WorldWideScience

Sample records for actinium gamma spectra

  1. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  2. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore

  3. Investigation of gamma spectra analysis

    During the investigation of radiation fingerprint comparison, it is found out that the popular gamma spectra analysis softwares are faultful, which decrease the precision of radiation fingerprint comparison. So a new analysis software is development for solving the problems. In order to display the advantage of new program, some typical simulative gamma spectra of radiation source are analyzed respectively by our software and GAMMAVISION and GENNIE2000. The software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  4. Skyshine spectra of gamma rays

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  5. Simulation of Gamma Spectra for Spent Fuel

    'GammaGen' is a Windows software, developed at The Nuclear Research Centre Negev (NRCN) to generate synthetic gamma ray spectra obtained with various detectors. The information on a chosen radio-nuclide is generated according to its activity, its photo peak energy and yield (taken from a data library). The detector efficiency and resolution, and peak to Compton dependence are used to generate a pulse height spectrum for a specific detector. The spectra can be displayed in several modes: as energy lines of the photo peaks, or as Gaussian of each photo peak. The Compton continuum can be included as well. A spectra mixture for different sources can be produced for visual analysis. Spectra can be exported to some other formats, to enable input to other commercial spectra analyzing programs. The main purpose of the program is to generate synthetic distributions for predicting complicated pulse height spectra. In the field of radioactive waste follow-up it can be used to evaluate the efficiency of different shields and the time dependant monitor response at the waste site

  6. Generation of synthetic gamma spectra with MATLAB

    Objectives: The aim of this work is the simulation of gamma spectra using the MATLAB program to generate the calibration curves in efficiency, which will be used to measure radioactive waste in drums. They are necessary for the proper characterization of these drums. A Monte Carlo simulation was basically developed with the random number generator Mersenne Twister and nuclear data obtained from NIST. This paper shows the results obtained and difficulties encountered until today. The physical correction of the simulated spectra has been the only aspect we have been working, up to this moment. Procedures: A simplified representation of the 'Laboratorio de Verificacion y Control de la Calidad' was chosen. Drums with cemented liquid waste are routinely measured in this laboratory. The commercial program MCNP was also used to get a valid reference in the field of simulation of spectra. We analyzed the spectra obtained by MATLAB in the light of classical literature photon detection and the spectrum obtained by MCNP. Conclusions: Currently the program developed seems adequate to simulate a measurement in the 'Laboratorio de Verificacion y Control de la Calidad'. The spectra obtained by MATLAB seem to physically represent what is observed in real spectra. However, it is a slow program. The current development efforts are directed to improve the speed of simulation. An alternative is to use the CUDA language for NVIDIA video cards to parallelized the simulation. An adequate simulation of the electronic measuring chain is also needed to obtain better representations of the shapes of the peaks. (author)

  7. Spectra of {gamma} rays feeding superdeformed bands

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  8. A program converting MCNP simulation into gamma vision spectra

    A program is developed which can convert the energy distribution of photons calculated by MCNP into Gamma Vision spectra, thus, the simulated energy spectra can be displayed and processed with Gamma Vision. The program provides a convenient tool for the theoretical simulation of HPGe γ spectra. (authors)

  9. Gamma-ray spectra of 241Am

    The γ-spectrum of 241Am was reinvestigated by using intense sources (100 and 25 mCi) for the energy range of Eγ>60 keV, and purified solution source of about 10 μCi for the low energy and to make sure that the γ-lines present in the spectrum come from the α-decay of 241Am. The study was divided into three parts. The γ-spectrometers consists of 40 and 10% relative efficiency Hp Ge detectors and 8192 channel ADC for normal spectra, and Si-Li for low energy. Outs of 169 γ-lines that are presented in the spectrum 47 are new. The major part of the new gamma lines was observed in the energy range of Eγ≥200 keV. (author)

  10. Variations of gamma radiation spectra during precipitations

    In the present paper results of prolonging studies of variations of a natural gamma (X-ray) radiation during precipitations registered at cosmic ray station in Apatity are presented. To the present time in the complex installation realizing monitoring of the near ground radiation, the detector is added on the basis of a scintillation crystal by size Ø150×100 mm. The special procedure of working out of the differential energy spectra obtained on the basis of this detector is designed. Due to this it is found, that increases are produced by an additional flux of radiation with the non-regular descending energy spectrum superimposed on a background radiation, having a power law energy spectrum. The clear upper energy limit of the additional radiation, accompanying with precipitations, is observed. It is 1.8-2.0 MeV. Any spectral lines, which could be produced by radionuclides, are not revealed in all researched gamut. It is concluded that these fluxes are produced by energetic charged particles during their passage through the atmosphere, i.e. Bremsstrahlung generation process. Based on the energy balance, the minimum field strength, which can cause a secondary increase, was performed.

  11. Librarian driven analysis of gamma ray spectra

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  12. Monte Carlo simulations of plutonium gamma-ray spectra

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  13. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs

  14. Study of Gamma spectra by Monte Carlo simulation

    The purpose of this paper is obtaining gamma ray spectra by means of a scintillation detector applying the Monte Carlo statistic simulation method using the EGS4 program. The Monte Carlo algorithm implies that the physical system is described by the probability density function which allows generating random figures and the result is taken as an average of numbers which were observed. The EGS4 program allows the simulation of the following physical processes: the photo-electrical effect, the Compton effect, the electron positron pairs generation and the Rayleigh diffusion. The gamma rays recorded by the detector are converted into electrical pulses and the gamma ray spectra are acquired and processed by means of the Nomad Plus portable spectrometer connected to a computer. As a gamma ray sources 137Cs and 60Co are used whose spectra drawn and used for study the interaction of the gamma radiations with the scintillation detector. The parameters which varied during the acquisition of the gamma ray spectra are the distance between source and detector and the measuring time. Due to the statistical processes in the detector, the peak looks like a Gauss distribution. The identification of the gamma quantum energy value is achieved by the experimental spectra peaks, thus gathering information about the position of the peak, the width and the area of the peak respectively. By means of the EGS4 program a simulation is run using these parameters and an 'ideal' spectrum is obtained, a spectrum which is not influenced by the statistical processes which take place inside the detector. Then, the convolution of the spectra is achieved by means of a normalised Gauss function. There is a close match between the experimental results and those simulated in the EGS4 program because the interactions which occurred during the simulation have a statistical behaviour close to the real one. (authors)

  15. User controlled analysis of gamma ray spectra

    The program 'ANGES' was designed as a general purpose high-resolution γ ray spectrometry program. It offers all main features as commercial software packages except control of acquisition process. The program is able to perform automatic analysis of spectra but it is announced as 'user controlled' because it supplies all intermediate results and gives the opportunity these results to be analyzed and corrected by the user. ANGES offers: multi document Windows interface; detailed visualization of spectra; nuclide library based on another contribution to CRP; energy and FWHM calibrations calculated by means of orthonormal polynomial fitting; peak processing engine based on a non-linear LSQ method for fitting peaks; peak location engine, based on first derivative method is provided to ease the preparation of a spectrum for processing; two methods for efficiency calibration (an efficiency calibration curve and reference table); peak identification and activity calculation procedure; a number of corrections (true coincidence summing, background correction, pile up rejection and so on); an option for processing series of similar spectra. The fitting procedure can be applied to the whole spectrum or to a single Region-of-Interest (ROI). The assumed peak shape is pure Gaussian. All peaks in single ROI are assumed to have the same FWHM. The maximum number of peaks in a single ROI is restricted to 25, the maximum ROI length is 512 channels, and the baseline is described with a polynomial of a degree up to 4. As a result of the identification procedure a report file is issued containing spectrum processing results, list of identified and not identified peaks, list of identified nuclides and background nuclides. (author)

  16. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC

  17. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  18. Nature of the Pygmy Resonance in Continuous Gamma-Spectra

    Rekstad, J; Siem, S; Bernstein, L; Schiller, A; Garrett, P; Nelson, R; Guttormsen, M; Algin, E; Voinov, A

    2003-12-01

    Two-step-cascade spectra of the {sup 171}Yb(n, {gamma}{gamma}){sup 172}Yb reaction have been measured using thermal neutrons. They are compared to calculations based on experimental values of the level density and radiative strength function obtained from the {sup 173}Yb({sup 3}He,{alpha}{gamma}){sup 172}Yb reaction. The multipolarity of a 6.5(15) {mu}{sub N}{sup 2} resonance at 3.3(1) MeV in the strength function is determined to be M1 by this comparison.

  19. Program LEPS to addition of gamma spectra from germanium detectors

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  20. Program DEIMOS32 for gamma-ray spectra evalution

    Frána, Jaroslav

    2003-01-01

    Roč. 257, č. 3 (2003), s. 583-587. ISSN 0236-5731. [International Conference Ko-users Workshop /3./. Bruges, 23.09.2001-28.09.2001] Institutional research plan: CEZ:AV0Z1048901 Keywords : gamma-ray spectra * software Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.472, year: 2003

  1. Determination of gaussian peaks in gamma spectra by iterative regression

    The parameters of the peaks in gamma-ray spectra are determined by a simple iterative regression method. For each peak, the parameters are associated with a gaussian curve (3 parameters) located above a linear continuum (2 parameters). This method may produces the complete result of the calculation of statistical uncertainties and an accuracy higher than others methods. (author)

  2. Multiplicity spectra and nuclear models of gamma emission

    The possibility of study process of nuclear gamma-rays emission from excited states by means of gamma-rays multiplicity spectra A(ν) was investigated in present work. This question are considered on example of the multiplicity spectra calculation from decay of the 4+ state of nuclear 87Sr formed in slow neutrons capture. The calculations was performed for single particle and collective (giant photonuclear resonance) approaches to describe of the emission process. The comparison A(ν) obtained with using of single-particle (S) and collective (G) models point out of the possibility of using the method of multiplicity spectrometry for choice of the proper approach to describe of the compound nuclear gamma-emission. 23 refs.; 6 figs.; 10 tabs

  3. Inversion of neutron/gamma spectra from scintillator measurements

    Koehler, J., E-mail: koehler@physik.uni-kiel.de [IEAP, Christian Albrechts University, Kiel (Germany); Ehresmann, B.; Martin, C.; Boehm, E.; Kharytonov, A. [IEAP, Christian Albrechts University, Kiel (Germany); Kortmann, O. [IEAP, Christian Albrechts University, Kiel (Germany); Space Sciences Laboratory, Berkley, CA (United States); Zeitlin, C.; Hassler, D.M. [Southwest Research Institute, Department of Space Studies, Boulder, CO (United States); Wimmer-Schweingruber, R.F. [IEAP, Christian Albrechts University, Kiel (Germany)

    2011-11-15

    The Radiation Assessment Detector (RAD) on-board NASA's Mars Science Laboratory (MSL) rover will measure charged particles as well as neutron and gamma radiation on the Martian surface. Neutral particles are an important contribution to this radiation environment. RAD measures them with a CsI (Tl) and a plastic scintillator, which are both surrounded by an anticoincidence. The incident neutron/gamma spectrum is obtained from the measurements using inversion methods which often fit a functional behavior, e.g., a power law, to the measured data applying the instrument response function and, e.g., a least-squares method. In situations where count rates are small, i.e., where the stochastic nature of the measurement is evident, maximum likelihood estimates with underlying Poissonian statistics improve the resulting spectra. We demonstrate the measurement and inversion of gamma/neutron spectra for a detector concept featuring one high-density scintillator and one high-proton-content scintillator. The applied inversion methods derive the original spectra without any strong assumptions of the functional behavior. Instrument response functions are obtained from Monte-Carlo simulations in matrix form with which the instrument response is treated as a set of linear equations. Using the response matrices we compare a constrained least-squares minimization, a chi-squared minimization and a maximum likelihood method with underlying Poissonian statistics. We make no assumptions about the incident particle spectrum and the methods intrinsically satisfy the constraint of non-negative counts. We analyzed neutron beam measurements made at the Physikalisch Technische Bundesanstalt (PTB) and inverted the measurement data for both neutron and gamma spectra. Monte-Carlo-generated measurements of the expected Martian neutron/gamma spectra were inverted as well, here the maximum likelihood method with underlying Poissonian statistics produces significantly better results.

  4. Gamma spectra pictures using a digital plotter. Program MONO

    The program MONO has been written for a CALCOMP-936 digital plotter operating off- -line with a UMI VAC 1106 computer, to obtain graphic representations of single gamma spectra stored on magnetic tape. It allows to plot the whole spectrum or only a part, as well as to draw a given spectrum on the same or different picture than the previous one. Ten representation scales are available and at up nine comment lines can be written in a graphic. (Author) 4 refs

  5. The sharpness of gamma-ray burst prompt emission spectra

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin

  6. The width of gamma-ray burst spectra

    Axelsson, Magnus

    2014-01-01

    The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper we propose a new measure to describe spectra: the width of the $EF_E$ spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/GBM and CGRO/BATSE. The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability $<10^{-6}$). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes -- synchrotron and blackbody radiation -- the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78% of long GRBs and 85% of short GRBs are incompatible wi...

  7. Experimental simulation of A-bomb gamma ray spectra: Revisited

    It has been reported recently that the A-bomb gamma ray spectra received by the colon of the average Japanese survivor of Hiroshima and Nagasaki may be experimentally simulated using a hospital-based Philips SL15 linear accelerator. The simulated A-bomb gamma radiation may be used in radiobiology experiments to determine, amongst other things, the biological effectiveness of the A-bomb gamma radiation. However, in that study, the electron beams from the linear accelerator were poorly defined and photon contamination was ignored. In the study reported here, a Varian Clinac 2100C linear accelerator has been used for the same purpose but with photon contamination included in better defined output electron beams. It is found that the A-bomb gamma radiation can still be matched to an acceptable degree (<10%). The cause of the slightly poorer fit was due mainly to the different ranges of energies available from the linear accelerators used. The absorbed dose received by model breasts was also estimated in this study for the same situations as in the previous study. The ratio of the breast to colon doses was found to be only (3.9 ± 4.0)% low compared with the expected values of 1.17 and 1.16 for Hiroshima and Nagasaki, respectively. These results provide further confirmation of the acceptability of the simple cylindrically symmetrical body models employed in these studies to represent the average Japanese survivor. (authors)

  8. Page: a program for gamma spectra analysis in PC microcomputers

    PAGE is a software package, written in BASIC language, to perform gamma spectra analysis. It was developed to be used in a high-purity intrinsic germanium detector-multichannel analyser-PC microcomputer system. The analysis program of PAGE package accomplishes functions as follows: peak location; gamma nuclides identification; activity determination. Standard nuclides sources were used to calibrate the system. To perform the efficiency x energy calibration a logarithmic fit was applied. Analysis of nuclides with overlapping peaks is allowed by PAGE program. PAGE has additional auxiliary programs for: building and list of isotopic nuclear data libraries; data acquisition from multichannel analyser; spectrum display with automatic area and FWHM determinations. This software is to be applied in analytical process control where time response is a very important parameter. PAGE takes ca. 1.5 minutes to analyse a complex spectrum from a 4096 channels MCA. (author)

  9. Power Density Spectra of $\\gamma$-Ray Bursts

    Beloborodov, A M

    1999-01-01

    Power density spectra (PDSs) of long gamma-ray bursts provide useful information on GRBs, indicating their self-similar temporal structure. The best power-law PDSs are displayed by the longest bursts (T_90 > 100 s) in which the range of self-similar time scales covers more than 2 decades. Shorter bursts have apparent PDS slopes more strongly affected by statistical fluctuations. The underlying power law can then be reproduced with high accuracy by averaging the PDSs for a large sample of bursts. This power-law has a slope alpha\\approx -5/3 and a sharp break at 1 Hz. The power-law PDS provides a new sensitive tool for studies of gamma-ray bursts. In particular, we calculate the PDSs of bright bursts in separate energy channels. The PDS flattens in the hard channel (h\

  10. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Pinault, Jean-Louis [IAEA Expert, 96 rue du Port David, 45370 Dry (France)], E-mail: jeanlouis_pinault@hotmail.fr; Solis, Jose [Instituto Peruano de Energia Nuclear, Av. Canada No. 1470, San Borja, Lima 41 (Peru)

    2009-04-15

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  11. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Pinault, Jean-Louis; Solis, Jose

    2009-04-01

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  12. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  13. The use of synthetic spectra to test the preparedness to evaluate and analyze complex gamma spectra

    Nikkinen, M [Doletom OY (Finland)

    2001-10-01

    This is the report of two exercises that were run under the NKS BOK-1.1 sub-project. In these exercises synthetic gamma spectra were developed to exercise the analysis of difficult spectra typically seen after a severe nuclear accident. The spectra were analyzed twice; first, participants were given short time to give results to resemble an actual emergency preparedness situation, then a longer period of time was allowed to tune the laboratory analysis results for quality assurance purposes. The exercise did prove that it is possible to move measurement data from one laboratory to another if second opinion of the analysis is needed. It was also felt that this kind of exercise would enhance the experience the laboratories have in analyzing accident data. Participants expressed the need for additional exercises of this type, this is inexpensive and an easy way to exercise quick emergency response situations not normally seen in daily laboratory routines. (au)

  14. The use of synthetic spectra to test the preparedness to evaluate and analyze complex gamma spectra

    This is the report of two exercises that were run under the NKS BOK-1.1 sub-project. In these exercises synthetic gamma spectra were developed to exercise the analysis of difficult spectra typically seen after a severe nuclear accident. The spectra were analyzed twice; first, participants were given short time to give results to resemble an actual emergency preparedness situation, then a longer period of time was allowed to tune the laboratory analysis results for quality assurance purposes. The exercise did prove that it is possible to move measurement data from one laboratory to another if second opinion of the analysis is needed. It was also felt that this kind of exercise would enhance the experience the laboratories have in analyzing accident data. Participants expressed the need for additional exercises of this type, this is inexpensive and an easy way to exercise quick emergency response situations not normally seen in daily laboratory routines. (au)

  15. MGA, Pu Isotope Abundance from Multichannel Analyzer Gamma Spectra

    1 - Description of program or function: The MGA (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum which is required and must be taken at a gain of .075 keV/channel with a high resolution planar detector, contains the 0-300 keV energy region. The second spectrum, which is optional, must be taken at a gain of 0.25 keV/channel; it becomes important when analyzing high burnup samples (concentration of Pu(241) greater than one percent). Isotopic analysis precision of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U(235,238), Np-237, and Am-241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system. 2 - Method of solution: The basic method for determining the relative abundance of the isotopes of plutonium is to measure the intensity of two or more peaks from gamma rays of similar energy, but arising from different isotopes. Since the gamma-ray emission probabilities and half-lives are known, the atom ratios can be calculated provided relative detection efficiencies for the peaks can be estimated

  16. Processing of gamma-ray spectra employing a Fourier deconvolver for the analysis of complex spectra

    Processing of a nuclear spectrum e.g. gamma ray spectrum is concerned with the estimation of energies and intensities of radiation. The processing involves filtering, peak detection and its significance, baseline delineation, the qualitative and the quantitative analysis of singlets and multiplets present in the spectrum. The methodology for the analysis of singlets is well established. However, the analysis of multiplets provides a challenge and is a extremely difficult problem. This report incorporates a Fourier deconvolver for the quantitative analysis of doublets separated by more than a full width at half maximum. The method is easy to implement. The report discusses the methodology, mathematical analysis, and the results obtained by analyzing both synthetic and observed spectra. A computer program, developed for the analysis of a nuclear spectrum, was verified by analyzing a 152Eu gamma ray spectrum. The proposed technique compared favourably with SAMPO and MDFT method. (author). 16 refs., 3 tabs

  17. Automatic analysis of gamma spectra using a desk computer

    A code for the analysis of gamma spectra obtained with a Ge(Li) detector was developed for use with a desk computer (Hewlett-Packard Model 9810 A). The process is performed in a totally automatic way, data are conveniently smoothed and the background is generated by a convolutive equation. A calibration of the equipment with well-known standard sources gives the necessary data for adjusting a third degree equation by minimun squares, relating the energy with the peak position. Criteria are given for determining if certain groups of values constitute or not a peak or if it is a double line. All the peaks are adjusted to a gaussian curve and if necessary decomposed in their components. Data entry is by punched tape, ASCII Code. An alf-numeric printer provides (a) the position of the peak and its energy, (b) its resolution if it is larger than expected, (c) the area of the peak with its statistic error determined by the method of Wasson. As option, the complete spectra with the determined background can be plotted. (author)

  18. Use of new spectral analysis methods in gamma spectra deconvolution

    Pinault, Jean Louis

    1991-07-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252Cf source; the detector is a BGO 3 in. × 8 in. scintillator. The principle of the method rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given.

  19. Decomposition Of Continuum GAMMA Ray Spectra For Point Sources By Using Gold Algorithm

    In this work, we try for decomposition of continuum gamma ray spectra using Gold algorithm. The problem is applied for the gamma spectra of Co-60, Cs-137 and Eu-152 point source for HPGe GC2018 gamma spectroscopy. The results show that the convergence speed is faster than results for using MLEM algorithm and the largest difference of the peak area ratios before and after unfolding from P/T values decreases 15%. (author)

  20. The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis

    Blaauw, M.

    1993-11-15

    The subject is the computerized analysis of the gamma-ray spectra in INAA. This analysis can be separated in three parts: The conversion of the spectra to information on {gamma}-ray energies and their relative intensities (spectrum reduction), the determination of the relation between the intensity of a {gamma}-ray and the amount of the corresponding element present in the sample (standardization) and the attribution of the {gamma}-ray energies to the elements, including the subsequent computation of the amounts of the elements (interpretation). A {gamma}-ray spectrum can be considered to be the linear sum of the {gamma}-ray spectra of the individual radionuclides present in the sample. Knowing the relative activities of the different radionuclides that may be produced by activation of a single element, a {gamma}-ray spectrum in INAA can also be considered to be the linear sum of the spectra of the elements. This principle has hitherto not been used in INAA to analyze the spectra by linear least squares methods, using all {gamma}-ray energies observed in the spectrum. The implementation of this `holistic` approach required that attention be paid to both spectrum reduction, standardization and interpretation. The thesis describes the methods developed for the holistic analysis of {gamma}-ray spectra in INAA, and present results of experimental comparisons between the holistic and other approaches. (orig./HP).

  1. Electromagnetic cascade masquerade: a way to mimic $\\gamma$--ALP mixing effects in blazar spectra

    Dzhatdoev, T A; Kircheva, A P; Lyukshin, A A

    2016-01-01

    Most of the studies on extragalactic {\\gamma}-ray propagation performed up to now only accounted for primary gamma-ray absorption and adiabatic losses (absorption-only model). However, there is growing evidence that this model is oversimplified and must be modified in some way. (...) There are many hints that a secondary component from electromagnetic cascades initiated by primary $\\gamma$-rays or nuclei may be observed in the spectra of some blazars. We study the impact of electromagnetic cascades from primary $\\gamma$-rays or protons on the physical interpretation of blazar spectra obtained with imaging Cherenkov telescopes. We use the publicly-available code ELMAG to compute observable spectra of electromagnetic cascades from primary $\\gamma$-rays. For the case of primary proton, we develop a simple, fast, and reasonably accurate hybrid method to calculate the observable spectrum. (...) Electromagnetic cascades show at least two very distinct regimes labeled by the energy of the primary $\\gamma$-ray ($E_{0...

  2. Effect of positron-atom interactions on the annihilation gamma spectra of molecules

    Green, D G; Wang, F; Gribakin, G F; Surko, C M

    2012-01-01

    Calculations of gamma spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation gamma spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the gamma spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation gamma spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective "narrowing" of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of smal...

  3. PRESTO, Slab Shields for Time-Dependent Gamma Spectra

    A - Description of program or function: PRESTO is designed to calculate slab shields for gamma ray sources of complex and time dependent energy spectra. PRESTO I treats cylinder sources with shields at side, such as pipelines or containers in radioactive facilities. PRESTO II is the analogous code for spherical sources. The programs permit to consider volume sources or a combination of volume and surface sources. To describe the source spectrum, one can start from the nuclides contained in the source mixture or (with the aid of PRESTO IA) from energy group sets. The internal data set contains 5 common shield construction materials. B - Method of solution: The solution method is based on the point kernel integration, extended by the 'self absorption distance' concept. The approximation mentioned before reduces the spatial flux calculation to a plane problem. The dose build-up factor is taken into account by Taylor's equation. Some functions necessary for the integration will be calculated inside the program, by means of extrapolation based on the internal data sets. PRESTO permits to calculate: 1). required shield thicknesses for a given dose rate level or the allowed activity concentration of the source for a given shield thickness, both time dependent. 2). the contribution to the dose rate by single nuclides. C - Restrictions on the complexity of the problem: - Energy range from 0.1 to 10 MeV. - Contents of internal nuclide library: 100 nuclides with 428 energy lines. One job run can use 30 of them (up to 280 energy lines) - PRESTO I : 1 shielding material per job - PRESTO II: up to 5 shielding materials per job - PRESTO IA: 40 energy groups, taken from the nuclides contained in the data set, or up to 250 free energy groups

  4. Automatic storing of single gamma spectra on magnetic tape. Programs LONGO, DIRE

    The program LONGO provides the block size and the block number in a binary file on magnetic tape. It has been applied to analyse the structure of the nine-track magnetic tapes storing single or coincidence gamma spectra files, recorded in octet form by a MULTI-8 minicomputer in the Nuclear Spectrometry Laboratory of J.E.N. Then the program DIRE has been written to transform the single gamma spectra into a new FASTRAND disk file, storing the information in-36 bit words. A copy of this file is obtained on magnetic tape and the single gamma spectra are then available by standard FORTRAN V reading sentences. (Author) 3 refs

  5. Pulse Summing in the gamma-Ray Spectra

    Gromov, K Ya; Samatov, Zh K; Chumin, V G

    2004-01-01

    It was shown that the peaks formed at the summing of the cascade gamma-rays pulses can be used for the determination of gamma-ray source activity and gamma-ray registration efficency. Possible sources of the determined quantities errors have been investigated. Such a method can be useful at the nuclear reaction cross section measurements, at background analysis in looking for rare decays and so on.

  6. The continuous detection of gamma (X-ray) spectra registered during atmospheric precipitations

    Monitoring of a gamma radiation in a ground atmosphere layer has revealed systematic increases during precipitations (rains, snowfalls). We have designed the instrument for the continuous detecting of differential spectra of a gamma radiation on the basis of spectrometers with sizes of scintillation crystals (Ø62×20 mm) and (Ø150× 100 mm). Registration of spectra of a gamma radiation is made with high resolution by means of the 4096-channel pulse-height analyzer over the energy range from 200 keV up to 4 MeV. Responses of crystals (effectiveness of detecting) to entering radiation have been calculated with the help of GEANT4 package. Instruments posed on the continuous registration of differential spectra of a gamma-ray background. In the present paper the preliminary results of observations carried out by the new instrument are presented. Measuring of spectra during increases of the gamma (X-rays) happening during precipitations, has shown absence in the spectra the characteristic lines of any radio nuclides in all the effective range. Spectra of a X-ray radiation over the range 20-400 keV, obtained earlier on the basis of crystal Ø63×20 mm, are well compounded with the data obtained with the crystal Ø150×100 mm and simulations by GEANT4 package. Joining of two detectors gives a possibility to study spectra of a gamma (X – ray) background and their variations from 20 keV up to 4 MeV.

  7. Time-Integrated Gamma-Ray Burst Synchrotron Spectra from Blast Wave/Cloud Interactions

    Chiang, James

    1998-01-01

    We show that the spectral shape of the low energy tails found for the time-integrated spectra of gamma-ray bursts, even in the absence of strong synchrotron cooling, can be significantly softer than the $\

  8. Individual power density spectra of Swift gamma-ray bursts

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  9. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  10. Conversion of Airborne Gamma ray Spectra to Ground Level Air Kerma Rates

    Bargholz, Kim; Korsbech, Uffe C C

    A new method for relating airborne gamma-ray spectra to dose rates and kerma rates at ground level is presented. Dependent on flying altitude 50 m to 125 m the method gives correct results for gamma energies above 250 keV respective 350 keV. At lower energies the method underestimate the dose or ...

  11. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    2002-01-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the time-consumi

  12. Neutron and gamma dose and spectra measurements on the Little Boy replica

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 300 close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables

  13. gamma ray spectra measurement in WWER-1000 reactor pressure vessel simulator

    The gamma spectra are to be measured in order to evaluate the possible contribution of the gamma rays to the radiation damage of the reactor pressure vessel (RPV) steel. The results should be used for benchmarking of the calculation of the gamma-ray RPV exposure. The measurements are carried out in the WWER-1000 simulator assembled in the LR-O experimental reactor in NRI Rez. The gamma-ray spectra are measured with the stilbene scintilator spectrometer in the energy range 0.8-10 MeV. The same spectrometer (with smaller stilbene detector) could be used for the measurement of the neutron spectra measurement in the energy range 0.8-10 MeV (Authors)

  14. Portable microcomputer unit for the analysis of plutonium gamma-ray spectra

    A portable microcomputer has been developed for the IAEA to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32K words of memory, a 20-character display for user prompting, and a 20-character thermal printer for hardcopy output. Only the positions of the 148-keV Pu-241 and 208-keV U-237 peaks are required for spectral analysis. The unit was tested against gamma-ray spectra taken of NBS plutonium standards and IAEA spectra. Results obtained are presented

  15. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  16. Automatic processing of gamma ray spectra employing classical and modified Fourier transform approach

    This report describes methods for automatic processing of gamma ray spectra acquired with HPGe detectors. The processing incorporated both classical and signal processing approach. The classical method was used for smoothing, detecting significant peaks, finding peak envelope limits and a proposed method of finding peak limits, peak significance index, full width at half maximum, detecting doublets for further analysis. To facilitate application of signal processing to nuclear spectra, Madan et al. gave a new classification of signals and identified nuclear spectra as Type II signals, mathematically formalized modified Fourier transform and pioneered its application to process doublet envelopes acquired with modern spectrometers. It was extended to facilitate routine analysis of the spectra. A facility for energy and efficiency calibration was also included. The results obtained by analyzing observed gamma-ray spectra using the above approach compared favourably with those obtained with SAMPO and also those derived from table of radioisotopes. (author). 15 refs., 3 figs., 3 tabs

  17. Analysis of Phobos mission gamma ray spectra from Mars

    Trombka, J. I.; Evans, L. G.; Starr, R.; Floyd, S. R.; Squyres, S. W.; Whelan, J. T.; Bamford, G. J.; Coldwell, R. L.; Rester, A. C.; Surkov, Iu. A.

    1992-01-01

    The determination of the elemental composition of the surface of a planetary body can be achieved, in many cases, by remote-sensing gamma ray spectroscopy. A gamma ray spectrometer was carried on the Soviet spacecraft Phobos-2, and obtained data while in an elliptical orbit around Mars. Results of two independent approaches to data analysis, one by the Soviet group and one by an American group are reported. The results for five elements are given for two different orbits of Mars. Major geologic units that contribute to the signal for each orbit have been identified. The results from the two techniques are in general agreement and there appear to be no geologically significant differences between the results for each orbit.

  18. Application of Principal Component Analysis in Prompt Gamma Spectra for Material Sorting

    Im, Hee Jung; Lee, Yun Hee; Song, Byoung Chul; Park, Yong Joon; Kim, Won Ho

    2006-11-15

    For the detection of illicit materials in a very short time by comparing unknown samples' gamma spectra to pre-programmed material signatures, we at first, selected a method to reduce the noise of the obtained gamma spectra. After a noise reduction, a pattern recognition technique was applied to discriminate the illicit materials from the innocuous materials in the noise reduced data. Principal component analysis was applied for a noise reduction and pattern recognition in prompt gamma spectra. A computer program for the detection of illicit materials based on PCA method was developed in our lab and can be applied to the PGNAA system for the baggage checking at all ports of entry at a very short time.

  19. The gamma-ray spectra of halocarbons in positron–electron annihilation process

    The gamma-ray spectra of the positron annihilation process in methane CH4 and its fully substituent halocarbons CF4, CCl4, and CBr4 have been studied. The theoretical predictions of the inner valence electrons agree well with the experimental measurements for all these molecules. That the outermost s electrons in carbon or halogen atoms dominate the gamma-ray spectra has been confirmed for the first time. The positrophilic site has also been found in these molecules and understanding of annihilation processes in molecules has been enhanced. - Highlights: • The inner valence electrons in molecules dominate the Doppler shift. • The outermost atomic s electrons in molecules show dominance in the gamma-ray spectra. • The positron can penetrate deeper inside molecules in positrophilic sites to annihilate with inner valence electrons

  20. The gamma-ray spectra of halocarbons in positron–electron annihilation process

    Ma, X.G., E-mail: hsiaoguangma@188.com; Zhu, Y.H.; Liu, Y.

    2015-10-09

    The gamma-ray spectra of the positron annihilation process in methane CH{sub 4} and its fully substituent halocarbons CF{sub 4}, CCl{sub 4}, and CBr{sub 4} have been studied. The theoretical predictions of the inner valence electrons agree well with the experimental measurements for all these molecules. That the outermost s electrons in carbon or halogen atoms dominate the gamma-ray spectra has been confirmed for the first time. The positrophilic site has also been found in these molecules and understanding of annihilation processes in molecules has been enhanced. - Highlights: • The inner valence electrons in molecules dominate the Doppler shift. • The outermost atomic s electrons in molecules show dominance in the gamma-ray spectra. • The positron can penetrate deeper inside molecules in positrophilic sites to annihilate with inner valence electrons.

  1. Application of Principal Component Analysis in Prompt Gamma Spectra for Material Sorting

    For the detection of illicit materials in a very short time by comparing unknown samples' gamma spectra to pre-programmed material signatures, we at first, selected a method to reduce the noise of the obtained gamma spectra. After a noise reduction, a pattern recognition technique was applied to discriminate the illicit materials from the innocuous materials in the noise reduced data. Principal component analysis was applied for a noise reduction and pattern recognition in prompt gamma spectra. A computer program for the detection of illicit materials based on PCA method was developed in our lab and can be applied to the PGNAA system for the baggage checking at all ports of entry at a very short time

  2. Delin and Delog codes for graphic representation of gamma ray spectra

    Two FORTRAN IV Codes have been developed for graphic representation of the gamma-ray spectra obtained with GeLi detectors and multichannel analyzers. The graphic plotting is carried out with the H.P. Graphic Plotter Mod HP-7221 A, using the graphic package software GRAPHICS-1000 from Hewlett-Packard. The codes have a great versatility and the representation of gamma spectra can be done in a lineal, semilog, or log-log scale, as desired. The gamma ray spectra data are fed into the computer through magnetic tape or perforated paper tape. The different output options and complementary data are given in a conversational way through a terminal with TV display. Among the options that can be selected by the user are the following: 1) smoothing the spectra; 2) drawing the spectra point by point or continuous; 3) output drawing in 1, 2 or 4 sheets with automatic division of the energy scale; 4) overlapping of selected spectra regions in γ-scale ampliation with automatic printout of the region limits and ampliation factor; 5) printing spectra data and identifications of selected photopeaks. The codes can be employed with any computer using printing devices, HP-GRAPHICS 1000 software compatible, but are easily modified for another printing software since their modular structure with FORTRAN IV written subroutines. (author)

  3. DELIN and DELOG codes for graphic representation of gamma ray spectra

    Two Fortran IV Codes has been developed for graphic representation of the gamma-ray spectra obtained with Ge Li detectors and multichannel analyzers. The grafic plotting es carried out with the H.P. Graphic Plotter Mod HP-7221 A, using the graphic package software GRAPHICS-1000 from Hewlett-Packard. The codes have a great versatility and the representation of gamma spectra can ba done in a lineal, semi log, or log-log scale, as desired. The gamma ray spectra data are feed into the computer through magnetic tape or perfored paper tape. The different out-put options and complementary data are given in a conversational way through a terminal with T.V. displays. Among the options that can be selected by the user are the following: - smoothing the spectra - drawing the spectra point by point or continuous - out-put drawing an 1, 2, or 4 sheet with automatic division of the energy scale. - overlapping of selected spectra regions in Y scale ampliation with automatic print-out of the region limits and ampliation factor. - Printing spectra data and identifications of selected photo peaks. The codes can be employed with any computer using printing devices, HP-Graphics 1000 software compatible, but are easily modified for another printing software since their modular structure with Fortran IV written

  4. Dose Rate Determination from Airborne Gamma-ray Spectra

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...... distribution. When manmade radioactivity is present, this is no longer the case. Another method based on giving the counts of different channels a different weighting has been examined. The new method is more robust against varying energy distribution, and for energies above 200 keV it gives excellent results....

  5. Experimental Measurements and Computer Simulation of Fission Product Gamma-Ray Spectra

    Sanderson, D.C.W; Cresswell, A.; Allyson, J.D.; McConville, P.

    1997-01-01

    Airborne gamma ray spectrometry using high volume scintillation detectors, optionally in conjunction with Ge detectors, has potential for making rapid environmental measurements in response to nuclear accidents. An experimental investigation and computer simulation have been used to characterise the response of such detectors to short lived fission products. Small samples of 235U were irradiated in a research reactor for short periods, to generate fission product sources. Gamma ray spectra w...

  6. Review of Past Nuclear Accidents: Source Terms and Recorded Gamma-Ray Spectra

    Sanderson, D.C.W.; Cresswell, A.; Allyson, J.D.; McConville, P.

