Tracking in Object Action Space
Krüger, Volker; Herzog, Dennis
2013-01-01
In this paper we focus on the joint problem of tracking humans and recognizing human action in scenarios such as a kitchen scenario or a scenario where a robot cooperates with a human, e.g., for a manufacturing task. In these scenarios, the human directly interacts with objects physically by using...... space of the object affordances, i.e., the space of possible actions that are applied on a given object. This way, 3D body tracking reduces to action tracking in the object (and context) primed parameter space of the object affordances. This reduces the high-dimensional joint-space to a low...
Gauged WZW models for space-time groups and gravitational actions
Mora, Pablo; Pais, Pablo(Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia, Chile); Willison, Steven
2011-01-01
In this paper we investigate gauged Wess-Zumino-Witten models for space-time groups as gravitational theories, following the trend of recent work by Anabalon, Willison and Zanelli. We discuss the field equations in any dimension and study in detail the simplest case of two space-time dimensions and gauge group SO(2,1). For this model we study black hole solutions and we calculate their mass and entropy which resulted in a null value for both.
Learning Actions Models: Qualitative Approach
Bolander, Thomas; Gierasimczuk, Nina
2015-01-01
identifiability (conclusively inferring the appropriate action model in finite time) and identifiability in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while non-deterministic actions require more learning power—they are...... identifiable in the limit.We then move on to a particular learning method, which proceeds via restriction of a space of events within a learning-specific action model. This way of learning closely resembles the well-known update method from dynamic epistemic logic. We introduce several different learning...... methods suited for finite identifiability of particular types of deterministic actions....
Space Science in Action: Space Exploration [Videotape].
1999
In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…
Deep Reinforcement Learning in Parameterized Action Space
Hausknecht, Matthew; Stone, Peter
2015-01-01
Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning within the domain of simulated RoboCup soccer, which features a small set of discrete action types, ea...
Reinforcement Learning in Continuous Action Spaces
Hasselt, H. van; Wiering, M.A.
2007-01-01
Quite some research has been done on Reinforcement Learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new class of algorithms named Continuous Actor Critic Learning Automaton (CACLA) that can handle continuous states and actions. The resulting algorithm is straightforward to implement. An experimental comparison is made between this algorithm and other algorithms that can handle cont...
Reinforcement Learning in Continuous Action Spaces
Hasselt, H. van; Wiering, M.A.
2007-01-01
Quite some research has been done on Reinforcement Learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new class of algorithms named Continuous Actor Critic Learning Automaton (CACLA) that c
National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...
Juhl, Joakim
This thesis is about mathematical modelling and technology development. While mathematical modelling has become widely deployed within a broad range of scientific practices, it has also gained a central position within technology development. The intersection of mathematical modelling and...... generated. Structured around the intersections of certainty, agency, and dependences, the thesis’ findings are in chapter 9 extended to a discussion of the theoretical fundament through which we interpret the regulation project and its use of modelling. I demonstrate a novel framework that I term...
Reinforcement learning in continuous state and action spaces
Hasselt, H. van; Wiering, M.A.; Otterlo, M. van
2012-01-01
Many traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action spaces, whic
Creating Space: Engaging Deliberation about Climate Action
Phear, Nicolette
In the United States public discourse, climate change is often framed as a polarized and intractable issue. The purpose of this dissertation was to explore deliberation about climate action, and to evaluate whether effective responses to climate change can be facilitated through new structures and processes that enable and encourage dialogue on the subject of how to reduce greenhouse gas emissions. Working with sustainability leaders at the University of Montana and in the community of Missoula, Montana, the author convened three public deliberations, in which a variety of solutions to climate change were discussed. Three questions guided this study: 1) what motivated individuals to engage in deliberation about climate action; 2) how did individual engagement vary and affect the quality of the deliberation; and 3) how effective were the deliberations in building a sense of individual agency and generating collaborative action strategies to address climate change. Based on a rigorous statistical analysis of survey responses combined with qualitative data, this action research study offers a holistic exploration of the three deliberative events convened. The deliberative processes generated collaborative action strategies and increased participants' sense of agency to take action on climate change; the findings also revealed differences in the ways individuals engaged and affected the quality of the overall group deliberation. This dissertation contributes to the literature on collaborative responses and collective action on climate change, broadens understanding of deliberative processes, and provides new insight into opportunities for leading deliberation about climate action.
Actions of certain arithmetic groups on Gromov hyperbolic spaces
Manning, Jason Fox
2007-01-01
We study the variety of actions of a fixed (Chevalley) group on arbitrary geodesic, Gromov hyperbolic spaces. In high rank we obtain a complete classification. In rank one, we obtain some partial results and give a conjectural picture.
Pro-torus actions on Poincar\\'e duality spaces
Özkurt, Ali; Dönmez, Doğan
2006-01-01
In this paper, it is shown that some of the results of torus actions on Poincar\\'{e} duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if `torus' is replaced by `pro-torus'.
Reinforcement learning in continuous state and action spaces
Hasselt, van, F.N.; Wiering, M.A.; Otterlo, van, M.
2012-01-01
Many traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action spaces, which can make learning a good decision policy even more involved. In this chapter we discuss how to automatically find good decision policies in continuous domains. Because analytically computing a go...
Space for action: How practitioners influence environmental assessment
Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges
Space for action: How practitioners influence environmental assessment
Kågström, Mari, E-mail: mari.kagstrom@slu.se [Department of Urban and Rural Development, Swedish University of Agricultural Sciences (Sweden); Richardson, Tim, E-mail: tim.richardson@nmbu.no [Department of Landscape Architecture and Spatial Planning, Norwegian University of Life Sciences, Frederik A Dahls vei 15, KA-bygningen, Ås (Norway)
2015-09-15
Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges.
Iglesias Turrión, Pablo
2004-01-01
This paper is about the new social movements against the Globalisation. In particular, I will speak about the period between the demonstrations of Seattle (November/December 99) and the demonstrations of Genoa (June 2001) and the sector of movement that have practiced strategies of civil disobedience and conflict with the police forces. In this period, it has been developed a particular new form of collective action that I've called model anti-summit. The relationship with mass media and the ...
Unsupervised action classification using space-time link analysis
Liu, Haowei; Feris, Rogerio; Krüger, Volker;
2010-01-01
In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...
Collective action and rationality models
Luis Miguel Miller Moya
2004-01-01
Full Text Available The Olsonian theory of collective action (Olson, 1965 assumes a model of economic rationality, based on a simple calculus between costs and benefits, that can be hardly hold at present, given the models of rationality proposed recently by several fields of research. In relation to these fields, I will concentrate in two specific proposals, namely: evolutionary game theory and, over all, the theory of bounded rationality. Both alternatives are specially fruitful in order to propose models that do not need a maximizing rationality, or environments of complete and perfect information. Their approaches, based on the possibility of individual learning over the time, have contributed to the analysis of the emergence of social norms, which is something really necessary to the resolution of problems related to cooperation. Thus, this article asserts that these two new theoretical contributions make feasible a fundamental advance in the study of collective action.
Quantum action principle in curved space
Schwinger's action principle is formulated for the quantum system which corresponds to the classical system described by the Lagrangian L/sub c/(x,x) = (M/2)g/sub ij/(x)x/sup i/x/sup j/ -- v(x). It is sufficient for the purpose of deriving the laws of quantum mechanics to consider only c-number variations of coordinates and time. The Euler--Lagrange equation, the canonical commutation relations, and the canonical equations of motion are derived from this principle in a consistent manner. Further, it is shown that an arbitrary point transformation leaves the forms of the fundamental equations invariant. The judicious choice of the quantal Lagrangian is essential in the formulation. A quantum mechanical analog of Noether's theorem, which relates the invariance of the quantal action with a conservation law is established. The ambiguities in the quantal Lagrangian are also discussed, and it is pointed out that the requirement of invariance is not sufficient to determine uniquely the quantal Lagrangian and the Hamiltonian
MHD dynamo action in space plasmas
Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)
Nichols, Barry D.; Dracopoulos, Dimitris C.
2014-01-01
An algorithm based on Newton’s Method is proposed for action selection in continuous state- and action-space reinforcement learning without a policy network or discretization. The proposed method is validated on two benchmark problems: Cart-Pole and double Cart-Pole on which the proposed method achieves comparable or improved performance with less parameters to tune and in less training episodes than CACLA, which has previously been shown to outperform many other continuous state- and action-...
On algebraic spaces with an action of G_m
Drinfeld, Vladimir
2013-01-01
Let Z be an algebraic space of finite type over a field, equipped with an action of the multiplicative group $G_m$. In this situation we define and study a certain algebraic space equipped with an unramified morphism to $A^1\\times Z\\times Z$, where $A^1$ is the affine line. (If Z is affine and smooth this is just the closure of the graph of the action map $G_m\\times Z\\to Z$.) In articles joint with D.Gaitsgory we use this set-up to prove a new result in the geometric theory of automorphic for...
Invariant effective actions, cohomology of homogeneous spaces and anomalies
D`Hoker, E. [California Univ., Los Angeles, CA (United States). Dept. of Physics
1995-10-02
We construct the most general local effective actions for Goldstone boson fields associated with spontaneous symmetry breakdown from a group G to a subgroup H. In a preceding paper, it was shown that any G-invariant term in the action, which results from a non-invariant Lagrangian density, corresponds to a non-trivial generator of the de Rham cohomology classes of G/H. Here, we present an explicit construction of all the generators of this cohomology for any coset space G/H and compact, connected group G. Generators contributing to actions in 4-dimensional space-time arise either as products of generators of lower degree such as the Goldstone-Wilczek current, or are of the Wess-Zumino-Witten type. The latter arise if and only if G has a non-zero G-invariant symmetric d-symbol, which vanishes when restricted to the subgroup H, i.e. when G has anomalous representations in which H is embedded in an anomaly free way. Coupling of additional gauge fields leads to actions whose gauge variation coincides with the chiral anomaly, which is carried here by Goldstone boson fields at tree level. Generators contributing to actions in 3-dimensional space-time arise as Chern-Simons terms evaluated on connections that are composites of the Goldstone field. (orig.).
Invariant effective actions, cohomology of homogeneous spaces and anomalies
We construct the most general local effective actions for Goldstone boson fields associated with spontaneous symmetry breakdown from a group G to a subgroup H. In a preceding paper, it was shown that any G-invariant term in the action, which results from a non-invariant Lagrangian density, corresponds to a non-trivial generator of the de Rham cohomology classes of G/H. Here, we present an explicit construction of all the generators of this cohomology for any coset space G/H and compact, connected group G. Generators contributing to actions in 4-dimensional space-time arise either as products of generators of lower degree such as the Goldstone-Wilczek current, or are of the Wess-Zumino-Witten type. The latter arise if and only if G has a non-zero G-invariant symmetric d-symbol, which vanishes when restricted to the subgroup H, i.e. when G has anomalous representations in which H is embedded in an anomaly free way. Coupling of additional gauge fields leads to actions whose gauge variation coincides with the chiral anomaly, which is carried here by Goldstone boson fields at tree level. Generators contributing to actions in 3-dimensional space-time arise as Chern-Simons terms evaluated on connections that are composites of the Goldstone field. (orig.)
Pro-Torus Actions on Poincaré Duality Spaces
Ali Özkurt; Doğan Dönmez
2006-08-01
In this paper, it is shown that some of the results of torus actions on Poincaré duality spaces, Borel’s dimension formula and topological splitting principle to local weights, hold if `torus’ is replaced by `pro-torus’.
Introduction. Modelling natural action selection
Tony J Prescott; Bryson, Joanna J; Seth, Anil K.
2007-01-01
Action selection is the task of resolving conflicts between competing behavioural alternatives. This theme issue is dedicated to advancing our understanding of the behavioural patterns and neural substrates supporting action selection in animals, including humans. The scope of problems investigated includes: (i) whether biological action selection is optimal (and, if so, what is optimized), (ii) the neural substrates for action selection in the vertebrate brain, (iii) the role of perceptual s...
Radivoyevitch Tomas
2009-12-01
Full Text Available Abstract Background Ribonucleotide reductase is the main control point of dNTP production. It has two subunits, R1, and R2 or p53R2. R1 has 5 possible catalytic site states (empty or filled with 1 of 4 NDPs, 5 possible s-site states (empty or filled with ATP, dATP, dTTP or dGTP, 3 possible a-site states (empty or filled with ATP or dATP, perhaps two possible h-site states (empty or filled with ATP, and all of this is folded into an R1 monomer-dimer-tetramer-hexamer equilibrium where R1 j-mers can be bound by variable numbers of R2 or p53R2 dimers. Trillions of RNR complexes are possible as a result. The problem is to determine which are needed in models to explain available data. This problem is intractable for 10 reactants, but it can be solved for 2 and is here for R1 and ATP. Results Thousands of ATP-induced R1 hexamerization models with up to three (s, a and h ATP binding sites per R1 subunit were automatically generated via hypotheses that complete dissociation constants are infinite and/or that binary dissociation constants are equal. To limit the model space size, it was assumed that s-sites are always filled in oligomers and never filled in monomers, and to interpret model terms it was assumed that a-sites fill before h-sites. The models were fitted to published dynamic light scattering data. As the lowest Akaike Information Criterion (AIC of the 3-parameter models was greater than the lowest of the 2-parameter models, only models with up to 3 parameters were fitted. Models with sums of squared errors less than twice the minimum were then partitioned into two groups: those that contained no occupied h-site terms (508 models and those that contained at least one (1580 models. Normalized AIC densities of these two groups of models differed significantly in favor of models that did not include an h-site term (Kolmogorov-Smirnov p -15; consistent with this, 28 of the top 30 models (ranked by AICs did not include an h-site term and 28
A Note on the Derivation of Wave Action Balance Equation in Frequency Space
Tai-Wen HSU; Jian-Ming LIAU; Shin-Jye LIANG; Shan-Hwei OU; Yi-Ting LI
2011-01-01
In this paper the wave action balance equation in terms of frequency-direction spectrum is derived.A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber space through a Jacobian transformation in the wave action balance equation.The physical properties of the Jacobian incorporating the effects of water depths are discussed.The results provide a theoretical basis of wave action balance equations and ensure that the wave balance equations used in the SWAN or other numerical models are correct.It should be noted that the Jacobian is omitted in the wave action balance equations which are identical to a conventional action balance equation.
Conformal Higher Spin Theory and Twistor Space Actions
Haehnel, Philipp
2016-01-01
We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincare invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we introduce anti-self-dual interaction terms to define a twistor action for the full conformal higher spin theory.
Affine and degenerate affine BMW algebras: Actions on tensor space
Daugherty, Zajj; Virk, Rahbar
2012-01-01
The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizers (tensor power centralizer algebras) by defining actions of the affine braid group and the degenerate affine braid algebra on tensor space and showing that, in important cases, these actions induce actions of the affine and degenerate affine BMW algebras. We then exploit the connection to quantum groups and Lie algebras to determine universal parameters for the affine and degenerate affine BMW algebras. Finally, we show that the universal parameters are central elements--the higher Casimir elements for orthogonal and symplectic enveloping algebras and quantum groups.
Autonomous mental development in high dimensional context and action spaces.
Joshi, Ameet; Weng, Juyang
2003-01-01
Autonomous Mental Development (AMD) of robots opened a new paradigm for developing machine intelligence, using neural network type of techniques and it fundamentally changed the way an intelligent machine is developed from manual to autonomous. The work presented here is a part of SAIL (Self-Organizing Autonomous Incremental Learner) project which deals with autonomous development of humanoid robot with vision, audition, manipulation and locomotion. The major issue addressed here is the challenge of high dimensional action space (5-10) in addition to the high dimensional context space (hundreds to thousands and beyond), typically required by an AMD machine. This is the first work that studies a high dimensional (numeric) action space in conjunction with a high dimensional perception (context state) space, under the AMD mode. Two new learning algorithms, Direct Update on Direction Cosines (DUDC) and High-Dimensional Conjugate Gradient Search (HCGS), are developed, implemented and tested. The convergence properties of both the algorithms and their targeted applications are discussed. Autonomous learning of speech production under reinforcement learning is studied as an example. PMID:12850025
Space market model space industry input-output model
Hodgin, Robert F.; Marchesini, Roberto
1987-01-01
The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which are capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.
The What, Who, and How of Ecological Action Space
Karin Skill
2011-12-01
Full Text Available This text presents an analytical concept which is aimed at analysis of the construction of environmental responsibility—ecological action space. The concept makes it possible to analyze what environmental activities householders perform, who takes on the environmental responsibility, and how they motivate and justify everyday practices in relation to other actors. The concept builds on structuration theory, and is useful in studies of sustainable development in everyday life, and in investigations about how actors perceive their role in creating and solving environmental problems, and what actions they take in light of this. The concept should be used for empirical rather than normative studies. Relevant questions for a study about ecological action space are: What activities are considered environmentally friendly? How do the actors conceive of their opportunities to act in environmentally friendly ways and what constraints do they express? These questions are relevant not just for outspoken activists. When promoting increased participation, it is valuable to discuss when, where and how people are expected to get involved.
State Space Modeling Using SAS
Rajesh Selukar
2011-01-01
This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing ro...
Abstract Action Potential Models for Toxin Recognition
Peterson, James; Khan, Taufiquar
2005-01-01
In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build...
Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir
At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was
Target Space Supersymmetric $\\sigma$ Model Techniques
De Boer, J; Boer, Jan de; Skenderis, Kostas
1996-01-01
We briefly review the covariant formulation of the Green-Schwarz superstring by Berkovits, and describe how a detailed tree-level and one-loop analysis of this model leads, for the first time, to a derivation of the low-energy effective action of the heterotic superstring while keeping target-space supersymmetry manifest. The resulting low-energy theory is old-minimal supergravity coupled to tensor multiplet. The dilaton is part of the compensator multiplet.
Awareness, Solidarity, and Action: An Educational Model
Reichenbach, Michael R.
2016-01-01
How Extension fosters social change and innovation can be improved through the use of theory-based educational models. Educational models can serve as foundations for the conceptual designs of educational interventions. I describe, using examples from my own work, one such model: the awareness, solidarity, and action model. This three-part model…
A learning oriented subjective action space as an indicator of giftedness
ALBERT ZIEGLER
2008-06-01
Full Text Available Traditionally, in giftedness research, the intelligence quotient has been presumed to be the best predictor of high achievement levels. From the perspective of the Actiotope Model of Giftedness, however, it is merely one indicator among several on the effectiveness of the academic action repertoire. In this model, learning is considered to be more important than personal traits for attaining high levels of achievement. This is confirmed with three studies conducted with pupils in grades 8 through 11. In Study 1 it was shown that high achieving pupils in the subject of mathematics can be differentiated from other pupils according to the learning orientation of their subjective action space. High achievement can be better predicted over a temporal distance of six months through the learning orientation of the subjective action space than through intelligence. This finding was replicated in Study 2 for the scholastic subject of biology. In Study 3, an investigation was undertaken to determine whether the performance enhancing effect of a learning oriented subjective action space is also beneficial in coming to terms with experiences of failure. This premise could also be confirmed.
The Character of Space – Describing aspects of space in live action role-play
Karls, Anders
2014-01-01
This paper aims to identify and briefly describe the central aspects of performance space in live action role-play (larp). It begins by introducing the reader to the phenomenon of larp and relating it to other performance arts. It opens up the concept of the magic circle of play and illustrates the different levels of reality and fiction experienced within larp in order to build a base for understanding larp space. Finally it contains the author’s personal reflections over the performance spa...
Large space shell model calculations with small space results
Zamick, Larry; Yu, Xiafei
2015-01-01
We note that in large space shell model calculaiotns and experiment one sometimes get results, the form of which also appear in smaller space calculations. On the other hand there are some results which demand the large space approach.
Action of space charge on aging and breakdown of polymers
无
2001-01-01
The study on how space charges affect aging and breakdown of polymers becomes one of the most important domains. Most of the models are based on the injected charges increasing the local field to induce the breakdown of polymers and breaking the large molecule chains. These models ignore the effects of space charge on the microstruc-ture of dielectric materials. In this review, with the calcula-tion of the electromagnetic energy and the electromechanical energy around a trapped charge and with some new experi-mental results, it is proved that aging and breakdown in polymers are caused during the detrapping of the trapped charges. Aging and breakdown of the polymers are related to the release of the electromechanical energy around trapped charges.
Disentangling Action from Social Space: Tool-Use Differently Shapes the Space around Us
Iachini, Tina; Farnè, Alessandro; Frassinetti, Francesca
2016-01-01
Converging evidence suggests close relationships between the action and social space representations. The concepts of peripersonal space, as defined by cognitive neuroscience, and interpersonal space, as defined by social psychology, refer to approximately the same spatial area surrounding our bodies. The aim of this study was thus to assess experimentally whether the peripersonal (PPS) and interpersonal space (IPS) represent a similar psychological entity. Were this true, they should share some functional features. Here we tested tool-use dependent plasticity, known to modulate PPS, but still unexplored in the IPS. Results from two experiments converge in showing that tool-use remapped the action-related PPS, measured by a Reaching-distance toward a confederate, but did not affect the social-related IPS, measured by a Comfort-distance task. These findings indicate that PPS and IPS rely on dissociable plastic mechanisms and suggest that, at least in the present experimental conditions, there is no full functional overlap between these two spatial representations. PMID:27144720
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model
Effective action for the Abelian Higgs model in FLRW
George, Damien P.; Mooij, Sander(Nikhef, Science Park 105, Amsterdam, 1098 XG The Netherlands); Postma, Marieke
2012-01-01
We compute the divergent contributions to the one-loop action of the U(1) Abelian Higgs model. The calculation allows for a Friedmann-Lemaitre-Robertson-Walker space-time and a time-dependent expectation value for the scalar field. Treating the time-dependent masses as two-point interactions, we use the in-in formalism to compute the first, second and third order graphs that contribute quadratic and logarithmic divergences to the effective scalar action. Working in R-xi gauge we show that the...
Effective action for the Abelian Higgs model in FLRW
George, Damien P; Postma, Marieke
2012-01-01
We compute the divergent contributions to the one-loop action of the U(1) Abelian Higgs model. The calculation allows for a Friedmann-Lemaitre-Robertson-Walker space-time and a time-dependent expectation value for the scalar field. Treating the time-dependent masses as two-point interactions, we use the in-in formalism to compute the first, second and third order graphs that contribute quadratic and logarithmic divergences to the effective scalar action. Working in R-xi gauge we show that the result is gauge invariant upon using the equations of motion.
Space environment model construction technology
Nishimoto, Hironobu; Matsumoto, Haruhisa
1992-08-01
A space environment model was constructed based on the results of the review on space environment model conducted in Fiscal Year 1986 and 1987. The space environment model was constructed to collect theories and data required for grasping various physical entities such as radiation, plasma, and spacecraft fragments and so forth, and to enable quantitative prediction of their time wise, spacial distribution and their effects such as electrification and material deterioration, and its system structure and functions were shown. The Technical Data Acquisition Equipment (TEDA) installed onboard the Engineering Test Satellite-5 (ETS-5) consist of various satellite environment monitors and component and material deterioration monitors for the purpose of acquiring technical data required for design and evaluation for satellite development. Review was conducted to clarify the correlation between each TEDA data and to apply the result in constructing the satellite environment model. Correlation between each TEDA data was made clear.
Simplicial models of trace spaces
Raussen, Martin
2010-01-01
Directed algebraic topology studies topological spaces in which certain directed paths (d-paths) are singled out; in most cases of interest, the reverse path of a d-path is no longer a d-path. We are mainly concerned with spaces of directed paths between given end points, and how those vary under...... variation of the end points. The original motivation stems from certain models for concurrent computation. So far, homotopy types of spaces of d-paths and their topological invariants have only been determined in cases that were elementary to overlook. In this paper, we develop a systematic approach...
A statistical model of future human actions
A critical review has been carried out of models of future human actions during the long term post-closure period of a radioactive waste repository. Various Markov models have been considered as alternatives to the standard Poisson model, and the problems of parameterisation have been addressed. Where the simplistic Poisson model unduly exaggerates the intrusion risk, some form of Markov model may have to be introduced. This situation may well arise for shallow repositories, but it is less likely for deep repositories. Recommendations are made for a practical implementation of a computer based model and its associated database. (Author)
Belehaki Anna; Messerotti Mauro; Candidi Maurizio
2014-01-01
COST Action ES0803 “Developing Space Weather products and services in Europe” primarily aimed at forming an interdisciplinary network among European scientists dealing with different issues relevant to Geospace as well as warning system developers and operators in order to assess existing Space Weather products and recommend new ones. The work that has been implemented from 2008 to 2012 resulted in advances in modeling and predicting Space Weather, in recommendations for the validation of Spa...
Action Research to Improve the Learning Space for Diagnostic Techniques
Ellen Ariel
2015-08-01
Full Text Available The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of “knowledge” and “understanding.” The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001, it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed.
Spectral action models of gravity on packed swiss cheese cosmology
Ball, Adam; Marcolli, Matilde
2016-06-01
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the packed swiss cheese cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of three-dimensional spheres inside a four-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of the divergent sum of the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.
New considerations on Hilbert action and Einstein equations in anisotropic spaces
Voicu, Nicoleta
2009-01-01
We find the generalization of Einstein equations to Finsler spaces by variational means and, based on the invariance of the Finslerian Hilbert action to infinitesimal transformations, we find the analogue of the energy- momentum conservation law in these spaces.
Modeling video evolution for action recognition
Fernando, Basura; Gavves, Stratis; Oramas Mogrovejo, José Antonio; Ghodrati, Amir; Tuytelaars, Tinne
2015-01-01
Fernando B., Gavves E., Oramas Mogrovejo J., Ghodrati A., Tuytelaars T., ''Modeling video evolution for action recognition'', 28th IEEE conference on computer vision and pattern recognition - CVPR 2015, pp. 5378-5387, June 7-12, 2015, Boston, Massachusetts, USA.
Public Health Action Model for Cancer Survivorship.
Moore, Angela R; Buchanan, Natasha D; Fairley, Temeika L; Lee Smith, Judith
2015-12-01
Long-term objectives associated with cancer survivors have been suggested by Healthy People 2020, including increasing the proportion of survivors living beyond 5 years after diagnosis and improving survivors' mental and physical health-related quality of life. Prior to reaching these objectives, several intermediate steps must be taken to improve the physical, social, emotional, and financial well-being of cancer survivors. Public health has a role in developing strategic, actionable, and measurable approaches to facilitate change at multiple levels to improve the lives of survivors and their families. The social ecological model has been used by the public health community as the foundation of multilevel intervention design and implementation, encouraging researchers and practitioners to explore methods that promote internal and external changes at the individual, interpersonal, organizational, community, and policy levels. The survivorship community, including public health professionals, providers, policymakers, survivors, advocates, and caregivers, must work collaboratively to identify, develop, and implement interventions that benefit cancer survivors. The National Action Plan for Cancer Survivorship highlights public health domains and associated strategies that can be the impetus for collaboration between and among the levels in the social ecological model and are integral to improving survivor outcomes. This paper describes the Public Health Action Model for Cancer Survivorship, an integrative framework that combines the National Action Plan for Cancer Survivorship with the social ecological model to demonstrate how interaction among the various levels may promote better outcomes for survivors. PMID:26590641
Parametrized spaces model locally constant homotopy sheaves
Shulman, Michael A.
2007-01-01
We prove that the homotopy theory of parametrized spaces embeds fully and faithfully in the homotopy theory of simplicial presheaves, and that its essential image consists of the locally homotopically constant objects. This gives a homotopy-theoretic version of the classical identification of covering spaces with locally constant sheaves. We also prove a new version of the classical result that spaces parametrized over X are equivalent to spaces with an action of the loop space of X. This giv...
Boundary action of the H+3 model
We find the boundary action for Euclidean AdS2 D-branes in H+3. This action is consistent with the D-branes' symmetries and with the H+3-Liouville relation for disc correlators. It can be used for performing free-field calculations in the H+3 model with boundaries. We explicitly perform the Coulomb-like integrals which appear in the free-field calculation of the bulk one-point function, and find agreement with previously known conformal bootstrap results
Boundary action of the H3+ model
Fateev, V
2008-01-01
We find the boundary action for Euclidean AdS2 D-branes in H3+. This action is consistent with the D-branes' symmetries and with the H3+-Liouville relation for disc correlators. It can be used for performing free-field calculations in the H3+ model with boundaries. We explicitly perform the Coulomb-like integrals which appear in the free-field calculation of the bulk one-point function, and find agreement with previously known conformal bootstrap results.
Belehaki Anna
2014-01-01
Full Text Available COST Action ES0803 “Developing Space Weather products and services in Europe” primarily aimed at forming an interdisciplinary network among European scientists dealing with different issues relevant to Geospace as well as warning system developers and operators in order to assess existing Space Weather products and recommend new ones. The work that has been implemented from 2008 to 2012 resulted in advances in modeling and predicting Space Weather, in recommendations for the validation of Space Weather models, in proposals for new Space Weather products and services, and in dissemination, training, and outreach activities. This preface summarizes the most important achievements of this European activity that are detailed in this special issue by the key scientists who participated in COST Action ES0803.
Johnson, Nicholas L.
2001-01-01
Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the
On the existence of star products on quotient spaces of linear Hamiltonian torus actions
Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.
2009-01-01
Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43–103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products....
Sculpting the space of actions: explaining human action by integrating intentions and mechanisms
Keestra, M.
2014-01-01
How can we explain the intentional nature of an expert’s actions, performed without immediate and conscious control, relying instead on automatic cognitive processes? How can we account for the differences and similarities with a novice’s performance of the same actions? Can a naturalist explanation of intentional expert action be in line with a philosophical concept of intentional action? Answering these and related questions in a positive sense, this dissertation develops a three-step argum...
Free space in the processes of action research
Bladt, Mette; Nielsen, Kurt Aagaard
2013-01-01
In Scandinavia there exists an action research tradition called critical utopian action research (CUAR). Within CUAR, criticism and utopia is a core activity in the methods used and in the research as such. The utopian concept in this tradition should be understood as a productive concept, and thus...
Map-based model of the cardiac action potential
A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.
Embedding a State Space Model Into a Markov Decision Process
Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren
2011-01-01
In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...
Klein, Annette M; Hauf, Petra; Aschersleben, Gisa
2006-12-01
The present study investigated differences in infant imitation after watching a televised model and a live model and addressed the issue of whether action effects influence infants' action control in both cases. In a 2x2 design, 12-month-old infants observed a live or a televised model performing a three-step action sequence, in which either the 2nd or the 3rd action step was combined with an acoustical action effect. We assumed that infants would use the observed action-effect relations for their own action control in the test phase afterwards. Even though results exhibited differences in the absolute amount of imitation between the two demonstration groups, both groups showed similar result patterns regarding the action effect manipulation: infants imitated the action step that was followed by a salient action effect more often and mostly as the first target action, emphasizing the important role of action effects in infants' action control. PMID:17138306
SpaceNet: Modeling and Simulating Space Logistics
Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen
2008-01-01
This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.
Spectral Action Models of Gravity on Packed Swiss Cheese Cosmology
Ball, Adam
2015-01-01
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its asymptotic expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we show that the leading terms in the asymptotic expansion of the spectral action consist of a zeta regularization of the divergent sum of the leading terms of the spectral actions of the individual spheres in the packing, which accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is also an additional term coming from the residue at the additional point in the dimension spectrum that corresponds to the packing constant. It detects the fractality of t...
