WorldWideScience

Sample records for actinide transmutation capability

  1. Actinide transmutation in nuclear reactors

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  2. Actinide and fission product partitioning and transmutation

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  3. Actinide and fission product partitioning and transmutation

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  4. Actinide and fission product separation and transmutation

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  5. Actinide and fission product separation and transmutation

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  6. Actinide transmutation in nuclear reactors

    This report has also been published as a PhD thesis. It discusses the reduction of the transuranics part of nuclear waste. Requirements and criteria for efficient burning of transuranics are developed. It is found that a large reduction of transuranics produced per unit of energy is possible when the losses in reprocessing are small and when special transuranics burner reactors are used at the end of the nuclear era to reduce the transuranics inventory. Two special burner reactors have been studied in this thesis. In chapter 3, the Advanced Liquid Metal Reactor is discussed. A method has been developed to optimize the burning capability while complying to constraints imposed on the design for safety, reliability, and economics. An oxide fueled and metallic fueled ALMR have been compared for safety and transuranics burning. Concluded is that the burning capability is the same, but that the higher thermal conductivity of the metallic fuel has a positive effect on safety. In search for a more effective waste transmuter, a modified Molten Salt Reactor was designed for this study. The continuous refueling capability and the molten salt fuel make a safe design possible without uranium as fuel. A four times faster reduction of the transuranics is possible with this reactor type. The amount of transuranics can be halved every 10 years. The most important conclusion of this work is that it is of utmost importance in the study of waste transmutation that a high burning is obtained with a safe design. In future work, safety should be the highest priority in the design process of burner reactors. (orig.)

  7. Actinide and fission product partitioning and transmutation

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  8. Actinide and fission product partitioning and transmutation

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  9. Actinide and fission product separation and transmutation

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  10. Actinide and fission product separation and transmutation

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  11. Use of fast reactors for actinide transmutation

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  12. Evaluation of actinide partitioning and transmutation

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  13. Minor actinides transmutation strategies in sodium fast reactors

    In minor actinides transmutation strategies for fast spectrum reactors, different possibilities regarding the core loading are considered. We study both homogeneous patterns (HOM) with various minor actinides (MA) content values and heterogeneous schemes (HET) with higher percentages of MA (Np, Am and Cm) at the periphery of reactor. We analyze the capability of transmutation of each design and the reactivity coefficients such as the Doppler constant, void worth and the fraction of delayed neutrons. The EVOLCODE2 code is the computational tool used in this study. It is based on MCNPX and ORIGEN/ACAB codes and allows carrying out burn-up calculations to get the isotopic evolution of fuel composition. Among the three strategies studied (HOM 2.5 %, HOM 4% and HET 20 %) for a possible design of a Sodium Cooled Fast Breeder Reactor, the one with better transmutation results is the HOM 4%, which shows higher absolute and relative values (12 Kg-MA/TWe, 29% respectively). Concerning transmutation in blankets with 20% MA content, results show a very little or no transmutation values when considering Np, Am and Cm together, though a positive small value for Np and Am is obtained

  14. Transmutation capabilities of generation 4 reactors

    The Generation IV reactors all have the potential to play a significant role in future scenarios dealing with transmutation of spent fuel from LWR power reactors. The nature of the flux spectrum, thermal or fast, is the major factor in the effectiveness of transmuting various transuranic isotopes. We conclude that each Generation IV reactor concept could have a role, if properly co-ordinated and supported by significant development programmes. The fast reactor concepts (liquid metal and gas-cooled) are the most effective in consumption by fission of unwanted actinides (plutonium, neptunium, americium and possibly curium). Thermal spectrum concepts (water-cooled reactors with and without inert-matrix cores, high-temperature gas-cooled reactors with and without inert-matrix cores, and liquid-salt-cooled thermal reactors) all can potentially reduce some of the minor actinides, even if only used in a single pass. When teamed up with subsequent fast-reactor irradiations to reduce higher minor actinides (specifically americium and curium), their use could result in reducing the number of fast burner reactors required, per spent-fuel-producing LWR, compared to a system of only LWRs and fast burner reactors. After listing the six main Generation IV candidates with attributes, benefits and viability concerns, this presentation will focus on one example of fast spectrum systems and two thermal spectrum systems to indicate transmuting capabilities of both types of systems. These will be used for illustrative purposes only and are not meant to give any indication of the relative importance of these systems to concepts not mentioned. Likewise, the figures and graphs in this paper are presented without alteration from the originators (see acknowledgements), and are for illustration purposes only. (authors)

  15. Minor actinide transmutation on PWR burnable poison rods

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  16. Transmutation of minor actinide using thorium fueled BWR core

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  17. Status report on actinide and fission product transmutation studies

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  18. High flux transmutation of fission products and actinides

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  19. PC code STAR. Show transmutation of actinides in reactors

    A program is made named STAR (acronym for Show Transmutation of Actinides in Reactors), which solves analytically the differential equations describing buildup and removal (by decay and transmutation) of nuclides irradiated in a constant neutron flux. The model and algorithm according to which STAR solves the differential equations are explained. Also a short description of the data library is given. STAR is validated with the ORIGEN-S fuel depletion code and runs on IBM compatible PCs and DEC alpha workstations. (orig.)

  20. Actinide transmutation in the advanced liquid metal reactor (ALMR)

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. The current reference design is a 471 MWt modular reactor loaded with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and makeup. Actinide transmutation may be accomplished in the ALMR by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behaviour throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. (author). 3 refs, 6 figs, 3 tabs

  1. Actinide partitioning-transmutation program final report. I. Overall assessment

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99Tc and 129I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  2. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  3. Chemical separation and nuclear transmutation of by-product actinides

    The paper presents the most important results and conclusions of the assessment studies carried out by the Joint Research Centre-Ispra and by other organizations on the advanced waste disposal strategy based on chemical separation of By-product Actinides (BPA's) from high level liquid waste (HLLW) and their transmutation in nuclear reactors. The technological developments required for the implementation of this strategy have been identified: they concern mainly fuel reprocessing, BPA recovery from all important waste streams and fuel refabrication. After consideration of different strategies for BPA transmutation, the homogeneous recycling in FBR's appears to be most suitable due to its transmutation rate and the compatibility of BPA's with its fuel cycle. The fuel cycle with transmutation has been compared with an advanced reference fuel cycle on the basis of costs and risks. The large effort required for the development and implementation of this new fuel cycle, the increased costs operating the fuel cycle compared with the marginal benefits in the long-term risk of geological disposal, make this strategy not very attractive

  4. Minor actinides partitioning and transmutation technology in France

    real solutions derived from the La Hague process, the CEA demonstrated the feasibility of extracting minor actinides using a process that can be extrapolated on the industrial scale. The CEA also conducted programmes proving the technical feasibility of the elimination of minor actinides by transmutation. With the help of the CNRS (France) in particular we developed high strength ceramic matrices to contain any radionuclides extracted by enhanced separation that might be deemed unsuitable for transmutation. (author)

  5. Assessment of Partitioning Processes for Transmutation of Actinides

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  6. Transmutations of nuclear waste. Progress report RAS programme 1995: Recycling and transmutation of actinides and fission products

    This report describes the progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1995, which is the second year of the 4-year programme 1994-1997. An extensive listing of reports and publications from 1991 to 1995 is given. Highlights in 1995 were: -The completion of the European Strategy Study on Nuclear Waste Transmutation as a result of which the understanding of transmutation of plutonium, minor actinides and long-lived fission products in thermal and fast reactors has been increased significantly. Important ECN contributions were given on Am, 99Tc and 129I transmutation options. Follow-up contracts have been obtained for the study of 100% MOX cores and accelerator-based transmutation. - Important progress in the evaluation of CANDU reactors for burning very large amounts of transuranium mixtures in inert matrices. - The first RAS irradiation experiment in the HFR, in which the transmutation of technetium and iodine was examined, has been completed and post-irradiation examination has been started. - A joint proposal of the EFTTRA cooperation for the 4th Framework Programme of the EU, to demonstrate the feasibility of the transmutation of americium in an inert matrix by an irradiation in the HFR, has been granted. - A bilateral contract with CEA has been signed to participate in the CAPRA programme, and the work in this field has been started. - The thesis work on Actinide Transmutation in Nuclear Reactor Systems was succesfully defended. New PhD studies on Pu burning in HTGR, on nuclear data for accelerator-based systems, and on the SLM-technique for separation of actinides were started. - A review study of the use of the thorium cycle as a means for nuclear waste reduction, has been completed. A follow-up of this work is embedded in an international project for the 4th Framework Programme of the EU. (orig./DG)

  7. Neutronics design of transmutation of minor actinides in a fusion reactor

    A concept of transmutation of Minor Actinide (MA) nuclear waste based on the spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameter was decided suitable for the ST transmuting nuclear waste blanket. The 2-D neutron transport code TWODANT, 3-D Monte Carlo code MCNP-4B and 1-D burn-up calculation code BISON3.0 and their associated data libraries are used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding rate of the transmutation blanket. The calculation results of the system parameters and the actinide series isotopes for different operation times are also given. The engineering feasibility of the center-post of FDTR is investigated. Relevant results are also given. A preliminary neutronics calculation based on ST transmutation blanket shows that proposed system has high transmuting ability for MA wastes

  8. Why Faster is Better : On Minor Actinide Transmutation in Hard Neutron

    Westlén, Daniel

    2007-01-01

    In this thesis, options for efficient transmutation of transuranium elements are discussed. The focus is on plutonium, americium and curium mainly because of their long-term contribution to the radiotoxicity of spent nuclear fuel. Two innovative helium-cooled core designs are proposed, dedicated to the transmutation of actinides. The performance of the more promising of the two is studied in realistic transient fuel cycle scenarios. During the 1150 day irradiation cycle, a minor actinide cons...

  9. Present status of research activities on transmutation of actinides in Japan

    In Japan, the idea to make use of transmutation for the final disposal method of HLW was first examined by Ichimiya, Amano, Hamada et al., when the Japan Atomic Industry forum had organized a study committee for HLW treatment in 1973. This article has the scope to outline the present research activities on transmutation of actinides in Japan

  10. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  11. Scenarios for minor actinides transmutation in the framework of the French Act on Waste Management

    In the framework of the French Act on Waste Management, options of minor actinides (MA) transmutation are studied, based on several scenarios of sodium fast reactor deployment. Basically, one of these scenarios considers the deployment of a 60 GWe SFR fleet in two steps (20 GWe from 2040 to 2050 and 40 GWe, as well as, from 2080 to 2100). For this scenario, the advantages and drawbacks of different transmutation options are evaluated: - transmutation of all minor actinides or only of americium; - transmutation in homogeneous mode (MA bearing fuel in all the core or just in the outer core) or in heterogeneous mode (MA bearing radial blankets). Scenarios have been optimised to limit the impacts of MA transmutation on the cycle: - reduction of the initial MA content in the core in the case of transmutation in homogeneous mode to reduce the impact on reactivity coefficients; - reduction of the number of rows of blankets and fuel decay heat in the case of transmutation in heterogeneous mode. The sensitivity of transmutation options to cycle parameters such as the fuel cooling time before transportation is also assessed. Thus, the transmutation of only americium in one row of radial blankets containing initially 10 pc % Am and irradiated during the same duration as the standard fuel assemblies appears to be a suitable solution to limit the transmutation impacts on fuel cycle and facilities. A comparison of results obtained with MA transmutation in dedicated systems is also presented with a symbiotic scenario considering ADS (accelerator-driven system) deployment to transmute MA together with a SFR fleet to produce energy. The MA inventory within the cycle is higher in the case of transmutation in ADS than in the case of transmutation in SFR. Considering the industrial feasibility of MA transmutation, it appears important to study 'independently' SFR deployment and MA transmutation. Consequently, scenarios of progressive introduction of MA options are assessed

  12. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    Kooyman Timothée

    2015-01-01

    Full Text Available Minor actinides transmutation is one of the three main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of “polluting” the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a “perturbation” approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time

  13. Measurements of minor actinides cross sections for transmutation

    The existing reactors produce two kinds of nuclear waste: the fission products and heavy nuclei beyond uranium called minor actinides (Americium and Curium isotopes). Two options are considered: storage in deep geological site and/or transmutation by fast neutron induced fission. These studies involve many neutron data. Unfortunately, these data bases have still many shortcomings to achieve reliable results. The aim of these measurements is to update nuclear data and complement them. We have measured the fission cross section of 243Am (7370 y) in reference to the (n,p) elastic scattering to provide new data in a range of fast neutrons (1-8 MeV). A statistical model has been developed to describe the reaction 243Am (n,f). Moreover, the cross sections from the following reactions have been be extracted from these calculations: inelastic scattering 243Am (n,n') and radiative capture 243Am (n,γ) cross sections. The direct measurements of neutron cross sections are often a challenge considering the short half-lives of minor actinides. To overcome this problem, a surrogate method using transfer reactions has been used to study few isotopes of curium. The reactions 243Am (3He, d)244Cm, 243Am (3He, t)243Cm and 243Am (3He, α)242Am allowed to measure the fission probabilities of 243,244Cm and 242Am. The fission cross sections of 242,243Cm (162,9 d, 28,5 y) and 241Am (431 y) have been obtained by multiplying these fission probabilities by the calculated compound nuclear neutron cross section relative to each channel. For each measurement, an accurate assessment of the errors was realized through variance-covariance studies. For measurements of the reaction 243Am(n,f), the analysis of error correlations allowed to interpret the scope of these measures within the existing measurements. (author)

  14. Minor actinide transmutation in ADS: the EFIT core design

    Accelerator-Driven-Systems represent one of the possible future strategies for transmuting minor actinides. EFIT, the conceptual industrial burner designed in EUROTRANS IP, is an ADS of about 400 MWth, fuelled by MA and Pu in inert matrix, cooled by lead (673-753 K) and sustained by a 800 MeV proton of some 15 mA. It features the MA fission (42 kg/TWhth) while maintaining a zero net balance of Pu and a negligible keff swing during the cycle. Three radial zones, differing in pin diameter or in inert matrix percentage have been defined in order to maximize the average power density together with the flattening of the assembly coolant outlet temperatures. Thermal-hydraulic analyses have been performed and show acceptable maximum temperatures: 1672 K peak fuel temperature (disintegration at 2150 K) and 812 K peak cladding temperature in nominal conditions (max 823 K). The behaviour of the core power, the temperature and the reactivity during the Unprotected Loss Of Flow transient (ULOF) has been studied as well by obtaining: a peak fuel temperature of 1860 K, a peak cladding temperature of 1030 K, a power increase of 2% removed by natural circulation. (authors)

  15. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    The irradiation of Th232 breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U238. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)

  16. Reducing the impact of used fuel by transmuting actinides in a CANDU reactor

    With world stockpiles of used nuclear fuel increasing, the need to address the long term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes in CANDU reactors to reduce the decay heat period. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle facilitates the fabrication and handling of active fuels. Online refueling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation in CANDU reactors, including both recent and past activities. The transmutation schemes that are presented reflect several different partitioning schemes and include both homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. (author)

  17. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    This report describes the status and progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.)

  18. Special scientific programme on use of high energy accelerators for transmutation of actinides and power production

    Various techniques for the transmutation of radioactive waste through the use of high energy accelerators are reviewed and discussed. In particular, the present publication contains presentations on (i) requirements and the technical possibilities for the transmutation of long-lived radionuclides (background paper); (ii) high energy particle accelerators for bulk transformation of elements and energy generation; (iii) the resolution of nuclear energy issues using accelerator-driven technology; (iv) the use of proton accelerators for the transmutation of actinides and power production; (v) the coupling of an accelerator to a subcritical fission reactor (with a view on its potential impact on waste transmutation); (vi) research and development of accelerator-based transmutation technology at JAERI (Japan); and (vii) questions and problems with regard to accelerator-driven nuclear power and transmutation facilities. Refs, figs and tabs

  19. The nuclear waste issue: towards an assessment of the partitioning and transmutation of actinides

    First of all, this paper describes recent regulatory, scientific and technical developments in France concerning the management of high level, long-lived radioactive waste. In this context, which culminated in parliament's adoption of the radioactive waste management bill, it analyses, from an industrial viewpoint, the motivation for separating and transmuting minor actinides, as well as the technical and economic consequences for waste management. The new law underlines the need to reduce the harmfulness of radioactive waste and research into separation and transmutation is continuing with a view to 'an assessment in 2012 of the industrial perspectives for these technologies' that makes allowance for the developments made with new reactors. It is admitted that the waste will not be eradicated by transmutation and therefore that the geological disposal is inevitable. But destroying the waste, however partially, is worthy of consideration if it helps to simplify disposal and reduce costs. It may also merely reduce safety assessment uncertainty or increase calculation margins. The results of previous studies have shown that research has to focus on the minor actinides. On the one hand, they account for practically all the radiotoxicity of waste and on the other hand, with the exception of two fission products with relatively short half-lives for which suitable interim storage is to be envisaged, they are the main contributors to the thermal load. We therefore examine the possible consequences of management through actinide separation and transmutation on the fuel cycle as a whole, and the advantages to be gained for disposal or release. For example, americium makes a considerable contribution to the thermal load and transmutation would appear possible. Conversely, curium is known to be difficult to transmute and would complicate target or fuel fabrication operations. The potential savings to be made in disposal costs should also make allowance for future optimization

  20. Transmutation rates of technetium 99 and iodine 129 in the CANDU actinide burner

    Transmutation rates for the two long-lived fission products technetium 99 and iodine 129 have been calculated for the CANDU Actinide Burner that operates with weapons grade plutonium in an inert matrix as fuel. These transmutation rates are compared with those obtained for the current natural uranium CANDU and for LWRs and FBRs. The higher thermal flux and the softer neutron spectrum of the CANDU Actinide Burner, which is a result of its lower fissile requirements can provide net transmutation half lives as short as 14 y for technetium 99 and 2 y for iodine 129. It is assumed that the iodine 129 can be irradiated as a solution in heavy water. The shorter half life for iodine 129 is due to the large volume of moderator and reflector available that leads to negligible self shielding of the iodine 129 cross section. (author) 1 fig., 2 tabs., 2 refs

  1. Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste

    An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities

  2. Gas core reactors for actinide transmutation and breeder applications. Annual report

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  3. Scenarios for Minor Actinides Transmutation in the Frame of the French Act for Waste Management

    In the frame of the French Act for waste management, options of minor actinides (MA) transmutation are studied, based on a scenario of a 60 GWe SFR fleet deployment from 2040 to 2100. The advantages and drawbacks of different transmutation options are evaluated. The transmutation of all MA or only of americium is considered, in homogeneous mode (MA bearing fuel in all the core) or in heterogeneous mode (MA bearing radial blankets). Scenarios have been optimized to limit the impacts of MA transmutation on fuel cycle, with a reduction of the initial MA content in core in homogeneous mode to mitigate the effect on reactivity coefficients and a reduction of the fuel decay heat for transportation in heterogeneous mode. The sensitivity of results to the SFR core design is evaluated by considering a homogeneous core (SFR V2B) or a new heterogeneous core with a significant gain on sodium void effect (CFV). (author)

