium

    Yaqiong Zhang; Chaozhong Guo; Zili Ma; Huijuan Wu; Changguo Chen

    2015-01-01

    The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR) is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe–N/C electrocatalyst derived from the co-pyrolysis of Ipomoea aquatica biomass, carbon black (Vulcan XC-72R) and FeCl3·6H2O at 900 °C under nitrogen atmosphere. Electrochemical results show that the Fe–N/C catalyst exhibits higher electr...

  5. Inexpensive Ipomoea aquatica Biomass-Modified Carbon Black as an Active Pt-Free Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium

    Yaqiong Zhang

    2015-09-01

    Full Text Available The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe–N/C electrocatalyst derived from the co-pyrolysis of Ipomoea aquatica biomass, carbon black (Vulcan XC-72R and FeCl3·6H2O at 900 °C under nitrogen atmosphere. Electrochemical results show that the Fe–N/C catalyst exhibits higher electrocatalytic activity for ORR, longer durability and higher tolerance to methanol compared to a commercial Pt/C catalyst (40 wt % in an alkaline medium. In particular, Fe–N/C presents an onset potential of 0.05 V (vs. Hg/HgO for ORR in an alkaline medium, with an electron transfer number (n of ~3.90, which is close to that of Pt/C. Our results confirm that the catalyst derived from I. aquatica and carbon black is a promising non-noble metal catalyst as an alternative to commercial Pt/C catalysts.

  6. SELECTIVE VOLTAMMETRIC DETERMINATION OF HYDROXYPURINS ON ELECTRODE MODIFIED BY CARBON NANOTUBES

    Shaidarova, L. G.; Chelnokova, I. A.; Mahmutova, G. F.; Degteva, M. A.; Gedmina, A. V.; Budnikov, H. C.

    2014-01-01

    Carbon nanotubes (CNT) deposited on the surface of glassy carbon electrode show catalytic activity in the oxidation of uric acid, xanthine and hypoxanthine that is exhibited in decreasing overvoltage and increasing oxidation current of hydroxypurins. The method of simultaneous voltammetric determination of uric acid, xanthine and hypoxanthine at the electrode modified by carbon nanotubes is suggested. The linear dependence of analytical signal from substrates concentration is observed in the ...

  7. Active containment systems incorporating modified pillared clays

    Lundie, P. [Envirotech (Scotland) Ltd., Aberdeen (United Kingdom)]|[Environmental Resource Industries Disposal Pty Ltd., Perth (Australia); McLeod, N. [Envirotreat Ltd., Kingswinford (United Kingdom)

    1997-12-31

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation.

  8. Hydrogenation catalyst based on modified carbon nanofibers

    The aim of this work was to study the palladium-carboxylated carbon nanofibers (CNF) as a catalyst for the hydrogenation of nitrobenzene model reaction. It is shown that the efficiency of the catalyst obtained more than 6 times higher than that of the industrial counterpart (Pd/C).

  9. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber.

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m(2) to 87.79 mW/m(2). The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  10. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  11. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-05-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery.

  12. Electrospinning Directly Synthesized Porous TiO2 Nanofibers Modified by Graphitic Carbon Nitride Sheets for Enhanced Photocatalytic Degradation Activity under Solar Light Irradiation.

    Adhikari, Surya Prasad; Awasthi, Ganesh Prasad; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-06-21

    We report a direct approach to the fabrication of a composite made of porous TiO2 nanofibers (NFs) and graphitic carbon nitride (g-C3N4) sheets, by means of an angled two-nozzle electrospinning combined with calcination process. Different wt % amounts of g-C3N4 particles in a polymer solution from one nozzle and TiO2 precursors containing the same polymer solution from another nozzle were electrospun and deposited on the collector. Structural characterizations confirm a well-defined morphology of the TiO2/g-C3N4 composite in which the TiO2 NFs are uniformly attached on the g-C3N4 sheet. This proper attachment of TiO2 NFs on the g-C3N4 sheets occurred during calcination. The prepared composites showed the enhanced photocatalytic activity over the photodegradation of rhodamine B and reactive black 5 under natural sunlight. Here, the synergistic effect between the g-C3N4 sheets and the TiO2 NFs having anisotropic properties enhanced the photogenerated electron-hole pair separation and migration, which was confirmed by the measurement of photoluminescence spectra, cyclic voltammograms, and electrochemical impedance spectra. The direct synthesis approach that is established here for such kinds of sheetlike structure and porous NFs composites could provide new insights for the design of high-performance energy conversion catalysts. PMID:27254544

  13. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  14. Dewatering Peat With Activated Carbon

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  15. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  16. Modified Multiwall Carbon Nanotubes with Nanolumps for Nanocomposite Reinforcement

    Wen, J. G.; Lao, J. Y.; Li, W. Z.; Ren, Z. F.; Department Of Physics Team

    2002-03-01

    The quality of the bonding between a polymer matrix and carbon nanotubes is critical in the development of carbon nanotube reinforced polymer composites. In this paper, we modified multiwall carbon nanotubes by growing boron carbide (a covalent bonding compound) nanolumps on carbon nanotubes to enhance load transfer from matrix to carbon nanotubes. Experimental results demonstrated that boron carbide nanolumps with the required morphology were formed on multiwall carbon nanotubes by a solid state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. We also found that inner layers of multiwall carbon nanotubes are bonded to boron carbide nanolumps probably through covalent bonding. Therefore, these multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal nano-scale reinforcement to improve load transfer between carbon nanotubes and the polymer matrix. For comparison, other nanolumps such as crystalline MgO, amorphous B2O3 are also grown on nanotubes.

  17. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  18. Conductive hydrophobic hybrid textiles modified with carbon nanotubes

    Kowalczyk, D.; Brzeziński, S.; Makowski, T.; Fortuniak, W.

    2015-12-01

    The paper presents the results of modifying and testing modern hybrid polyester-cotton woven fabrics with deposited multi-wall carbon nanotubes and imparted hydrophobicity. The effect of the carbon nanotubes deposited on these fabrics on their conductive properties and hydrophobicity has been assessed. The electro-conductive and hydrophobic composite fabrics obtained in this way, being light, elastic and resistant to mechanical effects, make it possible to be widely used in various industrial fields.