Cohomology Complex Projective Space with Actions of G5
孙淑英; 刘宗泽
2000-01-01
Let M2n be a cohomology CPn and p a prime. Set Dp(M2n) = |d >0| M2n admits a smooth Gp action such that the fixed point set of the action Gontains a codimension-2 submanifold of degree d|, DEp(M2n) = |(d; m1, m2, …, mμ)|M2n admits a Gp action of Type Ⅱ0,having multiplicities m1, m2, …, mμ at the isolated fixed points, and m1 + m2+…+ mμ = n, d is the degree of the fixed codimension-2 submanifold| In this paper, we prove that for n = 5 or 7, if D5(M2n)≠Ф, then D5(M2n) = |1|; if DE5( M2n)≠Ф, then DE5(M2n) = |(1; n, 0) |.
Effective action in general chiral superfield model
Petrov, A. Yu.
2000-01-01
The effective action in general chiral superfield model with arbitrary k\\"{a}hlerian potential $K(\\bar{\\Phi},\\Phi)$ and chiral (holomorphic) potential $W(\\Phi)$ is considered. The one-loop and two-loop contributions to k\\"{a}hlerian effective potential and two-loop (first non-zero) contribution to chiral effective potential are found for arbitrary form of functions $K(\\bar{\\Phi},\\Phi)$ and $W(\\Phi)$. It is found that despite the theory is non-renormalizable in general case two-loop contributi...
Critical Action Learning--Rituals and Reflective Spaces
Heneberry, Pamela; Turner, Arthur
2016-01-01
This paper is written to outline our ideas on rituals and reflective places and how this thinking has emerged through our writing, facilitation and reflections around critical action learning and critical leadership. We attempt to show the conceptual framework that underpins our vision of Critical Leadership and how out of this work we have begun…
Effective action for a quantum scalar field in warped spaces
Hoff da Silva, J.M.; Mendonca, E.L.; Scatena, E. [Universidade Estadual Paulista ' ' Julio de Mesquita Filho' ' -UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2015-11-15
We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case. (orig.)
Fractional Order Modelling Using State Space Theory
Pritesh Shah
2013-06-01
Full Text Available There are various fractional order systems existing. This paper deals with the modelling of fractional order systems using an old and unique model structure i.e. state space model. The fractional order process system can be mathematically modelled by state space model. Simulation results validated that the fractional order model using state space is better as compared to other models such as first order with delay.
Developing an Action Learning Design Model
Bong, Hyeon-Cheol; Cho, Yonjoo; Kim, Hyung-Sook
2014-01-01
As the number of organizations implementing action learning increases, both successful and failed cases also increase in action learning practice in South Korea. Existing studies on action learning have listed key success factors of action learning at the program level or at the team level but have not paid sufficient attention to the program…
Action potential initiation in the hodgkin-huxley model.
Lucy J Colwell
2009-01-01
Full Text Available A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span and the rapidity of action potential initiation (the onset rapidity. This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.
Rigidity of group actions on homogeneous spaces, III
Bader, Uri; Gorodnik, Alex; Weiss, Barak
2012-01-01
Consider homogeneous G/H and G/F, for an S-algebraic group G. A lattice {\\Gamma} acts on the left strictly conservatively. The following rigidity results are obtained: morphisms, factors and joinings defined apriori only in the measurable category are in fact algebraically constrained. Arguing in an elementary fashion we manage to classify all the measurable {\\Phi} commuting with the {\\Gamma}-action: assuming ergodicity, we find they are algebraically defined.
Frame-like actions for massless mixed-symmetry fields in Minkowski space
Skvortsov, E.D. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, 119991 Moscow (Russian Federation)], E-mail: skvortsov@lpi.ru
2009-02-21
A frame-like action for arbitrary mixed-symmetry bosonic massless fields in Minkowski space is constructed. The action is given in a simple form and consists of two terms for a field of any spin. The fields and gauge parameters are certain tensor-valued differential forms. The formulation is based on the unfolded form of equations for mixed-symmetry fields.
Local torus actions modeled on the standard representation
Yoshida, Takahiko
2007-01-01
We introduce the notion of a local torus action modeled on the standard representation (for simplicity, we call it a local torus action). It is a generalization of a locally standard torus action and also an underlying structure of a locally toric Lagrangian fibration. For a local torus action, we define two invariants called a characteristic pair and an Euler class of the orbit map, and prove that local torus actions are classified topologically by them. As a corollary, we obtain a topologic...
Lagrangian formulation of symmetric space sine-Gordon models
Bakas, Ioannis; Shin, H J; Park, Q Han
1996-01-01
The symmetric space sine-Gordon models arise by conformal reduction of ordinary 2-dim \\sigma-models, and they are integrable exhibiting a black-hole type metric in target space. We provide a Lagrangian formulation of these systems by considering a triplet of Lie groups F \\supset G \\supset H. We show that for every symmetric space F/G, the generalized sine-Gordon models can be derived from the G/H WZW action, plus a potential term that is algebraically specified. Thus, the symmetric space sine-Gordon models describe certain integrable perturbations of coset conformal field theories at the classical level. We also briefly discuss their vacuum structure, Backlund transformations, and soliton solutions.
Path-integral action of a particle in the noncommutative phase-space
Gangopadhyay, Sunandan
2016-01-01
In this paper we construct a path integral formulation of quantum mechanics on noncommutative phase-space. We first map the system to an equivalent system on the noncommutative plane. Then by applying the formalism of representing a quantum system in the space of Hilbert-Schmidt operators acting on noncommutative configuration space, the path integral action of a particle is derived. It is observed that the action has a similar form to that of a particle in a magnetic field in the noncommutative plane. From this action the energy spectrum is obtained for the free particle and the harmonic oscillator potential. We also show that the nonlocal nature (in time) of the action yields a second class constrained system from which the noncommutative Heisenberg algebra can be recovered.
Giovanni ePezzulo
2013-11-01
Full Text Available The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to incorporate information relative to the other actor(s, similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations.
Action Research to Improve the Learning Space for Diagnostic Techniques.
Ariel, Ellen; Owens, Leigh
2015-12-01
The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of "knowledge" and "understanding." The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed. Journal of Microbiology & Biology Education. PMID:26753024
Simplicial models for trace spaces
Raussen, Martin
Directed Algebraic Topology studies topological spaces in which certain directed paths (d-paths) - in general irreversible - are singled out. The main interest concerns the spaces of directed paths between given end points - and how those vary under variation of the end points. The original...
Pump Component Model in SPACE Code
This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report
Cosmological models in the generalized Einstein action
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R2, where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H4. In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ2. Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ tn = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R2 mimics a cosmic matter that could substitute the ordinary matter. (author)
An Evolution Model of Space Debris Environment
无
2001-01-01
Various types of models including engineering models andevolution models have been developed to understand space debris environment since 1960s. Evolution model, consisting of a set of supporting models such as Launch Model, Breakup Model and Atmosphere Model, can reliably predicts the evolution of space debris environment. Of these supporting models, Breakup Model is employed to describe the distribution of debris and debris cloud during a explosion or collision case which is one of the main factors affecting the amount of total space debris. An analytical orbit debris environment model referred to as the “Particles-In-Boxes" model has been introduced. By regarding the orbit debris as the freedom particles running in the huge volume, the sources and sinks mechanism is established. Then the PIB model is expanded to the case of multiple-species in multiple-tier system. Combined with breakup model, the evolution of orbit debris environment is predicted.
Fixed point action and topology in the CP3 model
We define a fixed point action in two-dimensional lattice CPN-1 models. The fixed point action is a classical perfect lattice action, which is expected to show strongly reduced cutoff effects in numerical simulations. Furthermore, the action has scale-invariant instanton solutions, which enables us to define a correct topological charge without topological defects. Using a parametrization of the fixed point action for the CP3 model in a Monte Carlo simulation, we study the topological susceptibility. copyright 1996 The American Physical Society
The Reaction RuleML Classification of the Event / Action / State Processing and Reasoning Space
Paschke, Adrian
2006-01-01
Reaction RuleML is a general, practical, compact and user-friendly XML-serialized language for the family of reaction rules. In this white paper we give a review of the history of event / action /state processing and reaction rule approaches and systems in different domains, define basic concepts and give a classification of the event, action, state processing and reasoning space as well as a discussion of relevant / related work
Measurement Models for Reasoned Action Theory
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin
2012-01-01
Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are ...
L. R. Cander
2004-06-01
Full Text Available The COST 271 Action («Effects of the Upper Atmosphere on Terrestrial and Earth-space Communications » within the European ionospheric community has the objectives, embodied in the Memorandum of Understanding (MoU: to study the influence of upper atmospheric conditions on terrestrial and Earth-space communications, to develop methods and techniques to improve ionospheric models over Europe for telecommunication and navigation applications and to transfer the results to the appropriate Radiocommunication Study Groups of the International Telecommunication Union (ITU-R and other national and international organizations dealing with the modern communication systems. This introductory paper summarises briefly the background and historical context of COST 271 and outlines the main objectives, working methods and structure. It also lists the participating countries and institutions, the Management Committee (MC Meetings, Workshops and Short-term Scientific Missions. In addition, the paper discusses the dissemination of the results and the collaboration among the participating institutions and researchers, before outlining the content of the Final Report.
Inversion Copulas from Nonlinear State Space Models
Smith, Michael Stanley; Maneesoonthorn, Worapree
2016-01-01
While copulas constructed from inverting latent elliptical, or skew-elliptical, distributions are popular, they can be inadequate models of serial dependence in time series. As an alternative, we propose an approach to construct copulas from the inversion of latent nonlinear state space models. This allows for new time series copula models that have the same serial dependence structure as a state space model, yet have an arbitrary marginal distribution - something that is difficult to achieve...
Action potential initiation in the hodgkin-huxley model.
Colwell, Lucy J; Brenner, Michael P.
2009-01-01
A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in...
On the Cohomology of Orbit Space of Free $\\mathbb{Z}_p$-Actions on Lens Spaces
Hemant Kumar Singh; Tej Bahadur Singh
2007-08-01
Let $G=\\mathbb{Z}_p, p$ an odd prime, act freely on a finite-dimensional -complex with $\\mathrm{mod} p$ cohomology isomorphic to that of a lens space $L^{2m-1}(p;q_1,\\ldots,q_m)$. In this paper, we determine the $\\mathrm{mod} p$ cohomology ring of the orbit space $X/G$, when $p^2\
One-plaquette 2 + 1 model with an arbitrary action
The one-plaquette model with a variant lattice action is investigated for the compact group G(N) in the framework of the Hamiltonian approach. The 1/N and the strong-coupling expansions in this model are constructed. The existence of the large N third order phase transition for a wide class of one-plaquette actions is proved
One-plaquette 2 + 1 model with an arbitrary action
Azakov, S.I. (AN Azerbajdzhanskoj SSR, Baku. Inst. Fiziki)
1985-01-01
The one-plaquette model with a variant lattice action is investigated for the compact group G(N) in the framework of the Hamiltonian approach. The 1/N and the strong-coupling expansions in this model are constructed. The existence of the large N third order phase transition for a wide class of one-plaquette actions is proved.
The Learning of Visually Guided Action: An Information-Space Analysis of Pole Balancing
Jacobs, David M.; Vaz, Daniela V.; Michaels, Claire F.
2012-01-01
In cart-pole balancing, one moves a cart in 1 dimension so as to balance an attached inverted pendulum. We approached perception-action and learning in this task from an ecological perspective. This entailed identifying a space of informational variables that balancers use as they perform the task and demonstrating that they improve by traversing…
Action Control of Autonomous Agents in Continuous Valued Space Using RFCN
Shirakawa, Shinichi; Nagao, Tomoharu
Researches on action control of autonomous agents and multiple agents have attracted increasing attentions in recent years. The general method using action control of agents are neural network, genetic programming and reinforcement learning. In this study, we use neural network for action control of autonomous agents. Our method determines the structure and parameter of neural network in evolution. We proposed Flexibly Connected Neural Network (FCN) previously as a method of constructing arbitrary neural networks with optimized structures and parameters to solve unknown problems. FCN was applied to action control of an autonomous agent and showed experimentally that it is effective for perceptual aliasing problems. All of the experiments of FCN, however, are in only grid space. In this paper, we propose a new method based on FCN which can decide correct action in real and continuous valued space. The proposed method which called Real valued FCN (RFCN) optimizes input-output functions of each units, parameters of the input-output functions and speed of each units. In order to examine the effectiveness, we applied the proposed method to action control of an autonomous agent to solve continuous valued maze problems.
Navigation based on symbolic space models
Baras, Karolina; Moreira, Adriano; Meneses, Filipe
2010-01-01
Existing navigation systems are very appropriate for car navigation, but lack support for convenient pedestrian navigation and cannot be used indoors due to GPS limitations. In addition, the creation and the maintenance of the required models are costly and time consuming, and are usually based on proprietary data structures. In this paper we describe a navigation system based on a human inspired symbolic space model. We argue that symbolic space models are much easier...
A fixed-point action for the lattice Schwinger model
We determine non-perturbatively a fixed-point (FP) action for fermions in the two-dimensional U(1) gauge (Schwinger) model. Our parameterization for the fermionic action has terms within a 7 x 7 square on the lattice using compact link variables. With the Wilson fermion action as starting point we determine the FP-action by iterating a block spin transformation (BST) with a blocking factor of 2 in the background of non-compact gauge field configurations sampled according to the (perfect) Gaussian measure. We simulate the model at various values of β and find excellent improvement for the studied observables. (orig.)
Space Vehicle Reliability Modeling in DIORAMA
Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-12
When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.
Scaling test of fermion actions in the Schwinger model
We discuss the scaling behaviour of different fermion actions in dynamical simulations of the 2-dimensional massive Schwinger model. We have chosen Wilson, hypercube, twisted mass and overlap fermion actions. As physical observables, the pion mass and the scalar condensate are computed for the above mentioned actions at a number of coupling values and fermion masses. We also discuss possibilities to simulate overlap fermions dynamically avoiding problems with low-lying eigenvalues of the overlap kernel
Scaling test of fermion actions in the Schwinger model
We discuss the scaling behaviour of different fermion actions in dynamical simulations of the 2-dimensional massive Schwinger model. We have chosen Wilson, hypercube, twisted mass and overlap fermion actions. As physical observables, the pion mass and the scalar condensate are computed for the above mentioned actions at a number of coupling values and fermion masses. We also discuss possibilities to simulate overlap fermions dynamically avoiding problems with low-lying eigenvalues of the overlap kernel. (orig.)
Modeling the value of strategic actions in the superior colliculus
Dhushan Thevarajah
2010-02-01
Full Text Available In learning models of strategic game play, an agent constructs a valuation (action value over possible future choices as a function of past actions and rewards. Choices are then stochastic functions of these action values. Our goal is to uncover a neural signal that correlates with the action value posited by behavioral learning models. We measured activity from neurons in the superior colliculus (SC, a midbrain region involved in planning saccadic eye movements, in monkeys while they performed two saccade tasks. In the strategic task, monkeys competed against a computer in a saccade version of the mixed-strategy game “matching-pennies”. In the instructed task, stochastic saccades were elicited through explicit instruction rather than free choices. In both tasks, neuronal activity and behavior were shaped by past actions and rewards with more recent events exerting a larger influence. Further, SC activity predicted upcoming choices during the strategic task and upcoming reaction times during the instructed task. Finally, we found that neuronal activity in both tasks correlated with an established learning model, the Experience Weighted Attraction model of action valuation (Ho, Camerer, and Chong, 2007. Collectively, our results provide evidence that action values hypothesized by learning models are represented in the motor planning regions of the brain in a manner that could be used to select strategic actions.
The Cohomology of Orbit Spaces of Certain Free Circle Group Actions
Hemant Kumar Singh; Tej Bahadur Singh
2012-02-01
Suppose that $G=\\mathbb{S}^1$ acts freely on a finitistic space whose (mod ) cohomology ring is isomorphic to that of a lens space $L^{2m-1}(p;q_1,\\ldots,q_m)$ or $\\mathbb{S}^1×\\mathbb{C}P^{m-1}$. The mod index of the action is defined to be the largest integer such that $^n≠ 0$, where $\\in H^2(X/G;\\mathbb{Z}_p)$ is the nonzero characteristic class of the $\\mathbb{S}^1$-bundle $\\mathbb{S}^1\\hookrightarrow X→ X/G$. We show that the mod index of a free action of on $\\mathbb{S}^1×\\mathbb{C}P^{m-1}$ is -1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free -action on $\\mathbb{S}^1×\\mathbb{C}P^{m-1}$. It is note worthy that the mod index for free -actions on the cohomology lens space is not defined.
A continuous-time neural model for sequential action
Kachergis, George; Wyatte, Dean; O'Reilly, Randall C.; de Kleijn, Roy; Hommel, Bernhard
2014-01-01
Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically ...
Models for multimegawatt space power systems
Edenburn, M.W.
1990-06-01
This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.
Lag space estimation in time series modelling
Goutte, Cyril
1997-01-01
The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...
The fixed point action of the Schwinger model
We compute the fixed point action for the Schwinger model through an expansion in the gauge field. The calculation allows a check of the locality of the action. We test its perfection by computing the 1-loop mass gap at finite spatial volume. (orig.)
Action patterns in business process models
Smirnov, Sergey; Weidlich, Matthias; Mendling, Jan; Weske, Mathias
2009-01-01
Business process management experiences a large uptake by the industry, and process models play an important role in the analysis and improvement of processes. While an increasing number of staff becomes involved in actual modeling practice, it is crucial to assure model quality and homogeneity along with providing suitable aids for creating models. In this paper we consider the problem of offering recommendations to the user during the act of modeling. Our key contribution is a concept for d...
Parametric Cost Models for Space Telescopes
Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney
2010-01-01
Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.
Transforming community access to space science models
MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-04-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
A continuous-time neural model for sequential action.
Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard
2014-11-01
Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. PMID:25267830
An introduction to Space Weather Integrated Modeling
Zhong, D.; Feng, X.
2012-12-01
The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.
The STAMP Software for State Space Models
Roy Mendelssohn
2011-05-01
Full Text Available This paper reviews the use of STAMP (Structural Time Series Analyser, Modeler and Predictor for modeling time series data using state-space methods with unobserved components. STAMP is a commercial, GUI-based program that runs on Windows, Linux and Macintosh computers as part of the larger OxMetrics System. STAMP can estimate a wide-variety of both univariate and multivariate state-space models, provides a wide array of diagnostics, and has a batch mode capability. The use of STAMP is illustrated for the Nile river data which is analyzed throughout this issue, as well as by modeling a variety of oceanographic and climate related data sets. The analyses of the oceanographic and climate data illustrate the breadth of models available in STAMP, and that state-space methods produce results that provide new insights into important scientific problems.
Inequality Constrained State Space Models
Qian, Hang
2015-01-01
The standard Kalman filter cannot handle inequality constraints imposed on the state variables, as state truncation induces a non-linear and non-Gaussian model. We propose a Rao-Blackwellised particle filter with the optimal importance function for forward filtering and the likelihood function evaluation. The particle filter effectively enforces the state constraints when the Kalman filter violates them. We find substantial Monte Carlo variance reduction by using the optimal importance functi...
Do absolutely irreducible group actions have odd dimensional fixed point spaces?
Lauterbach, Reiner; Matthews, Paul
2010-01-01
In his volume [5] on "Symmetry Breaking for Compact Lie Groups" Mike Field quotes a private communication by Jorge Ize claiming that any bifurcation problem with absolutely irreducible group action would lead to bifurcation of steady states. The proof should come from the fact that any absolutely irreducible representation possesses an odd dimensional fixed point space. In this paper we show that there are many examples of groups which have absolutely irreducible representations but no odd di...
One-plaquette (2 + 1)-model with arbitrary action
This paper investigates a one-plaquette model with arbitrary lattice action for the compact group G(N) in the framework of the Hamiltonian approach. The 1/N perturbation theory an the strong coupling expansion are considered in the model. The existence of a phase transition of the third kind in the limit of large N is proved for a large class of one-plaquette actions
One-plaquette (2 + 1)-model with arbitrary action
Azakov, S.I.
1985-08-01
This paper investigates a one-plaquette model with arbitrary lattice action for the compact group G(N) in the framework of the Hamiltonian approach. The 1/N perturbation theory an the strong coupling expansion are considered in the model. The existence of a phase transition of the third kind in the limit of large N is proved for a large class of one-plaquette actions.
A computational model of perception and action for cognitive robotics
Haazebroek, Pascal; Van Dantzig, Saskia; Hommel, Bernhard
2011-01-01
Robots are increasingly expected to perform tasks in complex environments. To this end, engineers provide them with processing architectures that are based on models of human information processing. In contrast to traditional models, where information processing is typically set up in stages (i.e., from perception to cognition to action), it is increasingly acknowledged by psychologists and robot engineers that perception and action are parts of an interactive and integrated process. In this ...
Verifying action semantics specifications in UML behavioral models
Planas Hortal, Elena; Cabot Sagrera, Jordi; Gómez Seoane, Cristina
2009-01-01
MDD and MDA approaches require capturing the behavior of UML models in sufficient detail so that the models can be automatically implemented/executed in the production environment. With this purpose, Action Semantics (AS) were added to the UML specification as the fundamental unit of behavior specification. Actions are the basis for defining the fine-grained behavior of operations, activity diagrams, interaction diagrams and state machines. Unfortunately, current proposals devoted to the veri...
Abdeldjallil eNaceri
2015-09-01
Full Text Available In our daily life experience, the angular size of an object correlates with its distance from the observer, provided that the physical size of the object remains constant. In this work, we investigated depth perception in action space (i.e., beyond the arm reach, while keeping the angular size of the target object constant. This was achieved by increasing the physical size of the target object as its distance to the observer increased. To the best of our knowledge, this is the first time that a similar protocol has been tested in action space, for distances to the observer ranging from 1.4 to 2.4m. We replicated the task in virtual and real environments and we found that the performance was significantly different between the two environments. In the real environment, all participants perceived the depth of the target object precisely. Whereas, in virtual reality the responses were significantly less precise, although, still above chance level in 16 of the 20 observers. The difference in the discriminability of the stimuli was likely due to different contributions of the convergence and the accommodation cues in the two environments. The values of Weber fractions estimated in our study were compared to those reported in previous studies in peripersonal and action space.
In-Space Chemical Propulsion System Model
Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
Developing Viable Financing Models for Space Tourism
Eilingsfeld, F.; Schaetzler, D.
2002-01-01
Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.
OAST planning model for space systems technology
Sadin, S. R.
1978-01-01
The NASA Office of Aeronautics and Space Technology (OAST) planning model for space systems technology is described, and some space technology forecasts of a general nature are reported. Technology forecasts are presented as a span of technology levels; uncertainties in level of commitment to project and in required time are taken into account, with emphasis on differences resulting from high or low commitment. Forecasts are created by combining several types of data, including information on past technology trends, the trends of past predictions, the rate of advancement predicted by experts in the field, and technology forecasts already published.
Multimedia Mapping using Continuous State Space Models
Lehn-Schiøler, Tue
2004-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulations...... are performed on recordings of 3-5 sec. video sequences with sentences from the Timit database. The model is able to construct an image sequence from an unknown noisy speech sequence fairly well even though the number of training examples are limited....
Institutional Model of Decentralization in Action
Azis, Iwan J.
2011-01-01
Applying the Institutional Model of Decentralization, the paper argues that the presumption that local democracy will impose accountability pressure on elected officials does not always hold. Even in a democratic system like in Indonesia, decentralization policy is welfare-enhancing only for the developed regions, not for all, exacerbating interregional welfare disparity. This "captured democracy" is largely due to the presence of "negative local capture". Where welfare has not improved, limi...
The communicative action and information: a learning to learn transdisciplinary model
Márcia Marques
2015-09-01
Full Text Available This article is about the communicative action and information model for social networking in digital environments, a transdisciplinary articulation of knowledge and learning that guides the collective and collaborative construction of inclusive communication strategies and ongoing development of competencies to promote understanding between the players, members of a social network. Information Science, Communication itself and Information and Communication Technologies (ICT promote this articulation in transdisciplinary mode. This model is the basis for the diagnosis and action planning herein: for the collective construction of communication relationships negotiated between participants of the network; for the creation of digital environments that provide spaces for learning to cope with information and communication; so that public communication experts may promote transparency of information as stated in the Constitution and the Law on Access to Information in Brazil. The model articulates methodologies for analyses of the individual and the network (Users Study, Social Network Analysis, multivoicedness to obtain diagnosis and elaborate communication and information action planning.
Gauge invariant actions for string models
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
Gauge invariant actions for string models
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs
Edgeworth streaming model for redshift space distortions
Uhlemann, Cora; Kopp, Michael; Haugg, Thomas
2015-09-01
We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.
Mouse infection models for space flight immunology
Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)
2005-01-01
Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.
Heat kernel expansion and induced action for matrix models
In this proceeding note, I review some recent results concerning the quantum effective action of certain matrix models, i.e. the supersymmetric IKKT model, in the context of emergent gravity. The absence of pathological UV/IR mixing is discussed, as well as dynamical SUSY breaking and some relations with string theory and supergravity.
Cosmological Models with Fractional Derivatives and Fractional Action Functional
V.K. Shchigolev
2011-01-01
Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.
State Space Model for Aggregated Longitudial Data
Brabec, Marek; Konár, Ondřej; Malý, Marek; Pelikán, Emil; Vondráček, Jiří
New York: State University, 2007. s. 46-46. [ISF'2007. International Symposium on Forecasting /27./. 24.06.2007-27.06.2007, New York] R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : Kalman filter * state space model * natural gas
Brown, Ronald; Higgins, Philip J.
2002-01-01
The main result is that the fundamental groupoid of the orbit space of a discontinuous action of a discrete group on a Hausdorff space which admits a universal cover is the orbit groupoid of the fundamental groupoid of the space. We also describe work of Higgins and of Taylor which makes this result usable for calculations. As an example, we compute the fundamental group of the symmetric square of a space. The main result, which is related to work of Armstrong, is due to Brown and Higgins in ...
Cost Modeling for Space Optical Telescope Assemblies
Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2011-01-01
Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.
Numerical modelling of elastic space tethers
Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.
2012-01-01
, the numerical experiments of an orbiting tether system show that bending may introduce significant forces in some regions of phase space. Finally, numerical evidence for the existence of an almost invariant slow manifold of the singularly perturbed, regularised, non-dissipative massive tether model is provided....... It is also shown that on the slow manifold the dynamics of the satellites are well-approximated by the finite dimensional slack-spring model....
Multivariable Wind Modeling in State Space
Sichani, Mahdi Teimouri; Pedersen, B. J.
2011-01-01
the succeeding state space and ARMA modeling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross...... for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modeling method....
Habitability Concept Models for Living in Space
Ferrino, M.
2002-01-01
As growing trends show, living in "space" has acquired new meanings, especially considering the utilization of the International Space Station (ISS) with regard to group interaction as well as individual needs in terms of time, space and crew accommodations. In fact, for the crew, the Spaced Station is a combined Laboratory-Office/Home and embodies ethical, social, and cultural aspects as additional parameters to be assessed to achieve a user centered architectural design of crew workspace. Habitability Concept Models can improve the methods and techniques used to support the interior design and layout of space architectures and at the same time guarantee a human focused approach. This paper discusses and illustrates some of the results obtained for the interior design of a Habitation Module for the ISS. In this work, two different but complementary approaches are followed. The first is "object oriented" and based on Video Data (American and Russian) supported by Proxemic methods (Edward T. Hall, 1963 and Francesca Pregnolato, 1998). This approach offers flexible and adaptive design solutions. The second is "subject oriented" and based on a Virtual Reality environment. With this approach human perception and cognitive aspects related to a specific crew task are considered. Data obtained from these two approaches are used to verify requirements and advance the design of the Habitation Module for aspects related to man machine interfaces (MMI), ergonomics, work and free-time. It is expected that the results achieved can be applied to future space related projects.
Expanded Parts Model for Human Attribute and Action Recognition in Still Images
Sharma, Gaurav; Jurie, Frédéric; Schmid, Cordelia
2013-01-01
We propose a new model for recognizing human attributes (e.g. wearing a suit, sitting, short hair) and actions (e.g. running, riding a horse) in still images. The proposed model relies on a collection of part templates which are learnt discriminatively to explain specific scale-space locations in the images (in human centric coordinates). It avoids the limitations of highly structured models, which consist of a few (i.e. a mixture of) 'average' templates. To learn our model, we propose an alg...
Do absolutely irreducible group actions have odd dimensional fixed point spaces?
Lauterbach, Reiner
2010-01-01
In his volume [5] on "Symmetry Breaking for Compact Lie Groups" Mike Field quotes a private communication by Jorge Ize claiming that any bifurcation problem with absolutely irreducible group action would lead to bifurcation of steady states. The proof should come from the fact that any absolutely irreducible representation possesses an odd dimensional fixed point space. In this paper we show that there are many examples of groups which have absolutely irreducible representations but no odd dimensional fixed point space. This observation may be relevant also for some degree theoretic considerations concerning equivariant bifurcation. Moreover we show that our examples give rise to some interesting Hamiltonian dynamics and we show that despite some complications we can go a long way towards doing explicit computations and providing complete proofs. For some of the invariant theory needed we will depend on some computer aided computations. The work presented here greatly benefited from the computer algebra progr...
The Perception-Action Model: Counting Computational Mechanisms
Grünbaum, Thor
2016-01-01
Milner and Goodale’s Two Visual Systems Hypothesis (TVSH) is regarded as common ground in recent discussions of visual consciousness. A central part of TVSH is a functional model of vision and action (a functional perception-action model, PAM for short). In this paper, I provide a brief overview of...... these current discussions and argue that PAM is ambiguous between a strong and a weak version. I argue that, given a standard way of individuating computational mechanisms, the available evidence cannot be used to distinguish between these versions. This not only has consequences for philosophical...
A statistical model of possible future human actions
A critical review has been carried out of models of possible future human actions during the long-term post-closure period of a radioactive waste repository. Various Markov models have been considered as alternatives to the more conventional Poisson model, and the problems of parameterisation have been addressed. Where the Poisson model unduly exaggerates the intrusion risk, some form of Markov model may have to be introduced. This situation may well arise for shallow repositories, but it is thought less likely for deep repositories. Consideration of state transition within a Markov model highlights the value of increasing the availability of site information. (author)
Animated pose templates for modeling and detecting human actions.
Yao, Benjamin Z; Nie, Bruce X; Liu, Zicheng; Zhu, Song-Chun
2014-03-01
This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways: 1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating) model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled examples. This algorithm belongs to a
Generation of action plans for two mobile robots designed to operate in a space full of obstacles
The paper describes a simulation study conducted on an action plan generator for two mobile robots designed to operate in a space full of obstacles. This plan generator should be able to convert an objective specified by a user into a series of elementary actions, thus reflecting the 'intelligent' behaviour of robots. These actions involve finding the optimum path, avoiding obstacles (for each robot), and solving navigational problems, namely detecting robot-robot collisions and critical situations. A model representing the environment in which the path has to be found is described. The course obtained is optimized by applying a variant of the 'branch and bound' A* algorithm, assigning to each section of the path a cost which is, in fact, the minimum distance to be covered. The navigation strategy is based on the analysis of the paths found and the application of the traffic rules. In order to do this, it was necessary to introduce a classification based on the risks of collision in areas referred to as 'static interference zones'. (author). 8 refs, 7 figs
Fixed point action for the massless lattice Schwinger model
We determine non-perturbatively the fixed-point action for fermions in the two-dimensional U(1) gauge (Schwinger) model. This is done by iterating a block spin transformation in the background of non-compact gauge field configurations sampled according to the (perfect) Gaussian measure. The resulting action has 123 independent couplings, is bilinear in the Grassmann fields, gauge invariant by the compact gauge transporters considered, and localized within a 7 x 7 lattice centered around one of the fermions. We then simulate the model at various values of β and compare with results obtained with the Wilson fermion action. We find excellent improvement for the observables studied (propagators and masses). (orig.)
O(N) Models with Topological Lattice Actions
Bietenholz, Wolfgang; Gerber, Urs; Niedermayer, Ferenc; Pepe, Michele; Rejón-Barrera, Fernando G; Wiese, Uwe-Jens
2013-01-01
A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss "weird" lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear $\\sigma$-models). Amazingly, such "weird" lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.