  4. Status of the French research programme for actinides and fission products partitioning and transmutation

    The paper focus on separation and transmutation research and development programme and main results over these ten last years. The massive research programme on enhanced separation, conducted by CEA and supported by broad international cooperation, has recently achieved some vital progress. Based on real solutions derived from the La Hague process, the CEA demonstrated the lab-scale feasibility of extracting minor actinides and some fission products (I, Cs and Tc) using an hydrometallurgical process that can be extrapolated on the industrial scale. The CEA also conducted programmes proving the technical feasibility of the elimination of minor actinides and fission products by transmutation: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for ADS developments in order to support the MEGAPIE, TRADE and MYRRHA experiments and the future 100 MW international ADS demonstrator. Scenarios studies aimed at stabilizing the inventory with long-lived radionuclides, plutonium, minor actinides and certain long-lived fission products in different nuclear power plant parks and to verify the feasibility at the level of the cycle facilities and fuels involved in those scenarios. Three French Research Groups CEA-CNRS carry out partitioning (PRACTIS) and transmutation (NOMADE and GEDEON) more basic studies. (author)

  5. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  6. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  7. Overall assessment of actinide partitioning and transmutation for waste management purposes

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  8. Calculation characterization of spent fuel hazard related to partitioning and transmutation of minor actinides and fission products

    Radiotoxicity is one of important characteristics of radwaste hazard. Radiotoxicity of actinides and fission products from spent fuel of VVER-1000 reactor for processes of burnup, long-term storage, and transmutation is discussed. (author)

  9. Comparative study of accelerator driven system (ADS) of different transmutation scenarios for actinides in advanced nuclear fuel cycles

    The full text follows. In recent years transmutation has raised as a complementary option to solve the problem of the long-lived radioactive waste produced in nuclear power plants. The main advantages expected from transmutation are the reduction in volume of the high level waste and a significant decrease in the long-term radiotoxicity inventory, with a probable impact in the final costs and potential risks of the geological repository. This paper will describe the evaluation of different systems proposed for actinide transmutation, their integration in the waste management process, their viability, performances and limitations. Particular attention is taking of comparing transmutation scenarios where the actinides are transmuted inside fertile (U, Th) or inert matrix. This study has been supported by ENRESA inside the CIEMAT-ENRESA collaboration for the study of long-lived isotope transmutation. (authors)

  10. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  11. Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides

    Gotcu-Freis, P., E-mail: p.gotcu@tudelft.nl [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft (Netherlands); Hiernaut, J.-P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Colle, J.-Y., E-mail: jean-yves.colle@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Naestren, C.; Carretero, A. Fernandez; Konings, R.J.M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2011-04-15

    The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.

  12. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D. [Eurpean Commission, Joint Research Centre, Institute for Transuranium Elements, Kurlsruhe (Germany)

    2000-07-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  13. Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides

    The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.

  14. Impact of minor actinide transmutation options on geological disposal: The French case

    Within the framework of June 28, 2006 waste management French Act, an assessment of industrial perspectives of partitioning and transmutation of actinides is provided in 2012. These studies must be carried out in tight connection with GENIV systems development. In this perspective, CEA asked the French waste management Agency (Andra) to assess the impact of high and intermediate level waste as produced by various transmutation options, on the sizing of a geological repository. Andra used repository architectures similar to those employed in the Cigéo project which is under development for current NPPs. Results allow to compare the underground footprint and the excavated volume for each option ; the impact of the interim storage duration is also assessed. Solutions are proposed to optimize the footprint of the repository. An analysis of the advantages and drawbacks of transmutation options is proposed. (author)

  15. Evaluation of actinide partitioning and transmutation in light-water reactors

    Advanced Fuel Cycle Initiative (AFCI) studies were made to evaluate the feasibility of multicycle transmutation of plutonium and the minor actinides (MAs) in light-water reactors (LWRs). Results showed that significant repository benefits, cost reductions, proliferation resistance, and effective use of facilities can be obtained. Key advantages are shown to be made possible by processing 30-year-decayed spent fuel rather than the more traditional 5-year-decayed fuel. (authors)

  16. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  17. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit

  18. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  19. Minor Actinide Transmutation Performance in Fast Reactor Metal Fuel. Isotope Ratio Change in Actinide Elements upon Low-Burnup Irradiation

    Metal fuel alloys containing 5 wt% or less minor actinide (MA) and rare earth (RE) were irradiated in the fast reactor Phénix. After nondestructive postirradiation tests, a chemical analysis of the alloys irradiated for 120 effective full power days was carried out by the inductively coupled plasma - mass spectrometry (ICP-MS) technique. From the analysis results, it was determined that the discharged burnups of U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, and U-19Pu-10Zr-5MA were 2.17, 2.48, and 2.36 at.%, respectively. Actinide isotope ratio analyses before and after the irradiation experiment revealed that Pu, Am, and Cm nuclides added to U-Pu-Zr alloy and irradiated up to 2.0 - 2.5 at.% burnups in a fast reactor are transmuted properly as predicted by ORIGEN2 calculations. (author)

  20. Georgia Institute of Technology research on the gas core actinide transmutation reactor (GCATR)

    The Gas Core Actinide Transmutation Reactor (GCATR) offers several advantages including (1) the gaseous state of the fuel may reduce problems of processing and recycling fuel and wastes, (2) high neutron fluxes are achievable, (3) the possibility of using a molten salt in the blanket may also simplify the reprocessing problem and permit breeding, (4) the spectrum can be varied from fast to thermal by increasing the moderation in the blanket so that the trade-off of critical mass versus actinide and fission product burnup can be studied for optimization, and (5) the U233-Th cycle, which can be used, appears superior to the U235-Pu cycle in regard to actinide burnup. The program at Georgia Tech is a study of the feasibility, design, and optimization of the GCATR

  1. Engineering assessment studies on the JRC's actinides partitioning processes for transmutation

    Three conceptual processes have been studied and investigated for the feasibility of removing actinides from high active waste. Two of the flowsheets rely completely on counter current techniques for the actinides separation namely the TBP and HDEHP processes, whereas the third process OXAL, uses a precipitation technique in the first instance followed by dissolution of the actinides and rare-earths (RE) for further treatment using a modified HDEHP process. Many important factors such as 'direct' or 'delayed', concentrated or unconcentrated HAW, storage time, activity and heat release levels, solvent irradiation DF's, safety and steady-state recycling conditions for U-LWR, Pu-LWR and FBRs for possible transmutation scenarios have been taken into consideration

  2. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    The term ''nuclear transmutation'' means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ''recycling'' means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. The possibilities offered by the HFR are particularly of great value. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application

  3. Transmutation of minor actinides in a Candu thorium borner

    denaturized the new 233U fuel with 238U. The temporal variation of the criticality k∞ and the burn-up values of the reactor have been calculated by full power operation for a period of 20 years. The criticality starts by k∞= ∼ 1.48 for both fuel compositions. A sharp decrease of the criticality has been observed in the first year as a consequence of rapid plutonium burnout. The criticality becomes quasi constant after the 2nd year and remains above k∞ > 1.06 for ∼ 20 years. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Nuclear waste actinides can also be used as a booster fissile fuel material in form of mixed fuel with thorium in a CANDU reactor in order to assure the initial criticality at startup. In the third phase, two different fuel compositions have been found useful to provide sufficient reactor criticality over a long operation period: 1) 95% thoria (ThO2) + 5% minor actinides MAO2 and 2) 95% ThO2 + 5% MAO2 + 5% UO2. The latter allows a higher degree of nuclear safeguarding thorough denaturing the new 233U fuel with 238U. The temporal variation of the criticality k∞ and the burn-up values of the reactor have been calculated by full power operation for a period of 10 years. The criticality starts by k∞ > 1.3 for both fuel compositions. A sharp decrease of the criticality has been observed in the first year as a consequence of rapid plutonium burnout in the actinide fuel. The criticality becomes quasi constant after the 2nd year and remains close to k∞ =∼1.06 for ∼ 10 years. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Finally, in the fourth phase, a CANDU reactor fueled with a mixed fuel made of thoria (ThO2) and the totality of nuclear waste actinides has been investigated. The mixed fuel composition has been varied in radial direction to achieve a uniform power distribution and fuel burn up in the fuel bundle. The best fuel compositions with respect to power

  4. Transmutation of nuclear waste. State-of-the-art national and international research and strategy studies on partitioning and transmutation of actinides and fission products

    Since 1991 the Netherlands Energy Research Foundation (ECN) in Petten, Netherlands, runs a programme on recycling and transmutation of actinides and long-lived fission products that are present in the spent fuel from nuclear power generation. This programme, which is known under the Dutch acronym RAS, is concentrated on the following topics: reactor physics and scenario studies for transmutation, non-proliferation, thorium cycle, irradiations in the High Flux Reactor at Petten, chemical and material studies of fuels and targets, radiological effects and risks. In the present paper a short description of the achievements of the RAS programme is given. Next, the status of the international research on recycling of actinides and fission products is described. Strategies and (innovative) fuel cycle technology required for the recycling of plutonium, minor actinides and fission products are discussed and their possibilities and limits are identified. Also the potential of future options with low actinide production (thorium cycles, accelerators) is considered. Recommendations for future research in this field are given, taking into account the results of a review by a national committee of experts from government, science and industry. The future work should concentrate on: advanced partitioning methods for trivalent actinides, for which a break-through is required, transmutation of actinides using inert matrices as support (non-fissionable materials), studies using 100% MOX-PWRs, HWRs, HTRs and fast burners, innovative systems for future 'clean' energy production using thorium cycle and/or accelerators. It is emphasized that the radiological effects of all new concepts to be developed for recycling and transmutation should be analysed adequately. 6 figs., 14 tabs., 97 refs

  5. Performances on actinide transmutation based accelerator-driven systems (ADS) at CIEMAT

    The FACET group at CIEMAT is studying the properties and potentialities of several liquid metal-cooled ADS designs for actinide and fission product transmutation. The main characteristics of these systems are the use of lead or lead-bismuth eutectic as primary coolant and moderator and fuels made by transuranics. The program has two main research lines. The first one is dedicated to the development of concepts, designs, operation models and computer simulation tools characteristics of this kind of systems. The second line includes the participation and the data analysis of the most advanced experiments in the field and international benchmarks. (authors)

  6. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides

    Washington, Jeremy A.

    The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. The goal of this thesis is to examine the potential of light water reactors for plutonium and minor actinides transmutation as a near-term solution. This thesis screens the available nuclear isotope database to identify potential absorbers as coatings on a transmutation fuel in a light water reactor. A spectral shift absorber coating tunes the neutron energy spectrum experienced by the underlying target fuel. Eleven different spectral shift absorbers (B4C, CdO, Dy2O3, Er 2O3, Eu2O3, Gd2O3, HfO2, In2O3, Lu2O3, Sm2O3, and TaC) have been selected for further evaluation. A model developed using the NEWT module of SCALE 6.1 code provided performance data for the burnup of the target fuel rods. Irradiation of the target fuels occurs in a Westinghouse 17x17 XL Robust Fuel Assembly over a 1400 Effective Full Power Days (EFPD) interval. The fuels evaluated in this thesis include PuO2, Pu3Si2, PuN, MOX, PuZrH, PuZrHTh, PuZrO 2, and PuUZrH. MOX (5 wt% PuO2), Pu0.31ZrH 1.6Th1.08, and PuZrO2MgO (8 wt%) are selected for detailed analysis in a multi-pin transmutation assembly. A coupled model optimized the resulting transmutation fuel elements. The optimization considered three stages of fuel assemblies containing target fuel pins. The first stage optimized four target fuel pins adjacent to the central instrumentation channel. The second stage evaluated a variety of assemblies with multiple target fuel pins and the third stage re-optimized target fuel pins in the second-stage assembly. A PuZrO2MgO (8 wt%) target fuel with a coating of Lu 2O3 resulted in the greatest reduction in curium-244

  7. Denaturing of plutonium by transmutation of minor-actinides for enhancement of proliferation resistance

    Feasibility study for the plutonium denaturing by utilizing minor-actinide transmutation in light water reactors has been performed. And the intrinsic feature of proliferation resistance of plutonium has been discussed based on IAEA's publication and Kessler's proposal. The analytical results show that not only 238Pu but also other plutonium isotopes with even-mass-number have very important role for denaturing of plutonium due to their relatively large critical mass and noticeably high spontaneous fission neutron generation. With the change of the minor-actinide doping ratio in U-Pu mix oxide fuel and moderator to fuel ratio, it is found that the reactor-grade plutonium from conventional light water reactors can be denatured to satisfy the proliferation resistance criterion based on the Kessler's proposal but not to be sufficient for the criterion based on IAEA's publication. It has been also confirmed that all the safety coefficients take negative value throughout the irradiation. (author)

  8. IAEA activity on partitioning and transmutation of actinides and fission products

    In 1990, the IAEA received a request from Member States to review the status of research and development on partitioning and transmutation of actinides and fission products. In response to this request the Advisory Group Meeting (AG) was held in the fall of 1991. AG advised the Agency to play an active role in coordinating international activities in this area. A series of meetings that followed identified considerable interest among many Member States and international organizations in the P and T options as a potential complement to the reference concepts of the back-end of nuclear fuel cycle. Inherent difficulties for the Agency to actively explore this programme were identified including non-proliferation concerns from some Member States about partitioning technology and possible duplication of effort in other international organizations, especially OECD/NEA. But, there remain fundamental questions to be addressed on the objectives of and motivations for P and T and it is clear that some common international understanding would be necessary. In order to contribute to the solution of this problem, and considering the existence of programmes being implemented by OECD/NEA, the Agency has initiated a new CRP entitled 'Safety, environmental and non-proliferation aspects of partitioning and transmutation of actinides and fission products' (1994-1998). This presentation will explain about this Agency's new CRP and how the Agency's work is co-ordinated with other international activities. (author)

  9. Fabrication and characterisation of composite targets for the transmutation of actinides

    Transmutation of transuranic elements separated from spent fuel is a way to reduce the toxicity of long-lived nuclides in the waste before disposal. Plutonium and the minor actinides (MA) are reintroduced into the fuel cycle for further irradiation and incineration. Currently CERMET fuel forms, in which a ceramic actinide is dispersed in a matrix, are considered for MA transmutation. In a first step, PuO2 beads are produced by a sol gel method in which a Pu nitrate solution is converted to solid, dust-free, particles. These porous beads are then infiltrated with an americium nitrate solution to the incipient wetness point and calcined to give the (PuAm)O2 beads, which are blended with a metal matrix and compacted and sintered to form the final fuel pellet. The matrix used is molybdenum due to its high thermal conductivity and low neutron capture cross section, if it is enriched in 92Mo. In this work, optimization of the bead porosity is investigated to achieve a higher Am content by infiltration. Addition of carbon to the mother solution in the sol gel step increases the bead porosity but it also changes both bead and final fuel pellet microstructure. A surrogate fuel, with cerium simulating the actinides has been fabricated and its mechanical stability and bead characteristics investigated as a function of carbon content and thermal treatment. The characterization of the surrogate fuel by ceramography, density, porosity, bead-quality, etc., is a necessary step in the process optimization, to be transferred to the production of the actinide samples. This process is now at an advanced stage and is being used for the production of fuels for irradiation tests in the Phenix (Futurix) and HFR-Petten (HELIOS) reactors. In parallel, studies on the dissolution of the fuel pellets, with the aim of dissolving the Mo-matrix while keeping the CeO2 beads intact, have been initiated. Thus, Mo can be recycled for further fuel fabrication either from production scraps or from the

  10. Proceedings of the Eleventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste arisings. Recent developments indicate the need for embedding P and T strategies in advanced fuel cycles considering both waste management and economic issues. In order to provide experts a forum to present and discuss state-of-the-art developments in the P and T field, the OECD/NEA has been organising biennial information exchange meetings on actinide and fission product partitioning and transmutation since 1990. The previous meetings were held in Mito (Japan) in 1990, at Argonne (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006 and in Mito (Japan) in 2008. They have often been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 11. Information Exchange Meeting was held in San Francisco, California, United States on 1-4 November 2010, comprising a plenary session on national P and T programmes and six technical sessions covering various fields of P and T. The meeting was hosted by the Idaho National Laboratory (INL), United States. The information exchange meetings on P and T form an integral part of NEA activities on advanced nuclear fuel cycles. The meeting covered scientific as well as strategic/policy developments in the field of P and T, such as: fuel cycle strategies and transition scenarios; radioactive waste forms; the impact of P and T on geological disposal; radioactive waste management strategies (including secondary wastes); transmutation fuels and targets; pyro and aqueous separation processes; materials, spallation targets and coolants; transmutation physics, experiments and nuclear data; transmutation systems (design, performance and safety); handling and transportation of transmutation fuels; and

  11. Minor actinide transmutation in a board type sodium cooled breed and burn reactor core

    Highlights: • A 1250 MWt board type sodium cooled breed and burn reactor core is further designed. • MCNP–ORIGEN coupled code MCORE is applied to perform neutronics and depletion calculation. • Transmutation efficiency and neutronic safety parameters are compared under different MA weight fraction. - Abstract: In this paper, a board type sodium cooled breed and burn reactor core is further designed and applied to perform minor actinide (MA) transmutation. MA is homogeneously loaded in all the fuel sub-assemblies with a weight fraction of 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, 8.0 wt.%, 10.0 wt.% and 12.0 wt.%, respectively. The transmutation efficiency, transmutation amount, power density distribution, neutron fluence distribution and neutronic safety parameters, such as reactivity, Doppler feedback, void worth and delayed neutron fraction, are compared under different MA weight fraction. Neutronics and depletion calculations are performed based on the self-developed MCNP–ORIGEN coupled code with the ENDF/B-VII data library. In the breed and burn reactor core, a number of breeding sub-assemblies are arranged in the inner core in a board type way (scatter load) to breed, and a number of absorbing sub-assemblies are arranged in the inner side of the outer core to absorb neutrons and reduce power density in this area. All the fuel sub-assemblies (ignition and breeding sub-assemblies) are shuffled from outside in. The core reached asymptotically steady state after about 22 years, and the average and maximum discharged burn-up were about 17.0% and 35.3%, respectively. The transmutation amount increased linearly with the MA weight fraction, while the transmutation rate parabolically varied with the MA weight fraction. Power density in ignition sub-assembly positions increased with the MA weight fraction, while decreased in breeding sub-assembly positions. Neutron fluence decreased with the increase of MA weight fraction. Generally speaking, the core reactivity and void

  12. Conceptual design study of an accelerator-based actinide transmutation plant with sodium-cooled solid target/core

    Research and development works on accelerator-based nuclear waste transmutation are carried out at JAERI under the national program OMEGA. The preliminary design of the proposed minor actinide transmutation plant with a solid target/core is described. The plant consists of a high intensity proton accelerator, spallation target of solid tungsten, and subcritical core loaded with actinide alloy fuel. Minor actinides are transmuted by fast fission reactions. The target and core are cooled by the forced flow of liquid sodium coolant. Thermal energy is recovered to supply electricity to power its own accelerator. The core with an effective multiplication factor of about 0.9 generates. The thermal power of 820 MW by using a 1.5 GeV proton beam with a current of 39 mA. The average burnup is about 8%, about 250 kg of actinides, after one year operation at an 80% of load factor. With the conventional steam turbine cycle, electric output of about 246 MW is produced. The design of the transmutation plant with sodium-cooled solid target/core is mostly based on the well-established technology of current LMFRs. Advantages and disadvantages of solid target/core are discussed. Recent progress in the development of intense proton accelerator, the development of simulation code system, and the spallation integral experiment is also presented. (author)

  13. IAEA Activities on Assessment of Partitioning Processes for Transmutation of Actinides

    In these days of nuclear renaissance, appropriate management of radioactive materials arising from the nuclear fuel cycle back end is one of the most important issues related to the long term sustainability of nuclear energy. The present practice in the back end of the closed fuel cycle involves the recovery of uranium and plutonium from spent fuel by the aqueous based PUREX process for reuse in reactors and the conditioning of reprocessing waste into a form suitable for long term storage. The waste contains mainly fission products and transuranium elements immobilized in glass matrix. However, advanced fuel cycles incorporating partitioning of actinides along with minor actinides and their subsequent transmutation (P and T) in a fast neutron energy spectrum could be proliferation resistant and at the same time reduce the waste radiotoxicity by many orders of magnitude. Considering the importance of P and T on long term sustainability, the International Atomic Energy Agency has initiated many collaborative research programs in this area as part of our advanced fuel cycle activities. This paper presents the current and future activities on advanced partitioning methods, highlighting the challenges associated with these processes, fuel manufacturing techniques suitable for integration with reprocessing facility and the IAEA's minor actinide data base (MADB), as a part of integrated nuclear fuel cycle information system (iNFCIS). (authors)

  14. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (Pfus ∼ 10-100 MW, βN ∼ 2-3, Qp ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  15. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    Stacey, W. M.