  19. Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes

    Tingliang Xia; Hongmei Bi; Keying Shi

    2010-05-01

    The NO electro-oxidation was investigated at various single-wall carbon nanotubes (SWCNTs) modified electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with the glassy carbon electrode, the SWCNTs modified electrodes possess higher electro-catalytic activity to NO electro-oxidation. CV results indicate that the peak current density of NO electro-oxidation at the SWCNT-COOH (SWCNTs with carboxyl groups) modified electrode is the highest and the peak potential is the most negative among the four kinds of electrodes. EIS indicates that the charge transfer resistance of NO electro-oxidation at the SWCNT-COOH modified electrode is the least. The determined factors (charge transfer and mass transfer of diffusion) of NO electro-oxidation are different in varied potential region. The mechanism of NO electro-oxidation reaction at the SWCNTs modified electrodes is also discussed.

  20. Low contact resistance carbon thin film modified current collectors for lithium Ion batteries

    Carbon films have been synthesized by chemical vapor deposition (CVD) on AISI 304 stainless steel (304SS) sheets with various C2H2/H2 flow ratios at 810 °C. The films exhibit three different morphologies and structures: filament, sphere and transition types at different C2H2/H2 flow ratios, as characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. It was found that the degree of graphitization increased with decreasing C2H2/H2 flow ratios. The carbon film modified 304SS sheets were used as cathode current collectors and coated with an active layer containing LiMn2O4 active materials, conducting additives and binders for lithium ion batteries. The electrochemical properties of these LiMn2O4 cells with bare and carbon film modified current collectors were investigated. Under high current operation, such as 3000 mA/g, the capacity of the LiMn2O4 cell with transition type carbon film modified current collector is 55% higher than the cell with bare current collector. The enhanced performances of high current density charge–discharge cycles can be attributed to the reduced contact resistance and improved charge transfer efficiency provided by the transition type carbon film modified current collectors. - Highlights: • Carbon films were synthesized by CVD on 304SS sheets. • The carbon film modified 304SS sheets were used as cathode current collectors. • The carbon film modified current collectors improved charge transfer efficiency

  1. Adsorption of uranium with multiwall carbon nanotubes modified by formaldehyde

    Purified multiwall carbon nanotubes (MWCNTs) were modified with formaldehyde and the dispersibility of MWCNTs was greatly improved after modification. The modified MWCNTs were used to study the adsorption of uranium from aqueous solution. pH, contact time, temperature, initial concentration of uranium and modified MWCNTs concentrations were investigated to estimate the adsorptive properties. The results show that uranium adsorption percentage strongly depends on the pH, initial concentration of uranium and modified MWCNTs content, and is slightly influenced by contact time, temperature and ionic strength. The adsorptivity increases over the range of pH=2.0-7.0. The maximum adsorptivity is 46.44 mg/g as the initial concentration of uranium reaches 50 μg/mL. The equilibrium data obey both Langmuir and Freundlich isotherms well, and the maximal theoretical adsorption capacity is 55.87 mg/g for the modified MWCNTs. (authors)

  2. Modified carbon nanotubes and methods of forming carbon nanotubes

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  3. Copper nanoparticle modified carbon electrode for determination of dopamine

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  4. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  5. The immobilization of chloroperoxidase on gold and carbon nanotubes modified electrode with enhanced catalytic activity%CPO在金-碳纳米管修饰电极上的固定化及应用

    成佳; 穆世磊; 张红霞; 吴霞琴

    2011-01-01

    应用电化学方法在碳纳米管修饰的玻碳电极上沉积金,继而固定氯过氧化物酶(CPO),制得的CPO-Au/SWNT/GC修饰电极的循环伏安曲线上呈现一对对称的氧化还原电流峰,说明CPO在金-碳纳米管复合修饰膜上可进行直接的电子传递,并且是一个受吸附控制的准可逆电极过程.循环伏安行为与溶液的pH值密切相关,是典型的一电子一质子反应.修饰电极性能稳定,对氧的电化学还原具有很好的催化作用,可应用于原位产生过氧化氢下CPO催化的有机合成反应.%The gold nano-particles were electrochemically deposited onto the single wall carbon nanotubes (SWNTs) modified glassy carbon electrode (GCE) ,then the Chloroporoxidase (CPO) was immobilized on it. A pair of well-defined reduction and oxidation peaks in the cyclic voltammogram were observed at the CPO-Au/SWNTs/GC modified electrode, indicating that the direct electron transfer reaction between CPO and Au-SWNTs composite modified electrode occurred and followed by a quasi-reversible process controlled by surface adsorption. The results of cyclic voltammetry showed that the electrode reaction of CPO displayed a good relationship with pH of the solution,corresponding to a process of one electron and one proton reaction. The modified electrode showed a good stanbility and excellent catalytic activity for electrochemical reduction of O2 could be used for catalyse organic synthesis reaction with on-line generated hydrogen peroxide

  6. Microwave-assisted regeneration of activated carbon.

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons. PMID:22728787

  7. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  8. Activated carbon for incinerator uses

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  9. Low temperature electrical transport in modified carbon nanotube fibres

    Carbon nanotube fibres are a new class of materials highly promising for many electrical/electronic applications. The range of applications could be extended through the modification of their electrical transport properties by inclusions of foreign materials. However, the changes in electrical transport are often difficult to assess. Here, we propose that the analysis of resistance–temperature dependencies of modified fibres supported by a recently developed theoretical model may aid research in this area and accelerate real life applications of the fibres

  10. PEDOT Modified Carbon Paste Microelectrodes for Scanning Electrochemical Microscopy

    Csoka, Balazs; Mekhalif, Zineb

    2011-01-01

    Only one measuring tip was used in three different modes of operation of the Scanning Electrochemical Microscope (feed-back mode, generation-collection mode, potentiometry) to collect chemical information about copper targets. The tip was formed from 5 and 25 μm diameter conventional platinum microdisk electrode by etching a cavity, then electrochemically depositing poly(3,4-ethylenedioxythiophene) (PEDOT) layer doped with hexacyanoferrate and finally filling with modified carbon ...