Adaptive numerical algorithms in space weather modeling
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Adaptive numerical algorithms in space weather modeling
Space weather describes the various processes in the Sun–Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Debashish Goswami
2015-02-01
Let be one of the classical compact, simple, centre-less, connected Lie groups of rank with a maximal torus , the Lie algebra $\\mathcal{G}$ and let $\\{E_{i},F_{i},H_{i},i=1,\\ldots,n\\}$ be tha standard set of generators corresponding to a basis of the root system. Consider the adjoint-orbit space $M=\\{\\text{Ad}_{g}(H_{1}), g\\in G\\}$, identified with the homogeneous space / where $L=\\{g\\in G : \\text{Ad}_{g}(H_{1})=H_{1}\\}$. We prove that the coordinate functions $f_{i}(g):=_{i}(\\text{Ad}_{g}(H_{1}))$, $i=1,\\ldots,n$, where $\\{_{1},\\ldots,_{n}\\}$ is basis of $\\mathcal{G}'$ are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on $C(M)$ such that the action leaves invariant the linear span of the above coordinate functions. As a corollary, it is also shown that any compact quantum group having a faithful action on the noncommutative manifold obtained by Rieffel deformation of satisfying a similar `linearity' condition must be a Rieffel-Wang type deformation of some compact group.
Study on Strand Space Model Theory
JI QingGuang(季庆光); QING SiHan(卿斯汉); ZHOU YongBin(周永彬); FENG DengGuo(冯登国)
2003-01-01
The growing interest in the application of formal methods of cryptographic pro-tocol analysis has led to the development of a number of different ways for analyzing protocol. Inthis paper, it is strictly proved that if for any strand, there exists at least one bundle containingit, then an entity authentication protocol is secure in strand space model (SSM) with some smallextensions. Unfortunately, the results of attack scenario demonstrate that this protocol and the Yahalom protocol and its modification are de facto insecure. By analyzing the reasons of failure offormal inference in strand space model, some deficiencies in original SSM are pointed out. In orderto break through these limitations of analytic capability of SSM, the generalized strand space model(GSSM) induced by some protocol is proposed. In this model, some new classes of strands, oraclestrands, high order oracle strands etc., are developed, and some notions are formalized strictly in GSSM, such as protocol attacks, valid protocol run and successful protocol run. GSSM can thenbe used to further analyze the entity authentication protocol. This analysis sheds light on why thisprotocol would be vulnerable while it illustrates that GSSM not only can prove security protocolcorrect, but also can be efficiently used to construct protocol attacks. It is also pointed out thatusing other protocol to attack some given protocol is essentially the same as the case of using themost of protocol itself.
Modelling of Patterns in Space and Time
Murray, James
1984-01-01
This volume contains a selection of papers presented at the work shop "Modelling of Patterns in Space and Time", organized by the 80nderforschungsbereich 123, "8tochastische Mathematische Modelle", in Heidelberg, July 4-8, 1983. The main aim of this workshop was to bring together physicists, chemists, biologists and mathematicians for an exchange of ideas and results in modelling patterns. Since the mathe matical problems arising depend only partially on the particular field of applications the interdisciplinary cooperation proved very useful. The workshop mainly treated phenomena showing spatial structures. The special areas covered were morphogenesis, growth in cell cultures, competition systems, structured populations, chemotaxis, chemical precipitation, space-time oscillations in chemical reactors, patterns in flames and fluids and mathematical methods. The discussions between experimentalists and theoreticians were especially interesting and effective. The editors hope that these proceedings reflect ...
Data Model Management for Space Information Systems
Hughes, J. Steven; Crichton, Daniel J.; Ramirez, Paul; Mattmann, chris
2006-01-01
The Reference Architecture for Space Information Management (RASIM) suggests the separation of the data model from software components to promote the development of flexible information management systems. RASIM allows the data model to evolve independently from the software components and results in a robust implementation that remains viable as the domain changes. However, the development and management of data models within RASIM are difficult and time consuming tasks involving the choice of a notation, the capture of the model, its validation for consistency, and the export of the model for implementation. Current limitations to this approach include the lack of ability to capture comprehensive domain knowledge, the loss of significant modeling information during implementation, the lack of model visualization and documentation capabilities, and exports being limited to one or two schema types. The advent of the Semantic Web and its demand for sophisticated data models has addressed this situation by providing a new level of data model management in the form of ontology tools. In this paper we describe the use of a representative ontology tool to capture and manage a data model for a space information system. The resulting ontology is implementation independent. Novel on-line visualization and documentation capabilities are available automatically, and the ability to export to various schemas can be added through tool plug-ins. In addition, the ingestion of data instances into the ontology allows validation of the ontology and results in a domain knowledge base. Semantic browsers are easily configured for the knowledge base. For example the export of the knowledge base to RDF/XML and RDFS/XML and the use of open source metadata browsers provide ready-made user interfaces that support both text- and facet-based search. This paper will present the Planetary Data System (PDS) data model as a use case and describe the import of the data model into an ontology tool
Singlet vector models on lens spaces
We present exact computations of partition functions of singlet vector models (infinite level Chern-Simons-matter theories) on lens spaces L(p,1). We identify light topological configurations and their spectra, and we comment on the relevance of our results in studying both the UV completions of Vasiliev’s higher-spin theories and the dS/CFT correspondence in the large N limit
Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on.
Nicole eRossmanith
2014-12-01
Full Text Available This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3-12 months. We report that (1 book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2 sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7-9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9-12 months, social book interactions resurfaced, as infants began to effectively integrate object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4-6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning.
Effective actions near singularities: the STU-model
We derive the low energy effective action of the STU-model in four and five dimensions near the line T=U where SU(2) gauge symmetry enhancement occurs. By 'integrating in' the light W± bosons together with their superpartners, the quantum corrected effective action becomes non-singular at T=U and manifestly SU(2) invariant. The four-dimensional theory is found to be consistent with modular invariance and the five-dimensional decompactification limit. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
String states, loops and effective actions in noncommutative field theory and matrix models
Steinacker, Harold C
2016-01-01
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
String states, loops and effective actions in noncommutative field theory and matrix models
Steinacker, Harold C.
2016-09-01
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
Einstein spaces modeling nonminimal modified gravity
Elizalde, Emilio; Vacaru, Sergiu I.
2015-06-01
Off-diagonal vacuum and nonvacuum configurations in the Einstein gravity can mimic physical effects of modified gravitational theories of f( R, T, R μν T μν ) type. To prove this statement, exact and approximate solutions are constructed in the paper, which encode certain models of covariant Hořava-type gravity with dynamical Lorentz symmetry breaking. The corresponding FLRW cosmological dynamics with possible nonholonomic deformations and the reconstruction procedure of certain actions closely related with the standard ΛCDM universe are studied. Off-diagonal generalizations of de Sitter universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with nonconstant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is briefly discussed.
Spatial and frequency domain ring source models for the single muscle fiber action potential
Henneberg, Kaj-åge; R., Plonsey
1994-01-01
In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... examples including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....
Edgeworth streaming model for redshift space distortions
Uhlemann, Cora
2015-01-01
We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N-body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc/h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc/h. To predict the scale dependent functions entering the streaming model we employ Convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian r...
Mathematical models for space shuttle ground systems
Tory, E. G.
1985-01-01
Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.
Using modeling to develop and evaluate a corrective action system
At a former trucking facility in EPA Region 4, a corrective action system was installed to remediate groundwater and soil contaminated with gasoline and fuel oil products released from several underground storage tanks (USTs). Groundwater modeling was used to develop the corrective action plan and later used with soil vapor modeling to evaluate the systems effectiveness. Groundwater modeling was used to determine the effects of a groundwater recovery system on the water table at the site. Information gathered during the assessment phase was used to develop a three dimensional depiction of the subsurface at the site. Different groundwater recovery schemes were then modeled to determine the most effective method for recovering contaminated groundwater. Based on the modeling and calculations, a corrective action system combining soil vapor extraction (SVE) and groundwater recovery was designed. The system included seven recovery wells, to extract both soil vapor and groundwater, and a groundwater treatment system. Operation and maintenance of the system included monthly system sampling and inspections and quarterly groundwater sampling. After one year of operation the effectiveness of the system was evaluated. A subsurface soil gas model was used to evaluate the effects of the SVE system on the site contamination as well as its effects on the water table and groundwater recovery operations. Groundwater modeling was used in evaluating the effectiveness of the groundwater recovery system. Plume migration and capture were modeled to insure that the groundwater recovery system at the site was effectively capturing the contaminant plume. The two models were then combined to determine the effects of the two systems, acting together, on the remediation process
Model-based vision for space applications
Chaconas, Karen; Nashman, Marilyn; Lumia, Ronald
1992-01-01
This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks.
Content Modelling for Human Action Detection via Multidimensional Approach
Lili N. A.
2009-03-01
Full Text Available Video content analysis is an active research domain due to the availability andthe increment of audiovisual data in the digital format. There is a need toautomatically extracting video content for efficient access, understanding,browsing and retrieval of videos. To obtain the information that is of interest andto provide better entertainment, tools are needed to help users extract relevantcontent and to effectively navigate through the large amount of available videoinformation. Existing methods do not seem to attempt to model and estimate thesemantic content of the video. Detecting and interpreting human presence,actions and activities is one of the most valuable functions in this proposedframework. The general objectives of this research are to analyze and processthe audio-video streams to a robust audiovisual action recognition system byintegrating, structuring and accessing multimodal information viamultidimensional retrieval and extraction model. The proposed techniquecharacterizes the action scenes by integrating cues obtained from both the audioand video tracks. Information is combined based on visual features (motion,edge, and visual characteristics of objects, audio features and video forrecognizing action. This model uses HMM and GMM to provide a framework forfusing these features and to represent the multidimensional structure of theframework. The action-related visual cues are obtained by computing the spatiotemporaldynamic activity from the video shots and by abstracting specific visualevents. Simultaneously, the audio features are analyzed by locating and computeseveral sound effects of action events that embedded in the video. Finally, theseaudio and visual cues are combined to identify the action scenes. Compared withusing single source of either visual or audio track alone, such combined audiovisualinformation provides more reliable performance and allows us tounderstand the story content of movies in more detail. To compare the
Merging linear discriminant analysis with Bag of Words model for human action recognition
Iosifidis, Alexandros; Tefas, Anastasios; Pitas, Ioannis
2016-01-01
In this paper we propose a novel method for human action recognition, that unifies discriminative Bag of Words (BoW)-based video representation and discriminant subspace learning. An iterative optimization scheme is proposed for sequential discriminant BoWs-based action representation and codebook adaptation based on action discrimination in a reduced dimensionality feature space where action classes are better discriminated. Experiments on four publicly available action recognition data sets...
Model reduction results for flexible space structures
Williams, Trevor; Mostarshedi, Masoud
1993-01-01
This paper describes the novel subsystem balancing technique for obtaining reduced-order models of flexible structures, and investigates its properties fully. This method can be regarded as a combination of the best features of modal truncation (efficiency) and internal balancing (accuracy); it is particularly well suited to the typical practical case of structures which possess clusters of close modes. Numerical results are then presented demonstrating the results obtained by applying subsystem balancing to the Air Force Phillips Laboratory ASTREX testbed, the Jet Propulsion Laboratory antenna facility, and the NASA Marshall Space Flight Center ACES structure.
STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations
1990-01-01
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.
Integrated Space Asset Management Database and Modeling
Gagliano, L.; MacLeod, T.; Mason, S.; Percy, T.; Prescott, J.
The Space Asset Management Database (SAM-D) was implemented in order to effectively track known objects in space by ingesting information from a variety of databases and performing calculations to determine the expected position of the object at a specified time. While SAM-D performs this task very well, it is limited by technology and is not available outside of the local user base. Modeling and simulation can be powerful tools to exploit the information contained in SAM-D. However, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. A more capable data management infrastructure would extend SAM-D to support the larger data sets to be generated by the COI. A service-oriented architecture model will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for visualizations. Based on a web-centric approach, the entire COI will be able to access the data and related analytics. In addition, tight control of information sharing policy will increase confidence in the system, which would encourage industry partners to provide commercial data. SIMON is a Government off the Shelf information sharing platform in use throughout DoD and DHS information sharing and situation awareness communities. SIMON providing fine grained control to data owners allowing them to determine exactly how and when their data is shared. SIMON supports a micro-service approach to system development, meaning M&S and analytic services can be easily built or adapted. It is uniquely positioned to fill this need as an information-sharing platform with a proven track record of successful situational awareness system deployments. Combined with the integration of new and legacy M&S tools, a SIMON-based architecture will provide a robust SA environment for the NASA SA COI that can be extended and expanded indefinitely. First Results of Coherent Uplink from a
Space weather: Modeling and forecasting ionospheric
Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)
Accident sequence modeling: human actions, system response, intelligent decision support
In Probabilistic Safety Assessment (PSA) of large technological systems, accident sequence modeling represents the synthesis of expert judgement, system modeling, and operational evidence. This book contains the papers that were presented at a two-day Seminar that was held in Munich in August 1987. The aim of this Seminar was to provide a forum for in-depth discussion in a workshop atmosphere of the key elements in the modeling process, such as operator actions and system response, and to assess the possibilities of using such models to design operator decision support systems in the form of expert systems or interactive man computer structures. While this evaluation of the state of the art was done in the context of nuclear power reactor safety, most of the models and ideas advanced by the participants have wide applicability and can be used in safety assessments and reliability enhancement programs for other fields, for example the chemical process and aerospace industries. (author)
Reputation and competition in a hidden action model.
Alessandro Fedele
Full Text Available The economics models of reputation and quality in markets can be classified in three categories. (i Pure hidden action, where only one type of seller is present who can provide goods of different quality. (ii Pure hidden information, where sellers of different types have no control over product quality. (iii Mixed frameworks, which include both hidden action and hidden information. In this paper we develop a pure hidden action model of reputation and Bertrand competition, where consumers and firms interact repeatedly in a market with free entry. The price of the good produced by the firms is contractible, whilst the quality is noncontractible, hence it is promised by the firms when a contract is signed. Consumers infer future quality from all available information, i.e., both from what they know about past quality and from current prices. According to early contributions, competition should make reputation unable to induce the production of high-quality goods. We provide a simple solution to this problem by showing that high quality levels are sustained as an outcome of a stationary symmetric equilibrium.
Reputation and competition in a hidden action model.
Fedele, Alessandro; Tedeschi, Piero
2014-01-01
The economics models of reputation and quality in markets can be classified in three categories. (i) Pure hidden action, where only one type of seller is present who can provide goods of different quality. (ii) Pure hidden information, where sellers of different types have no control over product quality. (iii) Mixed frameworks, which include both hidden action and hidden information. In this paper we develop a pure hidden action model of reputation and Bertrand competition, where consumers and firms interact repeatedly in a market with free entry. The price of the good produced by the firms is contractible, whilst the quality is noncontractible, hence it is promised by the firms when a contract is signed. Consumers infer future quality from all available information, i.e., both from what they know about past quality and from current prices. According to early contributions, competition should make reputation unable to induce the production of high-quality goods. We provide a simple solution to this problem by showing that high quality levels are sustained as an outcome of a stationary symmetric equilibrium. PMID:25329387
COST Action FP1005 ``Fibre suspension flow modelling''
Marchioli, Cristian
2013-11-01
Fibre suspensions are extremely complex solid-liquid systems since their components (fibres, flocs, air bubbles and additives) interact mutually in a complex way. The dynamics of fibre suspensions are crucial in many real-life applications, such as pulp and paper production. Current understanding of suspension flow dynamics remains poor and incomplete, resulting in conservative design of industrial equipments, low energy efficiency and equipment oversizing. In this paper, the most recent advancements in modelling and experimentation of fibre suspensions dynamics are presented. These advancements have been obtained in the framework of Action FP1005, funded by the COST Programme (European Cooperation in Science and Technology) to coordinate nationally-funded research on a European level. The Action aims at developing and validating numerical models for prediction of fibre suspensions as well as measurement techniques. The Action offers a forum to solve test cases and to compare simulated results to experiments, resulting in more reliable simulation tools to industry. Successfull introduction of such tool into industrial practice is crucial to innovate and increase competitivity of papermaking industry.
Numerical Modeling of Ocular Dysfunction in Space
Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.
2014-01-01
Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.
Space Power System Modeling with EBAL
Pratt and Whitney Rocket dyne's Engine Balance (EBAL) thermal/fluid system code has been expanded to model nuclear power closed Brayton cycle (CBC) power conversion systems. EBAL was originally developed to perform design analysis of hypersonic vehicle propellant and thermal management systems analysis. Later, it was adapted to rocket engine cycles. The new version of EBAL includes detailed, physics-based models of all key CBC system components. Some component examples are turbo-alternators, heat exchangers, heat pipe radiators, and liquid metal pumps. A liquid metal cooled reactor is included and a gas cooled reactor model is in work. Both thermodynamic and structural analyses are performed for each component. EBAL performs steady-state design analysis with optimization as well as off-design performance analysis. Design optimization is performed both at the component level by the component models and on the system level with a global optimizer. The user has the option to manually drive the optimization process or run parametric analysis to better understand system trade-off. Although recent EBAL developments have focused on a CBC conversion system, the code is easily extendible to other power conversion cycles. This new, more powerful version of EBAL allows for rapid design analysis and optimization of space power systems. A notional example of EBAL's capabilities is included. (authors)
Propagation of signals in spaces with affine connections and metrics as models of space-time
Manoff, Sawa
2003-01-01
The propagation of signals in space-time is considered on the basis of the notion of null (isotropic) vector field in spaces with affine connections and metrics as models of space or of space-time. The Doppler effect is generalized for these types of spaces. The notions of aberration, standard (longitudinal) Doppler effect, and transversal Doppler effect are considered. On their grounds, the Hubble effect appears as Doppler effect with explicit forms of the centrifugal (centripetal) and Corio...
London, Leslie; Schneider, Helen
2012-01-01
While neoliberal globalisation is associated with increasing inequalities, global integration has simultaneously strengthened the dissemination of human rights discourse across the world. This paper explores the seeming contradiction that globalisation is conceived as disempowering nations states' ability to act in their population's interests, yet implementation of human rights obligations requires effective states to deliver socio-economic entitlements, such as health. Central to the actions required of the state to build a health system based on a human rights approach is the notion of accountability. Two case studies are used to explore the constraints on states meeting their human rights obligations regarding health, the first drawing on data from interviews with parliamentarians responsible for health in East and Southern Africa, and the second reflecting on the response to the HIV/AIDS epidemic in South Africa. The case studies illustrate the importance of a human rights paradigm in strengthening parliamentary oversight over the executive in ways that prioritise pro-poor protections and in increasing leverage for resources for the health sector within parliamentary processes. Further, a rights framework creates the space for civil society action to engage with the legislature to hold public officials accountable and confirms the importance of rights as enabling civil society mobilization, reinforcing community agency to advance health rights for poor communities. In this context, critical assessment of state incapacity to meet claims to health rights raises questions as to the diffusion of accountability rife under modern international aid systems. Such diffusion of accountability opens the door to 'cunning' states to deflect rights claims of their populations. We argue that human rights, as both a normative framework for legal challenges and as a means to create room for active civil society engagement provide a means to contest both the real and the
Preliminaries to a Social-Semiotic Model of Communicative Action
Antonio SANDU
2015-12-01
Full Text Available The purpose of this article is to bring contributions to the elaboration of a social-semiotic model of social constructionism, which will make a synthesis between the theory of communicative action and the theories of social-constructionist semiotic model?, based on the postulation of a social universe in a network of communicative interdependencies developed on levels of reality. The interpretative model we propose comes to conceptualize the particularities of the sociological analysis of the transmodern society, seen as a knowledge-based society, placed at the interference with the postmodern society; that of generalized permissiveness. The model proposed aims at a constructionist-fractalic (al? analysis (of deconstruction-reconstruction type of the interpretative drift of social constructs, under the empire of different constructive instances.
Integrability of geodesics and action-angle variables in Sasaki-Einstein space $T^{1,1}$
Visinescu, Mihai
2016-01-01
We briefly describe the construction of St\\"akel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of these spaces. We present the set of functionally independent integrals of motion for the homogeneous Sasaki-Einstein space $T^{1,1}$. We discuss the integrability of geodesics and construct explicitly the action-angle variables.
Exact solutions of SO(3) non-linear sigma model in a conic space background
Bezerra, V B; Romero, C
2005-01-01
We consider a nonlinear sigma model coupled to the metric of a conic space. We obtain restrictions for a nonlinear sigma model to be a source of the conic space. We then study nonlinear sigma model in the conic space background. We find coordinate transformations which reduce the chiral fields equations in the conic space background to field equations in Minkowski spacetime. This enables us to apply the same methods for obtaining exact solutions in Minkowski spacetime to the case of a conic spacetime. In the case the solutions depend on two spatial coordinates we employ Ivanov's geometrical ansatz. We give a general analysis and also present classes of solutions in which there is dependence on three and four coordinates. We discuss with special attention the intermediate instanton and meron solutions and their analogous in the conic space. We find differences in the total actions and topological charges of these solutions and discuss the role of the deficit angle.
Modeling missing data in knowledge space theory.
de Chiusole, Debora; Stefanutti, Luca; Anselmi, Pasquale; Robusto, Egidio
2015-12-01
Missing data are a well known issue in statistical inference, because some responses may be missing, even when data are collected carefully. The problem that arises in these cases is how to deal with missing data. In this article, the missingness is analyzed in knowledge space theory, and in particular when the basic local independence model (BLIM) is applied to the data. Two extensions of the BLIM to missing data are proposed: The former, called ignorable missing BLIM (IMBLIM), assumes that missing data are missing completely at random; the latter, called missing BLIM (MissBLIM), introduces specific dependencies of the missing data on the knowledge states, thus assuming that the missing data are missing not at random. The IMBLIM and the MissBLIM modeled the missingness in a satisfactory way, in both a simulation study and an empirical application, depending on the process that generates the missingness: If the missing data-generating process is of type missing completely at random, then either IMBLIM or MissBLIM provide adequate fit to the data. However, if the pattern of missingness is functionally dependent upon unobservable features of the data (e.g., missing answers are more likely to be wrong), then only a correctly specified model of the missingness distribution provides an adequate fit to the data. PMID:26651988
Modeling the reconstructed BAO in Fourier space
Seo, Hee-Jong; Beutler, Florian; Ross, Ashley J.; Saito, Shun
2016-08-01
The density field reconstruction technique, which partially reverses the non-linear degradation of the Baryon acoustic oscillation (BAO) feature in the galaxy redshift surveys, has been successful in substantially improving the cosmology constraints from recent surveys such as Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the method as a function of various reconstruction details. To directly quantify the BAO information in non-linear density fields before and after reconstruction, we calculate the cross-correlations (i.e. propagators) of the pre(post)-reconstructed density field with the initial linear field using a mock sample that mimics the clustering of the BOSS galaxies. The results directly provide the BAO damping as a function of wavenumber that can be implemented into the Fisher matrix analysis. We focus on investigating the dependence of the propagator on a choice of smoothing filters and on two major different conventions of the redshift-space density field reconstruction that have been used in literature. By estimating the BAO signal to noise for each case, we predict constraints on the angular diameter distance and Hubble parameter using the Fisher matrix analysis. We thus determine an optimal Gaussian smoothing filter scale for the signal-to-noise level of the BOSS CMASS. We also present appropriate BAO fitting models for different reconstruction methods based on the first- and second-order Lagrangian perturbation theory in Fourier space. Using the mock data, we show that the modified BAO fitting model can substantially improve the accuracy of the BAO position in the best fits as well as the goodness of the fits.
Testing fermion actions. Scaling in the Schwinger model
We test the scaling behaviour of Wilson, hypercube, maximally twisted mass and overlap fermion actions in dynamical simulations of the 2-dimensional massive Schwinger model. We also present possibilities to simulate overlap fermions dynamically by replacing the exact overlap operator by an approximate version. This approximation is used either as only the guidance Hamiltonian, keeping the exact overlap operator as the accept/reject Hamiltonian or for both, the guidance and accept/reject Hamiltonian in the Hybrid Monte Carlo algorithm. In the latter case we test whether the approximation error can be corrected for by computing the determinant ratio of the exact and the approximate overlap operators stochastically. (orig.)
The effective action approach applied to nuclear chiral sigma model
The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs
The Diversity of Enterprise Modeling – a Taxonomy for Enterprise Modeling Actions
Ulf Seigerroth
2015-10-01
Full Text Available Both researchers and practitioners have recognized the need for developed knowledge about enterprise modeling. Therefore it is necessary to increase the understanding of various actions that are performed during enterprise modeling, their meaning, and their diversity. This paper proposes a taxonomy with a conceptual structure in two dimensions (hierarchy and process that could be used to increase the knowledge about enterprise modeling actions. The taxonomy introduces a terminology that enables a better understanding of the modeling actions for a clear purpose. One important aspect of the taxonomy is to create visibility and traceability of decisions made during enterprise modeling activities. These modeling decisions have previously been of a more tacit nature and the taxonomy is supposed to make the rationale behind different modeling decisions explicit and understandable.
Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.
2015-12-01
Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.
Spectral Action for Bianchi Type-IX Cosmological Models
Fan, Wentao; Marcolli, Matilde
2015-01-01
A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors $w_1(t), w_2(t), w_3(t),$ and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients $a_0, a_2, a_4$ of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki's noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi ...
Spectral action for Bianchi type-IX cosmological models
Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde
2015-10-01
A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors w 1( t) , w 2( t) , w 3( t) , and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients a 0 ,a 2 ,a 4 of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki's noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant proof of the rationality result.
Pressure wave model for action potential propagation in excitable cells
Rvachev, M M
2003-01-01
Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...
Evaluating model of frozen soil environment change under engineering actions
WU; Qingbai(吴青柏); ZHU; Yuanlin(朱元林); LIU; Yongzhi(刘永智)
2002-01-01
The change of frozen soil environment is evaluated by permafrost thermal stability, thermal thaw sensibility and surface landscape stability and the quantitatively evaluating model of frozen soil environment is proposed in this paper. The evaluating model of frozen soil environment is calculated by 28 ground temperature measurements along Qinghai-Xizang Highway. The relationships of thermal thaw sensibility and freezing and thawing processes and seasonally thawing depth, thermal stability and permafrost table temperature, mean annual ground temperature and seasonally thawing depth, and surface landscape stability and freezing and thawing hazards and their forming possibility are analyzed. The results show that thermal stability, thermal thaw sensibility and surface landscape stability can be used to evaluate and predict the change of frozen soil environment under human engineering action.
Weyl Action of Two-Column Mixed-Symmetry Field and Its Factorization Around (A)dS Space
Joung, Euihun
2016-01-01
We investigate the four-derivative free Weyl action for two-column mixed-symmetry field that makes use of maximal gauge symmetries. In flat space, the action can be uniquely determined from gauge and Weyl (trace shift) symmetry requirements. We show that there is a smooth and unique deformation of the flat action to (A)dS which keeps the same amount of gauge symmetries. This action admits a factorization into two distinct two-derivative actions having gauge parameters of different Young diagrams. Hence, this factorization pattern naturally extends that of the Weyl actions of symmetric higher spin fields to mixed-symmetry cases. The mass-deformation for these actions can be realized preserving one of the gauge symmetries. Although generically non-unitary, in special dimensions, unitarity is achieved selecting different mass deformations for dS and AdS. We consider particular examples of our construction such as New Massive Gravity in three dimensions, linearized bigravity in four dimensions and their arbitrary...
Phase lagging model of brain response to external stimuli - modeling of single action potential
Seetharaman, Karthik; Kulish, Vladimir V
2012-01-01
In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.
Space Logistics Modeling and Simulation Analysis using SpaceNet: Four Application Cases
Grogan, Paul Thomas; Yue, Howard K.; de Weck, Olivier L.
2011-01-01
The future of space exploration will not be limited to sortie-style missions to single destinations. Even in present exploration taking place at the International Space Station in low-Earth orbit, logistics is complicated by flights arriving from five launch sites on Earth. The future challenges of space logistics given complex campaigns of interconnected missions in deep space will require innovative tools to aid planning and conceptual design. This paper presents a modeling framework to eva...
Dynamic simulation of hydrodynamic model of drum level wave action and sloshing
无
2007-01-01
In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling,the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid's wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.
Spinors on a curved noncommutative space: coupling to torsion and the Gross-Neveu model
Burić, Maja; Madore, John; Nenadović, Luka
2015-09-01
We analyse the Dirac action on the truncated Heisenberg algebra and in particular, the nonminimal couplings to the background gravitational field. By projection to the Heisenberg algebra we obtain a renormalisable model: the noncommutative extension of the Gross-Neveu model. This result indicates that, as on the commutative curved backgrounds, nonminimal couplings with torsion and curvature are necessary (and sufficient) for renormalisability of scalar and spinor theories on the curved noncommutative spaces.
Enhanced surrogate models for statistical design exploiting space mapping technology
Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.;
2005-01-01
We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...
Clausen, Christian
2004-01-01
This contribution explores a range of social spaces where unions and workers have played or potential can play a role in the local social shaping of IT and work. It will mainly be based on the authors own research and experiences within Scandinavian research on technology and working from the past...... 30 years. The paper provides an overview of Scandinavian research within technology and working life form a Danish perspective. A major contribution is con-cerned with a variety of strategies employed by social actors involved in action research pro-jects and their role in the social shaping...... of technology. The point is made that no single strat-egy have proved to provide an uncontested route for union or workers influence. Instead the Scandinavian experiences indicate, that a range of spaces, players and positions have been developed, providing opportunities for addressing questions related...
Optimization using surrogate models - by the space mapping technique
Søndergaard, Jacob
2003-01-01
conditions are satisfied. So hybrid methods, combining the space mapping technique with classical optimization methods, should be used if convergence to high accuracy is wanted. Approximation abilities of the space mapping surrogate are compared with those of a Taylor model of the expensive model. The space...... mapping surrogate has a lower approximation error for long steps. For short steps, however, the Taylor model of the expensive model is best, due to exact interpolation at the model origin. Five algorithms for space mapping optimization are presented and the numerical performance is evaluated. Three......Surrogate modelling and optimization techniques are intended for engineering design in the case where an expensive physical model is involved. This thesis provides a literature overview of the field of surrogate modelling and optimization. The space mapping technique is one such method...
A Novel Reinforcement Learning Architecture for Continuous State and Action Spaces
Víctor Uc-Cetina
2013-01-01
We introduce a reinforcement learning architecture designed for problems with an infinite number of states, where each state can be seen as a vector of real numbers and with a finite number of actions, where each action requires a vector of real numbers as parameters. The main objective of this architecture is to distribute in two actors the work required to learn the final policy. One actor decides what action must be performed; meanwhile, a second actor determines the right parameters for t...
On Stable Equilibria in Discrete-Space Social Interaction Models
AKAMATSU Takashi; Fujishima, Shota; Takayama, Yuki
2014-01-01
We investigate the differences and connections between discrete-space and continuous-space social interaction models. Although our class of continuous-space model has a unique equilibrium, we find that discretized models can have multiple equilibria for any degree of discretization, which necessitates a stability analysis of equilibria. We present a general framework for characterizations of equilibria and their stability under a broad class of evolutionary dynamics by using the properties of...
Effective action and vacuum expectations in nonlinear $\\sigma$ model
Fayzullaev, B A
2015-01-01
The equations for effective action for nonlinear $\\sigma$ model are derived using DeWitt method in two forms - for generator of vertex parts $\\Gamma$ and for generator of weakly connected parts $W$. Loop-expansion solutions to these equations are found. It is shown that vacuum expectation values for various quantities including divergence of a N\\"{o}ther current, trace of the energy-momentum tensor and so on, can be calculated by this method. Also it is shown that vacuum expectation to the sigma-field is determined by an explicit combination of tree Green function and classical solution. It is shown that the limit when coupling constant tends to zero is singular one.