    2001-02-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (Pfus approx 10-100 MW, βN approx 2-3, Qp approx 2-5, R approx 3-5 m, I approx 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-à-vis a neutron source is reviewed.

  16. Protected Plutonium Production (P3) by transmutation of minor actinides for peace and sustainable prosperity

    'Protected Plutonium Production (P3)' has been proposed to enhance the proliferation resistance of plutonium by the transmutation of Minor Actinides (MAs). Doping the small amount of MAs such as 237Np or 241Am with large neutron capture cross-section into the uranium fuel to enhance the production of 238Pu or 242Pu, which have high spontaneous fission neutron source or also high decay heat to makes the process of the nuclear weapon manufacture and maintenance technologically difficult,can be effective for improving the isotopic barrier of proliferation resistance of the plutonium in thermal reactors. Super weapon grade plutonium could be produced in the blanket of a conventional FBR. However, by increasing the 238Pu or 242Pu ratio in the total plutonium by MAs doping into the fresh blanket, the protected plutonium with high proliferation-resistance can be bred. A new evaluation function, 'attractiveness', defined as a ratio of potential of fission yield to the technological difficulties of nuclear explosive device, has been proposed to evaluate the proliferation resistance of Pu based on the nuclear material property for Plutonium Categorization. The new evaluation function of attractiveness is applied for assessing the existing plutonium criteria as summarized in the following, (a) weapon grade plutonium (b) plutonium with 30% fraction of 240Pu (c) plutonium with 6% fraction of 238Pu (d) plutonium exempt from safeguards. Since both proliferation resistant plutonium compositions (b) and (c) give almost the same value of attractiveness, plutonium is categorized by following well accepted terminology, weapon grade, usable, practically unusable and exempt as shown. It is concluded based on the new evaluation function 'Attractiveness' that P3 mechanism by the transmutation of MA is very effective to improve the proliferation resistance of plutonium. In the conference, the fundamentals of P3 mechanism by transmutation of MA, and the comparison of the 'attractiveness' of

  17. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    Reducing the disposal burden of the long lived radioisotopes that are contained within spent uranium oxide fuel is essential for ensuring the sustainability of nuclear power. Because of their non-fertile matrices, inert matrix fuels (IMFs) could allow light-water reactors to achieve a significant burn down of plutonium and minor actinides that are that are currently produced as a byproduct of operating light-water reactors. However, the extent to which this is possible is not yet fully understood. We consider a ZrO2 based IMF with a high transuranic loading and show that the neutron fluence (and the subsequent fuel residence time required to achieve it) present a practical limit for the achievable actinide burnup. The accumulation of transuranics in spent uranium oxide fuel is a major obstacle for the sustainability of nuclear power. While commercial light-water reactors (LWR's) produce these isotopes, they can be used to transmute them. At present, the only viable option for doing this is to partly fuel reactors with mixed oxide fuel (MOX) made using recycled plutonium. However, because of parasitic neutron capture in the uranium matrix of MOX, considerable plutonium and minor actinides are also bred as the fuel is burned. A better option is to entrain the recycled isotopes in a non-fertile matrix such as ZrO2. Inert matrices such as these were originally envisioned for burning plutonium from dismantled nuclear weapons [1]. However, because they achieve a conversion ratio of zero, they have also been considered as a better alternative to MOX [2-6]. Plutonium and minor actinides dominate the long term heat and radiological outputs from spent nuclear fuel. Recent work has shown that that IMFs can be used to reduce these outputs by at least a factor of four, on a per unit of energy generated basis [6]. The degree of reduction is strongly dependent on IMF burnup. In principle, complete transmutation of the transuranics could be achieved though this would require an

  18. Actinide partitioning-transmutation program. Final report. VII. Long-term risk analysis of the geologic repository (appendix)

    The Chemical Technology Division of ORNL has prepared a set of documents that evaluate a partitioning-transmutation (PT) fuel cycle relative to a reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing waste toxicity. Data pertaining to the long-term risk analysis of waste generated from the PT fuel cycle are presented

  19. Status of the French research program for actinides and fission products partitioning and transmutation

    currently presented to French Ministries of Research and Industry and to the National Parliament which plans to pass a new waste management law in 2006 asking for new prospects for P and T further implementation. The massive research programme on enhanced separation, conducted by CEA and supported by broad international cooperation, has recently achieved some vital progress. Based on real solutions derived from the La Hague process, the CEA demonstrated in 2001 the lab-scale feasibility of extracting minor actinides and some fission products (I, Cs and Tc) using an hydrometallurgical process. Then, the 2002-2005 program has encompassed technological demonstration of the selected liquid-liquid process, with representative equipment which have been set up for this purpose in new shielded cells inside the Atalante facility. CEA also conducted programmes proving the feasibility of the elimination of minor actinides and fission products by transmutation: fabrication of specific targets and fuels for transmutation test in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. The scenario studies aimed at examining the possibilities of reducing significantly the final waste inventory and at quantifying the inventories of plutonium, minor actinides and certain long-lived fission products in various nuclear-power-plant geometries; they also allowed to verify the feasibility at the level of the cycle facilities and fuels involved in those scenarios. (author)

  20. Comparison of different options for minor actinide transmutation in the frame of the French law for waste management

    In the frame of the French Act for waste management which has been passed by French Parliament on June 28th, 2006, it is requested to obtain in 2012 an assessment of industrial perspectives of partitioning and transmutation of long-lived elements. These studies must be carried out in tight connection with GENIV systems development. The expected results must include the evaluation of technical and economic scenarios taking into account the optimization options between the minor actinide transmutation processes, their interim storage and geological disposal, including an analysis of several criteria. In this perspective, the CEA has established a working group named 'GT TES' (Working Group on Technical and Economic Scenarios) involving EDF and AREVA to define scenarios, the various criteria to evaluate them, to conduct these evaluations and then to highlight the key results. The group also relied on ANDRA for the geological storage studies. The scenarios evaluations take place in the French context. The nuclear energy production is supposed to remain constant during the scenarios and equal to 430 TWhe/year in accordance with the current French nuclear power installed capacity of 60 GW(e). The deployment of the first Sodium-cooled Fast Reactor (SFR) starts in 2040, considering that at this date the SFR technology should be mature. Several management schemes of minor actinides have been studied: Plutonium recycling in SFR (minor actinides are sent to the waste). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in homogeneous mode ('Hom.'). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in heterogeneous mode ('Het.'). Plutonium recycling in SFR and minor actinide transmutation in Accelerator-Driven-System (ADS). The criteria used to analyze these different scenarios, should take into account the viewpoint of scientists, industrials, administrations, and the general public. They are listed below: Inventories and

  1. Concept and experimental studies on fuel and target for minor actinides and fission products transmutation

    High activity long-lived radionuclides in nuclear wastes, namely minor actinides (americium and neptunium) are in large amount generated by current nuclear reactive. The destruction of these radionuclides is a part of the French SPIN (Partitioning and Burning) program consistent with the determination to send a minimum amount of harmful products for final storage. Transmutation concepts are defined for neptunium and americium taking into account fuel cycle strategies. Neptunium destruction does not pose any major problems. It's a by-product of uranium consumption, as plutonium and in despite of a slight gamma activity due to the protactinium 233 it's quite easy to handle. Diluting neptunium in the mixed oxide fuels (MOX) should not be an obstacle for fabrication, in-pile behaviour and reprocessing either. Consequently we make the proposal of homogeneous mode of neptunium in MOX which should be soon explored in the experimental OSIRIS reactor and in the Phenix and Superphenix reactors. The analysis is more complex for the multi isotope americium. Its destruction is difficult because of gamma radioactivity which complicates fabrication. Experiments in Phenix and calculation showed that Phenix reactor offers a good potential for americium incineration, but similar data do not exist for PWR. It will remain a well known difficulty for fabrication and reprocessing. In this case we have to put a real new face to the fabrication flow-sheet of americium compounds and we propose to develop the heterogeneous mode. Targets choice are defined in term of: -safety, considering fuel reaction with cladding and water sodium, -transmutation rate, limited by target behaviour, in FR's (Phenix), PWR's (OSIRIS) and HFR (Petten), -reprocessing, checking the solubility of such targets by Purex process. So, at the beginning of our program the account has been on improving fuel and targets properties related to safety and fuel cycle. (authors). 4 figs

  2. Calculations of the actinide transmutation with HELIOS for fuels of light water reactors

    In this work a comparison of the obtained results with the HELIOS code is made and those obtained by other similar codes, used in the international community, respect to the transmutation of smaller actinides. For this the one it is analyzed the international benchmark: 'Calculations of Different Transmutation Concepts', of the Nuclear Energy Agency. In this benchmark two cell types are analyzed: one small corresponding to a PWR standard, and another big one corresponding to a PWR highly moderated. Its are considered two types of burnt of discharge: 33 GWd/tHM and 50 GWd/tHM. The following types of results are approached: the keff like a function of the burnt one, the atomic densities of the main isotopes of the actinides, the radioactivities in the moment in that the reactor it is off and in the times of cooling from 7 up to 50000 years, the reactivity by holes and the Doppler reactivity. The results are compared with those obtained by the following institutions: FZK (Germany), JAERI (Japan), ITEP (Russia) and IPPE (Russian Federation). In the case of the eigenvalue, the obtained results with HELIOS showed a discrepancy around 3% Δk/k, which was also among other participants. For the isotopic concentrations: 241Pu, 242 Pu and 242m Am the results of all the institutions present a discrepancy bigger every time, as the burnt one increases. Regarding the activities, the discrepancy of results is acceptable, except in the case of the 241 Pu. In the case of the Doppler coefficients the discrepancy of results is acceptable, except for the cells with high moderation; in the case of the holes coefficients, the discrepancy of results increases in agreement with the holes fraction increases, being quite high to 95% of holes. In general, the results are consistent and in good agreement with those obtained by all the participants in the benchmark. The results are inside of the established limits by the work group on Plutonium Fuels and Innovative Fuel Cycles of the Nuclear

  3. A measurement of actinide neutron transmutations with accelerator mass spectrometry in order to infer neutron capture cross sections

    Bauder, William K.

    Improved neutron capture cross section data for transuranic and minor actinides are essential for assessing possibilities for next generation reactors and advanced fuel cycles. The Measurement of Actinide Neutron TRAnsmutation (MANTRA) project aims to make a comprehensive set of energy integrated neutron capture cross section measurements for all relevant isotopes from Th to Cf. The ability to extract these cross sections relies on the use of Accelerator Mass Spectrometry (AMS) to analyze isotopic concentrations in samples irradiated in the Advanced Test Reactor (ATR). The AMS measurements were performed at the Argonne Tandem Linear Accelerator System (ATLAS) and required a number of key technical developments to the ion source, accelerator, and detector setup. In particular, a laser ablation material injection system was developed at the electron cyclotron resonance ion source. This system provides a more effective method to produce ion beams from samples containing only 1% actinide material and offers some benefits for reducing cross talk in the source. A series of four actinide measurements are described in this dissertation. These measurements represent the most substantial AMS work attempted at ATLAS and the first results of the MANTRA project. Isotopic ratios for one and two neutron captures were measured in each sample with total uncertainties around 10%. These results can be combined with a MCNP model for the neutron fluence to infer actinide neutron capture cross sections.

  4. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k∞) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  5. Mesures de sections efficaces d'actinides mineurs d'intérêts pour la transmutation

    Kessedjian, Grégoire

    2008-01-01

    Les réacteurs actuels produisent deux types de déchets dont la gestion et le devenir soulèvent des problèmes. Il s'agit d'abord de certains produits de fission et de noyaux lourds (isotopes de l'Américium et du Curium) au-delà de l'uranium appelés actinides mineurs. Deux options sont envisagées : le stockage en site géologique profond et/ou l'incinération de ces déchets dans un flux de neutrons rapides, c'est-à-dire, la transmutation par fission. Ces études font appel à de nombreuses données ...

  6. Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor

    FENGKaiming; ZHANGGuoshu

    2002-01-01

    Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research in the past 50 years, and there is still a long way to go. Transmutation of high-level waste (HLW) utilizing D-T fusion neutrons is a good choice for an early application of fusion.

  7. Proceedings of the Twelfth Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste produced by the nuclear power industry. Recent developments indicate the advantages to be realised by embedding P and T strategies into advanced fuel cycles considering both waste management and economic issues. In this context, the OECD Nuclear Energy Agency (NEA) has been organising a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. Previous meetings were held in Mito (Japan) in 1990, at ANL (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006, in Mito (Japan) in 2008, in San Francisco (United States) in 2010 and have been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 12. Information Exchange Meeting was held in Prague, Czech Republic on 24-27 September 2012, hosted by the Radioactive Waste Repository Authority (RAWRA). The workshop comprised a plenary session on national and international programmes followed by technical sessions and a poster session covering various aspects of P and T. The information exchange meetings on P and T form a part of NEA programme of work in the field of advanced nuclear fuel cycles. The titles of the eight technical sessions are: International and National Programmes; Fuel Cycle Strategies and Transition Scenarios; Impact of P and T on Geological Disposal; Transmutation Systems: Design, Performance and Safety; Pyro and Aqueous Separation Processes; Transmutation Fuels and Targets; Transmutation Physics, Experiments and Nuclear Data; Economics of P and T. Poster session contributions to this meeting are also available at http

  8. Safety and environmental aspects of partitioning and transmutation of actinides and fission products. Proceedings of a technical committee meeting held in Vienna, 29 November - 2 December 1993

    There is considerable interest in many countries in the partitioning and transmutation of long lived radionuclides as a potential complement to the closed fuel cycle. Recognizing this, the IAEA organized a Technical Committee Meeting on Safety and Environmental Aspects of Partitioning and Transmutation of Actinides and Fission Products, to review the current status of progress of national and international programmes and identify the most important directions of co-operation. The results of the Technical Committee meeting are presented in this document. Refs, figs and tabs

  9. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  10. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of 241Am and 237Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the 241Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  11. Actinide partitioning-transmutation program final report. VII. Long-term risk analysis of the geologic repository

    This report supports the overall assessment by Oak Ridge National Laboratory of actinide partitioning and transmutation by providing an analysis of the long-term risks associated with the terminal storage of wastes from a fuel cycle which incorporates partitioning and transmutation (P-T) and wastes from a cycle which does not. The system model and associated computer code, called AMRAW (Assessment Method for Radioactive Waste), are used for the analysis and are applied to the Los Medanos area in southeastern New Mexico. Because a conservative approach is used throughout, calculated results are believed to be consistently higher than reasonable expectations from actual disruptive incidents at the site and therefore are not directly suited for comparison with other analyses of the particular geologic location. The assessment is made with (1) the probabilistic, or risk, mode that uses combinations of reasonable possible release incidents with their probability of occurrence distributed and applied throughout the assessment period, and (2) the consequence mode that forces discrete release events to occur at specific times. An assessment period of 1 million years is used. The principal results are: (1) In all but the expulsive modes, 99Tc and 129I completely dominate cumulative effects based on their transport to man through leaching and movement with groundwater, effecting about 33,000 health effects (deaths) over the 1 million years; (2) P-T has only limited effectiveness in reducing long-term risk from a radionuclide waste repository under the conditions studied, and such effectiveness is essentially confined to the extremely unlikely (probability of occurrence 10-12/year) expulsive events; (3) Removal or immobilization of 99Tc and 129I might provide benefits sufficiently tangible to warrant special consideration

  12. Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: appendix

    The Chemical Technology Division of the Oak Ridge National Laboratory has prepared a set of documents that evaluate a Partitioning-Transmutation (PT) fuel cycle relative to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks they present to the public and to workers. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the CRAC code appropriately modified for the material composition. Routine radiological risks to the public are estimated from the calculated release amounts; the effects are calculated using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. The result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. This conclusion is strongly dominated by the nonradiological risk, which is about 150 times greater than the radiological risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatalities/GWe-year for the PT cycle and 0.34 fatalities/GWe-year for the Reference cycle. This should be compared with Inhaber's estimate of 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year

  13. Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: appendix

    Fullwood, R.R.; Jackson, R.