  11. Behavior of phenol adsorption on thermal modified activated carbon☆

    Dengfeng Zhang; Peili Huo; Wei Liu

    2016-01-01

    Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon (AC) samples after thermal modification were prepared by using muffle furnace. The phenol ad-sorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC sam-ples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the exper-imental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach 144.93 mg·g−1 which is higher than that of the raw sample, i.e. 119.53 mg·g−1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.

  12. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  13. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  14. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M-1. The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  15. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of...

  16. Rod-shape porous carbon derived from aniline modified lignin for symmetric supercapacitors

    Wang, Keliang; Cao, Yuhe; Wang, Xiaomin; Castro, Maria Andrea; Luo, Bing; Gu, Zhengrong; Liu, Jun; Hoefelmeyer, James D.; Fan, Qihua

    2016-03-01

    Rod-shape porous carbon was prepared from aniline modified lignin via KOH activation and used as electrode materials for supercapacitors. The specific surface area, pore size and shape could be modulated by the carbonization temperature, which significantly affected the electrochemical performance. Unique rod-shape carbon with massive pores and a high BET surface area of 2265 m2 g-1 were obtained at 700 °C in contrast to irregular morphology created at other carbonization temperatures. In 6 mol L-1 KOH electrolyte, a specific capacitance of 336 F g-1, small resistance of 0.9 Ω and stable charge/discharge at current density of 1 A g-1 after 1, 000 cycles were achieved using rod-shape porous carbon as electrodes in an electrical double layer capacitor.

  17. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings. PMID:21733541

  18. Extraction of ultra-traces of lead, chromium and copper using ruthenium nanoparticles loaded on activated carbon and modified with N,N-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine

    We describe a novel adsorbent for effective extraction of lead(II), chromium(III) and copper(II). It consists of ruthenium nanoparticles loaded on activated carbon that were modified with N,N-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine. The sorbent was applied to solid-phase extraction combined with ionic-liquid based dispersive liquid-liquid microextraction method. The effects of parameters such as amounts of adsorbent, type and volume of elution solvent, type and volume of extraction and dispersing solvents, etc. were evaluated. The ions were then quantified by flame atomic absorption spectrometry. Under the best conditions, limits of detection, linear dynamic ranges and enrichment factors for these ions ranged from 0.02 to 0.09 μg L−1, 0.08 to 45 μg L−1 and 328 to 356, respectively. The results showed that the method, in addition to its sensitivity, selectivity and good enrichment factor, is simple and efficient. It was applied to the determination of the three ions in blood plasma, food (broccoli, coriander and spinach), and in (spiked) samples of tap, spring and river water. (author)

  19. Natural radiation exposure modified by human activities

    We are now living in the radiation environment modified by our technology. It is usually called 'Technologically Enhanced Natural Radiation' and have been discussed in the UNSCEAR Reports as an important source of exposure. The terrestrial radionuclide concentrations as well as the intensity of cosmic rays are considered to have been constant after our ancestors came down from trees and started walking on their two feet. However, we have been changing our environment to be more comfortable for our life and consequently ambient radiation levels are nomore what used to be. In this paper exposures due to natural radiation modified by our following activities are discussed: housing, balneology, cave excursion, mountain climbing, skiing, swimming, smoking and usage of mineral water, well water, coal, natural gas, phosphate rocks and minerals. In the ICRP Publication No. 39, it is clearly mentioned that even natural radiation should be controlled as far as it is controllable. We have to pay more attention to our activities not to enhance the exposure due to unnecessary, avoidable radiation. (author)

  20. DSC Study on Polypropylene Modified with Calcium Carbonate Nanoparticles

    The exposure of polypropylene containing various concentrations of calcium carbonate nanoparticles was performed in air and water. The radiolysis products of water determine different behaviour of polymer substrate. The irradiation effect induced on polymer and the contribution of nanoparticles to the scavenging of oxygenated products that were created during γ exposure were investigated by DSC measurements over the temperature range from 340-400 K, the usual temperatures for thermal overcharge. Two kinds of carbonate particles, one type is represented by unmodified filler, while the second type is the superficially modified with stearic acid. The covering of particle surface with stearic acid confers to them a different ability in the abstraction of degradation products formed in irradiated isotactic polypropylene

  1. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  2. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  3. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  4. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  5. Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity

    Visible-light-activated C-modified anatase titania films have been synthesized from TiCl4 and carbonic ink by using the sol-gel route. The synthesized photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The modifying carbon not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared films into visible region. The results of visible-light-induced degradation of methyl orange (MO) show that the C-modified titania films exhibits much higher photocatalytic activities than that of pure titania film prepared at the same conditions. - Graphical abstract: Carbon modifying not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared titania films into visible region

  6. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue

    Shu Ping Zhang; Lian Gang Shan; Zhen Ran Tian; Yi Zheng; Li Yi Shi; Deng Song Zhang

    2008-01-01

    The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes(MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase(ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected byusing i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrodewith 0.01U activity value and the detection limit of carbaryl is 10-12 g L-1 so the enzyme biosensor showed good properties forpesticides residue detection.2008 Shu Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  7. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Shuping Zhang; Shaoyang Li; Jie Ma; Fei Xiong; Song Qu

    2013-01-01

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran i...

  8. Electrochemical determination of phenol at natural phosphate modified carbon paste electrode

    Tarik EL OUAFY; Abdelilah CHTAINI; Hassan OULFAJRITE; Rachida NAJIH

    2014-01-01

    A Cyclic voltammetry (VC) and Square Wave Voltammetry methods for the determination of trace amounts of phenol at carbon paste electrode modified with Natural Phosphate (NP-CPE) is proposed. The results showed that the NP-CPE exhibited excellent electro catalytic activity to phenol. The concentration of phenol and measuring solution pH was investigated. This electrochemical sensor shows an excellent performance for detecting phenol. The sensor was successfully applied to the determination ...

  9. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane

    J. Zhang; Liu, X; Blume, R.; Zhang, A; Schlögl, R.; Su, D.

    2008-01-01

    Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with modified surface functionality efficiently catalyze the oxidative dehydrogenation of n-butane to butenes, especially butadiene. For low O2/...

  10. Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes.