Extracting Space Weather Information from Research Models: Opportunities and Challenges
Hesse, Michael
2010-01-01
In addition to supporting space research in the international community, the Community Coordinated Modeling Center (CCMC) has as its second objective to apply the power of modern research models toward space weather specification and forecasting. Motivated by the objectives to test models and to ease the transition of research models to space weather forecasting organizations, the CCMC has developed a number of real-time modeling systems, as well as a large number of modeling and data products for space weather forecasting support. Over time, these activities have produced tailored products for partners, as well as tools, which address the space weather needs of NASA's robotic mission community. All tools are accessible via a configurable, flexible interface. During this process, CCMC has accumulated substantial experience in understanding model performance, as well as in the design and execution of realtime systems. This presentation will focus on lessons learned and it will suggest low hanging fruit for transition to operations at partner agencies.
Gravitational Stability for a Vacuum Cosmic Space Crystalline Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2006-01-01
Using Heisenberg's uncertainty principle it is shown that the gravitational stability condition for a crystalline vacuum cosmic space implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action which leads to our theory is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space is 10 to the power of (-40) times the energy of the crystalline structure of vacuum space inside the present Universe volume.
Gravitational Stability for a Vacuum Cosmic Space Crystalline Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2005-01-01
Using Heisenberg's uncertainty principle it is shown that the gravitational stability condition for a crystalline vacuum cosmic space implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action which leads to our theory is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space is 10 to the 40 power times the energy of the crystalline structure of vacuum space inside the present Universe volume. PACS numbers: 04.20.-q, 03.65.-w, 03.50.De, 61.50.-f, 98.80.Ft
Commentary : working across distant spaces : connecting participatory action research and teaching.
Pain, R.
2009-01-01
This commentary reflects on the key themes and goals of this symposium. It contextualizes the relationship between participatory action research (PAR) and teaching in the increasingly popular field of critical action-oriented geography. It considers a number of benefits to student learning from engagement with PAR, drawing on the papers in the collection, and raises some critical questions for future development.
Commentary: Working across Distant Spaces--Connecting Participatory Action Research and Teaching
Pain, Rachel
2009-01-01
This commentary reflects on the key themes and goals of this symposium. It contextualizes the relationship between participatory action research (PAR) and teaching in the increasingly popular field of critical action-oriented geography. It considers a number of benefits to student learning from engagement with PAR, drawing on the papers in the…
Portable space mapping for efficient statistical modeling of passive components
Zhang, L; Aaen, PH; Wood, J.
2012-01-01
In this paper, a portable space-mapping technique is presented for efficient statistical modeling of passive components. The proposed technique utilizes the cost-effective model composition of a statistical space mapping, while introducing the portable mapping concept for flexible model development for passive modeling. The portable mapping is a single-development-multiple-use versatile wrapper, such that after development it can be conveniently combined with any nominal model to form a set o...
Modelling Action Potential Generation and Propagation in Fibroblastic Cells
Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.
2003-04-01
Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.
Scaling topological charge in the CP3 model using a fixed point action
We define a fixed point action in two-dimensional lattice CPN-1 models. The fixed point action is a classical perfect lattice action, which is expected to show strongly reduced cut-off effects in numerical simulations. Furthermore, the action has scale invariant instanton solutions, which enables us to define a topological charge without topological defects. We present results for the scaling of the topological suceptibility from a Monte Carlo simulation in the CP3 model. (orig.)
A multidimensional decisions modeling framework for built space supply
Farooq, Bilal; Miller, Eric J.; Haider, Murtaza
2013-01-01
The spatial and temporal distribution of built space supply plays an important role in shaping urban form and thus the general travel pattern in an urban area. Within an integrated framework, we are interested in modeling the decisions of a builder in terms of when, where, what type, and how much built space to build. We present a multidimensional discrete-continuous model formulation for the built space supply decisions that are based on expected profit maximization. The framework is applied...
A VECTOR SPACE MODEL FOR INFORMATION RETRIEVAL: A MATLAB APPROACH
Dr. Vinay Chavan
2012-04-01
Full Text Available By and large, three classic framework models have been used in the process of retrieving information: Boolean, Vector Space and Probabilistic. Boolean model is a light weight model which matches the query with precise semantics. Because of its boolean nature, results may be tides, missing partial matching, while on the contrary,vector space model, considering term-frequency, inverse document frequency measures, achieves utmost relevancy in retrieving documents in information retrieval. This paper implements and discusses the issues of information retrieval system with vector space model using MATLAB on Cranfield data collection of aerodynamics domain.
Phase-space dynamics of Bianchi IX cosmological models
The complex phase-space dynamical behaviour of a class of Biachi IX cosmological models is discussed, as the chaotic gravitational collapse due Poincare's homoclinic phenomena, and the n-furcation of periodic orbits and tori in the phase space of the models. Poincare maps which show this behaviour are constructed merically and applications are discussed. (Author)
Partial differential equations in action from modelling to theory
Salsa, Sandro
2015-01-01
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear bo...
Space weather products at the Community Coordinated Modeling Center
Hesse, Michael
In addition to supporting space research in the international community, the Community Co-ordinated Modeling Center (CCMC) has as its second objective to bring to apply the power of modern research models toward space weather specification and forecasting. Initially motivated by the objective to test models and to ease the transition of research models to space weather forecasting organization, the CCMC has developed a number of real-time modeling systems, as well as large number of modeling and data products for space weather forecasting. Over time, these activities have evolved into tailored products for partners, as well as into a direct support of the space weather needs within NASA robotic mission community. Accessible through a customizable interface, users within the US or at partnering institutions internationally have access to space weather tools driven by the most advanced space research models. Through partnering with agencies and institutions in the US and abroad, the CCMC strives to set up further data sharing agreements to the benefit of all participating institutions. In this presen-tation, we provide an overview of existing CCMC space weather services and products, and we will explore additional avenues for international collaborations.
Joint modeling of primary and secondary action in DBM
Koning, Ruud H.; Spring, P.N.; Wansbeek, T.J.
2002-01-01
In this paper we discuss the issue of primary and secondary actions to direct mail offers. Primary action refers to the first responses consumers make toward a direct offer or soliciation. It might represent an order for a product, a request for a catalog or credit card, or a pledge to donate to a c
The Reflective Teacher Leader: An Action Research Model
Furtado, Leena; Anderson, Dawnette
2012-01-01
This study presents four teacher reflections from action research projects ranging from kindergarten to adult school improvements. A teacher leadership matrix guided participants to connect teaching and learning theory to best practices by exploring uncharted territory within an iterative cycle of research and action. Teachers developed the…
A Quotient Space Approximation Model of Multiresolution Signal Analysis
Ling Zhang; Bo Zhang
2005-01-01
In this paper, we present a quotient space approximation model of multiresolution signal analysis and discuss the properties and characteristics of the model. Then the comparison between wavelet transform and the quotient space approximation is made. First, when wavelet transform is viewed from the new quotient space approximation perspective, it may help us to gain an insight into the essence of multiresolution signal analysis. Second, from the similarity between wavelet and quotient space approximations, it is possible to transfer the rich wavelet techniques into the latter so that a new way for multiresolution analysis may be found.
Properties of Brownian Image Models in Scale-Space
Pedersen, Kim Steenstrup
2003-01-01
law that apparently governs natural images. Furthermore, the distribution of Brownian images mapped into jet space is Gaussian and an analytical expression can be derived for the covariance matrix of Brownian images in jet space. This matrix is also a good approximation of the covariance matrix...... Brownian images) will be discussed in relation to linear scale-space theory, and it will be shown empirically that the second order statistics of natural images mapped into jet space may, within some scale interval, be modeled by the Brownian image model. This is consistent with the 1/f 2 power spectrum...... of natural images in jet space. The consequence of these results is that the Brownian image model can be used as a least committed model of the covariance structure of the distribution of natural images....
Manifestations of Isospin in Nearest Neighbor Spacing Distributions for the f-p Model Space
Quinonez, Michael; Zamick, Larry
2016-01-01
The strong interactions are charge independent. If we limit ourselves to the strong interactions, we have the isospin $T$ as a good quantum number. Here we consider the lack of level repulsion of states of different isospin and how this effect manifests in nearest neighbor spacing (NNS) histograms, which provide a visual and statistical context in which to study distributions of energy level spacings. In particular, we study nucleons in the f-p model space for the nucleus $^{44}$Ti. We also study the effect of the Coulomb interaction on the level spacing distribution.
Advancing Space Weather Modeling Capabilities at the CCMC
Mays, M. Leila; Kuznetsova, Maria; Boblitt, Justin; Chulaki, Anna; MacNeice, Peter; Mendoza, Michelle; Mullinix, Richard; Pembroke, Asher; Pulkkinen, Antti; Rastaetter, Lutz; Shim, Ja Soon; Taktakishvili, Aleksandre; Wiegand, Chiu; Zheng, Yihua
2016-04-01
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) serves as a community access point to an expanding collection of state-of-the-art space environment models and as a hub for collaborative development on next generation of space weather forecasting systems. In partnership with model developers and the international research and operational communities, the CCMC integrates new data streams and models from diverse sources into end-to-end space weather predictive systems, identifies weak links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will focus on the latest model installations at the CCMC and advances in CCMC-led community-wide model validation projects.
Palmer, Christopher J; Bigelow, Carol; Van Emmerik, Richard E A
2013-01-01
Soldier equipment compromises task performance as temporal constraints during critical situations and load increase inertial and interactive forces during movement. Methods are necessary to optimise equipment that relate task performance to underlying coordination and perception-action coupling. Employing ecological task analysis and methods from dynamical systems theory, equipment load and coordination was examined during two sub-tasks embedded in combat performance, threat discrimination and dynamic marksmanship. Perception-action coupling was degraded with load during threat discrimination, leading to delays in functional reaction time. Reduced speed and accuracy during dynamic marksmanship under load was related to disrupted segmental coordination and adaptability during postural transitions between targets. These results show how reduced performance under load relates to coordination changes and perception-action coupling. These changes in functional capability are directly related to soldier survivability in combat. The methods employed may aid equipment design towards more optimised performance by modifying equipment or its distribution on humans. PMID:24028557
Development, validation and application of numerical space environment models
Honkonen, Ilja
2013-10-01
Currently the majority of space-based assets are located inside the Earth's magnetosphere where they must endure the effects of the near-Earth space environment, i.e. space weather, which is driven by the supersonic flow of plasma from the Sun. Space weather refers to the day-to-day changes in the temperature, magnetic field and other parameters of the near-Earth space, similarly to ordinary weather which refers to changes in the atmosphere above ground level. Space weather can also cause adverse effects on the ground, for example, by inducing large direct currents in power transmission systems. The performance of computers has been growing exponentially for many decades and as a result the importance of numerical modeling in science has also increased rapidly. Numerical modeling is especially important in space plasma physics because there are no in-situ observations of space plasmas outside of the heliosphere and it is not feasible to study all aspects of space plasmas in a terrestrial laboratory. With the increasing number of computational cores in supercomputers, the parallel performance of numerical models on distributed memory hardware is also becoming crucial. This thesis consists of an introduction, four peer reviewed articles and describes the process of developing numerical space environment/weather models and the use of such models to study the near-Earth space. A complete model development chain is presented starting from initial planning and design to distributed memory parallelization and optimization, and finally testing, verification and validation of numerical models. A grid library that provides good parallel scalability on distributed memory hardware and several novel features, the distributed cartesian cell-refinable grid (DCCRG), is designed and developed. DCCRG is presently used in two numerical space weather models being developed at the Finnish Meteorological Institute. The first global magnetospheric test particle simulation based on the
A Rabbit Ventricular Action Potential Model Replicating Cardiac Dynamics at Rapid Heart Rates
Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G.; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N.
2008-01-01
Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Cai) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ven...
A FORMAL SPECIFICATION LANGUAGE FOR DYNAMIC STRAND SPACE MODEL
刘东喜; 李晓勇; 白英彩
2002-01-01
Specification language is used to provide enough information for the model of the cryptographic protocol. This paper first extends strand space model to dynamic strand model, and then a formal specification language for this model is defined by using BNF grammar. Compared with those in literatures, it is simpler because of only concerning the algebraic properties of cryptographic protocols.
Background independent effective action from D=1 matrix model
We derive the background independent form of the Das-Jevicki action. The tachyon terms are given to all orders by a generally covariant form of the Das-Jevicki action. The graviton-dilaton sector is the usual low energy effective action. This enables us to examine questions such as the back reaction of the tachyon on the metric. In particular the reason why the usual Liouville term is an exact solution of the conformal invariance conditions, as well as the fact that it has no back reaction, become manifest. We comment on the propagation of a tachyonic perturbation in the background of a black-hole metric. (orig.)
Parallel State Space Construction for Model-Checking
Garavel, Hubert; Mateescu, Radu; Smarandache, Irina
2001-01-01
The verification of concurrent finite-state systems by model-checking often requires to generate (a large part of) the state space of the system under analysis. Because of the state explosion problem, this may be a resource-consuming operation, both in terms of memory and CPU time. In this report, we aim at improving the performances of state space construction by using parallelization techniques. We present parallel algorithms for constructing state spaces (or Labeled Transition Systems) on ...
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
A Learning State-Space Model for Image Retrieval
Lee Greg C
2007-01-01
Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.
Zárate, Maria Rodó de
2015-01-01
Introduction In this paper I seek to contribute to feminist geographies of fear by analyzing the ways young feminists in a medium-sized non-metropolitan city of Catalonia manage fear and discomfort in public spaces. Through empirical and analytical methodologies that provide participatory insights to the intersectional and spatial experience of oppression and privilege, I examine their uses and experiences of public space focusing on the personal and collective strategies they develop to f...
Quantum-Dot Semiconductor Optical Amplifiers: State Space Model versus Rate Equation Model
Hussein Taleb
2013-01-01
Full Text Available A simple and accurate dynamic model for QD-SOAs is proposed. The proposed model is based on the state space theory, where by eliminating the distance dependence of the rate equation model of the QD-SOA; we derive a state space model for the device. A comparison is made between the rate equation model and the state space model under both steady state and transient regimes. Simulation results demonstrate that the derived state space model not only is much simpler and faster than the rate equation model, but also it is as accurate as the rate equation model.
O(N) Models with Topological Lattice Actions
Bietenholz, Wolfgang; Bögli, Michael; Gerber, Urs; Niedermayer, Ferenc; Pepe, Michele; Wiese, Uwe-Jens; Rejón-Barrera, Fernando G.
2013-01-01
A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss "weird" lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classic...
Mapping from Speech to Images Using Continuous State Space Models
Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan
2005-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. The...
Action Algebras and Model Algebras in Denotational Semantics
Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann
the same way as that for functional denotational types. For example, PASCAL arrays belong to the “language inherent” aspect, while the Store domain seems to belong to the “model dependent” aspect. This distinction was important because it focussed attention on optimizing the model dependent semantic domains to obtain a more efficient implementation.) The research led to a nice conclusion: The guidelines of Action Semantics induce a clear separation of the model and language inherent aspects of a language’s semantics. A good implementation of facets, particularly the model dependent ones, leads to generation of an efficient compiler. In this article we discuss the separation of the language inherent and model-inherent domains at the theoretical and conceptual level. In doing so, the authors hope to show how Professor Mosses’s influence extended beyond his technical advice to his professional and personal examples on the supervision of PhD research.
A Simulation and Modeling Framework for Space Situational Awareness
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated
A Simulation and Modeling Framework for Space Situational Awareness
Olivier, S S
2008-09-15
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.
The Einstein-Hilbert action of the space of holomorphic maps from S^2 to CP^k
Alqahtani, L. S.
2013-01-01
Let $\\mathcal{H}_{n,k}(\\Sigma)$ be the space of degree $n\\geq 1$ holomorphic maps from a compact Riemann surface $\\Sigma $ to $\\mathbb{C}P^k$. In the case $\\Sigma=S^2$ and $n=1$, the $L^2$ metric on $\\mathcal{H}_{1,k}(S^2)$ was computed exactly by Speight. In this paper, the Ricci curvature tensor and the scalar curvature on $\\mathcal{H}_{1,k}(S^2)$ are determined explicitly for $k\\geq 2$. An exact direct computation of the Einstein-Hilbert action with respect to the $L^2$ metric on $\\mathcal...
Space ecoliteracy- five informal education models for community empowerment
Venkataramaiah, Jagannatha; Jagannath, Sahana; J, Spandana; J, Sadhana; Jagannath, Shobha
Space ecoliteracy is a historical necessity and vital aspect of space age.Space Situational Awareness has taught lessons for mankind to look inward while stretching beyond cradle in human endeavours. Quality of life for every one on the only home of mankind-TERRA shall be a feasibility only after realizing Space ecoliteracy amongst all stakeholders in space quest. Objectives of Informal Environmental Education(UNESCO/UNEP/IEEP,1977) mandates awareness, attitude, knowledge, skill and participation at Individual and Community domains. Application of Space Technology at both Telecommunications and Remote Sensing domain have started making the fact that mankind has a challenge to learn and affirm earthmanship. Community empowerment focus after Earth Summit 1992 mandate of Sustainable Development has demonstrated a deluge of best practices in Agriculture,Urban, Industries and service sectors all over the globe. Further, deployment of Space technologies have proved the immense potential only after pre-empting the participatory approach at individual and community levels.Indian Space Programme with its 44th year of space service to national development has demonstrated self reliance in space technology for human development. Space technology for the most underdeveloped is a success story both in communication and information tools for quality of life. In this presentation Five Space Ecoliteracy models designed and validated since 1985 till date on informal environmental education namely 1) Ecological Environmental Studies by Students-EESS (1988): cited as one of the 20 best eco -education models by Earth Day Network,2)Community Eco Literacy Campaign-CEL,(2000): cited as a partner under Clean Up the World Campaign,UN, 3) Space Eco Literacy(2011)-an informa 8 week space eco literacy training reported at 39th COSPAR 12 assembly and 4) Space Eco Literacy by Practice(2014)- interface with formal education at institutions and 5) Space Ecoliteracy Mission as a space out reach in
Modeling the Laser Interferometer Space Antenna Optics
Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul
2005-01-01
The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.
Nonlinear Sigma Models with Compact Hyperbolic Target Spaces
Gubser, Steven; Schoenholz, Samuel S; Stoica, Bogdan; Stokes, James
2015-01-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the $O(2)$ model. Unlike in the $O(2)$ case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggest...
Einstein, the reality of space, and the action-reaction principle
Brown, Harvey R.; Lehmkuhl, Dennis
2013-01-01
Einstein regarded as one of the triumphs of his 1915 theory of gravity --- the general theory of relativity --- that it vindicated the action--reaction principle, while Newtonian mechanics as well as his 1905 special theory of relativity supposedly violated it. In this paper we examine why Einstein came to emphasise this position several years after the development of general relativity. Several key considerations are relevant to the story: the connection Einstein originally saw between Mach'...
Hacyan, Shahen
2006-11-01
Since the famous Einstein-Podolsky-Rosen (EPR) paper, it is clear that there is a serious incompatibility between local realism and quantum mechanics. Einstein believed that a complete quantum theory should be free of what he once called "spooky actions at distance". However, all experiments in quantum optics and atomic physics performed in the last two decades confirm the existence of quantum correlations that seem to contradict local realism. According to Bohr, the apparent contradictions disclose only the inadequacy of our customary concepts for the description of the quantum world. Are space and time such customary concepts? In this presentation, I argue that the Copenhagen interpretation is compatible with Kant's transcendental idealism and that, in particular, EPR type paradoxes are consistent with Kant's transcendental aesthetics, according to which space and time have no objective reality but are pure forms of sensible intuition.
An analytic model for the Riemannian space of colors
A scale-invariant generalization of Weinberg's theory of the color space is given. A minimal analytic model is constructed with Gaussian protomeric basis; the metric tensor possesses four independent Killing vectors with an U(1)xSO(1,1) symmetry group. The formalism is applied to dichromatic vision too, and a special model is shown, in which the color space is two-dimensional, however the dominant hues can be identified. 16 refs. (author)
A reference model for space data system interconnection services
Pietras, John; Theis, Gerhard
1993-03-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
Joint spacing criterion for equivalent continuum model
Currently, the Yucca Mountain Site Characterization Project is investigating the feasibility of the disposal of high-level radioactive waste in the unsaturated Topopah Spring formation. The Topopah Spring formation is a heavily fractured, predominantly vertically jointed, welded tuff, and the potential disposal area is cut by the Ghost Dance fault and bounded by several other fault structures. The joints in the tuff and the faults may have an impact on the emplacement drift or borehole stability, as well as on the movement of fluids through the rock mass. The design of the repository drifts and layout, the waste emplacement scheme, and the thermomechanical performance of the rock mass will be analyzed using various numerical models. These models may be based on different assumptions regarding the representation of the fracture behavior under given applied stresses, and will range from discrete models where individual mechanically active fractures are treated distinctly, to continuum models where the joint behavior is smeared over a representative volume. There is always the question of applicability of a model with respect to a given material domain to be analyzed
2008-01-01
This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.
The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2006-01-01
The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10 to the power of (-48) square Km. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter.
A space-averaged model of branched structures
Lopez, Diego; Michelin, Sébastien
2014-01-01
Many biological systems and artificial structures are ramified, and present a high geometric complexity. In this work, we propose a space-averaged model of branched systems for conservation laws. From a one-dimensional description of the system, we show that the space-averaged problem is also one-dimensional, represented by characteristic curves, defined as streamlines of the space-averaged branch directions. The geometric complexity is then captured firstly by the characteristic curves, and secondly by an additional forcing term in the equations. This model is then applied to mass balance in a pipe network and momentum balance in a tree under wind loading.
Frank, M.J.; Scheres, A.P.J.; Sherman, S.J.
2007-01-01
Models of natural action selection implicate fronto-striatal circuits in both motor and cognitive 'actions'. Dysfunction of these circuits leads to decision-making deficits in various populations. We review how computational models provide insights into the mechanistic basis for these deficits in Pa
Spreading models in the duals of Schlumprecht-type spaces
Beanland, Kevin
2009-01-01
We show that the dual of Schlumprecht's space $S^*$ and the dual of Gowers and Maurey's HI space each contain a $c_0$ spreading model and that for each $1 < p < \\infty$ and $1/p+1/q=1$, the dual of the $p$-convexification of Schlumprecht's space and the dual of its HI counterpart, constructed by Neil Dew, each contain an $\\ell_q$ spreading model. The existence of a $c_0$ spreading model in $S^*$ solves a problem of S. A. Argyros. We also give a general criteria for the existence of a bounded non-compact operator and use this to show that there exist strictly singular non-compact operators on each of these spaces.
A space charge model for electrophonic bursters
Beech, M
1999-01-01
The sounds accompanying electrophonic burster meteors are characteristically described as being akin to short duration ``pops'' and staccato--like ``clicks''. As a phenomenon distinct from the enduring electrophonic sounds that occasionally accompany the passage and ablation of large meteoroids in the Earth's lower atmosphere, the bursters have proved stubbornly difficult to explain. A straightforward calculation demonstrates that in contradistinction to the enduring electrophonic sounds, the electrophonic bursters are not generated as a consequence of interactions between the meteoroid ablation plasma and the Earth's geomagnetic field. Here we present a novel and hitherto unrecorded model for the generation of short--duration pulses in an observer's local electrostatic field. Our model is developed according to the generation of a strong electric field across a shock wave propagating in a plasma. In this sense, the electrophonic bursters are associated with the catastrophic disruption of large meteoroids in ...
State space model of a traffic microregion
Dohnal, Pavel
Praha: Czech Technical University, 2006 - (Husník, L.), s. 1-5 [Poster 2006. Prague (CZ), 18.05.2006] R&D Projects: GA AV ČR(CZ) 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : traffic flow control * basic transportation quantities * queue lenth model * estimation * Kalman filter Subject RIV: BC - Control Systems Theory
Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories
Carbone, Lisa [Mathematics Rutgers University, Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Murray, Scott H. [Mathematics & Statistics, University of Canberra, ACT 2601 (Australia); Sati, Hisham [Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260 (United States)
2015-10-15
For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.
Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories
Carbone, Lisa; Murray, Scott H.; Sati, Hisham
2015-10-01
For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL2(ℤ) and E7(ℤ) on the scalar cosets SO(2)∖SL2(ℝ) and [SU(8)/{ ± Id}]∖E7(+7)(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.
Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories
For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL2(ℤ) and E7(ℤ) on the scalar cosets SO(2)∖SL2(ℝ) and [SU(8)/( ± Id)]∖E7(+7)(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general
Smets, Barth F.; Lardon, Laurent
Predicting the fate of horizontally transmissible elements in extant microbial communities might be facilitated by the availability of suitable mathematical models. Since the mid-1970s, mass action models have been introduced to describe the transfer of conjugal and mobilizable genetic elements...... these mathematical models. Finally, further permutations, as well as limitations of these mass action models in view of the structured complexity of most microbial systems are addressed....
An Action Research Model for the Management of Change in Continuing Professional Distance Education
Miguel Baptista Nunes; Maggie McPherson
2003-01-01
This paper proposes an action research model as basis for the management of change in continuing professional distance education (CPDE). The model proposed emerged from the need to manage a complex change process from traditional paper-based distance education to e-learning. In order to illustrate and support the model proposed, this paper describes and discusses such a change process in a CPDE Masters programme.The Educational Management Action Research (EMAR) model conjugates pedagogical t...
The Four Space-times Model of Reality
Fontana, G
2004-01-01
We live in a 3+1 space-time that is intended as a description of the universe with three space dimensions and one time dimension. Space-time dimensionality seems so natural that it is rarely criticized. Experiments and the highly successful relativistic theories teach us that there are four fundamental dimensions, among them is time that is treated as a special dimension. The specialty of time can be removed, leading to the concept that time is simply a function of four new fundamental dimensions, which have now identical properties, in combination with Lorentz invariance. A model is deduced in which a 4-space, characterized by four space-like coordinates, may host four "equivalent but orthogonal" space-times, each with three spatial coordinates and one temporal coordinate. Coordinates are shared; therefore the 4-space and the four space-times are all in one. Electromagnetic interaction is confined in each space-time and the role of the speed of light appears to be that of a barrier for the electromagnetic in...
Community projects as liminal spaces for climate action and sustainability practices in Scotland
Meyerricks, Svenja
2015-01-01
The potential of communities for sustainability learning and governance has generated substantial interest in sustainability discourses, but their specific roles and remits are not always critically examined. This thesis' original contribution to these discourses lies in the analysis of community projects as liminal spaces for pro-sustainable change that are limited in scope within wider political landscapes that do not sufficiently address wider challenges of an unravelling biosphere. The pa...
Fabert, Oliver
2007-01-01
Branched covers of orbit cylinders are the basic examples of holomorphic curves studied in symplectic field theory. Since all curves with Fredholm index one can never be regular for any choice of cylindrical almost complex structure, we generalize the obstruction bundle technique of Taubes for determining multiple cover contributions from Gromov-Witten theory to the case of moduli spaces with boundary. Our result proves that the differential in rational symplectic field theory and contact hom...
Action Direction of Muscle Synergies in Three-Dimensional Force Space
Hagio, Shota; Kouzaki, Motoki
2015-01-01
Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. ...
Vasilaki, Eleni; Frémaux, Nicolas; Urbanczik, Robert; Senn, Walter; Gerstner, Wulfram
2009-01-01
Changes of synaptic connections between neurons are thought to be the physiological basis of learning. These changes can be gated by neuromodulators that encode the presence of reward. We study a family of reward-modulated synaptic learning rules for spiking neurons on a learning task in continuous space inspired by the Morris Water maze. The synaptic update rule modifies the release probability of synaptic transmission and depends on the timing of presynaptic spike arrival, postsynaptic acti...
The investigation of the action of ionising radiation on biological structures requires a detailed analysis of the various stages underlying damage induction and evolution. In order to take into account the stochastic aspects characterising the process of interest ab initio models and MC simulation codes are required, which start from the physical track structure and follow its time evolution, taking into account the various levels of organisation of the biological targets (DNA, chromosomes etc.). Representative examples of the activities in this area of the Universities of Milan and Pavia will be presented, focusing on the development of models aimed: a) to better understand the action mechanisms of ionising radiation, in the framework of the EC project Low Dose Risk Models coordinated by the GSF Institute of munich; b) to study the induction of chromosome aberrations and their possible use as biomarkers, mainly in the framework of the INFN experiment DOSBI, developed in collaboration with the University of Naples; c) to provide basic data for applicative tools developed for hadron therapy and space radiation protection, in the framework of the INFN projects ATER.FIBI and FLUKA and the ASI (Italian Space Agency) project Influence of the shielding in the space radiation biological effectiveness
Space Weather Models, Tools and Services at the Community Coordinated Modeling Center
Kuznetsova, M. M.; Hesse, M.; Maddox, M.; Rastaetter, L.; Berrios, D.; Pulkkinen, A.; Zheng, Y.; MacNeice, P. J.; Shim, J.; Takakishvili, A.; Chulaki, A.
2010-01-01
The Community Coordinated Modeling center (CCMC) is a multi-agency partnership to support the research and developmental work necessary to substantially increase space weather modeling capabilities and to facilitate advanced models deployment in forecasting operations. The CCMC conducts unbiased model testing and validation and evaluates model readiness for operational environment. Space weather models and coupled model chains hosted at the CCMC range from the solar corona to the Earth's upper atmosphere. CCMC has developed a number of real-time modeling systems, as well as a large number of modeling and data products tailored to address the space weather needs of NASA's robotic missions. The presentation will demonstrate the rapid progress towards development the system allowing using products derived from space weather models in applications associated with National Space Weather needs. The adaptable Integrated Space Weather Analysis (ISWA) System developed at CCMC for NASA-relevant space weather information combines forecasts based on advanced space weather models hosted at CCMC with concurrent space environment information. The system is also enabling post-impact analysis and flexible dissemination of space weather information.
Homogeneous space-times as models for isolated extended objects
Tarakanov, A N
2006-01-01
An extended object is considered on the Minkowski background in the form of a space-time bag, which is bounded by a certain surface confining an internal substance. An internal metric is built starting from the symmetry principles rather than from the field equations. Assuming such a surface to be Lorentz invariant we find that the internal space is proved to be the de Sitter space. Conformal inversion of the internal metric relative to the bag surface determines an external space (conformally conjugated de Sitter space) whose metric may simulate a field of the object. Although the extended object built in a such a way is noncompact, its cross section by the hyperplane r^0=0, where r^0 is the temporal coordinate, is compact (a ball) and the associated metric can model a spherically symmetric extended massless charge in a certain approximation.
Modeling techniques for gaining additional urban space
Thunig, Holger; Naumann, Simone; Siegmund, Alexander
2009-09-01
One of the major accompaniments of the globalization is the rapid growing of urban areas. Urban sprawl is the main environmental problem affecting those cities across different characteristics and continents. Various reasons for the increase in urban sprawl in the last 10 to 30 years have been proposed [1], and often depend on the socio-economic situation of cities. The quantitative reduction and the sustainable handling of land should be performed by inner urban development instead of expanding urban regions. Following the principal "spare the urban fringe, develop the inner suburbs first" requires differentiated tools allowing for quantitative and qualitative appraisals of current building potentials. Using spatial high resolution remote sensing data within an object-based approach enables the detection of potential areas while GIS-data provides information for the quantitative valuation. This paper presents techniques for modeling urban environment and opportunities of utilization of the retrieved information for urban planners and their special needs.
A probabilistic model of RNA conformational space
Frellsen, Jes; Moltke, Ida; Thiim, Martin; Mardia, Kanti; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas
2009-01-01
The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However......, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that...