    1997-01-01

    Airborne gamma ray spectrometry using high volume scintillation detectors, optionally in conjunction with Ge detectors, has potential for making rapid environmental measurements in response to nuclear accidents. A literature search on past nuclear accidents has been conducted to define the source terms which have been experienced so far. Selected gamma ray spectra recorded after past accidents have also been collated to examine the complexity of observed behaviour.

  7. A distribution-free test for anomalous gamma-ray spectra

    Gamma-ray spectra are increasingly acquired in monitoring cross-border traffic, or in an area search for lost or orphan special nuclear material (SNM). The signal in such data is generally weak, resulting in poorly resolved spectra, thereby making it hard to detect the presence of SNM. We develop a new test for detecting anomalous spectra by characterizing the complete shape change in a spectrum from background radiation; the proposed method may serve as a tripwire for routine screening for SNM. We show that, with increasing detection time, the limiting distribution of the test is given by some functional of the Brownian bridge. The efficacy of the proposed method is illustrated by simulations. - Highlights: • We develop a new non-parametric test for detecting anomalous gamma-ray spectra. • The proposed test has good empirical power for detecting weak signals. • It can serve as an effective tripwire for invoking more thorough scrutiny of the source

  8. Application of the 'GammaGen' Computer Code for NORM Synthetic Spectra Analysis

    'GammaGen' (GG) is a computer software developed to simulate gamma ray spectra obtained from NaI(Tl) or Ge detectors. The detector efficiency, resolution and peak to Compton ratios are used to generate synthetic pulse height spectra for specific detector and geometrical configurations. GG was used in the past for several applications, as to predict the detector response to different radio-nuclides mixtures, to predict the pulse height spectra near a nuclear spent fuel site as a function of the shielding thickness and cooling time and for homeland security purposes. An updated version of the GG program was developed, and the application presented in the present work consists of building a library and simulating the detection and analysis of synthetic spectra to check the performance of a commercial spectrometry system based on a NaI(Tl) detector intended for NORM analysis, which was developed by Amplituda/Russia

  9. ACCURACY OF MEASUREMENT OF NATURAL GAMMA RAY SPECTRA BY HD—8004 NaI(T1) GAMMA SPECTROMETER

    朱国钦; 郑仁淑

    1995-01-01

    The measurement principle and analysis method of natural gammaray spectra using NaI(T1) scintillation spectrometer are briefly described first,then block diagrams of the HD-8004 NaI(T1) gamma-ray spectrometer,Finally,sample measurements are listed and discussed.The results are quite promising.Based on the analysis of these measurements,measures to improve the accuracy of spectrum measurement are proposed.It is well hoped that these measures can contribute to the development and application of gamma-ray spectrum measurement.

  10. Effect of gamma irradiation on infrared spectra of rat hemoglobin

    The changes in i.r. spectra of hemoglobin of rats exposed to γ radiation at dose levels of 2, 4 and 8 Gy were studied. The displacement of amides (amide 1 and amide 11) bands towards lower hemoglobin fluctuation frequencies was noticed. The shifts were noticed at bands 1655 cm-1 and 1535 cm-1 respectively. Data were taken at different times periods from 0 to 21 days after exposure to radiation. The optical density of the exposed cases decreased in comparison with the control group. (Author)

  11. VISPECT program evaluation in gamma-ray spectra analysis of neutron-activated geological samples

    A comparative evaluation of gamma-ray analysis software VISPECT in relation to two commercial gamma-ray analysis software packages OMNIGAM (EG and GORTEC) and SAMPO 90 (CANBERRA) was performed. For this evaluation, artificial gamma-ray spectra were created, presenting peaks of different intensities and located at different regions of the spectrum. Multiplet peaks with equal and different intensities, but with different channel separations were also created. Neutron activation analysis of the reference material GS-N (IWG-GIT) was also performed, aiming the evaluation of the program VISPECT in the analysis of a geological sample. (author)

  12. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation.

    Polf, J C; Peterson, S; McCleskey, M; Roeder, B T; Spiridon, A; Beddar, S; Trache, L

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy. PMID:19864704

  13. Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra

    Reinhart, Alex; Biegalski, Steven

    2014-01-01

    For security, environmental, and regulatory purposes it is useful to continuously monitor wide areas for unexpected changes in radioactivity. We report on a temporal anomaly detection algorithm which uses mobile detectors to build a spatial map of background spectra, allowing sensitive detection of any anomalies through many days or months of monitoring. We adapt previously-developed anomaly detection methods, which compare spectral shape rather than count rate, to function with limited background data, allowing sensitive detection of small changes in spectral shape from day to day. To demonstrate this technique we collected daily observations over the period of six weeks on a 0.33 square mile research campus and performed source injection simulations.

  14. Strong MgII systems in quasar and gamma-ray burst spectra

    Porciani, Cristiano; Viel, Matteo; Lilly, Simon J.

    2007-01-01

    The incidence of strong MgII systems in gamma-ray burst (GRB) spectra is a few times higher than in quasar (QSO) spectra. We investigate several possible explanations for this effect, including: dust obscuration bias, clustering of the absorbers, different beam sizes of the sources, multiband magnification bias of GRBs, association of the absorbers with the GRB event or the circumburst environment. We find that: i) the incidence rate of MgII systems in QSO spectra could be underestimated by a...

  15. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    Ma, Xiaoguang; Zhu, Yinghao; Liu, Yang

    2016-05-01

    The gamma-ray spectra of pentane (C5H12) and its two isomers, i.e., 2-Methylbutane (CH3C(CH3)HC2H5) and 2,2-Dimethylpropane (C(CH3)4) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron-electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron-electron annihilation process has also been suggested in the present work.

  16. Gamma ray spectra recorded from the fallout collected in May 1986

    An analysis of the gamma ray spectra recorded from the fallout collective in Bucharest and Brasov in May, 1986 was carried out. Relative activities of the assigned radionuclides were computed and the duration of the 235U fuel irradiation has been deduced. (author)

  17. X-ray spectra and soft gamma spectra in 173Lu decay

    X-ray spectra of K- and L-lines and spectra of soft (up to 100 keV) γ quanta accompanying 173Lu decay are measured by three semiconducting detectors. γ quanta of 62.20 keV energy are detected. The intensity of X-rays of the K series relative to the γ lines of 78.65 keV and 100.71 keV is determined. The intensities of electron capture on 173Yb energy lines calculated using γ transition absolute probabilities are given. For the first time X-ray intensities of the L series during 173 Lu decay are determined. The measured intensities agree with those calculated according to the 173Lu decay scheme presented in the Jelepov's revieW

  18. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: (1) a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, (2) a data-analysis application to analyze plutonium gamma-ray spectra for plutonium isotopic ratios and weight percents of total plutonium, (3) and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 2 describes the operations of these applications and the installation and maintenance of the software

  19. Irregularity in gamma ray source spectra as a signature of axionlike particles

    Wouters, Denis

    2012-01-01

    Oscillations from high energy photons into light pseudoscalar particles in an external magnetic field is expected to happen in some extensions of the Standard Model. It is usually assumed that those axionlike particles (ALPs) could produce a drop in the energy spectra of gamma ray sources and possibly decrease the opacity of the Universe for TeV gamma rays. We show here that these assumptions are in fact based on an average behavior that cannot happen in real observations of single sources. We propose a new method to search for photon-ALP oscillations, taking advantage of the fact that a single observation would deviate from the average expectation. Our method is based on the search for irregularities in the energy spectra of gamma ray sources. We predict features that are unlikely to be produced by known astrophysical processes and a new signature of ALPs that is easily falsifiable.

  20. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications

  1. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    Prettyman, T. H. (Thomas H.); Feldman, W. C. (William C.); Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.); Gasnault, O. M. (Olivier M.); Maurice, S. (Sylvestre); Moore, K. R. (Kurt R.); Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  2. Analysis code for gamma spectra detected with Ge detectors

    The Atomic Energy Center of Miyagi Prefecture introduced a Ge detector γ-ray spectrometer system for the purpose of examining environmental radiation around Onagawa Nuclear Power Station in March, 1981, and also developed an automatic spectrum analyzing code ARACC (automatic radioactivity calculation code) for qualitatively and quantitatively determining nuclides from the data obtained. After that, the data processing method and output format were improved. The program includes 17 sub-programs under the main program ARACC, in addition, there are the programs for preparing tables, calibrating the energy channels and calculating the efficiency. The Ge system of the Center can obtain normal, anti-compton and coincident spectrum data in a single measurement, but the ARACC is provided for analyzing only the normal spectra among these. In this report, not only the start of program, parameter input, printing output and magnetic tape output, but also the conversion of spectrum data format, peak searching, peak area determination, the treatment of disturbing peaks and the limit of detection are described as the methods of data analysis. The limit of detection is defined as such quantity that the significance level of concluding essentially existing radioactivity as non-existent as a result of measurement is lower than 5 %. (Wakatsuki, Y.)

  3. Individual power density spectra of Swift gamma-ray bursts

    Guidorzi, C; Amati, L

    2016-01-01

    Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs...

  4. PEPIN, Methodology for Computing Concentrations, Activities, Gamma-Ray Spectra, and Residual Heat from Fission Products

    1 - Description of program or function: The concentrations, activities, gamma-ray spectra and residual heat from fission products can be calculated as a function of time for instantaneous fission or for one or more irradiation steps. 2 - Methods: Using the basic data in the libraries, the PEPIN code solves the differential equations satisfied by the fission product concentrations. Data Libraries: Independent Yields Library: 8 independent yields for 235U, 238U, 239U, 232U, 233U. Chain library: Precursor chain file for 635 nuclides. Gamma-Ray Energies Library: Average beta and gamma-ray energies in increasing order. 3 - Restrictions on the complexity of the problem: The number of nuclides must not exceed 650. The number of Gamma-Rays must not exceed 8500. The number of decay times must not exceed 59. The number of irradiation steps must not exceed 40

  5. HYPERMET, Ge(Li) Detector Multichannel Analyser Gamma Spectra Evaluation

    1 - Description of problem or function: HYPERMET is used to perform an automatic analysis of a multichannel gamma-ray pulse-height spectrum taken with a germanium detector. The spectrum is searched for peaks within a specified region. When found, a sub-region is defined about each peak or group of peaks and a non-linear least-squares fit is performed to a parameterized peak shape plus background using an iterative variable-metric technique to search for the best values of the parameters. When all regions have been searched a final table is printed of the position, width, area, and count rate (and the standard deviation of each) for all peaks found in all regions of the spectrum. Any regions where chi-square exceeds an upper limit, standard deviations will be flagged in the final table by a minus sign in front of the region number. A number of options are available including an energy calibration, correction for radioactive decay, and a CALCOMP plot of each fit. 2 - Method of solution: First a peak search is made to determine the locations of any peaks within the specified region. The search is completely automatic with a high probability of finding all true peaks while discriminating against statistical fluctuations, Compton edges, and other spurious or non-peak features of the spectrum. When a peak is found, a search is made for any additional close-lying peaks which could distort the fit if not included. A fitting sub-region is then defined about the peak or peaks. Within this sub- region initial estimates are made for the parameters such as back- ground level, slope and curvature, peak height above background, peak tailing parameters, etc. to use as starting values for the fit. A semi-empirical parameterized peak shape function has been developed to be both complete enough and flexible enough to give a satisfactory fit to the variety of peak shapes, sometimes overlapping. An iterative non-linear least squares fit is then performed for optimum values of the peak

  6. Anomaly Detection in Gamma-Ray Vehicle Spectra with Principal Components Analysis and Mahalanobis Distances

    The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates and probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources

  7. Extraction of actinium with di-(2-ethylhexyl)phosphoric acid from hydrochloric and nitric acid solutions

    The extraction of actinium with HDEHP from Cl- and NO3- systems has been investigated. It was found that extraction of actinium from HCl solutions is much better than from HNO3 solutions. Stability constants of actinium complexes Ac(X-)+2 with Cl- and NO3- ligands were determined. Our results show that the actinium formed less stable complexes with Cl- than with NO3- ligands. 5 refs., 3 figs., 1 tab. (author)

  8. Automatic storing of single gamma spectra on magnetic tape. Programs LONGO, DIRE; Automatizacion del almacenamiento en cinta magnetica de espectros gamma directos. Programas LONGO, DIRE

    Los Arcos Merino, J. M.

    1978-07-01

    The program LONGO provides the block size and the block number in a binary file on magnetic tape. It has been applied to analyse the structure of the nine-track magnetic tapes storing single or coincidence gamma spectra files, recorded in octet form by a MULTI-8 minicomputer in the Nuclear Spectrometry Laboratory of J.E.N. Then the program DIRE has been written to transform the single gamma spectra into a new FASTRAND disk file, storing the information in-36 bit words. A copy of this file is obtained on magnetic tape and the single gamma spectra are then available by standard FORTRAN V reading sentences. (Author) 3 refs.

  9. Catalogue of response spectra for unfolding in situ gamma-ray pulse-height distributions

    To unfold in situ gamma-ray pulse-height distributions by means of a response matrix technique, the matrix must be in keeping with the measurement geometry, detector size, and energy range to be covered by the measurements. A methodology has been described for determination of standard gamma-ray spectra needed in deriving response matrices and a spectrum catalogue compiled containing graphs and data for the 0-3 MeV (4 x 4 in. NaI(Tl)) and 0-8 MeV (1.5 x 1.5 in. NaI(Tl)) ranges. (author)

  10. Experiences With Area Specific Spectrum Stripping of Nai(Tl) Gamma Spectra

    Aage, Helle Karina; Korsbech, Uffe C C; Bargholz, Kim;

    2006-01-01

    laboratory or field measurements with known sources of natural radioactivity. Stripping parameters may, however, often be calculated from the actual survey data or from data from a similar area. Both post processing and real time processing is possible. The technique is useful for gamma source search, for......Abstract Processing of airborne and carborne gamma-ray spectra (AGS and CGS) often includes the stripping (elimination) of the signals from natural radioactivity. Hereby the net result becomes the signals from manmade radioactivity or other radiation anomalies. The parameters needed for spectrum...

  11. Deconvolution of gamma-ray spectra obtained with NAI(Tl) detector in a water tank.

    Rahman, M Sohelur; Cho, Gyuseong; Kang, Bo-Sun

    2009-07-01

    Maximum-likelihood fitting by the expectation maximization deconvolution method is presented to analyse gamma-ray spectra recorded using an NaI(Tl) detector for a water monitoring system. The applicability of the method was tested by deconvolving measured spectra taken using an industry standard 3'' x 3'' cylindrical NaI(Tl) detector in a model water tank with several calibration sources. The results show significant removal of the Compton continuum counts and efficient transfer of the counts into the corresponding photo-peaks. The peak-to-total count ratio and the number of counts in the photo-peaks in the deconvolved spectra increased approximately 4.67 and 5.29 times, respectively, compared with those of measured spectra taken using an NaI(Tl) scintillation detector in the case of (137)Cs. PMID:19502359

  12. Measurement of Branching Fractions and Mass Spectra of B to K pi pi gamma

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-07-12

    The authors present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B {yields} K{pi}{pi}{gamma} in the range m{sub K{pi}{pi}} < 1.8 GeV/c{sup 2}. They reconstruct four final states: K{sup +}{pi}{sup -}{pi}{sup +}{gamma}, K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}, K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}{gamma}, and K{sub S}{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}, where K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}. Using 232 million e{sup +}e{sup -} {yields} B{bar B} events recorded by the BABAR experiment at the PEP-II asymmetric-energy storage ring, they measure the branching fractions {Beta}(B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +}{gamma}) = (2.95 {+-} 0.13(stat.) {+-} 0.20(syst)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0}{gamma}) = (4.07 {+-} 0.22(stat.) {+-} 0.31(syst.)) x 10{sup -5}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup +}{pi}{sup -}{gamma}) = (1.85 {+-} 0.21(stat.) {+-} 0.12(syst.)) x 10{sup -5}, and {Beta}(B{sup +} {yields} K{sup 0}{pi}{sup +}{pi}{sup 0}{gamma}) = (4.56 {+-} 0.42(stat.) {+-} 0.31(syst.)) x 10{sup -5}.

  13. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method

  14. The rapid reduction of gamma-ray spectra with a desk-top calculator

    A programme has been written for a desk-top programmable calculator, so that gamma-ray spectra can be processed immediately after the counting of active samples. The programme has some unusual features, among them automatic boundary selection and rejection of insignificant peaks. Operation is quick and simple, and the results agree well with those obtained from an I.B.M. computer, Model 370/158

  15. Description of computer code PRINS, Program for Interpreting Gamma Spectra, developed at ENEA

    The computer code PRINS, PRogram for INterpreting gamma Spectra, has been developed in collaboration with CENG/SECC (Centre Etude Nucleaire Grenoble / Service Etude Comportement du Combustible). Later it has been updated and improved at ENEA. Properties of the PRINS code are: I) A powerful algorithm to locate the peaks; 2) An accurate evaluation of the errors; 3) Possibility of an automatic channels-energy calibration

  16. Study of gamma ray multiplicity spectra for radiative capture of neutrons in 113,115In

    Neutron radiative capture measurements were performed for the enriched isotopes 113In and 115In on the neutron spectrometer at the Neutron Physics Laboratory of the Joint Institute for Nuclear Research employing the gamma ray multiplicity technique and using a ''Romashka'' multi-sectional 4p detector on the 500 m time base of the IBR-30 booster. The gamma multiplicity spectra of resolved resonances were obtained for the 20-500 eV energy range. The mean gamma ray multiplicity was determined for each resonance. The dependence of the ratio S of the low-energy coincidence multiplicity spectrum to the high-energy coincidence multiplicity spectrum on resonance energy exhibits a non-statistical structure. This structure was found to correlate with the local neutron strength function. (author). 10 refs, 6 figs, 2 tabs

  17. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  18. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector's self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  19. Simulations to neutron-induced gamma ray spectra of light nuclides in TNT

    There are several factors affecting the detection of explosive or landmine using neutron-induced reactions, such as the neutron source, detector, object and surroundings. In this paper,using a system of NaI(Tl) or BGO detectors and an Am-Be neutron source, prompt gamma ray spectra from nuclides in TNT of landmine in soil are simulated by MCNP. The counts of full energy characteristic peaks of gamma rays from hydrogen, carbon, nitrogen and oxygen in TNT are related to the explosive mass. Effects of the soil moisture on the gamma-ray spectrum are studied. The ratio of full energy peak counts from nitrogen to full energy peak counts from carbon is defined. A method to use the ratio to identify explosives under water environment is proposed. (authors)

  20. An electronic interface for acquisition of 12 delayed gamma-gammacoincidence spectra

    An electronic interface has been constructed to be used m conjunctionwith a Time differential Perturbed gamma-gamma Angular Correlation (TDPAC)spectrometer with four BaF2 detectors. The routing interface is speciallydesigned to work with the Ortec model ADCAM 920-16 multichannel analyzer(MCA) having 16 multiplexed inputs, permitting the simultaneous acquisitionof 12 delayed gamma-gamma coincidence spectra. This innovation provides aconsiderable reduction in the experimental data acquisition time and as aconsequence permits an improvement in the precision of the final results ofthe hyperfine parameters deduced from the TDPAC measurements. The interfaceconsists of two distinct electronic circuits. A novel high performance analogdemultiplexer circuit is used to address the linear pulses from the time toamplitude converter (TAC) to the corresponding MCA inputs, according to thepair of detectors responsible for the given gamma-gamma coincidence.Validation of the gamma-gamma coincidence and control of the analogdemultiplexer are realized by a digital circuit, consisting basically ofmonostable multivibrators and decoders of High-Speed CMOS Logic (HCT). Theperformance of the routing interface was evaluated through several testmeasurements which included the time resolution and linearity of the system,the quadrupolar interaction in 181Ta(Hf), 181Ta(HfO2), 111Cd(Cd)and 111Cd(Pd) samples, and the hyperfine magnetic field in 181'Ta(Ni),11'1Cd(Ni) and 140Ce(Gd) samples. The results of the hyperfineinteraction measurements are discussed and compared with previous results andserve to demonstrate the correct and efficient performance of the constructedinterface. (author)

  1. Which Epeak? The Characteristic Energy of Gamma-ray Burst Spectra

    Preece, Robert; Goldstein, Adam; Bhat, Narayana; Stanbro, Matthew; Hakkila, Jon; Blalock, Dylan

    2016-04-01

    A characteristic energy of individual gamma-ray burst (GRB) spectra can in most cases be determined from the peak energy of the energy density spectra (ν {{ F }}ν ), called “{E}{{peak}}.” Distributions of {E}{{peak}} have been compiled for time-resolved spectra from bright GRBs, as well as time-averaged spectra and peak flux spectra for nearly every burst observed by the Compton Gamma Ray Observatory Burst And Transient Source Experiment and the Fermi Gamma-ray Burst Monitor (GBM). Even when determined by an instrument with a broad energy band, such as GBM (8 keV to 40 MeV), the distributions themselves peak at around 240 keV in the observer’s frame, with a spread of roughly a decade in energy. {E}{{peak}} can have considerable evolution (sometimes greater than one decade) within any given burst, as amply demonstrated by single pulses in GRB 110721A and GRB 130427A. Meanwhile, several luminosity or energy relations have been proposed to correlate with either the time-integrated or peak flux {E}{{peak}}. Thus, when discussing correlations with {E}{{peak}}, the question arises, “Which {E}{{peak}}?” A single burst may be characterized by any of a number of values for {E}{{peak}} that are associated with it. Using a single-pulse simulation model with spectral evolution as a proxy for the type of spectral evolution observed in many bursts, we investigate how the time-averaged {E}{{peak}} emerges from the spectral evolution within a single pulse, how this average naturally correlates with the peak flux derived {E}{{peak}} in a burst, and how the distribution in {E}{{peak}} values from many bursts derives its surprisingly narrow width.

  2. To what extent do the f'-spectra in gamma-families reflect the properties of elementary act

    Cosmic ray produces in the atmosphere several gamma quanta, which are detected in gamma sensitive emulsion chambers as a one ''family''. Ratio of energy distribution of gamma quanta to the total gamma energy of family is one of the main parameters describing the cosmic shower. The problem how to reconstruct primary interactions in shower from this fractional energy spectra is considered. Three models of the beginning of shower: broken scaling, heavy scaling and scaling are used to calculate fractional energy spectra for different primary interaction hights. (S.B.)

  3. One photopeaks' analysis of gamma spectra for the minimum square method through one data processing system

    The essence of the work is a computer program by which the gamma spectrum of a radioisotope mixture can be analysed in accordance with a library of spectra for the elements assumed to make up the mixture. The program forms a linear combination of standards by the method of least linear squares, analyses the spectrum obtained with respect to the original, and applies to the results the criteria of mean value, variance, standard deviation, γ2 and its quotient ratio, and the correlation coefficient. The program, written in Fortran, has no limitations as regards the number of channels for each spectrum or the number of spectra, provided all spectra are compatible (same number of channels). As the experimental part of the work a numerical example is given and analysed in critical form to evaluate the suitability of the computer program. (author)

  4. The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis

    The subject is the computerized analysis of the gamma-ray spectra in INAA. This analysis can be separated in three parts: The conversion of the spectra to information on γ-ray energies and their relative intensities (spectrum reduction), the determination of the relation between the intensity of a γ-ray and the amount of the corresponding element present in the sample (standardization) and the attribution of the γ-ray energies to the elements, including the subsequent computation of the amounts of the elements (interpretation). A γ-ray spectrum can be considered to be the linear sum of the γ-ray spectra of the individual radionuclides present in the sample. Knowing the relative activities of the different radionuclides that may be produced by activation of a single element, a γ-ray spectrum in INAA can also be considered to be the linear sum of the spectra of the elements. This principle has hitherto not been used in INAA to analyze the spectra by linear least squares methods, using all γ-ray energies observed in the spectrum. The implementation of this 'holistic' approach required that attention be paid to both spectrum reduction, standardization and interpretation. The thesis describes the methods developed for the holistic analysis of γ-ray spectra in INAA, and present results of experimental comparisons between the holistic and other approaches. (orig./HP)

  5. Detection of Anomalous Gamma-Ray Spectra for On-Site Inspection

    This work aims to solve some of the technical and logistical challenges inherent in performing On Site Inspection activities under the authority of the Comprehensive Nuclear-Test-Ban Treaty. Inspectors require equipment that can reliably identify the radionuclide signatures of nuclear test explosions amid a background of environmental contamination. Detection of these radiation anomalies by mobile search teams in the air or on the ground can narrow the search field and target specific areas for more detailed inspection or sampling. The need to protect confidential information of the inspected State Party, especially regarding past nuclear testing activities, suggests that full access to measured gamma-ray spectra should be limited. Spectral blinding techniques - in which only a fraction of the information derived from the spectra is displayed and stored - have the potential to meet the needs of both the OSI team and the State Party. In this paper, we describe one such algorithm that we have developed for identifying anomalous spectra from handheld, mobile, or aerial sensors. The algorithm avoids potential sensitivities by reducing the gamma-ray spectrum into a single number that is displayed and stored. A high value indicates that the spectrum is anomalous. The proposed technique does not rely on identifying specific radionuclides, operates well in the presence of high background variability, and can be configured to ignore specific spectral components. In previous work, the algorithm has proven very effective in classifying gamma-ray spectra as anomalous or not, even with poor statistical information. We performed a limited simulation of an airborne search scenario to demonstrate the potential algorithm for OSI missions. The technique successfully detected an injected source of interest whose count rate was an order of magnitude below background levels. We also configured the algorithm to ignore 137Cs as irrelevant to the mission. The resulting alarm metrics were

  6. Test spectra experimental construction for evaluating gamma-spectrometry computer codes for the 235U determination

    Karfopoulos Konstantinos L.

    2014-01-01

    Full Text Available The determination of 235U in environmental samples from its 185.72 keV photons may require the deconvolution of the multiplet photopeak at ~186 keV, due to the co-existence of the 186.25 keV photons of 226Ra in the spectrum. Successful deconvolution depends on many parameters, such as the detector characteristics, the activity concentration of the 235U and 226Ra in the sample, the background continuum in the 186 keV energy region and the gamma-spectrometry computer code used. In this work two sets of experimental test spectra were constructed for examining the deconvolution of the multiplet photopeak performed by different codes. For the construction of the test spectra, a high-resolution low energy germanium detector was used. The first series consists of 140 spectra and simulates environmental samples containing various activity concentration levels of 235U and 226Ra. The second series consists of 280 spectra and has been derived by adding 137Cs, corresponding to various activity concentration levels, to specific first series test spectra. As the 137Cs backscatter edge is detected in the energy region of the multiplet photopeak at ~186 keV, this second series of test spectra tests the analysis of the multiplet photopeak in high background continuum conditions. The analysis of the test spectra is performed by two different g-spectrometry analysis codes: (a spectrum unix analysis code, a computer code developed in-house and (b analysis of germanium detector spectra, a program freely available from the IAEA. The results obtained by the two programs are compared in terms of photopeak detection and photopeak area determination.

  7. The sorption of polonium, actinium and protactinium onto geological materials

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  8. Monte Carlo calculations of neutron and gamma-ray energy spectra for fusion reactor shield design: comparison with experiment

    Neutron and gamma-ray energy spectra resulting from the interactions of approx. 14 MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree witin 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra are also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  9. Accuracy evaluation of nuclear reactor gamma spectra reconstruction by the directed divergence method

    An algorithm of accuracy evaluation of nuclear reactor gamma spectra reconstruction according to the data on integral detectors using the directed divergence method (DDM) is considered. The minimally available value of the distinguishing functional taken in DDM is evaluated by the statistical linearization method. The spectra reconstruction accuracy is studied by the statistical simulation method using the numerical experiment. It is shown that the increase of the number of detectors in the set does not improve the approximation of the real spectrum, but it can increase the reconstruction accuracy while using noncorrelated detectors. The increase of the measurement accuracy considerably improves the solution and reduces its dispersion. To keep high confidence of the results it is necessary to increase the number of detectors, but under the conditions of strong correlation bonds, the requirement of high measurement accuracy does not reduce the solution dispersion. On the basis of the analysis of the results of statistical simulation according to the spectra of different forms the conclusion is made that the spectra reconstruction error while varying only the detector readings depend on the initial data accuracy. The error >3-5% included into the sensitivity matrix elements often leads to such a sharp reconstruction error increase that the problem loses it sense. During joint varying the dispersion of the matrix elements and detector readings are summed up as it was expected. It is emphasized that utilization of the statistical simulation helps to have a complete answer to the question on accuracy and resolution of measurements of the nuclear reactor gamma radiation spectra using the integral detectors

  10. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    Wei Chen; Wei-Qun Gan

    2012-01-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares,as well as the ambient medium with which these energetic particles interact.The neutron capture line (2.223 MeV),the strongest in the solar gamma-ray spectrum,forms in the deep atmosphere.The energy of these photons can be reduced via Compton scattering.With the fully relativistic GEANT4 toolkit,we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares,and applied them to the flare that occurred on 2005 January 20 (X7.1/2B),one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle.By comparing the fitting results of different models with and without Compton scattering of the neutron capture line,we find that when including the Compton scattering for the neutron capture line,the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s≤2.3).The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant,which influences the time evolution of the neutron capture line flux as well.The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  11. Gamma-ray spectra of hexane (C6H14) in positron–electron annihilation process

    Theoretical gamma-ray spectra of molecule hexane have been calculated and compared with the experimental results in both gas (Iwata et al., 1997a) and liquid (Kerr et al., 1965) phases. The present study reveals that in gas phase not all valence electrons of hexane contribute the same degree in the electron–positron annihilation of hexane. The electrons which dominate the positron–electron annihilation of molecules are called positrophilic electrons. The positrophilic electrons are predominately found to involve the electrons on the lowest occupied valence orbital (LOVO) of a free molecule in gas phase. When hexane is confined in liquid phase, however, the intermolecular interactions ultimately eliminate the free molecular orientation and selectivity for the positrophilic electrons in the gas phase. As a result, the gamma-ray spectra of hexane become an “averaged” contribution from all valence electrons, which is again in agreement with liquid phase measurement. The roles of valence electrons in annihilation process for gas and liquid phases of hexane have been recognized for the first time in the present study. - Highlights: • The role of the positrophilic electrons in annihilation process of hexane has been evidenced by excellent agreement with gas phase experiment. • The study suggested that the electrons in the inner most valence orbital—the lowest occupied valence orbital (LOVO)—dominate the positron–electron annihilation of gamma-ray spectra in molecules. • The study suggests that intermolecular interactions of liquid hexane may contribute to eliminate certain individuality of electrons in free molecules to averaged electron behaviors in liquid

  12. Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method

    With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author)

  13. 235U fission product gamma spectra: a comparison between experiment and calculation

    Recent measurements of 235U fission product gamma spectra (ORNL), after reduction to a broad group structure, were compared with results of corresponding summation calculations which were made with the UKFPDD-1 fission product data base. In order to facilitate convenient integration of the summation results, weighted sums of decaying exponentials were accurately fitted to them using an iterative least-squares method described. The comparisons between experiment and calculation reveal significant deficiencies in data for short-lived nuclides which prevent the accurate calculation of short-term ( 5 MeV are also examined briefly and possible causes for them are discussed. (author)

  14. Anomalies in low-energy Gamma-Ray Burst spectra with the Fermi Gamma-Ray Burst Monitor

    Tierney, Dave; Preece, Robert D; Fitzpatrick, Gerard; Foley, Suzanne; Guiriec, Sylvain; Bissaldi, Elisabetta; Briggs, Michael S; Burgess, J Michael; Connaughton, Valerie; Goldstein, Adam; Greiner, Jochen; Gruber, David; Kouveliotou, Chryssa; McGlynn, Sinead; Paciesas, William S; Pelassa, Veronique; von Kienlin, Andreas

    2013-01-01

    A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the \\textit{Fermi} era. We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the \\textit{Fermi} Gamma-Ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2$\\times10^{-5}$ erg / cm$^{2}$ (10 - 1000 keV). An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the ...

  15. The use of difference spectra with a filtered rolling average background in mobile gamma spectrometry measurements

    The use of difference spectra, with a filtering of a rolling average background, as a variation of the more common rainbow plots to aid in the visual identification of radiation anomalies in mobile gamma spectrometry systems is presented. This method requires minimal assumptions about the radiation environment, and is not computationally intensive. Some case studies are presented to illustrate the method. It is shown that difference spectra produced in this manner can improve signal to background, estimate shielding or mass depth using scattered spectral components, and locate point sources. This approach could be a useful addition to the methods available for locating point sources and mapping dispersed activity in real time. Further possible developments of the procedure utilising more intelligent filters and spatial averaging of the background are identified.

  16. Energy spectra of secondary particles in gamma-families and their sensitivity to the primary cosmic ray (PCR) spectrum

    Denisova, V.G.; Guseva, Z.M.; Kanevskaya, E.A.; Maximenko, V.M.; Morozov, A.E.; Puchkov, V.S. [P.N. Lebedev Physical Institute, Leninskii pr., 53, Moscow (Russian Federation); Mukhamedshin, R.A. [Institute for Nuclear Research, Prosp. 60-letiya Oktyabrya 7, Moscow (Russian Federation)

    2009-12-15

    Spectra of secondary particles in gamma-families, detected at the Pamirs level in X-ray emulsion chambers, are analyzed. This analysis showed that secondary particle spectra change their slope at the particle energy equal to the summary particle energy at which we select gamma-families. Above this bend the secondary particle slope is sensitive to the PCR spectrum slope and composition. The slopes of secondary particle spectra in the Experiment PAMIR are close to the slopes in the variants of the MC0 model, in which the fraction of primary protons is not less than 25% after the knee.

  17. Separation of Actinium 227 from the uranium minerals

    The purpose of this work was to separate Actinium 227, whose content is 18%, from the mineral carnotite found in Gomez Chihuahua mountain range in Mexico. The mineral before processing is is pre-concentrated and passed, first through anionic exchange resins, later the eluate obtained is passed through cationic resins. The resins were 20-50 MESH QOWEX and 100-200 MESH 50 X 8-20 in some cased 200-400 MESH AG 50W-X8, 1X8 in other cases. The eluates from the ionic exchange were electrodeposited on stainless steel polished disc cathode and platinum electrode as anode; under a current ODF 10mA for 2.5 to 5 hours and of 100mA for .5 of an hour. it was possible to identify the Actinium 227 by means of its descendents, TH-227 and RA-223, through alpha spectroscopy. Due to the radiochemical purity which the electro deposits were obtained the Actinium 227 was low and was not quantitatively determined. A large majority of the members of the natural radioactive series 3 were identified and even alpha energies reported in the literature with very low percentages of non-identified emissions were observed. We conclude that a more precise study is needed concerning ionic exchange and electrodeposit to obtain an Actinium 227 of radiochemical purity. (Author)

  18. Spectroscopic and computational investigation of actinium coordination chemistry.

    Ferrier, Maryline G; Batista, Enrique R; Berg, John M; Birnbaum, Eva R; Cross, Justin N; Engle, Jonathan W; La Pierre, Henry S; Kozimor, Stosh A; Lezama Pacheco, Juan S; Stein, Benjamin W; Stieber, S Chantal E; Wilson, Justin J

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, Ac(III) reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between Ac(III) and Am(III) in HCl solutions indicate Ac(III) coordinates more inner-sphere Cl(1-) ligands (3.2±1.1) than Am(III) (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique Ac(III) chemical behaviour. PMID:27531582

  19. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    Fry, C; Thoennessen, M

    2012-01-01

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  20. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    Ji, Chuncheng; Kegel, G. H. R.; Egan, J. J.; DeSimone, D. J.; Alimeti, A.; Roldan, C. F.; McKittrick, T. M.; Kim, D.-S.; Chen, X.; Tremblay, S. E.

    2005-05-01

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fission event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.

  1. 1012 - 1015 eV interaction deduced from energy spectra of gamma-ray and hadrons at airplane altitude

    The present paper deals with the latest results of the spectral measurements of high energy cosmic ray performed on an airplane with an emulsion chamber. The hadronic component together with the gamma-ray component were observed in the region of gamma energy not smaller than 30 GeV and gamma energy sum not larger than 40 TeV. It was observed that the integral spectra of hadronic showers showed less steep power than those obtained at mountain stations. On the other hand, the integral spectra of gamma-ray in the energy region from 40 GeV to 40 TeV showed steeper power than those of hadronic component. The zenith angle distributions of hadrons and gamma-ray were inspected, and it was confirmed that the observed distributions were well reproduced by the theoretical curves with the appropriate attenuation length. (Yoshimori, M.)

  2. Gamma-ray spectra of methane in the positron-electron annihilation process

    Ma, Xiaoguang

    2012-01-01

    Bound electron contribution to the Doppler-shift of gamma-ray spectra in the positron-electron annihilation process of molecular methane has been studied in gas phase. Two accurate ab initio quantum mechanical schemes, i.e. the delocalized molecular orbital (MO) and the localized natural bond orbital (NBO) schemes, are applied to study the multi-centred methane molecule. The present ab initio calculations of methane indicate that the C-H bonds are polarized with the partial negative charge of -0.36 a.u. on the carbon atom and the partial positive charge of +0.09 a.u. on each of the hydrogen atoms. The positively charged hydrogen atoms produce repulsive Coulomb potentials to a positron. Both the MO and NBO schemes further reveal that the 2a1 electrons of methane, that is, the 2a1 electron component of the C-H bonds rather than the whole C-H bonds of methane, predominates the positron-electron annihilation gamma-ray spectra of the molecule. Electrons of a molecule which are dominant the positron-electron annihi...