    Patil, Amol V; Beker, Anne F; Wiertz, Frank G M; Heering, Hendrik A; Coslovich, Giacomo; Vlijm, Rifka; Oosterkamp, Tjerk H

    2010-05-01

    Electrochemical nanoprobes were fabricated from polymer insulated multiwalled carbon nanotube modified tapping mode atomic force microscope probes. An electrochemically active length of carbon nanotube was exposed by laser ablation of the insulating polymer. Characterization of these probes is done by cyclic voltammetry of ferrocenemethanol in an aqueous solution and by finite element analysis. The fabricated nanoelectrodes were found to be stable and yielded an interfacial electron transfer rate constant (k(0)) of 1.073 +/- 0.36 cm s(-1) for ferrocenemethanol. PMID:20648318

  11. Carbon nanotubes/pentacyaneferrate-modified chitosan nanocomposites platforms for reagentless glucose biosensing.

    Parra-Alfambra, A M; Casero, E; Ruiz, M A; Vázquez, L; Pariente, F; Lorenzo, E

    2011-08-01

    The design, characterization and applicability of a nanostructured biosensor platform are described. The biosensor is developed through the immobilization of three components: a polymeric chitosan network previously modified with a redox mediator (denoted as PCF-Pyr-Ch), an enzyme (glucose oxidase, chosen as a model) and carbon nanotubes onto a solid glassy carbon electrode (C). In order to assess the influence of the nanomaterial in the performance of the resulting analytical device, a second biosensor, free of carbon nanotubes, is developed. The characterization of both biosensing platforms was performed in aqueous phosphate buffer solutions using atomic force microscopy technique. In the presence of glucose, both systems exhibit a clear electrocatalytic activity, and glucose could be amperometrically determined at +0.35 V versus Ag/AgCl. The performance of both biosensors was evaluated in terms of sensitivity, detection limit and linear response range. Finally, the enhancement of the analytical response induced by the presence of carbon nanotubes was evaluated. PMID:21633839

  12. PROGRESS ON ACTIVATED CARBON FIBERS

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  13. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  14. Antitumor activity of chemical modified natural compounds

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  15. The mechanical property and resistance ability to atomic oxygen corrosion of boron modified carbon/carbon composites

    Before being densified by chemical vapor deposition, carbon preform was modified by boron. The mechanical property and resistance to atomic oxygen corrosion of carbon/carbon composites were investigated. The results show that fiber surface modification induces the deposition of high texture pyrocarbon and a moderate interfacial transition layer between carbon fibers and matrix carbon. After being modified by boron, the flexural and compressive strength of carbon/carbon composite is significantly increased. The bending curve has been adjusted with obvious pseudo-ductility phenomenon. The resistance ability to atomic oxygen corrosion is improved significantly. The mass loss and corrosion degree of the modified composite are lower than that of pure carbon/carbon composite

  16. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  17. Modified carbon nanoparticle-chitosan film electrodes: Physisorption versus chemisorption

    Rassaei, Liza; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, Department of Environmental Sciences, University of Kuopio, Patteristonkatu 1, 50101 Mikkeli (Finland); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)

    2008-08-01

    Surface functionalised carbon nanoparticles of ca. 8 nm diameter co-assemble with chitosan into stable thin film electrodes at glassy carbon surfaces. Robust electrodes for application in sensing or electrocatalysis are obtained in a simple solvent evaporation process. The ratio of chitosan binder backbone to carbon nanoparticle conductor determines the properties of the resulting films. Chitosan (a poly-D-glucosamine) has a dual effect (i) as the binder for the mesoporous carbon composite structure and (ii) as binding site for redox active probes. Physisorption due to the positively charged ammonium group (pK{sub A} {approx} 6.5) occurs, for example, with anionic indigo carmine (a reversible 2e{sup -}-2H{sup +} reduction system in aqueous media). Chemisorption at the amine functionalities is demonstrated with 2-bromo-methyl-anthraquinone in acetonitrile (resulting in a reversible 2e{sup -}-2H{sup +} anthraquinone reduction system in aqueous media). Redox processes within the carbon nanoparticle-chitosan films are studied and at sufficiently high scan rates diffusion of protons (buffer concentration depended) is shown to be rate limiting. The chemisorption process provides a much more stable interfacial redox system with a characteristic and stable pH response over a pH 2-12 range. Chemisorption and physisorption can be employed simultaneously in a complementary binding process. (author)

  18. Preparation of very pure active carbon

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  19. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates

  20. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  1. IMPROVEMENT OF EFFICIENCY OF GREY CAST IRON MODIFICATION DUE TO INTRODUCTION OF CARBON MODIFIER INTO COMPOSITION

    G. F. Lovshenko

    2016-02-01

    Full Text Available It is shown that introduction carbon into modifier composition and increase of its dispersion degree due to spatter on high-melting particles or due to mechanical alloying increases modifier efficiency for grey cast iron.

  2. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  3. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  4. Photoconductivity of Activated Carbon Fibers

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  5. Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticle onto carbon nanospheres via spontaneous polymerization of dopamine

    We have developed a simple and efficient method for the enhanced loading of silver nanoparticles onto carbon nanospheres, and how this method can be used to design an electrochemical sensor for hydrogen peroxide (HP). A glassy carbon electrode was modified with hemoglobin, carbon nanospheres, and by enhanced loading of silver nanoparticles onto the carbon nanospheres via spontaneous polymerization of dopamine. The hemoglobin exhibits a remarkable electrocatalytic activity for the reduction of HP. The electrochemical response to HP is linear range in the 1.0-147.0 μM concentration range, with a detection limit of 0.3 μM at a signal-to-noise ratio of 3. (author)

  6. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  7. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  8. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  9. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture

    The dolomite modified with acetic acid solution was proposed as a CO2 sorbent for calcination/carbonation cycles. The carbonation conversions for modified and original dolomites in a twin fixed-bed reactor system with increasing the numbers of cycles were investigated. The carbonation temperature in the range of 630 C-700 C is beneficial to the carbonation reaction of modified dolomite. The carbonation conversion for modified dolomite is significantly higher than that for original sorbent at the same reaction conditions with increasing numbers of reaction cycles. The modified dolomite exhibits a carbonation conversion of 0.6 after 20 cycles, while the unmodified sorbent shows a conversion of 0.26 at the same reaction conditions, which is calcined at 920 C and carbonated at 650 C. At the high calcination temperature over 920 C modified dolomite can maintain much higher conversion than unmodified sorbent. The mean grain size of CaO derived from modified dolomite is smaller than that from original sorbent with increasing numbers of reaction cycles. The calcined modified dolomite possesses greater surface area and pore volume than calcined original sorbent during the multiple cycles. The pore volume and pore area distributions for calcined modified dolomite are also superior to those for calcined unmodified sorbent during the looping cycle. The modified dolomite is proved as a new and promising type of regenerable CO2 sorbent for industrial applications. (author)