Space-time modeling of electricity spot prices
Abate, Girum Dagnachew; Haldrup, Niels
In this paper we derive a space-time model for electricity spot prices. A general spatial Durbin model that incorporates the temporal as well as spatial lags of spot prices is presented. Joint modeling of space-time effects is necessarily important when prices and loads are determined in a network...... of power exchange areas. We use data from the Nord Pool electricity power exchange area bidding markets. Different spatial weight matrices are considered to capture the structure of the spatial dependence process across different bidding markets and statistical tests show significant spatial dependence...
A Critical Analysis of Vector Space Model for Information Retrieval.
Raghavan, Vijay V.; Wong, S. K. M.
1986-01-01
Presents notations and definitions necessary to identify the concepts and relationships that are important in modelling information retrieval objects and processes in the context of vector spaces. Earlier work on the use of vector models is evaluated in terms of the concepts introduced and certain problems are identified. (Author/EM)
New results on mixture and exponential models by Orlicz spaces
Santacroce, Marina; Siri, Paola; Trivellato, Barbara
2016-01-01
New results and improvements in the study of nonparametric exponential and mixture models are proposed. In particular, different equivalent characterizations of maximal exponential models, in terms of open exponential arcs and Orlicz spaces, are given. Our theoretical results are supported by several examples and counterexamples and provide an answer to some open questions in the literature.
CAD-model-based vision for space applications
Shapiro, Linda G.
1988-01-01
A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs.
Model-Free Reinforcement Learning with Continuous Action in Practice
Degris, Thomas; Pilarski, Patrick,; Sutton, Richard,
2012-01-01
Reinforcement learning methods are often con- sidered as a potential solution to enable a robot to adapt to changes in real time to an unpredictable environment. However, with continuous action, only a few existing algorithms are practical for real-time learning. In such a setting, most effective methods have used a parameterized policy structure, often with a separate parameterized value function. The goal of this paper is to assess such actor-critic methods to form a fully specified practic...
Mirror contamination in space I: mirror modelling
Krijger, J. M.; Snel, R.; van Harten, G.; Rietjens, J. H. H.; Aben, I.
2014-10-01
We present a comprehensive model that can be employed to describe and correct for degradation of (scan) mirrors and diffusers in satellite instruments that suffer from changing optical Ultraviolet to visible (UV-VIS) properties during their operational lifetime. As trend studies become more important, so does the importance of understanding and correcting for this degradation. This is the case not only with respect to the transmission of the optical components, but also with respect to wavelength, polarisation, or scan-angle effects. Our hypothesis is that mirrors in flight suffer from the deposition of a thin absorbing layer of contaminant, which slowly builds up over time. We describe this with the Mueller matrix formalism and Fresnel equations for thin multi-layer contamination films. Special care is taken to avoid the confusion often present in earlier publications concerning the Mueller matrix calculus with out-of-plane reflections. The method can be applied to any UV-VIS satellite instrument. We illustrate and verify our approach to the optical behaviour of the multiple scan mirrors of SCIAMACHY (onboard ENVISAT).
Modeling of Space-Time Focusing of Localized Nondiffracting Pulses
Zamboni-Rached, Michel
2015-01-01
In this paper we develop a method capable of modeling the space-time focusing of nondiffracting pulses. The new pulses can possess arbitrary peak velocities and, in addition to being resistant to diffraction, can have their peak intensities and focusing positions chosen a priori. More specifically, we can choose multiple locations (spatial ranges) of space/time focalization; also, the pulse intensities can be chosen in advance. The pulsed wave solutions presented here can have very interesting applications in many different fields, such as free-space optical communications, remote sensing, medical apparatus, etc.
A stochastic space-time model for intermittent precipitation occurrences
Sun, Ying
2016-01-28
Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.
Action unit classification using active appearance models and conditional random fields
Van der Maaten, L.J.P.; Hendriks, E.A.
2011-01-01
In this paper, we investigate to what extent modern computer vision and machine learning techniques can assist social psychology research by automatically recognizing facial expressions. To this end, we develop a system that automatically recognizes the action units defined in the facial action coding system (FACS). The system uses a sophisticated deformable template, which is known as the active appearance model, to model the appearance of faces. The model is used to identify the location of...
Development and testing of a mouse simulated space flight model
Sonnenfeld, G.
1985-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.
From Diagnosis to Action: An Automated Failure Advisor for Human Deep Space Missions
Colombano, Silvano; Spirkovska, Lilly; Baskaran, Vijayakumar; Morris, Paul; Mcdermott, William; Ossenfort, John; Bajwa, Anupa
2015-01-01
The major goal of current space system development at NASA is to enable human travel to deep space locations such as Mars and asteroids. At that distance, round trip communication with ground operators may take close to an hour, thus it becomes unfeasible to seek ground operator advice for problems that require immediate attention, either for crew safety or for activities that need to be performed at specific times for the attainment of scientific results. To achieve this goal, major reliance will need to be placed on automation systems capable of aiding the crew in detecting and diagnosing failures, assessing consequences of these failures, and providing guidance in repair activities that may be required. We report here on the most current step in the continuing development of such a system, and that is the addition of a Failure Response Advisor. In simple terms, we have a system in place the Advanced Caution and Warning System (ACAWS) to tell us what happened (failure diagnosis) and what happened because that happened (failure effects). The Failure Response Advisor will tell us what to do about it, how long until something must be done and why its important that something be done and will begin to approach the complex reasoning that is generally required for an optimal approach to automated system health management. This advice is based on the criticality and various timing elements, such as durations of activities and of component repairs, failure effects delay, and other factors. The failure advice is provided to operators (crew and mission controllers) together with the diagnostic and effects information. The operators also have the option to drill down for more information about the failure and the reasons for any suggested priorities.
Ventilation of a nuclear space: modelling, experimental validation and consequences
The present problems raised by ventilation are stated, and a review is made of the models of contamination dispersion and calculation of the contaminant concentrations and their validity as to the data collected during radiological events. A model more suitable to the conditions prevailing in installations has been derived from these models in order to describe the evolution of contaminant concentrations in a ventilated space
Semi-Automated Design Space Exploration for Formal Modelling
Grov, Gudmund; Ireland, Andrew; Llano, Maria Teresa; Kovacs, Peter; Colton, Simon; Gow, Jeremy
2016-01-01
Refinement based formal methods allow the modelling of systems through incremental steps via abstraction. Discovering the right levels of abstraction, formulating correct and meaningful invariants, and analysing faulty models are some of the challenges faced when using this technique. Here, we propose Design Space Exploration, an approach that aims to assist a designer by automatically providing high-level modelling guidance in real-time. More specifically, through the combination of common p...
Hybrid Acoustic Modelling of Historic Spaces Using Blender
Van Mourik, Jelle; Oxnard, Stephen; Foteinou, Aglaia; Murphy, Damian Thomas
2014-01-01
Historic spaces provide a challenge in terms of achieving accurate acoustic modelling and auralisation due to the large volumes typically involved, implying significant computational overhead, uncertainty in terms of the construction materials’ properties, and translating this into appropriate physically based boundary conditions. Hybrid acoustic modeling approaches seek to solve the computational problem through complementary assimilation of various modeling paradigms. SonicRender is such a ...
Orbital Optimization in the Active Space Decomposition Model
Kim, Inkoo; Shiozaki, Toru
2015-01-01
We report the derivation and implementation of orbital optimization algorithms for the active space decomposition (ASD) model, which are extensions of complete active space self-consistent field (CASSCF) and its occupation-restricted variants in the conventional multiconfiguration electronic-structure theory. Orbital rotations between active subspaces are included in the optimization, which allows us to unambiguously partition the active space into subspaces, enabling application of ASD to electron and exciton dynamics in covalently linked chromophores. One- and two-particle reduced density matrices, which are required for evaluation of orbital gradient and approximate Hessian elements, are computed from the intermediate tensors in the ASD energy evaluation. Numerical results on 4-(2-naphthylmethyl)-benzaldehyde and [3$_6$]cyclophane and model Hamiltonian analyses of triplet energy transfer processes in the Closs systems are presented. Furthermore model Hamiltonians for hole and electron transfer processes in...
Barrett-Crane spin foam model from generalized BF-type action for gravity
We study a generalized action for gravity as a constrained BF theory, and its relationship with the Plebanski action. We analyze the discretization of the constraints and the spin foam quantization of the theory, showing that it leads naturally to the Barrett-Crane spin foam model for quantum gravity. Our analysis holds true in both the Euclidean and Lorentzian formulations
Modeling of space environment impact on nanostructured materials. General principles
Voronina, Ekaterina; Novikov, Lev
2016-07-01
In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible
Nongenomic actions of cortisol in the teleost lactotroph model
Borski, Russell J; Tipsmark, Christian Kølbæk; Mita, M
2006-01-01
present study was to investigate the role of phospholipase C (PLC)-IP3 in mediating cortisol's actions. During 30 min and 4-hour incubation, chicken GnRH-II induces a 2-4 fold increase in PRL release from the tilapia pituitary. The stimulatory effect of cGnRH-II was reduced by cortisol, cortisol-21......-hemisuccinate (HEF) and its membrane impermeant analog, HEF-BSA. Since GnRH induces PRL release, in part, via activation of PLC this suggests that cortisol may rapidly inhibit GnRH-induced PRL release by suppressing PLC activity. We also found that cortisol rapidly inhibits IP3 accumulation in tilapia RPD under...
Component system identification and state-space model synthesis
Sjövall, Per; Abrahamsson, Thomas
2007-10-01
A scheme for synthesis of subsystem state-space models to be used for analysis of dynamic behaviour of built-up structures is presented. Using measurements on each component, subsystem models are identified adopting contemporary system identification methods. The subsystem state-space models are transformed into a coupling form, at which kinematic constraints and equilibrium conditions for the interfaces are introduced. The procedure is applied to a plane frame structure, which is built up of two components. It is found that the non-trivial model order determination constitutes a crucial step in the process. If the model order is incorrect at subsystem level, the synthesized model may radically fail to describe the properties of the built-up structure. It is also found that the identified subsystem models need to satisfy certain physically motivated constraints, e.g. reciprocity and passivity. Different approaches and methods to aid the model order determination and the estimation of physically consistent state-space models at subsystem level are discussed.
Formulating state space models in R with focus on longitudinal regression models
Dethlefsen, Claus; Lundbye-Christensen, Søren
We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms in the...
Formulating state space models in R with focus on longitudinal regression models
Dethlefsen, Claus; Lundbye-Christensen, Søren
2006-01-01
We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms...
Transformation of Neural State Space Models into LFT Models for Robust Control Design
Bendtsen, Jan Dimon; Trangbæk, Klaus
2000-01-01
This paper considers the extraction of linear state space models and uncertainty models from neural networks trained as state estimators with direct application to robust control. A new method for writing a neural state space model in a linear fractional transformation form in a non...
Permutation invariant algebras, a Fock space realization and the Calogero model
We study permutation invariant oscillator algebras and their Fock space representations using three equivalent techniques, i.e. (i) a normally ordered expansion in creation and annihilation operators, (ii) the action of annihilation operators on monomial states in Fock space and (iii) Gram matrices of inner products in Fock space. We separately discuss permutation invariant algebras which possess hermitean number operators and permutation invariant algebras which possess non-hermitean number operators. The results of a general analysis are applied to the SM-extended Heisenberg algebra, underlying the M-body Calogero model. Particular attention is devoted to the analysis of Gram matrices for the Calogero model. We discuss their structure, eigenvalues and eigenstates. We obtain a general condition for positivity of eigenvalues, meaning that all norms of states in Fock space are positive if this condition is satisfied. We find a universal critical point at which the reduction of the physical degrees of freedom occurs. We construct dual operators, leading to the ordinary Heisenberg algebra of free Bose oscillators. From the Fock-space point of view, we briefly discuss the existence of a mapping from the Calogero oscillators to the free Bose oscillators and vice versa. (orig.)
Zhuo Wang; He Mao
2014-01-01
The congestion classification evaluation standard of Beijing expressway is proposed based on the on-time transportation flow data in this paper, the time-space model matrix is found according to the time-space characteristics of transportation flow data, and the congestion time-space model matrix are obtained according to different congestion level threshold, and their reachable matrix are calculated out. The interpretive structural model method is adopted to partition the reachable matrix, t...
The space weather modeling framework. Progress and challenges
Complete text of publication follows. The Space Weather Modeling Framework (SWMF) is a powerful tool for coupling regional models describing the space environment from the solar photosphere to the bottom of the ionosphere. Presently, SWMF contains 13 components: the solar corona (SC), eruptive event generator (EE), inner heliosphere (IE), outer heliosphere (OH), solar energetic particles (SE), global magnetosphere (GM), inner magnetosphere (IM), radiation belts (RB), plasmasphere (PS), ionospheric electrodynamics (IE), polar wind (PW), upper atmosphere (UA) and lower atmosphere (LA). This talk will present an overview of SWMF, new results obtained with improved physics (Hall MHD and multifluid MHD) as well as some validation studies.
SpaceWire model development technology for satellite architecture.
Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.
2011-09-01
Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.
Improved Vector Space Model TF/IDF Using Lexical Relations
Minh Chau Huynh; Pham Duy Thanh Le; Trong Hai Duong
2015-01-01
Current vector space model, for instance TF/IDF, has not yet taken into account the relations between terms; it only combines the term frequency in a document and the inverse document frequency in whole database to identify importance-score (weight) of a term respect with the document. Here we discover lexical relations among terms in the document to improve the vector space model TF/IDF. The weight generated from TF/IDF for each term, which is improved by lexical relations among related term...
Improved Vector Space Model TF/IDF Using Lexical Relations
Minh Chau Huynh
2015-12-01
Full Text Available Current vector space model, for instance TF/IDF, has not yet taken into account the relations between terms; it only combines the term frequency in a document and the inverse document frequency in whole database to identify importance-score (weight of a term respect with the document. Here we discover lexical relations among terms in the document to improve the vector space model TF/IDF. The weight generated from TF/IDF for each term, which is improved by lexical relations among related terms in the document. We evaluate the proposed method using documents selected from Wikipedia. The result shown that the proposed method is significant effective.
A Right Coprime Factorization of Neural State Space Models
Bendtsen, Jan Dimon
2007-01-01
In recent years, various methods for identification of nonlinear systems in closed loop using open-loop approaches have received considerable attention. However, these methods rely on differentially coprime factorizations of the nonlinear plants, which can be difficult to compute in practice. To ...... address this issue, this paper presents various technical results leading up to explicit formulae for right coprime factorizations of neural state space models, i.e., nonlinear system models represented in state space using neural networks, which satisfy a Bezout identity. ...
Modeling situated abstraction : action coalescence via multidimensional coherence.
Sallach, D. L.; Decision and Information Sciences; Univ. of Chicago
2007-01-01
Situated social agents weigh dozens of priorities, each with its own complexities. Domains of interest are intertwined, and progress in one area either complements or conflicts with other priorities. Interpretive agents address these complexities through: (1) integrating cognitive complexities through the use of radial concepts, (2) recognizing the role of emotion in prioritizing alternatives and urgencies, (3) using Miller-range constraints to avoid oversimplified notions omniscience, and (4) constraining actions to 'moves' in multiple prototype games. Situated agent orientations are dynamically grounded in pragmatic considerations as well as intertwined with internal and external priorities. HokiPoki is a situated abstraction designed to shape and focus strategic agent orientations. The design integrates four pragmatic pairs: (1) problem and solution, (2) dependence and power, (3) constraint and affordance, and (4) (agent) intent and effect. In this way, agents are empowered to address multiple facets of a situation in an exploratory, or even arbitrary, order. HokiPoki is open to the internal orientation of the agent as it evolves, but also to the communications and actions of other agents.
Pyle, E. J.
2013-12-01
The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims
Experimental and analytical generic space station dynamic models
Belvin, W. K.; Edighoffer, H. H.
1986-01-01
A dynamic model used for verification of analytical and experimental methods is documented. The model consists of five substructures to simulate the multibody, low frequency nature of large space structures. Design considerations which led to a fundamental vibration frequency of less than one Hz are described. Finite element analysis used to predict the vibration modes and frequencies of the experimental model is presented. In addition, modeling of cable suspension effects using prestressed vibration analysis is described. Details of the expermental and analytical models are included to permit replication of the study. Results of the modal vibration tests and analysis are presented in a separate document.
Redshift space clustering of galaxies and cold dark matter model
Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt
1993-01-01
The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.
Empirical processes, typical sequences and coordinated actions in standard Borel spaces
Raginsky, Maxim
2010-01-01
This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical distributions uniformly over a class of measurable "test functions." In the finite-alphabet case, we can take all uniformly bounded functions and recover the usual notion of strong typicality (or typicality under the total variation distance). For a general alphabet, however, this function class turns out to be too large, and must be restricted. With this in mind, we define typicality with respect to any Glivenko-Cantelli function class (i.e., a function class that admits a Uniform Law of Large Numbers) and demonstrate its power by giving simple derivations of the fundamental limits on the achievable rates in several source coding scenarios, in which the relevant operational criteria pertain to reproducing empirical averages of a general-alphabet stationary memoryless source with respect to a suitable function class.
Methodology of problem space modeling in industrial enterprise management system
V.V. Glushchevsky
2015-03-01
Full Text Available The aim of the article. The aim of the article is to develop methodological principles for building a problem space model which can be integrated into industrial enterprise management system. The results of the analysis. The author developed methodological principles for constructing the problem space of an industrial enterprise as a structural and functional model. These problems appear on enterprise business process network topology and can be solved by its management system. The centerpiece of the article is description of the main stages of implementation of modeling methodology of industrial enterprise typical management problems. These stages help to solve several units of organizational management system structure of enterprise within their functional competence. Author formulated an axiom system of structural and characteristic properties of modeling space problems elements, and interconnections between them. This system of axioms is actually a justification for the correctness and adequacy of the proposed modeling methodology and comes as theoretical basis in the construction of the structural and functional model of the management problems space. This model generalizes three basic structural components of the enterprise management system with the help of axioms system: a three-dimensional model of the management problem space (the first dimension is the enterprise business process network, the second dimension is a set of management problems, the third dimension is four vectors of measurable and qualitative characteristics of management problems, which can be analyzed and managed during enterprise functioning; a two-dimensional model of the cybernetic space of analytical problems, which are formalized form of management problems (multivariate model experiments can be implemented with the help of this model to solve wide range of problem situations and determine the most effective or optimal management solutions; a two-dimensional model
Initiation-promotion model of tumor prevalence in mice from space radiation exposures
Cucinotta, F. A.; Wilson, J. W.
1995-01-01
Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2005-01-01
The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10-48 Km-2. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter. PACS numbers: 98.80.Es, 04.20.-q, 03.65.-w, 61.50.-f, 98.80.Ft
Speed limit in internal space of domain walls via all-order effective action of moduli motion
Eto, Minoru
2015-01-01
We find that motion in internal moduli spaces of generic domain walls has an upper bound for its velocity. Our finding is based on our generic formula for all-order effective actions of internal moduli parameter of domain wall solitons. It is known that the Nambu-Goldstone mode $Z$ associated with spontaneous breaking of translation symmetry obeys a Nambu-Goto effective Lagrangian $\\sqrt{1 - (\\partial_0 Z)^2}$ detecting the speed of light ($|\\partial_0 Z|=1$) in the target spacetime. Solitons can have internal moduli parameters as well, associated with a breaking of internal symmetries such as a phase rotation acting on a field. We obtain, for generic domain walls, an effective Lagrangian of the internal moduli $\\epsilon$ to all order in $(\\partial \\epsilon)$. The Lagrangian is given by a function of the Nambu-Goto Lagrangian: $L = g(\\sqrt{1 + (\\partial_\\mu \\epsilon)^2})$. This shows generically the existence of an upper bound on $\\partial_0 \\epsilon$, i.e. a speed limit in the internal space. The speed limit...
Speed limit in internal space of domain walls via all-order effective action of moduli motion
Eto, Minoru; Hashimoto, Koji
2016-03-01
We find that motion in internal moduli spaces of generic domain walls has an upper bound for its velocity. Our finding is based on our generic formula for all-order effective actions of internal moduli parameter of domain wall solitons. It is known that the Nambu-Goldstone mode Z associated with spontaneous breaking of translation symmetry obeys a Nambu-Goto effective Lagrangian √{1 -(∂0Z )2 } detecting the speed of light (|∂0Z |=1 ) in the target spacetime. Solitons can have internal moduli parameters as well, associated with a breaking of internal symmetries such as a phase rotation acting on a field. We obtain, for generic domain walls, an effective Lagrangian of the internal moduli ɛ to all orders in (∂ɛ ). The Lagrangian is given by a function of the Nambu-Goto Lagrangian: L =g (√{1 +(∂μɛ )2 }). This shows generically the existence of an upper bound on ∂0ɛ , i.e., a speed limit in the internal space. The speed limit exists even for solitons in some nonrelativistic field theories, where we find that ɛ is a type I Nambu-Goldstone mode that also obeys a nonlinear dispersion to reach the speed limit. This offers a possibility of detecting the speed limit in condensed matter experiments.
Interfacial and Wall Transport Models for SPACE-CAP Code
Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)
2009-10-15
The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.
Holographic Space-time Models of Anti-deSitter Space-times
Banks, Tom
2016-01-01
We study the constraints on HST models of AdS space-time. The causal diamonds of HST along time-like geodesics of AdS space-time, fit nicely into the FRW patch of AdS space. The coordinate singularity of the FRW patch is identified with the proper time at which the Hilbert space of the causal diamond becomes infinite dimensional. For diamonds much smaller than the AdS radius, RAdS, the time dependent Hamiltonians of HST are the same as those used to describe similar diamonds in Minkowski space. In particular, they are invariant under the fuzzy analog of volume preserving diffeomorphisms of the holographic screen, which leads to fast scrambling of perturbations on the horizon of a black hole of size smaller than RAdS. We argue that, in order to take a limit of this system which converges to a CFT, one must choose Hamiltonians, in a range of proper times of order RAdS, which break this invariance, and become local in a particular choice of basis for the variables. We show that, beginning with flat, sub-RAdS, pa...
Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling
Amr Al Abed
2013-01-01
Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.
Model-based action planning involves cortico-cerebellar and basal ganglia networks
Fermin, Alan S. R.; Yoshida, Takehiko; Yoshimoto, Junichiro; Ito, Makoto; Tanaka, Saori C.; Doya, Kenji
2016-01-01
Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement Learning (RL) associates these processes with three major classes of strategies for action selection: exploratory RL learns state-action values by exploration, model-based RL uses internal models to simulate future states reached by hypothetical actions, and motor-memory RL selects past successful state-action mapping. In order to investigate the neural substrates that implement these strategies, we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a sequential action selection task under conditions that promoted the use of a specific RL strategy. The ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network implements the model-based RL action selection strategy. PMID:27539554
The four-loop string effective action from the bosonic σ-model
We discuss the formulation of the string effective action, in terms of quantities defined within the bosonic σ-model, at four loops or O(α'4). In particular we show that a recent construction given by Osborn correctly yields the effective action at this order for the minimal subtraction renormalisation scheme. We demonstrate a renormalisation scheme for which Osborn's action reduces to a simpler form proposed by Tseytlin at this order. As part of our analysis, we calculate, using indirect methods, various O(α'4) quantities for the σ-model, in particular the five-loop dilaton β-function. (orig.)
Stochastic modelling of dissolved inorganic nitrogen in space and time
Lophaven, Søren Nymand; Carstensen, Niels Jacob; Rootzen, Helle
2006-01-01
Environmental monitoring datasets often contain a large amount of missing values, and are characterized as being sampled over time on a distinct number of locations in the area of interest. This paper proposes a stochastic approach for modelling such data in space and time, by taking the spatial......, and as time series of DIN at three different locations. However, the model approach could be applied to any space-time point given by a location in the Kattegat area and a week in the 5-year period 1993-1997. The results can be interpreted from a biological and physical point of view. Thus for the specific...... application the approach seems to perform very well. The results obtained could be used to improve status reporting of the environment, or as forcing functions for time series models and deterministic, hydrodynamic ecosystem models....
Emulation: A fast stochastic Bayesian method to eliminate model space
Roberts, Alan; Hobbs, Richard; Goldstein, Michael
2010-05-01
Joint inversion of large 3D datasets has been the goal of geophysicists ever since the datasets first started to be produced. There are two broad approaches to this kind of problem, traditional deterministic inversion schemes and more recently developed Bayesian search methods, such as MCMC (Markov Chain Monte Carlo). However, using both these kinds of schemes has proved prohibitively expensive, both in computing power and time cost, due to the normally very large model space which needs to be searched using forward model simulators which take considerable time to run. At the heart of strategies aimed at accomplishing this kind of inversion is the question of how to reliably and practicably reduce the size of the model space in which the inversion is to be carried out. Here we present a practical Bayesian method, known as emulation, which can address this issue. Emulation is a Bayesian technique used with considerable success in a number of technical fields, such as in astronomy, where the evolution of the universe has been modelled using this technique, and in the petroleum industry where history matching is carried out of hydrocarbon reservoirs. The method of emulation involves building a fast-to-compute uncertainty-calibrated approximation to a forward model simulator. We do this by modelling the output data from a number of forward simulator runs by a computationally cheap function, and then fitting the coefficients defining this function to the model parameters. By calibrating the error of the emulator output with respect to the full simulator output, we can use this to screen out large areas of model space which contain only implausible models. For example, starting with what may be considered a geologically reasonable prior model space of 10000 models, using the emulator we can quickly show that only models which lie within 10% of that model space actually produce output data which is plausibly similar in character to an observed dataset. We can thus much
Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications
Boghosian, Mary; Narvaez, Pablo; Herman, Ray
2012-01-01
The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.
Estimation methods for nonlinear state-space models in ecology
Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro; Nielsen, Anders; Madsen, Henrik
2011-01-01
logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...
Model Experiments for the Determination of Airflow in Large Spaces
Nielsen, Peter V.
Model experiments are one of the methods used for the determination of airflow in large spaces. This paper will discuss the formation of the governing dimensionless numbers. It is shown that experiments with a reduced scale often will necessitate a fully developed turbulence level of the flow...
Nechitailo, G.; Gordeev, A.
2004-01-01
The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes in which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptation reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H + ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumulation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiments on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the
Preliminary Multi-Variable Cost Model for Space Telescopes
Stahl, H. Philip; Hendrichs, Todd
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.
Neuro-Space Mapping for Modeling Heterojunction Bipolar Transistor
Yan Shuxia; Cheng Qianfu; Wu Haifeng; Zhang Qijun
2015-01-01
A neuro-space mapping(Neuro-SM) for modeling heterojunction bipolar transistor(HBT) is presented, which can automatically modify the input signals of the given model by neural network. The novel Neuro-SM formu-lations for DC and small-signal simulation are proposed to obtain the mapping network. Simulation results show that the errors between Neuro-SM models and the accurate data are less than 1%, demonstrating that the accurcy of the proposed method is higher than those of the existing models.
Space Mapping Optimization of Microwave Circuits Exploiting Surrogate Models
Bakr, M. H.; Bandler, J. W.; Madsen, Kaj;
2000-01-01
A powerful new space-mapping (SM) optimization algorithm is presented in this paper. It draws upon recent developments in both surrogate model-based optimization and modeling of microwave devices, SM optimization is formulated as a general optimization problem of a surrogate model. This model is a...... significant response shift exists. The algorithm is illustrated through the design of a capacitively loaded 10:1 impedance transformer and a double-folded stub filter. A high-temperature superconducting filter is also designed using decoupled frequency and SMs....
Dynamic State Space Partitioning for External Memory Model Checking
Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...... partitions, and thereby limit the amount of disk access and network communication. We report on several experiments made with our verification platform ASAP that implements the dynamic partitioning scheme proposed in this paper....
A Configuration-Space Equatorial Spread F Structure Model
Rino, C. L.; Carrano, C. S.; Retterer, J. M.
2014-12-01
Configuration-space models address the intermediate scale ESF structure range from hundreds of kilometers to hundreds of meters. It is well known that ESF structure is comprised of highly-elongated field-aligned striations. Striations are generated by physics-based ESF codes. Moreover, they are visually observable in twilight barium releases and air glow. Configuration-space models are derived from ensembles of field-aligned striations with specified radial profile functions, distributions of scale sizes, and distributions of clustered field-line starting locations. The model is intimately tied to underlying physics. The scale-dependent evolution of a field-aligned local plasma enhancement is a well posed plasma-physics problem. Local striation creation, evolution, and intensity is driven by the convective instability process. Successive bifurcation is often used to describe the Rayleigh-Taylor mechanism. The model makes no prior assumptions that ensure standard spectral decompositions. Indeed, the model shows that there is no possibility of constructing a consistent three-dimensional structure spectrum. The model does show that in planes intersecting field lines well removed from the meridian plane two-dimensional spectra can be constructed. There is a one-to-one relation between the striation size distribution and the index of the corresponding power-law segments. The profile shape controls the texture of the realizations. A critical number of randomly located striations are required to support a well-defined spectral characterization. The configuration space model is defined by a much smaller number of random variables than required to generate a realization of a process with specified spectral characteristics. Thus, it is feasible to generate a three-dimensional realization that can be used to simulate ESF and to interpret planned space-time Cubsat measurements. The theory will be reviewed and examples of model applications presented.
A Model of Values and Actions for Personal Knowledge Management
Zuber-Skerritt, Ortrun
2005-01-01
Purpose: The purpose of this paper is to present a "soft methodology" model in knowledge management that addresses the problem of accessing and managing one particular type of knowledge: personal (implicit/tacit) knowledge. Design/methodology/approach: The model is based on the theories and methodologies of grounded theory, adult learning,…
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Grefenstette, Edward; Clark, Stephen; Coecke, Bob; Pulman, Stephen
2011-01-01
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product...
Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee
2015-09-01
We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach, 2004). Based on two proposed functions of social identity performance (Klein, Spears, & Reicher, 2007), we distinguished between the efficacy of collective action at consolidating the identity of a protest movement and its efficacy at achieving social change (political efficacy). We expected identity consolidation efficacy to positively predict collective action tendencies directly and indirectly via political efficacy. We also expected collective action tendencies to be positively predicted by moral outrage and by sympathy in response to disadvantaged outgroup's suffering. These hypotheses were supported in two surveys examining intentions to protest for Palestine in Britain (Study 1), and intentions to attend the June 4th vigil in Hong Kong to commemorate the Tiananmen massacre among a sample of Hong Kong citizens (Study 2). The contributions of these findings to research on the dual pathway model of collective action and the different functions of collective action are discussed. PMID:25406712
Parametric cost model for solar space power and DIPS systems
A detailed cost model has been developed to parametrically determine the program development and production cost of (1) photovoltaic, (2) solar dynamic and (3) dynamic isotope (DIPS) space power systems. The model is applicable in the net electrical power range of 3 to 300 kWe for solar power, and 0.5 to 10 kWe for DIPS. Application of the cost model allows spacecraft or space-based power system architecture and design trade studies or budgetary forecasting and cost benefit analyses. The cost model considers all major power subsystems (i.e., power generation, power conversion, energy storage, thermal management, and power management/distribution/control). It also considers system cost effects such as integration, testing, management, etc. The cost breakdown structure, model assumptions, ground rules, bases, Cost Estimation Relationship (CER) format and rationale are presented, and the application of the cost model to 100-kWe solar space power plants and to a 1.0-kWe DIPS are demonstrated
A Trusted Host's Authentication Access and Control Model Faced on User Action
ZHANG Miao; XU Guoai; HU Zhengming; YANG Yixian
2006-01-01
The conception of trusted network connection (TNC) is introduced, and the weakness of TNC to control user's action is analyzed. After this, the paper brings out a set of secure access and control model based on access, authorization and control, and related authentication protocol. At last the security of this model is analyzed. The model can improve TNC's security of user control and authorization.