    1980-01-01

    The Chemical Technology Division of the Oak Ridge National Laboratory has prepared a set of documents that evaluate a Partitioning-Transmutation (PT) fuel cycle relative to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks they present to the public and to workers. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the CRAC code appropriately modified for the material composition. Routine radiological risks to the public are estimated from the calculated release amounts; the effects are calculated using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. The result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. This conclusion is strongly dominated by the nonradiological risk, which is about 150 times greater than the radiological risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatalities/GWe-year for the PT cycle and 0.34 fatalities/GWe-year for the Reference cycle. This should be compared with Inhaber's estimate of 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year.

  14. Plutonium Management, Minor Actinides Partitioning and Transmutation R and D in France

    Jean-Marc Cavedon (CEA, France) then presented the developments concerning Plutonium management and minor actinides P and T research and development in France. By the 1991 law on high-level long-lived radioactive waste a research programme was launched in the areas: (i) geological disposal, (ii) conditioning and long-term storage, and (iii) radiotoxicity reduction by P and T. The results of the work in these areas will be presented to the French Government and Parliament in 2006. The control of Plutonium stocks generated by the French PWRs is proposed to increase Plutonium consumption in reactors and minimise radioactive waste production, and requires the recycling of actinides, especially Plutonium. In the long term, CEA intends to develop a new technology based on gas cooled reactors and their associated fuel cycle, including multiple recycling of Plutonium. The advantages of this development consist in the optimisation of the use of natural resources and the concentration of Plutonium in limited quantities of fuel rods. If needed, the minor actinides could also be recycled. The planned CEA developments depend on new fuel types and will lead to novel waste types (light glasses) with a reduction of long-term radiotoxicity. Radiotoxicity reductions by a factor of 3 to 5 are expected for Plutonium recycling scenarios, and by up to a factor of a few hundreds for Plutonium and minor actinides recycling scenarios. This gain is nearly independent on the reactor type used, but needs about 100 years of application to become effective in terms of making a difference in the total waste inventory to be disposed of

  15. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented

  16. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  17. Comparative assessment of the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ads

    A preliminary comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides has been performed in the case of ANSALDO's Energy Amplifier Demonstration Facility based on molten lead-bismuth eutectic cooling, classical MOX-fuel technology and operating at 80 MWth. The neutronic calculations presented in this paper are a result of a state-of-the-art computer code package, EA-MC, developed by C. Rubbia and his group at CERN. Both high-energy particle interactions and low-energy neutron transport are treated with a sophisticated method based on a full Monte Carlo simulation, together with modern nuclear data libraries. Detailed Monte Carlo transport calculations were performed for different types of external neutron sources: D-D and D-T fusion sources and proton induced spallation neutron sources. The fuel core was described on a pin-by- pin basis allowing for detailed scans of the main neutronic properties, e.g. neutron flux spectra and power density distributions. (author)

  18. A thermodynamic study of actinide oxide targets/fuels for americium transmutation

    A thermodynamic study was performed on the systems Am-O, AmOx-MgO, AmOx-MgAl2O4, Pu-Mg-O and U-Mg-O. Both experimental work (X-ray analyses, oxygen potential measurements etc.) and calculations on the phase diagrams involved were made. The reaction between americium oxide and spinel is expected to form the compound AmAlO3. Isothermal sections have been calculated for AmOx-(MgO, Al2O3), Pu-Mg-O and U-Mg-O at 2000 K using the software package ''Thermo-Calc''. Thermodynamic equilibrium data were used to predict the behaviour of actinide oxides in a reactor. The implication of the results for the technological application is discussed, with emphasis on the effects of the high oxygen potential of AmO2 as compared to the conventional fuel, i.e. UO2. (author)

  19. Potential Benefits and Impacts of Advanced Nuclear Fuel Cycles with Actinide Partitioning and Transmutation

    This report provides a comparative analysis of different studies performed to assess the potential impact of partitioning and transmutation (P and T) on different types of geological repositories for radioactive waste in various licensing and regulatory environments. Criteria, metrics and impact measures have been analysed and compared with the goal of providing an objective comparison of the state of the art to help shape decisions on options for future advanced fuel cycles. P and T allows a reduction of the inventory of the emplaced materials which can have a significant impact on the repository. Such a reduction can also make the uncertainty about repository performance less important both during normal evolution and in the case of disruptive scenarios. While P and T will never replace the need for waste repositories, it has the potential to significantly improve public perception regarding the ability to effectively manage radioactive waste by largely reducing the transuranic (TRU) waste masses to be stored and, consequently, to improve public acceptance of the geological repositories. Both issues are important for the future sustainability of nuclear power

  20. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  1. Actinide management with commercial fast reactors

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel

  2. Actinide management with commercial fast reactors

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  3. Actinide management with commercial fast reactors

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  4. Depletion analysis on long-term operation of the conceptual Molten Salt Actinide Recycler and Transmuter (MOSART) by using a special sequence based on SCALE6/TRITON

    Highlights: ► An automatic computation and control sequence has been developed for MSR neutronics and depletion analyses. ► The method was developed based on a series of stepwise SCALE6/TRITON calculations. ► A detailed reexamination of the MOSART operation in 30 years was performed. ► Clean-up scenarios of fission products have a significant impact on the MOSART operation. - Abstract: A special sequence based on SCALE6/TRITON was developed to perform fuel cycle analysis of the Molten Salt Actinide Recycler and Transmuter (MOSART), with emphasis on the simulation of its dynamic refueling and salt reprocessing scheme during long-term operation. MOSART is one of conceptual designs in the molten salt reactor (MSR) category of the Generation-IV systems. This type of reactors is distinguished by the use of liquid fuel circulating in and out of the core, which offers many unique advantages but complicates the modeling and simulation of core behavior using conventional reactor physics codes. The TRITON control module in SCALE6 can perform reliable depletion and decay analysis for many reactor physics applications due to its problem-dependent cross-section processing and rigorous treatment of neutron transport. In order to accommodate a simulation of on-line refueling and reprocessing scenarios, several in-house programs together with a run script were developed to integrate a series of stepwise TRITON calculations; the result greatly facilitates the neutronics analyses of long-term MSR operation. Using this method, a detailed reexamination of the MOSART operation in 30 years was performed to investigate the neutronic characteristics of the core design, the change of fuel salt composition from start-up to equilibrium, the effects of various salt reprocessing scenarios, the performance of actinide transmutation, and the radiotoxicity reduction

  5. On the management of minor actinides. From sub-critical to critical reactors

    In the frame of the current activities on the Minor Actinides (MA) management, the European Lead cooled fast SYstem concept, called ELSY and developed in ENEA in the wrapper less design option, was considered a potential candidate for TRU recycle. Significant MA transmutation rate is observed when the loaded MA amount is significantly higher than their 'equilibrium concentrations'. It is of interest the investigation of the transmutation capabilities of this fast critical systems in comparison with the EFIT sub - critical system capabilities which has been designed from the beginning to maximize the MA transmutation rate. In this context the studies of the MA transmutation capabilities of the ELSY reactor are reasonable and also justified, even though the ELSY reactor hasn't been designed nor optimised to enhance the MA transmutation. The main goal of this analysis is the collection of the 'physical knowledge' concerning the MA transmutation process. (author)

  6. Protected Plutonium Production by Transmutation of Minor Actinides for Peace and Sustainable Prosperity [O1] - Fundamentals of P3 Mechanism and Methodology Development for Plutonium Categorization

    'Protected Plutonium Production (P3)' has been proposed to enhance the proliferation resistance of plutonium by the transmutation of Minor Actinides (MAs). Doping the small amount of MAs such as 237Np or 241Am with large neutron capture cross-section into the uranium fuel to enhance the production of 238Pu or 242Pu, which have high spontaneous fission neutron source or also high decay heat to makes the process of the nuclear weapon manufacture and maintenance technologically difficult, can be effective for improving the isotopic barrier of proliferation resistance of the plutonium in thermal reactors. Super weapon grade plutonium could be produced in the blanket of a conventional FBR. However, by increasing the 238Pu or 242Pu ratio in the total plutonium by MAs doping into the fresh blanket, the protected plutonium with high proliferation-resistance can be bred. A new evaluation function, 'attractiveness', defined as a ratio of potential of fission yield to the technological difficulties of nuclear explosive device, has been proposed to evaluate the proliferation resistance of Pu based on the nuclear material property for Plutonium Categorization. In the conference, the fundamentals of P3 mechanism by transmutation of MA, and the comparison of the 'attractiveness' of the Pu produced in advanced reactors based on P3 mechanism and in the conventional reactors will be presented. Instead of the geological disposal or just their burning of MAs by the fission reaction, they should be treated as valuable fertile materials to enhance the proliferation resistance of plutonium produced in the thermal and fast breeder reactors for peace and sustainable prosperity in future. Acknowledgement: Some parts of this work have been supported by the Ministry of Education, Culture, Sports, Science and Technology in Japan. (authors)

  7. Calculations of the actinide transmutation with HELIOS for fuels of light water reactors; Calculos de la transmutacion de actinidos con HELIOS para combustibles de reactores de agua ligera

    Francois L, J.L.; Guzman A, J.R. [UNAM-FI, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jlfl@fi-b.unam.mx

    2006-07-01

    In this work a comparison of the obtained results with the HELIOS code is made and those obtained by other similar codes, used in the international community, respect to the transmutation of smaller actinides. For this the one it is analyzed the international benchmark: 'Calculations of Different Transmutation Concepts', of the Nuclear Energy Agency. In this benchmark two cell types are analyzed: one small corresponding to a PWR standard, and another big one corresponding to a PWR highly moderated. Its are considered two types of burnt of discharge: 33 GWd/tHM and 50 GWd/tHM. The following types of results are approached: the k{sub eff} like a function of the burnt one, the atomic densities of the main isotopes of the actinides, the radioactivities in the moment in that the reactor it is off and in the times of cooling from 7 up to 50000 years, the reactivity by holes and the Doppler reactivity. The results are compared with those obtained by the following institutions: FZK (Germany), JAERI (Japan), ITEP (Russia) and IPPE (Russian Federation). In the case of the eigenvalue, the obtained results with HELIOS showed a discrepancy around 3% {delta}k/k, which was also among other participants. For the isotopic concentrations: {sup 241}Pu, {sup 242} Pu and {sup 242m} Am the results of all the institutions present a discrepancy bigger every time, as the burnt one increases. Regarding the activities, the discrepancy of results is acceptable, except in the case of the {sup 241} Pu. In the case of the Doppler coefficients the discrepancy of results is acceptable, except for the cells with high moderation; in the case of the holes coefficients, the discrepancy of results increases in agreement with the holes fraction increases, being quite high to 95% of holes. In general, the results are consistent and in good agreement with those obtained by all the participants in the benchmark. The results are inside of the established limits by the work group on Plutonium Fuels

  8. Analysis of the minority actinides transmutation in a sodium fast reactor with uniform load pattern by the MCNPX-CINDER code; Analisis de la transmutacion de actinidos en un reactor rapido de sodio con modelo de carga homogeneo mediante el codigo MCNPX-CINDER

    Ochoa Valero, R.; Garcia-Herranz, N.; Aragones, J. M.

    2010-07-01

    The aim of this study is to evaluate the minority actinides transmutation in sodium fast reactors (SFR) assuming a uniform load pattern. It is determined the isotopic evolution of the actinides along burn, and the evolution of the reactivity and the reactivity coefficients. For that, it is used the MCNPX neutron transport code coupled with the inventory code CINDER90.

  9. Heavy ion induced damage in MgAl sub 2 O sub 4 , an inert matrix candidate for the transmutation of minor actinides

    Wiss, T

    1999-01-01

    Magnesium aluminum spinel (MgAl sub 2 O sub 4) is a material selected as a possible matrix for transmutation of minor actinides by neutron capture or fission in nuclear reactors. To study the radiation stability of this inert matrix, especially against fission product impact, irradiations with heavy energetic ions or clusters have been performed. The high electronic energy losses of the heavy ions in this material led to the formation of visible tracks as evidenced by transmission electron microscopy for 30 MeV C sub 6 sub 0 -Buckminster fullerenes and for ions of energy close to or higher than fission energy ( sup 2 sup 0 sup 9 Bi with 120 MeV and 2.38 GeV energy). The irradiations at high energies showed a pronounced degradation of the spinel. Additionally, MgAl sub 2 O sub 4 exhibited a large swelling for irradiation at high fluences with fission products of fission energy (here I-ions of 72 MeV) and at temperatures <= 500 deg. C. These observations are discussed from the technological point of view in ...

  10. Accelerator for nuclear transmutation

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program

  11. Wastes Management Through Transmutation in an ADS Reactor

    Bernard Verboomen; Giuseppe Forasassi; Nicola Cerullo; Barbara Vezzoni; Barbara Calgaro

    2008-01-01

    The main challenge in nuclear fuel cycle closure is the reduction of the potential radiotoxicity, or of the time in which that possible hazard really exists. Probably, the transmutation of minor actinides with fast fission processes is the most effective answer. This work, performed in SCK⋅CEN (Belgium) and DIMNP Pisa University, is focused on preliminary evaluation of industrial scale ADS (400 MWth, 2.5 mA) burning capability. An inert matrix fuel of minor actinides, 50% ...

  12. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  13. Irradiation effects on SiAlO(N) rare earth aluminosilicate glasses in the framework of actinides transmutation; Effets de l'irradiation sur les verres d'aluminosilicates de terres rares de type SiAlO(N) dans le contexte de la transmutation des actinides

    Dauce, R

    2003-11-15

    Actinides transmutation would permit to decrease the amount of waste to be dispose in deep geological site. However, a surrounding matrix is generally necessary after the separation of the radionuclides. Reference ceramics irradiations in the context of transmutation have been widely investigated, but no study have been performed on amorphous materials in the same conditions. The extensive study of glass evolution under heavy-ions bombardment can however permit to get insight damaging mechanisms during irradiation. The glassy compositions, which are SiAlO(N) type, were chosen for their refractoriness, their high chemical durability and excellent mechanical properties. Five compositions, in the Y-Mg-Si-Al-O(-N), Nd-Mg-Si-Al-O(-N) and La-Y-Al-O-N systems, were synthesized and characterized. A link is find between the structure of glasses and their deformation mechanism. The glasses were irradiated at GANIL (Caen), with several MeV energy heavy-ions. Their hardness decrease after bombardment, in close link with the electronic stopping power, but seems to be independent of the amount and nature of the network modifiers. This hardness decrease is more pronounced in the case of nitrogen containing glasses, and is due to a change in the glass deformation mechanism under indentation. The pristine glasses exhibit a 'normal' behavior, but the irradiated glasses are strained mainly by a densification mechanism. This change in the indentation behavior is probably due to several structural modifications. Indeed, UV-visible absorption spectroscopy shows the presence of a large amount of point defects after bombardment. Furthermore, particularly in the case of nitrogen containing glasses, the local environment of aluminum and silicon are largely disturbed, as shown by NMR and Raman spectroscopies. (author)

  14. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  15. Fusion-Fission Burner for Transuranic Actinides

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  16. Actinide recycle

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  17. Set up of an innovative methodology to measure on-line the incineration potential of minor actinides under very high neutron sources in the frame of the future prospects of the nuclear waste transmutation

    This work deals generally with the problem of nuclear waste management and especially with the transmutation of it to reduce considerably its radiotoxicity potential. The principal objective of this thesis is to show the feasibility to measure on-line the incineration potential of minor actinides irradiated under very high neutron flux. To realize this goal, we have developed fission micro-chambers able to operate, for the first time in the world, in saturation regime under a severe neutron flux. These new chambers use 235U as an active deposit. They were irradiated in the high flux reactor at Laue-Langevin Institute in Grenoble. The measurement of the saturation current delivered by these chambers during their irradiation for 26 days allowed to evaluate the burn-up of 235U. We have determined the neutron flux intensity of 1,6 1015 n.cm-2.s-1 in the bottom of the irradiation tube called 'V4'. The relative uncertainty of this value is less than 4 %. This is for the first time that such high neutron flux is measured with a fission chamber. To confirm this result, we have also performed independent measurements using gamma spectroscopy of irradiated Nb and Co samples. Both results are in agreement within error bars. Simple Deposit Fission Chambers (SDFC) as above were the reference of the new generation of fission chambers that we have developed in the framework of this thesis: Double Deposit Fission Chambers (DDFC). The reference active deposit was 235U. The other deposit was the actinide that we wanted to study (e.g. 237Np and 241Am). At the end of the thesis, we present some suggestions to ameliorate the operation of the DDFC to be exploited in other transmutation applications in the future. (author)

  18. Transmutation in ASTRID

    Within the scope of the French Act of 28 June 2006 on managing long-lived radioactive waste, one of the objectives of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor is to demonstrate the capacity to transmute minor actinides (MA) on an industrial scale. Demonstration scenarios currently focus on two modes of transmutation: a homogeneous mode using a standard fuel with low MA content, and a heterogeneous mode where the minor actinides are loaded in the radial blanket around the core, known as the minor-actinide-bearing blanket (MABB) concept. With different initial MA concentrations for the two modes of transmutation, we have estimated their impact on the performance and safety of the ASTRID reactor core. The consequences on the dimensions of the storage means, the handling systems and the fuel sub-assembly transport packaging are also reviewed in order to identify the limits beyond which significant design changes to the core and nuclear steam supply system (NSSS) would be required. Analysis of the results has made it possible to identify the most suitable irradiation conditions and initial contents to demonstrate transmutation in ASTRID, with the main aim of achieving a balance in the minor actinide flows without significantly changing the reactor design: • Americium (Am), a main contributor to the heat and the radiotoxicity of radioactive waste after the decay of fission products, will be treated as a top priority, • Part of the americium can be overridden by neptunium (Np) without any impact on the design and performance, • Curium (Cm) is not considered; it’s too penalising in the handling of new sub-assemblies, • Possible weight levels for the demonstration: 2% of Am in the fuel for the homogeneous mode and 10% of Am in the blanket for the heterogeneous mode. Whatever the chosen mode of transmutation, it will be necessary to conduct experimental programmes in ASTRID to validate and qualify the behaviour of

  19. Set up of an innovative methodology to measure on-line the incineration potential of minor actinides under very high neutron sources in the frame of the future prospects of the nuclear waste transmutation; Mise au point d'une methodologie innovante pour la mesure du potentiel d'incineration d'actinides mineurs sous des sources tres intenses de neutrons, dans la perspective de transmutation des dechets nucleaires