  3. DELIN and DELOG codes for graphic representation of gamma ray spectra; Programas DELIN y DELOG para la representacion grafica de espectros gamma

    Romero, L.; Travesi, A.

    1983-07-01

    Two Fortran IV Codes has been developed for graphic representation of the gamma-ray spectra obtained with Ge Li detectors and multichannel analyzers. The grafic plotting es carried out with the H.P. Graphic Plotter Mod HP-7221 A, using the graphic package software GRAPHICS-1000 from Hewlett-Packard. The codes have a great versatility and the representation of gamma spectra can ba done in a lineal, semi log, or log-log scale, as desired. The gamma ray spectra data are feed into the computer through magnetic tape or perfored paper tape. The different out-put options and complementary data are given in a conversational way through a terminal with T.V. displays. Among the options that can be selected by the user are the following: - smoothing the spectra - drawing the spectra point by point or continuous - out-put drawing an 1, 2, or 4 sheet with automatic division of the energy scale. - overlapping of selected spectra regions in Y scale ampliation with automatic print-out of the region limits and ampliation factor. - Printing spectra data and identifications of selected photo peaks. The codes can be employed with any computer using printing devices, HP-Graphics 1000 software compatible, but are easily modified for another printing software since their modular structure with Fortran IV written.

  4. EPR spectra induced by gamma-irradiation of some dry medical herbs

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  5. EPR spectra induced by gamma-irradiation of some dry medical herbs

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)], E-mail: ndyepr@bas.bg; Lagunov, O. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimov, K. [Institute of Cryobiology and Food technology, 1162 Sofia (Bulgaria)

    2009-04-15

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050{+-}0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show 'cellulose-like' EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050{+-}0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the 'cellulose-like' EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as 'carbohydrate-like' type. Only one intense EPR singlet with g=2.0048{+-}0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  6. EPR spectra induced by gamma-irradiation of some dry medical herbs

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show 'cellulose-like' EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the 'cellulose-like' EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as 'carbohydrate-like' type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months

  7. PEGASO: a library of gamma spectra from U and Pu samples

    Laboratory activities produce a large amount of data that are often stored in a non-organised way on electronic devices and/or on paper. Usually each campaign is a stand-alone exercise where only limited pieces of information are registered for the specific use. So a single assay could not include a complete documentation reporting all the experimental conditions and the instrumentation used. In addition, it could happen that the measurement file includes only the ID of the assayed sample and the information concerning the sample itself is stored elsewhere. A completely characterised measurement could be used for comparison exercises avoiding time consuming and dose risk repetitions. A computer-based data archive with easy access to the sample, instrumentation and experimental attributes could allow a selection of measurements belonging to different campaigns. Researchers can easily compare a wide range of data, trainers can practice on data analysis algorithms, external users could perform their evaluations choosing the appropriate data sets without exposing to dose risk. PEGASO is an electronic gamma spectra library providing a controlled web access to a wide range of measurements performed in PERLA facility. The flexible user interface allows an easy consultation. New spectra can be added on-line if all the required information is given and quality indicators are specified. The 1500 spectra already included cover a wide range of nuclear material samples and acquisition devices. They were performed in various experimental conditions under well-controlled (quality indicators) and documented (internal data sheets) conditions

  8. Strong MgII systems in quasar and gamma-ray burst spectra

    Porciani, C; Lilly, S J; Porciani, Cristiano; Viel, Matteo; Lilly, Simon J.

    2007-01-01

    The incidence of strong MgII systems in gamma-ray burst (GRB) spectra is a few times higher than in quasar (QSO) spectra. We investigate several possible explanations for this effect, including: dust obscuration bias, clustering of the absorbers, different beam sizes of the sources, multiband magnification bias of GRBs, association of the absorbers with the GRB event or the circumburst environment. We find that: i) the incidence rate of MgII systems in QSO spectra could be underestimated by a factor 1.3-2 due to dust obscuration; ii) the equivalent-width distribution of the MgII absorbers along GRBs is consistent with that observed along QSOs thus suggesting that the absorbers are more extended than the beam sizes of the sources; iii) on average, GRB afterglows showing more than one MgII system are a factor of 1.7 brighter than the others, suggesting a lensing origin of the observed discrepancy; iv) gravitational lensing (in different forms, from galaxy lensing to microlensing) can bias high the counts of MgI...

  9. The time evolution of GRB spectra by a precessing lighthouse $\\gamma$ jet

    Fargion, D

    1996-01-01

    Inverse Compton Scattering (ICS) by a relativistic electron beam jet at GeV energies (emitted by a compact object as a NS, BH,...), a NSJ, onto thermal BBR photons (from a nearby stellar companion) may originate a collinear gamma jet (GJ). Due to the binary system interaction the GJ precession would blaze suddenly toward the observer leading to a GRB event. The internal GJ cone structure is ruled by relativistic kinematics into a concentric onion-like sequence of photon rings, the softer in the external boundaries, the harder in the inner cone. The pointing and the crossing of such different GJ photon rings to the detector lead to a GRB hardness spectra evolution nearly corresponding to most observed ones. Moreover expected time integral spectra are also comparable with known GRB spectra. The total energy input of tens of thousands of such NSJ in an extended galactic halo, mainly cosmic rays electrons, should be reflected into the recent observational evidence (COMPTEL) of a diffused relic extended halo. Evid...

  10. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development. PMID:22697483

  11. GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

  12. Spectra characteristics of airborne gamma-ray spectrometer based on data fusion

    Background: Airborne gamma-ray spectrometry is made up of multiple NaI (Tl) detector, but the detectors have the different level of noise. Purpose: Aimed at reducing the affection of noise, a weighted least square fusion estimation algorithm is presented to extract the Spectra Characteristics. Methods: The method doesn't need any prior knowledge on the detector, but carries on the variance estimated on-line these data and timely adjust weights of various fusion sensors in order to make the mean-square error of fusion results least all the time. Results: It is used to process the date come from the standard model, the results show that measurement error range of 40K decreased from 17% to 12%. Conclusions: The result has shown that the method can dramatically decrease the error and improve the accuracy. (authors)

  13. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    Campana, S; Braito, V; Cusumano, G; D'Avanzo, P; D'Elia, V; Ghirlanda, G; Ghisellini, G; Melandri, A; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2014-01-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of Gamma Ray Burst (GRB) afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power law shape with index 2.4. However, for real instruments, this value depends on their low energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 10^5-10^6 counts in the 0.3-10 keV band are needed to constrain the redshift with 10% accuracy. As a test case we discuss the XMM-Newton observation of GRB 090618 at z=0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  14. PC based analysis of gamma ray spectra generated by semiconductor detectors

    This report describes a spectrum analysis method and computer program for analysis of gamma spectra obtained by using semiconductor detectors and multichannel analysers. The analysis steps incorporated are smoothing, peak location using signal processing method of convolution, selectable background subtraction viz linear, polynomial and step like, peak fitting both for singlets and doublets using Mukoyama's method for evaluation of full width at half maximum and area evaluation including errors in its evaluation. The program also provides a facility for energy calibration. Typical results of analysis for singlets and doublets are included. This report is based on Wilson's report which has been modified and extended. The program is written in BASIC and its listing is included in the appendices. (author). 20 refs., 2 figs., 2 tabs

  15. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    Campana, S.; Bernardini, M. G.; Braito, V.; Cusumano, G.; D'Avanzo, P.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2014-07-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of gamma-ray burst afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power-law shape with index 2.4. However, for real instruments, this value depends on their low-energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 105-106 counts in the 0.3-10 keV band are needed to constrain the redshift with 10 per cent accuracy. As a test case, we discuss the XMM-Newton observation of GRB 090618 at z = 0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  16. Exploitation of gamma ray spectra by non parametric probabilistic methods and without operator's intervention

    Gamma ray spectrometry is a passive non-destructive assay most commonly used for the quantification of radionuclides in nuclear waste. The thesis aims to improve the exploitation of the spectra (which takes place after the step of acquiring the spectrum). The exploitation of the spectra was done in two parts (extract energy and net areas of the peaks contained in the spectrum and determine the efficiency of the assay), the work is divided into two parts. First, we set up a validation process that quantifies the uncertainties caused by the extraction of energy and net areas and that is applicable to any deconvolution software. With this process, we studied the performance of the deconvolution performed by the software SINBAD. The work has allowed to have an automated tool for extracting energy and net areas of full absorption peaks whose uncertainties are quantified. Finally, the second part of the thesis has allowed to develop an automated method for calculating the efficiency of the assay, that is applicable to any objects being measured. The feasibility of the method to simple cases was proved by the thesis. The extrapolation to more complex cases will be subject of further studies. (author)

  17. Upper Limits on the Extragalactic Background Light from the Gamma-Ray Spectra of Blazars

    Schroedter, M

    2005-01-01

    The direct measurement of the extragalactic background light (EBL) is difficult at optical to infrared wavelengths because of the strong foreground radiation originating in the Solar System. Very high energy (VHE, E$>$100 GeV) gamma rays interact with EBL photons of these wavelengths through pair production. In this work, the available VHE spectra from six blazars are used to place upper limits on the EBL. These blazars have been detected over a range of redshifts and a steepening of the spectral index is observed with increasing source distance. This can be interpreted as absorption by the EBL. In general, knowledge of the intrinsic source spectrum is necessary to determine the density of the intervening EBL. Motivated by the observed spectral steepening with redshift, upper limits on the EBL are derived by assuming that the intrinsic spectra of the six blazars are $\\propto E^{-1.8}$. Upper limits are then placed on the EBL flux at discrete energies without assuming a specific spectral shape for the EBL. Thi...

  18. APPLE-2: an improved version of APPLE code for plotting neutron and gamma ray spectra and reaction rates

    A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)

  19. Order statistics and energy-ordered histograms: an analytical approach to continuum gamma-ray spectra

    Full text: Fusion-evaporation heavy ion collisions have enable us to explore new regions of phase space E - I, particularly high spin and excitation energy regions, where level densities are so high that modern detectors are unable to resolve individual gamma-ray transitions and consequently the resulting spectrum is continuous and undoubtedly contains a lot of new physics. In spite of that, very few experiments have been designed to extract conclusions about behavior of nuclei in continuum, thus in order to obtain a continuum spectroscopy it is necessary to apply to numerical simulations. In this sense GAMBLE a Monte Carlo based code- is a powerful tool that with some modifications allows us to test a new method to analyze the outcome of experiments focused on the properties of phase space regions in nuclear continuum: The use of Energy-Ordered Spectra (EOS) . Let's suppose that in a experiment is collected all gamma radiation emitted by a specific nucleus in a fixed intrinsic excitation energy range and that the different EOS are constructed. Although it has been shown that comparisons between such EOS and Monte Carlo simulations give information about the level density and the strength function their interpretation is not too clear because the large number of input values needed in a code like GAMBLE. On the other hand, if we could have an analytical description of EOS, the understanding of the underlying physics would be more simple because one could control exactly the involved variables and eventually simulation would be unnecessary. Promissory advances in that direction come from mathematical theory of Order Statistics (OS) In this work it is described the modified code GAMBLE and some simulated EOS for 170 Hf are shown. The simulations are made with different formulations for both level density (Fermi Gas at constant and variable temperature) and gamma strength function (GDR, single particle). Further it is described in detail how OS are employed in the

  20. Secondary Standardizations with Digital Computer Techniques to Normalize Multiple Gamma-Ray Spectra for Direct Efficiency Determinations

    A new standardization technique for gamma-ray emitting nuclides has been developed. The method is based on the use of gamma-ray spectral data in digital format from absolutely standardized samples of radionuclides. A system for collecting a library of gamma-ray spectra from such absolutely standardized samples was perfected in conjunction with a least-squares gamma-spectral resolution programme. A pooling programme was devised to combine six gamma-ray spectra from multiple sample mounts from the single master solution. The programme was written in FORTRAN-FAP for the IBM 1090 computer; it corrects for background, decay, and gain shift, and then converts the spectral data from counts/second/channel to counts/disintegration/channel using the disintegration rate of the standard sample as an input parameter. The spectral data are treated statistically with an analysis of variance to get a high degree of accuracy in the library of spectra. Since the gamma-ray spectra from the pooling programme consist of channel-by-channel data in units of counts per disintegration, these response curves comprise a channel-by-channel measure of the efficiency of detection for the given gamma-ray spectrometer system. By combining these individual channel efficiencies for some region of the gamma-ray spectrum that is not affected greatly by external processes (e.g. a prominent photopeak), it is possible to assign directly an efficiency factor for the detection of each of the library nuclides. An assay system has been developed with the digital data in the form of punched paper tape. The paper-tape standard may be read into the memory of a multichannel analyser where a direct comparison may be made with the unknown sample. The system has been found to be independent of detector resolution as long as the region chosen for the comparison of standard and unknown encompasses an entire photopeak. A library of standard spectra in the described format has been collected for 42 radionuclides using

  1. Peak fitting and identification software library for high resolution gamma-ray spectra

    Uher, Josef; Roach, Greg; Tickner, James

    2010-07-01

    A new gamma-ray spectral analysis software package is under development in our laboratory. It can be operated as a stand-alone program or called as a software library from Java, C, C++ and MATLAB TM environments. It provides an advanced graphical user interface for data acquisition, spectral analysis and radioisotope identification. The code uses a peak-fitting function that includes peak asymmetry, Compton continuum and flexible background terms. Peak fitting function parameters can be calibrated as functions of energy. Each parameter can be constrained to improve fitting of overlapping peaks. All of these features can be adjusted by the user. To assist with peak identification, the code can automatically measure half-lives of single or multiple overlapping peaks from a time series of spectra. It implements library-based peak identification, with options for restricting the search based on radioisotope half-lives and reaction types. The software also improves the reliability of isotope identification by utilizing Monte-Carlo simulation results.

  2. Peak fitting and identification software library for high resolution gamma-ray spectra

    A new gamma-ray spectral analysis software package is under development in our laboratory. It can be operated as a stand-alone program or called as a software library from Java, C, C++ and MATLABTM environments. It provides an advanced graphical user interface for data acquisition, spectral analysis and radioisotope identification. The code uses a peak-fitting function that includes peak asymmetry, Compton continuum and flexible background terms. Peak fitting function parameters can be calibrated as functions of energy. Each parameter can be constrained to improve fitting of overlapping peaks. All of these features can be adjusted by the user. To assist with peak identification, the code can automatically measure half-lives of single or multiple overlapping peaks from a time series of spectra. It implements library-based peak identification, with options for restricting the search based on radioisotope half-lives and reaction types. The software also improves the reliability of isotope identification by utilizing Monte-Carlo simulation results.

  3. On the X-ray Spectra of Anomalous X-ray Pulsars and Soft Gamma Repeaters

    Kaspi, Victoria M

    2010-01-01

    We revisit the apparent correlation between soft X-ray band photon index and spin-down rate nudot previously reported for Anomalous X-ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs) by Marsden & White (2001). Our analysis, improved thanks to new source discoveries, better spectral parameter measurements in previously known sources, and the requirement of source quiescence for parameter inclusion, shows evidence for the previously noted trend, although with greater scatter. This trend supports the twisted magnetosphere model of magnetars although the scatter suggests that factors other than nudot are also important. We also note possible correlations involving the spectra of AXPs and SGRs in the hard X-ray band. Specifically, the hard-band photon index shows a possible correlation with inferred nudot and B, as does the degree of spectral turnover. If the former trend is correct, then the hard-band photon index for AXP 1E 1048.1-5937 should be ~0--1. This may be testable with long integrations by INTEGRA...

  4. Calculation of neutron and gamma-ray emission spectra produced by p + 27Al reactions

    Preliminary calculations of neutron and gamma-ray spectra induced by proton reactions on aluminum have been made to provide data required for shielding design for a proposed proton linear accelerator. The nuclear models used in this study were the preequilibrium and Hauser-Feshbach models as embodied in the GNASH program. This nuclear model code has been used in the past to successfully investigate higher energy (E less than or equal to 50 MeV) neutron and proton interactions with nuclei in the structural materials region. Because this study was of an exploratory nature, we did not attempt to optimize input parameters but instead relied upon global sets, especially for optical parameters. In particular, for neutrons we chose the Wilmore-Hodgson parameter set after confirmation of its suitability through comparison to n+27Al total cross-section data between 0.5 and 60 MeV. Agreement with the data on the level of 5-10% occurred. Comparisons were also made to measured nonelastic data for incident energies between 10 and 60 MeV. Again, there was generally good agreement although there was some tendency to overpredict such data for incident neutron energies below several MeV. For protons we found the Becchetti-Greenlees parameter set reproduced nonelastic data recently measured by McGill et al

  5. Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

    Chang, Zhe; Li, Xin; Lin, Hai-Nan; Sang, Yu; Wang, Ping; Wang, Sai

    2016-04-01

    In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation (LIV). As the most energetic explosions in the Universe, gamma-ray bursts (GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale M QG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M QG > 5.05 × 1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on M QG, although not as tight as previous results, is the safest and most reliable so far. Supported by National Natural Science Foundation of China (11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences

  6. F-GAMMA: On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars. In the current study we show and discuss the evolution of broad-band radio spectra, which are measured at ten frequencies between 2.64 and 142 GHz using the Effelsberg 100-m and the IRAM 30-m telescopes. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. It is argued that these can be attributed to only two classes of variability mechanisms. The first four types are dominated by spectral evolution and can be described by a simple two-component system composed of: (a) a steep quiescent spectral component from a large scale jet and (b) a time evolving flare component following the 'Shock-in-Jet' evolutionary path. The fifth type is characterised by an achromatic change of the broad band spectrum, which could be attributed to a different mechanism, likely involving differential Doppler boosting caused by geometrical effects. Here we present the classification, the assumed physical scenario and the results of calculations that have been performed for the spectral evolution of flares.

  7. High-Quality Medium-Resolution Gamma-Ray Spectra from Certified Reference Uranium and Plutonium Materials

    The Institute of Transuranium Elements (ITU) has made an effort to record a collection of medium resolution gamma-ray spectra from well-characterized U and Pu certified reference materials CRM-171 (also known as SRM-969), CBNM-271, and Harwell PIDIE standards. The goal of this exercise was twofold: (i) to complement the international database of reference gamma-ray spectra with high-quality data for medium resolution spectrometers, and (ii) to feed Phase I of the U/Pu isotopic inter-comparison exercise that is being jointly organized by the ESARDA NDA Working Group and IAEA. Phase II of the exercise will be fed by similar spectra recorded by Institute for Radiological Protection and Nuclear Safety (IRSN). These activities are supported through a joint Member State Support Programmes (MSSP) task and aimed at delivering reliable methodologies for the determination of U/Pu isotopic composition using medium resolution gamma-spectrometers. The latter have obvious benefits for in-field applications, amongst which are better usability, portability and maintainability. As the spectra will be made available online for software developers and end users, ultimately this will also contribute to sustainability as well as the improved and validated performance of existing U/Pu isotopic codes. The spectra were recorded using the IAEA's standard Lanthanum Bromide (LaBr3(Ce)) (2.0'' x 0.5'') and Cadmium Zink Telluride (CdZnTe) (500 mm''3) detectors and acquisition electronics. Aiming to acquire the highest quality reference data, the spectra were measured for long acquisition times, ensuring very good counting statistics across potentially useful spectral intervals — up to 1 MeV for the CdZnTe and up to 2.6 MeV for the LaBr3(Ce) detectors. Great attention was also paid to ensure that the measurement geometry was stable and reproducible, and the spectra had minimum influence from background radiation and pile-up effects. The paper will briefly

  8. Calculation of the delayed fission gamma-ray spectra from U-235, -238, Pu-239, -240 and Pu-241, tabular data

    The delayed fission-gamma-ray, which is emitted aggregatively from the unstable nuclides produced by fission, must be taken into account properly in calculation of the gamma-ray source in nuclear reactors. Despite its importance, the delayed gamma-ray data is not well organized nor prepared even in major nuclear data libraries such as JENDL and ENDF/B. Here we prepare the delayed gamma-ray spectra for five major fissioning nuclides. In calculating these spectra, theoretical estimation of the unknown spectra was carried out widely for a lot of no-data nuclides, which had been a major source of ambiguity in calculating the delayed gamma-ray spectra. (author)

  9. Calculation of neutron and gamma-ray energy spectra for fusion reactor shield design: comparison with Experiment II

    Measured and calculated neutron and gamma-ray energy spectra resulting from the transport of approx. 14 MeV neutrons through a 0.30-m-thick lithium hydride slab and through a 0.05-m-thick lead slab followed by 0.30 m of lithium hydride are compared. Also reported are comparisons of the measured and calculated neutron energy spectra behind an 0.80-m-thick assembly comprised of stainless steel type 304 and borated polyethylene. The spatial dependence of the gamma-ray energy deposition rate measured using thermoluminescent detectors is compared with calculated data. The calculated data obtained using two-dimensional radiation transport methods and ENDF/B-IV cross section data are in good agreement for all of the experimental configurations

  10. Gamma spectra pictures using a digital plotter. Program MONO; Representacion de Espectros directos mediante un trazado digital. Prograa MONO

    Los Arcos, J. M.

    1978-07-01

    The program MONO has been written for a CALCOMP-936 digital plotter operating off- -line with a UMI VAC 1106 computer, to obtain graphic representations of single gamma spectra stored on magnetic tape. It allows to plot the whole spectrum or only a part, as well as to draw a given spectrum on the same or different picture than the previous one. Ten representation scales are available and at up nine comment lines can be written in a graphic. (Author) 4 refs.

  11. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  12. Modeling of the $\\gamma$-ray pulsed spectra of Geminga, Crab, and Vela with synchro-curvature radiation

    Viganò, Daniele

    2015-01-01

    $\\gamma$-ray spectra of pulsars have been mostly studied in a phenomenological way, by fitting them to a cut-off power-law function. Here, we analyze a model where pulsed emission comes from synchro-curvature processes in a gap. We calculate the variation of kinetic energy of magnetospheric particles along the gap and the associated radiated spectra, considering an effective particle distribution. We fit the phase-averaged and phase-resolved {\\em Fermi}-LAT spectra of the three brightest $\\gamma$-ray pulsars: Geminga, Crab, and Vela, and constrain the three free parameters we leave free in the model. Our best-fit models well reproduce the observed data, apart from residuals above a few GeV in some cases, range for which the inverse Compton scattering likely becomes the dominant mechanism. In any case, the flat slope at low-energy ($\\lesssim$ GeV) seen by {\\it Fermi}-LAT both in the phase-averaged and phase-resolved spectra of most pulsars, including the ones we studied, requires that most of the detected radi...

  13. A user guide to GASP - a general purpose program for analysis and manipulation of gamma ray spectra

    The application of a very flexible computer program for the analysis of gamma-ray spectra at Harwell is described at a level suitable for users with practical experience of spectrometry but with limited knowledge of computer methods. Details of running a job are provided in this guide together with a description of the GASP language. The program is designed to allow free format input of data and instructions with the minimum requirements for running a task on the computer. A procedure called GASP can be invoked together with essential parameters which are described. The program itself is centred around the linear regression analysis of spectra produced from either sodium iodide crystals or solid state detectors with anything from 128 to 2048 channels. Various factors which are required for interpreting results (such as decay times, half lives, cross-section, chemical yield) can be entered and applied automatically, thus removing much tedious arithmetical labour. Many facilities have been added which include storage space (either internally to the program or on disk) which may be required for standard spectra and data to describe them. Various other processes which may be applied in gamma-ray spectrometry which include energy calibration, analysis of peaks, and searching for peaks in spectra from solid state detectors are described. A comprehensive list of the 'GASP' vocabulary which is used to present data and instructions to the program is included, together with examples of a number of specific applications. (author)

  14. Calculation of Gamma Displacement Cross Sections: Generation of Recoil Spectra from ENDF/B-VII

    Radiation damage in materials is caused by the transfer of energy from an incident particle to the target atoms, which results in the redistribution of target atoms. During the nuclear reactor operation, various kinds of radiation are produced, including fast neutron, gamma, beta, high-energy ions etc. These radiations may affect the properties of reactor structural materials in a direct and/or indirect way. It is well known that fast neutrons have an effect on the degradation of materials. Whereas the impact of fast neutrons (En > 1 MeV) on material property changes is clearly recognized, the impact of gamma ray damage to materials is usually not significant. However, there has been some interest in gamma ray damage in metals in promoting accelerated embrittlement of reactor pressure vessel steels in the HFIR (High Flux Isotopes Reactor). In situations where there is a large water gap between pressure vessel and fuel assembly, gamma damage can become comparable to that produced by neutrons, on the basis of displacements per atom (dpa) parameter. A recent analysis of gamma ray displacement damage in the RPV of the General Electric Advanced Boiling Water Reactor (ABWR) indicated that the ratio of calculated gamma- to neutron-induced displacement damage rates is over 100% at the RPV inner diameter. Under a high gamma dose environment, embrittlement can be accelerated by radiation-enhanced mass transport mechanism. Because gamma rays are much more efficient than neutrons at producing freely-migrating defects, any radiation enhanced or induced processes that depend on the magnitude of defect fluxes to sinks, can be disproportionately affected by gamma. The direct evaluation of the contribution of gamma ray to damage in materials, quantified as a parameter of dpa, is made possible once the displacement damage cross section due to gamma rays are known. In this work, we present calculations for gamma ray displacement cross sections in various materials in the energy range

  15. Librarian driven analysis with graphic user interface for nuclides quantification by gamma spectra

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates to produce a list of possible radionuclides matching gamma-ray line(s). An a priori determined list of nuclides is obtained by searching for a match with the energy information of the database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma-ray data library. This library of experimental data includes approximately 17,000 gamma-energy lines related to 756 known gamma emitter radionuclides listed by ICRP

  16. Radium, thorium, and actinium extraction from seawater using an improved manganese-oxide-coated fiber

    Laboratory experiments were conducted to determine the efficiency with which improved manganese-oxide-coated acrylic fibers extract radium, thorium, and actinium from seawater. Tests were made using surface seawater spiked with 227Ac, 227Th and 223Ra. For sample volumes of approximately 30 liters and flow rates up to 0.5 liters per minute, radium and actinium are removed quantitatively. Approximately 80-95% of the thorium is removed under these same conditions. (Auth.)

  17. Use of an iterative convolution approach for qualitative and quantitative peak analysis in low resolution gamma-ray spectra

    In many applications, low resolution gamma-ray spectrometers, such as sodium iodide scintillation detectors, are widely used primarily due to their relatively low cost and high detection efficiency. There is widespread interest in improved methods for analyzing spectral data acquired with such devices, using inverse analysis. Peak means and peak areas in gamma- and X-ray spectra are needed for both qualitative and quantitative analysis. This paper introduces the PEAKSI code package that was developed at the Center for Engineering Applications of Radioisotopes (CEAR). The basic approach described here is to use accurate forward models and iterative convolution instead of direct deconvolution. Rather than smoothing and differentiation a combination of linear regression and non-linear searching is used to minimize the reduced chi-square, since this approach retains the capability of establishing uncertainties in the estimated peak parameters. The PEAKSI package uses a Levenberg-Marquardt (LM) non-linear search method combined with multiple linear regression (MLR) to minimize the reduced chi-square value for fitting single or multiple overlapping peaks to determine peak parameters, including peak means, peak standard deviations or full width at half maximum (FWHM), net peak counts, and background counts of peaks in experimental gamma-ray spectra. This approach maintains the natural error structure so that parameter uncertainties can be estimated. The plan is to release this code to the public in the near future.

  18. Calculation of the decision thresholds for radionuclides identified in gamma-ray spectra by post-processing peak analysis results

    Korun, Matjaž; Vodenik, Branko; Zorko, Benjamin

    2016-03-01

    A method for calculating the decision thresholds for gamma-ray emitters, identified in gamma-ray spectrometric analyses, is described. The method is suitable for application in computerized spectra-analyzing procedures. In the calculation, the number of counts and the uncertainty in the number of counts for the peaks associated with the emitter are used. The method makes possible to calculate decision thresholds from peaks on a curved background and overlapping peaks. The uncertainty in the number of counts used in the calculation was computed using Canberra's Standard Peak Search Program (Canberra, 1986, Peak Search Algorithm Manual 07-0064). For isolated peaks, the decision threshold exceeds the value calculated from the channel contents in an energy region that is 2.5 FWHM wide, covering the background in the immediate vicinity of the peak. The decision thresholds vary by approximately 20% over a dynamic range of peak areas of about 1000. In the case of overlapping peaks, the decision threshold increases considerably. For multi-gamma-ray emitters, a common decision threshold is calculated from the decision thresholds obtained from individual gamma-ray emissions, being smaller than the smallest of the individual decision thresholds.

  19. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  20. Application of the entropy maximum method for processing of X-ray diffraction patterns and gamma spectra of amorphous minerals

    Opportunities of the maximum entropy method (MEM) for processing of X-ray and gamma spectra of amorphous minerals are considered. MEM is the modern method of solving the reverse Rayleigh problem permitting to exclude the effect of the apparatus response function. The X-ray diffraction of quartz and schungite is carried out at the installation DRON-4 in the Bragg geometry. Initial data and processing results including the fine spectral structure (locations and intensities of peaks) are presented. The accuracy of the least square method and MEM is compared for the fine structure of amorphous sulfate-phosphates

  1. Analyzing global distribution of thorium on the lunar surface using Chang' E-1 Gamma-Ray spectrometer spectra data

    In order to acquire the global elemental distributions on the lunar surface, a method to process level 2C spectra data measured by Chang' E-1 gamma-ray spectrometer (CE1-GRS) was proposed and implemented. After data processing made by this method to level 2C spectra measured from 27 Nov, 2007 to 6 Feb, 2008, preliminary global counting rate map of thorium is derived. Compared with the global map of thorium measured by the Lunar Prospector (LP) GRS, the result shows that major features of the global thorium distribution appeared in CE1 map is consistent with the map of thorium from the LP GRS, but there are still some differences in detail between these two maps. (authors)

  2. Automated analysis for large amount gaseous fission product gamma-scanning spectra from nuclear power plant and its data mining

    Based on the Linssi database and UniSampo/Shaman software, an automated analysis platform has been setup for the analysis of large amounts of gamma-spectra from the primary coolant monitoring systems of a CANDU reactor. Thus, a database inventory of gaseous and volatile fission products in the primary coolant of a CANDU reactor has been established. This database is comprised of 15,000 spectra of radioisotope analysis records. Records from the database inventory were retrieved by a specifically designed data-mining module and subjected to further analysis. Results from the analysis were subsequently used to identify the reactor coolant half-life of 135Xe and 133Xe, as well as the correlations of 135Xe and 88Kr activities. (author)

  3. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  4. Measurement and simulation of TEPC microdosimetric spectra in gamma radiation field

    According to the different characteristics of microdosimetric spectra measured by tissue equivalent proportional counter (TEPC), the neutron dose equivalent and γ dose equivalent could be distinguished in a unknown neutron and γ mixed radiation field. In order to discriminate the γ radiation dose equivalent from the total value, the pure γ microdosimetric spectra was measured in 60Co, 137CS radionuclide radiation field with TEPC. TEPC microdosimetric spectra in a series of monoenergy γ radiation field were simulated by FLUKA code. All the γ radiation microdosimetric spectra, including measured spectrum in 60Co, 137CS radiation field and that of simulation spectrum by FLUKA code, reveal a trait that the linear energy of γ radiation is basically lower than 10 keV/μm. This trait is the very foundation to discriminate the γ radiation from the mixed radiation. (authors)

  5. Deconvolution of three-dimensional beta-gamma coincidence spectra from xenon sampling and measurement units

    Some environmental xenon sampling like the Automated Radioxenon Sampler-Analyzer (ARSA) and the Swedish Automated Noble Gas Unit (SAUNA), use β-γ coincidence detectors that are energy dispersive on both the γ and β axes. Applying conventional region-of-interest (ROI) analysis algorithms to such 3-D spectra is problematic due to spectral interferences in the low-resolution spectra. Deconvolving the 3-D sample spectra into the most probable combination of signals using non-negative least-squares results shows promise to robustly resolve the spectral interferences. Multiple isotope component analysis (MICA) algorithm developed for analysis of 3-D β-γ spectra from xenon sampling and measurement units is described. (author)

  6. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    Vo, D T

    2002-01-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  7. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    Vo, D. T.; Russo, P. A.

    2002-07-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  8. Modification of the gamma-ray spectra by internal absorption in OVV blazars: The example cases of 3C 273 and 3C 279

    Sitarek, J.; Bednarek, W.

    2008-01-01

    Recent observations with the low threshold Cherenkov telescopes proved that sub-TeV gamma-rays are able to arrive from active galaxies at relatively large distances in spite of expected severe absorption in the extragalactic background light (EBL). We calculate the gamma-ray spectra at TeV energies from two example OVV quasars, 3C 273 and 3C 279, assuming that gamma-rays are injected in the inner parts of the jets launched by the accretion disks. It is assumed that gamma-rays in the broad ene...

  9. Detection of low levels of plutonium in natural environments from gamma-ray spectra with advanced methods in robust fitting

    Lasche, G.P.; Coldwell, R.L.; Nobel, J.A

    1999-02-11

    A newly developed spectral analysis methodology, RobWin, is experimentally tested for its ability to identify plutonium in highly background-dominated gamma-ray spectra. The method, which builds upon nonlinear robust fitting techniques from RobFit spectral analysis software, emphasizes gradually adding structure to the entire spectrum background shape function after accounting for re-optimized combinations of entire-spectrum photopeak response functions from a user-defined set of nuclides at each iteration. This new feature makes it uniquely suited to the identification of weak-strength nuclides in high-background environments. The method is briefly described and applied to a series of background-dominated laboratory gamma-ray spectra from a 98 nCi {sup 239}Pu source with logarithmically varying collection times taken with a 100% n-type HPGe detector. The laboratory experiment, the data, and the analysis results are presented. As a measure of confidence in the effectiveness of the several entire-spectrum features of the new approach, comparisons of confidence levels, and detectable total isotopic counts are made with analysis of the same data by fitting only peaks with these new features disabled. It is concluded that for similar applications the new method can improve detectable strength and confidence of detection significantly.

  10. Detection of low levels of plutonium in natural environments from gamma-ray spectra with advanced methods in robust fitting

    A newly developed spectral analysis methodology, RobWin, is experimentally tested for its ability to identify plutonium in highly background-dominated gamma-ray spectra. The method, which builds upon nonlinear robust fitting techniques from RobFit spectral analysis software, emphasizes gradually adding structure to the entire spectrum background shape function after accounting for re-optimized combinations of entire-spectrum photopeak response functions from a user-defined set of nuclides at each iteration. This new feature makes it uniquely suited to the identification of weak-strength nuclides in high-background environments. The method is briefly described and applied to a series of background-dominated laboratory gamma-ray spectra from a 98 nCi 239Pu source with logarithmically varying collection times taken with a 100% n-type HPGe detector. The laboratory experiment, the data, and the analysis results are presented. As a measure of confidence in the effectiveness of the several entire-spectrum features of the new approach, comparisons of confidence levels, and detectable total isotopic counts are made with analysis of the same data by fitting only peaks with these new features disabled. It is concluded that for similar applications the new method can improve detectable strength and confidence of detection significantly

  11. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality

  12. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  13. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  14. Design and characterization of an interface for acquiring gamma radiation spectra

    An interfaces for TOSHIBA personal computer is described. The evaluation of its characteristic shows the possibility of using it as analog-digital converter in spectrometer systems for educational purposes. It is also presented a MSX-Basic program which provides a very flexible data acquisition facility during gamma spectrum analysis applications

  15. On the sharpness of gamma-ray burst prompt emission spectra

    Yu, Hoi-Fung; Greiner, Jochen; Sari, Re'em; Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Preece, Robert D

    2015-01-01

    We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrot...

  16. Quantitative Evaluation of gamma-Spectrum Analysis Methods using IAEA Test Spectra

    Nielsen, Sven Poul

    A description is given of a γ-spectrum analysis method based on nonlinear least-squares fitting. The quality of the method is investigated by using statistical tests on the results from analyses of IAEA test spectra. By applying an empirical correction factor of 0.75 to the calculated peak...... > 95%) better than that of estimates calculated from a previously reported analysis method. Standard deviations of the calculated peak-area ratios from the IAEA test spectra are given in order to permit the overall accuracy of other analysis methods to be compared with that of the present one....

  17. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    Metwally, W.A.; Gardner, R.P. E-mail: gardner@ncsu.edu

    2004-06-11

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  18. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    Metwally, W. A.; Gardner, R. P.

    2004-06-01

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  19. Gamma-ray spectra of fast-breeder spent nuclear fuel from the BN-350 reactor

    Gamma-ray measurements of spent nuclear fuel (SNF) from a fast breeder reactor have been obtained with a High-Purity Germanium (HPGe) Detector. The HPGe measurements were performed inside a hot cell using an adjustable collimator to restrict the viewing angle of the HPGe to a small region of the SNF assembly. In addition Ion Chamber (IC) measurements were performed underwater using a lead shielded IC 15-cm in active length. We are going to present HPGe measurement results of the distribution of fission product and activation products along the assembly. We will also compare the gamma-ray profiles of the HPGe and IC measurements to those of the neutron profiles measured with a 3 He tube based neutron counter

  20. Proficiency Test in the Analysis of Gamma Spectra for Malevolent Radiological Situations (MALRAD)

    Dowdall, M.; Andersson, Kasper Grann; Sidhu, R. Singh;

    The MALRAD activity was intended to provide an exercise activity with respect to gamma ray spectrometric response to malevolent situations involving radioactive sources. Such situations can often be characterised by high activity sources in difficult contexts where the response is by necessity co...... from that which would normally be viewed as characteristic for the isotope in question. Special nuclear materials such as reprocessed enriched uranium and weapons grade plutonium provided different challenges and there were indications in the reponses from participants of unfamiliarity...