Phase diagram of Model C in the parametric space of order parameter and space dimensions
Dudka, M.; Folk, R.; Holovatch, Yu.
2016-01-01
The scaling behavior of model C describing the dynamical behaviour of the $n$-component nonconserved order parameter coupled statically to a scalar conserved density is considered in $d$-dimensional space. Conditions for the realization of different types of scaling regimes in the $(n,d)$ plane are studied within the field-theoretical renormalization group approach. Borders separating these regions are calculated on the base of high-order RG functions using $\\epsilon$-expansions as well as by...
Entering Modeling Space. An Apprenticeship in Molecular Modeling
Carl Trindle
1999-11-01
Full Text Available Twenty years ago computer modeling had made its first major impact on the chemist's patterns of thought. Now it is prominent in research and graduate education, and has made its presence felt throughout the undergraduate curriculum. I describe two consultations with chemists specializing in synthesis, by which I intend to illustrate (1 attitudes of novices to the craft; (2 experiences in apprenticeship which include flights of depression, disillusion, and elation; and (3 changes in their judgment of computer modeling as they make it part of their armory of concepts and images. The examples treat aspects of the chemical system not easily incorporated into structural formulas (chirality and even physical models (relative energetics, but which are offered in computer modeling systems with molecular mechanics or quantum mechanical energy estimators. On the way, we can arrive at a notion of the changing value of computer modeling, and its impact on the chemist's frame of mind.
Space modeling with SolidWorks and NX
Duhovnik, Jože; Drešar, Primož
2015-01-01
Through a series of step-by-step tutorials and numerous hands-on exercises, this book aims to equip the reader with both a good understanding of the importance of space in the abstract world of engineers and the ability to create a model of a product in virtual space – a skill essential for any designer or engineer who needs to present ideas concerning a particular product within a professional environment. The exercises progress logically from the simple to the more complex; while SolidWorks or NX is the software used, the underlying philosophy is applicable to all modeling software. In each case, the explanation covers the entire procedure from the basic idea and production capabilities through to the real model; the conversion from 3D model to 2D manufacturing drawing is also clearly explained. Topics covered include modeling of prism, axisymmetric, symmetric, and sophisticated shapes; digitization of physical models using modeling software; creation of a CAD model starting from a physical model; free fo...
Online advertising by use of cost per action pricing model
Djekanović, Nebojša
2012-01-01
The aim of Thesis is to present the area of Internet marketing and to give a comparison between CPA advertising pricing model and other pricing models in Internet marketing. The problem that many Internet marketing agencies are facing now is the ability to collect data from users that are interested in certain products from different advertisers. At the same time they would like to present their product or products to a wider audience. The solution for advertisers would be to use CPA ...
Innovative Actions within the Business Models of European Companies
Georgeta Ilie
2014-01-01
Companies regularly reassess and reorganize their business models in order to create value and generate growth. They also reassess the price-performance correlation and new levels of capital efficiency. The new business models are frequently needed to provide goods at affordable prices through the adaptation of packaging strategies, pricing strategies, the product itself, and by helping to sustain financially the demand. In the context of current financial and economic difficulties, it reveal...
Linking knowledge and action through mental models of sustainable agriculture
Hoffman, Matthew; Lubell, Mark; Hillis, Vicken
2014-01-01
Sustainability is notoriously difficult to define and put into practice in the context of agricultural and other social-ecological systems. A crucial task within this debate is to analyze how practitioners understand the idea of sustainability. Using California winegrape growers as an example, this paper uses network science to describe the structure of farmer mental models of sustainable agriculture and link those models to behavioral aspects of sustainable agriculture. California growers ha...
Motivation in action: A process model of L2 motivation
Dornyei, Zoltan; Otto, Istvan
1998-01-01
As part of a long-term project aimed at designing classroom interventions to motivate language learners, we have searched for a motivation model that could serve as a theoretical basis for the methodological applications. We have found that none of the existing models we considered were entirely adequate for our purpose for three reasons: (1) they did not provide a sufficiently comprehensive and detailed summary of all the relevant motivational influences on classroom behaviour; (2) they tend...
Action-based Dynamical Modelling for the Milky Way Disk
Trick, Wilma H; Rix, Hans-Walter
2016-01-01
We present RoadMapping, a full-likelihood dynamical modelling machinery that aims to recover the Milky Way's (MW) gravitational potential from large samples of stars in the Galactic disk. RoadMapping models the observed positions and velocities of stars with a parametrized, three-integral distribution function (DF) in a parametrized axisymmetric potential. We investigate through differential test cases with idealized mock data how the breakdown of model assumptions and data properties affect constraints on the potential and DF. Our key results are: (i) If the MW's true potential is not included in the assumed model potential family, we can - in the axisymmetric case - still find a robust estimate for the potential, with only <~ 10% difference in surface density within |z| <= 1.1 kpc inside the observed volume. (ii) Modest systematic differences between the true and model DF are inconsequential. E.g, when binning stars to define sub-populations with simple DFs, binning errors do not affect the modelling ...
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne
2011-12-01
State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
A Model of Emergent Universe in Inhomogeneous Space-Time
Bhattacharya, Subhra
2016-01-01
A scenario of an emergent universe is constructed in the background of an inhomogeneous space-time model which is asymptotically (at spatial infinity) FRW space-time. The cosmic substratum consists of non-interacting two components, namely {\\bf a)} homogeneous and isotropic fluid but dissipative in nature and {\\bf b)} an inhomogeneous and anisotropic barotropic fluid. In non-equilibrium thermodynamic prescription (second order deviations), particle creation mechanism is considered the cause for the dissipative phenomena. It is found that for constant value of the particle creation rate parameter there exists a scenario of emergent universe.
Life sciences research in space: The requirement for animal models
Fuller, C. A.; Philips, R. W.; Ballard, R. W.
1987-01-01
Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.
Wingate, Robert J.
2012-01-01
After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.
Modeling of weak lensing statistics. II. Configuration-space statistics
Valageas, Patrick; Nishimichi, Takahiro
2011-01-01
We investigate the performance of an analytic model of the 3D matter distribution, which combines perturbation theory with halo models, for weak lensing configuration-space statistics. We compare our predictions for the weak lensing convergence two-point and three-point correlation functions with numerical simulations and fitting formulas proposed in previous works. We also consider the second and third-order moments of the smoothed convergence and of the aperture-mass. As in our previous study of Fourier-space weak lensing statistics, we find that our model provides better agreement with simulations than published fitting formulas. Moreover, we check that we recover the dependence on cosmology of these weak lensing statistics. This approach allows us to obtain the quantitative relationship between these integrated weak lensing statistics and the various contributions to the underlying 3D density fluctuations, decomposed over perturbative, 2-halo, or 1-halo terms.
The importance of understanding: Model space moderates goal specificity effects.
Kistner, Saskia; Burns, Bruce D; Vollmeyer, Regina; Kortenkamp, Ulrich
2016-06-01
The three-space theory of problem solving predicts that the quality of a learner's model and the goal specificity of a task interact on knowledge acquisition. In Experiment 1 participants used a computer simulation of a lever system to learn about torques. They either had to test hypotheses (nonspecific goal), or to produce given values for variables (specific goal). In the good- but not in the poor-model condition they saw torque depicted as an area. Results revealed the predicted interaction. A nonspecific goal only resulted in better learning when a good model of torques was provided. In Experiment 2 participants learned to manipulate the inputs of a system to control its outputs. A nonspecific goal to explore the system helped performance when compared to a specific goal to reach certain values when participants were given a good model, but not when given a poor model that suggested the wrong hypothesis space. Our findings support the three-space theory. They emphasize the importance of understanding for problem solving and stress the need to study underlying processes. PMID:26250943
Application of thermospheric general circulation models for space weather operations
Fuller-Rowell, T.; Minter, C.; Codrescu, M.
Solar irradiance is the dominant source of heat, ionization, and dissociation of the thermosphere, and to a large extent drives the global dynamics, and controls the neutral composition and density structure. Neutral composition is important for space weather applications because of its impact on ionospheric loss rates, and neutral density is critical for satellite drag prediction. The future for thermospheric general circulation models for space weather operations lies in their use as state propagators in data assimilation techniques. The physical models can match empirical models in accuracy provided accurate drivers are available, but their true value comes when combined with data in an optimal way. Two such applications have recently been developed. The first utilizes a Kalman filter to combine space-based observation of airglow with physical model predictions to produce global maps of neutral composition. The output of the filter will be used within the GAIM (Global Assimilation of Ionospheric Measurement) model developed under a parallel effort. The second filter uses satellite tracking and remote sensing data for specification of neutral density. Both applications rely on accurate estimates of the solar EUV and magnetospheric drivers.
We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Qs, s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Qs(x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Qs(x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs
Adaptive Modeling of the International Space Station Electrical Power System
Thomas, Justin Ray
2007-01-01
Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.
Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.
Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua
2015-01-01
Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model. PMID:26132270
Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.
Na Shu
Full Text Available Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1, and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.
Foresight Model of Turkey's Defense Industries' Space Studies until 2040
Yuksel, Nurdan; Cifci, Hasan; Cakir, Serhat
2016-07-01
Being advanced in science and technology is inevitable reality in order to be able to have a voice in the globalized world. Therefore, for the countries, making policies in consistent with their societies' intellectual, economic and political infrastructure and attributing them to the vision having been embraced by all parties of the society is quite crucial for the success. The generated policies are supposed to ensure the usage of countries' resources in the most effective and fastest way, determine the priorities and needs of society and set their goals and related roadmaps. In this sense, technology foresight studies based on justified forecasting in science and technology have critical roles in the process of developing policies. In this article, Foresight Model of Turkey's Defense Industries' Space Studies, which is turned out to be the important part of community life and fundamental background of most technologies, up to 2040 is presented. Turkey got late in space technology studies. Hence, for being fast and efficient to use its national resources in a cost effective way and within national and international collaboration, it should be directed to its pre-set goals. By taking all these factors into consideration, the technology foresight model of Turkey's Defense Industry's Space Studies was presented in the study. In the model, the present condition of space studies in the World and Turkey was analyzed; literature survey and PEST analysis were made. PEST analysis will be the inputs of SWOT analysis and Delphi questionnaire will be used in the study. A two-round Delphi survey will be applied to the participants from universities, public and private organizations operating in space studies at Defense Industry. Critical space technologies will be distinguished according to critical technology measures determined by expert survey; space technology fields and goals will be established according to their importance and feasibility indexes. Finally, for the
Teachers' Practices and Mental Models: Transformation through Reflection on Action
Manrique, María Soledad; Sánchez Abchi, Verónica
2015-01-01
This contribution explores the relationship between teaching practices, teaching discourses and teachers' implicit representations and mental models and the way these dimensions change through teacher education (T.E). In order to study these relationships, and based on the assumptions that representations underlie teaching practices and that T.E…
Modelling human actions on lightweight structures: experimental and numerical developments
Živanović S.
2015-01-01
Full Text Available This paper presents recent, numerical and experimental, developments in modelling dynamic loading generated by humans. As modern structures with exposure to human-induced loading, such as footbridges, building floors and grandstands, are becoming ever lighter and more slender, they are increasingly susceptible to vibration under human-induced dynamic excitation, such as walking, jumping, running and bobbing, and their vibration serviceability assessment is often a deciding factor in the design process. While simplified modelling of the human using a harmonic force was sufficient for assessment of vibration performance of more robust structures a few decades ago, the higher fidelity models are required in the contemporary design. These models are expected not only to describe both temporal and spectral features of the force signal more accurately, but also to capture the influence, psychological and physiological, of human-structure and human-human interaction mechanisms on the human kinematics, and consequently on the force generated and the resulting vibration response. Significant advances have been made in both the research studies and design guidance. This paper reports the key developments and identifies the scope for further research.
Community Reintegration: The Value of Educational-Action-Training Models.
Versluys, Hilda P.
1984-01-01
The article describes the principles that guide program development, the use of therapeutic and educational activities, and the components of transitional program models for disabled individuals re-entering the community following discharge from rehabilitation facilities. The role of the occupatonal therapist in successful reintegration is…
Characteristics of Effective Training: Developing a Model To Motivate Action.
Wise, Dena; Ezell, Patsy
2003-01-01
The Parenting and Consumer Education project identified effective models for training welfare-to-work facilitators. Premises were the importance of process, learner responsibility, and improvement of social networks. Effective training was learner focused, inspiring, and motivating; demonstrated productive behaviors and effective life skills; and…
Stirling System Modeling for Space Nuclear Power Systems
Lewandowski, Edward J.; Johnson, Paul K.
2008-01-01
A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.
Modeling the Phase-Space Distribution around Massive Halos
Lam, Tsz Yan; Nishimichi, Takahiro; Takada, Masahiro
2013-01-01
The comparison between dynamical mass and lensing mass provides a targeted test for a wide range of modified gravity models. In our previous paper we showed, through numerical simulations, that the measurement of the line-of-sight velocity dispersion around stacked massive clusters whose lensing masses are known allows for stringent constraints on modified gravity on scales of 2 - 15 Mpc/h. In this work we develop a semi-analytical approach based on the halo model to describe the phase-space distribution and the line-of-sight velocity dispersion for different tracers. The model distinguishes contributions from the halo pairwise velocity and the virial velocity within halos. We also discuss observational complications, in particular the contribution from Hubble flow, and show how our model can incorporate these complications. We then incorporate the effects of modified gravity (specifically, f(R) and braneworld models), and show that the model predictions are in excellent agreement with modified gravity simula...
Covariant phase space formulations of superparticles and supersymmetric WZW models
The Wess-Zumino-Witten (WZW) models are fundamental rational conformal field theories, and have a rich structure which has occasioned much interest. With regard to the further development of the formulation of this approach, as well as to the various applications of supersymmetric WZW models in superstring theories, the authors consider the question of whether one can generalise this covariant phase space formulation to the supersymmetric WZW models and discuss superparticles moving upon group manifolds. These systems share many of the important features of the supersymmetric WZW models. The WZW models are then discussed. It is shown that the full current algebras arise naturally for these models and the topological issues which arose in the bosonic case are found here with the same resolution. 22 refs
A phase-space model for Pleistocene ice volume
Imbrie, John Z; Lisiecki, Lorraine E
2011-01-01
We present a phase-space model that simulates Pleistocene ice volume changes based on Earth's orbital parameters. Terminations in the model are triggered by a combination of ice volume and orbital forcing and agree well with age estimates for Late Pleistocene terminations. The average phase at which model terminations begin is approximately 90 +/- 90 degrees before the maxima in all three orbital cycles. The large variability in phase is likely caused by interactions between the three cycles and ice volume. Unlike previous ice volume models, this model produces an orbitally driven increase in 100-kyr power during the mid-Pleistocene transition without any change in model parameters. This supports the hypothesis that Pleistocene variations in the 100-kyr power of glacial cycles could be caused, at least in part, by changes in Earth's orbital parameters, such as amplitude modulation of the 100-kyr eccentricity cycle, rather than changes within the climate system.
The modeling and simulation of the artifical space object
Gao, Sili; Tang, Xinyi; Yu, Yang; Xue, Fengting
2009-07-01
With a certain space-based low earth orbit satellite as its detecting target, after the author did a lot of research work and by experiential speculation, the paper initially gives simplified framework, shape and size of the satellite. Based on the different kinds of heat-control materials adopted by the satellite, the concerned material parameters were given out, such as emissivity, heat capacity, density and thermal conductivity etc. Based on the satellite's geometrical features, its 3D model was established via 3DS Max and was translated to customized-format model file which can be easily read-out by vc-program. The orbit of the satellite is a sun-synchronous orbit, its attitude control system was carried out by means of inertial directionality. According to the temperature of the surface given by a certain institute, the temperature of the satellite surface in the whole orbit period was gained by linear interpolation method. The infrared radiation model of the satellite was established based on the temperature and features of the proper materials. The motion model was established by two-body orbit motion formula which was based on the six orbital elements. At last, the infrared simulating images are provided under the system parameters such as detecting positions and detecting wavebands etc. The infrared scene simulation of space object can be achieved by this method and the base for the infrared detection of the space object is established.
Dispersion modeling of thermal power plant emissions on stochastic space
Gorle, J. M. R.; Sambana, N. R.
2016-05-01
This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the SO2 emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using "urban" conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.
Modeling Ships and Space Craft The Science and Art of Mastering the Oceans and Sky
Hagler, Gina
2013-01-01
Modeling Ships and Space Craft: The Science and Art of Mastering the Oceans and Sky begins with the theories of Aristotle and Archimedes, moving on to examine the work of Froude and Taylor, the early aviators and the Wright Brothers, Goddard and the other rocket men, and the computational fluid dynamic models of our time. It examines the ways each used fluid dynamic principles in the design of their vessels. In the process, this book covers the history of hydrodynamic (aero and fluid) theory and its progression – with some very accessible science examples – including seminal theories. Hydrodynamic principles in action are also explored with examples from nature and the works of man. This is a book for anyone interested in the history of technology – specifically the methods and science behind the use of scale models and hydrodynamic principles in the marine and aeronautical designs of today.
A conceptual model for translating omic data into clinical action
Timothy M Herr
2015-01-01
Full Text Available Genomic, proteomic, epigenomic, and other "omic" data have the potential to enable precision medicine, also commonly referred to as personalized medicine. The volume and complexity of omic data are rapidly overwhelming human cognitive capacity, requiring innovative approaches to translate such data into patient care. Here, we outline a conceptual model for the application of omic data in the clinical context, called "the omic funnel." This model parallels the classic "Data, Information, Knowledge, Wisdom pyramid" and adds context for how to move between each successive layer. Its goal is to allow informaticians, researchers, and clinicians to approach the problem of translating omic data from bench to bedside, by using discrete steps with clearly defined needs. Such an approach can facilitate the development of modular and interoperable software that can bring precision medicine into widespread practice.
The Use of Evolution in a Central Action Selection Model
F. Montes-Gonzalez
2007-01-01
Full Text Available The use of effective central selection provides flexibility in design by offering modularity and extensibility. In earlier papers we have focused on the development of a simple centralized selection mechanism. Our current goal is to integrate evolutionary methods in the design of non-sequential behaviours and the tuning of specific parameters of the selection model. The foraging behaviour of an animal robot (animat has been modelled in order to integrate the sensory information from the robot to perform selection that is nearly optimized by the use of genetic algorithms. In this paper we present how selection through optimization finally arranges the pattern of presented behaviours for the foraging task. Hence, the execution of specific parts in a behavioural pattern may be ruled out by the tuning of these parameters. Furthermore, the intensive use of colour segmentation from a colour camera for locating a cylinder sets a burden on the calculations carried out by the genetic algorithm.
Nuclear model calculations and their role in space radiation research
Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.
Modelling adversary actions against a nuclear material accounting system
A typical nuclear material accounting system employing double-entry bookkeeping is described. A logic diagram is used to model the interactions of the accounting system and the adversary when he attempts to thwart it. Boolean equations are derived from the logic diagram; solution of these equations yields the accounts and records through which the adversary may disguise a SSNM theft and the collusion requirements needed to accomplish this feat. Some technical highlights of the logic diagram are also discussed
Modelling adversary actions against a nuclear material accounting system
Lim, J.J.; Huebel, J.G.
1979-04-01
A typical nuclear material accounting system employing double-entry bookkeeping is described. A logic diagram is used to model the interactions of the accounting system and the adversary when he attempts to thwart it. Boolean equations are derived from the logic diagram; solution of these equations yields the accounts and records through which the adversary may disguise a SSNM theft and the collusion requirements needed to accomplish this feat. Some technical highlights of the logic diagram are also discussed.
The fixed point action for the Schwinger model: a perturbative approach
We compute the fixed point action of a properly defined renormalization group transformation for the Schwinger model through an expansion in the gauge field. It is local, with couplings exponentially suppressed with the distance. We check its perfection by computing the 1-loop mass gap at finite spatial volume, finding only exponentially vanishing cut-off effects, in contrast with the standard action, which is affected by large power-like cut-off effects. We point out that the 1-loop mass gap calculation provides a check of the classical perfection of the fixed point action, and not of the 1-loop perfection, as could be naively expected. (orig.)
Dimension invariants for groups admitting a cocompact model for proper actions
Degrijse, Dieter Dries; Martínez-Pérez, Conchita
2015-01-01
Let G be a group that admits a cocompact classifying space for proper actions X. We derive a formula for the Bredon cohomological dimension for proper actions of G in terms of the relative cohomology with compact support of certain pairs of subcomplexes of X. We use this formula to compute the...... Bredon cohomological dimension for proper actions of fundamental groups of non-positively curved simple complexes of finite groups. As an application we show that if a virtually torsion-free group acts properly and chamber transitively on a building, its virtual cohomological dimension coincides with its...... Bredon cohomological dimension. This covers the case of Coxeter groups and graph products of finite groups....
Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models
Jayamanne, Angelo; Greenwood, Ruth; Mitchell, Vanessa A; Aslan, Sevda; Piomelli, Daniele; Vaughan, Christopher W
2005-01-01
While cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central CB1 receptor-mediated motor and psychotropic side effects. The actions of endocannabinoids, such as anandamide are terminated by removal from the extracellular space, then subsequent enzymatic degradation by fatty-acid amide hydrolase (FAAH). In the present study, we compared the effect of a selective FAAH inhibitor, URB597, to that of a pan-cannabinoid receptor agonist HU210...
A model for thermal exchange in axons during action potential propagation.
Masson, Jean-Baptiste; Gallot, Guilhem
2008-01-01
International audience Several experiments have shown that during propagation of the action potential in axons, thermal energy is locally exchanged. In this paper, we use a simple model based on statistical physics to show that an important part of this exchange comes from the physics of the effusion. We evaluate, during the action potential propagation, the variation of internal energy and of the energy associated with the chemical potential of the effusion of water and ions to extract th...
Activators of potassium M currents have anticonvulsant actions in two rat models of encephalitis
Marylou V. Solbrig; Adrian, Russell; Wechsler, Steven L.; Koob, George F.
2006-01-01
Opioid systems in hippocampus regulate excitability and kappa opioids have a role in anticonvulsant protection, but their mechanisms of action are incompletely understood. We examined the ability of opioid and nonopioid agents with overlapping ionic mechanisms and actions similar to kappa opioid agonists, to block seizures in rat models of encephalitis due to Borna Disease virus and Herpes Simplex Virus Type-1. Naltrindole, a delta antagonist and thus a kappa opioid sparing agent, (10 mg/kg s...
A modeling investigation of vowel-to-vowel movement planning in acoustic and muscle spaces
Zandipour, Majid
The primary objective of this research was to explore the coordinate space in which speech movements are planned. A two dimensional biomechanical model of the vocal tract (tongue, lips, jaw, and pharynx) was constructed based on anatomical and physiological data from a subject. The model transforms neural command signals into the actions of muscles. The tongue was modeled by a 221-node finite element mesh. Each of the eight tongue muscles defined within the mesh was controlled by a virtual muscle model. The other vocal-tract components were modeled as simple 2nd-order systems. The model's geometry was adapted to a speaker, using MRI scans of the speaker's vocal tract. The vocal tract model, combined with an adaptive controller that consisted of a forward model (mapping 12-dimensional motor commands to a 64-dimensional acoustic spectrum) and an inverse model (mapping acoustic trajectories to motor command trajectories), was used to simulate and explore the implications of two planning hypotheses: planning in motor space vs. acoustic space. The acoustic, kinematic, and muscle activation (EMG) patterns of vowel-to-vowel sequences generated by the model were compared to data from the speaker whose acoustic, kinematic and EMG were also recorded. The simulation results showed that: (a) modulations of the motor commands effectively accounted for the effects of speaking rate on EMG, kinematic, and acoustic outputs; (b) the movement and acoustic trajectories were influenced by vocal tract biomechanics; and (c) both planning schemes produced similar articulatory movement, EMG, muscle length, force, and acoustic trajectories, which were also comparable to the subject's data under normal speaking conditions. In addition, the effects of a bite-block on measured EMG, kinematics and formants were simulated by the model. Acoustic planning produced successful simulations but motor planning did not. The simulation results suggest that with somatosensory feedback but no auditory
Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models
May R. D.
2011-01-01
Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.
State space modelling and data analysis exercises in LISA Pathfinder
Nofrarias, M; Armano, M; Audley, H; Auger, G; Benedetti, M; Binetruy, P; Bogenstahl, J; Bortoluzzi, D; Bosetti, P; Brandt, N; Caleno, M; Cañizares, P; Cavalleri, A; Cesa, M; Chmeissani, M; Conchillo, A; Congedo, G; Cristofolin, I; Cruise, M; Danzmann, K; De Marchi, F; Diaz-Aguilo, M; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Fauste, J; Ferraioli, L; Fichter, V Ferroni W; Fitzsimons, E; Freschi, M; Marin, A García; Marirrodriga, C García; Gesa, R Gerndt L; Gibert, F; Giardini, D; Grimani, C; Grynagier, A; Guillaume, B; Guzmán, F; Harrison, I; Heinzel, G; Hernández, V; Hewitson, M; Hollington, D; Hough, J; Hoyland, D; Hueller, M; Huesler, J; Jennrich, O; Jetzer, P; Johlander, B; Killow, C; Llamas, X; Lloro, I; Lobo, A; Maarschalkerweerd, R; Madden, S; Mance, D; Mateos, I; McNamara, P W; Mendes, J; Mitchell, E; Monsky, A; Nicolini, D; Nicolodi, D; Pedersen, F; Perreur-Lloyd, M; Plagnol, E; Prat, P; Racca, G D; Ramos-Castro, J; Reiche, J; Perez, J A Romera; Robertson, D; Rozemeijer, H; Sanjuan, J; Schleicher, A; Schulte, M; Shaul, D; Stagnaro, L; Strandmoe, S; Steier, F; Sumner, T J; Taylor, A; Texier, D; Trenkel, C; Vitale, H-B Tu S; Wanner, G; Ward, H; Waschke, S; Wass, P; Weber, W J; Ziegler, T; Zweifel, P
2013-01-01
LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.
Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models
Cahill R. T.
2011-01-01
Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g-anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.
Geodiversity: Exploration of 3D geological model space
Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.
2013-05-01
important geometrical characteristics. The configuration of the model space is determined through identifying ‘outlier’ model examples, which potentially represent undiscovered model ‘species’.
Classical and quantum mechanics of the nonrelativistic Snyder model in curved space
The Snyder–de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales besides the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder–de Sitter (aSdS). By means of a nonlinear transformation relating the SdS phase-space variables to canonical ones, we are able to investigate the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In their flat space limit, the SdS and aSdS models exhibit rather different properties. In the SdS case, a lower bound on the localization in position and momentum spaces arises, which is not present in the aSdS model. In the aSdS case, instead, a specific combination of position and momentum coordinates cannot exceed a constant value. We explicitly solve the classical and the quantum equations for the motion of the free particle and of the harmonic oscillator. In both the SdS and aSdS cases, the frequency of the harmonic oscillator acquires a dependence on the energy. Moreover, in the aSdS model only a finite number of states is present. (paper)
Real Z2-bigradings, Majorana modules, and the standard model action
The action functional of the standard model of particle physics is intimately related to a specific class of first order differential operators called Dirac operators of Pauli type ('Pauli-Dirac operators'). The aim of this article is to carefully analyze the geometrical structure of this class of Dirac operators on the basis of real Dirac operators of simple type. On the basis of simple type Dirac operators, it is shown how the standard model action (STM action) may be viewed as generalizing the Einstein-Hilbert action in a similar way that the Einstein-Hilbert action is generalized by a cosmological constant. Furthermore, we demonstrate how the geometrical scheme presented allows to naturally incorporate also Majorana mass terms within the standard model. For reasons of consistency, these Majorana mass terms are shown to dynamically contribute to the Einstein-Hilbert action by a 'true' cosmological constant. Due to its specific form, this cosmological constant can be very small. Nonetheless, this cosmological constant may provide a significant contribution to dark matter/energy. In the geometrical description presented, this possibility arises from a subtle interplay between Dirac and Majorana masses.
Grassmann phase space theory and the Jaynes–Cummings model
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are
Grassmann phase space theory and the Jaynes–Cummings model
Dalton, B.J., E-mail: bdalton@swin.edu.au [ARC Centre for Quantum–Atom Optics (Australia); Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Garraway, B.M. [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN19QH (United Kingdom); Jeffers, J.; Barnett, S.M. [Department of Physics, University of Strathclyde, Glasgow, G40NG (United Kingdom)
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are
Special class of nonlinear damping models in flexible space structures
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
Truncation of Large Shell-Model Eigenproblems by Model Space Partitioning
Andreozzi, F; Porrino, A.
1999-01-01
A method for solving the shell-model eigenproblem in a severely truncated space, spanned by properly selected correlated states obtained by partitioning the full configuration space, is proposed. The method describes in a practically exact way the low energy spectroscopic properties of nuclei, as exemplified in schematic models. The applicability of the method to heavy nuclei as well in contexts different from the nuclear shell model is stressed
Transformation of Neural State Space Models into LFT Models for Robust Control Design
Bendtsen, Jan Dimon; Trangbæk, Klaus
2000-01-01
This paper considers the extraction of linear state space models and uncertainty models from neural networks trained as state estimators with direct application to robust control. A new method for writing a neural state space model in a linear fractional transformation form in a non-conservative...... way is proposed, and it is demonstrated how a standard robust control law can be designed for a system described by means of a multi layer perceptron....
Holographic Space-time Models in $1 + 1$ Dimensions
Banks, T
2015-01-01
We construct Holographic Space-time models that reproduce the dynamics of $1 + 1$ dimensional string theory. The necessity for a dilaton field in the $1 + 1$ effective Lagrangian for classical geometry, the appearance of fermions, and even the form of the universal potential in the canonical $1$ matrix model, follow from general HST considerations. We note that 't Hooft's ansatz for the leading contribution to the black hole S-matrix, accounts for the entire S-matrix in these models in the limit that the string scale coincides with the Planck scale, up to transformations between near horizon and asymptotic coordinates. These $1 + 1$ dimensional models are describable as decoupling limits of the near horizon geometry of higher dimensional extremal black holes or black branes, and this suggests that deformations of the simplest model are equally physical. After proposing a notion of "relevant deformations", we describe deformations, which contain excitations corresponding to linear dilaton black holes, some of ...
Recent improvements in atmospheric environment models for Space Station applications
Anderson, B. Jeffrey; Suggs, Ronnie J.; Smith, Robert E.; Hickey, Michael; Catlett, Karen
1991-01-01
The capability of empirical models of the earth's thermosphere must continually be updated if they are to keep pace with their many applications in the aerospace industry. This paper briefly summarizes the progress of several such efforts in support of the Space Station Program. The efforts consists of the development of data bases, analytical studies of the data, and evaluation and intercomparison of thermosphere models. A geomagnetic storm model of Slowey does not compare as well to the MSIS-86 model as does the Marshall Engineering Thermosphere (MET). LDEF orbit decay data is used to evaluate the performance of the MET and MSIS-86 during a period of high solar activity; equal to or exceeding the highest levels that existed during the time of the original data sets upon which these models are based.
Modeling thermally active building components using space mapping
Pedersen, Frank; Weitzmann, Peter; Svendsen, Svend
In order to efficiently implement thermally active building components in new buildings, it is necessary to evaluate the thermal interaction between them and other building components. Applying parameter investigation or numerical optimization methods to a differential-algebraic (DAE) model of a...... building provides a systematic way of estimating efficient building designs. However, using detailed numerical calculations of the components in the building is a time consuming process, which may become prohibitive if the DAE model is to be used for parameter variation or optimization. Unfortunately...... simplified models of the components do not always provide useful solutions, since they are not always able to reproduce the correct thermal behavior. The space mapping technique transforms a simplified, but computationally inexpensive model, in order to align it with a detailed model or measurements. This...