  10. Behavior of pure and modified carbon/carbon composites in atomic oxygen environment

    Xiao-chong Liu; Lai-fei Cheng; Li-tong Zhang; Xin-gang Luan; Hui Mei

    2014-01-01

    Atomic oxygen (AO) is considered the most erosive particle to spacecraft materials in low earth orbit (LEO). Carbon fiber, car-bon/carbon (C/C), and some modified C/C composites were exposed to a simulated AO environment to investigate their behaviors in LEO. Scanning electron microscopy (SEM), AO erosion rate calculation, and mechanical property testing were used to characterize the material properties. Results show that the carbon fiber and C/C specimens undergo significant degradation under the AO bombing. According to the effects of AO on C/C-SiC and CVD-SiC-coated C/C, a condensed CVD-SiC coat is a feasible approach to protect C/C composites from AO degradation.

  11. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  12. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  13. Sensitive Detection of Haloperidol and Hydroxyzine at Multi-Walled Carbon Nanotubes-Modified Glassy Carbon Electrodes

    Jilie Kong

    2008-03-01

    Full Text Available Haloperidol (i.e. HPD and hydroxyzine (i.e. HXY, two effective and important tranquilizers with low redox activity, were found to generate an irreversible anodic peak at about +0.86 V (vs. SCE or two anodic peaks at about +0.83 and +0.91 V in 0.05 M NaH2PO4-Na2HPO4 (pH=7.0 buffer solution with a multi-walled carbon nanotubes-modified glassy carbon electrode (i.e. MWNTs/GC, respectively. Their sensitive and quantitative measurement based on the first two anodic peaks was established under the optimum conditions. The anodic peak current was linear to HPD and HXY concentration from 1×10-7 to 2.5 ×10-5 M and 5×10-8 to 2.5 ×10-5 M, the detection limits obtained were 8×10-9 and 5×10-9 M, separately. The modified electrode exhibited some excellent characteristics including easy regeneration, high stability, good reproducibility and selectivity. The method proposed was successfully applied to the detection of HPD and HXY in drug tablets and proved to be reliable compared with ultraviolet spectrophotometry. The modified electrode was characterized by electrochemical methods.

  14. Influence of nano-dispersive modified additive on cement activity

    Sazonova, Natalya; Badenikov, Artem; Skripnikova, Nelli; Ivanova, Elizaveta

    2016-01-01

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4-6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C3S and β-C2S.

  15. Influence of nano-dispersive modified additive on cement activity

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  16. Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates

    Jahan-Bakhsh Raoof; Sayed Reza Hosseini; Seyedeh Zeinab Mousavi-Sani

    2015-01-01

    A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2− anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.

  17. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified

  18. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  19. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests

    Berenguer, Erika; Gardner, Toby A.; Ferreira, Joice; Aragão, Luiz E. O. C.; Camargo, Plínio B.; Cerri, Carlos E.; Durigan, Mariana; Oliveira Junior, Raimundo C.; Vieira, Ima C. G.; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  20. Grafting of activated carbon cloths for selective adsorption

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  1. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  2. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  3. Surface modified carbon nanoparticle papers and applications on polymer composites

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach

  4. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M. A.

    2008-01-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ...

  5. Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode.

    Somé, Issa Touridomon; Sakira, Abdoul Karim; Mertens, Dominique; Ronkart, Sebastien N; Kauffmann, Jean-Michel

    2016-05-15

    Mercury (II) measurements were performed thanks to a newly developed electrochemical method using a disposable gold modified screen printed carbon electrode. The method has a wide dynamic range (1-100µg/L), a good accuracy and a limit of detection in compliance with WHO standards. The application of the method to several groundwater samples made it possible to identify, for the first time, mercury content higher than the recommended WHO standard value in a gold mining activity area in the northern part of Burkina Faso. The accuracy of the assay was checked by ICP/MS. PMID:26992529

  6. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  7. Learning to Discern Images Modifies Neural Activity

    Gregor Rainer; Han Lee; Logothetis, Nikos K.

    2004-01-01

    One of the most remarkable capabilities of the adult brain is its ability to learn and continuously adapt to an ever-changing environment. While many studies have documented how learning improves the perception and identification of visual stimuli, relatively little is known about how it modifies the underlying neural mechanisms. We trained monkeys to identify natural images that were degraded by interpolation with visual noise. We found that learning led to an improvement in monkeys' ability...

  8. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  9. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    Ghorbani-Bidkorbeh, Fatemeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of)

    2010-03-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 muL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 muM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 muM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  10. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine

    This work reports the electrochemical response of the complex between dsDNA and PEI formed in solution and at the surface of glassy carbon electrodes (GCE) modified with a dispersion of multi-walled carbon nanotubes in polyethylenimine (CNT-PEI). Scanning Electron Microscopy and Scanning Electrochemical Microscopy demonstrate that the dispersion covers the whole surface of the electrode although there are areas with higher density of CNT and, consequently, with higher electrochemical reactivity. The adsorption of DNA at GCE/CNT-PEI is fast and it is mainly driven by electrostatic forces. A clear oxidation signal is obtained either for dsDNA or a heterooligonucleotide of 21 bases (oligoY) at potentials smaller than those for the oxidation at bare GCE. The comparison of the behavior of DNA before and after thermal treatment demonstrated that the electrochemical response highly depends on the 3D structure of the nucleic acid.

  11. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  12. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes

    Yuan Zhuobin

    2003-12-01

    Full Text Available The direct electrochemistry of glucose oxidase (GOD was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs. A pair of welldefined redox peaks was obtained for GOD with the reduction peak potential at –0.465 V and a peak potential separation of 23 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that GOD adsorbed onto the SWNT surfaces. The redox wave corresponds to the redox center of the flavin adenine dinucleotide(FAD of the GOD adsorbate. The electron transfer rate of GOD redox reaction was greatly enhanced at the SWNT-modified electrode. The peak potential was shown to be pH dependent. Verified by spectral methods, the specific enzyme activity of GOD adsorbates at the SWNTs appears to be retained.