  1. A search for narrow lines in the gamma spectra from anti pd annihilation at rest

    The γ ray spectrum from anti pd annihilation at rest was studied by stopping antiprotons in liquid deuterium and analyzing the gamma rays using a magnetic pair spectrometer. No clear evidence is found for monochromatic γ rays and the upper limit for the branching ratio panti p → γX with 1100 MeV/c2 x 2 is less than 5 x 103 at the 95% confidence level. (orig./HSI)

  2. On the X-ray Spectra of Anomalous X-ray Pulsars and Soft Gamma Repeaters

    Kaspi, Victoria M.; Boydstun, Kristen

    2010-01-01

    We revisit the apparent correlation between soft X-ray band photon index and spin-down rate ύ previously reported for Anomalous X-ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs) by Marsden & White. Our analysis, improved thanks to new source discoveries, better spectral parameter measurements in previously known sources, and the requirement of source quiescence for parameter inclusion, shows evidence for the previously noted trend, although with greater scatter. This trend supp...

  3. Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM

    Tanga, M; Gatto, A; Greiner, J; Krause, M G H; Diehl, R; Savaglio, S; Walch, S

    2016-01-01

    Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z > 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 per cubic centimeters) collisionally ionised ISM could produce UV/opti...

  4. Evaluation of gamma ray production cross sections and spectra for neutron induced reactions on Chromium

    An evaluation of photon production cross sections and relevant spectra is described, referring to neutron induced reactions on *H5*H0CR, *H5*H2CR, *H5*H4CR and sup(nat)CR in the energy range 100 KEV-8MEV

  5. Quantitative Evaluation of gamma-Spectrum Analysis Methods using IAEA Test Spectra

    Nielsen, Sven Poul

    A description is given of a γ-spectrum analysis method based on nonlinear least-squares fitting. The quality of the method is investigated by using statistical tests on the results from analyses of IAEA test spectra. By applying an empirical correction factor of 0.75 to the calculated peak-area u...

  6. Non destructive determination of fuel burn up of the RA reactor at Vinca by gamma radiation spectra analysis

    The problem of non destructive determination of the burn-up of used up fuel of the powerful experimental reactor RA at Vinca, by the analysis of gamma radiation spectra using a gamma-spectrometer with a semiconductor Ge(Li) detector has been studied. The first part of this analytical problem is concerned with calculation of fuel burn up. In the preparation of its solution material and energetic balance of the fuel composition and conditions of fuel irradiation. The obtained solution uses numerical methods. In this solution fuel burn up is determined: 1) on the basis of the data on the composition of 106Ru, 134Cs and 137Cs, than 2) from a series of the data on the fuel and reactor and 3) on the basis of those, numerous, literature data which participate in defining of the balance of fuel burn up process. The second part of this problem refers to determination of the composition of the above gamma radioactive fission products from the obtained instrumental spectrum. Under strictly defined conditions of the measurement of gamma radiation from the fuel elements, when a determined type of the gamma ray collimator is used, the photo peak area of the corresponding line in the instrumental spectrum is defined as a function of the fission products activity, energy and yield of its gamma rays, the thickness of fuel and added absorbers as well as the dimensions of the collimator used. On this basis, the activity quotient of two fission products is a function of: 1) two areas of two photo peaks of their two lines and 2) some of the above cited values. Unknown magnitudes of the remaining values of the same relation are determined from the photo peak areas of the lines of the complex spectrum of one fission product by solving a system of equations. Accuracy of the solutions of these two separate parts of the observed analytical problems was confirmed experimentally. The results obtained are characterized by high repeatability. Total errors are generally greater, primarily due to

  7. Comparison between the Spectra of Gamma Radiation for Climate Dry Periods and Rainy in the Southeast of Brazil

    Gomes, M. P.; Martin, I. M.

    2013-05-01

    Through this work, present themselves the results obtained for the spectra of ionizing radiation (X-rays and gamma) environmental southeast Brazil for the periods of dry and rainy climate, respectively. One of the objectives this work is promoting through analysis of the results a better understand, in the educational area, the physical processes related to the background radiation of the places where measurements were made. In Brazil, there is still little information about the radiation from soil, radon gas atmospheric, cosmic and artificial origin. Measurements of gamma radiation spectra were performed with a scintillator of NaI (Tl) (volume 300 cm3) mounted within an aluminum cell and coupled to a photomultiplier tube, which in turn is coupled through an interface to specify a notebook for storage of data. The measurement of X and gamma rays photons occur of way omnidirectional without distinction as to direction. The data acquisition was performed at fixed intervals of 1 minute continuously for the entire period of dry climate (June to October) and rainy (December 2012 to January 2013). Figures 1 and 2 show the results obtained for both periods, dry and rainy, respectively. Regarding the graph of Figure 1, is evidenced a cycle of 24 hours in the radiation spectrum. In this period without rain the radiation increases always between sunrise sunset until 11 - 12 hours local, due to the increased presence of radon gas (222Rn) which decays after 3.8 days in 214Pb and 214Bi, emitting photons in the range of energy the detector is measuring (0.030 to 3.0 MeV). The graph in Figure 2 shows that during the rainy period, there was a significant increase in radiation intensity, in addition to that already shown in the dry times that for certain time intervals. This increase is due to when occurs precipitation, the amount of radon gas increases because of the phenomenon of washing the lower atmosphere where the gas is suspended and diluted in water droplets. In the rainy

  8. Resolving the Extragalactic Background Light with gamma-ray spectra from distant blazars

    Aharonian, F; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; De Jager, O C; Khelifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Martin, J M; Martineau--, O; Huynh; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-01-01

    The diffuse Extragalactic Background Light (EBL) contains unique information about the epochs of formation and the history of evolution of galaxies. Unfortunately, direct measurements are subject to large systematic uncertainties due to the difficulties in the accurate model-based subtraction of the bright foregrounds. An alternative approach is based on the detection and identification of EBL absorption features in high-energy spectra of objects of known redshift. Here we exploit this method on the blazars H 2356-309 (z=0.165) and 1ES 1101-232 (z=0.186), newly discovered at TeV energies by the H.E.S.S. Collaboration. They are the most distant sources with measured spectra known so far at these energies. Their hard spectra provide the most stringent upper limit to date on the EBL in the Opt--NIR band, which appears significantly lower than expected from the current "direct" estimates and very close to the absolute lower limit represented by the integrated light of resolved galaxies. In addition to important c...

  9. A search for narrow lines in gamma spectra from proton-antiproton annihilations at rest

    The gamma ray spectrum from anti pp annihilation at rest has been measured with good energy resolution and high statistics using a magnetic pair spectrometer. No narrow lines with widths comparable to the spectrometer resolution are found. Upper limits (90% CL) are obtained on the yield of narrow baryonium states of 2-5x10-4/anti p for states below 1700 MeV, and 5-10x10-4/anti p for states between 1700 and 1800 MeV. These results are inconsistent with narrow lines observed in an earlier experiment. (orig.)

  10. Light curves and spectra from off-axis gamma-ray burst single pulses

    Salafia, Om S; Pescalli, Alessio; Ghirlanda, Giancarlo; Nappo, Francesco

    2016-01-01

    We set up a simple model to compute the bolometric light curve and time dependent spectrum of a single pulse of a Gamma-Ray Burst under the assumption that the pulse rise and decay are dominated by the shell curvature effect. For the first time, our model includes the effect of an arbitrary off-axis viewing angle. We show that a pulse observed off-axis is (i) longer, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that many observed properties found in time-resolved spectral analysis of Gamma-Ray Burst light curves are reproduced in curves with a slightly off-axis viewing angle. Such properties include the fact that the spectral peak energy evolution tracks the variations in flux, leading them slightly. Based on these results, we argue that low lum...

  11. Proficiency test in the analysis of gamma spectra for malevolent radiological situations (MALRAD)

    Dowdall, M. (Norwegian Radiation Protection Autority, OEsteraas (Norway)); Andersson, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Singh Sidhu, R. (Institute for Energy Technology, Kjeller (Norway)); Paulsson, S.E. (Icelandic Radiation Protection Institute (IS))

    2009-11-15

    The MALRAD activity was intended to provide an exercise activity with respect to gamma ray spectrometric response to malevolent situations involving radioactive sources. Such situations can often be characterised by high activity sources in difficult contexts where the response is by necessity conducted with less than optimal instrumentation. Seven scenarios were developed based on previous incidents where possible and gamma spectral data and other information was disseminated to participants who were given one week to respond to each scenario with as much information as possible. In total 14 individual laboratories responded. The majority of laboratories were in a position to satisfactorily identify sources where single sources were used in situations with no complicating factors. For those scenarios involving heavy shielding some difficulties were encountered due to distortion of the spectrum from that which would normally be viewed as characteristic for the isotope in question. Special nuclear materials such as reprocessed enriched uranium and weapons grade plutonium provided different challenges and there were indications in the responses from participants of unfamiliarity with these materials. (author)

  12. Proficiency test in the analysis of gamma spectra for malevolent radiological situations (MALRAD)

    The MALRAD activity was intended to provide an exercise activity with respect to gamma ray spectrometric response to malevolent situations involving radioactive sources. Such situations can often be characterised by high activity sources in difficult contexts where the response is by necessity conducted with less than optimal instrumentation. Seven scenarios were developed based on previous incidents where possible and gamma spectral data and other information was disseminated to participants who were given one week to respond to each scenario with as much information as possible. In total 14 individual laboratories responded. The majority of laboratories were in a position to satisfactorily identify sources where single sources were used in situations with no complicating factors. For those scenarios involving heavy shielding some difficulties were encountered due to distortion of the spectrum from that which would normally be viewed as characteristic for the isotope in question. Special nuclear materials such as reprocessed enriched uranium and weapons grade plutonium provided different challenges and there were indications in the responses from participants of unfamiliarity with these materials. (author)

  13. A reevaluation of commercial IBM PC software for the analysis of low-level environmental gamma-ray spectra

    In 1988, a comparative evaluation of seven commercially available software packages for the analysis of low-level environmental gamma-ray spectra was performed. At that time it was determined that many of the packages did not contain all the features that were necessary for the accurate analysis of complex, low-level environmental samples. The evaluation concentrated on peak detection, noise and phantom-peak rejection, resolution of peak doublets, and nuclide identification. A new evaluation was conducted on updated versions of four of the previously evaluated programs and two additional programs from Canada and Germany. The evaluation involved the analysis of synthetic and actual spectral data, including an air filter containing debris from the Chernobyl accident. System requirements, accurate nuclide quantification and ease of operation are also reported. (author)

  14. PCGAP. Application to analyze gamma-ray pulse-height spectra on a personal computer under Windows NTR

    PCGAP is a software code, which was written to provide gamma-ray pulse height spectrum analysis on a personal computer platform. The code was specifically developed for Windows NT for either an IntelR or DEC AlphaR based processor. PCGAP includes programs which can be used to control data collection using a Canberra INSPECTORR multichannel pulse-height analyzer. With suitable spectrum conversion routines PCGAP can be used to analyze data from almost any multi-channel analyzer. Besides the normal functions associated with a robust spectrum analysis package, PCGAP can be used for radionuclide analysis for actinides via L-X and gamma-ray spectrometry. It can be used to control and analyze data from an INEEL developed pulse injection system for individual spectrum validation. The package includes programs for the manual analysis of spectra using displays which permit the spectroscopist to interactively define the spectral continuum and peak fitting limits, and display the resulting function fitting forms. (author)

  15. Transmitted photon spectra of low-energy gamma rays through water

    From the transmitted spectra of point sources it is concluded that in a medium of low effective atomic number, a multiple-scatter peak is observed at an energy below 100 keV where Compton collisions are not very effective in energy-degradation and photoelectric cross-section is negligible. The energy of the peak does not depend on the thickness and physical state of the medium, or on the primary photon energy. The intensity of the peak decreases exponentially with the thickness of the medium. Measured build-up factors are compared with the calculated ones available in the literature. (author)

  16. Resonance Spin Memory in Low-Energy Gamma-Ray Spectra from Sb, Tb, Ho and Ta Odd-Odd Compound Nuclei

    Olejniczak, U; Pikelner, L B; Przytula, M; Serov, D G

    2002-01-01

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using HPGe detector at IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of ^{122}Tb, ^{160}Tb and ^[166}Ho was found to be quite distinct. For the ^{182}Ta compound nucleus it proved to be rather weak.

  17. Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122Sb, 160Tb and 166Ho was found to be quite distinct. For the 182Ta compound nucleus it proved to be rather weak

  18. On thermalization in gamma-ray burst jets and the peak energies of photospheric spectra

    Vurm, Indrek; Piran, Tsvi

    2012-01-01

    The low energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thompson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the termalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions i...

  19. Improvement and validation of isotopic libraries of commercial gamma spectra evaluation packages. Report on task FIN A 955 of Finnish support programme to IAEA safeguards

    The Department of Safeguards at the International Atomic Energy Agency (IAEA) is running gamma spectroscopy analysis with various samples taken at various stages of the nuclear fuel cycle. It was found that the commercial gamma spectra analysis packages available do not include proper gamma-line libraries for the various tasks needed for the safeguards purposes because the libraries of these packages are often incomplete and outdated. New libraries were developed to satisfy the needs in the analysis tasks required for the safeguards purposes. These lines are limited by the number of gamma lines to avoid the problems with too many candidates for a single gamma peak. The work was carried out under the Task FIN A 955 Finnish Support Programme to IAEA Safeguards. (orig.) (18 refs.)

  20. Broad band turbulent spectra in gamma-ray burst light curves

    van Putten, Maurice H P M; Frontera, Filippo

    2014-01-01

    Broad band power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long GRBs. We describe a chirp search method which steps aside Fourier analysis for signal detection in the Poisson noise-dominated 2 kHz sampled BeppoSAX light curves. An efficient numerical implementation is described in $O(Nn\\log n)$ operations, where $N$ is the number of chirp templates and $n$ is the length of the light curve time series, suited for embarrassingly parallel processing. For detection of individual chirps of duration $\\tau=1$ s, the method is one order of magnitude more sensitive in SNR than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope up to 1 kHz of turbulence identified in low frequency Fourier analysis. The same continuation is observed in an ensemble averaged spectrum of 40 bright long GRBs. An outlook on a similar analysis of upcoming gra...

  1. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  2. Stabilization of spectra provided by a gamma-ray spectrometer. Application to the construction of a stabilizer

    This research is concerned with the stabilization of spectra provided by a gamma-ray spectrometer. It is required to hold the calibration straight line of the spectrometer in a position which is fixed initially to better than 5x10-5 channel. A prototype numerical stabilizer has been constructed : the SPECTROSTAB; it is made up of two independent control loops; one of these makes the spectrometer gain depend on the derivatives of a reference peak at high energies; the other makes the origin of the energy scale depend on the derivatives of a second reference peak at low energies A theoretical study of the behaviour of a control loop shows that a direct action stabilizer gives the most accurate stabilization; the loss in resolving power on the theoretical peaks of the spectra attains about 1 % with a scintillation detector, and 10 % with a semi-conductor detector. Various tests show that the expected results are obtained and that the displacement of the spectral peaks produced by the derivatives are hidden by errors in the calculation of the peak abscissae. (author)

  3. Comparisons of peak-search and photopeak-integration methods in the computer analysis of gamma-ray spectra

    Myriad methods have been devised for extracting quantitative information from gamma-ray spectra by means of a computer, and a critical evaluation of the relative merits of the various programs that have been written would represent a Herculean, if not an impossible, task. The results from the International Atomic Energy Agency (IAEA) intercomparison, which may represent the most straightforward approach to making such an evaluation, showed a wide range in the quality of the results - even among laboratories where similar methods were used. The most clear-cut way of differentiating between programs is by the method used to evaluate peak areas: by the iterative fitting of the spectral features to an often complex model, or by a simple summation procedure. Previous comparisons have shown that relatively simple algorithms can compete favorably with fitting procedures, although fitting holds the greatest promise for the detection and measurement of complex peaks. However, fitting algorithms, which are generally complex and time consuming, are often ruled out by practical limitations based on the type of computing equipment available, cost limitations, the number of spectra to be processed in a given time period, and the ultimate goal of the analysis. Comparisons of methods can be useful, however, in helping to illustrate the limitations of the various algorithms that have been devised. This paper presents a limited review of some of the more common peak-search and peak-integration methods, along with Peak-search procedures

  4. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  5. Teraherts spectra of A3B3C62 crystals under gamma-irradiation

    Nano-dimension topologic-disorder materials constitute an important feature in the development of modern electronics. Among such materials, low-dimensional (1D and 2D) compounds, show amazing properties, for example highly anisotropic super ionic conductivity. Here it is shown that in the THz spectrum of such materials, which exhibit strong absorption lines that could be attributed to the libration oscillation of the nanofibers. In classical THz time-domain spectroscopy (THz-TDS), one records the temporal waveforms impinging onto and transmitted by the sample. Then a numerical FFT of both signals is performed. The ratio of the transmitted and incident FFT spectra gives the transmission coefficient of the sample. If the origin of time is preserved between the two requested measurements, then the FFT gives both modulus and phase of the transmission coefficient. If the sample is a slab with parallel sides, the index of refraction and the coefficient of absorption could be accurately determined using an inverse electromagnetic method. For materials exhibiting high absorption bands, the transmission coefficient is almost zero in modulus, and its phase is unknown. The usual solution to this problem is to perform THz-TDS in reflection. Here it is proposed a combined technique, which takes benefit of both transmission and reflection THz-TDS's. The basic idea is to derive a rough estimation of the refractive index from reflection data, while both refractive index and absorption coefficient are also calculated from transmission data. A Kramers-Kronig calculation allows to determine the refractive index from the absorption spectrum measured in transmission. In the spectral regions of transparency, both refractive indices determined from reflection and from the Kramers-Kronig calculation should be superimposed. The method had been applied to determine the index of refraction of low dimensional compounds. Refractive index (full circles) and absorption (dashed line) spectra of

  6. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces ∼100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 GeV protons

  7. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  8. Relation among gamma-ray energy spectra, exposure rates and effective dose equivalents rates in the working places of the KUR reactor room

    Exposure rates and Effective dose equivalents are estimated on the basis of gamma-ray energy spectra in some places of the KUR reactor room. A relation among those radiation protection quantities are investigated to know the most appropriate way for estimation of radiation risks to radiation worekers. (author)

  9. An approach of a systematical description of gamma-ray spectra from (n,xγ). Reactions induced by fast neutron

    Based on the semi-empirical method which used to calculate the gamma-ray production data from neutron induced reactions, within the target mass number of 20n<20 MeV, the systematics for parameter R was obtained. And the sensitivity of the parameter R to the total spectra was studied. (1 tab., 8 figs.)

  10. EMISSION FROM HOT DUST IN THE INFRARED SPECTRA OF GAMMA-RAY BRIGHT BLAZARS

    A possible source of γ-ray photons observed from the jets of blazars is inverse Compton scattering by relativistic electrons of infrared seed photons from a hot, dusty torus in the nucleus. We use observations from the Spitzer Space Telescope to search for signatures of such dust in the infrared spectra of four γ-ray bright blazars, the quasars 4C 21.35, CTA102, and PKS 1510-089, and the BL Lacertae object ON231. The spectral energy distribution (SED) of 4C 21.35 contains a prominent infrared excess indicative of dust emission. After subtracting a non-thermal component with a power-law spectrum, we fit a dust model to the residual SED. The model consists of a blackbody with temperature ∼1200 K, plus a much weaker optically thin component at ∼660 K. The total luminosity of the thermal dust emission is 7.9 ± 0.2 x 1045 erg s-1. If the dust lies in an equatorial torus, the density of infrared photons from the torus is sufficient to explain the γ-ray flux from 4C 21.35 as long as the scattering occurs within a few parsecs of the central engine. We also report a tentative detection of dust in the quasar CTA102, in which the luminosity of the infrared excess is 7 ± 2 x 1045 erg s-1. However, in CTA102 the far-infrared spectra are too noisy to detect the 10 μm silicate feature. Upper limits to the luminosity from thermal emission from dust in PKS 1510-089, and ON231, are 2.3 x 1045, and 6.6 x 1043 erg s-1, respectively. These upper limits do not rule out the possibility of inverse Compton upscattering of infrared photons to γ-ray energies in these two sources. The estimated covering factor of the hot dust in 4C 21.35, 22%, is similar to that of non-blazar quasars; however, 4C 21.35 is deficient in cooler dust.

  11. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  12. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume I. Data analysis methodology and hardware description

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and had dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV 241Pu and 208-keV 237U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings

  13. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume II. Software description and listings

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and has dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV 241Pu and 208-keV 237U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings

  14. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    Qin, Jianguo; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the gamma-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt gamma-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.

  15. Application of spectrum shifting methodology to restore NaI(Tl)-recorded gamma spectra, shifted due to temperature variations in the environment.

    Mitra, Pratip; Roy, Arup Singha; Verma, Amit K; Pant, Amar D; Prakasha, M S; Anilkumar, S; Kumar, A Vinod

    2016-01-01

    A method has been standardized for restoring a shifted differential pulse height spectrum from a scintillator based gamma ray spectrometer recorded at measurement temperature, to the position of a desired spectrum, recorded at a reference temperature. The method is based on the assumption that the spectrum obtained at measurement temperature represents the same statistical distribution as that at reference temperature but with different energy scales. A computer program has been developed for calculation of the transformation between the energy scales and for the restoration of the shifted spectrum. The method developed has been successfully applied for the restoration of gamma spectra measured at different temperatures. PMID:26492324

  16. Development of a neural network approach to characterise 226Ra contamination at legacy sites using gamma-ray spectra taken from boreholes

    There are a large number of sites across the UK and the rest of the world that are known to be contaminated with 226Ra owing to historical industrial and military activities. At some sites, where there is a realistic risk of contact with the general public there is a demand for proficient risk assessments to be undertaken. One of the governing factors that influence such assessments is the geometric nature of contamination particularly if hazardous high activity point sources are present. Often this type of radioactive particle is encountered at depths beyond the capabilities of surface gamma-ray techniques and so intrusive borehole methods provide a more suitable approach. However, reliable spectral processing methods to investigate the properties of the waste for this type of measurement have yet to be developed since a number of issues must first be confronted including: representative calibration spectra, variations in background activity and counting uncertainty. Here a novel method is proposed to tackle this issue based upon the interrogation of characteristic Monte Carlo calibration spectra using a combination of Principal Component Analysis and Artificial Neural Networks. The technique demonstrated that it could reliably distinguish spectra that contained contributions from point sources from those of background or dissociated contamination (homogenously distributed). The potential of the method was demonstrated by interpretation of borehole spectra collected at the Dalgety Bay headland, Fife, Scotland. Predictions concurred with intrusive surveys despite the realisation of relatively large uncertainties on activity and depth estimates. To reduce this uncertainty, a larger background sample and better spatial coverage of cores were required, alongside a higher volume better resolution detector. - Highlights: • Land contaminated with radium is hazardous to human health. • Borehole gamma-ray spectra provide means of characterising contamination at depth

  17. Verification of Monte Carlo Calculations by Means of Neutron and Gamma Fluence Spectra Measurements behind and inside of Iron-Water Configurations

    Neutron and gamma spectra were measured behind and inside of modules consisting of variable iron and water slabs that were installed in radial beams of the zero-power training and research reactors AKR of the Technical University Dresden and ZLFR of the University of Applied Sciences Zittau/Goerlitz. The applied NE-213 scintillation spectrometer did allow the measurement of gamma and neutron fluence spectra in the energy regions 0.3-10 MeV for photons and 1.0-20 MeV for neutrons. The paper describes the experiments and presents important results of the measurements. They are compared with the results of Monte Carlo transport calculations made by means of the codes MCNP and TRAMO on an absolute scale of fluences

  18. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    Qin, Jianguo; Lai, Caifeng; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the g...

  19. The splitting of the infrared vibrational spectra of RbAg4I5 in the low-temperature gamma-phase

    Kozlov, G. V.; Mirzoiants, G. I.; Volkov, A. A.; Goffman, V. G.

    1984-10-01

    Dynamic conductivity spectra at 2-33/cm, obtained with monochromatic backward-wave-tube radiation and a submillimeter spectrometer (resolution 0.001/cm) at 4.2-123 K, are presented for the gamma phase of monocrystalline RbAg4I5. Progressive spectral splitting is seen as temperature decreases, with almost 30 well-defined lines of widths as small as 0.01/cm at 4.2 K. Possible mechanisms for this phenomenon are considered.

  20. Fast-neutron scintillation spectrometer with gamma compensation for measuring spectra and fluxes of neutrons with energies of 0.5 to 16 MeV

    This paper describes a fast-neutron scintillation spectrometer based on a stilbene single crystal 40 mm in diameter and 10 mm high and an FEU-93 photomultiplier. The spectrometer has a circuit for compensation of gamma radiation and is designed for measurement of the spectra and fluxes of neutrons in the energy range of 0.5-16 MeV in neutron therapy. The results of measurements on the U-120 cyclotron are given

  1. A comparative study on experimental and theoretical ESR spectra of lactic acid polymers irradiated by gamma rays

    Homo polymers of L-Lactic acid (LLA) and D,L-Lactic acid (DLLA), being biocompatible and absorbable in body iluids have recently found wide applications in the preparation of surgical sutures, controlled drug delivery systems, burn wound coverings etc. For sometime these polymers have also been prepared in the form of plates and screws for mandibular fracture fixation, tissue implants. Their chemical sensitivities against relatively high temperatures and hydrolysis with water make them unsuitable for conventional sterilization techniques like hot water vapor and ethylene oxide. Sterilization of the devices made of these polymers is therefore possible by gamma ray irradiation. This has initiated a number of research works in order to better understand the effects of ionizing radiation on this polymer. The aim of this study is to determine the possible radical types, their location on macromolecular structure and the reasons for peak shifts in the experimental and theoretical ESR spectra. Polymer samples were irradiated in air and in vacuum (10□□ torr) to 25 kGy sterilization dose at the dose rate 0.59 kGy/h and at room temperature by 60Co γ-irradiator. Despite being chemically the same radical type, some differences were observed in the splitting of peaks of PLLA and PDLLA samples. These differences were determined and compared by means of fitting studies. Firstly, PLLA was characterized and its g and hyperfine splitting values were found as 2.0032±0.0002 and 20.37±0.2. In the characterization study of PDLLA, it was found that one of the nearest two radicals was on the upper and the other one was on the lower plane of PDLLA chain. (author)

  2. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Sun Dunlu [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)], E-mail: dlsun@aiofm.ac.cn; Luo Jianqiao; Zhang Qingli [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Xiao Jingzhong [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Xu Jiayue [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Haihe; Yin Shaotang [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China)

    2008-12-15

    Laser crystals Nd{sup 3+}:Gd{sub 3}Ga{sub 5}O{sub 12} (Nd:GGG) and Nd{sup 3+}:Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space.

  3. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Laser crystals Nd3+:Gd3Ga5O12 (Nd:GGG) and Nd3+:Gd3Sc2Ga3O12 (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space

  4. Neutron-Induced Fission of Actinium-227, Protactinium-231 and Neptunium-237: Mass Distribution

    Results of radiochemical studies on the mass distribution in the neutron-induced fission of actinium-227, protactinium-231 and neptunium-237 have been presented. This work has been carried out as part of a programme to determine the mass distribution in the fission of heavy elements as a function of Z and A. All irradiations have been carried out in the core of the swimming-pool type reactor APSARA with cadmium shielding wherever necessary. Relative yields of several fission product nuclides have been obtained by a method involving a comparison of the fission product activities from the respective targets with those formed from uranium-235 simultaneously irradiated. Thermal-neutron fission yields of uranium-235 have been assumed. These results indicate a predominantly asymmetric mass distribution in all the three cases, and also a distinct though small symmetric peak in the case of actinium-227. (author)

  5. Measurement of the Multi-T{bold e}V Gamma-Ray Flare Spectra of Markarian 421 and Markarian 501

    Krennrich, F. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160 (United States); Biller, S.D. [Department of Physics, Oxford University, Oxford, England (United Kingdom); Bond, I.H. [Department of Physics, University of Leeds, Leeds, LS2 9JT, England (United Kingdom); Boyle, P.J. [Experimental Physics Department, University College, Belfield, Dublin 4 (Ireland); Bradbury, S.M. [Department of Physics, University of Leeds, Leeds, LS2 9JT, England (United Kingdom); Breslin, A.C. [Experimental Physics Department, University College, Belfield, Dublin 4 (Ireland); Buckley, J.H. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Burdett, A.M. [Department of Physics, University of Leeds, Leeds, LS2 9JT, England (United Kingdom); Gordo, J.B. [Experimental Physics Department, University College, Belfield, Dublin 4 (Ireland); Carter-Lewis, D.A.; Catanese, M. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160 (United States); Cawley, M.F. [Physics Department, National University of Ireland, Maynooth (Ireland); Fegan, D.J. [Experimental Physics Department, University College, Belfield, Dublin 4 (Ireland); Finley, J.P.; Gaidos, J.A.; Hall, T. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Hillas, A.M. [Department of Physics, University of Leeds, Leeds, LS2 9JT, England (United Kingdom); Lamb, R.C. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Lessard, R.W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Masterson, C. [Experimental Physics Department, University College, Belfield, Dublin 4 (Ireland); McEnery, J.E. [Department of Physics, University of Utah, Salt Lake City, UT 84112 (United States); Mohanty, G. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160 (United States); Moriarty, P. and others.

    1999-01-01

    The energy spectrum of Markarian 421 in flaring states has been measured from 0.3 to 10 TeV using both small and large zenith angle observations with the Whipple Observatory 10 m imaging telescope. The large zenith angle technique is useful for extending spectra to high energies, and the extraction of spectra with this technique is discussed. The resulting spectrum of Markarian 421 is fitted reasonably well by a simple power law: J(E)=E{sup {minus}2.54{plus_minus}0.03{plus_minus}0.10} photons m{sup {minus}1} s{sup {minus}1} TeV{sup {minus}1}, where the first set of errors is statistical and the second set is systematic. This is in contrast to our recently reported spectrum of Markarian 501, which over a similar energy range has substantial curvature. The differences in TeV energy spectra of gamma-ray blazars reflect both the physics of the gamma-ray production mechanism and possibly differential absorption effects at the source or in the intergalactic medium. Since Markarian 421 and Markarian 501 have almost the same redshift (0.031 and 0.033, respectively), the difference in their energy spectra must be intrinsic to the sources and not due to intergalactic absorption, assuming the intergalactic infrared background is uniform. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  6. On the Temperature Behaviour of Optical Transmission Spectra of gamma-Modified Vitreous As2S3

    Golovchak R.Ya.

    2006-03-01

    Full Text Available Temperature behaviour of the optical transmission of gamma-irradiated vitreous v-As2S3 is studied for the first time in the absorption edge region. It is shown that temperature dependences of the main transmission characteristics are different for gamma-irradiated and non-irradiated glasses. The difference is associated with the existence of specific coordination topological defects appearing in the As2S3 network due to gamma-irradiation.

  7. On the Temperature Behaviour of Optical Transmission Spectra of gamma-Modified Vitreous As2S3

    Golovchak R.Ya.; Shpotyuk O. I.; Boyko V.T.; Zurawska A.

    2006-01-01

    Temperature behaviour of the optical transmission of gamma-irradiated vitreous v-As2S3 is studied for the first time in the absorption edge region. It is shown that temperature dependences of the main transmission characteristics are different for gamma-irradiated and non-irradiated glasses. The difference is associated with the existence of specific coordination topological defects appearing in the As2S3 network due to gamma-irradiation.

  8. A new method for the determination of low-level actinium-227 in geological samples

    We developed a new method for the determination of 227Ac in geological samples. The method uses extraction chromatographic techniques and alpha-spectrometry and is applicable for a range of natural matrices. Here we report on the procedure and results of the analysis of water (fresh and seawater) and rock samples. Water samples were acidified and rock samples underwent total dissolution via acid leaching. A DGA (N,N,N',N'-tetra-n-octyldiglycolamide) extraction chromatographic column was used for the separation of actinium. The actinium fraction was prepared for alpha spectrometric measurement via cerium fluoride micro-precipitation. Recoveries of actinium in water samples were 80 ± 8 % (number of analyses n = 14) and in rock samples 70 ± 12 % (n = 30). The minimum detectable activities (MDA) were 0.017-0.5 Bq kg-1 for both matrices. Rock sample 227Ac activities ranged from 0.17 to 8.3 Bq kg-1 and water sample activities ranged from below MDA values to 14 Bq kg-1of 227Ac. From the analysis of several standard rock and water samples with the method we found very good agreement between our results and certified values. (author)

  9. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  10. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+:Y3A15O12 (Nd:YAG) and Yb3+:Y3A15O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340 nm. The former is contributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100Mrad gamma-ray In contrast, the same dose irradiation does not impair the fluorescent properties of Yb:YAG crystal. These results indicate that Yb:YAG crystal possesses the advantage over Nd:YAG crystal that has better reliability for applications in harsh radiant environment. (fundamental areas of phenomenology (including applications))

  11. Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays

    Sharma, Suresh C. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)], E-mail: sharma@uta.edu; Murphree, Jay; Chakraborty, Tonmoy [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2008-11-15

    We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under {approx}100 W/cm{sup 2} laser radiation, the PL intensity (I{sub PL}) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission ({lambda}{sub peak}) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm{sup 2} 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both I{sub PL} and {lambda}{sub peak} are significantly different; I{sub PL} increases to a saturation level, and the magnitude of the blue-shift in {lambda}{sub peak} is reduced. We discuss possible mechanisms underlying these results.

  12. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  13. DS02 fluence spectra for neutrons and gamma rays at Hiroshima and Nagasaki with fluence-to-kerma coefficients and transmission factors for sample measurements.

    Egbert, Stephen D; Kerr, George D; Cullings, Harry M

    2007-11-01

    Fluence spectra at several ground distances in Hiroshima and Nagasaki are provided along with associated fluence-to-kerma coefficients from the Dosimetry System 2002 (DS02). Also included are transmission factors for calculating expected responses of in situ sample measurements of neutron activation products such as (32)P,(36)Cl,(39)Ar,(41)Ca, (60)Co,(63)Ni,(152)Eu, and (154)Eu. The free-in-air (FIA) fluences calculated in 2002 are available for 240 angles, 69 energy groups, 101 ground distances, 5 heights, 4 radiation source components, 2 cities. The DS02 code uses these fluences partitioned to a prompt and delayed portion, collapsed to 58 energy groups and restricted to 97 ground distances. This is because the fluence spectra were required to be in the same format that was used in the older Dosimetry System 1986 (DS86) computer code, of which the DS02 computer code is a modification. The 2002 calculation fluences and the collapsed DS02 code fluences are presented and briefly discussed. A report on DS02, which is available on the website at the Radiation Effects Research Foundation, provides tables and figures of the A-bomb neutron and gamma-ray output used as the sources in the 2002 radiation transport calculations. While figures illustrating the fluence spectra at several ground ranges are presented in the DS02 Report, it does not include any tables of the calculated fluence spectra in the DS02 report. This paper provides, at several standard distances from the hypocenter, the numerical information which is required to translate the FIA neutron fluences given in DS02 to a neutron activation measurement or neutron and gamma-ray soft-tissue dose. PMID:17643260

  14. Measurement and Analysis of the Neutron and Gamma-Ray Flux Spectra in a Neutronics Mock-Up of the HCPB Test Blanket Module

    The nuclear parameters of a breeding blanket, such as tritium production rate, nuclear heating, activation and dose rate, are calculated by integral folding of an energy dependent cross section (or coefficient) with the neutron (or gamma-ray) flux energy spectra. The uncertainties of the designed parameters are determined by the uncertainties of both the cross section data and the flux spectra obtained by transport calculations. Also the analysis of possible discrepancies between measured and calculated integral nuclear parameter represents a two-step procedure. First, the energy region and the amount of flux discrepancies has to be found out and second, the cross section data have to be checked. To this end, neutron and gamma-ray flux spectra in a mock-up of the EU Helium-Cooled Pebble Bed (HCPB) breeder Test Blanket Module (TBM), irradiated with 14 MeV neutrons, were measured and analysed by means of Monte Carlo transport calculations. The flux spectra were determined for the energy ranges that are relevant for the most important nuclear parameters of the TBM, which are the tritium production rate and the shielding capability. The fast neutron flux which determines the tritium production on 7Li and dominates the shield design was measured by the pulse-height distribution obtained from an organic liquid scintillation detector. Simultaneously, the gamma-ray flux spectra were measured. The neutron flux at lower energies, down to thermal, which determines the tritium production on 6Li, was measured with time-of-arrival spectroscopy. For this purpose, the TUD neutron generator was operated in pulsed mode (pulse width 10 μs, frequency 1 kHz) and the neutrons arriving at a 3He proportional counter in the mock-up were recorded as a function of time after the source neutron pulse. The spectral distributions for the two positions in the mock-up, where measurements were carried out, were calculated with the Monte Carlo code MCNP, version 5, and nuclear data from the

  15. Monte Carlo based method for conversion of in-situ gamma ray spectra obtained with a portable Ge detector to an incident photon flux energy distribution.