Parametric Modeling of Transverse Phase Space of an RF Photoinjector
High brightness electron beam sources such as rf photo-injectors as proposed for SASE FELs must consistently produce the desired beam quality. We report the results of a study in which a combined neural network (NN) and first-principles (FP) model is used to model the transverse phase space of the beam as a function of quadrupole strength, while beam charge, solenoid field, accelerator gradient, and linac voltage and phase are kept constant. The parametric transport matrix between the exit of the linac section and the spectrometer screen constitutes the FP component of the combined model. The NN block provides the parameters of the transport matrix as functions of quad current. Using real data from SLAC Gun Test Facility, we will highlight the significance of the constrained training of the NN block and show that the phase space of the beam is accurately modeled by the combined NN and FP model, while variations of beam matrix parameters with the quad current are correctly captured. We plan to extend the combined model in the future to capture the effects of variations in beam charge, solenoid field, and accelerator voltage and phase
A Model of Representational Spaces in Human Cortex.
Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V
2016-06-01
Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. PMID:26980615
The Yukawa Model in One Space - One time Dimensions
Gouba, Laure
2016-01-01
The Yukawa Model is revisited in one space - one time dimensions in a complete different approach than the ones in the literature. We show that at the classical level it is a constrained system. We apply the Dirac method of quantization of constrained systems. Then by mean of the bosonization procedure we uniformize the Hamiltonian at the quantum level in terms of pseudo-scalar field and chiral components of a real scalar field.
Gaussian processes for state space models and change point detection
Turner, Ryan Darby
2012-01-01
This thesis details several applications of Gaussian processes (GPs) for enhanced time series modeling. We first cover different approaches for using Gaussian processes in time series problems. These are extended to the state space approach to time series in two different problems. We also combine Gaussian processes and Bayesian online change point detection (BOCPD) to increase the generality of the Gaussian process time series methods. These methodologies are evaluated on predict...
Diffusion Estimation Of State-Space Models: Bayesian Formulation
Dedecius, Kamil
Reims: IEEE, 2014. ISBN 978-1-4799-3693-9. [The 24th IEEE International Workshop on Machine Learning for Signal Processing (MLSP2014). Reims (FR), 21.09.2014-24.09.2014] R&D Projects: GA ČR(CZ) GP14-06678P Keywords : distributed estimation * state-space models * Bayesian estimation Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2014/AS/dedecius-0431804.pdf
Statistical State-Space Modeling via Kalman Filtration
Brabec, Marek
New York: Nova Science Publishers, 2011 - (Gomez, J.), s. 77-110. (Mathematics Research Developments). ISBN 978-1-61761-462-0 Institutional research plan: CEZ:AV0Z10300504 Keywords : kalman filter * state-space * time-series model * prediction error decomposition * statistical estimation Subject RIV: BB - Applied Statistics, Operational Research https://www.novapublishers.com/catalog/product_info.php?products_id=28940
Space-time estimation of a particle system model
Guyon, Xavier; Pumo, Besnik
2007-01-01
13 pages Let X be a discrete time contact process (CP) on the discrete bidimensional lattice as define by Durett - Levin (1994) . We study estimation of the model based on space-time evolution on a finite subset of sites. For this, we make use of a marginal pseudo-likelihood. The estimator obtained is consistent and asymptoticaly normal for non-vanishing supercritical CP. Numerical studies confirm these results.
Exact energy spectrum for models with equally spaced point potentials
Caudrelier, V.; Crampe, N.
2006-01-01
We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We ...
Christophersen, Catharina
2013-01-01
Arts encounters in schools are often portrayed as encounters between art/artists and children. However, in such encounters, teachers are most often involved. The study presented discusses teachers' experiences with and space for action within The Cultural Rucksack; a national program for arts and culture in Norwegian schools. Observations and…
THE MODEL CHARACTERISTICS OF JUMP ACTIONS STRUCTURE OF HIGH PERFORMANCE FEMALE VOLLEYBALL PLAYERS
Stech M.
2012-12-01
Full Text Available The purpose of this study was to develop generalized and individual models of the jump actions of skilled female volleyball players. The main prerequisite for the development of the jump actions models were the results of our earlier studies of factor structure of jump actions of 10 sportswomen of the Polish volleyball team "Gedania" (Premier League in the preparatory and competitive periods of the annual cycle of preparation. The athletes age was 22.0 +- 2.9 years, the sports experience - 8.1 +- 3.1 years, body height - 181.9 +- 8.4 years and body weight - 72.8 +- 10.8 kg. Mathematical and statistical processing of the data (the definition of M ± SD and significant differences between the samples was performed using a standard computer program "STATISTICA 7,0". Based on the analysis of the factor structure of 20 jump actions of skilled women volleyball players determined to within 5 of the most informative indexes and their tentative values recommended for the formation of a generalized model of this structure. Comparison of individual models of jump actions of skilled women volleyball players with their generalized models in different periods of preparation can be used for the rational choice of means and methods for the increasing of the training process efficiency.
A Study of a Three-Dimensional Action Research Training Model for School Library Programs
Gordon, Carol
2006-01-01
This is a detailed review of an in-depth action research training model and an investigation of how that model, supported through virtual and personal guidance from an academic researcher, served to impact the instructional practice of a small sample of school library media specialists (SLMSs). The researcher operates in the third dimension,…
Tests of streaming models for redshift-space distortions
White, Martin; Chuang, Chia-Hsun; Tinker, Jeremy L; McBride, Cameron K; Prada, Francisco; Samushia, Lado
2014-01-01
Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In preparation for analysis of redshift-space distortions from the Baryon Oscillation Spectroscopic Survey (BOSS) final data release we compare a number of analytic and phenomenological `streaming' models, specified in configuration space, to mock catalogs derived in different ways from several N-body simulations. The galaxies in each mock catalog have properties similar to those of the higher redshift galaxies measured by BOSS but differ in the details of how small-scale velocities and halo occupancy are determined. We find that all of the analytic models fit the simulations over a limited range of scales while failing at small scales. We discuss which models are most robust and on which scales they return reliable estimates of the rate of growth of structure: we find that...
Krein Spectral Triples and the Fermionic Action
van den Dungen, Koen
2016-03-01
Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.
Marcos Antônio Silvestre Gomes
2015-07-01
Full Text Available This article discusses some aspects of the production of urban space considering the social agents actions. The methodology was based on literature searches, data surveys and interviews in public and private agencies, empirical observations and mapping of the urban area. The methodology was based on literature searches, data surveys and interviews in public and private agencies, empirical observations and mapping of the urban area. The objective is to present an analysis of state and real estate developers actions in the production and uneven valorization of urban space in Campos dos Goytacazes-RJ. The results of work indicate the intensification and complexification of actions of these agents with the advent of the oil economy. In the period 1981-2011 there was an intense valuation of South West-East axis of the city, with a vertiginous process of vertical integration and deployment of a high standard closed allotments, which has
Bessel functions in mass action modeling of memories and remembrances
Freeman, Walter J. [Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206 (United States); Capolupo, Antonio [Dipartimento di Fisica, E.R. Caianiello Universitá di Salerno, and INFN Gruppo collegato di Salerno, Fisciano 84084 (Italy); Kozma, Robert [Department of Mathematics, Memphis University, Memphis, TN 38152 (United States); Olivares del Campo, Andrés [The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Vitiello, Giuseppe, E-mail: vitiello@sa.infn.it [Dipartimento di Fisica, E.R. Caianiello Universitá di Salerno, and INFN Gruppo collegato di Salerno, Fisciano 84084 (Italy)
2015-10-02
Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory. - Highlights: • We consider data from observations of impulse responses of cortex to electric shocks. • These data are fitted by Bessel functions which may be represented by couples of damped/amplified oscillators. • We study the data by using couples of damped/amplified oscillators. • We discuss lifetime and other properties of the considered brain processes.
Phase transition in matrix model with logarithmic action: toy-model for gluons in baryons
We study the competing effects of gluon self-coupling and their interactions with quarks in a baryon, using the very simple setting of a hermitian 1-matrix model with action trA4-log det (ν+A2). The logarithmic term comes from integrating out N quarks. The model is a caricature of 2d QCD coupled to adjoint scalars, which are the transversely polarized gluons in a dimensional reduction. ν is a dimensionless ratio of quark mass to coupling constant. The model interpolates between gluons in the vacuum (ν = ∞), gluons weakly coupled to heavy quarks (large ν) and strongly coupled to light quarks in a baryon (ν→0). Its solution in the large-N limit exhibits a phase transition from a weakly coupled 1-cut phase to a strongly coupled 2-cut phase as ν is decreased below νc = 0.27. Free energy and correlation functions are discontinuous in their third and second derivatives at νc. The transition to a two-cut phase forces eigenvalues of A away from zero, making glue-ring correlations grow as ν is decreased. In particular, they are enhanced in a baryon compared to the vacuum. This investigation is motivated by a desire to understand why half the proton's momentum is contributed by gluons
Deferred Action: Theoretical model of process architecture design for emergent business processes
Patel, N.V.
2007-01-01
Full Text Available E-Business modelling and ebusiness systems development assumes fixed company resources, structures, and business processes. Empirical and theoretical evidence suggests that company resources and structures are emergent rather than fixed. Planning business activity in emergent contexts requires flexible ebusiness models based on better management theories and models . This paper builds and proposes a theoretical model of ebusiness systems capable of catering for emergent factors that affect business processes. Drawing on development of theories of the ‘action and design’class the Theory of Deferred Action is invoked as the base theory for the theoretical model. A theoretical model of flexible process architecture is presented by identifying its core components and their relationships, and then illustrated with exemplar flexible process architectures capable of responding to emergent factors. Managerial implications of the model are considered and the model’s generic applicability is discussed.
Zhuo Wang
2014-03-01
Full Text Available The congestion classification evaluation standard of Beijing expressway is proposed based on the on-time transportation flow data in this paper, the time-space model matrix is found according to the time-space characteristics of transportation flow data, and the congestion time-space model matrix are obtained according to different congestion level threshold, and their reachable matrix are calculated out. The interpretive structural model method is adopted to partition the reachable matrix, the congestion time-space structure models are obtained under different threshold, finally, the analysis is carried out for the structure model and the directed and undirected factors are obtained. The study of this paper provide an effective way for analyzing and preventing for road congestion, and provide refer value for the road manager.
Optimal State-Space Reduction for Pedigree Hidden Markov Models
Kirkpatrick, Bonnie
2012-01-01
To analyze whole-genome genetic data inherited in families, the likelihood is typically obtained from a Hidden Markov Model (HMM) having a state space of 2^n hidden states where n is the number of meioses or edges in the pedigree. There have been several attempts to speed up this calculation by reducing the state-space of the HMM. One of these methods has been automated in a calculation that is more efficient than the naive HMM calculation; however, that method treats a special case and the efficiency gain is available for only those rare pedigrees containing long chains of single-child lineages. The other existing state-space reduction method treats the general case, but the existing algorithm has super-exponential running time. We present three formulations of the state-space reduction problem, two dealing with groups and one with partitions. One of these problems, the maximum isometry group problem was discussed in detail by Browning and Browning. We show that for pedigrees, all three of these problems hav...
Economic analysis of open space box model utilization in spacecraft
Mohammad, Atif F.; Straub, Jeremy
2015-05-01
It is a known fact that the amount of data about space that is stored is getting larger on an everyday basis. However, the utilization of Big Data and related tools to perform ETL (Extract, Transform and Load) applications will soon be pervasive in the space sciences. We have entered in a crucial time where using Big Data can be the difference (for terrestrial applications) between organizations underperforming and outperforming their peers. The same is true for NASA and other space agencies, as well as for individual missions and the highly-competitive process of mission data analysis and publication. In most industries, conventional opponents and new candidates alike will influence data-driven approaches to revolutionize and capture the value of Big Data archives. The Open Space Box Model is poised to take the proverbial "giant leap", as it provides autonomic data processing and communications for spacecraft. We can find economic value generated from such use of data processing in our earthly organizations in every sector, such as healthcare, retail. We also can easily find retailers, performing research on Big Data, by utilizing sensors driven embedded data in products within their stores and warehouses to determine how these products are actually used in the real world.
Liénard-type models for the simulation of the action potential of cardiac nodal cells
Podziemski, P.; Żebrowski, J. J.
2013-10-01
Existing models of cardiac cells which include multi-variable cardiac transmembrane current are too complex to simulate the long time dynamical properties of the heart rhythm. The large number of parameters that need to be defined and set for such models make them not only cumbersome to use but also require a large computing power. Consequently, the application of such models for the bedside analysis of heart rate of a specific patient may be difficult. Other ways of modelling need to be investigated. We consider the general problem of developing a model of cardiac pacemaker tissue that allows to combine the investigation of phenomena at a time scale of thousands of heart beats with the ability to reproduce realistic tissue-level characteristics of cell dynamics. We propose a modified van der Pol-Duffing equation-a Liénard-type oscillator-as a phenomenological model for cardiac nodal tissue, with certain important physiological similarities to ion-channel models of cardiac pacemaker cells. The model presented here is specifically designed to qualitatively reproduce mesoscopic characteristics of cell dynamics, including action potential duration (APD) restitution properties, phase response characteristics, and phase space structure. We show that these characteristics agree qualitatively with the extensive ionic models and experimental results in the literature [Anumonwo et al., 1991, [33], Cao et al., 1999, [49], Coster and Celler, 2003, [31], Qu, 2004, [45], Tsalikakis et al., 2007, [32], Inada et al., 2009, [14], Qu et al., 2010, [50
Analytic model for the bispectrum of galaxies in redshift space
We develop an analytic theory for the redshift space bispectrum of dark matter, haloes, and galaxies. This is done within the context of the halo model of structure formation, as this allows for the self-consistent inclusion of linear and nonlinear redshift-space distortions and also for the nonlinearity of the halo bias. The model is applicable over a wide range of scales: on the largest scales the predictions reduce to those of the standard perturbation theory (PT); on smaller scales they are determined primarily by the nonlinear virial velocities of galaxies within haloes, and this gives rise to the U-shaped anisotropy in the reduced bispectrum--a finger print of the Finger-Of-God distortions. We then confront the predictions with measurements of the redshift-space bispectrum of dark matter from an ensemble of numerical simulations. On very large scales, k=0.05h Mpc-1, we find reasonably good agreement between our halo model, PT and the data, to within the errors. On smaller scales, k=0.1h Mpc-1, the measured bispectra differ from the PT at the level of ∼10%-20%, especially for colinear triangle configurations. The halo model predictions improve over PT, but are accurate to no better than 10%. On smaller scales k=0.5-1.0h Mpc-1, our model provides a significant improvement over PT, which breaks down. This implies that studies which use the lowest order PT to extract galaxy bias information are not robust on scales k > or approx. 0.1h Mpc-1. The analytic and simulation results also indicate that there is no observable scale for which the configuration dependence of the reduced bispectrum is constant--hierarchical models for the higher-order correlation functions in redshift space are unlikely to be useful. It is hoped that our model will facilitate extraction of information from large-scale structure surveys of the Universe, because different galaxy populations are naturally included into our description.
Modeling space plasma dynamics with anisotropic Kappa distributions
Lazar, M; Poedts, S; Schlickeiser, R
2012-01-01
Space plasmas are collisionpoor and kinetic effects prevail leading to wave fluctuations, which transfer the energy to small scales: wave-particle interactions replace collisions and enhance dispersive effects heating particles and producing suprathermal populations observed at any heliospheric distance in the solar wind. At large distances collisions are not efficient, and the selfgenerated instabilities constrain the solar wind anisotropy including the thermal core and the suprathermal components. The generalized power-laws of Kappa-type are the best fitting model for the observed distributions of particles, and a convenient mathematical tool for modeling their dynamics. But the anisotropic Kappa models are not correlated with the observations leading, in general, to inconsistent effects. This review work aims to reconcile some of the existing Kappa models with the observations.
The Modeling Method of Forces Action Based on COADL%基于COADL兵力行动建模方法
张磊; 朱琳
2011-01-01
According to the desire of forces action modeling,designing a series of modeling language for forces action- COADL (Course Of Action Description Language), from the description of forces action modeling language,giving the outcome of forces action strategy. And as a basis, discussing the method of forces action modeling which based on COADL, concretely including : forces action basic modeling, phase action modeling, course of action modeling and forces action dynamic model.%根据兵力行动建模的需要,设计了一套兵力行动建模语言--COADL (Course Of Action Description Language),通过对兵力行动建模语言的描述,得到了兵力行动策略的产生,并以此为基础,讨论了基于COADL兵力行动的建模方法,具体包括:基本兵力行动建模,阶段行动方案建模,行动过程建模和兵力行动动态模型的构建.
A Bayesian state-space formulation of dynamic occupancy models.
Royle, J Andrew; Kéry, Marc
2007-07-01
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site
The Things You Do: Internal Models of Others’ Expected Behaviour Guide Action Observation
Schenke, Kimberley C.; Wyer, Natalie A.; Bach, Patric
2016-01-01
Predictions allow humans to manage uncertainties within social interactions. Here, we investigate how explicit and implicit person models–how different people behave in different situations–shape these predictions. In a novel action identification task, participants judged whether actors interacted with or withdrew from objects. In two experiments, we manipulated, unbeknownst to participants, the two actors action likelihoods across situations, such that one actor typically interacted with one object and withdrew from the other, while the other actor showed the opposite behaviour. In Experiment 2, participants additionally received explicit information about the two individuals that either matched or mismatched their actual behaviours. The data revealed direct but dissociable effects of both kinds of person information on action identification. Implicit action likelihoods affected response times, speeding up the identification of typical relative to atypical actions, irrespective of the explicit knowledge about the individual’s behaviour. Explicit person knowledge, in contrast, affected error rates, causing participants to respond according to expectations instead of observed behaviour, even when they were aware that the explicit information might not be valid. Together, the data show that internal models of others’ behaviour are routinely re-activated during action observation. They provide first evidence of a person-specific social anticipation system, which predicts forthcoming actions from both explicit information and an individuals’ prior behaviour in a situation. These data link action observation to recent models of predictive coding in the non-social domain where similar dissociations between implicit effects on stimulus identification and explicit behavioural wagers have been reported. PMID:27434265
Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model
A universal formula for an action associated with a noncommutative geometry, defined by a spectral triple (A,H,D), is proposed. It is based on the spectrum of the Dirac operator and is a geometric invariant. The new symmetry principle is the automorphism of the algebra A which combines both diffeomorphisms and internal symmetries. Applying this to the geometry defined by the spectrum of the standard model gives an action that unifies gravity with the standard model at a very high energy scale. copyright 1996 The American Physical Society
Modeling a Wireless Network for International Space Station
Alena, Richard; Yaprak, Ece; Lamouri, Saad
2000-01-01
This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.
Calculating model of mass action concentrations for Ag-Au-Cu melts
无
2002-01-01
Based on phase diagrams and measured activities, the calculating model of mass action concentrations for heterogeneous melts Ag-Au-Cu was formulated. Calculated results agree with the improved results of recent research work.showing that the model formulated can reflect the structural characteristics of these melts. In this model, without the help of any empirical parameters, only three equilibrium constants are used, hence it is simple, lear, and favorable to the simplification of calculation.
An Ontological Model of Behaviour Theory to Generate Personalized Action Plans to Modify Behaviours.
Baig, Wasif; Abidi, Samina; Abidi, Syed Sibte Raza
2016-01-01
Behavior change approaches aim to assist patients in achieving self-efficacy in managing their condition. Social cognitive theory (SCT) stipulates self-efficacy as a central element to behavior change and provides constructs to achieve self-efficacy guided by person-specific action plans. In our work, to administer behaviour change in patient with chronic conditions, our approach entails the computerization of SCT-based self-efficacy constructs in order to generate personalized action plans that are suitable to an individual's current care scenario. We have taken a knowledge management approach, whereby we have computerized the SCT-based self-efficacy constructs in terms of a high-level SCT knowledge model that can be operationalized to generate personalized behaviour change action plans. We have collected and computerized behavior change content targeting healthy living and physical activity. Semantic web technologies have been used to develop the SCT knowledge model, represented in terms of an ontology and SWRL rules. The ontological SCT model can inferred to generate personalized self-management action plans for a given patient profile. We present formative evaluation of the clinical correctness and relevance of the generated personalized action plans for a range of test patient profiles. PMID:27577412
Space Shuttle Model In The 16 Foot Transonic Tunnel
1978-01-01
What may appear at first glance to be a swimming shark is a wind tunnel model of the Space Shuttle Orbiter, being tested at NASA's Langley Research Center in Hampton,VA. The Orbiter model is 5.5 feet long (1/20th of the real Orbiter's length) and has remotely operated control surfaces. Inside Langley's 16 foot Transonic Wind Tunnel, the model simulated Orbiter re-entry into the Earth's atmosphere, when it must fly through the transonic speed range (the range that crosses the sound barrier). Information on Orbiter stability and control, collected and analyzed during the tests, were integrated with other data to become part of computerized flight simulation programs.
Gabriel A. Radvansky
2016-01-01
Full Text Available The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.
Radvansky, Gabriel A; D'Mello, Sidney K; Abbott, Robert G; Bixler, Robert E
2016-01-01
The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant's current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person's prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events. PMID:26858673
Health Belief Model and Reasoned Action Theory in Predicting Water Saving Behaviors in Yazd, Iran
Mohammad Taghi Ghaneian
2012-12-01
Full Text Available Background: People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter-mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha-viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. Methods: The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Results: Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta-tistically positive correlation between water saving behaviors and intention. Conclusion: In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors.
Motion Primitives and Probabilistic Edit Distance for Action Recognition
Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.
2009-01-01
The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent t...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....
A Knowledge Discovery from POS Data using State Space Models
Sato, Tadahiko; Higuchi, Tomoyuki
The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.
Modeling and simulation of ion channels and action potentials in taste receptor cells
无
2009-01-01
Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.
Modeling and simulation of ion channels and action potentials in taste receptor cells
CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong
2009-01-01
Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.
Two-loop low-energy effective action in Abelian supersymmetric Chern–Simons matter models
We compute two-loop low-energy effective actions in Abelian Chern–Simons matter models with N=2 and N=3 supersymmetry up to four-derivative order. Calculations are performed with a slowly-varying gauge superfield background. Though the gauge superfield propagator depends on the gauge fixing parameter, it is shown that the obtained results are independent of this parameter. In the massless case the considered models are superconformal. We demonstrate that the superconformal symmetry strongly restricts the form of two-loop quantum corrections to the effective actions such that the obtained terms have simpler structure than the analogous ones in the effective action of three-dimensional supersymmetric electrodynamics (SQED) with vanishing topological mass
Community ACTION Boards: An Innovative Model for Effective Community–Academic Research Partnerships
James, Sherline; Arniella, Guedy; Bickell, Nina A.; Walker, Willie; Robinson, Virginia; Taylor, Barbara; Horowitz, Carol R.
2012-01-01
Background Community-based participatory research (CBPR) requires equitable partnerships between community stakeholders and academics. Traditionally, researchers relied on community advisory boards, but these boards often play a reactive role on a project-by-project basis. The East and Central Harlem Health Outcomes (ECHHO) Community Action Board (CAB), however, is an effective, proactive group. Objectives The ECHHO board sought to identify key strategies and tools to build and employ a partnership model, and to disseminate lessons learned to other community–academic partnerships. Methods Current and former board members were interviewed and a wide range of related documents was reviewed. Lessons Learned The board became effective when it prioritized action and relationship-building, across seven key domains: Shared priorities, diversity, participation, transparency, mutual respect and recognition, and personal connections. The model is depicted graphically. Conclusion Community advisory boards may benefit from attention to taking action, and to building relationships between academics and community members. PMID:22616207
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
Noise-induced transition in the solutions of the Kuramoto–Sivashinsky (K–S) equation is investigated using the minimum action method derived from the large deviation theory. This is then used as a starting point for exploring the configuration space of the K–S equation. The particular example considered here is the transition between a stable fixed point and a stable travelling wave. Five saddle points, up to constants due to translational invariance, are identified based on the information given by the minimum action path. Heteroclinic orbits between the saddle points are identified. Relations between noise-induced transitions and the saddle points are examined
Stringy models of modified gravity: space-time defects and structure formation
Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only
Spectra of sigma models on semi-symmetric spaces
Cagnazzo, Alessandra; Schomerus, Volker; Tlapak, Vaclav [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2015-12-15
Sigma models on semi-symmetric spaces provide the central building block for string theories on AdS backgrounds. Under certain conditions on the global supersymmetry group they can be made one-loop conformal by adding an appropriate fermionic Wess-Zumino term. We determine the full one-loop dilation operator of the theory. It involves an interesting new XXZ-like interaction term. Eigenvalues of our dilation operator, i.e. the one-loop anomalous dimensions, are computed for a few examples.
Spectra of sigma models on semi-symmetric spaces
Cagnazzo, Alessandra; Schomerus, Volker; Tlapak, Vaclav
2016-05-01
Sigma models on semi-symmetric spaces provide the central building block for string theories on AdS backgrounds. Under certain conditions on the global supersymmetry group they can be made one-loop conformal by adding an appropriate fermionic Wess-Zumino term. We determine the full one-loop dilation operator of the theory. It involves an interesting new XXZ-like interaction term. Eigenvalues of our dilation operator, i.e. the one-loop anomalous dimensions, are computed for a few examples.
Exact energy spectrum for models with equally spaced point potentials
Caudrelier, V.; Crampé, N.
2006-03-01
We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We also study non-perturbatively the effects of impurities in such systems. Finally, we discuss the possibility of including interactions between the particles of these systems.
Minow, Josep I.; Edwards, David L.
2008-01-01
Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.
Classical and quantum mechanics of the nonrelativistic Snyder model in curved space
Mignemi, S
2011-01-01
The Snyder-de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales beside the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder-de Sitter (aSdS). We discuss the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In analogy with the flat case, the properties of the SdS and aSdS model are rather different. In the SdS case, a lower bound on the localization in position and momentum space exists, which does not arise in the aSdS model. In both cases the energy of the harmonic oscillator acquires a dependence on the frequency, but the quantum mechanical aSdS oscillator admits only a finite numb...
Terpstra, Teun; Lindell, Michael K.
2013-01-01
Although research indicates that adoption of flood preparations among Europeans is low, only a few studies have attempted to explain citizens' preparedness behavior. This article applies the Protective Action Decision Model (PADM) to explain flood preparedness intentions in the Netherlands. Survey data ("N" = 1,115) showed that…
Doroshenko E.Iu.
2013-10-01
Full Text Available The application of modeling of technical and tactical actions as one of the leading components of the control system of competitive activities of highly skilled volleyball players. It is show that the proposed modeling techniques can generate the optimum orientation of the training process with the use of specialized tools at different stages of the annual cycle of training. In a study based on official statistics volleyball tournament World League in 2012 years. It is recommended to be oriented on the followings model indexes of actions of command and sportsmen: general amount of the collected glasses (170 - 190; amount of glasses, collected in an attack (139 - 157; amount of glasses, collected at blocking (12 - 24; amount of glasses, collected from a serve (9 - 17; the middle index of efficiency is protective actions (at the reception of ball from a serve -58,29%. It is shown that the performance of technical and tactical actions can be used as a model in the management of the process of training and competitive volleyball elite athletes.
Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics
Arbib, Michael A.; Bonaiuto, James J.; Bornkessel-Schlesewsky, Ina; Kemmerer, David; MacWhinney, Brian; Nielsen, Finn Årup; Oztop, Erhan
2014-01-01
We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience.
Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics
Arbib, Michael A.; Bonaiuto, James J.; Bornkessel-Schlesewsky, Ina;
2014-01-01
We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding - separately or together - neurocomputational models and empirical...
Action and language mechanisms in the brain: data, models and neuroinformatics.
Arbib, Michael A; Bonaiuto, James J; Bornkessel-Schlesewsky, Ina; Kemmerer, David; MacWhinney, Brian; Nielsen, Finn Årup; Oztop, Erhan
2014-01-01
We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience. PMID:24234916
Jarvis, Joy; Dickerson, Claire; Thomas, Kit; Graham, Sally
2014-01-01
This article presents the Action--Reflection--Modelling (ARM) pedagogical approach for teacher education developed during a Malaysia-UK collaborative project to construct a Bachelor of Education (Honours) degree programme in Primary Mathematics, with English and Health and Physical Education as minor subjects. The degree programme was written…
The communicative action and information: a learning to learn transdisciplinary model
Márcia Marques
2015-01-01
This article is about the communicative action and information model for social networking in digital environments, a transdisciplinary articulation of knowledge and learning that guides the collective and collaborative construction of inclusive communication strategies and ongoing development of competencies to promote understanding between the players, members of a social network. Information Science, Communication itself and Information and Communication Technologies (ICT) promote this art...
System resiliency quantification using non-state-space and state-space analytic models
Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes
Wang, Xing M
2011-01-01
After a brief introduction to Probability Bracket Notation (PBN) for discrete random variables in time-independent probability spaces, we apply both PBN and Dirac notation to investigate probabilistic modeling for information retrieval (IR). We derive the ranking formulas for various probabilistic models, induced by Term Vector Space (TVS) and by Concept Fock Space (CFS). The ranking formulas are naturally expressed in term frequencies; and, because our formulas for inference network models (INM) are symmetric, they can also be used to rank closeness of documents. We get consistent test results by using a famous textbook example.
AlfredoPereira Jr
2013-01-01
We present a general model of brain function (the calcium wave model), distinguishing three processing modes in the perception-action cycle. The model provides an interpretation of the data from experiments on semantic memory conducted by the authors.
Initial Condition Model from Imaginary Part of Action and the Information Loss
Nielsen, H B
2009-01-01
We review slightly a work by Horowitz and Maldecena solving the information loss problem for black holes by having inside the blackhole - near to the singularity - a boundary condition, as e.g the no boundary proposal by Hartle and Hawking. Here we propose to make this boundary condition come out of our imaginary action model (together with Masao Ninomiya). This model naturally begins effectively to set up boundaries - whether it be in future or past! - especially strongly whenever we reach to high energy physics regimes, such as near the black hole singularity, or in Higgs producing machines as LHC or SSC. In such cases one can say our model predicts miracles. The point is that you may say that the information loss problem, unless you solve it in other ways, call for such a violation of time causality as in our imaginary action model!
Space Weathering of Olivine: Samples, Experiments and Modeling
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2016-01-01
Olivine is a major constituent of chondritic bodies and its response to space weathering processes likely dominates the optical properties of asteroid regoliths (e.g. S- and many C-type asteroids). Analyses of olivine in returned samples and laboratory experiments provide details and insights regarding the mechanisms and rates of space weathering. Analyses of olivine grains from lunar soils and asteroid Itokawa reveal that they display solar wind damaged rims that are typically not amorphized despite long surface exposure ages, which are inferred from solar flare track densities (up to 10 (sup 7 y)). The olivine damaged rim width rapidly approaches approximately 120 nm in approximately 10 (sup 6 y) and then reaches steady-state with longer exposure times. The damaged rims are nanocrystalline with high dislocation densities, but crystalline order exists up to the outermost exposed surface. Sparse nanophase Fe metal inclusions occur in the damaged rims and are believed to be produced during irradiation through preferential sputtering of oxygen from the rims. The observed space weathering effects in lunar and Itokawa olivine grains are difficult to reconcile with laboratory irradiation studies and our numerical models that indicate that olivine surfaces should readily blister and amorphize on relatively short time scales (less than 10 (sup 3 y)). These results suggest that it is not just the ion fluence alone, but other variable, the ion flux that controls the type and extent of irradiation damage that develops in olivine. This flux dependence argues for caution in extrapolating between high flux laboratory experiments and the natural case. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind processing of olivine.
Space debris characterization in support of a satellite breakup model
Fortson, Bryan H.; Winter, James E.; Allahdadi, Firooz A.