    Fadil, M

    2003-03-01

    This work deals generally with the problem of nuclear waste management and especially with the transmutation of it to reduce considerably its radiotoxicity potential. The principal objective of this thesis is to show the feasibility to measure on-line the incineration potential of minor actinides irradiated under very high neutron flux. To realize this goal, we have developed fission micro-chambers able to operate, for the first time in the world, in saturation regime under a severe neutron flux. These new chambers use {sup 235}U as an active deposit. They were irradiated in the high flux reactor at Laue-Langevin Institute in Grenoble. The measurement of the saturation current delivered by these chambers during their irradiation for 26 days allowed to evaluate the burn-up of {sup 235}U. We have determined the neutron flux intensity of 1,6 10{sup 15} n.cm{sup -2}.s{sup -1} in the bottom of the irradiation tube called 'V4'. The relative uncertainty of this value is less than 4 %. This is for the first time that such high neutron flux is measured with a fission chamber. To confirm this result, we have also performed independent measurements using gamma spectroscopy of irradiated Nb and Co samples. Both results are in agreement within error bars. Simple Deposit Fission Chambers (SDFC) as above were the reference of the new generation of fission chambers that we have developed in the framework of this thesis: Double Deposit Fission Chambers (DDFC). The reference active deposit was {sup 235}U. The other deposit was the actinide that we wanted to study (e.g. {sup 237}Np and {sup 241}Am). At the end of the thesis, we present some suggestions to ameliorate the operation of the DDFC to be exploited in other transmutation applications in the future. (author)

  20. Burning of actinides: A complementary waste management option?

    The TRU actinide are building up at a rate of about 90 tHM per year. Approximately 45 tHM will remain occluded in the spent fuel structures, leaving about 45 tHM available; 92% as recycled plutonium and 8% as minor actinides (neptunium, americium, curium) immobilized in vitrified waste. There is renewed interest in partitioning and transmutation (P and T), largely because of difficulties encountered throughout the world in finding suitable geologic formations in locations which are acceptable to the public. In 1988, the Japanese Atomic Energy Commission launched a very important and comprehensive R and D program. The general strategy of introducing Partitioning and Transmutation (P and T) as an alternative waste management option is based on the radiological benefit which is expected from such a venture. The selection of the actinides and long-lived fission products which are beneficial to eliminate by transmutation depends upon a number of technical factors, including hazard and decontamination factors, and the effect of geological confinement. There are two ways to approach the separation of minor actinides and long-lived fission products from reprocessing streams: by modifying the current processes in order to reroute the critical nuclides into a single solution, for example high-level liquid waste, and use this as a source for partitioning processes; and by extension of the conventional PUREX process to all minor actinides and long-lived fission products in second generation reprocessing plants. Prior to the implementation of one of these schemes, it seems obvious to improve the separation yield of plutonium from HLW within the presently running plants. Actinide P and T is not an alternative long-term waste management option. Rather, it is a complementary technique to geologic disposal capable of further decreasing the radiological impact of the fuel cycle over the very long term. 1 tab

  1. Actinide burning and waste disposal

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  2. EC-FP7 ARCAS: technical and economical comparison of Fast Reactors and Accelerator Driven Systems for transmutation of Minor Actinides

    The ARCAS project aims to compare, on a technological and economical basis, Accelerator Driven Systems and Fast Reactors as Minor Actinide burners. It is split in five work packages: the reference scenario definition, the fast reactor system definition, the accelerator driven system definition, the fuel reprocessing and fabrication facilities definition and the economical comparison. This paper summarizes the status of the project and its five work packages. (author)

  3. Capability of resisting γ-ray irradiation and immobilization for simulated trivalent actinides on synthesized zircon

    In order to investigate zircon immobilization for trivalent actinides and its γ-ray irradiation stability, zircon was synthesized at 1 500 degree C for 22 h using ZrO2, SiO2 and Eu2O3(2.5%-10% in mole) powders as the starting materials and trivalent europium (Eu3+) as the simulacrum. Then, γ-ray irradiation experiment of the condensates was conducted. The phases, structure and surface morphology of the synthesized condensates and the corresponding irradiated condensates were characterized by X-ray diffraction (XRD), laser Raman microprobe (RMP) and scanning electron microscopy (SEM). The results indicate that the main phase of the synthesized condensates is zircon, and it still shows a high crystallinity although 2.5%-10% of Eu2O3 is added in the starting materials. With the increase of Eu2O3 in the starting materials, the metamict degree of the synthesized condensates is slightly increased. Zircon is still the main phase in the irradiated condensates though they are irradiated by 579.1 kGy of γ-ray. The crystallinity of irradiated samples is slightly weakened hence the degree of metamict slightly increased. (authors)

  4. The concept of separation-transmutation and the management of radioactive wastes

    Alpha, beta and gamma radiation emitting radionuclide waste management problems are discussed, with particular attention to minor actinide separation. The impacts of waste separation-transmutation on the disposal of wastes and nuclear transmutation of actinides are discussed. (R.P.) 21 refs

  5. Investigation of the Feasibility of a Small Scale Transmutation Device

    Sit, Roger Carson

    2009-01-01

    This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides.Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), sho...

  6. Thermal-hydraulics of actinide burner reactors

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  7. ORIGEN-S: SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms

    ORIGEN-S computes time-dependent concentrations and source terms of a large number of isotopes, which are simultaneously generated or depleted through neutronic transmutation, fission, radioactive decay, input feed rates and physical or chemical removal rates. The calculations may pertain to fuel irradiation within nuclear reactors, or the storage, management, transportation or subsequent chemical processing of removed fuel elements. The matrix exponential expansion model of the ORIGEN code is unaltered in ORIGEN-S. Essentially all features of ORIGEN were retained, expanded or supplemented within new computations. The primary objective of ORIGEN-S, as requested by the Nuclear Regulatory Commission, is that the calculations may utilize the multi-energy-group cross sections from any currently processed standardized ENDF/B data base. This purpose has been implemented through the prior execution of codes within either the SCALE System or the AMPX System, developed at the Oak Ridge National Laboratory. These codes compute flux-weighted cross sections, simulating conditions within any given reactor fuel assembly, and convert the data into a library that can be input to ORIGEN-S. Time-dependent libraries may be produced, reflecting fuel composition variations during irradiation. Presented in the document are: detailed and condensed input instructions, model theory, features available, range of applicability, brief subroutine descriptions, sample input, and I/O requirements

  8. Transmutation detectors

    Viererbl, L.; Lahodová, Z.; Klupák, V.; Sus, F.; Kučera, Jan; Kůs, P.; Marek, M.

    2011-01-01

    Roč. 632, č. 1 (2011), s. 109-111. ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Transmutation detector * Activation method * Neutron detector * Neutron fluence Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2011

  9. Application of Monte Carlo techniques for propagation of cross section uncertainties to actinide inventory in ADS transmuters: comparison with sensitivity analysis

    A comprehensive study is performed in order to evaluate the impact of activation cross section uncertainties on the actinide composition of the irradiated fuel in representative ADS (Accelerator Driven System) irradiation scenarios. Some of the most recent sources/compilations of uncertainty data are used, and the results obtained from them compared. The ANL covariance matrices are taken as reference data for the calculations. The complete set of cross section uncertainties provided in the EAF2005 data library are also used for comparison purposes. In this study, the inventory code ACAB is used to analyze the following questions: impact of different correlation structures using fixed uncertainties/variances; effect of the irradiation time/burn-up on the concentration uncertainties; and applicability of Monte Carlo (MC) and sensitivity-uncertainty (SU) approaches for all the range of burn-up/irradiation times of interest in ADS designs. When comparing results of calculations using ANL versus EAR2005/UN uncertainty data, we found very significant differences in the concentration uncertainties. The applicability of both MC and SU approaches is found acceptable to deal with all the range of irradiation times

  10. Transmutation Performance Analysis for Inert Matrix Fuels in Light Water Reactors and Computational Neutronics Methods Capabilities at INL

    Michael A. Pope; Samuel E. Bays; S. Piet; R. Ferrer; Mehdi Asgari; Benoit Forget

    2009-05-01

    The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.

  11. Transmutation of actinides from light water reactors in modular high-temperature reactors for the reduction of long-lived nuclides; Verbrennung von Aktiniden aus Leichtwasserreaktoren in modularen Hochtemperaturreaktoren zur Reduzierung langlebiger Nuklide

    Meier, Astrid

    2012-05-15

    Only one of many different ways to produce electric power is the Light Water Reactor (LWR).This reactor produces high level long-lived and radiotoxic nuclides like Plutonium and Minore Actinides (Neptunium, Americium, Curium,..), which have to be safely isolated and controlled in a final storage over a long time. Thus, many projects worldwide concentrate on the transformation of these long-lived nuclides into short-lived nuclides by transmutation and fission processes. Here, mainly accelerator driven systems and Generation-IV-reactors, like the graphite moderated, Helium cooled High Temperature Reactor (HTR), are in focus of research. The main advantages of the HTR are the fuel structure, which allows high burnups and the inherent safety. In case of a Loss Of Cooling Accident (LOCA), the decay heat will be dissipated without any active cooling system. This passive heat transfer is high enough to stay below the upper temperature limit in the fuel. Therefore, the fuel structure stays intact and the fission products retain inside the fuel. In this thesis, the long-lived nuclides like Plutonium, Neptunium and Americium, extracted from the spent LWR fuel, will be reused in a fresh fuel element for the HTR. To achieve the aim of reducing these nuclides and their radiotoxicity, the HTR has to operate at the highest possible burnup. Therefore parameters, like e.g. the fuel temperature or the power density distribution and also the behaviour in case of an accident have to be comparable to the HTR loaded with uranium fuel. The European Union project ''Plutonium and Minore Actinide Waste Management'' (PuMA) is the origin for the used reference reactor geometry, the fuel structure as well as the nuclide densities in the Plutonium and Minor Actinides fuel. The reactor design of this project is almost identical to the South African reactor concept with 400 MW{sub th} thermal power and an inner graphite column (Pebble Bed Modular Reactor PBMR-400).For

  12. The nuclear design optimization of a Pb-Bi alloy cooled transmuter, PEACER-300

    A core design of lead-bismuth cooled fast reactor, PEACER-300 has been investigated to maximize its transmutation capability within safety criteria. Transmutation of minor actinide under a closed recycling was analyzed with assumption on decontamination factors in pyro-reprocessing plant data at reasonably high values. To acquire high transmutation performance, feed fuel composition, P/D ratio, active core height and fuel cycle strategy were changed. For preventing the fuel meting and guaranteeing long plant life-time, the number of fuel assembly array and normal operation temperature were decided. The optimized design parameter were chosen as of a flat core shape with 50 cm of active core height and 5 m core diameter, loaded with 17 x 17 arrayed fuel assemblies. A pitch to diameter ratio is 2.2, operating coolant temperature range is 300 deg. C to 400 deg. C, and core consists of 3 different enrichment zones with one year cycle length. Performance of designed core showed a high transmutation capability with support ratio of 2.085, large negative temperature feedback coefficients, and sufficient shutdown margin with 28 B4C control assemblies. (authors)

  13. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  14. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M. [Nuclear Research and Consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  15. On fusion driven systems (FDS) for transmutation

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  16. Scientific feasibility of long lived wastes transmutation

    This report presents the results of the works carried out by the CEA on the scientifical feasibility of long-lived wastes transmutation. A first part, based on cross-sections analysis, deals with transmutation efficiency on minor actinides and fission products with respect to the neutron spectrum and independently of the transmuting system under consideration. The intrinsic advantage of the fast neutron spectrum, with respect to the neutron status, to the transmutation levels obtained and to the low generation of higher isotopes, is shown. The limitations of minor actinide loading of about 1-2% in PWRs and of about 3-5% in FBRs, in relation with core physics, are justified. The consequences on the fuel cycle in terms of residual power and neutron and gamma sources are precised with the penalties graduation: neptunium x-type fuel, are of about 300 for PWR recycling options and of about 50 for FBRs recycling options. The conclusions drawn from this scientifical feasibility step sustain the option choices retained in transmutation technical feasibility studies. A second part treats of calculation methodology aspects. The measurements and evaluation of nuclear data, specifically performed on long-lived radioactive wastes, and which represent a key component with respect to the quality and relevance of transmutation studies, are described. The different qualification programs (analytical, physical and global) allow to conclude that neutron transmutation of long lived radioactive wastes is based on a well-mastered physics, even in the case of the neutronic field of a classic fission reactor, or in the case of the neutronic field of a subcritical booster environment supplied by an external source. The models and nuclear data used for the calculations will require a detailed validation to warrant the reliability of a project of realization. However, the same models and data allow today to perform calculations with pertinent and credible results. (J.S.)

  17. Transmutation abilities of a 3600 MWth SFR core

    This paper presents an evaluation of the potential of transmutation of minor actinides in a 3600 MWth SFR core. Two modes of transmutation have been considered : homogeneous and heterogeneous. To be consistent with cycle scenario studies, the performances achieved in minor actinide consumption (Np+Am+Cm) for the homogeneous and heterogeneous modes are about -9.6 kg/TWhe and -5.8 kg/TWhe respectively, considering an initial loaded mass of 2.3 tons in both cases. The main conclusion of this study is that the reference design of the SFR core seems to be adapted to the transmutation of minor actinides with homogeneous mode until 3% contents. In the case of higher contents, a new design of the assembly will be necessary to take into account the degradation of the fuel properties and cladding behavior. (author)

  18. ALMR potential for actinide consumption

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  19. Fusion/transmutation reactor studies based on the spherical torus concept

    The paper presents a conceptual design for a compact fusion/transmutation experimental reactor based on the spherical torus concept, CFER-ST. A set of plasma parameters suitable for the nuclear waste transmutation blanket are given. The transmutation neutronics, integer structure, thermo-hydraulics, liquid curtain wall and magnet shield design, etc., for two types of minor actinide transmutation blankets, namely the lead-bismuth eutectic cooled blanket and the FLiBe eutectic self-cooled blanket, along with the relevant calculation results, are presented. The preliminary results show that the proposed fusion/transmutation system and the relevant parameters can meet the design goals

  20. Partitioning and Transmutation. Annual Report 2004

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (129I, 99Tc, 135Cs, 93Zr and 126Sn and activation products (14C and 36Cl). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. This separation is necessary to obtain the desired efficiency in the transmutation process in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union sixth framework program project EUROPART. This is a continuation of the projects we participated in within the fourth and fifth framework programmes NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development

  1. Partitioning and Transmutation. Annual Report 2004

    Andersson, Sofie; Drouet, Francois; Ekberg, Christian; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2005-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 129}I, {sup 99}Tc, {sup 135}Cs, {sup 93}Zr and {sup 126}Sn and activation products ({sup 14}C and {sup 36}Cl). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. This separation is necessary to obtain the desired efficiency in the transmutation process in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union sixth framework program project EUROPART. This is a continuation of the projects we participated in within the fourth and fifth framework programmes NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development.

  2. Partitioning and Transmutation. Annual Report 2005

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work

  3. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  4. Preliminary neutronics analysis of a spallation target for transmutation

    Accelerator Driven subcritical System (ADS) was recognized as an effective nuclear waste transmutation device. Target in liquid or solid in an independent loop bombarded by the charged particle beam was considered as the neutron source. Heavy metal was chosen as target material or coolant. The present work was to discuss the possibility of taking Minor Actinides as part of spallation target material, for a better transmutation performance of entire ADS. According to the thermal cooling and irradiation time limitation, a conceptual design of target for transmutation was proposed. And preliminary neutronics analysis for target performance assessment including neutron flux, neutron yield as well neutron spectrum is shown in this work. (author)

  5. FCRD Transmutation Fuels Handbook 2015

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  6. FCRD Transmutation Fuels Handbook 2015

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  7. The U.S. accelerator transmutation of waste program

    A national project to develop a future capability to separate actinides and long-lived fission products from spent fuel, to transmute them, and to dispose off the remaining waste in optimal waste forms has begun in the United States. This project is based on the Accelerator-driven Transmutation of Waste (ATW) program developed during the 1990s at Los Alamos National Laboratory, and has its technological roots in several technologies that have been developed by the multi-mission laboratories of the U.S. Department of Energy (DOE). In the Fiscal Year 1999 Energy and Water Appropriation Act, the U.S. Congress directed the DOE to study ATW and by the end of FY99 to prepare a 'roadmap' for developing this technology. DOE convened a steering committee, assembled four technical working groups consisting of members from many national laboratories, and consulted with several individual international and national experts. The finished product, 'A Roadmap for Developing ATW Technology - A Report to Congress', recommends a five-year, $281 M, science-based, technical-risk-reduction program. This paper provides an overview of the U.S. Roadmap for developing ATW technology, the organization of the national ATW Project, the critical issues in subsystems and technological options, deployment scenarios, institutional challenges, and academic and international collaboration

  8. Neutronic features of pebble-bed reactors for transmutation applications

    Pebble-bed reactors offer very appealing characteristics for radioactivity confinement and for withstanding thermal transients. Besides that, pebble-bed reactors have a peculiar degree of freedom in the radius of the active core of the pebble (where the fuel is located) as compared to the outer radius of the pebble, which has a coating of pure graphite. By varying the aforementioned radius, very different types of neutron spectra can be formed, which in turn gives very different values of the average cross sections that govern the isotopic composition evolution, and particularly the elimination of the most relevant transuranics. Preliminary conclusions of this work show that there is a very broad design window for exploiting the transmutation capabilities of pebble-bed reactors in a scenario of inherent safety features. A 99,9% elimination of Pu-239 associated to a 99% elimination of Pu-240 and Pu-241 can be reached, with some increment of the Pu-242 contents (which is extremely long-lived, less radio-toxic and decays into the natural nuclide U-238). Am and Cm are also transmuted to a significant level, although some residual higher A actinides will remain. (authors)

  9. A deep burn fuel management strategy for the transmutation of light water reactors waste in the gas turbine-modular helium reactor

    We have investigated the waste actinide burnup capabilities of the gas turbine modular helium reactor (GT-MHR), similar to the reactor being designed by General Atomics and Minatom for surplus weapons plutonium destruction) with the Monte Carlo continuous energy burnup code (MCB), an extension of Monte Carlo N-particle transport code (MCNP) developed at the Royal Institute of Technology in Stockholm and the University of Science and Technology in Cracow. The GT-MHR is a gas-cooled, graphite-moderated reactor, which can be powered with a wide variety of fuels, like thorium, uranium or plutonium. In the present studies, the GT-MHR is fueled with the transuranic actinides contained in light water reactors (LWRs) spent fuel for the purpose of destroying them as completely as possible. The driver fuel (DF) of the GT-MHR uses fissile isotopes (e.g. 239Pu and 241Pu), previously generated in the LWRs, and maintains criticality conditions in the GT-MHR. After an irradiation of three years, the spent driver fuel is reprocessed and its remaining actinides are manufactured into fresh transmutation fuel (TF). Transmutation Fuel mainly contains non-fissile actinides that undergo neutron capture and transmutation during the subsequent three-year irradiation in the GT-MHR. At the same time, TF provides control and negative reactivity feedback to the reactor. The destruction of more than 94% of 239Pu and the other geologically problematic actinide species makes this reactor a valid proposal for the reduction of nuclear waste and the prevention of proliferation. (author)