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    1998-02-01

    A Monte Carlo based method for the conversion of an in-situ gamma-ray spectrum obtained with a portable Ge detector to photon flux energy distribution is proposed. The spectrum is first stripped of the partial absorption and cosmic-ray events leaving only the events corresponding to the full absorption of a gamma ray. Applying to the resulting spectrum the full absorption efficiency curve of the detector determined by calibrated point sources and Monte Carlo simulations, the photon flux energy distribution is deduced. The events corresponding to partial absorption in the detector are determined by Monte Carlo simulations for different incident photon energies and angles using the CERN's GEANT library. Using the detector's characteristics given by the manufacturer as input it is impossible to reproduce experimental spectra obtained with point sources. A transition zone of increasing charge collection efficiency has to be introduced in the simulation geometry, after the inactive Ge layer, in order to obtain good agreement between the simulated and experimental spectra. The functional form of the charge collection efficiency is deduced from a diffusion model. PMID:9450590

  16. The Anomalous Decay eta -> pi pi gamma gamma

    Knoechlein, G.; Scherer, S; Drechsel, D.

    1995-01-01

    We investigate the rare radiative eta decay modes eta -> pi+ pi- gamma gamma and eta -> pi0 pi0 gamma gamma within the framework of chiral lagrangians at o(p^4) and present photon spectra for both processes.

  17. The Prompt Gamma-Ray, Prompt Electron and Prompt X-Ray Spectra Associated with Fission Fragments of Specific Mass

    Well-defined prompt gamma-rays, prompt-conversion elections and prompt K-X-rays have been observed in coincidence with moving fission fragments of Cf252. In a few cases, the masses and charges of the nuclei emitting the gamma-rays and conversion electrons have been identified. The gamma-ray, prompt-electron and prompt X-ray energies as well as the two fission fragments energies were measured with high-resolution solid-state detectors. The masses of the fragments were deduced from their energies, and the nuclear charges were determined by measuring the K-X - ray energies associated with different masses. The magnitude and sign of the Doppler shift in gamma-ray energy allowed assignment of the gamma-ray lines to single members of fragment pairs. The Doppler shift also provides an independent measure of the fragment velocity and hence the fragment mass after neutron emission. The results of the X-ray measurements are consistent with the view that the majority of the prompt X-rays emitted during the spontaneous fission of Cf252 are the result of internal conversion during the de-excitation of low-energy collective states of the primary fission fragments. Apart from the specific results discussed above, the most important consequence of these experiments has been the demonstration that it is possible to study the properties of individual fission fragments, as identified by their characteristic radiations, rather than studying the properties of an average fission fragment with an average mass and charge. The consequences of this advance in the technique of studying fission fragments ate being explored. (author)

  18. Formation of very hard electron and gamma-ray spectra of flat spectrum radio quasar in fast-cooling regime

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-04-01

    In external Compton scenario, we investigate the formation of the very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution N^' }_e(γ^')∝ γ^' -p} with the spectral index p ˜ 1.3 is formed below the minimum energy of injection electron when inverse Compton scattering takes place in the Klein-Nishina regime, i.e., inverse Compton scattering of relativistic electrons on broad-line region radiation in flat spectrum radio quasars. This produces a very hard gamma-ray spectrum, and can reasonably explain the very hard Fermi-LAT spectrum of the flat spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  19. Development of a detector setup based on BGO single crystals to measure high energy gamma spectra of neutron sources

    Radiation detectors based on Bi4Ge3O12 (BGO) single crystal scintillators have many applications, mainly in high-energy physics, and nuclear industry. The BGO possesses several advantages including high density, large effective atomic number Zeff, small radiation length, high radiation hardness, stability of chemical properties, non-hygroscopic nature and much smaller afterglow which make these crystals indispensable in many applications. These crystals are the best choices for the spectroscopy of high energies gamma rays which are usually produced from (γ, n) reactions in various neutron sources. The major applications of these crystals in high energy physics and to detect high energy gammas require large size crystals. It has been well known that the signal output from BGO crystals is strongly governed by the purity and crystal defects. To grow high quality single crystals with large size and minimum number of defects has always been a daunting task for crystal growers. In this communication, we describe the growth and characterization BGO single crystals. Fabrication of a setup based on BGO scintillator useful to measure gamma-rays from an Am-Be neutron source is discussed

  20. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles. PMID:11542904

  1. Development of a neural network approach to characterise (226)Ra contamination at legacy sites using gamma-ray spectra taken from boreholes.

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul

    2015-02-01

    There are a large number of sites across the UK and the rest of the world that are known to be contaminated with (226)Ra owing to historical industrial and military activities. At some sites, where there is a realistic risk of contact with the general public there is a demand for proficient risk assessments to be undertaken. One of the governing factors that influence such assessments is the geometric nature of contamination particularly if hazardous high activity point sources are present. Often this type of radioactive particle is encountered at depths beyond the capabilities of surface gamma-ray techniques and so intrusive borehole methods provide a more suitable approach. However, reliable spectral processing methods to investigate the properties of the waste for this type of measurement have yet to be developed since a number of issues must first be confronted including: representative calibration spectra, variations in background activity and counting uncertainty. Here a novel method is proposed to tackle this issue based upon the interrogation of characteristic Monte Carlo calibration spectra using a combination of Principal Component Analysis and Artificial Neural Networks. The technique demonstrated that it could reliably distinguish spectra that contained contributions from point sources from those of background or dissociated contamination (homogenously distributed). The potential of the method was demonstrated by interpretation of borehole spectra collected at the Dalgety Bay headland, Fife, Scotland. Predictions concurred with intrusive surveys despite the realisation of relatively large uncertainties on activity and depth estimates. To reduce this uncertainty, a larger background sample and better spatial coverage of cores were required, alongside a higher volume better resolution detector. PMID:25461525

  2. An evaluation of commercial IBM PC software for the analysis of low-level environmental gamma-ray spectra

    A comparative evaluation of seven commercial gamma-ray analysis software packages, written for the IBM PC, was performed. Four software packages were supplied by US nuclear instrument manufacturers. A fifth package was supplied by a French nuclear instrument manufacturer. Two additional packages were supplied by software companies in the United States and Finland. For this evaluation emphasis was given to accuracy, peak detection, noise and phantom peak rejection for low level environmental sample analysis. System requirements, nuclide identification, ease of operation and other optional utilities were also considered. Of the seven software packages evaluated, two contained the most desirable features required for environmental applications. 9 tabs

  3. Investigation of prompt fission neutron and gamma spectra with their covariance matrices - Application to 239Pu+nth, 238U+n1.8MeV,235U+nth

    Prompt fission neutron and gamma spectra as well as multiplicities are important for nuclear heating purpose. A recent tool, FIFRELIN, has been developed at Cadarache for simulating the de-excitation of the fission fragments (FF) in order to generate the quantities mentioned above within a single code. The input data required by the code are the pre-neutron mass and kinetic energy distributions. These distributions come from experiments. Additional models are used to sample the charge, spin and parity of the fragments. The excitation energy sharing between two complementary fragments has been detailed in previous works. When the FF characteristics are sampled (A, Z, KE, J, π) the de-excitation process can start. The first scheme is based on Weisskopf statistical theory for neutron emission and level density plus strength functions for gamma emission. The neutron emission is performed before the gamma emission (uncoupled scheme). The second one is a Hauser-Feshbach like scheme based on neutron and gamma transmission coefficients (neutron and gamma emissions are coupled). The whole simulation allows the estimation of fission observables such as prompt fission neutron and gamma spectra as well as multiplicities but also distributions of all fission-related quantities. Various thermal, fast and spontaneous fissioning systems have been studied. In addition, a coupling algorithm between FIFRELIN and the CONRAD nuclear data evaluation code has been initiated in order to generate covariance matrices related to prompt fission spectra. (authors)

  4. UV-visible and infrared absorption spectra of Bi2O3 in lithium phosphate glasses and effect of gamma irradiation

    Ultraviolet and visible absorption spectra of prepared undoped lithium phosphate glass and samples of the same nominal composition with additional Bi2O3 contents were measured before and after being subjected to gamma doses of 3 and 6 Mrad. The base undoped lithium phosphate glass exhibits strong charge transfer ultraviolet absorption bands, which are related to unavoidable presence of trace iron impurities within the raw materials for the preparation of this glass. Bi2O3-containing glasses show the extension of UV absorption beside the resolution of visible bands at 400, 450, and 700 nm with the increase of Bi2O3 content due the sharing of absorption of Bi3+ ions. Gamma irradiation of the base glass reveals extended induced bands; the UV bands are related to the conversion of some Fe2+ to Fe3+ through photochemical reactions during the irradiation process. The visible induced bands are related to the formation of positive hole centers from the host phosphate glass. Glasses containing Bi2O3 are observed to show some shielding behavior, which is attributed to the presence of heavy weight and large atomic number of Bi3+ ions. Infrared absorption spectral measurements of the base lithium phosphate glass show characteristic vibrational modes which are related to specific phosphate groups. The addition of Bi2O3 in measurable percent produces additional vibrational bands due to the introduction of Bi-O groups such as BiO3 and BiO6. (orig.)

  5. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    Ullmann, John L [Los Alamos National Laboratory; Couture, A J [Los Alamos National Laboratory; Keksis, A L [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; O' Donnell, J M [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Haight, R C [Los Alamos National Laboratory; Rundberg, R S [Los Alamos National Laboratory; Kawano, T [Los Alamos National Laboratory; Chyzh, A [NORTH CAROLINA STATE UNIV; Baramsai, B [NORTH CAROLINA STATE UNIV; Wu, C Y [LLNL; Mitchell, G E [NORTH CAROLINA STATE UNIV; Becker, J A [LLNL; Krticka, M [CHARLES UNIV

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  6. On the gamma-ray spectra radiated by protons accelerated in SNR shocks near molecular clouds: The case of SNR RX J1713.7-3946

    Malkov, M A; Sagdeev, R Z

    2005-01-01

    Cosmic rays (CRs) are thought to be accelerated in SNRs. The most favorable situation for proving that the main, hadronic CR component is accelerated there is when CRs interact with dense gases, such as molecular clouds (MC) which surround the SN shock. Here, a new mechanism of spectrum formation in partially ionized gases near SNRs is proposed. Using an analytic model of nonlinear diffusive shock acceleration, we calculate the spectra of protons and estimate the resulting $\\gamma$-ray emission occurring when the SNR shock approaches a MC. We show that the spectrum develops a break in the TeV range and that its GeV component is suppressed. These modifications to the standard theory occur because of the proximity of the partially ionized MC-gas and because of the physics of particle and Alfven wave propagation inside the gas. Possible applications of the new spectra to the recent CANGAROO and HESS observations of the SNR RX J1713.7-3946 are discussed.

  7. SAMPO, A Fortran IV Program for Computer Analysis of Gamma Spectrafrom Ge(Li) Detectors, and for Other Spectra with Peaks

    Routti, Jorma T.

    1969-10-20

    SAMPO is a Fortran IV program written to perform the data- reduction analysis described by J. T. Routti and S. G. Prussin in Photopeak Method for the Computer Analysis of Gamma-Ray Spectra from Semiconductor Detectors, Nuclear Instruments and Methods 72, 125-142 (1969). The code has also been used to analyze other spectra with peaks and continua. Program SAMPO can be used for an automatic off-line or an interactive on-line analysis. It includes algorithms for line-shape, energy, and efficiency calibrations, and peak-search and peak-fitting routines. Different options are available to make the code applicable to accurate nuclear spectroscopic work as well as to routine data reduction. The mathematical methods and their coding are briefly described. Instructions for using the program and for preparing input data are given and the optimal strategies for running the code are discussed. Instructions are given for using the LRL program library version of SAMPO and for obtaining source decks.

  8. Prepared for the thirtieth annual conference on bioassay analytical and environmental chemistry. Reliable analysis of high resolution gamma spectra

    A new method has been developed to reliably analyze pulse height-energy spectra obtained from measurements employing high resolution germanium detectors. The method employs a simple data transformation and smoothing function to calculate background and identify photopeaks and isotopic analysis. This technique is elegant in its simplicity because it avoids dependence upon complex spectrum deconvolution, stripping, or other least-square-fitting techniques which complicate the assessment of measurement reliability. A moving median was chosen for data smoothing because, unlike moving averages, medians are not dominated by extreme data points. Finally, peaks are identified whenever the difference between the background spectrum and the transformed spectrum exceeds a pre-determined number of standard deviations

  9. In-source laser spectroscopy developments at TRILIS—towards spectroscopy on actinium and scandium

    Resonance Ionization Laser Ion Sources (RILIS) have become a versatile tool for production and study of exotic nuclides at Isotope Separator On-Line (ISOL) facilities such as ISAC at TRIUMF. The recent development and addition of a grating tuned spectroscopy laser to the TRIUMF RILIS solid state laser system allows for wide range spectral scans to investigate atomic structures on short lived isotopes, e.g., those from the element actinium, produced in uranium targets at ISAC. In addition, development of new and improved laser ionization schemes for rare isotope production at ISAC is ongoing. Here spectroscopic studies on bound states, Rydberg states and autoionizing (AI) resonances on scandium using the existing off-line capabilities are reported. These results allowed to identify a suitable ionization scheme for scandium via excitation into an autoionizing state at 58,104 cm − 1 which has subsequently been used for ionization of on-line produced exotic scandium isotopes.

  10. Deconvolution of gamma energy spectra from NaI (Tl) detector using the Nelder-Mead zero order optimisation method

    The aim of this work is to develop a method for gamma ray spectrum deconvolution from NaI(Tl) detector. Deconvolution programs edited with Matlab 7.6 using Nelder-Mead method were developed to determine multiplet shape parameters. The simulation parameters were: centroid distance/FWHM ratio, Signal/Continuum ratio and counting rate. The test using synthetic spectrum was built with 3σ uncertainty. The tests gave suitable results for centroid distance/FWHM ratio≥2, Signal/Continuum ratio ≥2 and counting level 100 counts. The technique was applied to measure the activity of soils and rocks samples from the Anosy region. The rock activity varies from (140±8) Bq.kg-1 to (190±17)Bq.kg-1 for potassium-40; from (343±7)Bq.Kg-1 to (881±6)Bq.kg-1for thorium-213 and from (100±3)Bq.kg-1 to (164 ±4) Bq.kg-1 for uranium-238. The soil activity varies from (148±1) Bq.kg-1 to (652±31)Bq.kg-1 for potassium-40; from (1100±11)Bq.kg-1 to (5700 ± 40)Bq.kg-1 for thorium-232 and from (190 ±2) Bq.kg-1 to (779 ±15) Bq-1 for uranium -238. Among 11 samples, the activity value discrepancies compared to high resolution HPGe detector varies from 0.62% to 42.86%. The fitting residuals are between -20% and +20%. The Figure of Merit values are around 5%. These results show that the method developed is reliable for such activity range and the convergence is good. So, NaI(Tl) detector combined with deconvolution method developed may replace HPGe detector within an acceptable limit, if the identification of each nuclides in the radioactive series is not required

  11. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high-volume neutron activation analysis at the IBR-2 reactor of FLNP at JINR

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high-volume neutron activation analysis (NAA) was designed, developed and implemented at the IBR-2 reactor at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma-spectra at constant interaction with the NAA database.

  12. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  13. Gamma ray interaction, crystallization and infrared absorption spectra of some glasses and glass-ceramics from the system Li2O.B2O3.Al2O3

    The infrared absorption spectra of some selected ternary glasses and their glass-ceramic derivatives from the system Li2OB2O3Al2O3 have been measured in the spectral range 200-4000 cm-1 before and after successive gamma rays irradiation. Vibrational and crystallization techniques are employed to investigate the structure and phases which are found in this system by controlled crystallization. The role of Al2O3 in the structure and the crystallization behaviour of the system has been discussed. The effect of gamma rays on the surface of the glasses and glass-ceramics as revealed from infrared spectroscopy is discussed. (author)

  14. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    A careful new measurement of the 238U(n,γ) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4π calorimetric scintillator array consisting of 160 BaF2 crystals. Measurements were made on a 48 mg/cm2 depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  15. Effects of Fe as a physical filter on spectra of Technitium- 99m, uniformity, system volume sensitivity and spatial resolution of Philip ADAC Forte dual-head gamma camera

    Sohaimi, N.; Abdullah, N.; Shah, S. I.; Zakaria, A.

    2014-11-01

    Single photon emission computed tomography (SPECT) imaging inherits some limitations, i.e., due to scattered gamma photons which degrade spatial resolution causes poor image quality. This study attempts to reduce a fraction of scattered gamma photons before reaching gamma camera detector by using Fe sheet (0.35 mm and 0.40 mm) as a physical filter. Also investigate the effects on spectra of Tc-99m, spatial resolution, system volume sensitivity and uniformity. The thickness of Fe physical filter is selected on the basis of percentage attenuation calculations of different gamma ray energies by various thicknesses of material. Data were acquired using Philip ADAC forte dual-head gamma camera without and with physical filter with LEHR collimator installed. For spectra, uniformity and system volume sensitivity, a cylindrical source tank filled with water added with Tc-99m was scanned. Uniformity and system volume sensitivity images were reconstructed with FBP method by applying Butterworth filter of order 5, cut-off frequency 0.35 cycles/cm and Chang's attenuation correction method using 0.13 cm-1 linear attenuation coefficient. Spatial resolution study was done by scanning a line source (0.8 mm inner diameter) of Tc-99m at various source-to-collimator distances in air and in scattering medium without and with physical filter. A substantial reduction in count rate from Compton and photopeak regions of Tc-99m spectra with physical filter is recorded. Improvement in spatial resolution with physical filter up to 4 cm source-to-collimator distance is obtained. System volume sensitivity was reduced and no improvement in uniformity. These thicknesses of physical filter may be tested further by scanning different planar/SPECT phantoms in Tc-99m imaging.

  16. Effects of Fe as a physical filter on spectra of Technitium- 99m, uniformity, system volume sensitivity and spatial resolution of Philip ADAC Forte dual-head gamma camera

    Single photon emission computed tomography (SPECT) imaging inherits some limitations, i.e., due to scattered gamma photons which degrade spatial resolution causes poor image quality. This study attempts to reduce a fraction of scattered gamma photons before reaching gamma camera detector by using Fe sheet (0.35 mm and 0.40 mm) as a physical filter. Also investigate the effects on spectra of Tc-99m, spatial resolution, system volume sensitivity and uniformity. The thickness of Fe physical filter is selected on the basis of percentage attenuation calculations of different gamma ray energies by various thicknesses of material. Data were acquired using Philip ADAC forte dual-head gamma camera without and with physical filter with LEHR collimator installed. For spectra, uniformity and system volume sensitivity, a cylindrical source tank filled with water added with Tc-99m was scanned. Uniformity and system volume sensitivity images were reconstructed with FBP method by applying Butterworth filter of order 5, cut-off frequency 0.35 cycles/cm and Chang's attenuation correction method using 0.13 cm−1 linear attenuation coefficient. Spatial resolution study was done by scanning a line source (0.8 mm inner diameter) of Tc-99m at various source-to-collimator distances in air and in scattering medium without and with physical filter. A substantial reduction in count rate from Compton and photopeak regions of Tc-99m spectra with physical filter is recorded. Improvement in spatial resolution with physical filter up to 4 cm source-to-collimator distance is obtained. System volume sensitivity was reduced and no improvement in uniformity. These thicknesses of physical filter may be tested further by scanning different planar/SPECT phantoms in Tc-99m imaging

  17. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Raeder, S.; Bastin, B.; Block, M.; Creemers, P.; Delahaye, P.; Ferrer, R.; Fléchard, X.; Franchoo, S.; Ghys, L.; Gaffney, L. P.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Luton, F.; Moore, I. D.; Martinez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  18. Software tool for xenon gamma-ray spectrometer control

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  19. A synchrotron self-Compton emission model compared with the VHE spectrum of Crab Nebula, Geminga energy spectra and hadronic gamma-rays in the Tycho SNR

    Sinitsyna, V.G.; Borisov, S.S.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y.; Platonov, G.F. [P.N.Lebedev Physical Institute, Leninsky prospect 53, Moscow, 119991 (Russian Federation)

    2009-12-15

    The Crab Nebula has an extraordinary broad spectrum, attributed to synchrotron radiation of electrons with energies from GeV to PeV. This continuous spectrum appears to terminate near 10{sup 8} eV and photons, produced by relativistic electrons and positrons (approx10{sup 15} eV) via the Inverse Compton effect, form a new component of the spectrum in the GeV - TeV energy range. The spectrum of gamma-rays from the Crab Nebula has been measured in the energy range 0.8 TeV to 11 TeV at the SHALON Alatoo Observatory by the atmospheric Cerenkov technique. The VHE spectral energy distribution of the Crab Nebula is compared with the predictions of a synchrotron self-Compton emission model in the energy range 0.8 TeV to 11 TeV (Hillas et al. 1998). Tycho's SNR has been observed by SHALON imaging Cherenkov telescope at Tien-Shan. This object, Ia SNR, has long been considered as a candidate for a CR hadron source in the Northern Hemisphere. The expected pion decay gamma-flux, F{sub g}ammaapproxE{sub g}amma{sup -1}, extends up to >30 TeV, whereas the IC gamma-ray flux has a cutoff above a few TeV. So, the detection of gamma-rays at energies of 10 - 40 TeV by SHALON is evidence for a hadron origin of the gamma-rays.

  20. Evaluation on radiation features of the KUR deuterium neutron irradiation equipment. Neutron energy spectra and neutron- and gamma-ray absorption dose rate

    The deuterium irradiation equipment at reactor for research in Kyoto University (KUR) was reformed at main aim of upgrading of neutron capture therapy (NCT) from November, 1995 to March, 1996. Neutron energy spectra at reference radiation position evaluated on a partial radiation mode by multiple activated foil method, was introduced. As a result of carrying out a simulation calculation using two dimensional transmission calculation supposing medical radiation using the obtained spectra, experimental results could be followed satisfactorily in total. And, comparison with differential absorption dose rate measured by using twin-type ionization box and semiconductor detector for medical probe was also carried out. (G.K.)

  1. Neutron capture cross section and capture gamma-ray spectra of 138Ba in the keV-neutron energy region

    Katabuchi T.

    2015-01-01

    Full Text Available The neutron capture cross sections and the capture γ-ray spectra of 138Ba were measured in the astrophysically important energy region. Measurements were made at neutron energies from 15 to 80 keV. The neutron energy was determined by the time-of-flight method. The γ-ray spectra showed that the primary transition pattern strongly depended on the incident neutron energy. The neutron capture cross sections were derived by the pulse height weighting technique. The present cross section values were compared with evaluated cross section data and previous measurements.

  2. Prompt and Delayed Gamma-Rays from Fission

    The following data about gamma-rays from fission are reported and discussed; Total prompt gamma-ray spectrum, and average number and energy of gamma-rays; X-rays in prompt fission, and excitation of X-rays in matter; gamma-ray spectra as a function of the mass ratio in fission, gamma-lines in those spectra, and Doppler effect-, anisotropy in gamma-emission relative to the direction of fragments; average gamma-energy and gamma-spectra as a function of mass of the fission products; delayed gamma-rays; delayed gamma-rays as a function of fission product mass. (author)

  3. Reflection of gamma radiation in a spherical steel-lined, concrete-walled room Part II: Energy spectra and angular distributions

    A study of the behavior of reflected gamma radiation inside a spherical, steel-lined, concrete-walled room has been conducted using the discrete ordinates S/sub n/ code ANISN. The purpose of this study was to investigate the effect of the scattered radiation on the calculated gamma dose rate expected following a severe accident inside a reactor containment building. This paper presents an analysis of the angular, radial, and energy dependence of the scattered fluence. An empirical approximation for the radial dependence of the contribution of the scattered radiation is presented. Major conclusions are that the total scattered radiation is approximately twice the product of the incident fluence and the albedo near the wall, and that the presence of a steel liner significantly reduces the scattered radiation. Generally, good agreement was observed between the discrete ordinates results and published Monte Carlo data

  4. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    Farah, Khaled, E-mail: kafarah@gmail.com [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); ISTLS, University of Sousse (Tunisia); Hosni, Faouzi [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Academie Militaire de Fondouk Jedid, 8012 Nabeul (Tunisia); Mejri, Arbi [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Boizot, Bruno [Laboratoire des Solides Irradiés, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Hamzaoui, Ahmed Hichem [Centre National de Recherche en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences, University of Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia)

    2014-03-15

    Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO{sub 3} and NaNO{sub 3} with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 °C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy.

  5. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO3 and NaNO3 with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 °C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy

  6. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    Farah, Khaled; Hosni, Faouzi; Mejri, Arbi; Boizot, Bruno; Hafedh, Ben; Hamzaoui, Ahmed Hichem

    2014-01-01

    International audience Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO 3 and NaNO 3 with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the s...

  7. Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at lambda = 40 deg

    Ling, J. C.; Gruber, D. E.

    1977-01-01

    Measurements of the spectral and angular distributions of atmospheric gamma sq cm rays in the energy range 0.3-10 MeV over Palestine, Texas, at residual depths of 2.5 and 70 g/sq cm are reported. In confirmation of the general features of a model prediction, the measurements show at 2.5 g/sq cm upward moving fluxes greater than the downward moving fluxes, the effect increasing with energy, and approximate isotropy at 70 g/sq cm. Numerous characteristic gamma-ray lines were observed, most prominently at 0.511, 1.6, 2.3, 4.4, and 6.1 MeV. Their intensities were also compared with model predictions. Observations were made with an actively shielded scintillator counter with two detectors, one of aperture 50 deg FWHM and the other of 120 deg FWHM. Above 1 MeV, contributions to the counting rate from photons penetrating the shield annulus and from neutron interactions were large; they were studied by means of a Monte Carlo code and are extensively discussed.

  8. Use of gamma-ray spectrometry for analysis of Uranium isotopic composition in soil of Iran

    The use of depleted uranium (DU) in various weaponry and ammunition during the Iraq war in April, 2003 caused serious concern in Iran over possible uranium contamination of the Iran environment and consequently long health effect. After a shell explosion, uranium is discharged by the fire in the air in the form of oxidized particles and can be dispersed within a radius of several kilometers. Gamma-ray spectrometry was used to determine uranium concentration in soil samples collected from 8 sites in Iranian sectors of Iraq border. All soil samples were dried ,gently grounded and passed through a 2 mm sieve. Three hundred grams of each sample were placed in plastic container and sealed for at least 20 days to allow equilibrium in uranium, thorium and actinium series. Gamma-ray intensities were measured with 40% HPGe (CANBERRA) detector. The detector was shielded by 10 cm lead on all sides with cadmium-copper in inner sides. The system is equipped with software for data acquisition and analyzing. The counting time was 6x104 seconds and background spectra were also collected for the same period of time. The concentrations of 238U assessed from 63.3 keV and 92.4 keV emission of its first daughter nuclide, 234Th. To assess the isotopic ratio of 238U/235 U, secular equilibrium was ensured and the concentration of 235U under the 186 keV was deduced. The 226Ra was determined through the 295 keV and 352 keV gamma-rays of 214Pb. The concentrations of 238U and activity ratio of 238U/235U is given. The average of measurement activity ratio is 21,very close to the value of 21.5 for natural uranium, while the activity ratio of DU can be as high as 76.9. The 238U activity ranges within typically accepted levels from 14-33 Bq kg-1, while the typical range given by UNSCEAR (1988) for different soil samples is 10 to 50 Bq kg-1. The analysis of eight surface soil samples of Iranian sites of Iraq border, showed that uranium isotopes are in their natural abundances

  9. Measurement and analysis of neutron and gamma-ray flux spectra in a neutronics mock-up of the HCPB Test Blanket Module

    Neutron and γ-ray flux spectra were measured with a NE 213 spectrometer in the rear block of a mock-up of the HCPB Test Blanket Module. The flux of the slow neutrons was investigated by time-of-arrival spectroscopy with a pulsed D-T neutron source. The experimental results were compared versus calculations performed with the Monte Carlo code MCNP and the data libraries EFF-3, FENDL-2.0 and FENDL-2.1, and are discussed with respect to the shielding capability of the TBM and to tritium breeding

  10. Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks?

    Aoi, Junichi; Takahashi, Keitaro; Ioka, Kunihito; Nagataki, Shigehiro

    2009-01-01

    We revisit the high-energy spectral cutoff originating from the electron-positron pair creation in the prompt phase of gamma-ray bursts (GRBs) with numerical and analytical calculations. We show that the conventional exponential cutoff should be drastically modified to a steepened power-law in practical observations that integrate emissions from different internal shocks. Since the steepening is tiny for observations, this "smearing" effect can generally reduce the previous estimates of the Lorentz factor of the GRB outflows. We apply our formulation to GRB 080916C, recently detected by the LAT detector on the Fermi satellite, and find that the minimum Lorentz factor can be ~600 (or even smaller values), which is below but consistent with the previous result of ~900. Observing the steepening energy (so-called "pair-break energy") is crucial to diagnose the Lorentz factor and/or the emission site in the future observations.

  11. Method for converting in-situ gamma ray spectra of a portable Ge detector to an incident photon flux energy distribution based on Monte Carlo simulation

    2008-01-01

    A matrix stripping method for the conversion of in-situ gamma ray spectrum, obtained with portable Ge detector, to photon flux energy distribution is proposed. The detector response is fully described by its stripping matrix and full absorption efficiency curve. A charge collection efficiency function is introduced in the simulation to take into account the existence of a transition zone of increasing charge collection after the inactive Ge layer. Good agreement is obtained between simulated and experimental full absorption efficiencies. The characteristic stripping matrix is determined by Monte Carlo simulation for different incident photon energies using the Geant4 toolkit system. The photon flux energy distribution is deduced by stripping the measured spectrum of the partial absorption and cosmic ray events and then applying the full absorption efficiency curve. The stripping method is applied to a measured in-situ spectrum. The value of the absorbed dose rate in air deduced from the corresponding flux energy distribution agrees well with the value measured directly in-situ.

  12. Precision calculations for gamma gamma --> WW --> 4fermions(+gamma)

    Bredenstein, A; Roth, M

    2005-01-01

    The O(alpha) electroweak radiative corrections to gamma gamma --> WW --> 4f within the electroweak Standard Model are calculated in double-pole approximation (DPA). Virtual corrections are treated in DPA, and real-photonic corrections are based on complete lowest-order matrix elements for gamma gamma --> 4f+gamma. The radiative corrections are implemented in a Monte Carlo generator called COFFERgammagamma, which optionally includes anomalous triple and quartic gauge-boson couplings in addition and performs a convolution over realistic spectra of the photon beams. A brief survey of numerical results comprises O(alpha) corrections to integrated cross sections as well as to angular and invariant-mass distributions.

  13. The very high energy gamma ray spectra of IES 1959+650 and Mrk 421 as measured with the Whipple 10 m telescope

    In observations made with the Whipple 10 m telescope, 1ES 1959+650 (z 0.048) was caught in a high flaring state in May 2002, concurrent with a high X-ray state, and in June 2002, for which there was no corresponding X-ray flare. The spectra for both of those occasions are well fitted by a power law of differential spectral index ∼ -2.8. The relative stability of the spectral index for those flares argues strongly in favour of a two-component model as to the emission zones for the two radiation regimes.Markarian 421 (z = 0.031) was observed to be in a high flaring state, at levels of ≥ 3 Crab, during March and April 2004. The average spectrum over this time period shows evidence for a cut-off in the spectrum at ∼ 5 TeV, similar to a cut-off seen during an equivalently strong episode of flaring activity in 2001. The continued appearance of this feature indicates a long term stability, either in the physical conditions at the source, or in the intervening medium (such as attenuation on the extra-galactic infra-red background radiation)

  14. A preliminary analysis of {eta}({eta}{sup '}){yields}{pi}{sub 0{gamma}{gamma}} and {eta}{sup '{yields}{eta}{gamma}{gamma}} decays

    Jora, Renata, E-mail: rjora@ifae.e [Grup de Fisica Teorica and IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)

    2010-10-15

    We present preliminary results for the decay widths and the invariant mass spectra of the electromagnetic rare decays {eta}({eta}{sup '}){yields}{pi}{sub 0{gamma}{gamma}} and {eta}{sup '{yields}{eta}{gamma}{gamma}}.

  15. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    Fernandes, Milton Virgilio

    2014-09-15

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  16. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  17. BETA SPECTRA. I. Negatrons spectra

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  18. Evaluation of secondary and prompt fission neutron spectra

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    A simple model allowing to split neutron emission spectra into reaction partials is suggested. Predicted spectra of (n,n`{gamma}), (n,n`f), etc appear to be much harder than usually evaluated. (author)

  19. Effective photon spectra for Photon Colliders

    Ginzburg, I. F.; KOTKIN, G.L.

    1999-01-01

    The luminosity distribution in the effective $\\gamma\\gamma$ mass at photon collider has usually two peaks which are well separated: high energy peak with mean energy spread 5-7% and wide low energy peak.The low energy peak depends strongly on details of design it is unsuitablefor the study of New Physics phenomena. We find simple approximte form of spectra of collided photons for $\\gamma\\gamma$ and $e\\gamma$ colliders wich convolution describes high energy luminosity peak with good accuracy i...

  20. Purification of selenium from thorium, uranium, radium, actinium and potassium impurities for low background measurements

    A technique of selenium purification from 232Th, 238U, 226,228Ra, 227Ac and 40K was developed. This technique is simple to perform and employs a minimum number of highly pure reagents (bidistilled water, nitric acid). Operations carried out during purification (elution, evaporation) practically exclude losses of the target product (chemical yields of Se > 99%). A test purification of 100 g of selenium was carried out using this technique. The efficiency of this technique was confirmed by low background gamma spectrometry of the purified selenium sample. Distribution coefficients of Th, U, Ra and Ac on DOWEX 50W- x 8 cation-exchange resin at different concentrations of selenium and nitric acid were experimentally determinated. Instrumental neutron activation analysis of bidistilled water, deionized water and nitric acid was performed. (orig.)

  1. Purification of selenium from thorium, uranium, radium, actinium and potassium impurities for low background measurements

    Rakhimov, A.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Uzbek Academy of Sciences, Tashkent (Uzbekistan). Inst. of Nuclear Physics (INP AS RUz); Warot, G. [CEA-CNRS, Modane (France). Laboratoire Souterrain de Modane (LSM); Karaivanov, D.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Institute for Nuclear Research and Nuclear Energy (INRNE), Sofia (Bulgaria); Kochetov, O.I.; Lebedev, N.A.; Filosofov, D.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Mukhamedshina, N.M.; Sadikov, I.I. [Uzbek Academy of Sciences, Tashkent (Uzbekistan). Inst. of Nuclear Physics (INP AS RUz)

    2013-07-01

    A technique of selenium purification from {sup 232}Th, {sup 238}U, {sup 226,228}Ra, {sup 227}Ac and {sup 40}K was developed. This technique is simple to perform and employs a minimum number of highly pure reagents (bidistilled water, nitric acid). Operations carried out during purification (elution, evaporation) practically exclude losses of the target product (chemical yields of Se > 99%). A test purification of 100 g of selenium was carried out using this technique. The efficiency of this technique was confirmed by low background gamma spectrometry of the purified selenium sample. Distribution coefficients of Th, U, Ra and Ac on DOWEX 50W- x 8 cation-exchange resin at different concentrations of selenium and nitric acid were experimentally determinated. Instrumental neutron activation analysis of bidistilled water, deionized water and nitric acid was performed. (orig.)

  2. Groundwater seepage from the Ranger uranium mine tailings dam: radioisotopes of radium, thorium and actinium. Supervising Scientist report 106

    Monitoring of bores near the Ranger uranium mine tailings dam has revealed deterioration in water quality in several bores since 1983. In a group of bores to the north of the dam, increases have been observed of up to 500 times for sulphate concentrations and of up to 5 times for 226Ra concentrations. Results are presented here of measurements of members of the uranium, thorium and actinium decay series in borewater samples collected between 1985 and 1993. In particular, measurements of all four naturally-occurring radium isotopes have been used in an investigation of the mechanism of radium concentration changes. For the most seepage-affected bores the major findings of the study include: 228Ra/226Ra 223Ra /226Ra and 224Ra/228Ra ratios all increased over the course of the study; barium concentrations show high seasonal variability, being lower in November than May, but strontium concentrations show a steady increase with time. Calculations show that the groundwater is probably saturated with respect to barite but not with respect to celestite or anglesite; sulphide concentrations are low in comparison with sulphate, and are higher in November than in May; and 227Ac concentrations have increased with time, but do not account for the high 223Ra/226Ra ratios. It is concluded on the basis of these observations that increases in Ra isotope concentrations observed in a number of seepage-affected bores arise from increases in salinity leading to desorption of radium from adsorption sites in the vicinity of the bore rather by direct transport of radium from the tailings. Increased salinity is also causing the observed increases in 227Ac and strontium concentrations, while formation of a barite solid phase in the groundwater is causing the removal of some radium from solution. This is the cause of the increasing radium isotope ratios noted above

  3. Synthesis of chelating agents for actinium 225 complexation and its application in radioimmunotherapy

    Immunotherapy with radiolabeled antibodies should allow fairly specific targeting of certain cancers. However, iodine 131 may not be the best isotope for tumor therapy because of its limited specific activity, low beta-energy, relatively long half life and strong gamma emission. Another approach to improve therapeutic efficacy is the use of replacement isotopes with better physical properties. Chelator that can hold radio-metals with high stability under physiological conditions are essential to avoid excessive damage to non-target cells; Moreover, the development of new bifunctional chelating agents is essential for this purpose. Accordingly, our efforts have been directed, for several years, to the synthesis of original chelating agents likely to form stable complexes in vivo with the numerous potential candidates for such applications. Therefore, we have developed a new simple and efficient synthesis pathway of 2-(4-iso-thio-cyanate-benzyl)-1,4,7,10,13,16- hexa-aza-cyclo-hexadecane- 1,4,7,10,13,16-hexa-acetic acid, though functionalized on the cycle by a termination allowed coupling to an antibody or any other biological substance such as a hapten. (author)

  4. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  5. FTIR spectra

    Machovič, Vladimír; Novák, František; Madronová, L.; Novák, J.