  13. Determination of various insecticides and pharmaceuticals using differently modified glassy carbon electrodes

    FERENC F. GAÁL

    2007-12-01

    Full Text Available The applicability of differently modified glassy carbon (GC electrodes for direct or indirect determinations of various physiologically active compounds (insecticides and pharmaceuticals in different formulations and some real samples was investigated. Samples of selected insecticides from the group of neonicotinoids with nitroguanidine (thiamethoxam and imidacloprid, cyanoimine (acetamiprid and nitromethilene (nitenpyram fragments, prepared in an appropriate manner, were determined by voltammetry on bare and surface-modified GC electrodes, while in the case of pharmaceuticals such as Trodon and Akineton, the chloride anion titration was followed using bare GC and phosphorus doped (P–GC electrodes. The P–GC was also used to monitor the chloride content in the photocatalytic degradation of the (4-chloro-2-methylphenoxyacetic acid herbicide. It was found that apart from the nature of the electrode material, the analyte and supporting electrolyte, as well as the pretreatment of the electrode surface essentially influences the applicability of the employed sensors.

  14. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. PMID:26686031

  15. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  16. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-07-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency. PMID:26878687

  17. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples. PMID:24705875

  18. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  19. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery

    Porous graphite felts have been used as electrode materials for all-vanadium redox flow batteries due to their wide operating potential range, stability as both an anode and a cathode, and availability in high surface area. In this paper, the carbon felt was modified by pyrolysis of Ir reduced from H2IrCl6. ac impedance and steady-state polarization measurements showed that the Ir-modified materials have improved activity and lowered overpotential of the desired V(IV)/V(V) redox process. Ir-modification of carbon felt enhanced the electro-conductivity of electrode materials. The Ir-material, when coated on the graphite felt electrode surface, lowered the cell internal resistance. A test cell was assembled with the Ir-modified carbon felt as the activation layer of the positive electrode, the unmodified raw felt as the activation layer of the negative electrode. At an operating current density of 20 mA cm-2, a voltage efficiency of 87.5% was achieved. The resistance of the cell using Ir-modified felt decreased 25% compared to the cell using non-modified felt

  20. 改性活性炭与 H2 O2联用去除三氯酚的动力学分析%Decomposition kinetics of trichlorophenol by modified activated carbon combined with hydrogen peroxide

    刘振中; 邓慧萍; 陶美君

    2014-01-01

    Fenton like system was formed by modified activated carbon combined with H2 O2 ,the removal of 2, 4,6-trichlorophenol (TCP)were analysed.The reaction kinetics was described by pseudo-first-order kinetic model and second-order kinetic model.It was found that pseudo-first-order kinetic model was effective.Different initial H2 O2 concentration,coefficient k of reaction kinetics was different.TCP decomposition was directly in-fluenced by •OH concentration catalysed with H2 O2 .With H2 O2 concentration increased,TCP decomposition increased.While H2 O2 concentration further increased,coefficient k decreased.Langmuir-Hinshelwood model was adopted to analyse TCP decomposition process in order to study TCP removal mechanism.When H2 O2 con-centration was 0.4 and 4 mg/L,the related coefficient was 0.943 and 0.989 respectively fitted by [TCP]and 1/kapp.It was good dependency that the interaction of adsorption and oxidation reaction caused by •OH between TCP and GACF1 M3 decided the whole reaction rate.%采用负载铁锰氧化物的活性炭与 H2 O2联用形成类芬顿系统,对2,4,6-三氯酚进行去除分析.分别采用拟一级动力学与二级动力学对反应过程进行拟合,发现TCP的降解采用拟一级反应动力学拟合效果更佳.H2 O2的初始浓度不同,动力学系数k 值也不相同.由于 TCP 的降解与催化 H 2 O 2所产生的OH•浓度直接相关,随着 H2 O2浓度的增加,TCP 的降解相应增加.然而,当 H2 O2的浓度继续增加时,k的值反而呈下降趋势.为进一步研究 TCP 降解机理,采用Langmuir-Hinshelwood模型对其降解过程进行分析,发现对[TCP]-1/kapp进行拟合,当 H2 O2浓度分别为0.4和4 mg/L 时,其相关系数为0.943和0.989,即相关性较好.表明 TCP 和 GACF1 M3表面的吸附和由羟基引起的氧化反应的相互作用决定整个反应的速率.

  1. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    Refat Abdel-Hamid

    2015-10-01

    Full Text Available A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA. The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV and characterized using CV and scanning electron microscope (SEM. The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3. The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality.

  2. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  3. Third generation biosensor based on myoglobin-TiO2/MWCNTs modified glassy carbon electrode

    Lei Zhang; Dan Bi Tian; Jun Jie Zhu

    2008-01-01

    TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nano-composite may be a promising material for myoglobin immobilization in view of its high biocompatibility and large surface. The glassy carbon electrode modified with Mb-TiO2/MWCNTs films exhibited a pair of well defined, stable and nearly reversible cycle voltammetric peaks. The electron transfer between Mb and electrode surface, Ks of 3.08 s-1, was greatly facilitated in the TiO2/MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were studied, the apparent Michaelis-Menten constant is calculated to be 83.10 μmol/L, which shows a large catalytic activity of Mb in the TiO2/MWCNTs film to H2O2.

  4. Volumetric and superficial characterization of carbon activated

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  5. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin

    Zhu Zhihong [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Xiaoying; Zhuang Xiaoming [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zeng Yan [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Wei, E-mail: sunwei@qust.edu.c [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Huang Xintang [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China)

    2010-11-01

    The single-walled carbon nanotubes (SWCNTs) modified carbon ionic liquid electrode (CILE) was designed and further used for the voltammetric detection of rutin in this paper. CILE was prepared by mixing graphite powder with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate and liquid paraffin together. Based on the interaction of SWCNTs with IL present on the electrode surface, a stable SWCNTs film was formed on the CILE to get a modified electrode denoted as SWCNTs/CILE. The characteristics of SWCNTs/CILE were recorded by different methods including cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The electrochemical behaviors of rutin on the SWCNTs/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. Due to the specific interface provided by the SWCNTs-IL film, the electrochemical response of rutin was greatly enhanced with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The oxidation peak currents showed good linear relationship with the rutin concentration in the range from 1.0 x 10{sup -7} to 8.0 x 10{sup -4} mol/L with the detection limit as 7.0 x 10{sup -8} mol/L (3{sigma}). The SWCNTs/CILE showed the advantages such as excellent selectivity, improved performance, good stability and it was further applied to the rutin tablets sample detection with satisfactory results.