  10. Establishing the design basis for a Molten Salt Demonstration Transmuter

    A Molten Salt Demonstration Transmuter is required to show the operation and design performance for closing the nuclear spent fuel cycle for PWR or WWER reactors operated in the once-through cycle mode. The remnant waste would be either permanently stored or held for secondary use. The purpose of this proposal is to establish the design basis for the Molten Salt Demonstration Transmuter. It is supposed that once-through-cycle nuclear spent fuel would be delivered to the Molten Salt Demonstration Transmuter in the standard transportable container includes 84 WWER-440 SNF assemblies each weighing 250 kg and containing 120 kg U, and about 1.2 kg of Pu and minor actinides. One assembly at a time will be withdrawn from the container and chemically processed to supply Pu and minor actinides at the rate necessary for burn-up compensation. (Authors)

  11. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  12. Investigation of the feasibility of a small scale transmutation device

    Sit, Roger Carson

    This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long

  13. Perspectives of partitioning and transmutation technology

    When we explore the sustainable utilization of nuclear power, reasonable and environmentally preferable waste management is indispensable. The Partitioning and Transmutation (P and T) technology has been studied in many countries aiming at reduction of the burden for disposal of high-level radioactive waste (HLW). This technology, coupled with the geological disposal, is now regarded as a part of advanced fuel cycle, and hence various research and development (R and D) are under way. As for the partitioning process of spent fuel, various innovative extractants and methods are being studied and proposed to separate actinide and lanthanide from other fission product (FP), to separate minor actinide (MA) from lanthanide, and so on. As for the transmutation of long-lived nuclides, various types of system, such as MA loading (both homogeneous and heterogeneous concepts) to a fast reactor (FR) and dedicated transmutation of MA in an accelerator-driven system (ADS), are being studied and proposed, and respective types of MA-bearing fuel are being investigated. One of problems to proceed with R and D on this technology is in the difficulty to provide and handle a certain amount of MA. To overcome this point, international collaboration to make use of facilities and MA resources is desirable. (author)

  14. Technical feasibility of long lived wastes transmutation

    The aim of this report is to evaluate the technical feasibility of long-lived wastes transmutation in different type of reactors and their associated cycles. This feasibility depends both on the type of waste and on the type of reactor. It is performed through scenario studies which allow to evaluate the overall steps of the fuel cycle (reactor, fabrication, storage, reprocessing) and which include the detailed studies of changes in cores design and management induced by transmutation, the impacts on fuel cycle facilities, and on reprocessing and fabrication processes. Previous scenario studies have permitted to underline the advantages and drawbacks of the different strategies. The scenarios considered in this document cover the overall options foreseeable today: a PWR-based scenario for the recycling of plutonium and americium in homogeneous mode based on the MOX UE Am assembly concept from 2020 onward; a 4. generation reactor-based scenario with fast spectrum and self recycling of actinides from 2035 onward; and a scenario where minor actinides are recycled in a specific cycle in association with subcritical systems. The document comprises also a specific chapter about the technical feasibility of the transmutation fuel which covers the overall aspects of the fuel cycle to be considered. (J.S.)

  15. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economic estimates

    Highlights: • Four fuel cycle scenarios have been analyzed in resources and economic terms. • Scenarios involve Once-Through, Pu burning, and MA transmutation strategies. • No restrictions were found in terms of uranium and plutonium availability. • The best case cost and the impact of their uncertainties to the LCOE were analyzed. - Abstract: Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CP-ESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U–Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TREVOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of

  16. Gamma ray beam transmutation

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 197Au and 129Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 129Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  17. Partitioning and transmutation. Annual report 2007

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT now in the 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since a further investigation on basic understanding of the chemical behaviour is required, we have our main focus on the chemical processes and understanding of how they work. Due to new recruitments we will now also work on ligand design and development. This will decrease the response time between new ligands and their evaluation

  18. Partitioning and Transmutation. Annual Report 2005

    Andersson, Sofie; Ekberg, Christian; Fermvik, Anna; Hervieux, Nadege; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work.

  19. Partitioning and transmutation. Annual report 2007

    Aneheim, Emma; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Foreman, Mark St. J.; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar; Wald, Karin (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (SE))

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT now in the 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since a further investigation on basic understanding of the chemical behaviour is required, we have our main focus on the chemical processes and understanding of how they work. Due to new recruitments we will now also work on ligand design and development. This will decrease the response time between new ligands and their evaluation.

  20. Partitioning and Transmutation. Annual Report 2003

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2004-02-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products and activation products. To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to obtain are the one between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and the one between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to obtain separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union project PARTNEW. This project was a part of the fifth framework programme and was concluded in September 2003, but the work is continued in the sixth framework programme under the acronym EUROPART (start January 2004). We mainly cooperate with the Univ. of Reading, which send us new nitrogen containing ligands for evaluation of their extraction properties. The main focus is to understand the basic chemistry of these systems but also to study some process behaviour for future full-scale plants.

  1. Transmutation of high level wastes in a fusion-driven transmuter (FDT)

    This study presents the transmutations of both the minor actinides (MAs: 237Np, 241Am, 243Am and 244Cm) and the long-lived fission products (LLFPs: 99Tc, 129I and 135Cs), discharged from high burn-up PWR-MOX spent fuel, in a fusion-driven transmuter (FDT) and the effects of the MA and LLFP volume fractions on their transmutations. The blanket configuration of the FDT is improved by analyzing various sample blanket design combinations with different radial thicknesses. Two different transmutation zones (TZMA and TZFP which contain the MA and LLFP nuclides, respectively) are located separately from each other. The volume fraction of the MA is raised from 10 to 20% stepped by 2%. The MAs are cladded with the graphite (10%) and cooled with the high-pressured helium gas for nuclear heat transfer. The volume fraction of helium is reduced from 80 to 70% depending on that of MA. Furthermore, the volume fraction of graphite is raised from 10 to 80% stepped by 5% to slow down the energy of neutrons entering into the TZFP while the volume fraction of LLFP is reduced from 80 to 10% depending on the graphite volume fraction. The calculations are performed for an operation period (OP) of up to 10 years by 75% plant factor (η) under a neutron wall load (P) of 5 MW/m2 to estimate neutronic parameters and transmutation characteristics per D-T fusion neutron. The transmutation rates of the LLFP nuclides increase linearly with the increase of volume fractions of the MA, and the 99Tc nuclide among them has the highest transmutation rate

  2. Transmutation of radioactive nuclear waste- present status and requirement for the problem-oriented nuclear data base

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis focusing on the waste transmutation problem. (author)

  3. Transmutation of radioactive nuclear waste – present status and requirement for the problem-oriented nuclear data base

    Yu A Korovin; V V Artisyuk; A V Ignatyuk; G B Pilnov; A Yu Stankovsky; Yu E Titarenko; S G Yavshits

    2007-02-01

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis focusing on the waste transmutation problem.

  4. Disposal of nuclear wastes by transmutation

    A study was made of the feasibility of partition and transmutation (P-T) of actinides, 99Tc, and 129I in radioactive wastes. An incremental analysis was performed on a reference fuel cycle and a P-T fuel cycle. Short-term risks from fuel cycle operations and long-term risks from a repository were estimated for cases with and without P-T. Results show that P-T cannot be justified because of the small radiological benefits and substantially increased costs. 1 table

  5. Actinide co-conversion by internal gelation

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  6. Study on the photoacoustic spectroscopy capabilities with remote detection for monitoring of actinide species in nuclear fuel reprocessing solutions

    A LIPAS (Laser Induced Photoacoustic Spectroscopy) system has been developed for remote analysis of weakly absorbing species in solution. A number of photoacoustic cells of various configurations have been examined in remote arrangement of PA spectrometer with application of an optical fiber for the laser light transmission to PA cell. A microscope objective was tested in optical fiber launching arrangement to collimate laser beam after the fiber. It has been shown that short optical pathlengh cuvette type cells in combination with a disk type piezoelectric transducer (PZT) are superior to previously used cylindrical PA cell with a tube type PZT as regards more effective elimination of scattered and reflected light contribution to PZT response. This allows to improve the linearity of calibration curve and to lower the detection limit absorptivity down to 4.2x10-5cm-1, which has been evaluated using an absorption band of Nd at 511.4 nm. The newly designed PA cell has been applied for investigation of PAS capabilities to detection of Pu(III), Pu(IV) and Pu(VI) simulated species in uranium containing solutions relevant to the nuclear fuel reprocessing technology. It has been shown that the proper selection of plutonium absorption band for each oxidation state allows to reduce high background contribution from U(VI) ions to the analytical PA signal and to keep detection limit absorptivity within a 1-3x10-5cm-1 range in the 525-562 nm wavelength region. (author)

  7. Transmutation Technology Development

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  8. Transmutation of high-level radioactive waste by a charged particle accelerator

    Transmutation of minor actinides and fission products using proton accelerators has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. The authors have studied the relation between the energy requirements and the multiplication factor, k, of the subcritical assembly, while varying the range of several parameters in the spallation target. A slightly subcritical reactor is superior to a reactor with large subcriticality in the context of the energy requirement of a small proton accelerator, the extent of radiation damage, and other safety problems. To transmute the fission products, the transmutor reactor must have a good neutron economy, which can be provided by a transmutor operated by a proton accelerator. The paper discusses the use of minor actinides to improve neutronics characteristics, such as a long fuel burn-up rather than simply transmuting this valuable material

  9. Work within the coordinated programme on environmental evaluation and hazard assessment of the separation of the actinides from the high-level waste from fuel reprocessing followed by either transmutation of separate disposal

    Reduction of plutonium losses in non-high-level wastes streams from fuel reprocessing is important in the conventional post-fission operations and would be essential in any actinide partitioning alternatives. The balance of input process streams and output waste streams in present reprocessing technology is compared to the balance after process modifications based on recent experimental developments. The results are showing that by the introduction of new electrochemical redox processes and non-salt-forming process chemicals the routinely generated intermediate-level waste streams from PUREX reprocessing can be avoided. Plutonium-bearing waste streams can be extensively recycled within the chemical processing

  10. Accelerator-driven sub-critical target concept for transmutation of nuclear wastes

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MWe. 19 refs., 20 figs

  11. Long-Lived Fission Product Transmutation Studies

    A systematic study on long-lived fission products (LLFPs) transmutation has been performed with the aim of devising an optimal strategy for their transmutation in critical or subcritical reactor systems and evaluating impacts on the geologic repository. First, 99Tc and 129I were confirmed to have highest transmutation priorities in terms of transmutability and long-term radiological risk reduction. Then, the transmutation potentials of thermal and fast systems for 99Tc and 129I were evaluated by considering a typical pressurized water reactor (PWR) core and a sodium-cooled accelerator transmutation of waste system. To determine the best transmutation capabilities, various target design and loading optimization studies were performed. It was found that both 99Tc and 129I can be stabilized (i.e., zero net production) in the same PWR core under current design constraints by mixing 99Tc with fuel and by loading CaI2 target pins mixed with ZrH2 in guide tubes, but the PWR option appears to have a limited applicability as a burner of legacy LLFP. In fast systems, loading of moderated LLFP target assemblies in the core periphery (reflector region) was found to be preferable from the viewpoint of neutron economy and safety. By a simultaneous loading of 99Tc and 129I target assemblies in the reflector region, the self-generated 99Tc and 129I as well as the amount produced by several PWR cores could be consumed at a cost of ∼10% increased fuel inventory. Discharge burnups of ∼29 and ∼37% are achieved for 99Tc and 129I target assemblies with an ∼5-yr irradiation period.Based on these results, the impacts of 99Tc and 129I transmutation on the Yucca mountain repository were assessed in terms of the dose rate. The current Yucca Mountain release evaluations do not indicate a compelling need to transmute 99Tc and 129I because the resulting dose rates fall well below current regulatory limits. However, elimination of the LLFP inventory could allow significant relaxation of

  12. Status of fuel transmutation programmes in Japan and France. Lessons drawn from results

    Arai, Y.; Pillon, S

    2004-07-01

    France and Japan are currently developing a comprehensive and complementary programme focusing on the transmutation of minor actinides (MA: Np, Am, Cm) and fission products (FP: Tc, I, Cs) in fast breeder reactors (FBR). A summary of current MA-fuel transmutation programmes in France and Japan is provided in this paper, covering objectives, results and perspectives, with emphasis placed on the complementary effort of the two countries. (authors)

  13. Status of fuel transmutation programmes in Japan and France. Lessons drawn from results

    France and Japan are currently developing a comprehensive and complementary programme focusing on the transmutation of minor actinides (MA: Np, Am, Cm) and fission products (FP: Tc, I, Cs) in fast breeder reactors (FBR). A summary of current MA-fuel transmutation programmes in France and Japan is provided in this paper, covering objectives, results and perspectives, with emphasis placed on the complementary effort of the two countries. (authors)

  14. Subsurface Biogeochemistry of Actinides

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  15. Transmutation of high-level radioactive waste - Perspectives

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  16. Calculations of different transmutation concepts. An international benchmark exercise

    In April 1996, the NEA Nuclear Science Committee (NSC) Expert Group on Physics Aspects of Different Transmutation Concepts launched a benchmark exercise to compare different transmutation concepts based on pressurised water reactors (PWRs), fast reactors, and an accelerator-driven system. The aim was to investigate the physics of complex fuel cycles involving reprocessing of spent PWR reactor fuel and its subsequent reuse in different reactor types. The objective was also to compare the calculated activities for individual isotopes as a function of time for different plutonium and minor actinide transmutation scenarios in different reactor systems. This report gives the analysis of results of the 15 solutions provided by the participants: six for the PWRs, six for the fast reactor and three for the accelerator case. Various computer codes and nuclear data libraries were applied. (author)

  17. Neutronic study regarding transmutation fuel research at Jules Horowitz Reactor

    In order to estimate the possibilities for transmutation experiments at the Jules Horowitz Reactor several ideas for neutronic and fuel behaviour studies are investigated at CEA Cadarache. Naturally an exact replication of the burning of minor actinides in fast reactors, as expected in most transmutation scenarios, is impossible, but some key transmutation parameters can be investigated in a MTR neutron spectrum. In this paper a parametric study regarding fuel damage by He and fission products in AmUO2 is presented. By varying flux level, uranium enrichment and americium content of the sample in the JHR reflector a He production to fission ratio comparable to reference samples in the core of a SFR can be achieved. The calculations were done with the depletion code DARWIN2.2 using JEF2.2 data and spectra from a TRIPOLI model of JHR and an ERANOS model for the SFR respectively. (author)

  18. The nuclear fuel cycle for transmutation: a critical review

    This review presents a critical common FZK and CEA discussion of the transmutation possibilities of actinide nuclei and of fission products as Tc and I in reactors (PWRs and FBRs) and in accelerator-driven subcritical configurations. The activities in the Research Center Karlsruhe in the chemical area are briefly discussed. Activities in the chemical area at CEA are presented elsewhere at this conference. The alternate waste disposal with transmutation is compared to the direct disposal option, as seen from the FZK point of view. Work in France on this point is still underway according to a law, voted in the French Parliament in 1991. The aim of this study is to evaluate, how the short-term and long-term risks of nuclear waste, including both direct disposal and transmutation scenarios, realistically could be minimized. (authors)

  19. Research activities related to accelerator-based transmutation at PSI

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  20. Radiation and transmutation effects relevant to solid nuclear waste forms

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite

  1. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  2. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  3. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO2 once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  4. Transmutation Scenarios Impacts on Advanced Nuclear Cycles (fabrication/reprocessing/transportation)

    In the frame of the French Law for waste management, minor actinides transmutation scenarios have been studied for a sodium-cooled fast reactors fleet using homogeneous or heterogeneous recycling modes. Americium, neptunium and curium can be transmuted once included together in the standard MOX fuel, or the sole Americium can be incorporated in Am-bearing radial blanket. MAs transmutation in Accelerator Driven System has also been studied while Plutonium is recycling in SFR. Assessments and comparisons of these advanced cycles have been performed in light of technical and economic aspects criteria. The purpose of this study is to present the results in terms of impacts of the transmutation scenarios on fuel cycle plants (fabrication, reprocessing) and transportations taking into account thermal, radiation and criticality parameters. Comparison with no transmutation option is also presented. (author)

  5. Release rates from partitioning and transmutation waste packages

    Partitioning the actinides in light-water reactor spent fuel and transmuting them in actinide-burning liquid-metal reactors has been proposed as a potential method for reducing the public risks from geologic disposal of nuclear waste. As a first step towards quantifying the benefits for waste disposal of actinide burning, we have calculated the release rates of key radionuclides from waste packages resulting from actinide burning, and compare them with release rates from LWR spent fuel destined for disposal at the potential repository at Yucca Mountain. The wet-drip water-contact mode has been used. Analytic methods and parameter values are very similar to those used for assessing Yucca Mountain as a potential repository. Once released, the transport characteristics of radionuclides will be largely determined by site geology. For the most important nuclides such as I-129 and Tc-99, which are undiminished by actinide-burning reactors, it is not surprising that actinide burning offers little reduction in releases. For important actinides such as Np-237 and Pu isotopes, which are reduced in inventory, the releases are not reduced because the release rates are proportional to solubility, rather than inventory

  6. Releases from exotic waste packages from partitioning and transmutation

    Lee, W.W.L. [Lawrence Berkeley Lab., CA (United States); Choi, J.S. [Lawrence Livermore National Lab., CA (United States)

    1991-09-01

    Partitioning the actinides in spent nuclear fuel and transmuting them in actinide-burning liquid-metal reactors has been proposed as a potential method of reducing the public risks from geologic disposal of nuclear waste. To quantify the benefits for waste disposal of actinide burning, we calculate the release rates of key radionuclides from waste packages resulting from actinide burning, and compare them with release rates from LWR spent fuel destined for disposal at the potential repository at Yucca Mountain. The wet-drip water-contact mode has been used. Analytic methods and parameter values are very similar to those used for assessing Yucca Mountain as a potential repository. Once released, the transport characteristics of radionuclides will be largely determined by site geology. For the most important nuclides such as I-129 and {Tc}-99, which are undiminished by actinide-burning reactors, it is not surprising that actinide burning offers little reduction in releases. For important actinides such as Np-237 and Pu isotopes, which are reduced in inventory, the releases are not reduced because the release rates are proportional to solubility, rather than inventory.