    New York : Nova Science Publisher, 2011 - (Madronová, L.), s. 21-33 ISBN 978-1-61668-965-0. - ( Chemistry Research and Applications) Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z60660521 Keywords : FTIR spectra * humic acids * soil Subject RIV: DB - Geology ; Mineralogy

  6. Search for the decays $J/\\psi\\to\\gamma \\rho \\phi$ and $J/\\psi\\to\\gamma \\rho \\omega$

    Bai, J Z; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guo, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Fang Liu; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Jian; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Varner, G S; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S

    2007-01-01

    Using 58 million $J/\\psi$ events collected with the Beijing Spectrometer (BESII) at the Beijing Electron-Positron Collider, the decays $J/\\psi\\to \\gamma\\phi\\rho$ and $J/\\psi\\to \\gamma\\omega\\rho$ are searched for, and upper limits on their branching fractions are reported at the 90% C. L. No clear structures are observed in the $\\gamma \\rho$, $\\gamma \\phi$, or $\\rho \\phi $ mass spectra for $J/\\psi\\to \\gamma\\phi\\rho$ nor in the $\\gamma \\rho$, $\\gamma \\omega$, or $\\rho \\omega$ mass spectra for $J/\\psi\\to \\gamma\\omega\\rho$.

  7. Airborne gamma-ray spectrometry

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  8. Intercomparison of gamma ray analysis software packages

    The IAEA undertook an intercomparison exercise to review available software for gamma ray spectra analysis. This document describes the methods used in the intercomparison exercise, characterizes the software packages reviewed and presents the results obtained. Only direct results are given without any recommendation for a particular software or method for gamma ray spectra analysis

  9. Spectra of radioactive nuclides radiation, measured with semiconductor detectors. 2

    The second part of the atlas 'Radiation spectra of radionuclides measured with semiconductor detectors' is presented including 259 spectra of 126 alpha, beta, gamma, and X ray emitters. Some spectra of the first part of the atlas are given at another scale and sometimes for other energy ranges. The total number of investigated radionuclides amounts to 261 of which 69 are new ones

  10. Infrared spectra of olivine polymorphs - Alpha, beta phase and spinel

    Jeanloz, R.

    1980-01-01

    The infrared absorption spectra of several olivines (alpha phase) and their corresponding beta phase (modified spinel) and spinel (gamma) high-pressure polymorphs are determined. Spectra were measured for ground and pressed samples of alpha and gamma A2SiO4, where A = Fe, Ni, Co; alpha and gamma Mg2GeO4; alpha Mg2SiO4; and beta Co2SiO4. The spectra are interpreted in terms of internal, tetrahedral and octagonal, and lattice vibration modes, and the spinel results are used to predict the spectrum of gamma Mg2SiO4. Analysis of spectra obtained from samples of gamma Mg2GeO4 heated to 730 and 1000 C provides evidence that partial inversion could occur in silicate spinels at elevated temperatures and pressures.

  11. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  12. The GAMMA-400 Space Mission

    Cumani, P; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    GAMMA-400 is a new space mission which will be installed on board the Russian space platform Navigator. It is scheduled to be launched at the beginning of the next decade. GAMMA-400 is designed to study simultaneously gamma rays (up to 3 TeV) and cosmic rays (electrons and positrons from 1 GeV to 20 TeV, nuclei up to 10$^{15}$-10$^{16}$ eV). Being a dual-purpose mission, GAMMA-400 will be able to address some of the most impelling science topics, such as search for signatures of dark matter, cosmic-rays origin and propagation, and the nature of transients. GAMMA-400 will try to solve the unanswered questions on these topics by high-precision measurements of the Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission and the spectra of cosmic-ray electrons + positrons and nuclei, thanks to excellent energy and angular resolutions.

  13. Using gamma-gamma coincidence measurements to validate Monte Carlo generated detector response functions

    Monte Carlo simulation of gamma-ray transport for the purpose of performing elemental analysis of bulk samples requires the tracking of gamma rays in the sample and also in the detector(s) used. Detector response functions (DRF's) are an efficient and accurate variance reduction technique that greatly decreases the simulation time by substituting the tracking of gamma rays inside the detector by predefined single energy gamma-ray spectra. These spectra correspond to the average response of the detector for incident gamma rays. DRF's are generated by Monte Carlo methods and are benchmarked with experimental data. In this work, prompt gamma-gamma coincidence measurements are presented as a way to validate DRF's for high-energy gamma rays

  14. Statistical study of galactic SNR source spectra

    Broadband modeling of 24 Galactic supernova remnants was performed using a model to test the SNRs for hadronically generated γ-rays by examining combined spectra of π0-decay, bremsstrahlung, inverse compton, and synchrotron radiation. This is the first statistical study of the resulting source spectra, which are reviewed respectively to ascertain the origin of the gamma radiation. This allows a combined review to test the current prepositions of particle acceleration.

  15. Erratum: Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2007-01-01

    Table 1 in our paper had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays; tau. The correct values for these parameters as described in the original text are given in the table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift.

  16. Online Spectral Fit Tool for Analyzing Reflectance Spectra

    Penttilä, A.; Kohout, T.

    2015-11-01

    The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.

  17. Improvements in differentiation unfolding of radiation spectra

    Differentiation unfolding is widely used for measurements of neutron spectra in reactors using proton-recoil proportional counters and for measurements of neutron and gamma-ray spectra using scintillators. Current differentiation unfolding codes use various least-squares fits of polynomials to estimate the derivative of numerical data. Simple examples are used to illustrate the errors in unfolded energy spectra that result from the use of least-squares differentiation. An alternative method of numerical differentiation is presented; this method is shown to be free of the errors that result from least-squares differentiation

  18. Donor impurity-related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells: hydrostatic pressure and {gamma}-X conduction band mixing effects

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Estimation of uranium from multichannel spectra in airborne gamma ray spectrometry using 1.12 MeV and 1.76 MeV photopeaks of 214Bi - an application to Cuddapah basin

    Present study examines the utility of gamma rays of energies 1.12 MeV and 1.76 MeV of uranium in estimation of uranium in airborne gamma ray spectrometric survey (AGRS) in comparison to the conventional 1.76 MeV alone used world wide. As a case study, the AGRS data of northern part of Cuddapah Basin is considered. Multi-channel processing is applied on this dataset to reduce the spectral noise and use of combined 1.12 MeV and 1.76 MeV has reduced the Poisson's related statistical error. Uranium is estimated using above two energies individually and in combination, using multi-channel processing followed by standard corrections procedure. Result indicates that a combination of both energies has given best estimation due to a reduction in overall noise which helped in demarcating geological entities and litho-contacts. This indicates the efficacy of this technique which improved the radio-geochemistry of study area in understanding the radio-elemental variation. (author)

  20. Beta spectra. II-Positron spectra

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  1. Simultaneous beta/gamma digital spectroscopy

    Farsoni, Abdollah T.

    A state-of-the-art radiation detection system for simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) built in our laboratory. The DPP board was designed to digitally capture the analog signal pulses and, following several digital preprocessing steps, transfer valid pulses to the host computer for further digital processing. A MATLAB algorithm was developed to digitally discriminate beta and gamma events and reconstruct separate beta and gamma-ray energy spectra with minimum crosstalk. The spectrometer proved to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  2. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  3. Measuring the Luminosity of a gamma gamma Collider with gamma gamma -> l+ l- gamma Events

    Makarenko, V.; Moenig, K.; Shishkina, T.

    2003-01-01

    The process gamma gamma -> l+ l- is highly suppressed when the total angular momentum of the two colliding photons is zero so that it cannot be used for luminosity determination. This configuration, however is needed for Higgs production at a photon collider. It will be shown that the process gamma gamma -> l+ l- gamma can be used in this case to measure the luminosity of a collider with a precision that is good enough not to limit the error on the partial decay width Gamma(H -> gamma gamma).

  4. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  5. The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

  6. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody

    Schwartz, J; O' Donoghue, J A; Humm, J L [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Jaggi, J S [Bristol-Myers Squibb, Plainsboro, NJ (United States); Ruan, S; Larson, S M [Nuclear Medicine Service Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); McDevitt, M; Scheinberg, D A, E-mail: schwarj1@mskcc.org [Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 (United States)

    2011-02-07

    Clinical therapeutic studies using {sup 225}Ac-labeled antibodies have begun. Of major concern is renal toxicity that may result from the three alpha-emitting progeny generated following the decay of {sup 225}Ac. The purpose of this study was to determine the amount of {sup 225}Ac and non-equilibrium progeny in the mouse kidney after the injection of {sup 225}Ac-huM195 antibody and examine the dosimetric consequences. Groups of mice were sacrificed at 24, 96 and 144 h after injection with {sup 225}Ac-huM195 antibody and kidneys excised. One kidney was used for gamma ray spectroscopic measurements by a high-purity germanium (HPGe) detector. The second kidney was used to generate frozen tissue sections which were examined by digital autoradiography (DAR). Two measurements were performed on each kidney specimen: (1) immediately post-resection and (2) after sufficient time for any non-equilibrium excess {sup 213}Bi to decay completely. Comparison of these measurements enabled estimation of the amount of excess {sup 213}Bi reaching the kidney ({gamma}-ray spectroscopy) and its sub-regional distribution (DAR). The average absorbed dose to whole kidney, determined by spectroscopy, was 0.77 (SD 0.21) Gy kBq{sup -1}, of which 0.46 (SD 0.16) Gy kBq{sup -1} (i.e. 60%) was due to non-equilibrium excess {sup 213}Bi. The relative contributions to renal cortex and medulla were determined by DAR. The estimated dose to the cortex from non-equilibrium excess {sup 213}Bi (0.31 (SD 0.11) Gy kBq{sup -1}) represented {approx}46% of the total. For the medulla the dose contribution from excess {sup 213}Bi (0.81 (SD 0.28) Gy kBq{sup -1}) was {approx}80% of the total. Based on these estimates, for human patients we project a kidney-absorbed dose of 0.28 Gy MBq{sup -1} following administration of {sup 225}Ac-huM195 with non-equilibrium excess {sup 213}Bi responsible for approximately 60% of the total. Methods to reduce renal accumulation of radioactive progeny appear to be necessary for the

  7. Study of p-wave gamma-ray strength functions

    Gamma-ray strength functions are important for description of the gamma emission channel in nuclear reactions. The impact of different models- Weisskopf's single particle model, Brink's standard Lorentzian and Kopecky's generalized Lorentzian for gamma ray strength functions on the calculation of neutron capture related experimental quantities such as total radiation widths Γγ cross sections and gamma-ray spectra has been studied

  8. The absorption of gamma, gamma-families and hadrons in the atmosphere - EC data

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev physical Institute, FIAN, Leninsky prospect 53, 119991 Moscow (Russian Federation); Cherdyntceva, K.V. [P.N.Lebedev physical Institute, FIAN, Leninsky prospect 53, 119991 Moscow (Russian Federation); Janceitova, J.K. [Tien-Shan Highmountain Station, Mitina 3, Almaty (Kazakhstan)

    2009-12-15

    The energy spectra SIGMAE{sub g}amma, E{sub g}amma for gamma-families and hadrons at the level of the Pamir (600 g/cm{sup 2}) and Tien-Shan (685 g/cm{sup 2}) mountains are compared. The ratio of event intensities permits to observe the absorption lengths for different types of events in X-ray emulsion chambers: single gamma-quanta, hadrons, gamma-families and super-families with halo. These values of lambda{sub att} are much more than those determined from zenith angle distributions. Data from other EC experiments are used to decrease the errors in lambda{sub att}. The absorption curves in the atmosphere were obtained for gamma-families and gamma-quanta by means of data compiled for different EC experiments at balloon, aeroplane and mountain heights. The absorption curves cannot be described as a simple exponential dependence in both cases.

  9. A separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray tel...

  10. Reactor Neutrino Spectra

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  11. Study of the gamma spectra emitted in a nuclear reaction - Measurement of the half-lives of the levels 6.13 MeV, 6.92 MeV and 7.12 MeV of 16O

    When the energy shifts of the gamma spectrum released during a nuclear reaction are important compared with the detector resolution, the comparison of the experimental spectrum with theoretical spectra allows us to determine the half-life of the initial state of the transition. The calculation of the experimental spectrum implies to know the slowing-down of the recoil nucleus in the matter in order to take into account the Doppler effect. For recoil energies in the range of the MeV and for solid media, the Lindhard theory agrees well with experimental data. The phenomenon of deflection which appears at very low energies must be taken into account by restraining the measurement domain. By choosing an adequate media we can measure half-lives in the domain 1 and 100 fs without needing to take into account deflection effects. We have measured the half-life of the first 3 energy levels of 16O (6.135 MeV, 6.923 MeV and 7.121 MeV), these levels are reached through the reaction 19F(p,αγ)16O with proton incident energies ranging from 0.872 MeV to 2.42 MeV. We have used a coaxial germanium semi-conductor with lithium additions that was connected to an amplification line of Ortec type. 2 kinds of target have been used: calcium fluoride and copper fluoride evaporated on tantalum support. We have obtained the following values for the half-life: (16±4) fs for the 6.923 MeV level, (18±4) fs for the 7.121 MeV level, and for the 6.135 MeV we can only give a lower limit since the gamma decay occurs when the nucleus is at rest τ > 200 fs

  12. Gamma camera

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  13. Some deficiencies and solutions in gamma ray spectrometry

    A number of problems in high-resolution gamma ray spectrometry as well as some deficiencies of existing computer programs for the quantitative evaluation of spectra are discussed and some practical solutions are proposed. (author)

  14. Gamma-ray methods

    Bulk analysis techniques using gamma radiation are described. The methods include gamma-ray induced reactions, selective gamma-ray scattering and methods which rely on natural radioactivity. The gamma-ray resonance scattering technique can be used for the determination of copper and nickel in bulk samples and drill cores. The application of gamma-gamma methods to iron ore analysis is outlined

  15. Spectra of alkali atoms

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  16. Cascaded Gamma Rays as a Probe of Cosmic Rays

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  17. Multiple multichannel spectra acquisition and processing system with intelligent interface

    A Multiple multichannel spectra acquisition and processing system with intelligent interface is described. Sixteen spectra measured with various lengths, channel widths, back biases and acquisition times can be identified and collected by the intelligent interface simultaneously while the connected computer is doing data processing. The execution time for the Ge(Li) gamma-ray spectrum analysis software on IBM PC-XT is about 55 seconds

  18. Computers in activation analysis and gamma-ray spectroscopy

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  19. Radiological maps of outdoor and indoor gamma dose rates in Greek urban areas obtained by in situ gamma spectrometry

    The results obtained from 259 indoor and outdoor in situ gamma spectrometry measurements with a portable Ge detector and 707 total gamma dose rate measurements with an NaI detector in urban areas of 16 Greek islands are presented. From the in situ gamma spectra, the absorbed dose rate in air due to Uranium series, Thorium series, 40K and 137Cs are derived and discussed. The results obtained from the present work in conjunction with those reported previously were used for the realization of a complete indoor and outdoor gamma radiation map of Greek urban areas using in situ gamma spectrometry with portable Ge detector. (authors)

  20. Action spectra again?

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  1. EPR investigation of some gamma-irradiated excipients

    Aleksieva, Katerina; Yordanov, Nicola D.

    2012-09-01

    The results of electron paramagnetic resonance (EPR) studies on some excipients: lactose, microcrystalline cellulose (avicel), starch, dioxosilane (aerosil), talc and magnesium stearate before and after gamma-irradiation are reported. Before irradiation, all samples are EPR silent except talc. After gamma-irradiation, they show complex spectra except magnesium stearate, which is EPR silent. Studies show the influence of gamma-irradiation on EPR spectra and stability of gamma-induced radicals. Analysis of the EPR spectrum of gamma-irradiated talc shows that this material is radiation insensitive. Only lactose forms stable-free radicals upon gamma sterilization and can be used for identification of radiation processing for a long time period thereafter.

  2. Gamma sterilization

    The lethal action of gamma radiation is based on the disruption of DNA molecules. The sensitivity of (micro)organisms towards radiation varies. In industrial sterilization generally a radiation dose of 25 kGy is applied. Industrial radiation facilities consist of a radiation source, a biological shield and an automatic transport system. Radiation penetrates from all directions into the product and at all positions approximately the same dose is received. The only variable parameter is the velocity of the transport, which in turn determines the total dose received by the product. A number of provisions ensure that the product receives the correct treatment. Some materials show dose-dependent changes resulting from a radiation treatment. Several manufacturers of plastics offer radiation-stable compositions. Hospitals and other users of an irradiation facility have to ensure that the product they offer for gamma sterilization, can stand a treatment. 6 refs.; 2 figs.; 2 tabs

  3. GARCH Gamma

    Robert F. Engle; Joshua V. Rosenberg

    1995-01-01

    This paper addresses the issue of hedging option positions when the underlying asset exhibits stochastic volatility. By parameterizing the volatility process as GARCH, and utilizing risk- neutral valuation, we estimate hedging parameters (delta and gamma) using Monte-Carlo simulation. We estimate hedging parameters for options on the Standard and Poor's 500 index, a bond futures index, a weighted foreign exchange rate index, and an oil futures index. We find that Black-Scholes and GARCH delta...

  4. Gamma teletopography

    The mapping of gamma sources radiation emission in a nuclear plant is an important safety point. A remote gamma ray mapping process was developed in SPS/CEA/SACLAY. It uses the ''pinhole camera'' principle, precursor of photography. It mainly consists of a radiation proof box, with a small orifice, containing sensitive emulsions at the opposite. A first conventional photographic type emulsion photographs the area. A second photographic emulsion shows up the gamma radiations. The superim position of the two shots gives immediate informations of the precise location of each source of radiation in the observed area. To make easier the presentation and to improve the accuracy of the results for radiation levels mapping, the obtained films are digitally processed. The processing assigns a colours scale to the various levels of observed radiations. Taking account physical data and standard parameters, it gets possible to estimate the dose rate. The device is portable. Its compactness and fully independent nature make it suitable for use anywhere. It can be adapted to a remote automatic handling system, robot... so as to avoid all operator exposure when the local dose rate is too high

  5. The particle-gamma coincidence method: A brief introduction

    Mayer, J.; Derya, V.; Endres, J.; Hennig, A.; Netterdon, L.; Pascu, S.; Pickstone, S. G.; Sauerwein, A.; Scholz, P.; Spieker, M.; Streit, T.-M.; Zilges, A. [Institute for Nuclear Physics, University of Cologne (Germany)

    2013-06-10

    Excitation energy information from particle detectors can significantly improve the analysis process of {gamma}-ray spectra and result in more detailed nuclear structure information. Therefore, a new setup at the HORUS {gamma}-ray spectrometer at the University of Cologne has been installed, housing silicon particle detectors at up to eight positions.

  6. Spectra for commutative algebraists

    Greenlees, J. P. C.

    2006-01-01

    The article is designed to explain to commutative algebraists what spectra (in the sense of algebraic topology) are, why they were originally defined, and how they can be useful for commutative algebra.

  7. Limits on the quartic couplings $Z\\gamma\\gamma\\gamma$ and $ZZ\\gamma\\gamma$ from $e^+e^-$ colliders

    Gutierrez-Rodriguez, A; Montano, J; Pérez, M A

    2013-01-01

    We obtain limits on the quartic neutral gauge bosons couplings $Z\\gamma\\gamma\\gamma$ and $ZZ\\gamma\\gamma$ using LEP 2 data published by the L3 Collaboration on the reactions $e^+e^-\\to \\gamma\\gamma\\gamma, Z\\gamma\\gamma$. We also obtain $95 {0.8mm}%$ C. L. limits on these couplings at the future linear colliders energies. The LEP 2 data induce limits of order $10^{-5}$ for the $Z\\gamma\\gamma\\gamma$ couplings and of order $10^{-2}$ for the $ZZ\\gamma\\gamma$ couplings, which are still above the respective Standard Model predictions. Future $e^+e^-$ linear colliders may improve these limits by one or two orders of magnitude.

  8. NaI detector neutron activation spectra for PGNAA applications

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  9. NaI detector neutron activation spectra for PGNAA applications

    Gardner, R.P. E-mail: gardner@ncsu.edu; Sayyed, El; Zheng Yuanshui; Hayden, Stephanie; Mayo, C.W

    2000-11-15

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes {sup 128}I and {sup 24}Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2x2, 5x5, 6x6, and 1x6 NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  10. Induced Radioactivity in Recovered Skylab Materials. [gamma ray spectra

    Fishman, G. J.; Meegan, C. A.

    1980-01-01

    Four radioactive isotopes found in aluminum and stainless steel samples from Skylab debris were recovered in Australia. The low-level activity was induced by high-energy protons and neutrons in the space environment. Measurements of the specific activities are given.

  11. Program Deimos32 for gamma-ray spectra evaluation

    Frána, Jaroslav

    Bruges : Nuclear center, Belgium SCKCEN, 2001. s. 52. [International users Workshop /3./. 23.09.2001-28.09.2001, Bruges] Institutional research plan: CEZ:AV0Z1048901 Subject RIV: JC - Computer Hardware ; Software

  12. Reducing Statistical Noise in Airborne Gamma-Ray Data

    Hovgaard, Jens; Grasty, R. L.

    1997-01-01

    By using the Noise Adjusted Singular Value Decomposition (NASVD) technique it is possible to reconstruct the measured airborne gamma-ray spectra with a noise content that is significant smaller than the noise contained in the original measured spectra. The method can be used for improving the out...

  13. Gamma bursts

    The Vela satellite series has recently detected gamma bursts in the 0.2-1.5MeV energy range. These bursts last an average of from 0.1 to 10s and have a fine time structure, with pulses lasting less than several tens of milliseconds. With simultaneous observations from different satellites it has been possible to determine the spatial origin of some of the bursts. No correlation, however, has been made with known objects. In spite of the fragmentary character of the information received to date, several theories have already been proposed to account for these phenomena

  14. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  15. Methodology for analyzing weak spectra

    There is considerable interest in quantifying radionuclide transfer between environmental compartments. However, in many cases, it can be a challenge to detect concentrations of gamma-emitting radionuclides due to their low levels in environmental samples. As a result, it is valuable to develop analytical protocols to ensure consistent analysis of the areas under weak peaks. The current study has focused on testing how reproducibly peak areas and baselines can be determined using two analytical approaches. The first approach, which can be carried out using Maestro software, involves extracting net counts under a curve without fitting a functional form to the peak, whereas the second approach, which is used by most other peak fitting programs, determines net counts from spectra by fitting a Gaussian form to the data. It was found that the second approach produces more consistent peak area and baseline measurements, with the ability to de-convolute multiple, overlapping peaks. In addition, programs, such as Peak Fit, which can be used to fit a form to spectral data, often provide goodness of fit analyses, since the Gaussian form can be described using a characteristic equation against which peak data can be tested for their statistical significance. (author)

  16. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  17. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  18. Four-fermion production at gamma gamma colliders: 2. Radiative corrections in double-pole approximation

    Bredenstein, A; Roth, M

    2005-01-01

    The O(alpha) electroweak radiative corrections to gamma gamma --> WW --> 4f within the electroweak Standard Model are calculated in double-pole approximation (DPA). Virtual corrections are treated in DPA, leading to a classification into factorizable and non-factorizable contributions, and real-photonic corrections are based on complete lowest-order matrix elements for gamma gamma --> 4f + gamma. Soft and collinear singularities appearing in the virtual and real corrections are combined alternatively in two different ways, namely by using the dipole subtraction method or by applying phase-space slicing. The radiative corrections are implemented in a Monte Carlo generator called COFFERgammagamma, which optionally includes anomalous triple and quartic gauge-boson couplings in addition and performs a convolution over realistic spectra of the photon beams. A detailed survey of numerical results comprises O(alpha) corrections to integrated cross sections as well as to angular, energy, and invariant-mass distributi...

  19. Fuzzy Gamma-hypersemigroups

    R. Ameri; Sadeghi, R.

    2013-01-01

    We introduced and study fuzzy gamma-hypersemigroups, according to fuzzy semihyper- groups as previously defined [33] and prove that results in this respect. In this regard first we introduce fuzzy hyperoperation and then study fuzzy gamma-hypersemigroup. We will proceed by study fuzzy gamma-hyperideals and fuzzy gamma-bihyperideals. Also we study the relation between the classes of fuzzy gamma-hypersemigroups and semigroups. Precisely, we associate a gamma-hypersemigroup to every fuzzy hypers...

  20. On semi-exclusive measurement of $\\gamma\\gamma\\to\\gamma\\gamma$ scattering

    Staszewski, Rafał

    2016-01-01

    The two-photon production of photon pairs, i.e. the $\\gamma\\gamma\\to\\gamma\\gamma$ process, is studied. Different production modes regarding the elastic or inelastic coupling of the intermediate-state photons to the protons are considered. The semi-exclusive measurement, where one intact proton is registered by a dedicated forward proton detector, is discussed. As an example, the signal and background simulations are performed for the $\\gamma\\gamma\\to\\gamma\\gamma$ process mediated by the hypothetical 750 GeV resonance.

  1. A system for simultaneous beta and gamma spectroscopy

    Farsoni, A. T.; Hamby, D. M.

    2007-08-01

    A state-of-the-art radiation detection system for real-time and simultaneous spectroscopy of beta-particles and gamma-rays has been developed. The system utilizes a triple-layer phoswich detector and a customized Digital Pulse Processor (DPP) designed and built in our laboratory. The DPP board digitally captures the analog signal pulses and, following several digital preprocessing steps, transfers valid pulses to the host computer for further digital processing. A resolving algorithm also was developed to digitally discriminate beta and gamma events, and reconstruct separate beta and gamma-ray energy spectra with minimal crosstalk. The spectrometer has proven to be an effective tool for recording separate beta and gamma-ray spectra from mixed radiation fields. The system as a beta-gamma spectrometer will have broad-ranging applications in nuclear non-proliferation, radioactive waste management, worker safety, systems reliability, dose assessment, and risk analysis.

  2. Precision measurements of gamma-ray intensities

    To determine relative intensities of gamma rays in the region of 280 to 2750 keV, Ge(Li) detectors were calibrated with standard sources and cascade gamma-ray sources. Decay rates of the standard sources were determined by means of the 4πβ-γ or 4πX-γ coincidence method. Experimental conditions were improved and spectra were carefully analyzed. Relative gamma-ray intensities of 56Co, 88Y, sup(110m)Ag, 133Ba, 134Cs, 152Eu, 154Eu, 192Ir and 207Bi were determined within the accuracy of about 0.5% for strong gamma rays. Intensities per decays were obtained from the relative intensities for most of the nuclides. (author)

  3. Environmental gamma radiation measurements on providence of Camaguey, Cuba

    The population exposure to those living on the Camaguey Province of Cuba, was estimated by measuring the natural gamma background. Gamma spectra of soils and measurements of absorbed dose rate in air were taken. Radiological measurements carried out with a portable ionization chamber RSS-112 at the sampled sites revealed an average outdoor absorbed dose rate of 63.6 n Gy.h 1 - due to cosmic rays and terrestrial gamma radiation. Computed dose rates obtained through the UNSCEAR(1993) dose coefficients range from 5-136 n Gy.h 1 - , with a mean value of 39.2 n Gy.h 1 - , due to natural terrestrial gamma radiation

  4. Gamma-ray spectroscopy on irradiated fuel rods

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  5. Atomic Spectra Database (ASD)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  6. Function spectra and continuous G-spectra

    Davis, Daniel

    2011-01-01

    Let G be a profinite group, {X_alpha}_alpha a cofiltered diagram of discrete G-spectra, and Z a spectrum with trivial G-action. We show how to define the homotopy fixed point spectrum F(Z, holim_alpha X_alpha)^{hG} and that when G has finite virtual cohomological dimension (vcd), it is equivalent to F(Z, holim_alpha (X_alpha)^{hG}). With these tools, we show that the K(n)-local Spanier-Whitehead dual is always a homotopy fixed point spectrum, a well-known Adams-type spectral sequence is actually a descent spectral sequence, and, for a sufficiently nice k-local profinite G-Galois extension E, with K a closed normal subgroup of G, the equivalence (E^{h_kK})^{h_kG/K} \\simeq E^{h_kG} (due to Behrens and the author), where (-)^{h_k(-)} denotes k-local homotopy fixed points, can be upgraded to an equivalence that just uses ordinary (non-local) homotopy fixed points, when G/K has finite vcd.

  7. Selective Natural Gamma Logging

    Natural gamma logging can be used for determining the bismuth-214 (or RaC) content of uranium-bearing rocks. As the equilibrium coefficient of ores cannot be satisfactorily measured in situ, the log obtained can not be used to determine uranium content directly. The principle of the new technique of selective natural gamma logging is the use of the photoelectric effect due to the presence of uranium in rock. Natural gamma radiations are emitted but then scattered by the ore. The presence of uranium causes a change in the shape of the scattered gamma spectrum and this change can be related to the uranium content. The authors show that, if one applies the similitude principle to the transport equation for gamma radiation, the numerical value of a certain parameter P, representing the ratio of the number of counts obtained in two bands I1 and I2 of the scattered gamma spectrum, depends on the value of the equivalent atomic number of the rock (Zeq). For any given deposit the value of the parameter varies mainly with the uranium content qu and very little with the chemical composition of the matrix. The first laboratory tests were carried out on concrete models of uranium ore. Examination of spectra obtained (using a 400-channel selector) showed that the two boundaries I1 and I2 should range between 100 and 150 keV and 300 and 700 keV respectively. Each value of the parameter P obtained in this manner is divided by the value Ps obtained from one of the models used as a reference. The experiment showed that the normalized parameter, i. e., Px =P/PS, was a function of the content, having the shape log Px = A + Bqu. The coefficients A and B are calibration standards whose precise determination requires measurements taken in as large a number as possible of models with known uranium content. In laboratory conditions the degree of error is between 10 and 20% for contents of about 0.5% A field survey rig mounted on a lorry has been developed. It comprises a Nal

  8. Nebular spectra of pair-instability supernovae

    Jerkstrand, A; Heger, A

    2015-01-01

    If very massive stars (M >~ 100 Msun) can form and avoid too strong mass loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t >~ 1 yr, match those of model predictions. Here we compute theoretical spectra based on model PISN ejecta at 1-3 years post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t >~ 2 years which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe the metal core expands slowly enough to produce a forest of distinc...

  9. On the f' spectrum of high-energy gamma-ray families

    The f' spectra of high-energy gamma-ray families are constructed from the data obtained with the Mount Fuji emulsion chambers. The shape of the spectra is almost independent of the energy of the families and is apparently contradictory to the result of the Pamir collaboration, which shows a shrinkage of the spectra as energy increases. (author)

  10. Gamma-ray emission from globular clusters

    Tam, P H Thomas; Hui, C Y

    2012-01-01

    Over the last few years, the fruitful data provided by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope has revolutionized our understanding of high-energy processes in globular clusters, particularly those involving compact objects like millisecond pulsars (MSPs). Gamma-ray emission between 100 MeV to 10 GeV has been detected from more than a dozen globular clusters in our Galaxy, most notably 47 Tucanae and Terzan 5. Based on a sample of known gamma-ray globular clusters, empirical relations between the gamma-ray luminosity and properties of globular clusters such as stellar encounter rate, metallicity, as well as optical and infrared photon energy density in the cluster, have been derived. The gamma-ray spectra are generally described by a power law with a cut-off at a few GeV. Together with the detection of pulsed gamma-rays from a millisecond pulsar in a globular cluster, such spectral signature gives support that gamma-rays from globular clusters are collective curvature emission from...

  11. Urban gamma spectrometry. Report 2

    Aage, H.K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Kuukankorpi, S.; Moring, M.; Smolander, P.; Toivonen, H. (Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    Urban gamma spectrometry has been given only minor attention with the focus being on rural gamma spectrometry. However, in recent years the Nordic emergency management authorities have turned focus towards border control and lost or stolen sources. Gamma spectra measured in urban areas are characterized by a wide variety of spectrum shapes and very fast changes in environmental background. In 2004 a Danish CGS (Carborne Gamma Spectrometry) survey took place in Copenhagen. It was found that gamma spectrometry in urban areas is far more complicated to interpret than had previously been thought and a new method 'Fitting with Spectral Components', FSC, based on NASVD, was tested with some success. In Finland, a database 'LINSSI' has been developed for spectral data management. In CGS search mode a 'peak hypothesis test' is applied to the measured spectra. This system was tested during the Helsinki 2005 Athletics World Championship and it provides fast and reliable automated alarms for intermediate and high level signals. In Sweden mobile detector systems are used for border controls and problems are encountered when making measurement in harbour, container areas. The methods for handling data and for interpretation of urban gamma spectrometry measurements were compared and tested on the same data sets from Copenhagen and Helsinki. Software tools were developed for converting data between the Finnish LINSSI database and the binary file formats used in Denmark and Sweden. The Processing methods used at DTU and STUK have different goals. The ASSS and FSC methods are designed to optimize the overall detection capability of the system, while sacrificing speed, usability and to a certain level robustness. These methods cannot always be used for real time analysis. The Peak Significance method is designed to give robust alarms in real time, while sacrificing some of the detection capability. Thus these methods are not interchangeable, but rather

  12. Time-of-flight discrimination between gamma-rays and neutrons by neural networks

    Akkoyun, Serkan

    2012-01-01

    In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays and these neutrons influence gamma-ray spectra. An obvious method of separating between neutrons and gamma-rays is based on the time-of-flight (tof) technique. This work aims obtaining tof distributions of gamma-rays and neutrons by using feed-forward artificial neural network (ANN). It was shown that, ANN can correctly classify gamma-ray and neutron events. Testing of trained networks on ...

  13. Transuranic isotopic analysis using gamma rays

    Clark, D; Decman, D

    1998-10-15

    Transuranic waste typically emits gamma rays that are characteristic of the isotopic composition of the materials. If the area of the gamma ray photopeaks in a High Purity Ge (HPGe) spectrum can be accurately determined and if the gamma ray/x-ray branching ratios and half-lives for the radionuclides in the sample are known the relative concentration of each isotope in the waste can be determined using tomographic techniques. Methods used to accurately determine these photopeaks usually requires a computer code that does multi-peak analysis and unfolding of a given part of the gamma-ray spectrum. Computer techniques allow an accurate determination of the photopeaks and hence the isotopic composition of the waste material. These computer techniques can be automated for different spectra within a wide range of possible isotopic compositions. To improve photopeak statistics all of the spectra taken in a tomographic survey of the sample are summed and are used in the isotopic analysis. The method, accuracy, and limitations of this type of isotopic analysis system will be discussed. The gamma ray acquisition system is currently being upgraded with multiple HPGe detectors to improve the counting statistics obtainable in a given amount of time. The results of the DOE performance evaluations and the progress of the multiple detector upgrade will be discussed.

  14. Modulation gamma resonance spectroscopy

    Possibility to control dynamic processes in a matter through gamma-resonance modulation by high-frequency external variable fields in excess of inverse lifetimes of the Moessbauer nuclei excited states, that is, within the megahertz frequency range lies in the heart of the modulation gamma-resonance spectroscopy. Through the use of the gamma-resonance process theoretical analysis methods and of the equation solution method for the density matrix with the secondary quantization of gamma-radiation field one attacks the problems dealing with the effect of both variable fields and relaxation on gamma-resonance. One has studied the gamma-radiation ultrasound modulation stages. One points out a peculiar role of the gamma-magnetic resonance effect in modulation gamma resonance spectroscopy formation. One forecasts development of the modulation gamma-resonance spectroscopy into the nonlinear gamma-resonance spectroscopy

  15. Blazar jets the spectra

    Ghisellini, G

    2000-01-01

    The radiation observed by blazars is believed to originate from the transformation of bulk kinetic energy of relativistic jets into random energy. A simple way to achieve this is to have an intermittent central power source, producing shells of plasma with different bulk Lorentz factors. These shells will collide at some distance from the center, producing shocks and then radiation. This scenario, called internal shock model, is thought to be at the origin of the gamma-rays observed in gamma-ray bursts and can work even better in blazars. It accounts for the observed key characteristics of these objects, including the fact that radiation must be preferentially produced at a few hundreds of Schwarzschild radii from the center, but continues to be produced all along the jet. At the kpc scale and beyond, the slowly moving parts of a (straight) jet can be illuminated by the beamed radiation of the core, while the fast parts of the jet will see enhanced cosmic microwave radiation. In both cases the Inverse Compton...