1992-01-01
The Space Kinetic Impact and Debris Branch began an ambitious program to construct a fully analytical model of the breakup of a satellite under hypervelocity impact. In order to provide empirical data with which to substantiate the model, debris from hypervelocity experiments conducted in a controlled laboratory environment were characterized to provide information of its mass, velocity, and ballistic coefficient distributions. Data on the debris were collected in one master data file, and a simple FORTRAN program allows users to describe the debris from any subset of these experiments that may be of interest to them. A statistical analysis was performed, allowing users to determine the precision of the velocity measurements for the data. Attempts are being made to include and correlate other laboratory data, as well as those data obtained from the explosion or collision of spacecraft in low earth orbit.
International Space Station Solar Array Bifacial Electrical Performance Model Developed
Delleur, Ann M.; Kerslake, Thomas W.
2003-01-01
The first U.S. photovoltaic array (PVA) was activated on the International Space Station (ISS) in December 2000. Though normally Sun-tracking, U.S. ISS arrays are held stationary to minimize plume impingement from the space shuttle during docking and undocking, as well as during ISS assembly operations. Because of these operational constraints, it is not always possible to point the front side of the arrays at the Sun. In these cases, sunlight directly illuminates the backside of the PVA as well as albedo illumination on either the front or the back. Since the solar cells are mounted on a thin, solar transparent substrate, appreciable backside power (about one-third of the front-side power) is produced. To provide a more detailed assessment of the ISS power production capability, researchers at the NASA Glenn Research Center developed a PVA electrical performance model applicable to generalized bifacial illumination conditions. The model validation was done using on-orbit PVA performance.
Musser, George
2015-01-01
What is space? It isn't a question that most of us normally stop to ask. Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time. The phenomenon, the ability of one particle to affect another instantly across the vastness of space appears to be almost magical. Einstein grappled with this oddity and couldn't quite resolve it, describing it as "spooky action at a distance." But this strange occurrence has direct connections to black holes, particle collisions, and even the workings of gravity. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of non locality and a celebration of the scientists who are trying to understand it. Musser guides us on an epic journey of scientific discovery into the lives of experimental physicists observing par...
Health Belief Model and Reasoned Action Theory in Predicting Water Saving Behaviors in Yazd, Iran
Mohammad Taghi Ghaneian; Mahdieh Momayyezi; Mohammad Ali Morowatisharifabad
2012-01-01
Background: People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter-mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha-viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. Methods: The cross-sectional stud...
Exporting the Buyers Health Care Action Group Purchasing Model: Lessons from Other Communities
Christianson, Jon B; Feldman, Roger
2005-01-01
When first implemented in Minneapolis and St. Paul, Minnesota, the Buyers Health Care Action Group's (BHCAG) purchasing approach received considerable attention as an employer-managed, consumer-driven health care model embodying many of the principles of managed competition. First BHCAG and, later, a for-profit management company attempted to export this model to other communities. Their efforts were met with resistance from local hospitals and, in many cases, apathy by employers who were exp...
Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger
Sancho Brú, Joaquín Luís; Vergara Monedero, Margarita; Rodríguez Cervantes, Pablo Jesús; Giurintano, David J.; Pérez González, Antonio
2008-01-01
A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the PCSA (physiological cross-sectional area) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analysed and used for scaling the PCSA of each muscle. A linear relationship between the normalised PCSA and the pr...
A small break loss-of-accident (SBLOCA) in a typical Babcock and Wilcox (B ampersand W) nuclear power plant was modeled using RELAP5/MOD3. This work was performed as part of the United States Regulatory Commission's (USNRC) Code, Scaling, Applicability and Uncertainty (CSAU) study. The break was initiated by severing one high pressure injection (HPI) line at the cold leg. Thus, the small break was further aggravated by reduced HPI flow. Comparisons between scoping runs with minimal operator action, and full operator action, clearly showed that the operator plays a key role in recovering the plant. Operator actions were modeled based on the emergency operating procedures (EOPs) and the Technical Bases Document for the EOPs. The sequence of operator actions modeled here is only one of several possibilities. Different sequences of operator actions are possible for a given accident because of the subjective decisions the operator must make when determining the status of the plant, hence, which branch of the EOP to follow. To assess the credibility of the modeled operator actions, these actions and results of the simulated accident scenario were presented to operator examiners who are familiar with B ampersand W nuclear power plants. They agreed that, in general, the modeled operator actions conform to the requirements set forth in the EOPs and are therefore plausible. This paper presents the method for modeling the operator actions and discusses the simulated accident scenario from the viewpoint of operator actions
Hemostatic action of EGF-endospray on mucosectomy-induced ulcer bleeding animal models.
Bang, Byoung Wook; Maeng, Jin Hee; Kim, Min-Kyoung; Lee, Don Haeng; Yang, Su-Geun
2015-01-01
Gastric bleeding is one of the irritant problems in ulcer patients. In this study, we evaluated hemostatic action of ulcer-coating powder (EGF-endospray) on gastric ulcer animal models. EGF-endospray, containing epidermal growth factor, is designed to be applied through an endoscope. Hemostatic action of the EGF-endospray was evaluated on gastric hemorrhage models of rabbits and micro-pigs. The EGF-endospray was directly applied onto a mucosal resection (MR)-induced gastric bleeding focus in a rabbit model. In a porcine model, the EGF-endospray was applied once via an endoscopy to a bleeding lesion created by endoscopic submucosal dissection. The bleeding focus was then observed via an endoscope. In the rabbit model, EGF-endospray treatment significantly shortened mean bleeding time in comparison with other treatments (104.3 vs 548.0 vs 393.2 s for the EGF-endospray, the non-treated control and the epinephrine injection, respectively). In the micro-pig model, EGF-endospray showed immediate hemostatic action and prolonged covering of the bleeding focus for over 72 h. Histology proved mucosal thickness was more efficiently recovered in all EGF-endospray treated animals. The results of the present study suggest that the EGF-endospray is a promising hemostatic agent for GI bleeding. PMID:25585984
Woodbury, Sarah K.
2008-01-01
The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.
Extending the mirror neuron system model, I. Audible actions and invisible grasps.
Bonaiuto, James; Rosta, Edina; Arbib, Michael
2007-01-01
The paper introduces mirror neuron system II (MNS2), a new version of the MNS model (Oztop and Arbib in Biol Cybern 87 (2):116-140, 2002) of action recognition learning by mirror neurons of the macaque brain. The new model uses a recurrent architecture that is biologically more plausible than that of the original model. Moreover, MNS2 extends the capacity of the model to address data on audio-visual mirror neurons and on the response of mirror neurons when the target object was recently visible but is currently hidden. PMID:17028884
Tan, Qihua; Bathum, L; Christiansen, L;
2003-01-01
In this paper, we apply logistic regression models to measure genetic association with human survival for highly polymorphic and pleiotropic genes. By modelling genotype frequency as a function of age, we introduce a logistic regression model with polytomous responses to handle the polymorphic...... situation. Genotype and allele-based parameterization can be used to investigate the modes of gene action and to reduce the number of parameters, so that the power is increased while the amount of multiple testing minimized. A binomial logistic regression model with fractional polynomials is used to capture...
On modelling of physical effects accompanying the propagation of action potentials in nerve fibres
Engelbrecht, Jüri; Tamm, Kert; Laasmaa, Martin; Vendelin, Marko
2016-01-01
The recent theoretical and experimental studies have revealed many details of signal propagation in nervous systems. In this paper an attempt is made to unify various mathematical models which describe the signal propagation in nerve fibres. The analysis of existing single models permits to select the leading physiological effects. As a result, a more general mathematical model is described based on the coupling of action potentials with mechanical waves in a nerve fibre. The crucial issue is how to model coupling effects which are strongly linked to the ion currents through biomembranes.
Renormalization Group and Decoupling in Curved Space II. The Standard Model and Beyond
Gorbar, E V; Gorbar, Eduard V.; Shapiro, Ilya L.
2003-01-01
We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.
Motion Primitives for Action Recognition
Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.
2007-01-01
The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....
Action Recognition using Motion Primitives
Moeslund, Thomas B.; Fihl, Preben; Holte, Michael Boelstoft
The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognizing rates of 88.7% and 85.5%, respectively....
PRO-ECOLOGICAL ACTIONS AND CONSUMER CHOICES IN THE MODEL OF RESPONSIBLE BUSINESS
Katarzyna Olejniczak
2015-09-01
Full Text Available The current farming conditions cause that recent social and environmental aspects of management play an important role for the functioning of modern enterprises. This results from the fact that on the one hand the activities of modern enterprises are determined by the surroundings’ increasing complexity, on the other hand the growing demands of various groups of stakeholders build company’s success based not only on a quest to maximize their profi t, but primarily on taking the responsibility for the consequences of their actions. Additionally, the growing awareness of consumers makes more and more enterprises implement the concept of corporate social responsibility (CSR in their actions. For this reason, it is important to discuss about the actions and choices of consumers in the model of CSR. The aim of this article is to present the results of the research on customers‘s environmentally conscious activities and choices.
Smith Thomas A
2008-01-01
Full Text Available Abstract Background Quantifying heterogeneity in malaria transmission is a prerequisite for accurate predictive mathematical models, but the variance in field measurements of exposure overestimates true micro-heterogeneity because it is inflated to an uncertain extent by sampling variation. Descriptions of field data also suggest that the rate of Plasmodium falciparum infection is not proportional to the intensity of challenge by infectious vectors. This appears to violate the principle of mass action that is implied by malaria biology. Micro-heterogeneity may be the reason for this anomaly. It is proposed that the level of micro-heterogeneity can be estimated from statistical models that estimate the amount of variation in transmission most compatible with a mass-action model for the relationship of infection to exposure. Methods The relationship between the entomological inoculation rate (EIR for falciparum malaria and infection risk was reanalysed using published data for cohorts of children in Saradidi (western Kenya. Infection risk was treated as binomially distributed, and measurement-error (Poisson and negative binomial models were considered for the EIR. Models were fitted using Bayesian Markov chain Monte Carlo algorithms and model fit compared for models that assume either mass-action kinetics, facilitation, competition or saturation of the infection process with increasing EIR. Results The proportion of inocula that resulted in infection in Saradidi was inversely related to the measured intensity of challenge. Models of facilitation showed, therefore, a poor fit to the data. When sampling error in the EIR was neglected, either competition or saturation needed to be incorporated in the model in order to give a good fit. Negative binomial models for the error in exposure could achieve a comparable fit while incorporating the more parsimonious and biologically plausible mass action assumption. Models that assume negative binomial micro
Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model
Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko
2015-04-01
One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1
A Taxonomic Reduced-Space Pollen Model for Paleoclimate Reconstruction
Wahl, E. R.; Schoelzel, C.
2010-12-01
Paleoenvironmental reconstruction from fossil pollen often attempts to take advantage of the rich taxonomic diversity in such data. Here, a taxonomically "reduced-space" reconstruction model is explored that would be parsimonious in introducing parameters needing to be estimated within a Bayesian Hierarchical Modeling context. This work involves a refinement of the traditional pollen ratio method. This method is useful when one (or a few) dominant pollen type(s) in a region have a strong positive correlation with a climate variable of interest and another (or a few) dominant pollen type(s) have a strong negative correlation. When, e.g., counts of pollen taxa a and b (r >0) are combined with pollen types c and d (r binomial logistic generalized linear model (GLM). The GLM can readily model this relationship in the forward form, pollen = g(climate), which is more physically realistic than inverse models often used in paleoclimate reconstruction [climate = f(pollen)]. The specification of the model is: rnum Bin(n,p), where E(r|T) = p = exp(η)/[1+exp(η)], and η = α + β(T); r is the pollen ratio formed as above, rnum is the ratio numerator, n is the ratio denominator (i.e., the sum of pollen counts), the denominator-specific count is (n - rnum), and T is the temperature at each site corresponding to a specific value of r. Ecological and empirical screening identified the model (Spruce+Birch) / (Spruce+Birch+Oak+Hickory) for use in temperate eastern N. America. α and β were estimated using both "traditional" and Bayesian GLM algorithms (in R). Although it includes only four pollen types, the ratio model yields more explained variation ( 80%) in the pollen-temperature relationship of the study region than a 64-taxon modern analog technique (MAT). Thus, the new pollen ratio method represents an information-rich, reduced space data model that can be efficiently employed in a BHM framework. The ratio model can directly reconstruct past temperature by solving the GLM
Ehnfors, Margareta; Angermo, Lilly Marit; Berring, Lene;
2006-01-01
The aims of this study were to analyze the coherence between the concepts for nursing interventions in the Swedish VIPS model for nursing recording and the ISO Reference Terminology Model for Nursing Actions and to identify areas in the two models for further development. Seven Scandinavian experts...... analyzed the VIPS model's concepts for nursing interventions using prototypical examples of nursing actions, involving 233 units of analyses, and collaborated in mapping the two models. All nursing interventions in the VIPS model comprise actions and targets, but a few lack explicit expressions of means...
Messina, Irene; Sambin, Marco; Beschoner, Petra; Viviani, Roberto
2016-08-01
Influential neurobiological models of the mechanism of action of psychotherapy attribute its success to increases of activity in prefrontal areas and decreases in limbic areas, interpreted as the successful and adaptive recruitment of controlled processes to achieve emotion regulation. In this article, we review the behavioral and neuroscientific evidence in support of this model and its applicability to explain the mechanism of action of psychotherapy. Neuroimaging studies of explicit emotion regulation, evidence on the neurobiological substrates of implicit emotion regulation, and meta-analyses of neuroimaging studies of the effect of psychotherapy consistently suggest that areas implicated in coding semantic representations play an important role in emotion regulation not covered by existing models based on controlled processes. We discuss the findings that implicate these same areas in supporting working memory, in encoding preferences and the prospective outcome of actions taken in rewarding or aversive contingencies, and show how these functions may be integrated into process models of emotion regulation that depend on elaborate semantic representations for their effectiveness. These alternative models also appear to be more consistent with internal accounts in the psychotherapeutic literature of how psychotherapy works. PMID:27351671
Numerical Models for Sound Propagation in Long Spaces
Lai, Chenly Yuen Cheung
Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was
Cognition in Space Workshop. 1; Metrics and Models
Woolford, Barbara; Fielder, Edna
2005-01-01
"Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.
A phantom axon setup for validating models of action potential recordings.
Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy
2016-08-01
Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364
Making Faces - State-Space Models Applied to Multi-Modal Signal Processing
Lehn-Schiøler, Tue
2005-01-01
The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore, the...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...
GERMcode: A Stochastic Model for Space Radiation Risk Assessment
Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.
2012-01-01
A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and high charge and energy (HZE) particles that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of HZE particles in tissue and shielding materials is made with a stochastic approach that includes both particle track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. For NSRL applications, the GERMcode evaluates a set of biophysical properties, such as the Poisson distribution of particles or delta-ray hits for a given cellular area and particle dose, the radial dose on tissue, and the frequency distribution of energy deposition in a DNA volume. By utilizing the ProE/Fishbowl ray-tracing analysis, the GERMcode will be used as a bi-directional radiation transport model for future spacecraft shielding analysis in support of Mars mission risk assessments. Recent radiobiological experiments suggest the need for new approaches to risk assessment that include time-dependent biological events due to the signaling times for activation and relaxation of biological processes in cells and tissue. Thus, the tracking of the temporal and spatial distribution of events in tissue is a major goal of the GERMcode in support of the simulation of biological processes important in GCR risk assessments. In order to validate our approach, basic radiobiological responses such as cell survival curves, mutation, chromosomal
Entropy Bound for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Cabrera-Bravo, E; Montemayor-Varela, A
2005-01-01
By applying the Heisenberg's uncertainty principle for a macroscopic quantum gas formed by gravitational waves an expression for the universal bound on the entropy proposed by Bekenstein for any system of maximum radius R and total energy E has been obtained. By using such expression, in the theoretical scheme of the crystalline vacuum cosmic model, the low entropy value at the Big Bang beginning, 1088k, is explained. According to our analysis the time arrow is well defined and the theoretical time flow occurs only in one direction as requested by the physical processes of gravitational stabilization of the vacuum space crystalline structure around equilibrium conditions. PACS numbers: 65.50.+m, 97.60.Lf, 03.65.-w, 61.50.-f, 98.80.Ft, 04.20.-q
A model for emergence of space and time
Ambjørn, J.; Watabiki, Y.
2015-10-01
We study string field theory (third quantization) of the two-dimensional model of quantum geometry called generalized CDT ("causal dynamical triangulations"). Like in standard non-critical string theory the so-called string field Hamiltonian of generalized CDT can be associated with W-algebra generators through the string mode expansion. This allows us to define an "absolute" vacuum. "Physical" vacua appear as coherent states created by vertex operators acting on the absolute vacuum. Each coherent state corresponds to specific values of the coupling constants of generalized CDT. The cosmological "time" only exists relatively to a given "physical" vacuum and comes into existence before space, which is created because the "physical" vacuum is unstable. Thus each CDT "universe" is created as a "Big Bang" from the absolute vacuum, its time evolution is governed by the CDT string field Hamiltonian with given coupling constants, and one can imagine interactions between CDT universes with different coupling constants ("fourth quantization")
Modeling of Dilute Polymer Solutions in Confined Space
Wang, Yanwei
2009-01-01
are negligible. We present a new framework to describe macromolecules subject to confining geometries. The two main ingredients are a new computational method and a new molecular size parameter. By using snapshots of molecular configurations in free space to estimate the effects of confinement, the computational......, but for polymers regardless of details in molecular architecture and configuration statistics. It is also possible to extend the CABS method to handle attractive surfaces, which is presented briefly under "current and future work" in the summarizing chapter.......This thesis deals with modeling of a polymer chain subject to spatial confinement. The properties of confined macromolecules are both of fundamental interest in polymer physics and of practical importance in a variety of applications including chromatographic separation of polymers, and the use...
Modeling Approach/Strategy for Corrective Action Unit 97, Yucca Flat and Climax Mine , Revision 0
Janet Willie
2003-08-01
The objectives of the UGTA corrective action strategy are to predict the location of the contaminant boundary for each CAU, develop and implement a corrective action, and close each CAU. The process for achieving this strategy includes modeling to define the maximum extent of contaminant transport within a specified time frame. Modeling is a method of forecasting how the hydrogeologic system, including the underground test cavities, will behave over time with the goal of assessing the migration of radionuclides away from the cavities and chimneys. Use of flow and transport models to achieve the objectives of the corrective action strategy is specified in the FFACO. In the Yucca Flat/Climax Mine system, radionuclide migration will be governed by releases from the cavities and chimneys, and transport in alluvial aquifers, fractured and partially fractured volcanic rock aquifers and aquitards, the carbonate aquifers, and in intrusive units. Additional complexity is associated with multiple faults in Yucca Flat and the need to consider reactive transport mechanisms that both reduce and enhance the mobility of radionuclides. A summary of the data and information that form the technical basis for the model is provided in this document.
Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles
The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described
Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles
1992-01-01
The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described.
Continuous action hydrogeological model (CAHM) is a special complex intended for multivariant forecasts of the underground water conditions. CAHM makes it possible to ground optimal arrangement and running of water supply and environmental control measures. CAHM takes into consideration surface storm run-off, vertical moisture and salt transfer in aeration zone soils and filtration model. Presented are mathematical models describing those phenomena. Calculation net of a regional CAHM is given. There is a map of forecasted set levels and heads of the underground water in case of functioning Yanovskij, Novoshepelichevskij and Chernobylskij water intakes at maximum flow rate. 1 refs.; 3 figs
Van Every, Elizabeth J.; Taylor, James R.
1998-01-01
Introduces, through a conversation with computer-system designers from the Netherlands, the Language/Action Perspective on modeling business workflow and communication processes. Describes their attempts to develop system models that go beyond data flow to incorporate the communicative actions or transactions that result in the creation of a…
Exploring the Model Design Space for Battery Health Management
Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank
2011-01-01
Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.
Quantitative Risk Modeling of Fire on the International Space Station
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
Cichy, Krzysztof, E-mail: krzysztof.cichy@desy.de [NIC, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Adam Mickiewicz University, Faculty of Physics, Umultowska 85, 61-614 Poznan (Poland); Jansen, Karl, E-mail: karl.jansen@desy.de [NIC, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Korcyl, Piotr, E-mail: piotr.korcyl@desy.de [NIC, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)
2012-12-11
We present results of a Lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MS{sup Macron} scheme via 4-loop continuum perturbative formulae. Our results for N{sub f}=2 maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method.
Cichy, Krzysztof [DESY, Zeuthen (Germany). NIC; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [DESY, Zeuthen (Germany). NIC; Korcyl, Piotr [DESY, Zeuthen (Germany). NIC; Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics
2012-07-15
We present results of a lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MS scheme via 4-loop continuum perturbative formulae. Our results for N{sub f}=2 maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method. (orig.)
Cichy, Krzysztof; Korcyl, Piotr
2012-01-01
We present results of a lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MSbar scheme via 4-loop continuum perturbative formulae. Our results for $N_f=2$ maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method.
González-Bailón, Sandra
2009-12-01
Full Text Available There is interdependence when the actions of an individual influence the decisions (and later actions of other individuals. This paper claims that social networks define the structure of that range of influence and unleash a number of mechanisms that go beyond those captured by rational action theory. Networks give access to the ideas and actions of other individuals, and this exposure determines the activation of thresholds, the timing of actions, and the emergence of contagion processes, informational cascades and epidemics. This paper sustains that rational action theory does not offer the necessary tools to model these processes if it is not inserted in a general theory of networks. This is especially the case in the context opened by new information and communication technologies, where the interdependence of individuals is acquiring greater empirical relevance.
Existe interdependencia cuando las acciones de unos individuos influyen en las decisiones (y posteriores acciones de otros individuos. Este artículo sostiene que las redes sociales definen la estructura de ese espacio de influencia y desatan una serie de mecanismos de los que la teoría de la elección racional no puede dar cuenta. Las redes sociales abren acceso a las ideas y acciones de otros individuos, y esta exposición determina la satisfacción de umbrales, el tempo con en el que se llevan a cabo las acciones y la emergencia de procesos de contagio, cascadas de información y epidemias. Este artículo defiende que la teoría de la elección racional no ofrece las herramientas necesarias para modelizar tales procesos si no se inserta en una teoría general de redes. Éste es especialmente el caso en unos momentos en los que la interdependencia de individuos está adquiriendo, al amparo de las nuevas tecnologías, mayor relevancia empírica.
Fajstrup, Lisbeth; Goubault, Eric; Haucourt, Emmanuel;
2012-01-01
State-space reduction techniques, used primarily in model-checkers, all rely on the idea that some actions are independent, hence could be taken in any (respective) order while put in parallel, without changing the semantics. It is thus not necessary to consider all execution paths in the...... concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing...
Modeling the Mass Action Dynamics of Metabolism with Fluctuation Theorems and Maximum Entropy
Cannon, William; Thomas, Dennis; Baxter, Douglas; Zucker, Jeremy; Goh, Garrett
The laws of thermodynamics dictate the behavior of biotic and abiotic systems. Simulation methods based on statistical thermodynamics can provide a fundamental understanding of how biological systems function and are coupled to their environment. While mass action kinetic simulations are based on solving ordinary differential equations using rate parameters, analogous thermodynamic simulations of mass action dynamics are based on modeling states using chemical potentials. The latter have the advantage that standard free energies of formation/reaction and metabolite levels are much easier to determine than rate parameters, allowing one to model across a large range of scales. Bridging theory and experiment, statistical thermodynamics simulations allow us to both predict activities of metabolites and enzymes and use experimental measurements of metabolites and proteins as input data. Even if metabolite levels are not available experimentally, it is shown that a maximum entropy assumption is quite reasonable and in many cases results in both the most energetically efficient process and the highest material flux.
Using the Benner intuitive-humanistic decision-making model in action: a case study.
Blum, Cynthia Ann
2010-09-01
Nurse educators make decisions that affect students in profound ways. This decision-making process may follow an intuitive-humanistic decision-making model. The author most connected with developing the intuitive model and the distinction between theoretical knowledge and experiential knowledge in the discipline of nursing is Patricia Benner (Thompson, 1999). Educators use intuition in forming judgments regarding educational planning. The educator may not be aware of subtleties that influence the decision but rely on a 'gut' instinct as they determine the appropriate action. Utilizing six key concepts identified by Dreyfus and Dreyfus (Benner and Tanner, 1987) this process utilizes what is known to the educator from previous situations to determine a course of action appropriate for the given situation. This paper describes a method one nursing educator used and identifies outcomes that could impact the career path for the student when determining if they were safe to continue in a practice based course. PMID:20202908
Simulating Emerging Space Industries with Agent-Based Modeling Project
National Aeronautics and Space Administration — The Vision for Space Exploration (VSE) calls for encouraging commercial participation as a top-level objective. Given current and future commercial activities, how...
NASA 3D Models: James Webb Space Telescope
National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST...
MODELING OF THE HIGH CONCENTRATION LAYER OF COHESIVE SEDIMENT UNDER THE ACTION OF WAVES AND CURRENTS
Qinghe ZHANG; Yongsheng WU; Jijian LIAN; Pingxing DING
2001-01-01
High concentration layer of cohesive sediment frequently occurs in muddy estuaries and coastal zones, and causes rapid siltation of the waterways. A one dimensional vertical coupled model describing the interactions between waves, currents and suspended cohesive sediment is developed in the present paper. The numerical results and analyses with field measurements reveal the mechanism of the formation and transport behaviors of the layer under the action of waves and currents.
Numerical Model Related to Impact Fluid / Solid Under the action of an Electric Field
Freifer Somia; Alla Hocine
2013-01-01
The electrowetting is an area of significant interest. Many experimental studies have been conducted to find the relationship that binds the physical parameters of said phenomenon: the percentage of the white area inside the pixels of different sizes depending on the applied voltage etc. Our study is to develop a CFD model to validate the experimental results for the behavior of fluids (oil colored) within the reflector screens under the action of electric field.
The languages of actions, formal grammars and qualitive modeling of companies
Kovchegov, Vladislav B.
2016-01-01
In this paper we discuss methods of using the language of actions, formal languages, and grammars for qualitative conceptual linguistic modeling of companies as technological and human institutions. The main problem following the discussion is the problem to find and describe a language structure for external and internal flow of information of companies. We anticipate that the language structure of external and internal base flows determine the structure of companies. In the structure modeli...
Variety of the Wave Change in Compound Muscle Action Potential in an Animal Model
ITO, ZENYA; Imagama, Shiro; Ando, Kei; Muramoto, Akio; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Matsumoto, Akiyuki; Tanaka, Satoshi; Morozumi, Masayoshi; Matsuyama, Yukihiro; Ishiguro, Naoki
2015-01-01
Study Design Animal study. Purpose To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria for spinal surgery safety using an animal model. Overview of Literature Little is known about correlation palesis and amplitude of spinal cord monitoring. Methods After laminectomy of the tenth thoracic spinal lamina, 2-140 g force was delivered to the spinal cord with a tension gage to create a bilateral contusion injury. The study morpho...
Lida Zhu
Full Text Available Identifying patients most responsive to specific chemotherapy agents in neoadjuvant settings can help to maximize the benefits of treatment and minimize unnecessary side effects. Metagene approaches that predict response based on gene expression signatures derived from an associative analysis of clinical data can identify chance associations caused by the heterogeneity of a tumor, leading to reproducibility issues in independent validations. In this study, to incorporate information from drug mechanisms of action, we explore the potential of microRNA regulation networks as a new feature space for identifying predictive markers. We introduce a measure we term the CoMi (Context-specific-miRNA-regulation pattern to represent a descriptive feature of the miRNA regulation network in the transcriptome. We examine whether the modifications to the CoMi pattern on specific biological processes are a useful representation of drug action by predicting the response to neoadjuvant Paclitaxel treatment in breast cancer and show that the drug counteracts the CoMi network dysregulation induced by tumorigenesis. We then generate a quantitative testbed to investigate the ability of the CoMi pattern to distinguish FDA approved breast cancer drugs from other FDA approved drugs not related to breast cancer. We also compare the ability of the CoMi and metagene methods to predict response to neoadjuvant Paclitaxel treatment in clinical cohorts. We find the CoMi method outperforms the metagene method, achieving area under curve (AUC values of 0.78 and 0.66 respectively. Furthermore, several of the predicted CoMi features highlight the network-based mechanism of drug resistance. Thus, our study suggests that explicitly modeling the drug action using network biology provides a promising approach for predictive marker discovery.
Applications of the International Space Station Probabilistic Risk Assessment Model
Grant, W.; Lutomski, M.
2012-01-01
The International Space Station (ISS) program is continuing to expand the use of Probabilistic Risk Assessments (PRAs). The use of PRAs in the ISS decision making process has proven very successful over the past 8 years. PRAs are used in the decision making process to address significant operational and design issues as well as to identify, communicate, and mitigate risks. Future PRAs are expected to have major impacts on not only the ISS, but also future NASA programs and projects. Many of these PRAs will have their foundation in the current ISS PRA model and in PRA trade studies that are being developed for the ISS Program. ISS PRAs have supported: -Development of reliability requirements for future NASA and commercial spacecraft, -Determination of inherent risk for visiting vehicles, -Evaluation of potential crew rescue scenarios, -Operational requirements and alternatives, -Planning of Extravehicular activities (EV As) and, -Evaluation of robotics operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decisions that were made.
Probability boxes on totally preordered spaces for multivariate modelling
Troffaes, Matthias C M; 10.1016/j.ijar.2011.02.001
2011-01-01
A pair of lower and upper cumulative distribution functions, also called probability box or p-box, is among the most popular models used in imprecise probability theory. They arise naturally in expert elicitation, for instance in cases where bounds are specified on the quantiles of a random variable, or when quantiles are specified only at a finite number of points. Many practical and formal results concerning p-boxes already exist in the literature. In this paper, we provide new efficient tools to construct multivariate p-boxes and develop algorithms to draw inferences from them. For this purpose, we formalise and extend the theory of p-boxes using Walley's behavioural theory of imprecise probabilities, and heavily rely on its notion of natural extension and existing results about independence modeling. In particular, we allow p-boxes to be defined on arbitrary totally preordered spaces, hence thereby also admitting multivariate p-boxes via probability bounds over any collection of nested sets. We focus on t...
Oblique corrections from less-Higgsless models in warped space
Hatanaka, Hisaki
2015-01-01
The Higgsless model in warped extra dimension is reexamined. Dirichlet boundary conditions on the TeV brane are replaced with Robin boundary conditions which are parameterized by a mass parameter $M$. We calculate the Peskin-Takeuchi precision parameters $S$, $T$ and $U$ at tree level. We find that to satisfy the constraints on the precision parameters at $99 \\%$ [$95 \\%$] confidence level (CL) the first Kaluza-Klein excited $Z$ boson, $Z'$, should be heavier than 5 TeV [8 TeV]. The Magnitude of $M$, which is infinitely large in the original model, should be smaller than 200 GeV (70 GeV) for the curvature of the warped space $R^{-1}=10^{16}$ GeV ($10^{8}$ GeV) at $95\\%$ CL. If the Robin boundary conditions are induced by the mass terms localized on the TeV brane, from the $99\\%$ [$95\\%$] bound we find that the brane mass interactions account for more than $97\\%$ [$99\\%$] of the masses of $Z$ and $W$ bosons. Such a brane mass term is naturally interpreted as a vacuum expectation value of the Higgs scalar field...
无
2003-01-01
Space-mapping (SM) technique is applied for the modeling and design optimization of photonic devices. A mapping is established between the parameter spaces of the fast but approximate coarse model and the time-intensive yet accurate fine model. Two different applications of the SM techniques, i.e., design optimization and design modeling of photonic devices, are illustrated by way of examples.
Representative Model of the Learning Process in Virtual Spaces Supported by ICT
Capacho, José
2014-01-01
This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…