  7. Motivation for transmuting long-lived radioactive products

    In the Netherlands the efforts on waste transmutation are coordinated in a research programme called RAS. One of the aims of this RAS program is to inform the public and advise the authorities on methods for transmutation/conditioning of nuclear waste, and on techniques which are being developed. Any new way to treat waste should of course not lead to significant risks for the present population. Small risks might be accepted, but these should sufficiently be compensated for. Benefits for the present generation are related to the better exploitation of the full energy content of the actinides, which will reduce fuel costs and waste streams from mining as well as from spent fuel. Future generations might profit from the fact that the waste has been cleaned from actinides and that proliferation risks are eliminated. Another benefit could be that transmutation also could lead to a reduction of dose-risks by leakage of mobile elements such as Rn-222 and the metalloid fission products like technetium and iodine. It is shown in this paper that the balance of benefits and risks is quite different for long-lived fission products than for actinides. (author)

  8. Actinides-1981

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  9. Actinides-1981

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  10. Partitioning and transmutation (P and D) 1995. A review of the current state of the art

    The recent development in the field of partitioning and transmutation (P/T) is reviewed and evaluated. Current national and international R and D efforts are summarized. Nuclear transmutation with energy production is feasible in nuclear reactors where fast and thermal breeders are the most efficient for transmutation purposes. The operation of subcritical nuclear reactors by high current proton accelerators that generate neutrons in a spallation target is also an interesting option for transmutation and energy production, that has to be more carefully evaluated. These accelerator-driven systems are probably the only solution for the transmutation of long-lived fission products with small neutron capture cross sections and actinide isotopes with small fission cross sections. The requirements on the separation chemistry in the partitioning process depends on the transmutation strategy chosen. Recent developments in aqueous based separation chemistry opens some interesting possibilities to meet some of the requirements, such as separation of different actinides and some fission products and reduction of secondary waste streams. In the advanced accelerator-driven transmutation systems proposed, liquid fuels such as molten salts are considered. The partitioning processes that can be used for these types of fuel will, however, require a long term research program. The possibility to use centrifuge separation is an interesting partitioning option that recently has been proposed. 51 refs, 7 figs, 3 tabs

  11. Nuclear transmutation in steels

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  12. 次锕系元素在加速器驱动的次临界快堆中嬗变的研究%Study of Transmutation of Minor Actinides in Accelerator-Driven Sub-critical Fast Reactor

    杨永伟; 古玉祥

    2001-01-01

    选取加速器驱动次临界快堆(ADSFR),进行嬗变来自于PWR(U)乏燃料 中次锕系元素 的研究。在堆芯内,燃料为NpAmCm的氧化物,选取液态钠为冷却剂。利用下列程序对所选方 案进行物理计算和分析:LAHET -模拟质子与靶核的相互作用;MCNP4A-模拟次临界包层内 20MeV以下的中子与材料核的相互作用;ORIGEN2-利用MCNP4A的输出提供的一群等效截面对 堆芯进行燃耗计算。计算分析的结果表明:考虑临界安全、功率密度和燃耗等因素,利用所 选方案进行次锕系元素嬗变是可行的。%Accelerator-Driven Sub-critical Fast Reactor (ADSFR)is chosenfor transmu ta tion of minor actinides from the spent fuel of PWR(U). In the core, the fuel type is (PuNpAmCm)Ox. Liquid sodium is chosen as coolant The neutronics calcul ation and analysis of the selected scheme have been done by using the following codes: LAHET, for the simulation of the interaction between the protons and the nuclei of the target; MCNP4A, for the simulation of interaction between neutron s with energy below 20MeV and the nuclei of materials in the sub-critical blank e t; ORIGEN2, for the multi-region burnup calculation of the blanket by using the one-group effective cross-section provided in the output of MCNP4A. The neutro ni cs calculation and analysis show that the proposed scheme is feasible for trans mutation of minor actinides, considering the factors such as the criticality s afety, power density, burnup, etc.

  13. Status of nuclear transmutation study

    JAERI is carrying out R and Ds on partitioning and transmutation under the OMEGA Program. The R and Ds include the design study of accelerator-driven transmutation systems and the development of transmutation experimental facilities. Accelerator-driven systems have received much interests due to their potential role as dedicated transmuters in the nuclear fuel cycle for minimizing long-lived waste. Principles of accelerator-driven system, its history, JAERI proposed system concepts, and the experimental program are overviewed. (author)

  14. Actinides reduction by recycling in a thermal reactor

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  15. Studies of partitioning and transmutation

    Part 1: Current status of partitioning and transmutation: The purpose of the project covered in this report is to contribute to a watching brief exercise for the Department of the Environment, Transport and the Regions (DETR) on the subject of the Partitioning and Transmutation (P and T) of long-lived radionuclides present in high level radioactive waste (HLW). The watching brief is intended to ensure that DETR are aware of international developments and progress so that UK policy continues to be soundly based. This has been achieved by attendance at international meetings and conferences and studies of the published literature, and also by participation in the Fourth Framework R and D Programme of the European Commission (EQ) in the field of P and T (see Part 2 below). Answers have been developed to a list of questions about certain aspects of P and T, provided by the DETR; and further information has also been provided about progress in the current EC programme and elsewhere. National programmes on P and T are in progress in various countries, and the motivations for these vary. These programmes concentrate exclusively on high level waste (HLW) in spite of the environmental importance of other waste streams. P and T is not generally seen as a viable waste management strategy in the short or medium term, but as an option for the future. A considerable new impetus has been imparted to P and T research by the development of Accelerator Driven Systems (ADS) which provide high neutron fluxes suitable for transmutation. Such systems may be more effective than current fission reactors for this purpose. Good progress has also been made in the separation of actinides and long-lived fission products from HLW, using both aqueous and dry (pyrochemical) processes. P and T is more likely to be implemented in future decades as part of a radically new type of fuel cycle, probably pyrochemical, rather than as an extension of PUREX reprocessing. However, pyrochemical reprocessing

  16. Partitioning and transmutation. Annual report 2009

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena (Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2010-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I and 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a novel process

  17. Partitioning and transmutation. Annual report 2008

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work on

  18. Partitioning and transmutation. Annual report 2009

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I and 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a novel process

  19. Partitioning and transmutation. Annual report 2008

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Naestren, Catharina; Retegan, Teodora; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work

  20. Fuel cycle of actinide burner-reactor. Review of investigations by > program

    The problem of long-lived minor-actinides (Np, Am, Cm) transmutation is one of major part of problem of nuclear power ecological safety. The problem of Pu surpluses burning-out adjoins to this problem. Existing and perspective reactor systems could be used for it, but task of optimum organization of the external closed cycle for actinide burner reactor becomes the important aspect of transmutation problem. Since 1992, SSC RIAR has proposed the demonstration program-concept DOVITA (Dry reprocessing, Oxide fuel, Vibropac, Integral, Transmutation of Actinides), which should demonstrate opportunities of new technologies for realization of the optimized fuel cycle for actinide burner reactor. The brief review of study on DOVITA program for 5 years is given in this paper. (J.P.N.)

  1. Accelerator transmutation of 129I

    Iodine-129 is one of several long-lived reactor products that is being considered for transmutation by the Los Alamos Accelerator Transmutation of Waste (ATW) program. A reasonable rate of transmutation of 1291 is possible in this system because of the anticipated high neutron flux generated from the accelerator. This report summarizes previous papers dealing with the transmutation of 1291 where reactor technologies have been employed for neutron sources. The transmutation process is considered marginal under these conditions. Presented here are additional information concerning the final products that could be formed from the transmutation process in the ATW blanket. The transmutation scheme proposes the use of solid iodine as the target material and the escape of product xenon from the containers after van Dincklange (1981). Additional developmental plans are considered

  2. MA-burners efficiency parameters allowing for the duration of transmutation process

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles nrep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  3. Fabrication of inert matrices for heterogeneous transmutation. EFTTRA-T2 (RAS 2) irradiation programme

    This report describes the fabrication of targets containing inert matrices for the heterogeneous transmutation of plutonium and minor actinides. These targets will be irradiated in the EFTTRA-T2 (RAS-2) irradiation programme. The selection, preparation and characterization of the inert matrices and fabrication and loading of the irradiation capsules are discussed. (orig.)

  4. Review of actinide nitride properties with focus on safety aspects

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  5. Review of actinide nitride properties with focus on safety aspects

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  6. Partitioning and transmutation of nuclear wastes. Chances and risk in research and application

    Partitioning and transmutation is focused on the transformation of long-lived radioisotopes in short-lived isotopes. The methodology could be a possibility to reduce the long.-term risk of heat developing nuclear waste in final repositories. During partitioning of spent fuel elements the uranium, plutonium and the minor actinides (neptunium, americium and curium) are separated. The remaining fission and activation products are vitrified and disposed in the final repository. During the partition process radioactive water from decontamination and washing is generated as secondary waste. The transmutation process includes the irradiation of plutonium and the minor actinides with fast neutrons resulting in stable or short-lived isotopes. The separated uranium can be used for fuel element production. The facility for transmutation is being developed and is supposed to be safer than the actual nuclear power plants. The potential risks of the technology are discussed.

  7. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  8. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  9. Minior Actinide Doppler Coefficient Measurement Assessment

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  10. Coordination chemistry for new actinide separation processes

    The amount of wastes and the number of chemical steps can be decreased by replacing the PUREX process extractant (TBP) by, N.N- dialkylamides (RCONR'2). Large amounts of deep underground storable wastes can be stored into sub-surface disposals if the long lived actinide isotopes are removed. Spent nuclear fuels reprocessing including the partitioning of the minor actinides Np, Am, Cm and their transmutation into short half lives fission products is appealing to the public who is not favorable to the deep underground storage of large amounts of long half lived actinide isotopes. In this paper coordination chemistry problems related to improved chemical separations by solvent extraction are presented. 2 tabs.; 4 refs

  11. Technical meeting on 'Review of solid and mobile fuels for partitioning and transmutation systems'. Working material

    The topics covered during the Meeting were divided into two Sessions. Session 1 - Qualification of Solid and Mobile Fuels delt with: Neutronic, fuel and material properties of a molten salt transmuter; and Preliminary analysis of transmutation fuels for KALIMER. Session 2 - Reactor Physics and Safety Characteristics of Transmutation Systems based on Solid and Mobile Fuel Types included the following: Activity in NEA for P and T area; IAEA activities in the area of partitioning and transmutation; The R and D activity in Brazil: A conceptual fast energy amplifier ADS cooled by helium double stata Th/U fuel cycle; Closed fuel cycle and contemporary tendencies of the nuclear facilities development; Current Russian activities in P and T area; Pyrochemical reprocessing and nuclear spent fuel disposal project; Fuel selection criteria specific for double stratum minor actinide burners

  12. Neutron economy and transmutation performance of coupling system of fast reactor and a-burner

    Neutron economy and transmutation performance are examined for a fast reactor (FR), a PWR, and an A-Burner which transmutes Minor-Actinide (MA) in a well-thermalized neutron field and a slightly hard neutron field optimized for the burn-up of 246Cm. The neutron economies of the FR and the A-Burner are, respectively, favorable and acceptable to transmute MA. The coupling system of both the reactors can reduce 8.1 ton of MA to almost zero within 60 years by using one FR and one A-Burner. This coupling system is expected to achieve the final goal of transmutation, i.e., to make us free from the geological disposal. (authors)

  13. Proceedings of the specialists' meeting on accelerator-based transmutation

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  14. Design concepts and process analysis for transmuter fuel manufacturing

    The large-scale deployment of remote fabrication and re-fabrication processes (approx. 100 tons of Minor Actinides (MA) annually) will be required for all transmutation scenarios. Process automation has the potential to decrease the cost of remote fuel fabrication and to make transmutation a more economically viable process. The paper describes the design of hot cell fuel manufacturing processes using robotic equipment in hot cells. The dynamics of the robots and the objects handled by them are analyzed in detail using state of the art software tools. In addition to the evaluation and testing of normal assembly operations, the 3D simulation provides for a comprehensive analysis of normal work flows and atypical events such as collisions. The results permit a detailed analysis of the robotic assembly process in terms of forces, torques, and accidents. Detailed simulation results for several operations are presented. (author)

  15. Accelerator-driven Transmutation of Waste

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  16. Transmutation calculations for the accelerator transmutation of waste (ATW) program

    The disposal of radioactive waste by the transmutation of long-lived radionuclides is being considered; now using neutrons produced with an intense beam of 1.6-GeV protons on a Pb-Bi target. Study teams have been active in the areas of accelerator design, beam transport, radiation transport, transmutation, fluid flow and heat transfer, process chemistry and system analyses. Work is of a preliminary and developmental nature. Here we describe these preliminary efforts in transmutation calculations; the tools developed, status of basic nuclear data, and some early results. These calculations require the description of the intensity and spectrum of neutrons produced by the beam, the distribution of nuclides produced in the medium-energy reactions, the transport of particles produced by the beam, the transmutation of the target materials and transmutation products, and the decay properties of the inventory of radionuclides produced

  17. Managing Inventories of Heavy Actinides

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  18. Study of the fuel behavior, safety characteristics and transmutation performance of a gas cooled accelerator driven system (ADS)

    The neutronic behavior of an ADS system based on gas cooling is examined in this work by using the simulation tools MCNPX and ORIGEN. The main character of the MCNPX code is the use of the Monte-Carlo method allowing a high dimensional simulation of the physical processes. The whole model of the core is represented in 3 dimensional zones including the target structure, which provides the initial spallation neutrons for the chain reaction in the fuel zone. At the beginning, MOX fuel with 19.5 wt. Pu/(Pu+U) is loaded in order to investigate the technical feasibility of a test facility. The fuel assemblies are replaced step by step with Plutonium and minor actinides (PuMa) uranium free fuel according to a loading and shuffling pattern. The designed test facility consists of 120 fuel assemblies each 91 fuel rods which are arranged around the spallation target. For a thermal power of 100 MW the burn-up and transmutation rate is studied. The first results for the MOX and partially PuMa fuel loaded core are presented in this paper. For the PuMa fuel two compositions are investigated. Both fuel types chosen for the analysis demonstrate the capability of the incineration of americium. The simulations show that the initial composition has significant influence on the transmutation rate. The deployment of MOX type fuel in the ADS core causes a considerable consumption of Pu but also a significant generation of americium

  19. Evaluation of Heterogeneous Options: Effects of MgO versus UO2 Matrix Selection for Minor Actinide Targets in a Sodium Fast Reactor

    M. Pope; S. Bays; R. Ferrer

    2008-03-01

    The primary focus of this work was to compare MgO with UO2 as target matrix material options for burning minor actinides in a transmutation target within a sodium fast reactor. This analysis compared the transmutation performance of target assemblies having UO2 matrix to those having specifically MgO inert matrix.

  20. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  1. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  2. Impact of partitioning and transmutation on repository design

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  3. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  4. Fabrication of fuel and recycling of minor actinides in fast reactors

    Somers, Joseph

    2010-01-01

    Fuels for future fast reactors will not only produce energy, but they must also actively contribute to the minimisation of long lived wastes produced by these, and other reactor systems. The fuels must incorporate minor actinides (MA = Np, Am, Cm) for neutron transmutation into short lived isotopes. Within Europe oxide fuels are favoured. Transmutation can be considered in homogeneous or heterogeneous reactor recycle modes (i.e. in fuels or targets, respectively). Fabrication of such fuels...

  5. Simulation study of an accelerator driven as a transmutation and energy generation system

    In twenty first century world is facing two issues of future concern, generation of clean energy and the protection of the environment. Oil price is soaring to a level of jeopardizing world economy and on the other hand burning fossil fuel is reaching to a point of endangering life of all creatures. The sole solution to compete the energy shortage is exploiting nuclear energy and other clean energy sources. The main concern of nuclear energy is long term radioactive waste. In principle, any nuclear reactor is able to burn and transmute minor actinides, but reactors with fast neutron spectrum must be preferred, as they allow a positive neutron gain throughout the burning process. A core dedicated to the transmutation of the minor actinides should be designed in order to minimize its self-production of actinides. A possible solution to these problems is represented by a subcritical system driven by an accelerator, which is able to safely bum and/or transmute actinides and long lived fission products, as it does not rely on delayed neutrons for control or power change and the reactivity feedbacks have only limited importance during transient response. In this study, an accelerator driven system based on Japanese design was simulated using MCNPX code to calculate neutron spectrum flux level, core sub-criticality and peaking factor

  6. Isotopic Transmutation and Fuel Burnup in BN-600 Hybrid Fast Reactor Core

    BN-600 fast reactor core was modeled using MCNPX computer code. The core configuration and material composition, for the hybrid design, was simulated in this model. The power generated in different zones was determined and the results were compared with published results and found acceptable. Isotopes transmutations in various zones were estimated. The uranium isotopes are major contributors to power production in this reactor, the probability of plutonium incineration will increase with the increase in the use of MOX oxide. The transmutation of minor actinides is not obvious in this configuration

  7. Research and development activities for transmutation physics experimental facility in J-PARC

    The Japan Atomic Energy Agency (JAEA) has the plan to construct Transmutation Physics Experimental Facility (TEF-P) under a framework of J-PARC (Japan Proton Accelerator Research Complex) project. TEF-P is a critical assembly which can load Minor Actinide (MA) fuels to perform reactor physics experiments for transmutation systems such as Accelerator-Driven System (ADS) or Fast Reactor (FR). The facility can also use proton beam from the J-PARC accelerator to investigate the controllability of ADS. Current status and activities for TEF-P are described. (author)

  8. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    objective of accelerator driven systems (ADS) is for nuclear waste transmutation in order to reduce the radio-toxicity of the spent fuel in final storage disposal. Achieving this goal requires other technologies associated with an advanced fuel cycle with uranium-free fuel heavily loaded with minor actinides and associated fabrication and reprocessing capabilities. The primary or reference option for the advanced fuels for the ADS is based on the (Pu,MA)-O2 material: a composite with Mo92 (CERMET) or MgO (CERCER). The size of the plant for a given fuel technology is of significant importance to achieve net MA consumption. The larger the size, the smaller amount of Plutonium is needed to achieve the requested reactivity level, and the greater amount of Minor Actinide (MA) can be provided and will, in the end, be burnt. A good compromise for a Helium cooled ADT core with roughened steel pin cladding leads to a volume power of 44 W/cm3 and an installed power of 400 MWth. The design of this core takes advantage of previous studies by keeping the pressure drop over the core height below 0.5 bar hence preserving the decay removal capabilities and decreasing the pin diameter (7.71 mm) in order to keep the linear power below 152 W/cm. The 6. EUROTRANS Integrated Project will be targeting an European Transmutation Demonstrator (ETD) primarily with lead coolant but also with helium coolant (ETD/EFIT of several hundred MWth, EFIT for European Facility on Industrial scale Transmuter) able to transmute Nuclear Waste on a industrial scale with the full set of constraints taken into account. (authors)

  9. Studies on the safety and transmutation behaviour of innovative fuels for light water reactors

    Nuclear power plants contribute a substantial part to the energy demand in industry. Today the most common fuel cycle uses enriched uranium which produces plutonium due to its 238U content. With respect to the long-term waste disposal Plutonium is an issue due to its heat production and radiotoxicity. This thesis consists of three main parts. In the first part the development and validation of a new code package MCBURN for spatial high resolution burnup simulations is presented. In the second part several innovative uranium-free and plutonium-burning fuels are evaluated on assembly level. Candidates for these fuels are a thorium/plutonium fuel and an inert matrix fuel consisting of plutonium dispersed in an enriched molybdenum matrix. The performance of these fuels is evaluated against existing MOX and enriched uranium fuels considering the safety and transmutation behaviour. The evaluation contains the boron efficiency, the void coefficient, the doppler coefficient and the net balances of every radionuclide. In the third part these innovative fuels are introduced into a German KONVOI reactor core. Considering todays approved usage of MOX fuels a partial loading of one third of innovative fuels and two third of classical uranium fuels was analysed. The efficiency of the plutonium depletion is determined by the ratio of the production of higher isotopes compared to the plutonium depletion. Todays MOX-fuels transmutate about 25% to 30% into higher actinides as Americium or Curium. In uranium-free fuels this ratio is about 10% due to the lack of additional plutonium production. The analyses of the reactor core have shown that one third of MOX fuel is not capable of a net reduction of plutonium. On the other hand a partial loading with thorium/plutonium fuel incinerates about half the amount of plutonium produced by an uranium only core. If IMF is used the ratio increases to about 75%. Considering the safety behavior all fuels have shown comparable results.