  16. Programs for the automatic gamma-ray measurement with CANBERRA 8100/QUANTA system

    Some programs have been prepared for the automatic operation of the CANBERRA 8100/QUANTA System for the gamma-ray spectrum measurement. The main parts of these programs are: (1) to collect and record on magnetic disks the data of gamma-ray spectra automatically, while the recorded data are analyzed to estimate the nuclides which generate photopeaks of spectra and to calculate those concentrations; (2) to draw plotted diagrams of pulse height distributions of gamma-ray spectra data and other data by the additional digital plotter; and etc. (author)

  17. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  18. Analysis of X-Ray (L) spectra of heavy elements

    The general problem of obtaining and analysing spectra is presented, with emphasis in the comparison of methods for the analysis of gamma rays and X rays. The method proposed to obtain a standard and later the intensities of lines of an X-ray (L) spectrum is discussed. The good eesults obtained by the program RAIOXL, when simulated spectra are used, and by the program RAIXL1, when doublets are decomposed, are shown. In annex A, the listings of the programs used are presented, and in annex B a review is made of the analytical formulae used for adjustment of the pulses. (I.C.R.)

  19. Limiting excitation energy for GDR gamma decay

    Tudisco, S; Anzalone, A; Di Pietro, A; Figuera, P; Giustolisi, F; Lü, J; Musumarra, A; Rizzo, F; Cardella, G; Lanzalone, G; Papa, M; Pirrone, S; Tudisco, S; Amorini, F; Giustolisi, F; Lanzalone, G; Rizzo, F; Musumarra, A

    2002-01-01

    Gamma-ray spectra in coincidence with charged particles for the reactions sup 4 sup 0 Ca + sup 4 sup 8 Ca, sup 4 sup 6 Ti at E sub i sub n sub c = 25 A MeV are presented. The spectra statistical analysis shows the survival of the GDR (giant dipole resonance) up to an excitation energy of approximately 5 A MeV for a system with mass around 60 amu. This result was obtained by improving statistical calculations by including the deuteron decay channel, the mass dependence of the GDR parameters in the decay chain, and the GDR isospin splitting. (authors)

  20. Deconvolution of Positrons' Lifetime spectra

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  1. Competing $\\gamma$-rigid and $\\gamma$-stable vibrations in neutron rich Gd and Dy isotopes

    Budaca, R

    2015-01-01

    An exactly separable version of the Bohr Hamiltonian which combines the $\\gamma$-stable and $\\gamma$-rigid axial vibration-rotation is used to describe the collective properties of few neutron rich transitional nuclei. The coupling between the two types of collective motion is managed through a rigidity parameter which also influences the geometry of the shape-phase space. While the $\\gamma$-angular part of the problem associated to axially symmetric shapes is treated within the small angles approximation and the stiff $\\gamma$ oscillation hypothesis, the $\\beta$ vibration is described by means of a Davidson potential. The resulting model have three free parameters not counting the scale and was successfully applied for the description of the collective spectra for few heavier isotopes of Gd and Dy. In both cases a critical nucleus was identified through a discontinuous behavior in respect to the rigidity parameter and relevant experimental observables.

  2. Gamma-ray Albedo of the Moon

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  3. Degradation of polycarbonate induced by gamma radiation

    Polycarbonate (PC) DUROLON amorphous, of molecular weight 22000 g/mol is used in medical supplies and may be sterilized by gamma radiation. The main chain scission and polymer degradation occur when this polymer is irradiated. The value G = 1.54 to DUROLON was obtained by equation: 106/M v = 106/M v' + 0.054 G R. The degradation without crosslinking it is not general rule to all types of polycarbonates; an comparison was realized. The infrared (FT-IR) spectra of irradiated PC by gamma rays with different doses showed the main chain scissions in carbonyl groups. The mechanism of polymeric degradation to DUROLON, observed by NMR spectra, is a recombination of phenoxy and phenyl radicals. (author)

  4. Cosmic Ray Spectra in Nambu-Goldstone Dark Matter Models

    Ibe, Masahiro; /SLAC; Murayama, Hitoshi; /UC, Berkeley /LBL, Berkeley /Tokyo U., IPMU; Shirai, Satoshi; /Tokyo U. /Tokyo U., IPMU; Yanagida, Tsutomu T.; /Tokyo U., IPMU /Tokyo U.

    2010-06-11

    We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone dark matter models. The recent observed positron/electron excesses at PAMELA and Fermi experiments are well fitted by the dark matter with a mass of 3TeV for the annihilating model, while with a mass of 6TeV for the decaying model. We also show that the Nambu-Goldstone dark matter models predict a distinctive gamma-ray spectrum in a certain parameter space.

  5. Monte Carlo calculations of neutron and gamm-ray energy spectra for fusion-reactor shield design: comparison with experiment

    Neutron and gamma-ray spectra resulting from the interactions of approx. 14-MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree within 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra is also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  6. Requirements on gamma ray spectrum analysis programs

    Many programs intended for the evaluation of gamma ray spectra have been written. Most of them cover the basic needs but there are several options a user might want to have which are not incorporated. This paper attempts to list all general and some special requirements on such programs. Recommendations on details of the physical and technical methods to match the requirements and the citation of any existing program are avoided. (author)

  7. The software quality control for gamma spectrometry

    One of major problems with wich the quality control program of an environmental measurements laboratory is confronted is the evaluation of the performances of software packages for the analysis of gamma-ray spectra. A program of tests for evaluating the performances of the software package (SPECTRAN-F, Canberra Inc.) used by our laboratory is being carried out. In this first paper the results of a preliminary study concerning the evaluation of the performance of the doublet analysis routine are presented

  8. Extended Survey of Indoor and Outdoor Terrestrial Gamma Radiation in Greek Urban Areas by In situ Gamma Spectrometry with Portable Ge Detector

    The results obtained from more than 1000 indoor and outdoor in situ gamma spectrometry measurements in 41 towns (from all geographic subdivisions) of the Greek mainland (not islands) are presented. From the in situ gamma spectra the absorbed dose rate in air due to uranium series, thorium series, 40K and 137Cs are derived and discussed. (author)

  9. Application of multiple gamma-ray spectrum for analytical chemistry

    Hatsukawa, Yuichi; Hayakawa, Takehito; Shinohara, Noboru; Oshima, Masumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-01-01

    Feasibility of application of the multi-gamma ray spectrum for analytical chemistry was examined. A specimen in which some minor fission products are included was measured at an array of ten germanium detectors with BGO Compton suppressors, GEMINI, and multiple gamma-ray spectra are measured. Even in very strong radiation fields from {sup 137}Cs isotope, some miner contents, {sup 106}Ru, {sup 125}Sb, {sup 144}Pr, {sup 207}Bi were detected by this method. (author)

  10. Effect of. gamma. radiation on sorption properties of polymethylphenylsiloxane films

    Eremina, N.S.; Minakova, T.S.; Komissarova, V.N.

    1988-11-01

    The effect of ..gamma.. radiation in the 0.01-1 MGy dose range on the capacity of polymethylphenylsiloxane films to sorb water vapors was studied. It was shown that the character of the change in the sorption capacity of the polymer films is a function of the dose of radiation. The results of measurements of the IR spectra were used in discussing the causes of the change in the sorption properties of the films on exposure to ..gamma.. radiation.

  11. New capture gamma-ray data for PGAA database

    A new catalogue of prompt gamma rays has been created on the basis of experiments at the Budapest PGAA facility. It contains elemental spectra and a table with nearly 7000 gamma rays with relative intensity over 1 percent of the strongest line. The average accuracy is about 0.08 keV for energies and about 5 percent for cross-sections in the whole energy range, from about 40 keV to 11 MeV. (author)

  12. Gamma-Rays and Neutrinos from Dark Matter

    Stecker, F. W.

    1996-01-01

    High energy gamma-rays and neutrinos can be produced both by the annihilation and by the possible slow decay of dark matter particles. We discuss the fluxes and spectra of such secondaries produced by dark matter particles in the universe and their observability in competition with other astrophysical gamma-ray signals and with atmospheric neutrinos. To do this, we work within the assumption that the dark matter particles are neutralinos which are the lightest supersymmetric particles (LSPs) ...

  13. Fast Neutron Induced Fission neutron Spectra Below the Incident Energy

    Woodring, Mitchell L.; Egan, James J.; Kegel, Gunter H.; DeSimone, David J.

    2008-06-15

    Fission neutron spectra from neutron induced fission in 235U and 239Pu for energies below that of the neutron inducing fission have been measured. The spectra were obtained for 1.5 MeV and 2.5 MeV incident neutrons. Previous accelerator-based fission neutron spectra measurements have been seriously complicated by time-correlated gamma rays and scattered neutrons from the fission sample. Three barium fluoride detectors were placed near the sample undergoing induced fission and used to identify fission gamma rays. A coincidence of fission gamma rays was used to gate a liquid scintillator neutron detector to distinguish fission events from other events. The fission neutron spectral shape and average energy measured in this experiment compare well to both previous measurements and prior theory and also suggest a dependence on incident neutron energy and mass of the fissioning nucleus. An overview of the experiment, a discussion of the results, and the importance of this work to homeland security are given.

  14. Heliospheric Origin of $\\gamma$-Ray Bursts

    Li Ti Pei

    1997-01-01

    Systematic variations of average observational characteristics and correlation properties between different parameters of gamma-ray bursts (GRBs) with time from 1991 April to 1994 September are revealed. It is hard to explain the observed long-term variability by variations of experimental conditions. The variability of GRB properties with the time scale of months to years, together with the similarity between GRBs, solar hard X-ray flares and terrestrial gamma-ray flashes, may indicate an origin of GRBs, at least partly, within the heliosphere. Large-voltage and high-temperature pinch plasma columns produced by disruptive electrical discharges in the outer heliosphere can generate hard X-ray and gamma-ray flashes with energy spectra and spectral evolution characters consistent with that observed in GRBs.

  15. Very high count rate gamma spectroscopy

    Recent improvements in the electronics that amplify and analyze gamma photon-induced pulses have made it possible for HPGe coaxial detectors to accept input rates of one-million, one-MeV gamma photons-per-second and still provide the spectroscopist with spectra that can be analyzed. Data are presented that illustrate peak area variances and changes in counting uncertainty statistics due to the greatly extended count rate range. Software algorithms are presented that allow gain shift and peak resolution to be adjusted automatically on a sample-by-sample basis. Relationships are developed between integrated count rate and the variances of full energy photon peak area and counting uncertainty when using the real time correction mode of pulse processing. Finally, the results of integrating hardware and software into a system are used to illustrate that quantitative gamma spectroscopy over counting rates of one- to one-million counts-per-second are achievable

  16. Nondestructive gamma activation analysis of mineral materials

    The basic problems are described related to the use of gamma activation analysis. The applicability was studied of instrumental gamma activation analysis (IGAA) in geology. A number of minerals, rocks, marine sediments and reference materials were studied. For irradiation a betatron and a microtron were used. The results show that IGAA allows the simultaneous determination of a number of trace elements at concentrations of tenths of ppm. The results are given of comparisons made of the analytical possibilities of microtron IGAA and reactor INAA in geology. Tables show the results of the application of IGAA, the main products and parameters of photoexcitation reactions and graphically represented are the gamma spectra of measured materials. (J.B.)

  17. Gamma Ray Astronomy with Magnetized Zevatrons

    Armengaud, E; Miniati, F; Armengaud, Eric; Sigl, Guenter; Miniati, Francesco

    2005-01-01

    Nearby sources of cosmic rays up to a ZeV(=10^21 eV) could be observed with a multi-messenger approach including secondary gamma-rays and neutrinos. If cosmic rays above ~10^18 eV are produced in magnetized environments such as galaxy clusters, the flux of secondary gamma-rays below ~1 TeV can be enhanced up to several orders of magnitudes compared to unmagnetized sources. A particular source of enhancement are synchrotron and cascade photons from e^+e^- pairs produced by protons from sources with relatively steep injection spectra proportional to E^-2.6. Such sources should be visible at the same time in ultra-high energy cosmic ray experiments and gamma-ray telescopes.

  18. Gamma ray source studies using muon tracking

    A large area (128 m2) streamer tube detector, located within the KASCADE-Grande experiment has been built. We discuss the possibility of observing gamma-ray sources by means of photo-pion produced single isolated muon tracks above the background of cosmic-ray muons using a muon tracking detector (MTD). Properties of the photo-production process in the atmosphere and of the MTD which support the identification of gammas are discussed. The sensitivity of the technique of observing the Crab energy spectrum in the tens of GeV range is discussed. Gamma spectra accumulated from Crab and a Mrk 421 flux correlation with X-ray (RXTE/PCA) are presented.

  19. Gamma-ray bursters at cosmological distances

    Paczynski, B.

    1986-01-01

    It is proposed that some, perhaps most, gamma-ray bursters are at cosmological distances, like quasars, with a redshift of about 1 or 2. This proposition requires a release of supernova-like energy of about 10 to the 51st ergs within less than 1 s, making gamma-ray bursters the brightest objects known in the universe, many orders of magnitude brighter than any quasars. This power must drive a highly relativistic outflow of electron-positron plasma and radiation from the source. It is proposed that three gamma-ray bursts, all with identical spectra, detected from B1900 + 14 by Mazets, Golenetskii, and Gur'yan and reported in 1979, were all due to a single event multiply imaged by a gravitational lens. The time intervals between the successive bursts, 10 hr to 3 days, were due to differences in the light travel time for different images.

  20. Sequencing BPS Spectra

    Gukov, Sergei; Saberi, Ingmar; Stosic, Marko; Sulkowski, Piotr

    2015-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar\\'e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular $S$-matrix. This leads to the identifi...

  1. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511* MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  2. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    Jehouani, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)], E-mail: jehouani@ucam.ac.ma; Merzouki, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco); Remote Sensing and Geomatics of the Environment Laboratory, Ottawa-Carleton Geoscience Centre, Marion Hall, 140 Louis Pasteur, Ottawa, ON, KIN 6N5 (Canada); Boutadghart, F.; Ghassoun, J. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)

    2007-10-15

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511{sup *} MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique. ].

  3. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-10-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511∗ MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinśetique à Trois dimensions, CEA Rapport, Commissariat à l'Energie Atomique. [1

  4. Simulation of experiments with Xe-gamma detectors

    Paper describes a compressed xenon base γ-radiation detector and dwells upon peculiar features of its spectra processing. The SpectraLine software that takes account of the mentioned peculiar features is shown to enable to process the spectra measured by the compressed xenon base detector and thus extending the capabilities of the tools of the mentioned class when carrying out the spectrometric measurements. One analyzes the application possibilities of the compressed xenon base detectors to attack the sophisticated gamma-spectrometric analysis problems making use of the GammaLab complex. The derived results show the potentiality to apply the compressed xenon base detector when making use of the SpectraLine Program to ensure the quantitative analysis of the radionuclide composite specimens, in particular, to determine plutonium isotope composition

  5. Gamma field characterization within building area of new sanitary check point

    Results of angular distribution, gamma spectra and exposure dose rate measurements at different height from earth surface within building site of new sanitary check point are submitted. Analysis of data collected is made

  6. Analysis of Gamma Activity of Heavy Water at RB Reactor

    The RB experimental nuclear reactor still works with heavy water obtained in 1959 from the former USSR. Gamma activity of the heavy water was periodically controlled during the past time. In this experiment, measurements were carried out with two samples: D2O taken from the RB reactor and D2O that has been used in the reactor. Two germanium spectrometers were used as detectors. Gamma spectra data were evaluated manually and using several computer codes. results of the experiment show that gamma activity D2O of RB reactor is at the level of background in the Vinca Institute, without contamination with fission products. (author)

  7. Mathematical simulation of gamma-radiation angle distribution measurements

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  8. Lattice Raman scattering in gamma-irradiated tryptophan crystals

    The character of change in lattice Raman spectra of aromatic aminoacid crystals-D-tryptophan - under the effect of gamma radiation has been traced. The choice of aromatic aminoacid as object for investigation is related to assumed high sensitivity of tryptophan crystal structure to the effect of short-wave irradiation due to the presence of a great number of protons in it, which interect intensively with gamma quanta. Considerable change in lattice Raman spectrum of D-tryptophan crystals under the effect of small doses of gamma irradiation has been revealed

  9. The BATSE 5B Gamma-Ray Burst Spectral Catalog

    Goldstein, A.; Preece, R.D.; Mallozzi, R. S.; Briggs, M S; Fishman, G. J.; C. Kouveliotou(NASA/Marshall Space Flight Center, United States); Pacieses, W. S.; Burgess, J. M.

    2013-01-01

    We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs and fitted with five different spectral models resulting in a compendium of over 19000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was d...

  10. Rehabilitation of gamma

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  11. Gamma-ray astronomy

    Pohl, Martin

    2001-01-01

    This paper summarizes recents results in gamma-ray astronomy, most of which were derived with data from ground-based gamma-ray detectors. Many of the contributions presented at this conference involve multiwavelength studies which combine ground-based gamma-ray measurements with optical data or space-based X-ray and gamma-ray measurements. Besides measurements of the diffuse emission from the Galaxy, observations of blazars, gamma-ray bursts, and supernova remnants this paper also covers theo...

  12. Reactor gamma spectrometry: status

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  13. Spectra of hot stars

    Hillier, D. John

    2015-08-01

    Non-LTE modeling is essential for interpreting the spectra of O stars and their decendents, and much progress has been made. The major uncertainty associated with analyzing photospheric spectra of O stars arises from issues related to microturbulence and macroturbulence. Many supergiants, for example, have microturbulent velocities that approach the sound speed, while macroturbulent velocities are often several times the sound speed. The cause of this turbulence is unknown, but may be related to pulsation, an underlying convection zone associated with the Fe opacity bump, or feedback from the stellar wind. Determining accurate abundances in O stars is hampered by the lack of lines belonging to low-z elements. Many species only have a few observable lines, and some of these are subject to complex non-LTE effects. A characteristic of massive stars is the existence of a stellar wind which is driven by radiation pressure. Radiation driving is inherently unstable, and this leads to winds with an inhomogeneous structure. Major issues that are still unresolved include: How are winds driven through the sonic point? What is the nature of the inhomogeneities, and how do the properties of these inhomogeneities change with density and velocity? How important is spatial porosity, and porosity in velocity space? What is the structure of the shocks, and in what stars do the shocks fail to cool? With Wolf-Rayet (W-R) stars the major uncertainty arises because the classic spectroscopic radius (i.e., the location where τ = 2/3) often refers to a location in the wind — not necessarily the stellar radius associated with stellar evolution models. Derived radii are typically several times those predicted by stellar evolution calculations, although for strong-lined W-R stars it is possible to construct models that are consistent with evolution calculations. The driving of the winds in these stars is strongly coupled to the closeness of the stars to the Eddington limit and to their

  14. The GAMMA-400 space observatory: status and perspectives

    Galper, A M; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ~100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee.

  15. Beta-energy averaging and beta spectra

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  16. The temporal and spectral characteristics of solar gamma-flares of the data of the Gamma-1 experiment

    The study of the gamma-ray fluxes, measured by the Gamma-1 orbital telescope during the solar flares of 26.03.1991, 15.06.1991 and 27.10.1991 has revealed some unknown features due to new methods of data treatment. The energy spectra and the time profiles of the gamma-fluxes do not contradict the assumption that both relativistic electrons and protons were accelerated simultaneously and that the single acceleration acts were short (less than 0.1 s) and repeated during at least 10 min. (author)

  17. Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands

    Blumenthal, D.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.

  18. Methods for the analysis of the overlapped peaks in analytical gamma-spectrometry

    A new simple method for the quantitative analysis of the doublet peaks in Ge(Li) or HPGe gamma-spectrometry is presented. No assumptions on the shape of the peaks in gamma-ray spectra being measured are required. Special feature of the method proposed is its usefulness for the analysis of closed doublets. 7 refs., 6 figs. (author)

  19. A setup for studies of ultra-small angle scattering of hard {gamma}-quanta

    Alimov, G.R.; Kumakhov, M.A.; Muminov, A.T.; Muminov, T.M.; Osmanov, B.S. E-mail: bari_osmanov@yahoo.com; Salikhbaev, U.S.; Safarov, A.N.; Skvortsov, V.V.; Usmanov, R.R.; Yuldashev, B.S

    2004-08-01

    Based on the microtron MT-22C an experimental setup for the study of ultra-small angle scattering of up to 13 MeV {gamma}-rays from macroscopically smooth surface has been constructed. Preliminary results for angular distributions and {gamma}-spectra are presented.

  20. Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C~279

    Hartman, R C

    2001-01-01

    Of the blazars detected by EGRET in GeV gamma rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, acco...

  1. Environmental monitoring and in situ gamma spectrometry

    The in-situ gamma ray spectrometry is widely used for monitoring of the natural as well as man-made radionuclides and corresponding gamma fields in the environment or working places. It finds effective application in the operational and accidental monitoring of the nuclear facilities and their vicinity, radioactive contamination measurements, environmental, radiation hygiene and radiation safety studies, etc. Knowledge of the used detection system response function/matrix makes it possible to analyze measured gamma fields characteristics, calculate energy distributions of the dosimetric quantities in these fields and/or calculate the concentrations of radionuclides in the environment (usually in the soil surface layer). Method of the gamma spectrometry data processing, based on the detector response knowledge, can be applied as for scintillation or semiconductor detection systems and ground measurements, as for airborne spectrometry monitoring. Methods for calculation of angular-energy distributions of gamma fields, originated from typical sources (using Monte Carlo simulation) are discussed as well as methods for calculation of detection systems responses and/or response matrixes in such gamma fields. Techniques of the measured spectra deconvolution and calculation of the dosimetric quantities energy distributions are overviewed. Method and results of calculations of the conversion factors for radionuclides concentrations determination from the measured and calculated photon fluencies energy distributions are discussed (including possibility to set a user-defined radionuclide depth distribution for given experimental data processing). Method (based on detection system response matrix Monte Carlo calculation) developed for the processing and analyzing data from airborne spectrometry monitoring and mapping is described. Sensitivity, achievable precision and some factors influencing the interpretation of results and their accuracy using considered methods are

  2. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of); Soo Chun, Byeong; Hyun Ahn, Dong [Department of Food Science and Biotechnology, Pukyong National University, Busan 608737 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, Jinju International University, Jinju 660759 (Korea, Republic of); Kim, Duk-Jin [Division of Food Engineering and Nutrition, Daegu University, Daegu 712714 (Korea, Republic of); Kim, Gwang Hoon [Department of Biology, Kongju National University, Chungnam 314701 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  3. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  4. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  5. Library of prompt neutron and γ-emission spectra from fission fragments

    The statistical model of nuclear reactions is applied to describe the fission fragment neutron and gamma emission characteristics for spontaneous fission of 252Cf and for fission of 233,235U, 239Pu by thermal neutrons. The calculations of neutron and gamma-spectra are carried out for the fragments with A=70-160, excited up to 100 MeV. After testing of the model and input data library, calculations of neutron and γ-emission spectra for nuclei with A=70-170 excited up to 100 MeV were done to produce the Fission Fragments Emission Spectra Library (FFESL). FFESL contains the data of 1000 nuclei and will be used in calculations of neutron and γ-spectra for fission of heavy nuclei by intermediate energy nucleons. (author)

  6. GammaSem Proceedings - A Nordic seminar for users of gamma spectrometry

    The project GammaSem was proposed to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and to establish a network of users of gamma spectrometry in the Nordic countries, thereby strengthening the collaboration and improving all participants' competence in practical gamma spectrometry. The seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 75 people participated; representing 34 different universities, commercial companies, research institutes and also all Nordic authorities. During the seminar several key issues for follow-up were identified and working groups for addressing the identified problems were established. The working groups were: 1) Uncertainties and detections of limits 2) True summing coincidence 3) Monte Carlo simulations and efficiency transfer 4) Absorption (density corrections and geometries) 5) Mobile gamma spectrometry systems 6) Nuclear forensics (on special samples and special parts of the spectra). The identified topics will form the basis for the agenda of the next seminar in 2010. There, the different working groups will be invited to present their ideas/solutions to the relevant problems. (author)

  7. GammaSem Proceedings - A Nordic seminar for users of gamma spectrometry

    Nunez, P. (ed.) (Institute for Energy Technology (IFE) (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority (STUK) (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (IS)); Israelson, C. (National Institute of Radiation Protection (Denmark))

    2010-03-15

    The project GammaSem was proposed to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and to establish a network of users of gamma spectrometry in the Nordic countries, thereby strengthening the collaboration and improving all participants' competence in practical gamma spectrometry. The seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 75 people participated; representing 34 different universities, commercial companies, research institutes and also all Nordic authorities. During the seminar several key issues for follow-up were identified and working groups for addressing the identified problems were established. The working groups were: 1) Uncertainties and detections of limits 2) True summing coincidence 3) Monte Carlo simulations and efficiency transfer 4) Absorption (density corrections and geometries) 5) Mobile gamma spectrometry systems 6) Nuclear forensics (on special samples and special parts of the spectra). The identified topics will form the basis for the agenda of the next seminar in 2010. There, the different working groups will be invited to present their ideas/solutions to the relevant problems. (author)

  8. Study and construction of a {beta}-spectrometer of uniform axial magnetic field fitted with a {beta}-{gamma} coincidence selector. Study of the {beta} spectra of {sup 32}P, {sup 203}Hg, {sup 198}Au. Measurement of the conversion coefficients of {sup 203}Ti and of {sup 198}Hg; Etude et realisation d'un spectrometre-{beta} a champ magnetique axial uniforme, muni d'un selecteur de coincidence {beta}-{gamma}. Etude des spectres {beta} du {sup 32}p, {sup 203}Hg, {sup 198}Au. Mesure des coefficients de conversion du {sup 203}Ti et du {sup 198}Hg

    Parsignault, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    In the first part is given the principle of the beta spectrometer with uniform axial field using systematically the idea of caustics. The apparatus is described and its properties compared to those deduced from trajectory calculations. The {beta}-ray and {gamma}-ray detectors and the device for selecting coincidences with a 2 {tau} resolution of 5 nanoseconds are also presented. In the second part, the spectrometer is used for studying reference elements and the most accurate results are confirmed. The {beta} spectrum of {sup 60}Co has a statistical form with an accuracy of 1 per cent; the maximum energy E{sub 0} is 316.5 {+-} 1.5 keV. That of the 7/2 + {yields} 11/2 transition for {sup 137}Cs has a unique form, once forbidden. E{sub 0}= 522 {+-} 3 keV. Conversion coefficients {alpha}{sub k} = 96 {+-} 1 X 10{sup -3} {alpha}L + M + N = 20.9 {+-} 0.5 X 10{sup -3}. The two {beta} spectra of {sup 59}Fe, separated by coincidence with the gamma, have the statistical form E{sub 0} = 462 {+-} 2 keV (55.1 + 0,3 per cent) and E{sub 1} = 275 {+-} 4 keV (44.9 {+-} 0.3 per cent). It is then verified whether the l selection rule is apparent in the shape of the phosphorus 32 beta spectrum. It is found in fact that it is not of statistical shape and its shape coefficient is determined. For a theoretical interpretation it is necessary to have better approximations than those generally used and this interpretation will not be unique. This work has also made it possible to show that the source contains a small proportion of {sup 33}P. The study of the {sup 203}Hg {beta} spectrum followed by the 279 keV gamma spectrum is designed to determine the conversion coefficients. The interior spectrum of gold 198 is not of statistical shape either. The form coefficient is determined together with the conversion coefficients which are in slight disagreement with those calculated by Rose or Sliv. An interpretation of the spectrum is put forward which proposes an imperfect compensation for the

  9. NONLINLQ : a FORTRAN non-linear least square fit code for nuclear spectra

    The report describe a FORTRAN code written for CDC-3600 computer (32K memory) to fit nuclear data (time spectra) obtained with gamma-rays and β-rays detectors. The time spectra are analysed as a sum of exponentials, representing the decay mode of various radioactive elements, riding over a background approximated by a 1st order polynomial i.e. y(x)=A+Bx+xi(limited by i)esub(i)esup(-lambdasub(i)x). (author)

  10. Program system for processing of spectra obtained on the multidetector correlation device (MUK)

    A program system used by evaluation of multidimensional coincidence spectra is described. The spectra recorded on magnetic tapes are obtained by means of multidetector correlation device (MUK). The angular correlation coefficients A22 and A44 for the given cascades of gamma transitions are the final result of the calculations. The system operates in DOS/ES system of the EC-1040 computer with the 1024 Kbyte memeory. All the codes are written in fortran language

  11. Gamma Splines and Wavelets

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  12. Investigation of physical regularities in gamma gamma logging of oil wells by Monte Carlo method

    Some results are given of calculations by the Monte Carlo method of specific problems of gamma-gamma density logging. The paper considers the influence of probe length and volume density of the rocks; the angular distribution of the scattered radiation incident on the instrument; the spectra of the radiation being recorded and of the source radiation; depths of surveys, the effect of the mud cake, the possibility of collimating the source radiation; the choice of source, initial collimation angles, the optimum angle of recording scattered gamma-radiation and the radiation discrimination threshold; and the possibility of determining the mineralogical composition of rocks in sections of oil wells and of identifying once-scattered radiation. (author)

  13. Influence of gamma rays colimation on Mosbauer lines

    The effect of gamma rays collimation in Mossbauer absorption spectra was investigated when thin absorbers are used. A simple model is proposed to study shift and broadening of spectral lines. This model along with some approximations, makes the calculations easily done. The results are in good agreement with those in the literature. (author)

  14. Gamma-spectrometric definition of natural radionuclide content in soil

    The method of gamma-spectrometric definition if natural radionuclide content in soil is proposed that takes into account the loosened contribution of natural background constituent in measured spectra. The radioactivity of some territories of Uzbekistan is investigated by the present method. (author)

  15. Beta and Gamma Gradients

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions of...... differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears that the...

  16. FGM - a flexible gamma-spectrum analysis program for a small computer

    The problem is to extract physically meaningful parameters from gamma spectra, measured with Ge(Li) detectors. The program can be used for any other spectra, in which the same model may be appropriate for the peaks and the background. (orig.)

  17. Analytical applications of neutron capture gamma-ray spectroscopy

    Prompt gamma-rays from thermal induced nuclear reactions have been used to estimate the boron, chlorine and phosphorus contents in industrial and reference materials. A neutron capture gamma-ray spectroscopy facility for analytical purposes using 252-Cf sources has been designed and calibrated. The facility is principally designed for the measurement of the prompt gamma-ray spectra obtained due to thermal neutron capture by means of the internal target geometry. The capture spectra were recorded using a high resolution Ge(Li) system. The designed facility and the system used in this work are described in detail. A weight of 50 to 100 gm of each sample in a power or liquid form encapsulated in a polyethene container was used. Sensitivity curves using different standard concentration values of B, Cl and P, were constructed. The concentration range was from 0.005 to 30%. (orig.)

  18. Gamma multiplicity in thermal neutron capture by Hf nuclei

    The measurements of the multiplicity spectra of gamma quanta from thermal neutron capture by Hf isotopes have been performed on IRT-Sofia reactor. The multisectional scintillation gamma detector of daisy type was used. The procedure for unfolding the physical multiplicity spectra by Monte Carlo modelling the gamma-quanta transport through the detector has been developed. The decay cascade of the compound nucleus has been modelled also. A good description of experimental data has been obtained. The result confirms the possibility to verify the model concepts for nuclear structure on the base of the experimental data obtained by multiplicity spectroscopy method and suitable mathematical modelling of the compound nucleus cascade transitions. The theoretical calculational scheme developed permits to perform investigations of the other characteristics of the compound states as well in the relatively large energy interval. 6 tabs., 5 figs., 9 refs

  19. Understanding hadronic gamma-ray emission from supernova remnants

    We aim to test the plausibility of a theoretical framework in which the gamma-ray emission detected from supernova remnants may be of hadronic origin, i.e., due to the decay of neutral pions produced in nuclear collisions involving relativistic nuclei. In particular, we investigate the effects induced by magnetic field amplification on the expected particle spectra, outlining a phenomenological scenario consistent with both the underlying Physics and the larger and larger amount of observational data provided by the present generation of gamma experiments, which seem to indicate rather steep spectra for the accelerated particles. In addition, in order to study to study how pre-supernova winds might affect the expected emission in this class of sources, the time-dependent gamma-ray luminosity of a remnant with a massive progenitor is worked out. Solid points and limitations of the proposed scenario are finally discussed in a critical way

  20. Gamma spectral analysis via neural networks

    Keller, P.E.; Kouzes, R.T.

    1994-10-01

    A system combining a portable gamma-ray spectrometer with a neural network is discussed. In this system, the neural network is used to automatically identify radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perceptron and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perceptron for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been successfully tested with data generated by Monte Carlo simulations and with field data from both sodium iodide and germanium detectors. With the neural network approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples in the field. This approach is useful in situations that require fast response but where precise quantification is less important.

  1. How the $\\gamma \\gamma$ Resonance Stole Christmas

    Craig, Nathaniel; Kilic, Can; Thomas, Scott

    2015-01-01

    The experimental and theoretical implications of heavy di-gauge boson resonances that couple to, or are comprised of, new charged and strongly interacting matter are investigated. Observation and measurement of ratios of the resonant di-gauge boson channels $WW$, $ZZ$, $\\gamma \\gamma$, $Z \\gamma$, and $gg$ in the form of di-jets, provide a rather direct -- and for some ratios a rather robust -- probe of the gauge representations of the new matter. For a spin-zero resonance with the quantum numbers of the vacuum, the ratios of resonant $WW$ and $ZZ$ to $\\gamma \\gamma$ channels, as well as the longitudinal versus transverse polarization fractions in the $WW$ and $ZZ$ channels, provide extraordinarily sensitive probes for possible mixing with the Higgs boson, while di-Higgs and di-top resonant channels, $hh$ and $tt$, provide somewhat less sensitivity. We present a survey of possible underlying models for di-gauge boson resonances by considering various limits for the mass of the new charged and strongly interac...

  2. Gamma-thermoluminescence dating (GAMMA-TL)

    The experimental simplification of the TL dating method is one of the CRIAA Laboratory research fields in physics applied to archaeology. For radiochemical homogeneous systems GAMMA-TL allows a significant simplification for the measurement of the natural dose-rate I while preserving an accuracy as good as the one of classical TL dating within certain limiting circumstances. For instance, in the case of large heated structures determination of I reduces to Isub(γ) on site measurement and to k determination. The annual dose-rate is then given by I = GAMMA(k)Isub (γ) with GAMMA(k) = 12.17 k + 2.72. However, it is necessary to test the hypothesis that radioactivity in the structure is homogeneous. For this purpose high resolution γ spectrometry is used as a routine laboratory technique applied to several similar samples of structure. The comparison between the natural γ-ray criteria for the GAMMA-TL method, since for constant conditions, γ-ray intensities must be identical from one sample to another. We are now investigating structures of known age in order to find within what limits the GAMMA-TL can be used. (author)

  3. Observational techniques of gamma rays astronomy in low energy

    Due to the absorption of great part of the gamma-ray spectrum of cosmic origin, by the earth's atmosphere at heights above 20Km, gamma-ray astronomy achieved its full development only after the advent of the space age. Ballons and satellites are the space vehicles which have been used to transport gamma-ray telescopes to observational heights in the atmosphere, or out of it. The results of these experiments can determine the sources, the energy spectra and the intensities of the cosmic gamma-rays, and provide other important information of astrophysical interest. The detection of gamma-rays of cosmic origin is very difficult. The observational techniques used in gamma-ray astronomy are dependent on the energy range of the gamma-rays which one desires to detect. The most common telescopes of low energy gamma-ray astronomy (50KeV - 20MeV) use NaI(Tl) scintillators, or germanium diodes, as principal detectors, surrounded by an active shield (anticoincidence) of organic or inorganic scintillators. (Author)

  4. Gamma-ray fluxes in Oklo natural reactors

    Gould, C R; Sonzogni, A A; 10.1103/PhysRevC.86.054602

    2012-01-01

    Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $\\alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($\\gamma,\\gamma^\\prime $) fluorescence. We calculate prompt, delayed and equilibrium $\\gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $\\gamma$-ray fluxes as a function of energy and derive values for the coefficients $\\lambda_{\\gamma,\\gamma^\\prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($\\gamma,\\gamma^\\prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium...

  5. Anisotropic spectra of acoustic turbulence

    We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society

  6. Calculations of gamma-ray spectral profiles of linear alkanes in the positron annihilation process

    Ma, X G

    2014-01-01

    The positron-electron annihilation gamma-ray spectra of linear alkanes CnH2n+2 (n=1-12) have been studied systematically. A profile quality (PQ) parameter, is introduced to assess the agreement between the obtained theoretical profiles and the experimental measurements in the entire region of energy shift of the spectra. Together with the Doppler shift of the gamma-ray spectra, the two parameters,PQ and Doppler shift, are able to provide a more comprehensive assessment of the calculated gamma-ray spectra with respect to available experiment. Applying the recently developed docking model, the present study determines the positrophilic electrons for individual alkanes from which the gamma-ray spectral profiles are calculated. The results achieve an excellent agreement with experiment, not only with respect to the Doppler shift, but also with respect to the gamma-ray profiles in the photon energy region up to 5 keV. The study further calculates the gamma-ray spectra of other linear alkanes in the series without ...