  6. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  7. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques

  8. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  9. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E0′) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H2O2. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  10. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Wang, Lei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-07-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E{sup 0′}) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H{sub 2}O{sub 2}. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized.

  11. Modified carbon black materials for lithium-ion batteries

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  12. Nanostructural activated carbons for hydrogen storage

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ≤ 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ≤ 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen

  13. Measurement of carbon thermodynamic activity in sodium

    The report presents the brief outline on system of carbon activity detecting system in sodium (SCD), operating on the carbon-permeable membrane, of the methods and the results of testing it under the experimental circulating loop conditions. The results of carbon activity sensor calibration with the use of equilibrium samples of XI8H9, Fe -8Ni, Fe -12Mn materials are listed. The behaviour of carbon activity sensor signals in sodium under various transitional conditions and hydrodynamic perturbation in the circulating loop, containing carbon bearing impurities in the sodium flow and their deposits on the surfaces flushed by sodium, are described. (author)

  14. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. PMID:26878480

  15. Desorption of toluene from modified clays using supercritical carbon dioxide

    Carneiro D. G. P.; Mendes M.F.; Coelho G. L. V.

    2004-01-01

    The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained u...

  16. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  17. Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes

    In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices

  18. Electrochemical behavior of dye-linked L-proline dehydrogenase on glassy carbon electrodes modified by multi-walled carbon nanotubes

    Haitao Zheng

    2010-12-01

    Full Text Available A glassy carbon electrode (GC was modified by multi-walled carbon nanotubes (MWCNTs. The modified electrode showed a pair of redox peaks that resulted from the oxygen-containing functional groups on the nanotube surface. A recombinant thermostable dye-linked L-proline dehydrogenase (L-proDH from hyperthermophilic archaeon (Thermococcus profundus was further immobilized by physical adsorption. The modified electrode (GC/MWCNTs/L-proDH exhibited an electrocatalytic signal for L-proline compared to bare GC, GC/L-proDH and GC/MWCNTs electrodes, which suggested that the presence of MWCNTs efficiently enhances electron transfer between the active site of enzyme and electrode surface. The immobilized L-proDH showed a typical Michaelis–Menten catalytic response with lower apparent constant.

  19. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Liu Qiang; Ke Ming; Yu Pei; Hu Hai Qiang; Yan Xi Ming

    2016-01-01

    Coconut shell-based activated carbon (CAC) was used for the removal of methyl mercaptan (MM). CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high c...

  20. Studies of activated carbon and carbon black for supercapacitor applications

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  1. Modifying enzyme activity and selectivity by immobilization

    Rodrigues, Rafael C.; Ortiz, Claudia; Berenguer Murcia, Ángel; Torres, Rodrigo; Fernández Lafuente, Roberto

    2013-01-01

    Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will ...

  2. Methane storage in a commercial activated carbon.

    K. Wang

    2008-06-01

    Full Text Available A commercial activated carbon was examined for possible methane storage application. The structural and surface propertiesof the carbon were characterized by Nitrogen adsorption isotherm at 77 oK. It was found that the carbon is largelymicroporous with a surface area of approximately 860 m2/g. Adsorption test shows the carbon is able to achieve a methanestorage capacity of approximately 70/cc.

  3. Desorption of toluene from modified clays using supercritical carbon dioxide

    D. G. P. Carneiro

    2004-12-01

    Full Text Available The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained using the second-order model. This study makes possible the scale-up of the desorption process for regeneration of solid matrices using supercritical fluids.

  4. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    André Navarro de Miranda; Luiz Claudio Pardini; Carlos Alberto Moreira dos Santos; Ricardo Vieira

    2011-01-01

    Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/e...

  5. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  6. Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas

    Jahan Bakhsh Raoof; Fereshteh Chekin; Vahid Ehsani

    2015-02-01

    A simple procedure was developed to prepare cobalt oxide nanoparticles (nano-CoO) on multiwall carbon nanotube-modified glassy carbon electrode (MWNT/GCE). Scanning electron microscopy revealed the electrodeposition of nano-CoO with an average particle size of 25 nm onto MWNT/GCE. Also, the presence of nano-CoO was revealed by energy dispersive X-ray spectra. The electrocatalytic activity of nano-CoO and MWNT composite-modified GCE (CoO–MWNT/GCE) has been examined towards the oxygen evolution reaction (OER) by linear sweep voltammetry. The OER is significantly enhanced at CoO–MWNT/GCE, as demonstrated by a negative shift in the polarization curves at the CoO–MWNT/GCE compared with that obtained at the CoO–GCE and GCE. Optimization of the operating experimental conditions (i.e., solution pH and loading level of nano-CoO) has been achieved to maximize the electrocatalytic activity of CoO–MWNT/GCE. The maximum electrocatalytic activity towards the OER was obtained in alkaline media (pH = 13). The electrocatalytic activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed. The fabricated CoO–MWNT/GCE exhibited a good stability and durability. The value of energy saving per gram of oxygen gas at a current density of 10 mA cm-2 is 19.3 kWh kg-1.

  7. The Modified Fibrous Material on the Basis of Polyethyleneterephthalate and Metal / Carbon Nanostructures

    Yu.M. Vasilchenko

    2014-07-01

    Full Text Available Results of theoretical justification and experimental receiving a fibrous material on the basis of the polyethyleneterephthalate, modified metal/carbon nanostructuresare, presented in article. Possibility of receiving the polymeric fibers possessing the increased durability and sorption ability in comparison with not modified fibers is established.