  10. A proposal for a Los Alamos international facility for transmutations (LIFT)

    The major groups engaged in transmutation research are converging towards a common objective and similar technology. It is now possible to envision an international program of research aimed at the destruction of reactor-generated (and other) nuclear waste using a series of multipurpose experimental facilities in the near future. Los Alamos National Laboratory, as the home of the highest power LINAC and a very active transmutation technology project, is the ideal host for the first of such facilities. The next step in the international program (a facility 10 times more powerful, for engineering-scale demonstrations) could be built in Europe, where there is substantial interest in the construction of such a device in the framework of international cooperation. A series of experiments at Las Alamos could explore the key transmutation technologies. Liquid lead loops, a liquid lead spallation target, and a large size liquid lead facility with provision for irradiation, cooling and diagnostics of several types of 'transmutation assemblies', where different transmutation concepts will be tested in different media and environments, from transmutation of fission products to destruction by fission of higher actinides, to other waste management applications. The engineering-scale facility, which will follow the initial testing phase, will extend the best concepts to full scale implementation

  11. A proposal of reactor physics research of accelerator drive system using transmutation physics experimental Facility

    Reactor physics section of the Atomic Energy Society of Japan (AESJ) recognizes an accelerator driven system (ADS) as the next generation reactor and to promote researches using it. History of this section activity on ADS, outline of Transmutation Physics Experimental Facility in the 'High-Intensity Proton Accelerator Project', a proposal of reactor physics section to the project and future actions of this section are explained. The Transmutation Physics Experimental Facility consists of a fast neutron subcritical system and a nuclear spallation neutron source. The contents of experiments are evaluation of nuclear properties of fast neutron subcritical system driven by nuclear spallation source, verification of operation and control of accelerator driven hybrid system and evaluation of nuclear transmutation characteristics of MA (Minor Actinides) and LLFP (Long-Lived Fission Product). Themes of R and D of ADS contain operation control of ADS, critical control of subcritical system, properties of reactor with nuclear spallation neutron source and nuclear transmutation characteristics. The experimental items are measurement of dynamic characteristics of reactor at beam change, R and D of method of output control and stop, R and D of contentious monitoring method of subcritical multiplication, measurement of dynamic characteristics of behaviors of reactivity, effects on reactor characteristics of high energy neutron, effects on reactor physics of beam duct and large target, nuclear transmutation efficiency and simulation of nuclear transmutation reactor core. (S.Y.)

  12. Fast Burner Reactor Devoted to Minor Actinide Incineration

    This study proposes a new fast reactor core concept dedicated to plutonium and minor actinide burning by transmutation. This core has a large power level of ∼1500 MW(electric) favoring the economic aspect. To promote plutonium and minor actinide burning as much as possible, total suppression of 238U, which produces 239Pu by conversion, and large quantities of minor actinides in the core are desirable. Therefore, the 238U-free fuel is homogeneously mixed with a considerable quantity of minor actinides.From the safety point of view, both the Doppler effect and the coolant (sodium) void reactivity become less favorable in a 238U-free core. To preserve these two important safety parameters on an acceptable level, a hydrogenated moderator separated from the fuel and nuclides, such as W or 99Tc, is added to the core in the place of 238U. Tungsten and 99Tc have strong capture resonances at appropriate energies, and 99Tc itself is a long-lived fission product to be transmuted with profit.This core allows the achievement of a consumption rate of ∼100 kg/TW(electric).h of transuranic elements, ∼70 kg/TW(electric).h for plutonium (due to 238U suppression), and 30 to 35 kg/TW(electric).h for minor actinides. In addition, ∼14 kg/TW(electric).h of 99Tc is destroyed when this element is present in the core (the initial loading of 99Tc is >4000 kg in the core).The activity of newly designed subassemblies has also been investigated in comparison to standard fast reactor subassemblies (neutron sources, decay heat, and gamma dose rate). Finally, a transmutation scenario involving pressurized water reactors and minor actinide-burning fast reactors has been studied to estimate the necessary proportion of burner reactors and the achievable radiotoxicity reduction with respect to a reference open cycle

  13. Status of nuclear data for actinides

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  14. Recovery of actinides from spent nuclear fuel by pyrochemical reprocessing

    The Partitioning and Transmutation (P and T) strategy is based on reduction of the long-term radiotoxicity of spent nuclear fuel by recovery and recycling of plutonium and minor actinides, i.e. Np, Am and Cm. Regardless if transmutation of actinides is conceived by a heterogeneous accelerator driven system, fast reactor concept or as integrated waste burning with a homogenous recycling of all actinides, the reprocessed fuels used are likely to be significantly different from the commercial fuels of today. Because of the fuel type and the high burn-up reached, traditional hydrometallurgical reprocessing such as used today might not be the most adequate method. The main reasons are the low solubility of some fuel materials in acidic aqueous solutions and the limited radiation stability of the organic solvents used in extraction processes. Therefore, pyrochemical separation techniques are under development worldwide, usually based on electrochemical methods, reductive extraction in a high temperature molten salt solvent or fluoride volatility techniques. The pyrochemical reprocessing developed in ITU is based on electrorefining of metallic fuel in molten LiCl-KCl using solid aluminium cathodes. This is followed by a chlorination process for the recovery of actinides from formed actinide-aluminium alloys, and exhaustive electrolysis is proposed for the clean-up of salt from the remaining actinides. In this paper, the main achievements in the electrorefining process are summarised together with results of the most recent experimental studies on characterisation of actinides-aluminium intermetallic compounds. U, Np and Pu alloys were investigated by electrochemical techniques using solid aluminium electrodes and the alloys formed by electrodeposition of the individual actinides were analysed by XRD and SEM-EDX. Some thermodynamic properties were determined from the measurements (standard electrode potentials, Gibbs energy, enthalpy and entropy of formation) as well as

  15. Towards an assessment of partition and transmutation

    In France, after 15 years of research launched by the 1991 Law on High Level Waste, l'Office Parlementaire de l'Evaluation des Choix Scientifiques et Technologiques has published its report due to the Chambers after hearings of the actors of the research and of different stakeholders. The first conclusions are that Partition/Transmutation (P and T), Disposal and Interim Storage have to be considered as complementary ways of dealing with the High Level Waste. The technical feasibility of the Partition process is about to be proven, including a small scale demonstration on active solutions in the Atalante facility. The feasibility of Transmutation will be comforted by the present experiments in the Phenix facility. There are several recommendations in the report: the timing of implementation of a partition transmutation cycle in France will have to coincide with the need for a renewal of the present reprocessing plant and the need for a fuel cycle serving a new generation of Power Reactors. At the same time, P and T may induce disposal cost reduction that may cover a part of the cost in P and T. As a matter of fact, present reprocessing and recycling reduces the waste volume and toxicity and therefore is beneficial to the disposal capacity and cost. However, at the present time, disposal costs reduction due to P and T are difficult to estimate, since optimization of disposal is still to be done. P and T costs are difficult to estimate as well, since they may include not only separative shops, targets fabrication and reprocessing units but actinide incinerators. This paper provides some reflections on the possible benefits in implementing P and T. The benefits will come either from toxicity reduction, thermal load reduction, or from other less tangible reasons as it may increase the positive perception of a disposal by reducing uncertainties or time perspective. Our proposition is to focus more the next R and D programs on the assessments of P and T benefits and

  16. Ability to burn plutonium and minor actinides. Interest of accelerator driven system compared to critical reactor

    In the frame of the French Act of December 1991, EDF is presently assessing the interest of Acceleration Driven System (ADS) for the Transmutation of the Plutonium and Minor Actinides (MA) produced by its park of nuclear reactors. The studies presented here assess the efficiency of ADS and critical reactors to incinerate Pu and MA (Minor Actinides) and the potential interest of ADS for that purpose. (author)

  17. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Bourg Stéphane; Geist Andreas; Narbutt Jerzy

    2015-01-01

    Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities strivin...

  18. Transmutation of Nuclear Waste and the future MYRRHA Demonstrator

    Mueller, Alex C

    2012-01-01

    While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven syste...

  19. Impact of different transmutation strategies on the risk from the radioactive waste

    A comprehensive study has been carried out with the aim of quantifying and comparing on a consistent basis the actinide-related component of the long-term risk for different transmutation systems with closed fuel cycles. The analyses are based on a direct method for calculating equilibrium fuel compositions and a scheme for evaluating nuclide-specific contributions to the risk from storing the remaining radioactive waste. The comparison is performed for systems with a wide range of characteristics including conventional reactors and different accelerator-based transmuters. The results allow to draw interesting conclusions regarding the long-term risk arising from the recycling of plutonium and minor actinides, as also the inherent long-term risks associated with the uranium-plutonium and the thorium-uranium fuel cycles. (author) 2 figs., 1 tab., 8 refs

  20. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    Smith, James Dean; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Rochau, Gary Eugene; Martin, William Joseph; Kamery, William (Hobart & William Smith College, Geneva, NY); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Cipiti, Benjamin B.; Wilson, Paul Philip Hood (University of Wisconsin, Madison, WI); Mehlhorn, Thomas Alan; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX)

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  1. Fuel and target programs for the transmutation at Phenix and other reactors

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  2. Review of Integral Experiments for Minor Actinide Management

    Spent nuclear fuel contains minor actinides (MAs) such as neptunium, americium and curium, which require careful management. This becomes even more important when mixed oxide (MOX) fuel is being used on a large scale since more MAs will accumulate in the spent fuel. One way to manage these MAs is to transmute them in nuclear reactors, including in light water reactors, fast reactors or accelerator-driven subcritical systems. The transmutation of MAs, however, is not straightforward, as the loading of MAs generally affects physics parameters, such as coolant void, Doppler and burn-up reactivity. This report focuses on nuclear data requirements for minor actinide management, the review of existing integral data and the determination of required experimental work, the identification of bottlenecks and possible solutions, and the recommendation of an action programme for international co-operation. (authors)

  3. Status of the French Research on Partitioning and Transmutation

    The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and pass the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the

  4. Fertile-Free Fast Lead-Cooled Incinerators for Efficient Actinide Burning

    Fertile-free fast lead-cooled modular reactors are proposed as efficient incinerators of plutonium and minor actinides (MAs) for application to advanced fuel cycles devoted to transmutation. Two concepts are presented: (1) an actinide burner reactor, designed to incinerate mostly plutonium and some MAs, and (2) a minor actinide burner reactor, devoted to burning mostly minor actinides and some plutonium. These transuranics are loaded in a fertile-free Zr-based metallic fuel to maximize the incineration rate. Both designs feature streaming fuel assemblies that enhance neutron leakage to achieve favorable neutronic feedback and a double-entry control rod system that reduces reactivity perturbations during seismic events and flattens the axial power profile. A detailed neutronic analysis shows that both designs have favorable neutronic characteristics and reactivity feedback mechanisms that yield passive safety features comparable to those of the Integral Fast Reactor. A safety analysis presents the response of the burners to anticipated transients without scram on the basis of (1) the integral parameter approach and (2) simulations of thermal-hydraulic accident scenario conditions. It is shown that both designs have large thermal margins that lead to safe shutdown without structural damage to the core components for a large spectrum of unprotected transients. Furthermore, the actinide destruction rates are comparable to those of the accelerator transmutation of waste concept, and a fuel cycle cost analysis shows the potential for economical accomplishment of the transmutation mission compared to other proposed actinide-burning options

  5. Neutronic and burnup studies of accelerator-driven systems dedicated to nuclear waste transmutation

    Tucek, Kamil

    2004-01-01

    Partitioning and transmutation of plutonium, americium, and curium is inevitable if the radiotoxic inventory of spent nuclear fuel is to be reduced by more than a factor of 100. But, admixing minor actinides into the fuel severely degrades system safety parameters, particularly coolant void reactivity, Doppler effect, and (effective) delayed neutron fractions. The incineration process is therefore envisioned to be carried out in dedicated, accelerator-driven sub-critical reactors (ADS). Howev...

  6. Nuclear waste transmutation

    A deep repository for safe long-term storage of long-lived radioactive materials (waste) arising from nuclear fuel irradiation in reactors is a need generally accepted, whatever the strategy envisaged for further use of the irradiated fuel (e.g.: reprocessing and re-use of uranium and plutonium; no reprocessing and final disposal). To assess the impact on the environment of a waste repository, one is lead naturally to consider the impact of radiation on man and to define the radiotoxicity of the different isotopes. The toxicity of the materials stored in a repository is function of time and at a given time is the sum of the activities of each radionuclide multiplied by appropriate danger coefficients. This time dependent sum R, is a source of 'potential' radiotoxicity. It has been pointed out (in reference 1), that R does not measure 'risk', which has to take into account 'actual pathways and probability of radioactive release to the biosphere'. It is well understood that (e.g. in the case of spent PWR fuel) the main contributor to R are actinides, Pu being the main component (see table I). In the case of risk, the situation is by far more complex and dependent on the modeling of different geological environments. In the analysis made in reference 1 the predominant role of Tc-99, I-129 and Cs-135 has been pointed out. The same analysis also stresses that actinides will be by far less relevant with respect to the highly soluble and mobile fission products. (authors). 13 refs., 2 tabs., 2 figs

  7. Application of variance reduction technique to nuclear transmutation system driven by accelerator

    Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In Japan, it is the basic policy to dispose the high level radioactive waste arising from spent nuclear fuel in stable deep strata after glass solidification. If the useful elements in the waste can be separated and utilized, resources are effectively used, and it can be expected to guarantee high economical efficiency and safety in the disposal in strata. Japan Atomic Energy Research Institute proposed the hybrid type transmutation system, in which high intensity proton accelerator and subcritical fast core are combined, or the nuclear reactor which is optimized for the exclusive use for transmutation. The tungsten target, minor actinide nitride fuel transmutation system and the melted minor actinide chloride salt target fuel transmutation system are outlined. The conceptual figures of both systems are shown. As the method of analysis, Version 2.70 of Lahet Code System which was developed by Los Alamos National Laboratory in USA was adopted. In case of carrying out the analysis of accelerator-driven subcritical core in the energy range below 20 MeV, variance reduction technique must be applied. (K.I.)

  8. A fusion transmutation of waste reactor

    A design concept and the performance characteristics for a fusion transmutation of waste reactor (FTWR)--a sub-critical fast reactor driven by a tokamak fusion neutron source--are presented. The present design concept is based on nuclear, processing and fusion technologies that either exist or are at an advanced stage of development and on the existing tokamak plasma physics database. A FTWR, operating with keff≤0.95 at a thermal power output of about 3 GW and with a fusion neutron source operating at Qp=1.5-2, could fission the transuranic content of about a hundred metric tons of spent nuclear fuel per full-power-year and would be self-sufficient in both electricity and tritium production. In equilibrium, a nuclear fleet consisting of Light Water Reactors (LWRs) and FTWRs in the electrical power ratio of 3/1 would reduce the actinides discharged from the LWRs in a once-through fuel cycle by 99.4% in the waste stream that must be stored in high-level waste repositories

  9. Partitioning and Transmutation. Annual Report 2002

    How to deal with the spent fuel from nuclear power plants is an issue that much research is attracted to in many countries around the world. Several different strategies exist for treating the waste ranging from direct disposal to reprocessing and recycling of plutonium and other long-lived nuclides. In either case the remains have to be stored for a long time to render it radio-toxically safe. One method to deal with this long-lived waste is to separate (separation) out the most long lived components and then transform them into shorter-lived ones (transmutation). Several methods exist for performing the separation for example via molten salts and through solvent extraction. The work presented here has been focused on solvent extraction. This technique is well known since many years and process scale plants have been operating for decades. The new demand is to separate chemically very similar elements from each other. Within this project this is done by new extracting agents developed for this purpose alone within the EU fifth framework programme, the PARTNEW project, particularly from the University of Reading. In this work we investigate different extraction systems for the separation of trivalent actinides from trivalent lanthanides using extraction agents following the so-called CHON (Carbon, Hydrogen, Oxygen and Nitrogen) principle. The main focus is to understand the basic chemistry involved but also some processing behaviour for use in future full scale plants

  10. Seed and blanket ADS using thorium–reprocessed fuel: Parametric survey on TRU transmutation performance and safety characteristics

    Highlights: • The seed and blanket ADS reference configuration without MA enrichment shows a large reactivity swing due to burnup. • The larger amount of MA introducing into the core, the more TRUs are transmuted. • With larger MA content, the smaller reactivity swing in the system can be achieved. • Increasing core size by introducing more thorium and reprocessed fuel assemblies into the system reduces reactivity swing. - Abstract: Conceptual designs of accelerator driven systems (ADS) that utilize thorium fuel as blanket and reprocessed fuel as seed for fission reaction in order to transmute the transuranic elements in spent nuclear fuel and produce energy from thorium utilization was proposed. In order to analyze the TRU transmutation performance of the system while the safety margin during the operation is satisfied, a parametric survey is done in this study. The impact of minor actinide (MA) amount and the reactor size on transmutation efficiency and safety characteristics of the ADS is investigated using MCNPX code using the ENDF/B-VII. As the results, with increasing MA content, TRU transmutation rate is increased while void reactivity of the system becomes less negative. Besides, increasing the core size by introducing more thorium and reprocessed fuel assemblies into the system reduces the TRU transmutation rate and reactivity swing due to burnup of the system. In order to match the efficient transmutation purpose and safety features during operation, higher MA content is suggested to introduce into the system