  7. Application of non-parametric Bootstrap method to gamma spectrum analysis

    Background: In gamma spectral measurement, if the sample activity or detection efficiency of the detector is low, the most often used method to reduce the statistical fluctuation of the measurement data is to increase the measurement time and the detector dimensions. Purpose: Considering the economic factors as well as the matching problem with other nuclear electronics devices, both the size of the detector and the measurement time are limited. In this case, processing gamma spectrum data by the mathematical method to reduce statistical fluctuations for fast and accurate analysis of radionuclides received widespread attention at home and abroad. Methods: The basic principles of non-parametric Bootstrap method was described and applied to laboratory gamma spectrum data processing. The gamma spectrum of 241Am, 137Cs and 60Co were measured in different time periods by NaI(Tl) detectors. Results: The non-parametric Bootstrap method was used to process the gamma spectra measured in short time and the results were compared with the gamma spectra data measured in long time under the same conditions, and the calculated spectra agreed well with the measured spectra. Conclusion: It provides a feasible technique to quickly measure gamma spectrum at low activity levels. (authors)

  8. Transition Distribution Amplitudes for gamma* gamma collisions

    Lansberg, J P; Szymanowski, L

    2008-01-01

    We study the exclusive production of pi-pi and rho-pi in hard gamma* gamma scattering in the forward kinematical region where the virtuality of one photon provides us with a hard scale in the process. The newly introduced concept of Transition Distribution Amplitudes (TDA) is used to perform a QCD calculation of these reactions thanks to two simple models for TDAs. The sizable cross sections for rho-pi and pi-pi production may be tested at intense electron-positron colliders such as CLEO and B factories (Belle and BaBar).

  9. Moessbauer gamma echo

    By applying stepwise phase modulation of recoilless gamma radiation in a coincidence experiment, constructive interference is produced in transmission geometry between the source and the absorber fields. The resulting regenerated decay signal is called a gamma echo. Here it is demonstrated that during the decay of the 14.4 keV state of 57Fe multiple echo signals can be generated. (orig.)

  10. Gamma-ray sources

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  11. Gamma-sterilization

    The author makes a survey of his experience in sterilization and sterility control of medical products. At present three different methods are used, steamsterilization, gassterilizing and gammasterilizing. The investments and costs for gamma radiation is presented and a comparison of the costs for gamma- and gassterilization including sterility control is made. (M.S.)

  12. Pileup correction of microdosimetric spectra

    Langen, K M; Lennox, A J; Kroc, T K; De Luca, P M

    2002-01-01

    Microdosimetric spectra were measured at the Fermilab neutron therapy facility using low pressure proportional counters operated in pulse mode. The neutron beam has a very low duty cycle (<0.1%) and consequently a high instantaneous dose rate which causes distortions of the microdosimetric spectra due to pulse pileup. The determination of undistorted spectra at this facility necessitated (i) the modified operation of the proton accelerator to reduce the instantaneous dose rate and (ii) the establishment of a computational procedure to correct the measured spectra for remaining pileup distortions. In support of the latter effort, two different pileup simulation algorithms using analytical and Monte-Carlo-based approaches were developed. While the analytical algorithm allows a detailed analysis of pileup processes it only treats two-pulse and three-pulse pileup and its validity is hence restricted. A Monte-Carlo-based pileup algorithm was developed that inherently treats all degrees of pileup. This algorithm...

  13. Correlation Functions and Power Spectra

    Larsen, Jan

    2006-01-01

    possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose of......The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions and...... spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals. It is...

  14. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  15. Identification of artificial gamma-emitting nuclides using a scintillator-based gamma-ray spectral logging system

    The standard spectral gamma ray logging system used at the Nevada Test Site (NTS) contains a large sodium iodide detector which provides high efficiency but low energy resolution. To enhance the capabilities of this system for identifying artificial gamma-emitting nuclides, I developed and implemented a simple procedure for extracting artificial components from low-resolution gamma-ray spectra. This procedures uses three bias spectra, developed by a consultant using numerical modeling, representing the spectral response of the downhole instrument to naturally occurring potassium, uranium and thorium family gamma rays in a large-diameter air-filled borehole. To extract the artificial spectral components, the three basis spectra are first scaled to the recorded field spectrum using the usual spectral windows for K, U and Th; these windows bracket the photopeaks at 1.46, 1.76 and 2.61 MeV. Since most of the contribution from artificial nuclides will fall below 1.26 MeV (the lower limit of the potassium window) this scaling process should be insensitive to the presence of artificial nuclides. The scaled basis spectra are then subtracted from the field data, leaving a residual spectrum consisting of noise plus the contribution of any artificial gamma-emitting nuclides. This process is repeated for each spectrum in the log, or the spectra can be accumulated over any desired depth range for better statistics. Rather than inspect each spectrum visually, a parameter can be computed which indicates the presence of artificial nuclides; this parameter can be plotted along with the usual K, U and Th concentration estimates as a function of depth. These techniques have been used successfully on field data and provide us with an inexpensive screening tool to detect artificial nuclides along boreholes. 11 refs., 6 figs

  16. Correlation Functions and Power Spectra

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed defin...

  17. Infrared spectra of some fructans

    Grube, M.; Bekers, M.; Upite, D.; Kaminska, E.

    2002-01-01

    The FT–IR spectra of fructan – inulin (RAFTILINE), widely applied in the food industry and crystalline fructose as the main component of fructans, were studied. Special interest was to study the spectra of the levan precipitate and fructan syrup – produced by Zymomonas mobilis during the fermentation on sucrose–based medium.It was shown that levan precipitate and fructose syrup does not contain lipids and nucleic acids. Levan precipitate consists of ∼93% of fructose and admixture of glucose, ...

  18. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Durchan, Milan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption...

  19. Resolved photon and multi-component model for $\\gamma^*$p and $\\gamma^* \\gamma^*$ total cross section

    Szczurek, A.; Pietrycki, T.

    2005-01-01

    We generalize our previous model for $\\gamma^* p$ scattering to $\\gamma \\gamma$ scattering. Performing a new simultaneous fit to $\\gamma^* p$ and $\\gamma \\gamma$ total cross section we find an optimal set of parameters to describe both processes. We propose new measures of factorization breaking for $\\gamma^* \\gamma^*$ collisions and present results for our new model.

  20. Information retrieval methods for high resolution γ-ray spectra

    A program based on MATLAB 7.0 platform was developed to locate characteristic peak position and calculate net area of characteristic peak. The formula for the calculation of relative standard deviation of net peak area by Sterlinski's method was found excellent in searching single peaks and resolving overlapping peaks in high resolution gamma-ray spectrum. Gaussian function fitting method using Levenberg-Marquardt algorithm was applied to calculate net area of peaks. A standard test spectrum supplied by the IAEA in 1995 was analyzed by the program and another two widely used commercial software. The analysis results show the program was superior to the latter two in searching single peaks and resolving overlapping peaks. The optimized fitting indexes are found between 0.962 and 0.996, which shows that the program adopted is feasible and accurate for extracting the net peak area in high resolution gamma-ray spectra. (authors)

  1. The activation method for determining neutron spectra and fluences

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  2. Gamma-ray Emission from Globular Clusters

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  3. Colliding. gamma. e- and. gamma gamma. -beams on the basis of electron-positron linear colliders

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1983-08-01

    Main properties of the ..gamma..e and ..gamma gamma.. collisions are discussed in some detail with application to the generation of colliding ..gamma..e and ..gamma gamma.. beams basing on the designed linear accelerators with colliding e/sup +/e/sup -/ beams, VLEEP and SLC, as it was proposed in a previous work. Intensive ..gamma.. beams with the energy 50 GeV would be produced from scattering of the laser light focused to the electron beams of the accelerators. Laser radiation is focused to the electron beam in the conversion region at a distance of about 10 cm from the place of collision. After scattering on electrons high-energy photons move practically along the electron primary trajectories and are focused in the collision region. The electrons are deflected from the collision region by means of approximately 1 T magnetic field. Then the produced ..gamma..-beam collides with an electron beam or a similar ..gamma..-beam. In the case when the maximum luminosity (L) is attained, the luminosity distribution in the invariant mass of the ..gamma..e or ..gamma gamma.. systems is wide. A monochromatization of the collisions up to the level of 5-10% is possible. That will entail a decrease in the luminosity, the procedure is most effective if one uses the electrons and the laser photons with opposite helicities. Examples of physically interesting problems to be investigated with the proposed ..gamma..e and ..gamma gamma.. beams are suggested.

  4. Response spectra in alluvial soils

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v2. Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  5. Effect of γ-radiation on the IR spectra of lanthanide 8-hydroxyquinoline complexes

    IR absorption spectra of eight lanthanide elements chelated with 8-hydroxyquinoline were measured before and after gamma irradiation with different doses (25-850 MR). It was found that the rate of decrease K of M-O and C-O absorption bands depend on the chelated cation. A mechanism based on the target theory is proposed. (author)

  6. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  7. Gamma Rays, Electrons, Hard X-Rays, and the Central Parsec of the Milky Way

    Kistler, Matthew D

    2015-01-01

    The complex interplay of processes at the Galactic Center is at the heart of numerous past, present, and (likely) future mysteries. We aim at a more complete understanding of how spectra extending to >10 TeV result. We first construct a simplified model to account for the peculiar energy and angular dependence of the intense central parsec photon field. This allows for calculating anisotropic inverse Compton scattering and mapping gamma-ray extinction due to gamma gamma -> e^+ e^- attenuation. Coupling these with a method for evolving electron spectra, we examine several clear and present excesses, including the diffuse hard X-rays seen by NuSTAR and GeV gamma rays by Fermi. We address further applications to cosmic rays, dark matter, neutrinos, and gamma rays from the Center and beyond.

  8. Detector system for gamma-ray production cross section measurements and data analysis

    A detector system for double-differential gamma-ray production cross section measurements has been installed in the JAERI Tandem Accelerator and data analysis computer codes have been developed. Gamma-ray pulse-height spectra have been measured by a 3'' dia. x 6'' anti-Compton NaI(Tl) detector. Response matrix of the detector has been obtained and evaluated by some pulse-height spectra using standard gamma-ray sources and reaction gamma-rays such as 12C(n, n'γ), 16O(n, n'γ), 27Al(p, γ), and 19F(p, αγ). Gamma-ray production cross sections have been deduced by means of the unfolding and normalization of neutron flux and number of sample atoms. In this report, outline of the detector system and process of data analysis have been presented. (author)

  9. Level density of $^{56}$Fe and low-energy enhancement of $\\gamma$-strength function

    Voinov, A V; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T; Mitchell, G E; Rekstad, J; Schiller, A; Siem, S

    2006-01-01

    The $^{55}$Mn$(d,n)^{56}$Fe differential cross section is measured at $E_d=7$ MeV\\@. The $^{56}$Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the $^{57}$Fe$(^3$He,$\\alpha\\gamma)^{56}$Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the $^{56}$Fe $\\gamma$-strength function is also determined from the first-generation $\\gamma$ matrix of the Oslo experiment. The good agreement between the past and present results for the $\\gamma$-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the $\\gamma$ strength below $\\sim 4$ MeV first discovered by the Oslo method in iron and molybdenum isotopes.

  10. The Extragalactic Gamma-ray Sky in the Fermi era

    Massaro, F; Ferrara, E C

    2015-01-01

    The Universe is largely transparent to $\\gamma$ rays in the GeV energy range, making these high-energy photons valuable for exploring energetic processes in the cosmos. After seven years of operation, the Fermi {\\it Gamma-ray Space Telescope} has produced a wealth of information about the high-energy sky. This review focuses on extragalactic $\\gamma$-ray sources: what has been learned about the sources themselves and about how they can be used as cosmological probes. Active galactic nuclei (blazars, radio galaxies, Seyfert galaxies) and star-forming galaxies populate the extragalactic high-energy sky. Fermi observations have demonstrated that these powerful non-thermal sources display substantial diversity in energy spectra and temporal behavior. Coupled with contemporaneous multifrequency observations, the Fermi results are enabling detailed, time-dependent modeling of the energetic particle acceleration and interaction processes that produce the $\\gamma$ rays, as well as providing indirect measurements of t...

  11. Structural Characteristics of Laminarin, Seaweed Polysaccharide, Degraded by Gamma Irradiation

    Choi, Jongil; Kim, Jaehun; Song, Beomseok; Kim, Jaekyung; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, laminarin was degraded by gamma irradiation, and the changes in its structure and antioxidant property were investigated. Gel permeation chromatography data showed that the average molecular weight of the irradiation dose increased. The absorbance at 290 nm from UV spectra was increased depending on the irradiation dose resulting from the formation of carbonyl groups. The anti oxidative activity was increased in the gamma irradiated laminarin depending on the absorbed dose. It was reasoned by the formed carbonyl groups in gamma irradiated laminarin. Therefore, gamma irradiation could be a promising method for preparing low molecular weight laminarin with enhanced biological activities.

  12. Structural Characteristics of Laminarin, Seaweed Polysaccharide, Degraded by Gamma Irradiation

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, laminarin was degraded by gamma irradiation, and the changes in its structure and antioxidant property were investigated. Gel permeation chromatography data showed that the average molecular weight of the irradiation dose increased. The absorbance at 290 nm from UV spectra was increased depending on the irradiation dose resulting from the formation of carbonyl groups. The anti oxidative activity was increased in the gamma irradiated laminarin depending on the absorbed dose. It was reasoned by the formed carbonyl groups in gamma irradiated laminarin. Therefore, gamma irradiation could be a promising method for preparing low molecular weight laminarin with enhanced biological activities

  13. Two inert scalar doublet model and $h \\to \\gamma \\gamma,\\gamma Z$ at LHC

    Fortes, E C F S; Montaño, J; Pleitez, V

    2014-01-01

    We consider the decays $h\\to\\gamma\\gamma,\\gamma Z$ in the context of a model with two inert Higgs doublets, once there are contributions to these processes through charged scalars in loops. We found that when considering the more precise available experimental data for $h\\to\\gamma\\gamma$ and the correlation between both channels, the enhancement for $h\\to\\gamma Z$ can not be larger than twice the standard model prediction.

  14. New approach in add-on multi-channel analyser for gamma ray spectrometry

    A recently developed add-on card for data acquisition from National Instrument has the possibility of being employed in the field of the gamma ray spectrometry as an industrial and teaching tool. The card's technical capability, the operating program designed for gamma spectrometry and results of the system's reliability, dynamic characteristics, limits in data processing and the quality of the obtainable gamma spectra are given. The advantages and deficiencies as well as important features are emphasised when prompt gamma analysis is of interest in industrial applications and educational issues

  15. Application of positron annihilation lifetime technique for {gamma}-irradiation stresses study in chalcogenide vitreous semiconductors

    Shpotyuk, O.; Golovchak, R.; Kovalskiy, A. [Scientific Research Company ' ' Carat' ' , Stryjska str. 20279031 Lviv (Ukraine); Filipecki, J.; Hyla, M. [Physics Institute, Pedagogical University, Al. Armii Krajowej 13/1542201 Czestochowa (Poland)

    2002-08-01

    The influence of {gamma}-irradiation on the positron annihilation lifetime spectra in chalcogenide vitreous semiconductors of As-Ge-S system has been analysed. The correlations between lifetime data, structural features and chemical compositions of glasses have been discussed. The observed lifetime components are connected with bulk positron annihilation and positron annihilation on various native and {gamma}-induced open volume defects. It is concluded that after {gamma}-irradiation of investigated materials the {gamma}-induced microvoids based on S{sub 1}{sup -}, As{sub 2}{sup -}, and Ge{sub 3}{sup -} coordination defects play the major role in positron annihilation processes. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  16. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given

  17. Monitoring Neutron Generator Output in a Mixed Neutron-Gamma Field Using a Plastic Scintillator.

    Mitra,S.; Wielopolski, L.

    2007-10-28

    Quantitative neutron-induced gamma-ray spectroscopy employing neutron generators (NGs) entails monitoring them for possible fluctuations in their neutron output. We accomplished this using a plastic scintillator and recording a spectrum from which we selected a neutron region-of-interest (nROI) to discriminate between neutrons and the accompanying high-energy gamma-rays. We show that the selected nROI is insensitive to changes in the gamma-ray background, thus allowing satisfactory normalization of the gamma-ray spectra of an in-situ system for analyzing soil carbon.

  18. Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor

    Fitzpatrick, Gerard; McBreen, Sheila; Briggs, Michael S; Foley, Suzanne; Tierney, David; Chaplin, Vandiver L; Connaughton, Valerie; Stanbro, Matthew; Xiong, Shaolin; Dwyer, Joseph; Fishman, Gerald J; Roberts, Oliver J; von Kienlin, Andreas

    2015-01-01

    Terrestrial gamma-ray flashes (TGFs) are short intense flashes of gamma rays associated with lightning activity in thunderstorms. Using Monte Carlo simulations of the relativistic runaway electron avalanche (RREA) process, theoretical predictions for the temporal and spectral evolution of TGFs are compared to observations made with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Assuming a single source altitude of 15 km, a comparison of simulations to data is performed for a range of empirically chosen source electron variation time scales. The data exhibit a clear softening with increased source distance, in qualitative agreement with theoretical predictions. The simulated spectra follow this trend in the data, but tend to underestimate the observed hardness. Such a discrepancy may imply that the basic RREA model is not sufficient. Alternatively, a TGF beam that is tilted with respect to the zenith could produce an evolution with source distance that is compatible with the da...

  19. GammaWorkshops Proceedings

    Ramebaeck, H. (ed.) (Swedish Defence Research Agency (Sweden)); Straalberg, E. (Institute for Energy Technology, Kjeller (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority, STUK (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (Iceland))

    2012-01-15

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)

  20. Are Gamma-ray Bursts Universal?

    Eichler, David; Levinson, Amir

    2006-01-01

    It is noted that the Liang-Zhang correlation can be accounted for with the viewing angle interpretation proposed earlier. The Ghirlanda correlation, recently generalized by Nava et al (2006) to a wind profile, can be accounted for by the viewing angle interpretation accordingly generalized to a wind profile. Most of the scatter in the spectra and time-integrated brightness in $\\gamma$-ray bursts (GRB) can thus be accounted for by variation in two parameters, 1) the viewing angle and 2) the je...

  1. A method for generating floor response spectra through power spectra/response spectra relationship

    In this work a method is proposed for deriving floor response spectra using probabilistic techniques. By modelling an earthquake as a stationary random process, a relationship may be derived between its power spectral density function (PSDF) and the response spectrum. Thus, given a set of base response spectra, a set of consistent PSDF's can be generated for the base of the structure. Then, making use of standard random vibration theory, PSDF's for points of interest in the structure can be obtained by appropriate multiplication of complex frequency response (transfer) functions with the derived base PSDF's. Finally, response spectra for the points of interest are obtained using the inverse form of the relationship between a PSDF and a response spectrum. To date, the approach outlined above has been used to generate response spectra of points in some actual three-dimensional structures, and comparisons with response spectra for the same points generated by the time history method have been quite favorable. The limited number of cases performed have demonstrated that the method provides close correspondence of results throughout the frequency domain. While more work is needed to completely qualify this approach, initial results have been very promising. If the approach can be completely verified and found acceptable to the appropriate regulatory bodies, considerable savings in the computation of floor response spectra would result. (orig./RW)

  2. Low intensity gamma radiation effects in young plantlet assimilatory pigments

    In this paper we investigate the gamma radiation effects in young plants of Chelidonium majus, the Papaveraceae family, by spectrophotometric methods. We have recorded the absorption spectra and the fluorescence spectra at different irradiation times. The samples of Chelidonium majus caryopsides were exposed to gamma radiation produced by a 10 mCi cobalt source at different irradiation times: 0.5 h, 1 h, 1.5 h, 2 h, 6 h, 16.5 h. The samples for analysis were prepared by acetone (85%) extraction of the assimilatory pigments from the plantlets. We have studied the absorption spectra with a SPECORD UV-VIS spectrophotometer. The absorption spectra gave information about the A-chlorophyll concentration (CCla), B-chlorophyll concentration (CClb) and carotene pigments concentration (Cct) (in mg/g green mass accumulation). This information was based on the extinction bands at the 15.080 cm-1, 15.500 cm-1 and 21.190 cm-1. We observed the fluctuation of the concentrations as a function of the irradiation times. This fluctuation is more important in A-chlorophyll cases. The same observation was made in the case of the fluorescence spectra. The fluorescence spectra of the dilute solutions (1/10 ratio) was recorded with an installation made in our laboratory. For the excitation of fluorescence we have used the 23.740 cm-1 radiation for the red fluorescence band and the 29.720 cm-1 radiation for the blue fluorescence band. The fluorescence and absorption spectra of the assimilatory pigments were recorded. It is possible that irradiation with low gamma radiation dose, for different irradiation times, have an influence on the metabolic nuclei in plant cells. As a result, the A-chlorophyll synthesis may be inhibited or activated as compared to B-chlorophyll synthesis. These results represent preliminary studies to new experiments designed to elucidate the phenomenon. (author)

  3. Gamma-ray Astronomy

    Hinton, Jim

    2007-01-01

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  4. The gamma function

    Artin, Emil

    2015-01-01

    This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, ""I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus."" Generations of teachers

  5. The Gamma-ray Albedo of the Moon

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  6. Effect of gamma ray irradiation on sodium borate single crystals

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  7. Pulsed Gamma-Ray Emission From Short-Period Pulsars: Predicted Gamma-Ray Pulsar PSR1951+32

    Cheng, K. S.; Ding, K. Y. Winnis

    1995-03-01

    We studied the gamma-ray emission mechanisms from pulsars with period, P, between 4.6 times 10(-2) B12(2/5) s and 0.17 B12(5/12) sin (1/6) theta alpha (-5/4) s in terms of outermagnetospheric gap model. We found that the spectra of all known gamma -ray pulsars can be fitted by two free parameters, namely, alpha r_L, the mean distance to the outergap, and sin theta , the mean pitch angle of the secondary e(+/-) pairs. Gamma-rays from those pulsars with P B12(5/12) sin (1/6) alpha (-5/4) s are mainly emitted by secondary e(+/-) pairs, which are created beyond the outergap, via synchrotron radiation and the gamma-ray emission efficiency is ~ 10(-2) . For pulsars with period approaching ~ 0.17 B12(5/12) sin (1/6) alpha (-5/4) s, their gamma-ray emission efficiency is approaching unity. We used our model to fit the observed spectra of gamma -ray pulsars (Vela, PSR1706-44, PSR1055-52, PSR1509-58, Geminga). All the best fit curves satisfy the constraints of alpha and sin theta . The pulse separation and relative intensity of pulses are function of alpha . In our model, the first three strongest theoretical gamma -ray sources have been detected. PSR1951+32 is predicted to be the fourth strongest gamma -ray pulsar (Cheng and Ding, 1994, ApJ, 432, 724) which is confirmed by the recent GRO result.

  8. Computer analysis of ESR spectra

    Author. Isotropic ESR spectra often display complicated patterns which are difficult to analyze for their hyperfine splitting constants (HSC). To simplify the analysis, we have written a program suitable for PC's for sufficiently iterating simulations of isotropic ESR spectra and determining the simulation which fits the experimental spectra. Chapter one gives a brief introduction to the theory of electron spin resonance (ESR). In chapter two the main concepts of the program are presented. Auto simulate is the main algorithm. It calculates the entire field of valid simulations to ensure that the solution set contains all parameter combinations which produce satisfactory spectra. Auto simulate requires prior knowledge of the HSCs and other parameters needed for the simulation such as the line width, the spectrum width, and the number of magnetic nuclei. Proton Coupling Constant Extraction (PCCE) and autocorrelation are two methods complementing each other to determine the HSCs. Another iterative method based on a systematic application of Monte Carlo method can be applied to generate more accurate values of the line width. In chapter three, the spectra of Naphthalene, Tetracene, Indigo, Ox-indigo semi quinone, thio-indigo and 2,2'-dipyridyl-Na complex free radicals are analyzed. The results are compared to the literature value, good agreement is obtained for different resolution and noise to signal ratios. In the last chapter a print out of the program is presented. The programming language used is Microsoft QuickBASIC version 7.1

  9. Qualitative interpretation of galaxy spectra

    Almeida, J Sanchez; Terlevich, E; Fernandes, R Cid; Morales-Luis, A B

    2012-01-01

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis, and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is of general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7 (SDSS-DR7), thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to HII galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. A number of byprodu...

  10. Accelerated Fitting of Stellar Spectra

    Ting, Yuan-Sen; Rix, Hans-Walter

    2016-01-01

    Stellar spectra are often modeled and fit by interpolating within a rectilinear grid of synthetic spectra to derive the stars' labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of parameters separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach -- CHAT (Convex Hull Adaptive Tessellation) -- which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock datasets demonstrate that CHAT can reduce the number of required synthetic model calculations by...

  11. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  12. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  13. GammaWorkshops Proceedings

    Strålberg, Elisabeth; Klemola, Seppo; Nielsen, Sven Poul;

    were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both...

  14. Gamma-ray astronomy

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  15. Gamma ray camera

    An improved Anger-type gamma ray camera utilizes a proximity-type image intensifier tube. It has a greater capability for distinguishing between incident and scattered radiation, and greater spatial resolution capabilities

  16. A gamma-ray spectrometer system for fusion applications

    Esposito, B; Kaschuck, Y A; Martin-Solis, J R; Portnov, D V

    2002-01-01

    A NaI scintillator spectrometer system for the measurement of gamma-ray spectra in tokamak discharges has been developed and installed on the Frascati Tokamak Upgrade. Two NaI scintillators are viewing the plasma at two different angles with respect to the equatorial plane. The main features of the spectrometer system (energy range: 0.3-23 MeV) and of the unfolding technique used to restore physical spectra from the pulse-height distributions are described: a method of solution with regularisation for matrix equations of large size, allowing to process count distributions with significant statistical noise, has been developed. A dedicated software, portable to any platform, has been written both for the acquisition and the analysis of the spectra. The typical gamma-ray spectra recorded in hydrogen and deuterium discharges, also with additional heating, are presented and discussed; two components have been observed: (a) thick-target Bremsstrahlung gamma-rays produced by runaway electrons hitting the Inconel po...

  17. Specialized software utilities for gamma ray spectrometry. Final report of a co-ordinated research project 1996-2000

    A Co-ordinated Research Project (CRP) on Software Utilities for Gamma Ray Spectrometry was initiated by the International Atomic Energy Agency in 1996 for a three year period. In the CRP several basic applications of nuclear data handling were assayed which also dealt with the development of PC computer codes for various spectrometric purposes. The CRP produced several software packages: for the analysis of low level NaI spectra; user controlled analysis of gamma ray spectra from HPGe detectors; a set of routines for the definition of the detector resolution function and for the unfolding of experimental annihilation spectra; a program for the generation of gamma ray libraries for specific applications; a program to calculate true coincidence corrections; a program to calculate full-energy peak efficiency calibration curve for homogenous cylindrical sample geometries including self-attenuation correction; and a program for the library driven analysis of gamma ray spectra and for the quantification of radionuclide content in samples. In addition, the CRP addressed problems of the analysis of naturally occurring radioactive soil material gamma ray spectra, questions of quality assurance and quality control in gamma ray spectrometry, and verification of the expert system SHAMAN for the analysis of air filter spectra obtained within the framework of the Comprehensive Nuclear Test Ban Treaty. This TECDOC contains 10 presentations delivered at the meeting with the description of the software developed. Each of the papers has been indexed separately

  18. Evaluation of peak-fitting software for gamma spectrum analysis

    In all applications of gamma-ray spectroscopy, one of the most important and delicate parts of the data analysis is the fitting of the gamma-ray spectra, where information as the number of counts, the position of the centroid and the width, for instance, are associated with each peak of each spectrum. There's a huge choice of computer programs that perform this type of analysis, and the most commonly used in routine work are the ones that automatically locate and fit the peaks; this fit can be made in several different ways - the most common ways are to fit a Gaussian function to each peak or simply to integrate the area under the peak, but some software go far beyond and include several small corrections to the simple Gaussian peak function, in order to compensate for secondary effects. In this work several gamma-ray spectroscopy software are compared in the task of finding and fitting the gamma-ray peaks in spectra taken with standard sources of 137Cs, 60Co, 133Ba and 152Eu. The results show that all of the automatic software can be properly used in the task of finding and fitting peaks, with the exception of GammaVision; also, it was possible to verify that the automatic peak-fitting software did perform as well as - and sometimes even better than - a manual peak-fitting software. (author)

  19. Compton suppression gamma-counting: The effect of count rate

    Millard, H.T., Jr.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  20. Dynamic gamma knife radiosurgery

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and

  1. Ultraviolet spectra of planetary nebulae

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  2. Automatic identification of mass spectra

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  3. Energy scale in inclusive spectra

    Basing on a model, valid in a limited domain of the phase space, it is shown that there is a universal dependence of the inclusive spectra that is not related to the types of initial and detected particles. The only dependence on the reaction quantum numbers is that present in the scale coefficient of the total energy. The presented experimental data provide with an evidence to that the scale coefficient is universal in the whole region of the variables and its value is related to the behaviour of spectra in the central region

  4. Energy scale in inclusive spectra

    Likhoded, A.K.; Tolstenkov, A.N.

    1976-07-01

    It is shown, on the basis of a model that is valid in a certain limited phase-space region, that a universal relation exists for the inclusive spectra which is not connected with the type of the initial and detected particles. The entire dependence on the quantum numbers of the reaction is contained in a redefined scale coefficient for the total energy. The experimental data presented favor the assumption that the scale coefficient is universal in the entire range of the variables and that its value is connected with the behavior of the spectra in the central region. (AIP)

  5. Excitation spectra in Kondo insulators

    It is shown that the exotic strong local characters in the Kondo insulator are difficult to understand based on the band model and the localized Kondo electron model based on the local picture can explain the essential characteristics, in particular characteristic excitation spectra with two peak structure, which is caused through the transition of the localized Kondo electron. Excitation spectra in SmB6, YbB12 and Ce3Bi4Pt3 are shown to be explained by the above model. On the other hand, that of the pseudo gap Kondo insulator CeNiSn is shown to be substantially different. (orig.)

  6. AVIRIS spectra of California wetlands

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  7. Gamma ray bursts of black hole universe

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  8. Research of the Mass Spectra of the Fission Products and Yields of (n, gamma) and (n, 2n) Reactions in a Model Subcritical Uranium Blanket of the Electronuclear System "Energy Plus Transmutation" on Proton Beam of the Dubna Synchrophasotron at 1.5 Ge

    Chultem, D; Krivopustov, M I; Gerbish, S; Tumendemberel, B; Pavlyuk, A B; Zaveryukha, O S

    2002-01-01

    This paper is devoted to the research of the spatial distributions of the yields of (n, f), (n, gamma) and (n, 2n) reactions in a two-section model of the uranium blanket electronuclear installation constructed at the Laboratory of High Energies, JINR (Dubna) for experiments according to the program "Research of physical aspects of the electronuclear method of energy production and of radioactive waste transmutation in atomic power-engineering on beams of the synchrophasotron and nuclotron" - project "Energy plus Transmutation". The mass spectrum of the fission products and yields of above reactions in uranium activation detectors placed on the radii of the so-called detector plates is determined. The experimental results testify that the fission of nuclei in the uranium blanket is made by fast neutrons. This conclusion coincides with the result obtained with track integrators of uranium fission.

  9. Gamma ray optics

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G. [Institut Laue-Langevin, F38042 Grenoble (France); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching, Germany and Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  10. Polarization effects and gamma transport

    The scattering processes Rayleigh and Compton, so important in X- and gamma-ray spectrometry, have both strong dependencies on the polarization state of the incident and scattered photons. Thus, are rare the experiments of scattering that not need to make explicit reference to the polarization state to the photons before and after the collision. It is well known also, that these scattering processes produce, besides of the corresponding peaks Rayleigh and Compton, a prevailing part of the continuous background found in X-ray spectra and much of the enhancement modifying the shape and the intensity of the characteristic lines. Therefore, it is easily noted that the polarization state of the radiation can be used to control the extent of the scattering contributions in X-ray spectra, as it was pointed out in a previous work. This article discusses some interesting properties regarding the transport of polarized photons in homogenous media, described with recourse to the Boltzmann transport equation and stokes representation of polarization. These properties can help to understand how the polarization of the source can be used to reduce the influence of scattering peak. The effects of the three types of polarized sources used in X-ray spectrometry, unpolarized, linearly polarized and circularly polarized, are analyzed separately stressing the suggested applications in each case. The effect of an external magnetic field on the cross section of magnetic (Compton) scattering is also discussed. It is shown that the effect of the magnetic field can be sensed and studied with a X-ray spectrum by using a circularly (or elliptically) polarized source. 10 figs., 1 tab., 106 refs. (author)

  11. The Polarization Dependence of Gamma-Gamma Absorption - Implications for Gamma-Ray Bursts and Blazars

    Boettcher, Markus

    2014-01-01

    This paper presents an analysis of the dependence of the opacity for high-energy gamma-rays to gamma-gamma absorption by low-energy photons, on the polarization of the gamma-ray and target photons. This process has so far only been considered using the polarization-averaged gamma-gamma absorption cross section. It is demonstrated that in the case of polarized gamma-ray emission, subject to source-intrinsic gamma-gamma absorption by polarized target photons, this may lead to a slight over-estimation of the gamma-gamma opacity by up to ~ 10 % in the case of a perfectly ordered magnetic field. Thus, for realistic astrophysical scenarios with partially ordered magnetic fields, the use of the polarization-averaged gamma-gamma cross section is justified for practical purposes, such as estimates of minimum Doppler factors inferred for gamma-ray bursts and blazars, based on gamma-gamma transparency arguments, and this paper quantifies the small error incurred by the unpolarized-radiation approximation. Furthermore, i...

  12. Proton and gamma radiation tests on nonlinear crystals

    We report on the results of proton and gamma irradiation tests performed on nonlinear crystals for second- (SHG) and third-harmonic generation. β-barium borate (BBO), lithium triborate (LBO), and KTP crystals were exposed to three different energies of proton radiation (8, 70, and 300 MeV) and incremental doses of gamma radiation (up to 139 krad) in order to investigate the change in SHG performance and transmission spectra. BBO and LBO crystals turned out to be a suitable choice for SHG under radiative conditions

  13. Gammapy - A Python package for {\\gamma}-ray astronomy

    Donath, Axel; Deil, Christoph; Arribas, Manuel Paz; King, Johannes; Owen, Ellis; Terrier, Régis; Reichardt, Ignasi; Harris, Jon; Bühler, Rolf; Klepser, Stefan

    2015-01-01

    In the past decade imaging atmospheric Cherenkov telescope arrays such as H.E.S.S., MAGIC, VERITAS, as well as the Fermi-LAT space telescope have provided us with detailed images and spectra of the gamma-ray universe for the first time. Currently the gamma-ray community is preparing to build the next-generation Cherenkov Telecope Array (CTA), which will be operated as an open observatory. Gammapy (available at https://github.com/gammapy/gammapy under the open-source BSD license) is a new in-d...

  14. The Spectral Sharpness Angle of Gamma-ray Bursts

    Yu, Hoi-Fung; Greiner, Jochen; Sari, Re'em; Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Preece, Robert D

    2016-01-01

    We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically...

  15. Squeezed States and Helmholtz Spectra

    Francisco Delgado, C; Reyes, M A; Mielnik, Bogdan; Reyes, Marco A

    1997-01-01

    The 'classical interpretation' of the wave function psi(x) reveals an interesting operational aspect of the Helmholtz spectra. It is shown that the traditional Sturm-Liouville problem contains the simplest key to predict the squeezing effect for charged particle states.

  16. Field description of nuclear spectra

    We discuss the two-nucleon spectra of light and medium nuclei in terms of the meson exchange picture. In particular we compare the OBEP results with a more complete description including higher order processes. Also preliminary results on neutron single particle energies and total binding energies are presented

  17. Inclusive Particle Spectra at RHIC

    Kahana, D. E.; Kahana, S. H.

    2000-01-01

    A simulation is performed of the recently reported data from PHOBOS at energies of 56 and 130 A GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at E=17.2 A GeV. The results compare well with these early measurements at RHIC.

  18. Electron spectra of adatomic structures

    Within the framework of statistical theory of line-shape in electron elastic scattering and high resolution electron energy loss spectroscopy electronic spectra are studied concerning the problem of the detection of scattering from adatomic complexes and determination of parameters of simple models for the surface structure. 20 refs

  19. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  20. High Energy spectra of Seyferts and Unification schemes

    Middleton, Matthew; Schurch, Nick

    2007-01-01

    The Unified Model of AGN predicts the sole difference between Seyfert 1 and Seyfert 2 nuclei is the viewing angle with respect to an obscuring structure around the nucleus. High energy photons above 20 keV are not affected by this absorption if the column is Compton thin, so their 30--100 keV spectra should be the same. However, the observed spectra at high energies appear to show a systematic difference, with Seyfert 1's having $\\Gamma \\sim $2.1 whereas Seyfert 2's are harder with $\\Gamma \\sim$ 1.9. We estimate the mass and accretion rate of Seyferts detected in these high energy samples and show that they span a wide range in $L/L_{Edd}$. Both black hole binary systems and AGN show a correlation between spectral softness and Eddington fraction, so these samples are probably heterogeneous, spanning a range of intrinsic spectral indices which are hidden in individual objects by poor signal-to-noise. However, the mean Eddington fraction for the Seyfert 1's is higher than for the Seyfert 2's, so the samples are...