  8. Preparation and characterization of active carbon material modified by TiO2%活性炭负载TiO2改性处理及其性能表征

    李海红; 张超; 董军旗; 李红艳

    2015-01-01

    Activated carbon (AC) was loaded with TiO2 by using sol-gel method after a pretreatment process, and the physical and chemical properties of the activated carbon before and after loaded with TiO2 nanoparticles were characterized by using Scanning Electron Microscopy (SEM), Energy Dispersion Spectrum analyzer (EDS), Brunauer-Emmett-Teller gas adsorption method (BET), thermal gravimetric analysis (TG-DTG), and Fourier Transform Infrared spectroscopy (FTIR) respectively. Electrochemical properties were characterized by electrochemical workstation and electrical adsorption deionization tests. The results show that the optimal temperature is 450℃, and there is flocculent or granulate TiO2 in the surface and pores of TiO2/AC composite under the temperature. The mass fraction of titanium element in the TiO2/AC complex is about 24.91%, and TiO2crystal is anatase type. Meanwhile, Ti—O bonds are found on the surface of the activated carbon material after loaded with TiO2. The specific surface area significantly decreases by 23.1% and its specific capacitance increases by 16.4% in comparison with original activated carbon, and its electrical adsorption efficiency also increses. TiO2/AC composite material can be used as an electrode material for the removal of the inorganic ions in wastewater.%采用溶胶–凝胶法对盐酸预处理后的活性炭(activated carbon,AC)进行负载TiO2改性处理,利用扫描电镜(SEM)、能谱分析(EDS)、比表面积及孔径测试(BET)、热重分析(TG/DTG)、傅立叶红外光谱分析(FTIR)等对负载TiO2前后的活性炭结构与理化性能进行表征,并利用电化学工作站测试其电化学性能。结果表明,凝胶的最佳煅烧温度为450℃,制得的TiO2/AC复合体表面及孔道中有絮状或颗粒状的TiO2存在,Ti元素含量(质量分数)为24.91%,晶体类型为锐钛矿型;同时,TiO2/AC表面形成一些Ti—O键的含氧官能团。活性炭负载TiO2改性后,比表面积降低23

  9. Spherical carbons: Synthesis, characterization and activation processes

    Romero Anaya, Aroldo José; Ouzzine, Mohammed; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2014-01-01

    Spherical carbons have been prepared through hydrothermal treatment of three carbohydrates (glucose, saccharose and cellulose). Preparation variables such as treatment time, treatment temperature and concentration of carbohydrate have been analyzed to obtain spherical carbons. These spherical carbons can be prepared with particle sizes larger than 10 μm, especially from saccharose, and have subsequently been activated using different activation processes (H3PO4, NaOH, KOH or physical activati...

  10. Preparation of activated carbon by chemical activation under vacuum.

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  11. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  12. Preparation and characterisation of activated carbon

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  13. Adsorption of organic substances to activated carbon

    Adsorption systems using activated carbon as an almost universal adsorbent for organic substances are widely applied for purifying exhaust air. The possibilities, limits and measures for an optimum design of activated carbon processes are given from the point of view of the plant designed and under the aspects of the present laws for environmental control. (orig.)

  14. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  15. Activated carbon is an electron-conducting amphoteric ion adsorbent

    Biesheuvel, P. M.

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, c...

  16. Factors governing the adsorption of ethanol on spherical activated carbons

    Romero Anaya, Aroldo José; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2015-01-01

    Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close t...

  17. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Marko Rodić; Olga Vajdle; Valéria Guzsvány; Jasmina Zbiljić; Zsigmond Papp

    2011-01-01

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosp...

  18. Nanowire modified carbon fibers for enhanced electrical energy storage

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  19. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Salimi, Abdollah, E-mail: absalimi@uok.ac.i [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2011-03-30

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  20. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  1. Formation of TiO2 Modified Film on Carbon Steel

    Laizhou SONG; Shizhe SONG; Zhiming GAO

    2004-01-01

    A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min,dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.

  2. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  3. MODIFIED SCREEN-PRINTED CARBON ELECTRODES WITH TYROSINASE FOR DETERMINATION OF PHENOLIC COMPOUNDS IN SMOKED FOOD

    V. Dragancea

    2010-12-01

    Full Text Available A screen-printed carbon electrode modified with tyrosinase (SPCE-Tyr/Paa/Glut has been developed for the determination of phenol concentration in real samples. The resulting SPCE-Tyr/Paa/Glut was prepared in a one-step procedure, and was then optimized as an amperometric biosensor operating at 0 mV versus Ag/AgCl for phenol determination in flow injection mode. Phenol detection was realized by electrochemical reduction of quinone produced by tyrosinase activity. The possibility of using the developed biosensor to determine phenol concentrations in various smoked products (bacon, ham, chicken and salmon was also evaluated. Gas chromatography (GC method was used for result validation obtained in flow injection mode using amperometric biosensor. The result showed good correlation with those obtained by flowinjection analysis (FIA.

  4. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode.

    Bukkitgar, Shikandar D; Shetti, Nagaraj P

    2016-08-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4×10(-5)-1×10(-7)M and detection limit and quantification limit were calculated to be 2.04nM and 6.18nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. PMID:27157751

  5. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nano tubes-Chitosan Modified Electrode

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from 10-10  g/L to 10-3 g/L with a detection limit of 10-12 g/L. This biosensor is a promising new method for pesticide analysis

  6. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light

    The nanoparticles of TiO2 modified with carbon and iron were synthesized by sol-gel followed solvothermal method at low temperature. Its chemical composition and optical absorption were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence emission spectroscopy (PL), UV-vis absorption spectroscopy, and electron paramagnetic resonance (EPR). It was found that carbon and iron modification causes the absorption edge of TiO2 to shift the visible light region. Fe(III) cation could be doped into the matrix of TiO2, by which could hinder the recombination rate of excited electrons/holes. Superior photocatalytic activity of TiO2 modified with carbon and iron was observed for the decomposition of acid orange 7 (AO7) under visible light irradiation. The synergistic effects of carbon and iron in modified TiO2 nanoparticles were responsible for improving visible light photocatalytic activity.

  7. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H2O2 flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is − 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 ± 0.32 μA/μM) with the limit detection of 9.4 μM (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: ► Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. ► GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. ► This flow biosensor enabled the determination of glucose in beverages and liquors.

  8. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  9. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Zheng Gong; Guoquan Zhang; Song Wang

    2013-01-01

    The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs) nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC) electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR). The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs ...

  10. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.